]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
fc7ad242969ffd9a3de7c9637d52f3c9d46bd0b2
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /*
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
36 */
37
38 /* ====================================================================
39 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 *
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 *
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in
50 * the documentation and/or other materials provided with the
51 * distribution.
52 *
53 * 3. All advertising materials mentioning features or use of this
54 * software must display the following acknowledgment:
55 * "This product includes software developed by the OpenSSL Project
56 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 *
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 * endorse or promote products derived from this software without
60 * prior written permission. For written permission, please contact
61 * openssl-core@openssl.org.
62 *
63 * 5. Products derived from this software may not be called "OpenSSL"
64 * nor may "OpenSSL" appear in their names without prior written
65 * permission of the OpenSSL Project.
66 *
67 * 6. Redistributions of any form whatsoever must retain the following
68 * acknowledgment:
69 * "This product includes software developed by the OpenSSL Project
70 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 *
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
85 *
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com). This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
89 *
90 */
91
92 #include <assert.h>
93 #include <limits.h>
94 #include <stdio.h>
95 #include "cryptlib.h"
96 #include "bn_lcl.h"
97
98 #ifndef OPENSSL_NO_EC2M
99
100 /*
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
103 */
104 # define MAX_ITERATIONS 50
105
106 static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85
108 };
109
110 /* Platform-specific macros to accelerate squaring. */
111 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
112 # define SQR1(w) \
113 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
114 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
115 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
116 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
117 # define SQR0(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
119 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
120 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
121 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
122 # endif
123 # ifdef THIRTY_TWO_BIT
124 # define SQR1(w) \
125 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
126 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
127 # define SQR0(w) \
128 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
129 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
130 # endif
131
132 # if !defined(OPENSSL_BN_ASM_GF2m)
133 /*
134 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
135 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
136 * the variables have the right amount of space allocated.
137 */
138 # ifdef THIRTY_TWO_BIT
139 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
140 const BN_ULONG b)
141 {
142 register BN_ULONG h, l, s;
143 BN_ULONG tab[8], top2b = a >> 30;
144 register BN_ULONG a1, a2, a4;
145
146 a1 = a & (0x3FFFFFFF);
147 a2 = a1 << 1;
148 a4 = a2 << 1;
149
150 tab[0] = 0;
151 tab[1] = a1;
152 tab[2] = a2;
153 tab[3] = a1 ^ a2;
154 tab[4] = a4;
155 tab[5] = a1 ^ a4;
156 tab[6] = a2 ^ a4;
157 tab[7] = a1 ^ a2 ^ a4;
158
159 s = tab[b & 0x7];
160 l = s;
161 s = tab[b >> 3 & 0x7];
162 l ^= s << 3;
163 h = s >> 29;
164 s = tab[b >> 6 & 0x7];
165 l ^= s << 6;
166 h ^= s >> 26;
167 s = tab[b >> 9 & 0x7];
168 l ^= s << 9;
169 h ^= s >> 23;
170 s = tab[b >> 12 & 0x7];
171 l ^= s << 12;
172 h ^= s >> 20;
173 s = tab[b >> 15 & 0x7];
174 l ^= s << 15;
175 h ^= s >> 17;
176 s = tab[b >> 18 & 0x7];
177 l ^= s << 18;
178 h ^= s >> 14;
179 s = tab[b >> 21 & 0x7];
180 l ^= s << 21;
181 h ^= s >> 11;
182 s = tab[b >> 24 & 0x7];
183 l ^= s << 24;
184 h ^= s >> 8;
185 s = tab[b >> 27 & 0x7];
186 l ^= s << 27;
187 h ^= s >> 5;
188 s = tab[b >> 30];
189 l ^= s << 30;
190 h ^= s >> 2;
191
192 /* compensate for the top two bits of a */
193
194 if (top2b & 01) {
195 l ^= b << 30;
196 h ^= b >> 2;
197 }
198 if (top2b & 02) {
199 l ^= b << 31;
200 h ^= b >> 1;
201 }
202
203 *r1 = h;
204 *r0 = l;
205 }
206 # endif
207 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
208 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
209 const BN_ULONG b)
210 {
211 register BN_ULONG h, l, s;
212 BN_ULONG tab[16], top3b = a >> 61;
213 register BN_ULONG a1, a2, a4, a8;
214
215 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
216 a2 = a1 << 1;
217 a4 = a2 << 1;
218 a8 = a4 << 1;
219
220 tab[0] = 0;
221 tab[1] = a1;
222 tab[2] = a2;
223 tab[3] = a1 ^ a2;
224 tab[4] = a4;
225 tab[5] = a1 ^ a4;
226 tab[6] = a2 ^ a4;
227 tab[7] = a1 ^ a2 ^ a4;
228 tab[8] = a8;
229 tab[9] = a1 ^ a8;
230 tab[10] = a2 ^ a8;
231 tab[11] = a1 ^ a2 ^ a8;
232 tab[12] = a4 ^ a8;
233 tab[13] = a1 ^ a4 ^ a8;
234 tab[14] = a2 ^ a4 ^ a8;
235 tab[15] = a1 ^ a2 ^ a4 ^ a8;
236
237 s = tab[b & 0xF];
238 l = s;
239 s = tab[b >> 4 & 0xF];
240 l ^= s << 4;
241 h = s >> 60;
242 s = tab[b >> 8 & 0xF];
243 l ^= s << 8;
244 h ^= s >> 56;
245 s = tab[b >> 12 & 0xF];
246 l ^= s << 12;
247 h ^= s >> 52;
248 s = tab[b >> 16 & 0xF];
249 l ^= s << 16;
250 h ^= s >> 48;
251 s = tab[b >> 20 & 0xF];
252 l ^= s << 20;
253 h ^= s >> 44;
254 s = tab[b >> 24 & 0xF];
255 l ^= s << 24;
256 h ^= s >> 40;
257 s = tab[b >> 28 & 0xF];
258 l ^= s << 28;
259 h ^= s >> 36;
260 s = tab[b >> 32 & 0xF];
261 l ^= s << 32;
262 h ^= s >> 32;
263 s = tab[b >> 36 & 0xF];
264 l ^= s << 36;
265 h ^= s >> 28;
266 s = tab[b >> 40 & 0xF];
267 l ^= s << 40;
268 h ^= s >> 24;
269 s = tab[b >> 44 & 0xF];
270 l ^= s << 44;
271 h ^= s >> 20;
272 s = tab[b >> 48 & 0xF];
273 l ^= s << 48;
274 h ^= s >> 16;
275 s = tab[b >> 52 & 0xF];
276 l ^= s << 52;
277 h ^= s >> 12;
278 s = tab[b >> 56 & 0xF];
279 l ^= s << 56;
280 h ^= s >> 8;
281 s = tab[b >> 60];
282 l ^= s << 60;
283 h ^= s >> 4;
284
285 /* compensate for the top three bits of a */
286
287 if (top3b & 01) {
288 l ^= b << 61;
289 h ^= b >> 3;
290 }
291 if (top3b & 02) {
292 l ^= b << 62;
293 h ^= b >> 2;
294 }
295 if (top3b & 04) {
296 l ^= b << 63;
297 h ^= b >> 1;
298 }
299
300 *r1 = h;
301 *r0 = l;
302 }
303 # endif
304
305 /*
306 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
307 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
308 * ensure that the variables have the right amount of space allocated.
309 */
310 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
311 const BN_ULONG b1, const BN_ULONG b0)
312 {
313 BN_ULONG m1, m0;
314 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
315 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
316 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
317 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
318 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
319 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
320 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
321 }
322 # else
323 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
324 BN_ULONG b0);
325 # endif
326
327 /*
328 * Add polynomials a and b and store result in r; r could be a or b, a and b
329 * could be equal; r is the bitwise XOR of a and b.
330 */
331 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
332 {
333 int i;
334 const BIGNUM *at, *bt;
335
336 bn_check_top(a);
337 bn_check_top(b);
338
339 if (a->top < b->top) {
340 at = b;
341 bt = a;
342 } else {
343 at = a;
344 bt = b;
345 }
346
347 if (bn_wexpand(r, at->top) == NULL)
348 return 0;
349
350 for (i = 0; i < bt->top; i++) {
351 r->d[i] = at->d[i] ^ bt->d[i];
352 }
353 for (; i < at->top; i++) {
354 r->d[i] = at->d[i];
355 }
356
357 r->top = at->top;
358 bn_correct_top(r);
359
360 return 1;
361 }
362
363 /*-
364 * Some functions allow for representation of the irreducible polynomials
365 * as an int[], say p. The irreducible f(t) is then of the form:
366 * t^p[0] + t^p[1] + ... + t^p[k]
367 * where m = p[0] > p[1] > ... > p[k] = 0.
368 */
369
370 /* Performs modular reduction of a and store result in r. r could be a. */
371 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
372 {
373 int j, k;
374 int n, dN, d0, d1;
375 BN_ULONG zz, *z;
376
377 bn_check_top(a);
378
379 if (!p[0]) {
380 /* reduction mod 1 => return 0 */
381 BN_zero(r);
382 return 1;
383 }
384
385 /*
386 * Since the algorithm does reduction in the r value, if a != r, copy the
387 * contents of a into r so we can do reduction in r.
388 */
389 if (a != r) {
390 if (!bn_wexpand(r, a->top))
391 return 0;
392 for (j = 0; j < a->top; j++) {
393 r->d[j] = a->d[j];
394 }
395 r->top = a->top;
396 }
397 z = r->d;
398
399 /* start reduction */
400 dN = p[0] / BN_BITS2;
401 for (j = r->top - 1; j > dN;) {
402 zz = z[j];
403 if (z[j] == 0) {
404 j--;
405 continue;
406 }
407 z[j] = 0;
408
409 for (k = 1; p[k] != 0; k++) {
410 /* reducing component t^p[k] */
411 n = p[0] - p[k];
412 d0 = n % BN_BITS2;
413 d1 = BN_BITS2 - d0;
414 n /= BN_BITS2;
415 z[j - n] ^= (zz >> d0);
416 if (d0)
417 z[j - n - 1] ^= (zz << d1);
418 }
419
420 /* reducing component t^0 */
421 n = dN;
422 d0 = p[0] % BN_BITS2;
423 d1 = BN_BITS2 - d0;
424 z[j - n] ^= (zz >> d0);
425 if (d0)
426 z[j - n - 1] ^= (zz << d1);
427 }
428
429 /* final round of reduction */
430 while (j == dN) {
431
432 d0 = p[0] % BN_BITS2;
433 zz = z[dN] >> d0;
434 if (zz == 0)
435 break;
436 d1 = BN_BITS2 - d0;
437
438 /* clear up the top d1 bits */
439 if (d0)
440 z[dN] = (z[dN] << d1) >> d1;
441 else
442 z[dN] = 0;
443 z[0] ^= zz; /* reduction t^0 component */
444
445 for (k = 1; p[k] != 0; k++) {
446 BN_ULONG tmp_ulong;
447
448 /* reducing component t^p[k] */
449 n = p[k] / BN_BITS2;
450 d0 = p[k] % BN_BITS2;
451 d1 = BN_BITS2 - d0;
452 z[n] ^= (zz << d0);
453 tmp_ulong = zz >> d1;
454 if (d0 && tmp_ulong)
455 z[n + 1] ^= tmp_ulong;
456 }
457
458 }
459
460 bn_correct_top(r);
461 return 1;
462 }
463
464 /*
465 * Performs modular reduction of a by p and store result in r. r could be a.
466 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
467 * function is only provided for convenience; for best performance, use the
468 * BN_GF2m_mod_arr function.
469 */
470 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
471 {
472 int ret = 0;
473 int arr[6];
474 bn_check_top(a);
475 bn_check_top(p);
476 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
477 if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
478 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
479 return 0;
480 }
481 ret = BN_GF2m_mod_arr(r, a, arr);
482 bn_check_top(r);
483 return ret;
484 }
485
486 /*
487 * Compute the product of two polynomials a and b, reduce modulo p, and store
488 * the result in r. r could be a or b; a could be b.
489 */
490 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
491 const int p[], BN_CTX *ctx)
492 {
493 int zlen, i, j, k, ret = 0;
494 BIGNUM *s;
495 BN_ULONG x1, x0, y1, y0, zz[4];
496
497 bn_check_top(a);
498 bn_check_top(b);
499
500 if (a == b) {
501 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
502 }
503
504 BN_CTX_start(ctx);
505 if ((s = BN_CTX_get(ctx)) == NULL)
506 goto err;
507
508 zlen = a->top + b->top + 4;
509 if (!bn_wexpand(s, zlen))
510 goto err;
511 s->top = zlen;
512
513 for (i = 0; i < zlen; i++)
514 s->d[i] = 0;
515
516 for (j = 0; j < b->top; j += 2) {
517 y0 = b->d[j];
518 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
519 for (i = 0; i < a->top; i += 2) {
520 x0 = a->d[i];
521 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
522 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
523 for (k = 0; k < 4; k++)
524 s->d[i + j + k] ^= zz[k];
525 }
526 }
527
528 bn_correct_top(s);
529 if (BN_GF2m_mod_arr(r, s, p))
530 ret = 1;
531 bn_check_top(r);
532
533 err:
534 BN_CTX_end(ctx);
535 return ret;
536 }
537
538 /*
539 * Compute the product of two polynomials a and b, reduce modulo p, and store
540 * the result in r. r could be a or b; a could equal b. This function calls
541 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
542 * only provided for convenience; for best performance, use the
543 * BN_GF2m_mod_mul_arr function.
544 */
545 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
546 const BIGNUM *p, BN_CTX *ctx)
547 {
548 int ret = 0;
549 const int max = BN_num_bits(p) + 1;
550 int *arr = NULL;
551 bn_check_top(a);
552 bn_check_top(b);
553 bn_check_top(p);
554 if ((arr = OPENSSL_malloc(sizeof(int) * max)) == NULL)
555 goto err;
556 ret = BN_GF2m_poly2arr(p, arr, max);
557 if (!ret || ret > max) {
558 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
559 goto err;
560 }
561 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
562 bn_check_top(r);
563 err:
564 if (arr)
565 OPENSSL_free(arr);
566 return ret;
567 }
568
569 /* Square a, reduce the result mod p, and store it in a. r could be a. */
570 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
571 BN_CTX *ctx)
572 {
573 int i, ret = 0;
574 BIGNUM *s;
575
576 bn_check_top(a);
577 BN_CTX_start(ctx);
578 if ((s = BN_CTX_get(ctx)) == NULL)
579 return 0;
580 if (!bn_wexpand(s, 2 * a->top))
581 goto err;
582
583 for (i = a->top - 1; i >= 0; i--) {
584 s->d[2 * i + 1] = SQR1(a->d[i]);
585 s->d[2 * i] = SQR0(a->d[i]);
586 }
587
588 s->top = 2 * a->top;
589 bn_correct_top(s);
590 if (!BN_GF2m_mod_arr(r, s, p))
591 goto err;
592 bn_check_top(r);
593 ret = 1;
594 err:
595 BN_CTX_end(ctx);
596 return ret;
597 }
598
599 /*
600 * Square a, reduce the result mod p, and store it in a. r could be a. This
601 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
602 * wrapper function is only provided for convenience; for best performance,
603 * use the BN_GF2m_mod_sqr_arr function.
604 */
605 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
606 {
607 int ret = 0;
608 const int max = BN_num_bits(p) + 1;
609 int *arr = NULL;
610
611 bn_check_top(a);
612 bn_check_top(p);
613 if ((arr = OPENSSL_malloc(sizeof(int) * max)) == NULL)
614 goto err;
615 ret = BN_GF2m_poly2arr(p, arr, max);
616 if (!ret || ret > max) {
617 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
618 goto err;
619 }
620 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
621 bn_check_top(r);
622 err:
623 if (arr)
624 OPENSSL_free(arr);
625 return ret;
626 }
627
628 /*
629 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
630 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
631 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
632 * Curve Cryptography Over Binary Fields".
633 */
634 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
635 {
636 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
637 int ret = 0;
638
639 bn_check_top(a);
640 bn_check_top(p);
641
642 BN_CTX_start(ctx);
643
644 if ((b = BN_CTX_get(ctx)) == NULL)
645 goto err;
646 if ((c = BN_CTX_get(ctx)) == NULL)
647 goto err;
648 if ((u = BN_CTX_get(ctx)) == NULL)
649 goto err;
650 if ((v = BN_CTX_get(ctx)) == NULL)
651 goto err;
652
653 if (!BN_GF2m_mod(u, a, p))
654 goto err;
655 if (BN_is_zero(u))
656 goto err;
657
658 if (!BN_copy(v, p))
659 goto err;
660 # if 0
661 if (!BN_one(b))
662 goto err;
663
664 while (1) {
665 while (!BN_is_odd(u)) {
666 if (BN_is_zero(u))
667 goto err;
668 if (!BN_rshift1(u, u))
669 goto err;
670 if (BN_is_odd(b)) {
671 if (!BN_GF2m_add(b, b, p))
672 goto err;
673 }
674 if (!BN_rshift1(b, b))
675 goto err;
676 }
677
678 if (BN_abs_is_word(u, 1))
679 break;
680
681 if (BN_num_bits(u) < BN_num_bits(v)) {
682 tmp = u;
683 u = v;
684 v = tmp;
685 tmp = b;
686 b = c;
687 c = tmp;
688 }
689
690 if (!BN_GF2m_add(u, u, v))
691 goto err;
692 if (!BN_GF2m_add(b, b, c))
693 goto err;
694 }
695 # else
696 {
697 int i, ubits = BN_num_bits(u), vbits = BN_num_bits(v), /* v is copy
698 * of p */
699 top = p->top;
700 BN_ULONG *udp, *bdp, *vdp, *cdp;
701
702 bn_wexpand(u, top);
703 udp = u->d;
704 for (i = u->top; i < top; i++)
705 udp[i] = 0;
706 u->top = top;
707 bn_wexpand(b, top);
708 bdp = b->d;
709 bdp[0] = 1;
710 for (i = 1; i < top; i++)
711 bdp[i] = 0;
712 b->top = top;
713 bn_wexpand(c, top);
714 cdp = c->d;
715 for (i = 0; i < top; i++)
716 cdp[i] = 0;
717 c->top = top;
718 vdp = v->d; /* It pays off to "cache" *->d pointers,
719 * because it allows optimizer to be more
720 * aggressive. But we don't have to "cache"
721 * p->d, because *p is declared 'const'... */
722 while (1) {
723 while (ubits && !(udp[0] & 1)) {
724 BN_ULONG u0, u1, b0, b1, mask;
725
726 u0 = udp[0];
727 b0 = bdp[0];
728 mask = (BN_ULONG)0 - (b0 & 1);
729 b0 ^= p->d[0] & mask;
730 for (i = 0; i < top - 1; i++) {
731 u1 = udp[i + 1];
732 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
733 u0 = u1;
734 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
735 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
736 b0 = b1;
737 }
738 udp[i] = u0 >> 1;
739 bdp[i] = b0 >> 1;
740 ubits--;
741 }
742
743 if (ubits <= BN_BITS2 && udp[0] == 1)
744 break;
745
746 if (ubits < vbits) {
747 i = ubits;
748 ubits = vbits;
749 vbits = i;
750 tmp = u;
751 u = v;
752 v = tmp;
753 tmp = b;
754 b = c;
755 c = tmp;
756 udp = vdp;
757 vdp = v->d;
758 bdp = cdp;
759 cdp = c->d;
760 }
761 for (i = 0; i < top; i++) {
762 udp[i] ^= vdp[i];
763 bdp[i] ^= cdp[i];
764 }
765 if (ubits == vbits) {
766 BN_ULONG ul;
767 int utop = (ubits - 1) / BN_BITS2;
768
769 while ((ul = udp[utop]) == 0 && utop)
770 utop--;
771 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
772 }
773 }
774 bn_correct_top(b);
775 }
776 # endif
777
778 if (!BN_copy(r, b))
779 goto err;
780 bn_check_top(r);
781 ret = 1;
782
783 err:
784 # ifdef BN_DEBUG /* BN_CTX_end would complain about the
785 * expanded form */
786 bn_correct_top(c);
787 bn_correct_top(u);
788 bn_correct_top(v);
789 # endif
790 BN_CTX_end(ctx);
791 return ret;
792 }
793
794 /*
795 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
796 * This function calls down to the BN_GF2m_mod_inv implementation; this
797 * wrapper function is only provided for convenience; for best performance,
798 * use the BN_GF2m_mod_inv function.
799 */
800 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
801 BN_CTX *ctx)
802 {
803 BIGNUM *field;
804 int ret = 0;
805
806 bn_check_top(xx);
807 BN_CTX_start(ctx);
808 if ((field = BN_CTX_get(ctx)) == NULL)
809 goto err;
810 if (!BN_GF2m_arr2poly(p, field))
811 goto err;
812
813 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
814 bn_check_top(r);
815
816 err:
817 BN_CTX_end(ctx);
818 return ret;
819 }
820
821 # ifndef OPENSSL_SUN_GF2M_DIV
822 /*
823 * Divide y by x, reduce modulo p, and store the result in r. r could be x
824 * or y, x could equal y.
825 */
826 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
827 const BIGNUM *p, BN_CTX *ctx)
828 {
829 BIGNUM *xinv = NULL;
830 int ret = 0;
831
832 bn_check_top(y);
833 bn_check_top(x);
834 bn_check_top(p);
835
836 BN_CTX_start(ctx);
837 xinv = BN_CTX_get(ctx);
838 if (xinv == NULL)
839 goto err;
840
841 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
842 goto err;
843 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
844 goto err;
845 bn_check_top(r);
846 ret = 1;
847
848 err:
849 BN_CTX_end(ctx);
850 return ret;
851 }
852 # else
853 /*
854 * Divide y by x, reduce modulo p, and store the result in r. r could be x
855 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
856 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
857 * Great Divide".
858 */
859 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
860 const BIGNUM *p, BN_CTX *ctx)
861 {
862 BIGNUM *a, *b, *u, *v;
863 int ret = 0;
864
865 bn_check_top(y);
866 bn_check_top(x);
867 bn_check_top(p);
868
869 BN_CTX_start(ctx);
870
871 a = BN_CTX_get(ctx);
872 b = BN_CTX_get(ctx);
873 u = BN_CTX_get(ctx);
874 v = BN_CTX_get(ctx);
875 if (v == NULL)
876 goto err;
877
878 /* reduce x and y mod p */
879 if (!BN_GF2m_mod(u, y, p))
880 goto err;
881 if (!BN_GF2m_mod(a, x, p))
882 goto err;
883 if (!BN_copy(b, p))
884 goto err;
885
886 while (!BN_is_odd(a)) {
887 if (!BN_rshift1(a, a))
888 goto err;
889 if (BN_is_odd(u))
890 if (!BN_GF2m_add(u, u, p))
891 goto err;
892 if (!BN_rshift1(u, u))
893 goto err;
894 }
895
896 do {
897 if (BN_GF2m_cmp(b, a) > 0) {
898 if (!BN_GF2m_add(b, b, a))
899 goto err;
900 if (!BN_GF2m_add(v, v, u))
901 goto err;
902 do {
903 if (!BN_rshift1(b, b))
904 goto err;
905 if (BN_is_odd(v))
906 if (!BN_GF2m_add(v, v, p))
907 goto err;
908 if (!BN_rshift1(v, v))
909 goto err;
910 } while (!BN_is_odd(b));
911 } else if (BN_abs_is_word(a, 1))
912 break;
913 else {
914 if (!BN_GF2m_add(a, a, b))
915 goto err;
916 if (!BN_GF2m_add(u, u, v))
917 goto err;
918 do {
919 if (!BN_rshift1(a, a))
920 goto err;
921 if (BN_is_odd(u))
922 if (!BN_GF2m_add(u, u, p))
923 goto err;
924 if (!BN_rshift1(u, u))
925 goto err;
926 } while (!BN_is_odd(a));
927 }
928 } while (1);
929
930 if (!BN_copy(r, u))
931 goto err;
932 bn_check_top(r);
933 ret = 1;
934
935 err:
936 BN_CTX_end(ctx);
937 return ret;
938 }
939 # endif
940
941 /*
942 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
943 * * or yy, xx could equal yy. This function calls down to the
944 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
945 * convenience; for best performance, use the BN_GF2m_mod_div function.
946 */
947 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
948 const int p[], BN_CTX *ctx)
949 {
950 BIGNUM *field;
951 int ret = 0;
952
953 bn_check_top(yy);
954 bn_check_top(xx);
955
956 BN_CTX_start(ctx);
957 if ((field = BN_CTX_get(ctx)) == NULL)
958 goto err;
959 if (!BN_GF2m_arr2poly(p, field))
960 goto err;
961
962 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
963 bn_check_top(r);
964
965 err:
966 BN_CTX_end(ctx);
967 return ret;
968 }
969
970 /*
971 * Compute the bth power of a, reduce modulo p, and store the result in r. r
972 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
973 * P1363.
974 */
975 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
976 const int p[], BN_CTX *ctx)
977 {
978 int ret = 0, i, n;
979 BIGNUM *u;
980
981 bn_check_top(a);
982 bn_check_top(b);
983
984 if (BN_is_zero(b))
985 return (BN_one(r));
986
987 if (BN_abs_is_word(b, 1))
988 return (BN_copy(r, a) != NULL);
989
990 BN_CTX_start(ctx);
991 if ((u = BN_CTX_get(ctx)) == NULL)
992 goto err;
993
994 if (!BN_GF2m_mod_arr(u, a, p))
995 goto err;
996
997 n = BN_num_bits(b) - 1;
998 for (i = n - 1; i >= 0; i--) {
999 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1000 goto err;
1001 if (BN_is_bit_set(b, i)) {
1002 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1003 goto err;
1004 }
1005 }
1006 if (!BN_copy(r, u))
1007 goto err;
1008 bn_check_top(r);
1009 ret = 1;
1010 err:
1011 BN_CTX_end(ctx);
1012 return ret;
1013 }
1014
1015 /*
1016 * Compute the bth power of a, reduce modulo p, and store the result in r. r
1017 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1018 * implementation; this wrapper function is only provided for convenience;
1019 * for best performance, use the BN_GF2m_mod_exp_arr function.
1020 */
1021 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1022 const BIGNUM *p, BN_CTX *ctx)
1023 {
1024 int ret = 0;
1025 const int max = BN_num_bits(p) + 1;
1026 int *arr = NULL;
1027 bn_check_top(a);
1028 bn_check_top(b);
1029 bn_check_top(p);
1030 if ((arr = OPENSSL_malloc(sizeof(int) * max)) == NULL)
1031 goto err;
1032 ret = BN_GF2m_poly2arr(p, arr, max);
1033 if (!ret || ret > max) {
1034 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1035 goto err;
1036 }
1037 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1038 bn_check_top(r);
1039 err:
1040 if (arr)
1041 OPENSSL_free(arr);
1042 return ret;
1043 }
1044
1045 /*
1046 * Compute the square root of a, reduce modulo p, and store the result in r.
1047 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1048 */
1049 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1050 BN_CTX *ctx)
1051 {
1052 int ret = 0;
1053 BIGNUM *u;
1054
1055 bn_check_top(a);
1056
1057 if (!p[0]) {
1058 /* reduction mod 1 => return 0 */
1059 BN_zero(r);
1060 return 1;
1061 }
1062
1063 BN_CTX_start(ctx);
1064 if ((u = BN_CTX_get(ctx)) == NULL)
1065 goto err;
1066
1067 if (!BN_set_bit(u, p[0] - 1))
1068 goto err;
1069 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1070 bn_check_top(r);
1071
1072 err:
1073 BN_CTX_end(ctx);
1074 return ret;
1075 }
1076
1077 /*
1078 * Compute the square root of a, reduce modulo p, and store the result in r.
1079 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1080 * implementation; this wrapper function is only provided for convenience;
1081 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1082 */
1083 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1084 {
1085 int ret = 0;
1086 const int max = BN_num_bits(p) + 1;
1087 int *arr = NULL;
1088 bn_check_top(a);
1089 bn_check_top(p);
1090 if ((arr = OPENSSL_malloc(sizeof(int) * max)) == NULL)
1091 goto err;
1092 ret = BN_GF2m_poly2arr(p, arr, max);
1093 if (!ret || ret > max) {
1094 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1095 goto err;
1096 }
1097 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1098 bn_check_top(r);
1099 err:
1100 if (arr)
1101 OPENSSL_free(arr);
1102 return ret;
1103 }
1104
1105 /*
1106 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1107 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1108 */
1109 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1110 BN_CTX *ctx)
1111 {
1112 int ret = 0, count = 0, j;
1113 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1114
1115 bn_check_top(a_);
1116
1117 if (!p[0]) {
1118 /* reduction mod 1 => return 0 */
1119 BN_zero(r);
1120 return 1;
1121 }
1122
1123 BN_CTX_start(ctx);
1124 a = BN_CTX_get(ctx);
1125 z = BN_CTX_get(ctx);
1126 w = BN_CTX_get(ctx);
1127 if (w == NULL)
1128 goto err;
1129
1130 if (!BN_GF2m_mod_arr(a, a_, p))
1131 goto err;
1132
1133 if (BN_is_zero(a)) {
1134 BN_zero(r);
1135 ret = 1;
1136 goto err;
1137 }
1138
1139 if (p[0] & 0x1) { /* m is odd */
1140 /* compute half-trace of a */
1141 if (!BN_copy(z, a))
1142 goto err;
1143 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1144 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1145 goto err;
1146 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1147 goto err;
1148 if (!BN_GF2m_add(z, z, a))
1149 goto err;
1150 }
1151
1152 } else { /* m is even */
1153
1154 rho = BN_CTX_get(ctx);
1155 w2 = BN_CTX_get(ctx);
1156 tmp = BN_CTX_get(ctx);
1157 if (tmp == NULL)
1158 goto err;
1159 do {
1160 if (!BN_rand(rho, p[0], 0, 0))
1161 goto err;
1162 if (!BN_GF2m_mod_arr(rho, rho, p))
1163 goto err;
1164 BN_zero(z);
1165 if (!BN_copy(w, rho))
1166 goto err;
1167 for (j = 1; j <= p[0] - 1; j++) {
1168 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1169 goto err;
1170 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1171 goto err;
1172 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1173 goto err;
1174 if (!BN_GF2m_add(z, z, tmp))
1175 goto err;
1176 if (!BN_GF2m_add(w, w2, rho))
1177 goto err;
1178 }
1179 count++;
1180 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1181 if (BN_is_zero(w)) {
1182 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1183 goto err;
1184 }
1185 }
1186
1187 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1188 goto err;
1189 if (!BN_GF2m_add(w, z, w))
1190 goto err;
1191 if (BN_GF2m_cmp(w, a)) {
1192 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1193 goto err;
1194 }
1195
1196 if (!BN_copy(r, z))
1197 goto err;
1198 bn_check_top(r);
1199
1200 ret = 1;
1201
1202 err:
1203 BN_CTX_end(ctx);
1204 return ret;
1205 }
1206
1207 /*
1208 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1209 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1210 * implementation; this wrapper function is only provided for convenience;
1211 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1212 */
1213 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1214 BN_CTX *ctx)
1215 {
1216 int ret = 0;
1217 const int max = BN_num_bits(p) + 1;
1218 int *arr = NULL;
1219 bn_check_top(a);
1220 bn_check_top(p);
1221 if ((arr = OPENSSL_malloc(sizeof(int) * max)) == NULL)
1222 goto err;
1223 ret = BN_GF2m_poly2arr(p, arr, max);
1224 if (!ret || ret > max) {
1225 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1226 goto err;
1227 }
1228 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1229 bn_check_top(r);
1230 err:
1231 if (arr)
1232 OPENSSL_free(arr);
1233 return ret;
1234 }
1235
1236 /*
1237 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1238 * x^i) into an array of integers corresponding to the bits with non-zero
1239 * coefficient. Array is terminated with -1. Up to max elements of the array
1240 * will be filled. Return value is total number of array elements that would
1241 * be filled if array was large enough.
1242 */
1243 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1244 {
1245 int i, j, k = 0;
1246 BN_ULONG mask;
1247
1248 if (BN_is_zero(a))
1249 return 0;
1250
1251 for (i = a->top - 1; i >= 0; i--) {
1252 if (!a->d[i])
1253 /* skip word if a->d[i] == 0 */
1254 continue;
1255 mask = BN_TBIT;
1256 for (j = BN_BITS2 - 1; j >= 0; j--) {
1257 if (a->d[i] & mask) {
1258 if (k < max)
1259 p[k] = BN_BITS2 * i + j;
1260 k++;
1261 }
1262 mask >>= 1;
1263 }
1264 }
1265
1266 if (k < max) {
1267 p[k] = -1;
1268 k++;
1269 }
1270
1271 return k;
1272 }
1273
1274 /*
1275 * Convert the coefficient array representation of a polynomial to a
1276 * bit-string. The array must be terminated by -1.
1277 */
1278 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1279 {
1280 int i;
1281
1282 bn_check_top(a);
1283 BN_zero(a);
1284 for (i = 0; p[i] != -1; i++) {
1285 if (BN_set_bit(a, p[i]) == 0)
1286 return 0;
1287 }
1288 bn_check_top(a);
1289
1290 return 1;
1291 }
1292
1293 #endif