]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec_mult.c
4f6689a94669f10d244b9bdf779f0265617e72fd
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
1 /*
2 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <string.h>
12 #include <openssl/err.h>
13
14 #include "internal/cryptlib.h"
15 #include "internal/bn_int.h"
16 #include "ec_lcl.h"
17 #include "internal/refcount.h"
18
19 /*
20 * This file implements the wNAF-based interleaving multi-exponentiation method
21 * Formerly at:
22 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
23 * You might now find it here:
24 * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
25 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
26 * For multiplication with precomputation, we use wNAF splitting, formerly at:
27 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28 */
29
30 /* structure for precomputed multiples of the generator */
31 struct ec_pre_comp_st {
32 const EC_GROUP *group; /* parent EC_GROUP object */
33 size_t blocksize; /* block size for wNAF splitting */
34 size_t numblocks; /* max. number of blocks for which we have
35 * precomputation */
36 size_t w; /* window size */
37 EC_POINT **points; /* array with pre-calculated multiples of
38 * generator: 'num' pointers to EC_POINT
39 * objects followed by a NULL */
40 size_t num; /* numblocks * 2^(w-1) */
41 CRYPTO_REF_COUNT references;
42 CRYPTO_RWLOCK *lock;
43 };
44
45 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46 {
47 EC_PRE_COMP *ret = NULL;
48
49 if (!group)
50 return NULL;
51
52 ret = OPENSSL_zalloc(sizeof(*ret));
53 if (ret == NULL) {
54 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
55 return ret;
56 }
57
58 ret->group = group;
59 ret->blocksize = 8; /* default */
60 ret->w = 4; /* default */
61 ret->references = 1;
62
63 ret->lock = CRYPTO_THREAD_lock_new();
64 if (ret->lock == NULL) {
65 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
66 OPENSSL_free(ret);
67 return NULL;
68 }
69 return ret;
70 }
71
72 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73 {
74 int i;
75 if (pre != NULL)
76 CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77 return pre;
78 }
79
80 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81 {
82 int i;
83
84 if (pre == NULL)
85 return;
86
87 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88 REF_PRINT_COUNT("EC_ec", pre);
89 if (i > 0)
90 return;
91 REF_ASSERT_ISNT(i < 0);
92
93 if (pre->points != NULL) {
94 EC_POINT **pts;
95
96 for (pts = pre->points; *pts != NULL; pts++)
97 EC_POINT_free(*pts);
98 OPENSSL_free(pre->points);
99 }
100 CRYPTO_THREAD_lock_free(pre->lock);
101 OPENSSL_free(pre);
102 }
103
104 #define EC_POINT_BN_set_flags(P, flags) do { \
105 BN_set_flags((P)->X, (flags)); \
106 BN_set_flags((P)->Y, (flags)); \
107 BN_set_flags((P)->Z, (flags)); \
108 } while(0)
109
110 /*-
111 * This functions computes (in constant time) a point multiplication over the
112 * EC group.
113 *
114 * At a high level, it is Montgomery ladder with conditional swaps.
115 *
116 * It performs either a fixed scalar point multiplication
117 * (scalar * generator)
118 * when point is NULL, or a generic scalar point multiplication
119 * (scalar * point)
120 * when point is not NULL.
121 *
122 * scalar should be in the range [0,n) otherwise all constant time bets are off.
123 *
124 * NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
125 * which of course are not constant time themselves.
126 *
127 * The product is stored in r.
128 *
129 * Returns 1 on success, 0 otherwise.
130 */
131 static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
132 const BIGNUM *scalar, const EC_POINT *point,
133 BN_CTX *ctx)
134 {
135 int i, order_bits, group_top, kbit, pbit, Z_is_one;
136 EC_POINT *s = NULL;
137 BIGNUM *k = NULL;
138 BIGNUM *lambda = NULL;
139 BN_CTX *new_ctx = NULL;
140 int ret = 0;
141
142 if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
143 goto err;
144
145 order_bits = BN_num_bits(group->order);
146
147 s = EC_POINT_new(group);
148 if (s == NULL)
149 goto err;
150
151 if (point == NULL) {
152 if (!EC_POINT_copy(s, group->generator))
153 goto err;
154 } else {
155 if (!EC_POINT_copy(s, point))
156 goto err;
157 }
158
159 EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
160
161 BN_CTX_start(ctx);
162 lambda = BN_CTX_get(ctx);
163 k = BN_CTX_get(ctx);
164 if (k == NULL)
165 goto err;
166
167 /*
168 * Group orders are often on a word boundary.
169 * So when we pad the scalar, some timing diff might
170 * pop if it needs to be expanded due to carries.
171 * So expand ahead of time.
172 */
173 group_top = bn_get_top(group->order);
174 if ((bn_wexpand(k, group_top + 1) == NULL)
175 || (bn_wexpand(lambda, group_top + 1) == NULL))
176 goto err;
177
178 if (!BN_copy(k, scalar))
179 goto err;
180
181 BN_set_flags(k, BN_FLG_CONSTTIME);
182
183 if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) {
184 /*-
185 * this is an unusual input, and we don't guarantee
186 * constant-timeness
187 */
188 if (!BN_nnmod(k, k, group->order, ctx))
189 goto err;
190 }
191
192 if (!BN_add(lambda, k, group->order))
193 goto err;
194 BN_set_flags(lambda, BN_FLG_CONSTTIME);
195 if (!BN_add(k, lambda, group->order))
196 goto err;
197 /*
198 * lambda := scalar + order
199 * k := scalar + 2*order
200 */
201 kbit = BN_is_bit_set(lambda, order_bits);
202 BN_consttime_swap(kbit, k, lambda, group_top + 1);
203
204 group_top = bn_get_top(group->field);
205 if ((bn_wexpand(s->X, group_top) == NULL)
206 || (bn_wexpand(s->Y, group_top) == NULL)
207 || (bn_wexpand(s->Z, group_top) == NULL)
208 || (bn_wexpand(r->X, group_top) == NULL)
209 || (bn_wexpand(r->Y, group_top) == NULL)
210 || (bn_wexpand(r->Z, group_top) == NULL))
211 goto err;
212
213 /* top bit is a 1, in a fixed pos */
214 if (!EC_POINT_copy(r, s))
215 goto err;
216
217 EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
218
219 if (!EC_POINT_dbl(group, s, s, ctx))
220 goto err;
221
222 pbit = 0;
223
224 #define EC_POINT_CSWAP(c, a, b, w, t) do { \
225 BN_consttime_swap(c, (a)->X, (b)->X, w); \
226 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
227 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
228 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
229 (a)->Z_is_one ^= (t); \
230 (b)->Z_is_one ^= (t); \
231 } while(0)
232
233 /*-
234 * The ladder step, with branches, is
235 *
236 * k[i] == 0: S = add(R, S), R = dbl(R)
237 * k[i] == 1: R = add(S, R), S = dbl(S)
238 *
239 * Swapping R, S conditionally on k[i] leaves you with state
240 *
241 * k[i] == 0: T, U = R, S
242 * k[i] == 1: T, U = S, R
243 *
244 * Then perform the ECC ops.
245 *
246 * U = add(T, U)
247 * T = dbl(T)
248 *
249 * Which leaves you with state
250 *
251 * k[i] == 0: U = add(R, S), T = dbl(R)
252 * k[i] == 1: U = add(S, R), T = dbl(S)
253 *
254 * Swapping T, U conditionally on k[i] leaves you with state
255 *
256 * k[i] == 0: R, S = T, U
257 * k[i] == 1: R, S = U, T
258 *
259 * Which leaves you with state
260 *
261 * k[i] == 0: S = add(R, S), R = dbl(R)
262 * k[i] == 1: R = add(S, R), S = dbl(S)
263 *
264 * So we get the same logic, but instead of a branch it's a
265 * conditional swap, followed by ECC ops, then another conditional swap.
266 *
267 * Optimization: The end of iteration i and start of i-1 looks like
268 *
269 * ...
270 * CSWAP(k[i], R, S)
271 * ECC
272 * CSWAP(k[i], R, S)
273 * (next iteration)
274 * CSWAP(k[i-1], R, S)
275 * ECC
276 * CSWAP(k[i-1], R, S)
277 * ...
278 *
279 * So instead of two contiguous swaps, you can merge the condition
280 * bits and do a single swap.
281 *
282 * k[i] k[i-1] Outcome
283 * 0 0 No Swap
284 * 0 1 Swap
285 * 1 0 Swap
286 * 1 1 No Swap
287 *
288 * This is XOR. pbit tracks the previous bit of k.
289 */
290
291 for (i = order_bits - 1; i >= 0; i--) {
292 kbit = BN_is_bit_set(k, i) ^ pbit;
293 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
294 if (!EC_POINT_add(group, s, r, s, ctx))
295 goto err;
296 if (!EC_POINT_dbl(group, r, r, ctx))
297 goto err;
298 /*
299 * pbit logic merges this cswap with that of the
300 * next iteration
301 */
302 pbit ^= kbit;
303 }
304 /* one final cswap to move the right value into r */
305 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
306 #undef EC_POINT_CSWAP
307
308 ret = 1;
309
310 err:
311 EC_POINT_free(s);
312 BN_CTX_end(ctx);
313 BN_CTX_free(new_ctx);
314
315 return ret;
316 }
317
318 #undef EC_POINT_BN_set_flags
319
320 /*
321 * TODO: table should be optimised for the wNAF-based implementation,
322 * sometimes smaller windows will give better performance (thus the
323 * boundaries should be increased)
324 */
325 #define EC_window_bits_for_scalar_size(b) \
326 ((size_t) \
327 ((b) >= 2000 ? 6 : \
328 (b) >= 800 ? 5 : \
329 (b) >= 300 ? 4 : \
330 (b) >= 70 ? 3 : \
331 (b) >= 20 ? 2 : \
332 1))
333
334 /*-
335 * Compute
336 * \sum scalars[i]*points[i],
337 * also including
338 * scalar*generator
339 * in the addition if scalar != NULL
340 */
341 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
342 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
343 BN_CTX *ctx)
344 {
345 BN_CTX *new_ctx = NULL;
346 const EC_POINT *generator = NULL;
347 EC_POINT *tmp = NULL;
348 size_t totalnum;
349 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
350 size_t pre_points_per_block = 0;
351 size_t i, j;
352 int k;
353 int r_is_inverted = 0;
354 int r_is_at_infinity = 1;
355 size_t *wsize = NULL; /* individual window sizes */
356 signed char **wNAF = NULL; /* individual wNAFs */
357 size_t *wNAF_len = NULL;
358 size_t max_len = 0;
359 size_t num_val;
360 EC_POINT **val = NULL; /* precomputation */
361 EC_POINT **v;
362 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
363 * 'pre_comp->points' */
364 const EC_PRE_COMP *pre_comp = NULL;
365 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
366 * treated like other scalars, i.e.
367 * precomputation is not available */
368 int ret = 0;
369
370 if (group->meth != r->meth) {
371 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
372 return 0;
373 }
374
375 if ((scalar == NULL) && (num == 0)) {
376 return EC_POINT_set_to_infinity(group, r);
377 }
378
379 /*-
380 * Handle the common cases where the scalar is secret, enforcing a constant
381 * time scalar multiplication algorithm.
382 */
383 if ((scalar != NULL) && (num == 0)) {
384 /*-
385 * In this case we want to compute scalar * GeneratorPoint: this
386 * codepath is reached most prominently by (ephemeral) key generation
387 * of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
388 * keygen/first half), where the scalar is always secret. This is why
389 * we ignore if BN_FLG_CONSTTIME is actually set and we always call the
390 * constant time version.
391 */
392 return ec_mul_consttime(group, r, scalar, NULL, ctx);
393 }
394 if ((scalar == NULL) && (num == 1)) {
395 /*-
396 * In this case we want to compute scalar * GenericPoint: this codepath
397 * is reached most prominently by the second half of ECDH, where the
398 * secret scalar is multiplied by the peer's public point. To protect
399 * the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
400 * we always call the constant time version.
401 */
402 return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
403 }
404
405 for (i = 0; i < num; i++) {
406 if (group->meth != points[i]->meth) {
407 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
408 return 0;
409 }
410 }
411
412 if (ctx == NULL) {
413 ctx = new_ctx = BN_CTX_new();
414 if (ctx == NULL)
415 goto err;
416 }
417
418 if (scalar != NULL) {
419 generator = EC_GROUP_get0_generator(group);
420 if (generator == NULL) {
421 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
422 goto err;
423 }
424
425 /* look if we can use precomputed multiples of generator */
426
427 pre_comp = group->pre_comp.ec;
428 if (pre_comp && pre_comp->numblocks
429 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
430 0)) {
431 blocksize = pre_comp->blocksize;
432
433 /*
434 * determine maximum number of blocks that wNAF splitting may
435 * yield (NB: maximum wNAF length is bit length plus one)
436 */
437 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
438
439 /*
440 * we cannot use more blocks than we have precomputation for
441 */
442 if (numblocks > pre_comp->numblocks)
443 numblocks = pre_comp->numblocks;
444
445 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
446
447 /* check that pre_comp looks sane */
448 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
449 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
450 goto err;
451 }
452 } else {
453 /* can't use precomputation */
454 pre_comp = NULL;
455 numblocks = 1;
456 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
457 * 'scalars' */
458 }
459 }
460
461 totalnum = num + numblocks;
462
463 wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
464 wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
465 /* include space for pivot */
466 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
467 val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
468
469 /* Ensure wNAF is initialised in case we end up going to err */
470 if (wNAF != NULL)
471 wNAF[0] = NULL; /* preliminary pivot */
472
473 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
474 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
475 goto err;
476 }
477
478 /*
479 * num_val will be the total number of temporarily precomputed points
480 */
481 num_val = 0;
482
483 for (i = 0; i < num + num_scalar; i++) {
484 size_t bits;
485
486 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
487 wsize[i] = EC_window_bits_for_scalar_size(bits);
488 num_val += (size_t)1 << (wsize[i] - 1);
489 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
490 wNAF[i] =
491 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
492 &wNAF_len[i]);
493 if (wNAF[i] == NULL)
494 goto err;
495 if (wNAF_len[i] > max_len)
496 max_len = wNAF_len[i];
497 }
498
499 if (numblocks) {
500 /* we go here iff scalar != NULL */
501
502 if (pre_comp == NULL) {
503 if (num_scalar != 1) {
504 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
505 goto err;
506 }
507 /* we have already generated a wNAF for 'scalar' */
508 } else {
509 signed char *tmp_wNAF = NULL;
510 size_t tmp_len = 0;
511
512 if (num_scalar != 0) {
513 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
514 goto err;
515 }
516
517 /*
518 * use the window size for which we have precomputation
519 */
520 wsize[num] = pre_comp->w;
521 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
522 if (!tmp_wNAF)
523 goto err;
524
525 if (tmp_len <= max_len) {
526 /*
527 * One of the other wNAFs is at least as long as the wNAF
528 * belonging to the generator, so wNAF splitting will not buy
529 * us anything.
530 */
531
532 numblocks = 1;
533 totalnum = num + 1; /* don't use wNAF splitting */
534 wNAF[num] = tmp_wNAF;
535 wNAF[num + 1] = NULL;
536 wNAF_len[num] = tmp_len;
537 /*
538 * pre_comp->points starts with the points that we need here:
539 */
540 val_sub[num] = pre_comp->points;
541 } else {
542 /*
543 * don't include tmp_wNAF directly into wNAF array - use wNAF
544 * splitting and include the blocks
545 */
546
547 signed char *pp;
548 EC_POINT **tmp_points;
549
550 if (tmp_len < numblocks * blocksize) {
551 /*
552 * possibly we can do with fewer blocks than estimated
553 */
554 numblocks = (tmp_len + blocksize - 1) / blocksize;
555 if (numblocks > pre_comp->numblocks) {
556 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
557 OPENSSL_free(tmp_wNAF);
558 goto err;
559 }
560 totalnum = num + numblocks;
561 }
562
563 /* split wNAF in 'numblocks' parts */
564 pp = tmp_wNAF;
565 tmp_points = pre_comp->points;
566
567 for (i = num; i < totalnum; i++) {
568 if (i < totalnum - 1) {
569 wNAF_len[i] = blocksize;
570 if (tmp_len < blocksize) {
571 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
572 OPENSSL_free(tmp_wNAF);
573 goto err;
574 }
575 tmp_len -= blocksize;
576 } else
577 /*
578 * last block gets whatever is left (this could be
579 * more or less than 'blocksize'!)
580 */
581 wNAF_len[i] = tmp_len;
582
583 wNAF[i + 1] = NULL;
584 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
585 if (wNAF[i] == NULL) {
586 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
587 OPENSSL_free(tmp_wNAF);
588 goto err;
589 }
590 memcpy(wNAF[i], pp, wNAF_len[i]);
591 if (wNAF_len[i] > max_len)
592 max_len = wNAF_len[i];
593
594 if (*tmp_points == NULL) {
595 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
596 OPENSSL_free(tmp_wNAF);
597 goto err;
598 }
599 val_sub[i] = tmp_points;
600 tmp_points += pre_points_per_block;
601 pp += blocksize;
602 }
603 OPENSSL_free(tmp_wNAF);
604 }
605 }
606 }
607
608 /*
609 * All points we precompute now go into a single array 'val'.
610 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
611 * subarray of 'pre_comp->points' if we already have precomputation.
612 */
613 val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
614 if (val == NULL) {
615 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
616 goto err;
617 }
618 val[num_val] = NULL; /* pivot element */
619
620 /* allocate points for precomputation */
621 v = val;
622 for (i = 0; i < num + num_scalar; i++) {
623 val_sub[i] = v;
624 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
625 *v = EC_POINT_new(group);
626 if (*v == NULL)
627 goto err;
628 v++;
629 }
630 }
631 if (!(v == val + num_val)) {
632 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
633 goto err;
634 }
635
636 if ((tmp = EC_POINT_new(group)) == NULL)
637 goto err;
638
639 /*-
640 * prepare precomputed values:
641 * val_sub[i][0] := points[i]
642 * val_sub[i][1] := 3 * points[i]
643 * val_sub[i][2] := 5 * points[i]
644 * ...
645 */
646 for (i = 0; i < num + num_scalar; i++) {
647 if (i < num) {
648 if (!EC_POINT_copy(val_sub[i][0], points[i]))
649 goto err;
650 } else {
651 if (!EC_POINT_copy(val_sub[i][0], generator))
652 goto err;
653 }
654
655 if (wsize[i] > 1) {
656 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
657 goto err;
658 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
659 if (!EC_POINT_add
660 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
661 goto err;
662 }
663 }
664 }
665
666 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
667 goto err;
668
669 r_is_at_infinity = 1;
670
671 for (k = max_len - 1; k >= 0; k--) {
672 if (!r_is_at_infinity) {
673 if (!EC_POINT_dbl(group, r, r, ctx))
674 goto err;
675 }
676
677 for (i = 0; i < totalnum; i++) {
678 if (wNAF_len[i] > (size_t)k) {
679 int digit = wNAF[i][k];
680 int is_neg;
681
682 if (digit) {
683 is_neg = digit < 0;
684
685 if (is_neg)
686 digit = -digit;
687
688 if (is_neg != r_is_inverted) {
689 if (!r_is_at_infinity) {
690 if (!EC_POINT_invert(group, r, ctx))
691 goto err;
692 }
693 r_is_inverted = !r_is_inverted;
694 }
695
696 /* digit > 0 */
697
698 if (r_is_at_infinity) {
699 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
700 goto err;
701 r_is_at_infinity = 0;
702 } else {
703 if (!EC_POINT_add
704 (group, r, r, val_sub[i][digit >> 1], ctx))
705 goto err;
706 }
707 }
708 }
709 }
710 }
711
712 if (r_is_at_infinity) {
713 if (!EC_POINT_set_to_infinity(group, r))
714 goto err;
715 } else {
716 if (r_is_inverted)
717 if (!EC_POINT_invert(group, r, ctx))
718 goto err;
719 }
720
721 ret = 1;
722
723 err:
724 BN_CTX_free(new_ctx);
725 EC_POINT_free(tmp);
726 OPENSSL_free(wsize);
727 OPENSSL_free(wNAF_len);
728 if (wNAF != NULL) {
729 signed char **w;
730
731 for (w = wNAF; *w != NULL; w++)
732 OPENSSL_free(*w);
733
734 OPENSSL_free(wNAF);
735 }
736 if (val != NULL) {
737 for (v = val; *v != NULL; v++)
738 EC_POINT_clear_free(*v);
739
740 OPENSSL_free(val);
741 }
742 OPENSSL_free(val_sub);
743 return ret;
744 }
745
746 /*-
747 * ec_wNAF_precompute_mult()
748 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
749 * for use with wNAF splitting as implemented in ec_wNAF_mul().
750 *
751 * 'pre_comp->points' is an array of multiples of the generator
752 * of the following form:
753 * points[0] = generator;
754 * points[1] = 3 * generator;
755 * ...
756 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
757 * points[2^(w-1)] = 2^blocksize * generator;
758 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
759 * ...
760 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
761 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
762 * ...
763 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
764 * points[2^(w-1)*numblocks] = NULL
765 */
766 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
767 {
768 const EC_POINT *generator;
769 EC_POINT *tmp_point = NULL, *base = NULL, **var;
770 BN_CTX *new_ctx = NULL;
771 const BIGNUM *order;
772 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
773 EC_POINT **points = NULL;
774 EC_PRE_COMP *pre_comp;
775 int ret = 0;
776
777 /* if there is an old EC_PRE_COMP object, throw it away */
778 EC_pre_comp_free(group);
779 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
780 return 0;
781
782 generator = EC_GROUP_get0_generator(group);
783 if (generator == NULL) {
784 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
785 goto err;
786 }
787
788 if (ctx == NULL) {
789 ctx = new_ctx = BN_CTX_new();
790 if (ctx == NULL)
791 goto err;
792 }
793
794 BN_CTX_start(ctx);
795
796 order = EC_GROUP_get0_order(group);
797 if (order == NULL)
798 goto err;
799 if (BN_is_zero(order)) {
800 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
801 goto err;
802 }
803
804 bits = BN_num_bits(order);
805 /*
806 * The following parameters mean we precompute (approximately) one point
807 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
808 * bit lengths, other parameter combinations might provide better
809 * efficiency.
810 */
811 blocksize = 8;
812 w = 4;
813 if (EC_window_bits_for_scalar_size(bits) > w) {
814 /* let's not make the window too small ... */
815 w = EC_window_bits_for_scalar_size(bits);
816 }
817
818 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
819 * to use for wNAF
820 * splitting */
821
822 pre_points_per_block = (size_t)1 << (w - 1);
823 num = pre_points_per_block * numblocks; /* number of points to compute
824 * and store */
825
826 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
827 if (points == NULL) {
828 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
829 goto err;
830 }
831
832 var = points;
833 var[num] = NULL; /* pivot */
834 for (i = 0; i < num; i++) {
835 if ((var[i] = EC_POINT_new(group)) == NULL) {
836 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
837 goto err;
838 }
839 }
840
841 if ((tmp_point = EC_POINT_new(group)) == NULL
842 || (base = EC_POINT_new(group)) == NULL) {
843 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
844 goto err;
845 }
846
847 if (!EC_POINT_copy(base, generator))
848 goto err;
849
850 /* do the precomputation */
851 for (i = 0; i < numblocks; i++) {
852 size_t j;
853
854 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
855 goto err;
856
857 if (!EC_POINT_copy(*var++, base))
858 goto err;
859
860 for (j = 1; j < pre_points_per_block; j++, var++) {
861 /*
862 * calculate odd multiples of the current base point
863 */
864 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
865 goto err;
866 }
867
868 if (i < numblocks - 1) {
869 /*
870 * get the next base (multiply current one by 2^blocksize)
871 */
872 size_t k;
873
874 if (blocksize <= 2) {
875 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
876 goto err;
877 }
878
879 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
880 goto err;
881 for (k = 2; k < blocksize; k++) {
882 if (!EC_POINT_dbl(group, base, base, ctx))
883 goto err;
884 }
885 }
886 }
887
888 if (!EC_POINTs_make_affine(group, num, points, ctx))
889 goto err;
890
891 pre_comp->group = group;
892 pre_comp->blocksize = blocksize;
893 pre_comp->numblocks = numblocks;
894 pre_comp->w = w;
895 pre_comp->points = points;
896 points = NULL;
897 pre_comp->num = num;
898 SETPRECOMP(group, ec, pre_comp);
899 pre_comp = NULL;
900 ret = 1;
901
902 err:
903 if (ctx != NULL)
904 BN_CTX_end(ctx);
905 BN_CTX_free(new_ctx);
906 EC_ec_pre_comp_free(pre_comp);
907 if (points) {
908 EC_POINT **p;
909
910 for (p = points; *p != NULL; p++)
911 EC_POINT_free(*p);
912 OPENSSL_free(points);
913 }
914 EC_POINT_free(tmp_point);
915 EC_POINT_free(base);
916 return ret;
917 }
918
919 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
920 {
921 return HAVEPRECOMP(group, ec);
922 }