]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec_mult.c
b4723fb5d544cee1f5f264294cb91435e26f370c
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
1 /* crypto/ec/ec_mult.c */
2 /*
3 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4 */
5 /* ====================================================================
6 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61 * and contributed to the OpenSSL project.
62 */
63
64 #include <string.h>
65 #include <openssl/err.h>
66
67 #include "internal/bn_int.h"
68 #include "ec_lcl.h"
69
70 /*
71 * This file implements the wNAF-based interleaving multi-exponentation method
72 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
73 * for multiplication with precomputation, we use wNAF splitting
74 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
75 */
76
77 /* structure for precomputed multiples of the generator */
78 typedef struct ec_pre_comp_st {
79 const EC_GROUP *group; /* parent EC_GROUP object */
80 size_t blocksize; /* block size for wNAF splitting */
81 size_t numblocks; /* max. number of blocks for which we have
82 * precomputation */
83 size_t w; /* window size */
84 EC_POINT **points; /* array with pre-calculated multiples of
85 * generator: 'num' pointers to EC_POINT
86 * objects followed by a NULL */
87 size_t num; /* numblocks * 2^(w-1) */
88 int references;
89 } EC_PRE_COMP;
90
91 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
92 static void *ec_pre_comp_dup(void *);
93 static void ec_pre_comp_free(void *);
94 static void ec_pre_comp_clear_free(void *);
95
96 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
97 {
98 EC_PRE_COMP *ret = NULL;
99
100 if (!group)
101 return NULL;
102
103 ret = OPENSSL_malloc(sizeof(EC_PRE_COMP));
104 if (!ret) {
105 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
106 return ret;
107 }
108 ret->group = group;
109 ret->blocksize = 8; /* default */
110 ret->numblocks = 0;
111 ret->w = 4; /* default */
112 ret->points = NULL;
113 ret->num = 0;
114 ret->references = 1;
115 return ret;
116 }
117
118 static void *ec_pre_comp_dup(void *src_)
119 {
120 EC_PRE_COMP *src = src_;
121
122 /* no need to actually copy, these objects never change! */
123
124 CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
125
126 return src_;
127 }
128
129 static void ec_pre_comp_free(void *pre_)
130 {
131 int i;
132 EC_PRE_COMP *pre = pre_;
133
134 if (!pre)
135 return;
136
137 i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
138 if (i > 0)
139 return;
140
141 if (pre->points) {
142 EC_POINT **p;
143
144 for (p = pre->points; *p != NULL; p++)
145 EC_POINT_free(*p);
146 OPENSSL_free(pre->points);
147 }
148 OPENSSL_free(pre);
149 }
150
151 static void ec_pre_comp_clear_free(void *pre_)
152 {
153 int i;
154 EC_PRE_COMP *pre = pre_;
155
156 if (!pre)
157 return;
158
159 i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
160 if (i > 0)
161 return;
162
163 if (pre->points) {
164 EC_POINT **p;
165
166 for (p = pre->points; *p != NULL; p++) {
167 EC_POINT_clear_free(*p);
168 OPENSSL_cleanse(p, sizeof *p);
169 }
170 OPENSSL_free(pre->points);
171 }
172 OPENSSL_clear_free(pre, sizeof *pre);
173 }
174
175 /*
176 * TODO: table should be optimised for the wNAF-based implementation,
177 * sometimes smaller windows will give better performance (thus the
178 * boundaries should be increased)
179 */
180 #define EC_window_bits_for_scalar_size(b) \
181 ((size_t) \
182 ((b) >= 2000 ? 6 : \
183 (b) >= 800 ? 5 : \
184 (b) >= 300 ? 4 : \
185 (b) >= 70 ? 3 : \
186 (b) >= 20 ? 2 : \
187 1))
188
189 /*-
190 * Compute
191 * \sum scalars[i]*points[i],
192 * also including
193 * scalar*generator
194 * in the addition if scalar != NULL
195 */
196 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
197 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
198 BN_CTX *ctx)
199 {
200 BN_CTX *new_ctx = NULL;
201 const EC_POINT *generator = NULL;
202 EC_POINT *tmp = NULL;
203 size_t totalnum;
204 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
205 size_t pre_points_per_block = 0;
206 size_t i, j;
207 int k;
208 int r_is_inverted = 0;
209 int r_is_at_infinity = 1;
210 size_t *wsize = NULL; /* individual window sizes */
211 signed char **wNAF = NULL; /* individual wNAFs */
212 size_t *wNAF_len = NULL;
213 size_t max_len = 0;
214 size_t num_val;
215 EC_POINT **val = NULL; /* precomputation */
216 EC_POINT **v;
217 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
218 * 'pre_comp->points' */
219 const EC_PRE_COMP *pre_comp = NULL;
220 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
221 * treated like other scalars, i.e.
222 * precomputation is not available */
223 int ret = 0;
224
225 if (group->meth != r->meth) {
226 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
227 return 0;
228 }
229
230 if ((scalar == NULL) && (num == 0)) {
231 return EC_POINT_set_to_infinity(group, r);
232 }
233
234 for (i = 0; i < num; i++) {
235 if (group->meth != points[i]->meth) {
236 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
237 return 0;
238 }
239 }
240
241 if (ctx == NULL) {
242 ctx = new_ctx = BN_CTX_new();
243 if (ctx == NULL)
244 goto err;
245 }
246
247 if (scalar != NULL) {
248 generator = EC_GROUP_get0_generator(group);
249 if (generator == NULL) {
250 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
251 goto err;
252 }
253
254 /* look if we can use precomputed multiples of generator */
255
256 pre_comp =
257 EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup,
258 ec_pre_comp_free, ec_pre_comp_clear_free);
259
260 if (pre_comp && pre_comp->numblocks
261 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
262 0)) {
263 blocksize = pre_comp->blocksize;
264
265 /*
266 * determine maximum number of blocks that wNAF splitting may
267 * yield (NB: maximum wNAF length is bit length plus one)
268 */
269 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
270
271 /*
272 * we cannot use more blocks than we have precomputation for
273 */
274 if (numblocks > pre_comp->numblocks)
275 numblocks = pre_comp->numblocks;
276
277 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
278
279 /* check that pre_comp looks sane */
280 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
281 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
282 goto err;
283 }
284 } else {
285 /* can't use precomputation */
286 pre_comp = NULL;
287 numblocks = 1;
288 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
289 * 'scalars' */
290 }
291 }
292
293 totalnum = num + numblocks;
294
295 wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
296 wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
297 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
298 * for pivot */
299 val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
300
301 /* Ensure wNAF is initialised in case we end up going to err */
302 if (wNAF)
303 wNAF[0] = NULL; /* preliminary pivot */
304
305 if (!wsize || !wNAF_len || !wNAF || !val_sub) {
306 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
307 goto err;
308 }
309
310 /*
311 * num_val will be the total number of temporarily precomputed points
312 */
313 num_val = 0;
314
315 for (i = 0; i < num + num_scalar; i++) {
316 size_t bits;
317
318 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
319 wsize[i] = EC_window_bits_for_scalar_size(bits);
320 num_val += (size_t)1 << (wsize[i] - 1);
321 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
322 wNAF[i] =
323 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
324 &wNAF_len[i]);
325 if (wNAF[i] == NULL)
326 goto err;
327 if (wNAF_len[i] > max_len)
328 max_len = wNAF_len[i];
329 }
330
331 if (numblocks) {
332 /* we go here iff scalar != NULL */
333
334 if (pre_comp == NULL) {
335 if (num_scalar != 1) {
336 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
337 goto err;
338 }
339 /* we have already generated a wNAF for 'scalar' */
340 } else {
341 signed char *tmp_wNAF = NULL;
342 size_t tmp_len = 0;
343
344 if (num_scalar != 0) {
345 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
346 goto err;
347 }
348
349 /*
350 * use the window size for which we have precomputation
351 */
352 wsize[num] = pre_comp->w;
353 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
354 if (!tmp_wNAF)
355 goto err;
356
357 if (tmp_len <= max_len) {
358 /*
359 * One of the other wNAFs is at least as long as the wNAF
360 * belonging to the generator, so wNAF splitting will not buy
361 * us anything.
362 */
363
364 numblocks = 1;
365 totalnum = num + 1; /* don't use wNAF splitting */
366 wNAF[num] = tmp_wNAF;
367 wNAF[num + 1] = NULL;
368 wNAF_len[num] = tmp_len;
369 if (tmp_len > max_len)
370 max_len = tmp_len;
371 /*
372 * pre_comp->points starts with the points that we need here:
373 */
374 val_sub[num] = pre_comp->points;
375 } else {
376 /*
377 * don't include tmp_wNAF directly into wNAF array - use wNAF
378 * splitting and include the blocks
379 */
380
381 signed char *pp;
382 EC_POINT **tmp_points;
383
384 if (tmp_len < numblocks * blocksize) {
385 /*
386 * possibly we can do with fewer blocks than estimated
387 */
388 numblocks = (tmp_len + blocksize - 1) / blocksize;
389 if (numblocks > pre_comp->numblocks) {
390 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
391 goto err;
392 }
393 totalnum = num + numblocks;
394 }
395
396 /* split wNAF in 'numblocks' parts */
397 pp = tmp_wNAF;
398 tmp_points = pre_comp->points;
399
400 for (i = num; i < totalnum; i++) {
401 if (i < totalnum - 1) {
402 wNAF_len[i] = blocksize;
403 if (tmp_len < blocksize) {
404 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
405 goto err;
406 }
407 tmp_len -= blocksize;
408 } else
409 /*
410 * last block gets whatever is left (this could be
411 * more or less than 'blocksize'!)
412 */
413 wNAF_len[i] = tmp_len;
414
415 wNAF[i + 1] = NULL;
416 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
417 if (wNAF[i] == NULL) {
418 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
419 OPENSSL_free(tmp_wNAF);
420 goto err;
421 }
422 memcpy(wNAF[i], pp, wNAF_len[i]);
423 if (wNAF_len[i] > max_len)
424 max_len = wNAF_len[i];
425
426 if (*tmp_points == NULL) {
427 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
428 OPENSSL_free(tmp_wNAF);
429 goto err;
430 }
431 val_sub[i] = tmp_points;
432 tmp_points += pre_points_per_block;
433 pp += blocksize;
434 }
435 OPENSSL_free(tmp_wNAF);
436 }
437 }
438 }
439
440 /*
441 * All points we precompute now go into a single array 'val'.
442 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
443 * subarray of 'pre_comp->points' if we already have precomputation.
444 */
445 val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
446 if (val == NULL) {
447 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
448 goto err;
449 }
450 val[num_val] = NULL; /* pivot element */
451
452 /* allocate points for precomputation */
453 v = val;
454 for (i = 0; i < num + num_scalar; i++) {
455 val_sub[i] = v;
456 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
457 *v = EC_POINT_new(group);
458 if (*v == NULL)
459 goto err;
460 v++;
461 }
462 }
463 if (!(v == val + num_val)) {
464 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
465 goto err;
466 }
467
468 if (!(tmp = EC_POINT_new(group)))
469 goto err;
470
471 /*-
472 * prepare precomputed values:
473 * val_sub[i][0] := points[i]
474 * val_sub[i][1] := 3 * points[i]
475 * val_sub[i][2] := 5 * points[i]
476 * ...
477 */
478 for (i = 0; i < num + num_scalar; i++) {
479 if (i < num) {
480 if (!EC_POINT_copy(val_sub[i][0], points[i]))
481 goto err;
482 } else {
483 if (!EC_POINT_copy(val_sub[i][0], generator))
484 goto err;
485 }
486
487 if (wsize[i] > 1) {
488 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
489 goto err;
490 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
491 if (!EC_POINT_add
492 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
493 goto err;
494 }
495 }
496 }
497
498 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
499 goto err;
500
501 r_is_at_infinity = 1;
502
503 for (k = max_len - 1; k >= 0; k--) {
504 if (!r_is_at_infinity) {
505 if (!EC_POINT_dbl(group, r, r, ctx))
506 goto err;
507 }
508
509 for (i = 0; i < totalnum; i++) {
510 if (wNAF_len[i] > (size_t)k) {
511 int digit = wNAF[i][k];
512 int is_neg;
513
514 if (digit) {
515 is_neg = digit < 0;
516
517 if (is_neg)
518 digit = -digit;
519
520 if (is_neg != r_is_inverted) {
521 if (!r_is_at_infinity) {
522 if (!EC_POINT_invert(group, r, ctx))
523 goto err;
524 }
525 r_is_inverted = !r_is_inverted;
526 }
527
528 /* digit > 0 */
529
530 if (r_is_at_infinity) {
531 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
532 goto err;
533 r_is_at_infinity = 0;
534 } else {
535 if (!EC_POINT_add
536 (group, r, r, val_sub[i][digit >> 1], ctx))
537 goto err;
538 }
539 }
540 }
541 }
542 }
543
544 if (r_is_at_infinity) {
545 if (!EC_POINT_set_to_infinity(group, r))
546 goto err;
547 } else {
548 if (r_is_inverted)
549 if (!EC_POINT_invert(group, r, ctx))
550 goto err;
551 }
552
553 ret = 1;
554
555 err:
556 BN_CTX_free(new_ctx);
557 EC_POINT_free(tmp);
558 if (wsize != NULL)
559 OPENSSL_free(wsize);
560 if (wNAF_len != NULL)
561 OPENSSL_free(wNAF_len);
562 if (wNAF != NULL) {
563 signed char **w;
564
565 for (w = wNAF; *w != NULL; w++)
566 OPENSSL_free(*w);
567
568 OPENSSL_free(wNAF);
569 }
570 if (val != NULL) {
571 for (v = val; *v != NULL; v++)
572 EC_POINT_clear_free(*v);
573
574 OPENSSL_free(val);
575 }
576 if (val_sub != NULL) {
577 OPENSSL_free(val_sub);
578 }
579 return ret;
580 }
581
582 /*-
583 * ec_wNAF_precompute_mult()
584 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
585 * for use with wNAF splitting as implemented in ec_wNAF_mul().
586 *
587 * 'pre_comp->points' is an array of multiples of the generator
588 * of the following form:
589 * points[0] = generator;
590 * points[1] = 3 * generator;
591 * ...
592 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
593 * points[2^(w-1)] = 2^blocksize * generator;
594 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
595 * ...
596 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
597 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
598 * ...
599 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
600 * points[2^(w-1)*numblocks] = NULL
601 */
602 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
603 {
604 const EC_POINT *generator;
605 EC_POINT *tmp_point = NULL, *base = NULL, **var;
606 BN_CTX *new_ctx = NULL;
607 BIGNUM *order;
608 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
609 EC_POINT **points = NULL;
610 EC_PRE_COMP *pre_comp;
611 int ret = 0;
612
613 /* if there is an old EC_PRE_COMP object, throw it away */
614 EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup,
615 ec_pre_comp_free, ec_pre_comp_clear_free);
616
617 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
618 return 0;
619
620 generator = EC_GROUP_get0_generator(group);
621 if (generator == NULL) {
622 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
623 goto err;
624 }
625
626 if (ctx == NULL) {
627 ctx = new_ctx = BN_CTX_new();
628 if (ctx == NULL)
629 goto err;
630 }
631
632 BN_CTX_start(ctx);
633 order = BN_CTX_get(ctx);
634 if (order == NULL)
635 goto err;
636
637 if (!EC_GROUP_get_order(group, order, ctx))
638 goto err;
639 if (BN_is_zero(order)) {
640 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
641 goto err;
642 }
643
644 bits = BN_num_bits(order);
645 /*
646 * The following parameters mean we precompute (approximately) one point
647 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
648 * bit lengths, other parameter combinations might provide better
649 * efficiency.
650 */
651 blocksize = 8;
652 w = 4;
653 if (EC_window_bits_for_scalar_size(bits) > w) {
654 /* let's not make the window too small ... */
655 w = EC_window_bits_for_scalar_size(bits);
656 }
657
658 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
659 * to use for wNAF
660 * splitting */
661
662 pre_points_per_block = (size_t)1 << (w - 1);
663 num = pre_points_per_block * numblocks; /* number of points to compute
664 * and store */
665
666 points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1));
667 if (!points) {
668 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
669 goto err;
670 }
671
672 var = points;
673 var[num] = NULL; /* pivot */
674 for (i = 0; i < num; i++) {
675 if ((var[i] = EC_POINT_new(group)) == NULL) {
676 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
677 goto err;
678 }
679 }
680
681 if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
682 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
683 goto err;
684 }
685
686 if (!EC_POINT_copy(base, generator))
687 goto err;
688
689 /* do the precomputation */
690 for (i = 0; i < numblocks; i++) {
691 size_t j;
692
693 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
694 goto err;
695
696 if (!EC_POINT_copy(*var++, base))
697 goto err;
698
699 for (j = 1; j < pre_points_per_block; j++, var++) {
700 /*
701 * calculate odd multiples of the current base point
702 */
703 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
704 goto err;
705 }
706
707 if (i < numblocks - 1) {
708 /*
709 * get the next base (multiply current one by 2^blocksize)
710 */
711 size_t k;
712
713 if (blocksize <= 2) {
714 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
715 goto err;
716 }
717
718 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
719 goto err;
720 for (k = 2; k < blocksize; k++) {
721 if (!EC_POINT_dbl(group, base, base, ctx))
722 goto err;
723 }
724 }
725 }
726
727 if (!EC_POINTs_make_affine(group, num, points, ctx))
728 goto err;
729
730 pre_comp->group = group;
731 pre_comp->blocksize = blocksize;
732 pre_comp->numblocks = numblocks;
733 pre_comp->w = w;
734 pre_comp->points = points;
735 points = NULL;
736 pre_comp->num = num;
737
738 if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
739 ec_pre_comp_dup, ec_pre_comp_free,
740 ec_pre_comp_clear_free))
741 goto err;
742 pre_comp = NULL;
743
744 ret = 1;
745 err:
746 if (ctx != NULL)
747 BN_CTX_end(ctx);
748 BN_CTX_free(new_ctx);
749 if (pre_comp)
750 ec_pre_comp_free(pre_comp);
751 if (points) {
752 EC_POINT **p;
753
754 for (p = points; *p != NULL; p++)
755 EC_POINT_free(*p);
756 OPENSSL_free(points);
757 }
758 EC_POINT_free(tmp_point);
759 EC_POINT_free(base);
760 return ret;
761 }
762
763 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
764 {
765 if (EC_EX_DATA_get_data
766 (group->extra_data, ec_pre_comp_dup, ec_pre_comp_free,
767 ec_pre_comp_clear_free) != NULL)
768 return 1;
769 else
770 return 0;
771 }