]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Fix warning.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #define OPENSSL_FIPSAPI
92
93 #include <assert.h>
94 #include <limits.h>
95 #include <stdio.h>
96 #include "cryptlib.h"
97 #include "bn_lcl.h"
98
99 #ifndef OPENSSL_NO_EC2M
100
101 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
102 #define MAX_ITERATIONS 50
103
104 __fips_constseg
105 static const BN_ULONG SQR_tb[16] =
106 { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85 };
108 /* Platform-specific macros to accelerate squaring. */
109 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
110 #define SQR1(w) \
111 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
112 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
113 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
114 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
115 #define SQR0(w) \
116 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
117 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
118 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
119 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
120 #endif
121 #ifdef THIRTY_TWO_BIT
122 #define SQR1(w) \
123 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
124 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
125 #define SQR0(w) \
126 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
127 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
128 #endif
129
130 #if !defined(OPENSSL_BN_ASM_GF2m)
131 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
132 * result is a polynomial r with degree < 2 * BN_BITS - 1
133 * The caller MUST ensure that the variables have the right amount
134 * of space allocated.
135 */
136 #ifdef THIRTY_TWO_BIT
137 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
138 {
139 register BN_ULONG h, l, s;
140 BN_ULONG tab[8], top2b = a >> 30;
141 register BN_ULONG a1, a2, a4;
142
143 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
144
145 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
146 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
147
148 s = tab[b & 0x7]; l = s;
149 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
150 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
151 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
152 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
153 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
154 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
155 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
156 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
157 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
158 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
159
160 /* compensate for the top two bits of a */
161
162 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
163 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
164
165 *r1 = h; *r0 = l;
166 }
167 #endif
168 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
169 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
170 {
171 register BN_ULONG h, l, s;
172 BN_ULONG tab[16], top3b = a >> 61;
173 register BN_ULONG a1, a2, a4, a8;
174
175 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
176
177 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
178 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
179 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
180 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
181
182 s = tab[b & 0xF]; l = s;
183 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
184 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
185 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
186 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
187 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
188 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
189 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
190 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
191 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
192 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
193 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
194 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
195 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
196 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
197 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
198
199 /* compensate for the top three bits of a */
200
201 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
202 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
203 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
204
205 *r1 = h; *r0 = l;
206 }
207 #endif
208
209 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
210 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
211 * The caller MUST ensure that the variables have the right amount
212 * of space allocated.
213 */
214 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
215 {
216 BN_ULONG m1, m0;
217 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
218 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
219 bn_GF2m_mul_1x1(r+1, r, a0, b0);
220 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
221 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
222 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
223 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
224 }
225 #else
226 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
227 #endif
228
229 /* Add polynomials a and b and store result in r; r could be a or b, a and b
230 * could be equal; r is the bitwise XOR of a and b.
231 */
232 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
233 {
234 int i;
235 const BIGNUM *at, *bt;
236
237 bn_check_top(a);
238 bn_check_top(b);
239
240 if (a->top < b->top) { at = b; bt = a; }
241 else { at = a; bt = b; }
242
243 if(bn_wexpand(r, at->top) == NULL)
244 return 0;
245
246 for (i = 0; i < bt->top; i++)
247 {
248 r->d[i] = at->d[i] ^ bt->d[i];
249 }
250 for (; i < at->top; i++)
251 {
252 r->d[i] = at->d[i];
253 }
254
255 r->top = at->top;
256 bn_correct_top(r);
257
258 return 1;
259 }
260
261
262 /* Some functions allow for representation of the irreducible polynomials
263 * as an int[], say p. The irreducible f(t) is then of the form:
264 * t^p[0] + t^p[1] + ... + t^p[k]
265 * where m = p[0] > p[1] > ... > p[k] = 0.
266 */
267
268
269 /* Performs modular reduction of a and store result in r. r could be a. */
270 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
271 {
272 int j, k;
273 int n, dN, d0, d1;
274 BN_ULONG zz, *z;
275
276 bn_check_top(a);
277
278 if (!p[0])
279 {
280 /* reduction mod 1 => return 0 */
281 BN_zero(r);
282 return 1;
283 }
284
285 /* Since the algorithm does reduction in the r value, if a != r, copy
286 * the contents of a into r so we can do reduction in r.
287 */
288 if (a != r)
289 {
290 if (!bn_wexpand(r, a->top)) return 0;
291 for (j = 0; j < a->top; j++)
292 {
293 r->d[j] = a->d[j];
294 }
295 r->top = a->top;
296 }
297 z = r->d;
298
299 /* start reduction */
300 dN = p[0] / BN_BITS2;
301 for (j = r->top - 1; j > dN;)
302 {
303 zz = z[j];
304 if (z[j] == 0) { j--; continue; }
305 z[j] = 0;
306
307 for (k = 1; p[k] != 0; k++)
308 {
309 /* reducing component t^p[k] */
310 n = p[0] - p[k];
311 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
312 n /= BN_BITS2;
313 z[j-n] ^= (zz>>d0);
314 if (d0) z[j-n-1] ^= (zz<<d1);
315 }
316
317 /* reducing component t^0 */
318 n = dN;
319 d0 = p[0] % BN_BITS2;
320 d1 = BN_BITS2 - d0;
321 z[j-n] ^= (zz >> d0);
322 if (d0) z[j-n-1] ^= (zz << d1);
323 }
324
325 /* final round of reduction */
326 while (j == dN)
327 {
328
329 d0 = p[0] % BN_BITS2;
330 zz = z[dN] >> d0;
331 if (zz == 0) break;
332 d1 = BN_BITS2 - d0;
333
334 /* clear up the top d1 bits */
335 if (d0)
336 z[dN] = (z[dN] << d1) >> d1;
337 else
338 z[dN] = 0;
339 z[0] ^= zz; /* reduction t^0 component */
340
341 for (k = 1; p[k] != 0; k++)
342 {
343 BN_ULONG tmp_ulong;
344
345 /* reducing component t^p[k]*/
346 n = p[k] / BN_BITS2;
347 d0 = p[k] % BN_BITS2;
348 d1 = BN_BITS2 - d0;
349 z[n] ^= (zz << d0);
350 tmp_ulong = zz >> d1;
351 if (d0 && tmp_ulong)
352 z[n+1] ^= tmp_ulong;
353 }
354
355
356 }
357
358 bn_correct_top(r);
359 return 1;
360 }
361
362 /* Performs modular reduction of a by p and store result in r. r could be a.
363 *
364 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
365 * function is only provided for convenience; for best performance, use the
366 * BN_GF2m_mod_arr function.
367 */
368 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
369 {
370 int ret = 0;
371 int arr[6];
372 bn_check_top(a);
373 bn_check_top(p);
374 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
375 if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
376 {
377 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
378 return 0;
379 }
380 ret = BN_GF2m_mod_arr(r, a, arr);
381 bn_check_top(r);
382 return ret;
383 }
384
385
386 /* Compute the product of two polynomials a and b, reduce modulo p, and store
387 * the result in r. r could be a or b; a could be b.
388 */
389 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
390 {
391 int zlen, i, j, k, ret = 0;
392 BIGNUM *s;
393 BN_ULONG x1, x0, y1, y0, zz[4];
394
395 bn_check_top(a);
396 bn_check_top(b);
397
398 if (a == b)
399 {
400 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
401 }
402
403 BN_CTX_start(ctx);
404 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
405
406 zlen = a->top + b->top + 4;
407 if (!bn_wexpand(s, zlen)) goto err;
408 s->top = zlen;
409
410 for (i = 0; i < zlen; i++) s->d[i] = 0;
411
412 for (j = 0; j < b->top; j += 2)
413 {
414 y0 = b->d[j];
415 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
416 for (i = 0; i < a->top; i += 2)
417 {
418 x0 = a->d[i];
419 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
420 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
421 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
422 }
423 }
424
425 bn_correct_top(s);
426 if (BN_GF2m_mod_arr(r, s, p))
427 ret = 1;
428 bn_check_top(r);
429
430 err:
431 BN_CTX_end(ctx);
432 return ret;
433 }
434
435 /* Compute the product of two polynomials a and b, reduce modulo p, and store
436 * the result in r. r could be a or b; a could equal b.
437 *
438 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
439 * function is only provided for convenience; for best performance, use the
440 * BN_GF2m_mod_mul_arr function.
441 */
442 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
443 {
444 int ret = 0;
445 const int max = BN_num_bits(p) + 1;
446 int *arr=NULL;
447 bn_check_top(a);
448 bn_check_top(b);
449 bn_check_top(p);
450 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
451 ret = BN_GF2m_poly2arr(p, arr, max);
452 if (!ret || ret > max)
453 {
454 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
455 goto err;
456 }
457 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
458 bn_check_top(r);
459 err:
460 if (arr) OPENSSL_free(arr);
461 return ret;
462 }
463
464
465 /* Square a, reduce the result mod p, and store it in a. r could be a. */
466 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
467 {
468 int i, ret = 0;
469 BIGNUM *s;
470
471 bn_check_top(a);
472 BN_CTX_start(ctx);
473 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
474 if (!bn_wexpand(s, 2 * a->top)) goto err;
475
476 for (i = a->top - 1; i >= 0; i--)
477 {
478 s->d[2*i+1] = SQR1(a->d[i]);
479 s->d[2*i ] = SQR0(a->d[i]);
480 }
481
482 s->top = 2 * a->top;
483 bn_correct_top(s);
484 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
485 bn_check_top(r);
486 ret = 1;
487 err:
488 BN_CTX_end(ctx);
489 return ret;
490 }
491
492 /* Square a, reduce the result mod p, and store it in a. r could be a.
493 *
494 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
495 * function is only provided for convenience; for best performance, use the
496 * BN_GF2m_mod_sqr_arr function.
497 */
498 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
499 {
500 int ret = 0;
501 const int max = BN_num_bits(p) + 1;
502 int *arr=NULL;
503
504 bn_check_top(a);
505 bn_check_top(p);
506 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
507 ret = BN_GF2m_poly2arr(p, arr, max);
508 if (!ret || ret > max)
509 {
510 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
511 goto err;
512 }
513 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
514 bn_check_top(r);
515 err:
516 if (arr) OPENSSL_free(arr);
517 return ret;
518 }
519
520
521 /* Invert a, reduce modulo p, and store the result in r. r could be a.
522 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
523 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
524 * of Elliptic Curve Cryptography Over Binary Fields".
525 */
526 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
527 {
528 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
529 int ret = 0;
530
531 bn_check_top(a);
532 bn_check_top(p);
533
534 BN_CTX_start(ctx);
535
536 if ((b = BN_CTX_get(ctx))==NULL) goto err;
537 if ((c = BN_CTX_get(ctx))==NULL) goto err;
538 if ((u = BN_CTX_get(ctx))==NULL) goto err;
539 if ((v = BN_CTX_get(ctx))==NULL) goto err;
540
541 if (!BN_GF2m_mod(u, a, p)) goto err;
542 if (BN_is_zero(u)) goto err;
543
544 if (!BN_copy(v, p)) goto err;
545 #if 0
546 if (!BN_one(b)) goto err;
547
548 while (1)
549 {
550 while (!BN_is_odd(u))
551 {
552 if (BN_is_zero(u)) goto err;
553 if (!BN_rshift1(u, u)) goto err;
554 if (BN_is_odd(b))
555 {
556 if (!BN_GF2m_add(b, b, p)) goto err;
557 }
558 if (!BN_rshift1(b, b)) goto err;
559 }
560
561 if (BN_abs_is_word(u, 1)) break;
562
563 if (BN_num_bits(u) < BN_num_bits(v))
564 {
565 tmp = u; u = v; v = tmp;
566 tmp = b; b = c; c = tmp;
567 }
568
569 if (!BN_GF2m_add(u, u, v)) goto err;
570 if (!BN_GF2m_add(b, b, c)) goto err;
571 }
572 #else
573 {
574 int i, ubits = BN_num_bits(u),
575 vbits = BN_num_bits(v), /* v is copy of p */
576 top = p->top;
577 BN_ULONG *udp,*bdp,*vdp,*cdp;
578
579 bn_wexpand(u,top); udp = u->d;
580 for (i=u->top;i<top;i++) udp[i] = 0;
581 u->top = top;
582 bn_wexpand(b,top); bdp = b->d;
583 bdp[0] = 1;
584 for (i=1;i<top;i++) bdp[i] = 0;
585 b->top = top;
586 bn_wexpand(c,top); cdp = c->d;
587 for (i=0;i<top;i++) cdp[i] = 0;
588 c->top = top;
589 vdp = v->d; /* It pays off to "cache" *->d pointers, because
590 * it allows optimizer to be more aggressive.
591 * But we don't have to "cache" p->d, because *p
592 * is declared 'const'... */
593 while (1)
594 {
595 while (ubits && !(udp[0]&1))
596 {
597 BN_ULONG u0,u1,b0,b1,mask;
598
599 u0 = udp[0];
600 b0 = bdp[0];
601 mask = (BN_ULONG)0-(b0&1);
602 b0 ^= p->d[0]&mask;
603 for (i=0;i<top-1;i++)
604 {
605 u1 = udp[i+1];
606 udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
607 u0 = u1;
608 b1 = bdp[i+1]^(p->d[i+1]&mask);
609 bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
610 b0 = b1;
611 }
612 udp[i] = u0>>1;
613 bdp[i] = b0>>1;
614 ubits--;
615 }
616
617 if (ubits<=BN_BITS2 && udp[0]==1) break;
618
619 if (ubits<vbits)
620 {
621 i = ubits; ubits = vbits; vbits = i;
622 tmp = u; u = v; v = tmp;
623 tmp = b; b = c; c = tmp;
624 udp = vdp; vdp = v->d;
625 bdp = cdp; cdp = c->d;
626 }
627 for(i=0;i<top;i++)
628 {
629 udp[i] ^= vdp[i];
630 bdp[i] ^= cdp[i];
631 }
632 if (ubits==vbits)
633 {
634 bn_correct_top(u);
635 ubits = BN_num_bits(u);
636 }
637 }
638 bn_correct_top(b);
639 }
640 #endif
641
642 if (!BN_copy(r, b)) goto err;
643 bn_check_top(r);
644 ret = 1;
645
646 err:
647 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
648 bn_correct_top(c);
649 bn_correct_top(u);
650 bn_correct_top(v);
651 #endif
652 BN_CTX_end(ctx);
653 return ret;
654 }
655
656 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
657 *
658 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
659 * function is only provided for convenience; for best performance, use the
660 * BN_GF2m_mod_inv function.
661 */
662 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
663 {
664 BIGNUM *field;
665 int ret = 0;
666
667 bn_check_top(xx);
668 BN_CTX_start(ctx);
669 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
670 if (!BN_GF2m_arr2poly(p, field)) goto err;
671
672 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
673 bn_check_top(r);
674
675 err:
676 BN_CTX_end(ctx);
677 return ret;
678 }
679
680
681 #ifndef OPENSSL_SUN_GF2M_DIV
682 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
683 * or y, x could equal y.
684 */
685 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
686 {
687 BIGNUM *xinv = NULL;
688 int ret = 0;
689
690 bn_check_top(y);
691 bn_check_top(x);
692 bn_check_top(p);
693
694 BN_CTX_start(ctx);
695 xinv = BN_CTX_get(ctx);
696 if (xinv == NULL) goto err;
697
698 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
699 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
700 bn_check_top(r);
701 ret = 1;
702
703 err:
704 BN_CTX_end(ctx);
705 return ret;
706 }
707 #else
708 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
709 * or y, x could equal y.
710 * Uses algorithm Modular_Division_GF(2^m) from
711 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
712 * the Great Divide".
713 */
714 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
715 {
716 BIGNUM *a, *b, *u, *v;
717 int ret = 0;
718
719 bn_check_top(y);
720 bn_check_top(x);
721 bn_check_top(p);
722
723 BN_CTX_start(ctx);
724
725 a = BN_CTX_get(ctx);
726 b = BN_CTX_get(ctx);
727 u = BN_CTX_get(ctx);
728 v = BN_CTX_get(ctx);
729 if (v == NULL) goto err;
730
731 /* reduce x and y mod p */
732 if (!BN_GF2m_mod(u, y, p)) goto err;
733 if (!BN_GF2m_mod(a, x, p)) goto err;
734 if (!BN_copy(b, p)) goto err;
735
736 while (!BN_is_odd(a))
737 {
738 if (!BN_rshift1(a, a)) goto err;
739 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
740 if (!BN_rshift1(u, u)) goto err;
741 }
742
743 do
744 {
745 if (BN_GF2m_cmp(b, a) > 0)
746 {
747 if (!BN_GF2m_add(b, b, a)) goto err;
748 if (!BN_GF2m_add(v, v, u)) goto err;
749 do
750 {
751 if (!BN_rshift1(b, b)) goto err;
752 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
753 if (!BN_rshift1(v, v)) goto err;
754 } while (!BN_is_odd(b));
755 }
756 else if (BN_abs_is_word(a, 1))
757 break;
758 else
759 {
760 if (!BN_GF2m_add(a, a, b)) goto err;
761 if (!BN_GF2m_add(u, u, v)) goto err;
762 do
763 {
764 if (!BN_rshift1(a, a)) goto err;
765 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
766 if (!BN_rshift1(u, u)) goto err;
767 } while (!BN_is_odd(a));
768 }
769 } while (1);
770
771 if (!BN_copy(r, u)) goto err;
772 bn_check_top(r);
773 ret = 1;
774
775 err:
776 BN_CTX_end(ctx);
777 return ret;
778 }
779 #endif
780
781 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
782 * or yy, xx could equal yy.
783 *
784 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
785 * function is only provided for convenience; for best performance, use the
786 * BN_GF2m_mod_div function.
787 */
788 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
789 {
790 BIGNUM *field;
791 int ret = 0;
792
793 bn_check_top(yy);
794 bn_check_top(xx);
795
796 BN_CTX_start(ctx);
797 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
798 if (!BN_GF2m_arr2poly(p, field)) goto err;
799
800 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
801 bn_check_top(r);
802
803 err:
804 BN_CTX_end(ctx);
805 return ret;
806 }
807
808
809 /* Compute the bth power of a, reduce modulo p, and store
810 * the result in r. r could be a.
811 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
812 */
813 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
814 {
815 int ret = 0, i, n;
816 BIGNUM *u;
817
818 bn_check_top(a);
819 bn_check_top(b);
820
821 if (BN_is_zero(b))
822 return(BN_one(r));
823
824 if (BN_abs_is_word(b, 1))
825 return (BN_copy(r, a) != NULL);
826
827 BN_CTX_start(ctx);
828 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
829
830 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
831
832 n = BN_num_bits(b) - 1;
833 for (i = n - 1; i >= 0; i--)
834 {
835 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
836 if (BN_is_bit_set(b, i))
837 {
838 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
839 }
840 }
841 if (!BN_copy(r, u)) goto err;
842 bn_check_top(r);
843 ret = 1;
844 err:
845 BN_CTX_end(ctx);
846 return ret;
847 }
848
849 /* Compute the bth power of a, reduce modulo p, and store
850 * the result in r. r could be a.
851 *
852 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
853 * function is only provided for convenience; for best performance, use the
854 * BN_GF2m_mod_exp_arr function.
855 */
856 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
857 {
858 int ret = 0;
859 const int max = BN_num_bits(p) + 1;
860 int *arr=NULL;
861 bn_check_top(a);
862 bn_check_top(b);
863 bn_check_top(p);
864 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
865 ret = BN_GF2m_poly2arr(p, arr, max);
866 if (!ret || ret > max)
867 {
868 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
869 goto err;
870 }
871 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
872 bn_check_top(r);
873 err:
874 if (arr) OPENSSL_free(arr);
875 return ret;
876 }
877
878 /* Compute the square root of a, reduce modulo p, and store
879 * the result in r. r could be a.
880 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
881 */
882 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
883 {
884 int ret = 0;
885 BIGNUM *u;
886
887 bn_check_top(a);
888
889 if (!p[0])
890 {
891 /* reduction mod 1 => return 0 */
892 BN_zero(r);
893 return 1;
894 }
895
896 BN_CTX_start(ctx);
897 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
898
899 if (!BN_set_bit(u, p[0] - 1)) goto err;
900 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
901 bn_check_top(r);
902
903 err:
904 BN_CTX_end(ctx);
905 return ret;
906 }
907
908 /* Compute the square root of a, reduce modulo p, and store
909 * the result in r. r could be a.
910 *
911 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
912 * function is only provided for convenience; for best performance, use the
913 * BN_GF2m_mod_sqrt_arr function.
914 */
915 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
916 {
917 int ret = 0;
918 const int max = BN_num_bits(p) + 1;
919 int *arr=NULL;
920 bn_check_top(a);
921 bn_check_top(p);
922 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
923 ret = BN_GF2m_poly2arr(p, arr, max);
924 if (!ret || ret > max)
925 {
926 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
927 goto err;
928 }
929 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
930 bn_check_top(r);
931 err:
932 if (arr) OPENSSL_free(arr);
933 return ret;
934 }
935
936 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
937 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
938 */
939 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
940 {
941 int ret = 0, count = 0, j;
942 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
943
944 bn_check_top(a_);
945
946 if (!p[0])
947 {
948 /* reduction mod 1 => return 0 */
949 BN_zero(r);
950 return 1;
951 }
952
953 BN_CTX_start(ctx);
954 a = BN_CTX_get(ctx);
955 z = BN_CTX_get(ctx);
956 w = BN_CTX_get(ctx);
957 if (w == NULL) goto err;
958
959 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
960
961 if (BN_is_zero(a))
962 {
963 BN_zero(r);
964 ret = 1;
965 goto err;
966 }
967
968 if (p[0] & 0x1) /* m is odd */
969 {
970 /* compute half-trace of a */
971 if (!BN_copy(z, a)) goto err;
972 for (j = 1; j <= (p[0] - 1) / 2; j++)
973 {
974 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
976 if (!BN_GF2m_add(z, z, a)) goto err;
977 }
978
979 }
980 else /* m is even */
981 {
982 rho = BN_CTX_get(ctx);
983 w2 = BN_CTX_get(ctx);
984 tmp = BN_CTX_get(ctx);
985 if (tmp == NULL) goto err;
986 do
987 {
988 if (!BN_rand(rho, p[0], 0, 0)) goto err;
989 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
990 BN_zero(z);
991 if (!BN_copy(w, rho)) goto err;
992 for (j = 1; j <= p[0] - 1; j++)
993 {
994 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
995 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
996 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
997 if (!BN_GF2m_add(z, z, tmp)) goto err;
998 if (!BN_GF2m_add(w, w2, rho)) goto err;
999 }
1000 count++;
1001 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1002 if (BN_is_zero(w))
1003 {
1004 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
1005 goto err;
1006 }
1007 }
1008
1009 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1010 if (!BN_GF2m_add(w, z, w)) goto err;
1011 if (BN_GF2m_cmp(w, a))
1012 {
1013 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1014 goto err;
1015 }
1016
1017 if (!BN_copy(r, z)) goto err;
1018 bn_check_top(r);
1019
1020 ret = 1;
1021
1022 err:
1023 BN_CTX_end(ctx);
1024 return ret;
1025 }
1026
1027 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1028 *
1029 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1030 * function is only provided for convenience; for best performance, use the
1031 * BN_GF2m_mod_solve_quad_arr function.
1032 */
1033 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1034 {
1035 int ret = 0;
1036 const int max = BN_num_bits(p) + 1;
1037 int *arr=NULL;
1038 bn_check_top(a);
1039 bn_check_top(p);
1040 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1041 max)) == NULL) goto err;
1042 ret = BN_GF2m_poly2arr(p, arr, max);
1043 if (!ret || ret > max)
1044 {
1045 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1046 goto err;
1047 }
1048 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1049 bn_check_top(r);
1050 err:
1051 if (arr) OPENSSL_free(arr);
1052 return ret;
1053 }
1054
1055 /* Convert the bit-string representation of a polynomial
1056 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1057 * to the bits with non-zero coefficient. Array is terminated with -1.
1058 * Up to max elements of the array will be filled. Return value is total
1059 * number of array elements that would be filled if array was large enough.
1060 */
1061 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1062 {
1063 int i, j, k = 0;
1064 BN_ULONG mask;
1065
1066 if (BN_is_zero(a))
1067 return 0;
1068
1069 for (i = a->top - 1; i >= 0; i--)
1070 {
1071 if (!a->d[i])
1072 /* skip word if a->d[i] == 0 */
1073 continue;
1074 mask = BN_TBIT;
1075 for (j = BN_BITS2 - 1; j >= 0; j--)
1076 {
1077 if (a->d[i] & mask)
1078 {
1079 if (k < max) p[k] = BN_BITS2 * i + j;
1080 k++;
1081 }
1082 mask >>= 1;
1083 }
1084 }
1085
1086 if (k < max) {
1087 p[k] = -1;
1088 k++;
1089 }
1090
1091 return k;
1092 }
1093
1094 /* Convert the coefficient array representation of a polynomial to a
1095 * bit-string. The array must be terminated by -1.
1096 */
1097 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1098 {
1099 int i;
1100
1101 bn_check_top(a);
1102 BN_zero(a);
1103 for (i = 0; p[i] != -1; i++)
1104 {
1105 if (BN_set_bit(a, p[i]) == 0)
1106 return 0;
1107 }
1108 bn_check_top(a);
1109
1110 return 1;
1111 }
1112
1113 #endif