]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ecp_nistp521.c
Add CRYPTO_EX_DATA; remove EC_EXTRA_DATA
[thirdparty/openssl.git] / crypto / ec / ecp_nistp521.c
1 /* crypto/ec/ecp_nistp521.c */
2 /*
3 * Written by Adam Langley (Google) for the OpenSSL project
4 */
5 /* Copyright 2011 Google Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 *
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS,
16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 */
20
21 /*
22 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
23 *
24 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26 * work which got its smarts from Daniel J. Bernstein's work on the same.
27 */
28
29 #include <openssl/opensslconf.h>
30 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
31
32 # ifndef OPENSSL_SYS_VMS
33 # include <stdint.h>
34 # else
35 # include <inttypes.h>
36 # endif
37
38 # include <string.h>
39 # include <openssl/err.h>
40 # include "ec_lcl.h"
41
42 # if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
43 /* even with gcc, the typedef won't work for 32-bit platforms */
44 typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
45 * platforms */
46 # else
47 # error "Need GCC 3.1 or later to define type uint128_t"
48 # endif
49
50 typedef uint8_t u8;
51 typedef uint64_t u64;
52 typedef int64_t s64;
53
54 /*
55 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56 * element of this field into 66 bytes where the most significant byte
57 * contains only a single bit. We call this an felem_bytearray.
58 */
59
60 typedef u8 felem_bytearray[66];
61
62 /*
63 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64 * These values are big-endian.
65 */
66 static const felem_bytearray nistp521_curve_params[5] = {
67 {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75 0xff, 0xff},
76 {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84 0xff, 0xfc},
85 {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93 0x3f, 0x00},
94 {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102 0xbd, 0x66},
103 {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111 0x66, 0x50}
112 };
113
114 /*-
115 * The representation of field elements.
116 * ------------------------------------
117 *
118 * We represent field elements with nine values. These values are either 64 or
119 * 128 bits and the field element represented is:
120 * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p)
121 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122 * 58 bits apart, but are greater than 58 bits in length, the most significant
123 * bits of each limb overlap with the least significant bits of the next.
124 *
125 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126 * 'largefelem' */
127
128 # define NLIMBS 9
129
130 typedef uint64_t limb;
131 typedef limb felem[NLIMBS];
132 typedef uint128_t largefelem[NLIMBS];
133
134 static const limb bottom57bits = 0x1ffffffffffffff;
135 static const limb bottom58bits = 0x3ffffffffffffff;
136
137 /*
138 * bin66_to_felem takes a little-endian byte array and converts it into felem
139 * form. This assumes that the CPU is little-endian.
140 */
141 static void bin66_to_felem(felem out, const u8 in[66])
142 {
143 out[0] = (*((limb *) & in[0])) & bottom58bits;
144 out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
145 out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
146 out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
147 out[4] = (*((limb *) & in[29])) & bottom58bits;
148 out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
149 out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
150 out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
151 out[8] = (*((limb *) & in[58])) & bottom57bits;
152 }
153
154 /*
155 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
156 * array. This assumes that the CPU is little-endian.
157 */
158 static void felem_to_bin66(u8 out[66], const felem in)
159 {
160 memset(out, 0, 66);
161 (*((limb *) & out[0])) = in[0];
162 (*((limb *) & out[7])) |= in[1] << 2;
163 (*((limb *) & out[14])) |= in[2] << 4;
164 (*((limb *) & out[21])) |= in[3] << 6;
165 (*((limb *) & out[29])) = in[4];
166 (*((limb *) & out[36])) |= in[5] << 2;
167 (*((limb *) & out[43])) |= in[6] << 4;
168 (*((limb *) & out[50])) |= in[7] << 6;
169 (*((limb *) & out[58])) = in[8];
170 }
171
172 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
173 static void flip_endian(u8 *out, const u8 *in, unsigned len)
174 {
175 unsigned i;
176 for (i = 0; i < len; ++i)
177 out[i] = in[len - 1 - i];
178 }
179
180 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
181 static int BN_to_felem(felem out, const BIGNUM *bn)
182 {
183 felem_bytearray b_in;
184 felem_bytearray b_out;
185 unsigned num_bytes;
186
187 /* BN_bn2bin eats leading zeroes */
188 memset(b_out, 0, sizeof(b_out));
189 num_bytes = BN_num_bytes(bn);
190 if (num_bytes > sizeof b_out) {
191 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
192 return 0;
193 }
194 if (BN_is_negative(bn)) {
195 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
196 return 0;
197 }
198 num_bytes = BN_bn2bin(bn, b_in);
199 flip_endian(b_out, b_in, num_bytes);
200 bin66_to_felem(out, b_out);
201 return 1;
202 }
203
204 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
205 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
206 {
207 felem_bytearray b_in, b_out;
208 felem_to_bin66(b_in, in);
209 flip_endian(b_out, b_in, sizeof b_out);
210 return BN_bin2bn(b_out, sizeof b_out, out);
211 }
212
213 /*-
214 * Field operations
215 * ----------------
216 */
217
218 static void felem_one(felem out)
219 {
220 out[0] = 1;
221 out[1] = 0;
222 out[2] = 0;
223 out[3] = 0;
224 out[4] = 0;
225 out[5] = 0;
226 out[6] = 0;
227 out[7] = 0;
228 out[8] = 0;
229 }
230
231 static void felem_assign(felem out, const felem in)
232 {
233 out[0] = in[0];
234 out[1] = in[1];
235 out[2] = in[2];
236 out[3] = in[3];
237 out[4] = in[4];
238 out[5] = in[5];
239 out[6] = in[6];
240 out[7] = in[7];
241 out[8] = in[8];
242 }
243
244 /* felem_sum64 sets out = out + in. */
245 static void felem_sum64(felem out, const felem in)
246 {
247 out[0] += in[0];
248 out[1] += in[1];
249 out[2] += in[2];
250 out[3] += in[3];
251 out[4] += in[4];
252 out[5] += in[5];
253 out[6] += in[6];
254 out[7] += in[7];
255 out[8] += in[8];
256 }
257
258 /* felem_scalar sets out = in * scalar */
259 static void felem_scalar(felem out, const felem in, limb scalar)
260 {
261 out[0] = in[0] * scalar;
262 out[1] = in[1] * scalar;
263 out[2] = in[2] * scalar;
264 out[3] = in[3] * scalar;
265 out[4] = in[4] * scalar;
266 out[5] = in[5] * scalar;
267 out[6] = in[6] * scalar;
268 out[7] = in[7] * scalar;
269 out[8] = in[8] * scalar;
270 }
271
272 /* felem_scalar64 sets out = out * scalar */
273 static void felem_scalar64(felem out, limb scalar)
274 {
275 out[0] *= scalar;
276 out[1] *= scalar;
277 out[2] *= scalar;
278 out[3] *= scalar;
279 out[4] *= scalar;
280 out[5] *= scalar;
281 out[6] *= scalar;
282 out[7] *= scalar;
283 out[8] *= scalar;
284 }
285
286 /* felem_scalar128 sets out = out * scalar */
287 static void felem_scalar128(largefelem out, limb scalar)
288 {
289 out[0] *= scalar;
290 out[1] *= scalar;
291 out[2] *= scalar;
292 out[3] *= scalar;
293 out[4] *= scalar;
294 out[5] *= scalar;
295 out[6] *= scalar;
296 out[7] *= scalar;
297 out[8] *= scalar;
298 }
299
300 /*-
301 * felem_neg sets |out| to |-in|
302 * On entry:
303 * in[i] < 2^59 + 2^14
304 * On exit:
305 * out[i] < 2^62
306 */
307 static void felem_neg(felem out, const felem in)
308 {
309 /* In order to prevent underflow, we subtract from 0 mod p. */
310 static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
311 static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
312
313 out[0] = two62m3 - in[0];
314 out[1] = two62m2 - in[1];
315 out[2] = two62m2 - in[2];
316 out[3] = two62m2 - in[3];
317 out[4] = two62m2 - in[4];
318 out[5] = two62m2 - in[5];
319 out[6] = two62m2 - in[6];
320 out[7] = two62m2 - in[7];
321 out[8] = two62m2 - in[8];
322 }
323
324 /*-
325 * felem_diff64 subtracts |in| from |out|
326 * On entry:
327 * in[i] < 2^59 + 2^14
328 * On exit:
329 * out[i] < out[i] + 2^62
330 */
331 static void felem_diff64(felem out, const felem in)
332 {
333 /*
334 * In order to prevent underflow, we add 0 mod p before subtracting.
335 */
336 static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
337 static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
338
339 out[0] += two62m3 - in[0];
340 out[1] += two62m2 - in[1];
341 out[2] += two62m2 - in[2];
342 out[3] += two62m2 - in[3];
343 out[4] += two62m2 - in[4];
344 out[5] += two62m2 - in[5];
345 out[6] += two62m2 - in[6];
346 out[7] += two62m2 - in[7];
347 out[8] += two62m2 - in[8];
348 }
349
350 /*-
351 * felem_diff_128_64 subtracts |in| from |out|
352 * On entry:
353 * in[i] < 2^62 + 2^17
354 * On exit:
355 * out[i] < out[i] + 2^63
356 */
357 static void felem_diff_128_64(largefelem out, const felem in)
358 {
359 /*
360 * In order to prevent underflow, we add 0 mod p before subtracting.
361 */
362 static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
363 static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
364
365 out[0] += two63m6 - in[0];
366 out[1] += two63m5 - in[1];
367 out[2] += two63m5 - in[2];
368 out[3] += two63m5 - in[3];
369 out[4] += two63m5 - in[4];
370 out[5] += two63m5 - in[5];
371 out[6] += two63m5 - in[6];
372 out[7] += two63m5 - in[7];
373 out[8] += two63m5 - in[8];
374 }
375
376 /*-
377 * felem_diff_128_64 subtracts |in| from |out|
378 * On entry:
379 * in[i] < 2^126
380 * On exit:
381 * out[i] < out[i] + 2^127 - 2^69
382 */
383 static void felem_diff128(largefelem out, const largefelem in)
384 {
385 /*
386 * In order to prevent underflow, we add 0 mod p before subtracting.
387 */
388 static const uint128_t two127m70 =
389 (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
390 static const uint128_t two127m69 =
391 (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
392
393 out[0] += (two127m70 - in[0]);
394 out[1] += (two127m69 - in[1]);
395 out[2] += (two127m69 - in[2]);
396 out[3] += (two127m69 - in[3]);
397 out[4] += (two127m69 - in[4]);
398 out[5] += (two127m69 - in[5]);
399 out[6] += (two127m69 - in[6]);
400 out[7] += (two127m69 - in[7]);
401 out[8] += (two127m69 - in[8]);
402 }
403
404 /*-
405 * felem_square sets |out| = |in|^2
406 * On entry:
407 * in[i] < 2^62
408 * On exit:
409 * out[i] < 17 * max(in[i]) * max(in[i])
410 */
411 static void felem_square(largefelem out, const felem in)
412 {
413 felem inx2, inx4;
414 felem_scalar(inx2, in, 2);
415 felem_scalar(inx4, in, 4);
416
417 /*-
418 * We have many cases were we want to do
419 * in[x] * in[y] +
420 * in[y] * in[x]
421 * This is obviously just
422 * 2 * in[x] * in[y]
423 * However, rather than do the doubling on the 128 bit result, we
424 * double one of the inputs to the multiplication by reading from
425 * |inx2|
426 */
427
428 out[0] = ((uint128_t) in[0]) * in[0];
429 out[1] = ((uint128_t) in[0]) * inx2[1];
430 out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
431 out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
432 out[4] = ((uint128_t) in[0]) * inx2[4] +
433 ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
434 out[5] = ((uint128_t) in[0]) * inx2[5] +
435 ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
436 out[6] = ((uint128_t) in[0]) * inx2[6] +
437 ((uint128_t) in[1]) * inx2[5] +
438 ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
439 out[7] = ((uint128_t) in[0]) * inx2[7] +
440 ((uint128_t) in[1]) * inx2[6] +
441 ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
442 out[8] = ((uint128_t) in[0]) * inx2[8] +
443 ((uint128_t) in[1]) * inx2[7] +
444 ((uint128_t) in[2]) * inx2[6] +
445 ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
446
447 /*
448 * The remaining limbs fall above 2^521, with the first falling at 2^522.
449 * They correspond to locations one bit up from the limbs produced above
450 * so we would have to multiply by two to align them. Again, rather than
451 * operate on the 128-bit result, we double one of the inputs to the
452 * multiplication. If we want to double for both this reason, and the
453 * reason above, then we end up multiplying by four.
454 */
455
456 /* 9 */
457 out[0] += ((uint128_t) in[1]) * inx4[8] +
458 ((uint128_t) in[2]) * inx4[7] +
459 ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
460
461 /* 10 */
462 out[1] += ((uint128_t) in[2]) * inx4[8] +
463 ((uint128_t) in[3]) * inx4[7] +
464 ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
465
466 /* 11 */
467 out[2] += ((uint128_t) in[3]) * inx4[8] +
468 ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
469
470 /* 12 */
471 out[3] += ((uint128_t) in[4]) * inx4[8] +
472 ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
473
474 /* 13 */
475 out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
476
477 /* 14 */
478 out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
479
480 /* 15 */
481 out[6] += ((uint128_t) in[7]) * inx4[8];
482
483 /* 16 */
484 out[7] += ((uint128_t) in[8]) * inx2[8];
485 }
486
487 /*-
488 * felem_mul sets |out| = |in1| * |in2|
489 * On entry:
490 * in1[i] < 2^64
491 * in2[i] < 2^63
492 * On exit:
493 * out[i] < 17 * max(in1[i]) * max(in2[i])
494 */
495 static void felem_mul(largefelem out, const felem in1, const felem in2)
496 {
497 felem in2x2;
498 felem_scalar(in2x2, in2, 2);
499
500 out[0] = ((uint128_t) in1[0]) * in2[0];
501
502 out[1] = ((uint128_t) in1[0]) * in2[1] +
503 ((uint128_t) in1[1]) * in2[0];
504
505 out[2] = ((uint128_t) in1[0]) * in2[2] +
506 ((uint128_t) in1[1]) * in2[1] +
507 ((uint128_t) in1[2]) * in2[0];
508
509 out[3] = ((uint128_t) in1[0]) * in2[3] +
510 ((uint128_t) in1[1]) * in2[2] +
511 ((uint128_t) in1[2]) * in2[1] +
512 ((uint128_t) in1[3]) * in2[0];
513
514 out[4] = ((uint128_t) in1[0]) * in2[4] +
515 ((uint128_t) in1[1]) * in2[3] +
516 ((uint128_t) in1[2]) * in2[2] +
517 ((uint128_t) in1[3]) * in2[1] +
518 ((uint128_t) in1[4]) * in2[0];
519
520 out[5] = ((uint128_t) in1[0]) * in2[5] +
521 ((uint128_t) in1[1]) * in2[4] +
522 ((uint128_t) in1[2]) * in2[3] +
523 ((uint128_t) in1[3]) * in2[2] +
524 ((uint128_t) in1[4]) * in2[1] +
525 ((uint128_t) in1[5]) * in2[0];
526
527 out[6] = ((uint128_t) in1[0]) * in2[6] +
528 ((uint128_t) in1[1]) * in2[5] +
529 ((uint128_t) in1[2]) * in2[4] +
530 ((uint128_t) in1[3]) * in2[3] +
531 ((uint128_t) in1[4]) * in2[2] +
532 ((uint128_t) in1[5]) * in2[1] +
533 ((uint128_t) in1[6]) * in2[0];
534
535 out[7] = ((uint128_t) in1[0]) * in2[7] +
536 ((uint128_t) in1[1]) * in2[6] +
537 ((uint128_t) in1[2]) * in2[5] +
538 ((uint128_t) in1[3]) * in2[4] +
539 ((uint128_t) in1[4]) * in2[3] +
540 ((uint128_t) in1[5]) * in2[2] +
541 ((uint128_t) in1[6]) * in2[1] +
542 ((uint128_t) in1[7]) * in2[0];
543
544 out[8] = ((uint128_t) in1[0]) * in2[8] +
545 ((uint128_t) in1[1]) * in2[7] +
546 ((uint128_t) in1[2]) * in2[6] +
547 ((uint128_t) in1[3]) * in2[5] +
548 ((uint128_t) in1[4]) * in2[4] +
549 ((uint128_t) in1[5]) * in2[3] +
550 ((uint128_t) in1[6]) * in2[2] +
551 ((uint128_t) in1[7]) * in2[1] +
552 ((uint128_t) in1[8]) * in2[0];
553
554 /* See comment in felem_square about the use of in2x2 here */
555
556 out[0] += ((uint128_t) in1[1]) * in2x2[8] +
557 ((uint128_t) in1[2]) * in2x2[7] +
558 ((uint128_t) in1[3]) * in2x2[6] +
559 ((uint128_t) in1[4]) * in2x2[5] +
560 ((uint128_t) in1[5]) * in2x2[4] +
561 ((uint128_t) in1[6]) * in2x2[3] +
562 ((uint128_t) in1[7]) * in2x2[2] +
563 ((uint128_t) in1[8]) * in2x2[1];
564
565 out[1] += ((uint128_t) in1[2]) * in2x2[8] +
566 ((uint128_t) in1[3]) * in2x2[7] +
567 ((uint128_t) in1[4]) * in2x2[6] +
568 ((uint128_t) in1[5]) * in2x2[5] +
569 ((uint128_t) in1[6]) * in2x2[4] +
570 ((uint128_t) in1[7]) * in2x2[3] +
571 ((uint128_t) in1[8]) * in2x2[2];
572
573 out[2] += ((uint128_t) in1[3]) * in2x2[8] +
574 ((uint128_t) in1[4]) * in2x2[7] +
575 ((uint128_t) in1[5]) * in2x2[6] +
576 ((uint128_t) in1[6]) * in2x2[5] +
577 ((uint128_t) in1[7]) * in2x2[4] +
578 ((uint128_t) in1[8]) * in2x2[3];
579
580 out[3] += ((uint128_t) in1[4]) * in2x2[8] +
581 ((uint128_t) in1[5]) * in2x2[7] +
582 ((uint128_t) in1[6]) * in2x2[6] +
583 ((uint128_t) in1[7]) * in2x2[5] +
584 ((uint128_t) in1[8]) * in2x2[4];
585
586 out[4] += ((uint128_t) in1[5]) * in2x2[8] +
587 ((uint128_t) in1[6]) * in2x2[7] +
588 ((uint128_t) in1[7]) * in2x2[6] +
589 ((uint128_t) in1[8]) * in2x2[5];
590
591 out[5] += ((uint128_t) in1[6]) * in2x2[8] +
592 ((uint128_t) in1[7]) * in2x2[7] +
593 ((uint128_t) in1[8]) * in2x2[6];
594
595 out[6] += ((uint128_t) in1[7]) * in2x2[8] +
596 ((uint128_t) in1[8]) * in2x2[7];
597
598 out[7] += ((uint128_t) in1[8]) * in2x2[8];
599 }
600
601 static const limb bottom52bits = 0xfffffffffffff;
602
603 /*-
604 * felem_reduce converts a largefelem to an felem.
605 * On entry:
606 * in[i] < 2^128
607 * On exit:
608 * out[i] < 2^59 + 2^14
609 */
610 static void felem_reduce(felem out, const largefelem in)
611 {
612 u64 overflow1, overflow2;
613
614 out[0] = ((limb) in[0]) & bottom58bits;
615 out[1] = ((limb) in[1]) & bottom58bits;
616 out[2] = ((limb) in[2]) & bottom58bits;
617 out[3] = ((limb) in[3]) & bottom58bits;
618 out[4] = ((limb) in[4]) & bottom58bits;
619 out[5] = ((limb) in[5]) & bottom58bits;
620 out[6] = ((limb) in[6]) & bottom58bits;
621 out[7] = ((limb) in[7]) & bottom58bits;
622 out[8] = ((limb) in[8]) & bottom58bits;
623
624 /* out[i] < 2^58 */
625
626 out[1] += ((limb) in[0]) >> 58;
627 out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
628 /*-
629 * out[1] < 2^58 + 2^6 + 2^58
630 * = 2^59 + 2^6
631 */
632 out[2] += ((limb) (in[0] >> 64)) >> 52;
633
634 out[2] += ((limb) in[1]) >> 58;
635 out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
636 out[3] += ((limb) (in[1] >> 64)) >> 52;
637
638 out[3] += ((limb) in[2]) >> 58;
639 out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
640 out[4] += ((limb) (in[2] >> 64)) >> 52;
641
642 out[4] += ((limb) in[3]) >> 58;
643 out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
644 out[5] += ((limb) (in[3] >> 64)) >> 52;
645
646 out[5] += ((limb) in[4]) >> 58;
647 out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
648 out[6] += ((limb) (in[4] >> 64)) >> 52;
649
650 out[6] += ((limb) in[5]) >> 58;
651 out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
652 out[7] += ((limb) (in[5] >> 64)) >> 52;
653
654 out[7] += ((limb) in[6]) >> 58;
655 out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
656 out[8] += ((limb) (in[6] >> 64)) >> 52;
657
658 out[8] += ((limb) in[7]) >> 58;
659 out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
660 /*-
661 * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
662 * < 2^59 + 2^13
663 */
664 overflow1 = ((limb) (in[7] >> 64)) >> 52;
665
666 overflow1 += ((limb) in[8]) >> 58;
667 overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
668 overflow2 = ((limb) (in[8] >> 64)) >> 52;
669
670 overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
671 overflow2 <<= 1; /* overflow2 < 2^13 */
672
673 out[0] += overflow1; /* out[0] < 2^60 */
674 out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
675
676 out[1] += out[0] >> 58;
677 out[0] &= bottom58bits;
678 /*-
679 * out[0] < 2^58
680 * out[1] < 2^59 + 2^6 + 2^13 + 2^2
681 * < 2^59 + 2^14
682 */
683 }
684
685 static void felem_square_reduce(felem out, const felem in)
686 {
687 largefelem tmp;
688 felem_square(tmp, in);
689 felem_reduce(out, tmp);
690 }
691
692 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
693 {
694 largefelem tmp;
695 felem_mul(tmp, in1, in2);
696 felem_reduce(out, tmp);
697 }
698
699 /*-
700 * felem_inv calculates |out| = |in|^{-1}
701 *
702 * Based on Fermat's Little Theorem:
703 * a^p = a (mod p)
704 * a^{p-1} = 1 (mod p)
705 * a^{p-2} = a^{-1} (mod p)
706 */
707 static void felem_inv(felem out, const felem in)
708 {
709 felem ftmp, ftmp2, ftmp3, ftmp4;
710 largefelem tmp;
711 unsigned i;
712
713 felem_square(tmp, in);
714 felem_reduce(ftmp, tmp); /* 2^1 */
715 felem_mul(tmp, in, ftmp);
716 felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
717 felem_assign(ftmp2, ftmp);
718 felem_square(tmp, ftmp);
719 felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
720 felem_mul(tmp, in, ftmp);
721 felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
722 felem_square(tmp, ftmp);
723 felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
724
725 felem_square(tmp, ftmp2);
726 felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
727 felem_square(tmp, ftmp3);
728 felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
729 felem_mul(tmp, ftmp3, ftmp2);
730 felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
731
732 felem_assign(ftmp2, ftmp3);
733 felem_square(tmp, ftmp3);
734 felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
735 felem_square(tmp, ftmp3);
736 felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
737 felem_square(tmp, ftmp3);
738 felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
739 felem_square(tmp, ftmp3);
740 felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
741 felem_assign(ftmp4, ftmp3);
742 felem_mul(tmp, ftmp3, ftmp);
743 felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
744 felem_square(tmp, ftmp4);
745 felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
746 felem_mul(tmp, ftmp3, ftmp2);
747 felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
748 felem_assign(ftmp2, ftmp3);
749
750 for (i = 0; i < 8; i++) {
751 felem_square(tmp, ftmp3);
752 felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
753 }
754 felem_mul(tmp, ftmp3, ftmp2);
755 felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
756 felem_assign(ftmp2, ftmp3);
757
758 for (i = 0; i < 16; i++) {
759 felem_square(tmp, ftmp3);
760 felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
761 }
762 felem_mul(tmp, ftmp3, ftmp2);
763 felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
764 felem_assign(ftmp2, ftmp3);
765
766 for (i = 0; i < 32; i++) {
767 felem_square(tmp, ftmp3);
768 felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
769 }
770 felem_mul(tmp, ftmp3, ftmp2);
771 felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
772 felem_assign(ftmp2, ftmp3);
773
774 for (i = 0; i < 64; i++) {
775 felem_square(tmp, ftmp3);
776 felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
777 }
778 felem_mul(tmp, ftmp3, ftmp2);
779 felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
780 felem_assign(ftmp2, ftmp3);
781
782 for (i = 0; i < 128; i++) {
783 felem_square(tmp, ftmp3);
784 felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
785 }
786 felem_mul(tmp, ftmp3, ftmp2);
787 felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
788 felem_assign(ftmp2, ftmp3);
789
790 for (i = 0; i < 256; i++) {
791 felem_square(tmp, ftmp3);
792 felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
793 }
794 felem_mul(tmp, ftmp3, ftmp2);
795 felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
796
797 for (i = 0; i < 9; i++) {
798 felem_square(tmp, ftmp3);
799 felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
800 }
801 felem_mul(tmp, ftmp3, ftmp4);
802 felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */
803 felem_mul(tmp, ftmp3, in);
804 felem_reduce(out, tmp); /* 2^512 - 3 */
805 }
806
807 /* This is 2^521-1, expressed as an felem */
808 static const felem kPrime = {
809 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
810 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
811 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
812 };
813
814 /*-
815 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
816 * otherwise.
817 * On entry:
818 * in[i] < 2^59 + 2^14
819 */
820 static limb felem_is_zero(const felem in)
821 {
822 felem ftmp;
823 limb is_zero, is_p;
824 felem_assign(ftmp, in);
825
826 ftmp[0] += ftmp[8] >> 57;
827 ftmp[8] &= bottom57bits;
828 /* ftmp[8] < 2^57 */
829 ftmp[1] += ftmp[0] >> 58;
830 ftmp[0] &= bottom58bits;
831 ftmp[2] += ftmp[1] >> 58;
832 ftmp[1] &= bottom58bits;
833 ftmp[3] += ftmp[2] >> 58;
834 ftmp[2] &= bottom58bits;
835 ftmp[4] += ftmp[3] >> 58;
836 ftmp[3] &= bottom58bits;
837 ftmp[5] += ftmp[4] >> 58;
838 ftmp[4] &= bottom58bits;
839 ftmp[6] += ftmp[5] >> 58;
840 ftmp[5] &= bottom58bits;
841 ftmp[7] += ftmp[6] >> 58;
842 ftmp[6] &= bottom58bits;
843 ftmp[8] += ftmp[7] >> 58;
844 ftmp[7] &= bottom58bits;
845 /* ftmp[8] < 2^57 + 4 */
846
847 /*
848 * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
849 * than our bound for ftmp[8]. Therefore we only have to check if the
850 * zero is zero or 2^521-1.
851 */
852
853 is_zero = 0;
854 is_zero |= ftmp[0];
855 is_zero |= ftmp[1];
856 is_zero |= ftmp[2];
857 is_zero |= ftmp[3];
858 is_zero |= ftmp[4];
859 is_zero |= ftmp[5];
860 is_zero |= ftmp[6];
861 is_zero |= ftmp[7];
862 is_zero |= ftmp[8];
863
864 is_zero--;
865 /*
866 * We know that ftmp[i] < 2^63, therefore the only way that the top bit
867 * can be set is if is_zero was 0 before the decrement.
868 */
869 is_zero = ((s64) is_zero) >> 63;
870
871 is_p = ftmp[0] ^ kPrime[0];
872 is_p |= ftmp[1] ^ kPrime[1];
873 is_p |= ftmp[2] ^ kPrime[2];
874 is_p |= ftmp[3] ^ kPrime[3];
875 is_p |= ftmp[4] ^ kPrime[4];
876 is_p |= ftmp[5] ^ kPrime[5];
877 is_p |= ftmp[6] ^ kPrime[6];
878 is_p |= ftmp[7] ^ kPrime[7];
879 is_p |= ftmp[8] ^ kPrime[8];
880
881 is_p--;
882 is_p = ((s64) is_p) >> 63;
883
884 is_zero |= is_p;
885 return is_zero;
886 }
887
888 static int felem_is_zero_int(const felem in)
889 {
890 return (int)(felem_is_zero(in) & ((limb) 1));
891 }
892
893 /*-
894 * felem_contract converts |in| to its unique, minimal representation.
895 * On entry:
896 * in[i] < 2^59 + 2^14
897 */
898 static void felem_contract(felem out, const felem in)
899 {
900 limb is_p, is_greater, sign;
901 static const limb two58 = ((limb) 1) << 58;
902
903 felem_assign(out, in);
904
905 out[0] += out[8] >> 57;
906 out[8] &= bottom57bits;
907 /* out[8] < 2^57 */
908 out[1] += out[0] >> 58;
909 out[0] &= bottom58bits;
910 out[2] += out[1] >> 58;
911 out[1] &= bottom58bits;
912 out[3] += out[2] >> 58;
913 out[2] &= bottom58bits;
914 out[4] += out[3] >> 58;
915 out[3] &= bottom58bits;
916 out[5] += out[4] >> 58;
917 out[4] &= bottom58bits;
918 out[6] += out[5] >> 58;
919 out[5] &= bottom58bits;
920 out[7] += out[6] >> 58;
921 out[6] &= bottom58bits;
922 out[8] += out[7] >> 58;
923 out[7] &= bottom58bits;
924 /* out[8] < 2^57 + 4 */
925
926 /*
927 * If the value is greater than 2^521-1 then we have to subtract 2^521-1
928 * out. See the comments in felem_is_zero regarding why we don't test for
929 * other multiples of the prime.
930 */
931
932 /*
933 * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
934 */
935
936 is_p = out[0] ^ kPrime[0];
937 is_p |= out[1] ^ kPrime[1];
938 is_p |= out[2] ^ kPrime[2];
939 is_p |= out[3] ^ kPrime[3];
940 is_p |= out[4] ^ kPrime[4];
941 is_p |= out[5] ^ kPrime[5];
942 is_p |= out[6] ^ kPrime[6];
943 is_p |= out[7] ^ kPrime[7];
944 is_p |= out[8] ^ kPrime[8];
945
946 is_p--;
947 is_p &= is_p << 32;
948 is_p &= is_p << 16;
949 is_p &= is_p << 8;
950 is_p &= is_p << 4;
951 is_p &= is_p << 2;
952 is_p &= is_p << 1;
953 is_p = ((s64) is_p) >> 63;
954 is_p = ~is_p;
955
956 /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
957
958 out[0] &= is_p;
959 out[1] &= is_p;
960 out[2] &= is_p;
961 out[3] &= is_p;
962 out[4] &= is_p;
963 out[5] &= is_p;
964 out[6] &= is_p;
965 out[7] &= is_p;
966 out[8] &= is_p;
967
968 /*
969 * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
970 * 57 is greater than zero as (2^521-1) + x >= 2^522
971 */
972 is_greater = out[8] >> 57;
973 is_greater |= is_greater << 32;
974 is_greater |= is_greater << 16;
975 is_greater |= is_greater << 8;
976 is_greater |= is_greater << 4;
977 is_greater |= is_greater << 2;
978 is_greater |= is_greater << 1;
979 is_greater = ((s64) is_greater) >> 63;
980
981 out[0] -= kPrime[0] & is_greater;
982 out[1] -= kPrime[1] & is_greater;
983 out[2] -= kPrime[2] & is_greater;
984 out[3] -= kPrime[3] & is_greater;
985 out[4] -= kPrime[4] & is_greater;
986 out[5] -= kPrime[5] & is_greater;
987 out[6] -= kPrime[6] & is_greater;
988 out[7] -= kPrime[7] & is_greater;
989 out[8] -= kPrime[8] & is_greater;
990
991 /* Eliminate negative coefficients */
992 sign = -(out[0] >> 63);
993 out[0] += (two58 & sign);
994 out[1] -= (1 & sign);
995 sign = -(out[1] >> 63);
996 out[1] += (two58 & sign);
997 out[2] -= (1 & sign);
998 sign = -(out[2] >> 63);
999 out[2] += (two58 & sign);
1000 out[3] -= (1 & sign);
1001 sign = -(out[3] >> 63);
1002 out[3] += (two58 & sign);
1003 out[4] -= (1 & sign);
1004 sign = -(out[4] >> 63);
1005 out[4] += (two58 & sign);
1006 out[5] -= (1 & sign);
1007 sign = -(out[0] >> 63);
1008 out[5] += (two58 & sign);
1009 out[6] -= (1 & sign);
1010 sign = -(out[6] >> 63);
1011 out[6] += (two58 & sign);
1012 out[7] -= (1 & sign);
1013 sign = -(out[7] >> 63);
1014 out[7] += (two58 & sign);
1015 out[8] -= (1 & sign);
1016 sign = -(out[5] >> 63);
1017 out[5] += (two58 & sign);
1018 out[6] -= (1 & sign);
1019 sign = -(out[6] >> 63);
1020 out[6] += (two58 & sign);
1021 out[7] -= (1 & sign);
1022 sign = -(out[7] >> 63);
1023 out[7] += (two58 & sign);
1024 out[8] -= (1 & sign);
1025 }
1026
1027 /*-
1028 * Group operations
1029 * ----------------
1030 *
1031 * Building on top of the field operations we have the operations on the
1032 * elliptic curve group itself. Points on the curve are represented in Jacobian
1033 * coordinates */
1034
1035 /*-
1036 * point_double calcuates 2*(x_in, y_in, z_in)
1037 *
1038 * The method is taken from:
1039 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1040 *
1041 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1042 * while x_out == y_in is not (maybe this works, but it's not tested). */
1043 static void
1044 point_double(felem x_out, felem y_out, felem z_out,
1045 const felem x_in, const felem y_in, const felem z_in)
1046 {
1047 largefelem tmp, tmp2;
1048 felem delta, gamma, beta, alpha, ftmp, ftmp2;
1049
1050 felem_assign(ftmp, x_in);
1051 felem_assign(ftmp2, x_in);
1052
1053 /* delta = z^2 */
1054 felem_square(tmp, z_in);
1055 felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
1056
1057 /* gamma = y^2 */
1058 felem_square(tmp, y_in);
1059 felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
1060
1061 /* beta = x*gamma */
1062 felem_mul(tmp, x_in, gamma);
1063 felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
1064
1065 /* alpha = 3*(x-delta)*(x+delta) */
1066 felem_diff64(ftmp, delta);
1067 /* ftmp[i] < 2^61 */
1068 felem_sum64(ftmp2, delta);
1069 /* ftmp2[i] < 2^60 + 2^15 */
1070 felem_scalar64(ftmp2, 3);
1071 /* ftmp2[i] < 3*2^60 + 3*2^15 */
1072 felem_mul(tmp, ftmp, ftmp2);
1073 /*-
1074 * tmp[i] < 17(3*2^121 + 3*2^76)
1075 * = 61*2^121 + 61*2^76
1076 * < 64*2^121 + 64*2^76
1077 * = 2^127 + 2^82
1078 * < 2^128
1079 */
1080 felem_reduce(alpha, tmp);
1081
1082 /* x' = alpha^2 - 8*beta */
1083 felem_square(tmp, alpha);
1084 /*
1085 * tmp[i] < 17*2^120 < 2^125
1086 */
1087 felem_assign(ftmp, beta);
1088 felem_scalar64(ftmp, 8);
1089 /* ftmp[i] < 2^62 + 2^17 */
1090 felem_diff_128_64(tmp, ftmp);
1091 /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1092 felem_reduce(x_out, tmp);
1093
1094 /* z' = (y + z)^2 - gamma - delta */
1095 felem_sum64(delta, gamma);
1096 /* delta[i] < 2^60 + 2^15 */
1097 felem_assign(ftmp, y_in);
1098 felem_sum64(ftmp, z_in);
1099 /* ftmp[i] < 2^60 + 2^15 */
1100 felem_square(tmp, ftmp);
1101 /*
1102 * tmp[i] < 17(2^122) < 2^127
1103 */
1104 felem_diff_128_64(tmp, delta);
1105 /* tmp[i] < 2^127 + 2^63 */
1106 felem_reduce(z_out, tmp);
1107
1108 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1109 felem_scalar64(beta, 4);
1110 /* beta[i] < 2^61 + 2^16 */
1111 felem_diff64(beta, x_out);
1112 /* beta[i] < 2^61 + 2^60 + 2^16 */
1113 felem_mul(tmp, alpha, beta);
1114 /*-
1115 * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1116 * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1117 * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1118 * < 2^128
1119 */
1120 felem_square(tmp2, gamma);
1121 /*-
1122 * tmp2[i] < 17*(2^59 + 2^14)^2
1123 * = 17*(2^118 + 2^74 + 2^28)
1124 */
1125 felem_scalar128(tmp2, 8);
1126 /*-
1127 * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1128 * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1129 * < 2^126
1130 */
1131 felem_diff128(tmp, tmp2);
1132 /*-
1133 * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1134 * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1135 * 2^74 + 2^69 + 2^34 + 2^30
1136 * < 2^128
1137 */
1138 felem_reduce(y_out, tmp);
1139 }
1140
1141 /* copy_conditional copies in to out iff mask is all ones. */
1142 static void copy_conditional(felem out, const felem in, limb mask)
1143 {
1144 unsigned i;
1145 for (i = 0; i < NLIMBS; ++i) {
1146 const limb tmp = mask & (in[i] ^ out[i]);
1147 out[i] ^= tmp;
1148 }
1149 }
1150
1151 /*-
1152 * point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1153 *
1154 * The method is taken from
1155 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1156 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1157 *
1158 * This function includes a branch for checking whether the two input points
1159 * are equal (while not equal to the point at infinity). This case never
1160 * happens during single point multiplication, so there is no timing leak for
1161 * ECDH or ECDSA signing. */
1162 static void point_add(felem x3, felem y3, felem z3,
1163 const felem x1, const felem y1, const felem z1,
1164 const int mixed, const felem x2, const felem y2,
1165 const felem z2)
1166 {
1167 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1168 largefelem tmp, tmp2;
1169 limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1170
1171 z1_is_zero = felem_is_zero(z1);
1172 z2_is_zero = felem_is_zero(z2);
1173
1174 /* ftmp = z1z1 = z1**2 */
1175 felem_square(tmp, z1);
1176 felem_reduce(ftmp, tmp);
1177
1178 if (!mixed) {
1179 /* ftmp2 = z2z2 = z2**2 */
1180 felem_square(tmp, z2);
1181 felem_reduce(ftmp2, tmp);
1182
1183 /* u1 = ftmp3 = x1*z2z2 */
1184 felem_mul(tmp, x1, ftmp2);
1185 felem_reduce(ftmp3, tmp);
1186
1187 /* ftmp5 = z1 + z2 */
1188 felem_assign(ftmp5, z1);
1189 felem_sum64(ftmp5, z2);
1190 /* ftmp5[i] < 2^61 */
1191
1192 /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1193 felem_square(tmp, ftmp5);
1194 /* tmp[i] < 17*2^122 */
1195 felem_diff_128_64(tmp, ftmp);
1196 /* tmp[i] < 17*2^122 + 2^63 */
1197 felem_diff_128_64(tmp, ftmp2);
1198 /* tmp[i] < 17*2^122 + 2^64 */
1199 felem_reduce(ftmp5, tmp);
1200
1201 /* ftmp2 = z2 * z2z2 */
1202 felem_mul(tmp, ftmp2, z2);
1203 felem_reduce(ftmp2, tmp);
1204
1205 /* s1 = ftmp6 = y1 * z2**3 */
1206 felem_mul(tmp, y1, ftmp2);
1207 felem_reduce(ftmp6, tmp);
1208 } else {
1209 /*
1210 * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1211 */
1212
1213 /* u1 = ftmp3 = x1*z2z2 */
1214 felem_assign(ftmp3, x1);
1215
1216 /* ftmp5 = 2*z1z2 */
1217 felem_scalar(ftmp5, z1, 2);
1218
1219 /* s1 = ftmp6 = y1 * z2**3 */
1220 felem_assign(ftmp6, y1);
1221 }
1222
1223 /* u2 = x2*z1z1 */
1224 felem_mul(tmp, x2, ftmp);
1225 /* tmp[i] < 17*2^120 */
1226
1227 /* h = ftmp4 = u2 - u1 */
1228 felem_diff_128_64(tmp, ftmp3);
1229 /* tmp[i] < 17*2^120 + 2^63 */
1230 felem_reduce(ftmp4, tmp);
1231
1232 x_equal = felem_is_zero(ftmp4);
1233
1234 /* z_out = ftmp5 * h */
1235 felem_mul(tmp, ftmp5, ftmp4);
1236 felem_reduce(z_out, tmp);
1237
1238 /* ftmp = z1 * z1z1 */
1239 felem_mul(tmp, ftmp, z1);
1240 felem_reduce(ftmp, tmp);
1241
1242 /* s2 = tmp = y2 * z1**3 */
1243 felem_mul(tmp, y2, ftmp);
1244 /* tmp[i] < 17*2^120 */
1245
1246 /* r = ftmp5 = (s2 - s1)*2 */
1247 felem_diff_128_64(tmp, ftmp6);
1248 /* tmp[i] < 17*2^120 + 2^63 */
1249 felem_reduce(ftmp5, tmp);
1250 y_equal = felem_is_zero(ftmp5);
1251 felem_scalar64(ftmp5, 2);
1252 /* ftmp5[i] < 2^61 */
1253
1254 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1255 point_double(x3, y3, z3, x1, y1, z1);
1256 return;
1257 }
1258
1259 /* I = ftmp = (2h)**2 */
1260 felem_assign(ftmp, ftmp4);
1261 felem_scalar64(ftmp, 2);
1262 /* ftmp[i] < 2^61 */
1263 felem_square(tmp, ftmp);
1264 /* tmp[i] < 17*2^122 */
1265 felem_reduce(ftmp, tmp);
1266
1267 /* J = ftmp2 = h * I */
1268 felem_mul(tmp, ftmp4, ftmp);
1269 felem_reduce(ftmp2, tmp);
1270
1271 /* V = ftmp4 = U1 * I */
1272 felem_mul(tmp, ftmp3, ftmp);
1273 felem_reduce(ftmp4, tmp);
1274
1275 /* x_out = r**2 - J - 2V */
1276 felem_square(tmp, ftmp5);
1277 /* tmp[i] < 17*2^122 */
1278 felem_diff_128_64(tmp, ftmp2);
1279 /* tmp[i] < 17*2^122 + 2^63 */
1280 felem_assign(ftmp3, ftmp4);
1281 felem_scalar64(ftmp4, 2);
1282 /* ftmp4[i] < 2^61 */
1283 felem_diff_128_64(tmp, ftmp4);
1284 /* tmp[i] < 17*2^122 + 2^64 */
1285 felem_reduce(x_out, tmp);
1286
1287 /* y_out = r(V-x_out) - 2 * s1 * J */
1288 felem_diff64(ftmp3, x_out);
1289 /*
1290 * ftmp3[i] < 2^60 + 2^60 = 2^61
1291 */
1292 felem_mul(tmp, ftmp5, ftmp3);
1293 /* tmp[i] < 17*2^122 */
1294 felem_mul(tmp2, ftmp6, ftmp2);
1295 /* tmp2[i] < 17*2^120 */
1296 felem_scalar128(tmp2, 2);
1297 /* tmp2[i] < 17*2^121 */
1298 felem_diff128(tmp, tmp2);
1299 /*-
1300 * tmp[i] < 2^127 - 2^69 + 17*2^122
1301 * = 2^126 - 2^122 - 2^6 - 2^2 - 1
1302 * < 2^127
1303 */
1304 felem_reduce(y_out, tmp);
1305
1306 copy_conditional(x_out, x2, z1_is_zero);
1307 copy_conditional(x_out, x1, z2_is_zero);
1308 copy_conditional(y_out, y2, z1_is_zero);
1309 copy_conditional(y_out, y1, z2_is_zero);
1310 copy_conditional(z_out, z2, z1_is_zero);
1311 copy_conditional(z_out, z1, z2_is_zero);
1312 felem_assign(x3, x_out);
1313 felem_assign(y3, y_out);
1314 felem_assign(z3, z_out);
1315 }
1316
1317 /*-
1318 * Base point pre computation
1319 * --------------------------
1320 *
1321 * Two different sorts of precomputed tables are used in the following code.
1322 * Each contain various points on the curve, where each point is three field
1323 * elements (x, y, z).
1324 *
1325 * For the base point table, z is usually 1 (0 for the point at infinity).
1326 * This table has 16 elements:
1327 * index | bits | point
1328 * ------+---------+------------------------------
1329 * 0 | 0 0 0 0 | 0G
1330 * 1 | 0 0 0 1 | 1G
1331 * 2 | 0 0 1 0 | 2^130G
1332 * 3 | 0 0 1 1 | (2^130 + 1)G
1333 * 4 | 0 1 0 0 | 2^260G
1334 * 5 | 0 1 0 1 | (2^260 + 1)G
1335 * 6 | 0 1 1 0 | (2^260 + 2^130)G
1336 * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1337 * 8 | 1 0 0 0 | 2^390G
1338 * 9 | 1 0 0 1 | (2^390 + 1)G
1339 * 10 | 1 0 1 0 | (2^390 + 2^130)G
1340 * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1341 * 12 | 1 1 0 0 | (2^390 + 2^260)G
1342 * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1343 * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1344 * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1345 *
1346 * The reason for this is so that we can clock bits into four different
1347 * locations when doing simple scalar multiplies against the base point.
1348 *
1349 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1350
1351 /* gmul is the table of precomputed base points */
1352 static const felem gmul[16][3] = {
1353 {{0, 0, 0, 0, 0, 0, 0, 0, 0},
1354 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1355 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1356 {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1357 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1358 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1359 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1360 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1361 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1362 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1363 {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1364 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1365 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1366 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1367 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1368 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1369 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1370 {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1371 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1372 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1373 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1374 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1375 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1376 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1377 {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1378 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1379 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1380 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1381 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1382 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1383 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1384 {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1385 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1386 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1387 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1388 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1389 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1390 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1391 {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1392 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1393 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1394 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1395 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1396 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1397 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1398 {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1399 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1400 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1401 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1402 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1403 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1404 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1405 {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1406 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1407 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1408 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1409 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1410 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1411 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1412 {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1413 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1414 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1415 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1416 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1417 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1418 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1419 {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1420 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1421 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1422 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1423 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1424 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1425 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1426 {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1427 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1428 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1429 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1430 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1431 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1432 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1433 {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1434 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1435 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1436 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1437 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1438 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1439 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1440 {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1441 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1442 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1443 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1444 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1445 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1446 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1447 {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1448 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1449 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1450 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1451 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1452 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1453 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1454 {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1455 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1456 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1457 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1458 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1459 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1460 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1461 };
1462
1463 /*
1464 * select_point selects the |idx|th point from a precomputation table and
1465 * copies it to out.
1466 */
1467 /* pre_comp below is of the size provided in |size| */
1468 static void select_point(const limb idx, unsigned int size,
1469 const felem pre_comp[][3], felem out[3])
1470 {
1471 unsigned i, j;
1472 limb *outlimbs = &out[0][0];
1473
1474 memset(out, 0, sizeof(*out) * 3);
1475
1476 for (i = 0; i < size; i++) {
1477 const limb *inlimbs = &pre_comp[i][0][0];
1478 limb mask = i ^ idx;
1479 mask |= mask >> 4;
1480 mask |= mask >> 2;
1481 mask |= mask >> 1;
1482 mask &= 1;
1483 mask--;
1484 for (j = 0; j < NLIMBS * 3; j++)
1485 outlimbs[j] |= inlimbs[j] & mask;
1486 }
1487 }
1488
1489 /* get_bit returns the |i|th bit in |in| */
1490 static char get_bit(const felem_bytearray in, int i)
1491 {
1492 if (i < 0)
1493 return 0;
1494 return (in[i >> 3] >> (i & 7)) & 1;
1495 }
1496
1497 /*
1498 * Interleaved point multiplication using precomputed point multiples: The
1499 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1500 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1501 * generator, using certain (large) precomputed multiples in g_pre_comp.
1502 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1503 */
1504 static void batch_mul(felem x_out, felem y_out, felem z_out,
1505 const felem_bytearray scalars[],
1506 const unsigned num_points, const u8 *g_scalar,
1507 const int mixed, const felem pre_comp[][17][3],
1508 const felem g_pre_comp[16][3])
1509 {
1510 int i, skip;
1511 unsigned num, gen_mul = (g_scalar != NULL);
1512 felem nq[3], tmp[4];
1513 limb bits;
1514 u8 sign, digit;
1515
1516 /* set nq to the point at infinity */
1517 memset(nq, 0, sizeof(nq));
1518
1519 /*
1520 * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1521 * of the generator (last quarter of rounds) and additions of other
1522 * points multiples (every 5th round).
1523 */
1524 skip = 1; /* save two point operations in the first
1525 * round */
1526 for (i = (num_points ? 520 : 130); i >= 0; --i) {
1527 /* double */
1528 if (!skip)
1529 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1530
1531 /* add multiples of the generator */
1532 if (gen_mul && (i <= 130)) {
1533 bits = get_bit(g_scalar, i + 390) << 3;
1534 if (i < 130) {
1535 bits |= get_bit(g_scalar, i + 260) << 2;
1536 bits |= get_bit(g_scalar, i + 130) << 1;
1537 bits |= get_bit(g_scalar, i);
1538 }
1539 /* select the point to add, in constant time */
1540 select_point(bits, 16, g_pre_comp, tmp);
1541 if (!skip) {
1542 /* The 1 argument below is for "mixed" */
1543 point_add(nq[0], nq[1], nq[2],
1544 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1545 } else {
1546 memcpy(nq, tmp, 3 * sizeof(felem));
1547 skip = 0;
1548 }
1549 }
1550
1551 /* do other additions every 5 doublings */
1552 if (num_points && (i % 5 == 0)) {
1553 /* loop over all scalars */
1554 for (num = 0; num < num_points; ++num) {
1555 bits = get_bit(scalars[num], i + 4) << 5;
1556 bits |= get_bit(scalars[num], i + 3) << 4;
1557 bits |= get_bit(scalars[num], i + 2) << 3;
1558 bits |= get_bit(scalars[num], i + 1) << 2;
1559 bits |= get_bit(scalars[num], i) << 1;
1560 bits |= get_bit(scalars[num], i - 1);
1561 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1562
1563 /*
1564 * select the point to add or subtract, in constant time
1565 */
1566 select_point(digit, 17, pre_comp[num], tmp);
1567 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1568 * point */
1569 copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1570
1571 if (!skip) {
1572 point_add(nq[0], nq[1], nq[2],
1573 nq[0], nq[1], nq[2],
1574 mixed, tmp[0], tmp[1], tmp[2]);
1575 } else {
1576 memcpy(nq, tmp, 3 * sizeof(felem));
1577 skip = 0;
1578 }
1579 }
1580 }
1581 }
1582 felem_assign(x_out, nq[0]);
1583 felem_assign(y_out, nq[1]);
1584 felem_assign(z_out, nq[2]);
1585 }
1586
1587 /* Precomputation for the group generator. */
1588 struct nistp512_pre_comp_st {
1589 felem g_pre_comp[16][3];
1590 int references;
1591 };
1592
1593 const EC_METHOD *EC_GFp_nistp521_method(void)
1594 {
1595 static const EC_METHOD ret = {
1596 EC_FLAGS_DEFAULT_OCT,
1597 NID_X9_62_prime_field,
1598 ec_GFp_nistp521_group_init,
1599 ec_GFp_simple_group_finish,
1600 ec_GFp_simple_group_clear_finish,
1601 ec_GFp_nist_group_copy,
1602 ec_GFp_nistp521_group_set_curve,
1603 ec_GFp_simple_group_get_curve,
1604 ec_GFp_simple_group_get_degree,
1605 ec_GFp_simple_group_check_discriminant,
1606 ec_GFp_simple_point_init,
1607 ec_GFp_simple_point_finish,
1608 ec_GFp_simple_point_clear_finish,
1609 ec_GFp_simple_point_copy,
1610 ec_GFp_simple_point_set_to_infinity,
1611 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1612 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1613 ec_GFp_simple_point_set_affine_coordinates,
1614 ec_GFp_nistp521_point_get_affine_coordinates,
1615 0 /* point_set_compressed_coordinates */ ,
1616 0 /* point2oct */ ,
1617 0 /* oct2point */ ,
1618 ec_GFp_simple_add,
1619 ec_GFp_simple_dbl,
1620 ec_GFp_simple_invert,
1621 ec_GFp_simple_is_at_infinity,
1622 ec_GFp_simple_is_on_curve,
1623 ec_GFp_simple_cmp,
1624 ec_GFp_simple_make_affine,
1625 ec_GFp_simple_points_make_affine,
1626 ec_GFp_nistp521_points_mul,
1627 ec_GFp_nistp521_precompute_mult,
1628 ec_GFp_nistp521_have_precompute_mult,
1629 ec_GFp_nist_field_mul,
1630 ec_GFp_nist_field_sqr,
1631 0 /* field_div */ ,
1632 0 /* field_encode */ ,
1633 0 /* field_decode */ ,
1634 0 /* field_set_to_one */
1635 };
1636
1637 return &ret;
1638 }
1639
1640 /******************************************************************************/
1641 /*
1642 * FUNCTIONS TO MANAGE PRECOMPUTATION
1643 */
1644
1645 static NISTP521_PRE_COMP *nistp521_pre_comp_new()
1646 {
1647 NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1648
1649 if (ret == NULL) {
1650 ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1651 return ret;
1652 }
1653 ret->references = 1;
1654 return ret;
1655 }
1656
1657 NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1658 {
1659 if (p != NULL)
1660 CRYPTO_add(&p->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1661 return p;
1662 }
1663
1664 void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1665 {
1666 if (p == NULL
1667 || CRYPTO_add(&p->references, -1, CRYPTO_LOCK_EC_PRE_COMP) > 0)
1668 return;
1669 OPENSSL_free(p);
1670 }
1671
1672 /******************************************************************************/
1673 /*
1674 * OPENSSL EC_METHOD FUNCTIONS
1675 */
1676
1677 int ec_GFp_nistp521_group_init(EC_GROUP *group)
1678 {
1679 int ret;
1680 ret = ec_GFp_simple_group_init(group);
1681 group->a_is_minus3 = 1;
1682 return ret;
1683 }
1684
1685 int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1686 const BIGNUM *a, const BIGNUM *b,
1687 BN_CTX *ctx)
1688 {
1689 int ret = 0;
1690 BN_CTX *new_ctx = NULL;
1691 BIGNUM *curve_p, *curve_a, *curve_b;
1692
1693 if (ctx == NULL)
1694 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1695 return 0;
1696 BN_CTX_start(ctx);
1697 if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1698 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1699 ((curve_b = BN_CTX_get(ctx)) == NULL))
1700 goto err;
1701 BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1702 BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1703 BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1704 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1705 ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1706 EC_R_WRONG_CURVE_PARAMETERS);
1707 goto err;
1708 }
1709 group->field_mod_func = BN_nist_mod_521;
1710 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1711 err:
1712 BN_CTX_end(ctx);
1713 BN_CTX_free(new_ctx);
1714 return ret;
1715 }
1716
1717 /*
1718 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1719 * (X/Z^2, Y/Z^3)
1720 */
1721 int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1722 const EC_POINT *point,
1723 BIGNUM *x, BIGNUM *y,
1724 BN_CTX *ctx)
1725 {
1726 felem z1, z2, x_in, y_in, x_out, y_out;
1727 largefelem tmp;
1728
1729 if (EC_POINT_is_at_infinity(group, point)) {
1730 ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1731 EC_R_POINT_AT_INFINITY);
1732 return 0;
1733 }
1734 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1735 (!BN_to_felem(z1, point->Z)))
1736 return 0;
1737 felem_inv(z2, z1);
1738 felem_square(tmp, z2);
1739 felem_reduce(z1, tmp);
1740 felem_mul(tmp, x_in, z1);
1741 felem_reduce(x_in, tmp);
1742 felem_contract(x_out, x_in);
1743 if (x != NULL) {
1744 if (!felem_to_BN(x, x_out)) {
1745 ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1746 ERR_R_BN_LIB);
1747 return 0;
1748 }
1749 }
1750 felem_mul(tmp, z1, z2);
1751 felem_reduce(z1, tmp);
1752 felem_mul(tmp, y_in, z1);
1753 felem_reduce(y_in, tmp);
1754 felem_contract(y_out, y_in);
1755 if (y != NULL) {
1756 if (!felem_to_BN(y, y_out)) {
1757 ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1758 ERR_R_BN_LIB);
1759 return 0;
1760 }
1761 }
1762 return 1;
1763 }
1764
1765 /* points below is of size |num|, and tmp_felems is of size |num+1/ */
1766 static void make_points_affine(size_t num, felem points[][3],
1767 felem tmp_felems[])
1768 {
1769 /*
1770 * Runs in constant time, unless an input is the point at infinity (which
1771 * normally shouldn't happen).
1772 */
1773 ec_GFp_nistp_points_make_affine_internal(num,
1774 points,
1775 sizeof(felem),
1776 tmp_felems,
1777 (void (*)(void *))felem_one,
1778 (int (*)(const void *))
1779 felem_is_zero_int,
1780 (void (*)(void *, const void *))
1781 felem_assign,
1782 (void (*)(void *, const void *))
1783 felem_square_reduce, (void (*)
1784 (void *,
1785 const void
1786 *,
1787 const void
1788 *))
1789 felem_mul_reduce,
1790 (void (*)(void *, const void *))
1791 felem_inv,
1792 (void (*)(void *, const void *))
1793 felem_contract);
1794 }
1795
1796 /*
1797 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1798 * values Result is stored in r (r can equal one of the inputs).
1799 */
1800 int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1801 const BIGNUM *scalar, size_t num,
1802 const EC_POINT *points[],
1803 const BIGNUM *scalars[], BN_CTX *ctx)
1804 {
1805 int ret = 0;
1806 int j;
1807 int mixed = 0;
1808 BN_CTX *new_ctx = NULL;
1809 BIGNUM *x, *y, *z, *tmp_scalar;
1810 felem_bytearray g_secret;
1811 felem_bytearray *secrets = NULL;
1812 felem (*pre_comp)[17][3] = NULL;
1813 felem *tmp_felems = NULL;
1814 felem_bytearray tmp;
1815 unsigned i, num_bytes;
1816 int have_pre_comp = 0;
1817 size_t num_points = num;
1818 felem x_in, y_in, z_in, x_out, y_out, z_out;
1819 NISTP521_PRE_COMP *pre = NULL;
1820 felem(*g_pre_comp)[3] = NULL;
1821 EC_POINT *generator = NULL;
1822 const EC_POINT *p = NULL;
1823 const BIGNUM *p_scalar = NULL;
1824
1825 if (ctx == NULL)
1826 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1827 return 0;
1828 BN_CTX_start(ctx);
1829 if (((x = BN_CTX_get(ctx)) == NULL) ||
1830 ((y = BN_CTX_get(ctx)) == NULL) ||
1831 ((z = BN_CTX_get(ctx)) == NULL) ||
1832 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1833 goto err;
1834
1835 if (scalar != NULL) {
1836 pre = group->pre_comp.nistp521;
1837 if (pre)
1838 /* we have precomputation, try to use it */
1839 g_pre_comp = &pre->g_pre_comp[0];
1840 else
1841 /* try to use the standard precomputation */
1842 g_pre_comp = (felem(*)[3]) gmul;
1843 generator = EC_POINT_new(group);
1844 if (generator == NULL)
1845 goto err;
1846 /* get the generator from precomputation */
1847 if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1848 !felem_to_BN(y, g_pre_comp[1][1]) ||
1849 !felem_to_BN(z, g_pre_comp[1][2])) {
1850 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1851 goto err;
1852 }
1853 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1854 generator, x, y, z,
1855 ctx))
1856 goto err;
1857 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1858 /* precomputation matches generator */
1859 have_pre_comp = 1;
1860 else
1861 /*
1862 * we don't have valid precomputation: treat the generator as a
1863 * random point
1864 */
1865 num_points++;
1866 }
1867
1868 if (num_points > 0) {
1869 if (num_points >= 2) {
1870 /*
1871 * unless we precompute multiples for just one point, converting
1872 * those into affine form is time well spent
1873 */
1874 mixed = 1;
1875 }
1876 secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1877 pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1878 if (mixed)
1879 tmp_felems =
1880 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1881 if ((secrets == NULL) || (pre_comp == NULL)
1882 || (mixed && (tmp_felems == NULL))) {
1883 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1884 goto err;
1885 }
1886
1887 /*
1888 * we treat NULL scalars as 0, and NULL points as points at infinity,
1889 * i.e., they contribute nothing to the linear combination
1890 */
1891 for (i = 0; i < num_points; ++i) {
1892 if (i == num)
1893 /*
1894 * we didn't have a valid precomputation, so we pick the
1895 * generator
1896 */
1897 {
1898 p = EC_GROUP_get0_generator(group);
1899 p_scalar = scalar;
1900 } else
1901 /* the i^th point */
1902 {
1903 p = points[i];
1904 p_scalar = scalars[i];
1905 }
1906 if ((p_scalar != NULL) && (p != NULL)) {
1907 /* reduce scalar to 0 <= scalar < 2^521 */
1908 if ((BN_num_bits(p_scalar) > 521)
1909 || (BN_is_negative(p_scalar))) {
1910 /*
1911 * this is an unusual input, and we don't guarantee
1912 * constant-timeness
1913 */
1914 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1915 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1916 goto err;
1917 }
1918 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1919 } else
1920 num_bytes = BN_bn2bin(p_scalar, tmp);
1921 flip_endian(secrets[i], tmp, num_bytes);
1922 /* precompute multiples */
1923 if ((!BN_to_felem(x_out, p->X)) ||
1924 (!BN_to_felem(y_out, p->Y)) ||
1925 (!BN_to_felem(z_out, p->Z)))
1926 goto err;
1927 memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1928 memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1929 memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1930 for (j = 2; j <= 16; ++j) {
1931 if (j & 1) {
1932 point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1933 pre_comp[i][j][2], pre_comp[i][1][0],
1934 pre_comp[i][1][1], pre_comp[i][1][2], 0,
1935 pre_comp[i][j - 1][0],
1936 pre_comp[i][j - 1][1],
1937 pre_comp[i][j - 1][2]);
1938 } else {
1939 point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1940 pre_comp[i][j][2], pre_comp[i][j / 2][0],
1941 pre_comp[i][j / 2][1],
1942 pre_comp[i][j / 2][2]);
1943 }
1944 }
1945 }
1946 }
1947 if (mixed)
1948 make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1949 }
1950
1951 /* the scalar for the generator */
1952 if ((scalar != NULL) && (have_pre_comp)) {
1953 memset(g_secret, 0, sizeof(g_secret));
1954 /* reduce scalar to 0 <= scalar < 2^521 */
1955 if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
1956 /*
1957 * this is an unusual input, and we don't guarantee
1958 * constant-timeness
1959 */
1960 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1961 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1962 goto err;
1963 }
1964 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1965 } else
1966 num_bytes = BN_bn2bin(scalar, tmp);
1967 flip_endian(g_secret, tmp, num_bytes);
1968 /* do the multiplication with generator precomputation */
1969 batch_mul(x_out, y_out, z_out,
1970 (const felem_bytearray(*))secrets, num_points,
1971 g_secret,
1972 mixed, (const felem(*)[17][3])pre_comp,
1973 (const felem(*)[3])g_pre_comp);
1974 } else
1975 /* do the multiplication without generator precomputation */
1976 batch_mul(x_out, y_out, z_out,
1977 (const felem_bytearray(*))secrets, num_points,
1978 NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1979 /* reduce the output to its unique minimal representation */
1980 felem_contract(x_in, x_out);
1981 felem_contract(y_in, y_out);
1982 felem_contract(z_in, z_out);
1983 if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1984 (!felem_to_BN(z, z_in))) {
1985 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1986 goto err;
1987 }
1988 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1989
1990 err:
1991 BN_CTX_end(ctx);
1992 EC_POINT_free(generator);
1993 BN_CTX_free(new_ctx);
1994 OPENSSL_free(secrets);
1995 OPENSSL_free(pre_comp);
1996 OPENSSL_free(tmp_felems);
1997 return ret;
1998 }
1999
2000 int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2001 {
2002 int ret = 0;
2003 NISTP521_PRE_COMP *pre = NULL;
2004 int i, j;
2005 BN_CTX *new_ctx = NULL;
2006 BIGNUM *x, *y;
2007 EC_POINT *generator = NULL;
2008 felem tmp_felems[16];
2009
2010 /* throw away old precomputation */
2011 EC_nistp521_pre_comp_free(group->pre_comp.nistp521);
2012 if (ctx == NULL)
2013 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2014 return 0;
2015 BN_CTX_start(ctx);
2016 if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL))
2017 goto err;
2018 /* get the generator */
2019 if (group->generator == NULL)
2020 goto err;
2021 generator = EC_POINT_new(group);
2022 if (generator == NULL)
2023 goto err;
2024 BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2025 BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2026 if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2027 goto err;
2028 if ((pre = nistp521_pre_comp_new()) == NULL)
2029 goto err;
2030 /*
2031 * if the generator is the standard one, use built-in precomputation
2032 */
2033 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2034 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2035 ret = 1;
2036 goto err;
2037 }
2038 if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2039 (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2040 (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2041 goto err;
2042 /* compute 2^130*G, 2^260*G, 2^390*G */
2043 for (i = 1; i <= 4; i <<= 1) {
2044 point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2045 pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2046 pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2047 for (j = 0; j < 129; ++j) {
2048 point_double(pre->g_pre_comp[2 * i][0],
2049 pre->g_pre_comp[2 * i][1],
2050 pre->g_pre_comp[2 * i][2],
2051 pre->g_pre_comp[2 * i][0],
2052 pre->g_pre_comp[2 * i][1],
2053 pre->g_pre_comp[2 * i][2]);
2054 }
2055 }
2056 /* g_pre_comp[0] is the point at infinity */
2057 memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2058 /* the remaining multiples */
2059 /* 2^130*G + 2^260*G */
2060 point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2061 pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2062 pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2063 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2064 pre->g_pre_comp[2][2]);
2065 /* 2^130*G + 2^390*G */
2066 point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2067 pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2068 pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2069 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2070 pre->g_pre_comp[2][2]);
2071 /* 2^260*G + 2^390*G */
2072 point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2073 pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2074 pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2075 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2076 pre->g_pre_comp[4][2]);
2077 /* 2^130*G + 2^260*G + 2^390*G */
2078 point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2079 pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2080 pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2081 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2082 pre->g_pre_comp[2][2]);
2083 for (i = 1; i < 8; ++i) {
2084 /* odd multiples: add G */
2085 point_add(pre->g_pre_comp[2 * i + 1][0],
2086 pre->g_pre_comp[2 * i + 1][1],
2087 pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2088 pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2089 pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2090 pre->g_pre_comp[1][2]);
2091 }
2092 make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2093
2094 SETPRECOMP(group, nistp521, pre);
2095 ret = 1;
2096 pre = NULL;
2097 err:
2098 BN_CTX_end(ctx);
2099 EC_POINT_free(generator);
2100 BN_CTX_free(new_ctx);
2101 EC_nistp521_pre_comp_free(pre);
2102 return ret;
2103 }
2104
2105 int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2106 {
2107 return HAVEPRECOMP(group, nistp512);
2108 }
2109
2110 #else
2111 static void *dummy = &dummy;
2112 #endif