]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/lhash/lhash.c
Make OBJ_NAME case insensitive.
[thirdparty/openssl.git] / crypto / lhash / lhash.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <openssl/crypto.h>
14 #include <openssl/lhash.h>
15 #include <openssl/err.h>
16 #include "internal/ctype.h"
17 #include "internal/lhash.h"
18 #include "lhash_lcl.h"
19
20 /*
21 * A hashing implementation that appears to be based on the linear hashing
22 * alogrithm:
23 * https://en.wikipedia.org/wiki/Linear_hashing
24 *
25 * Litwin, Witold (1980), "Linear hashing: A new tool for file and table
26 * addressing", Proc. 6th Conference on Very Large Databases: 212-223
27 * http://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
28 *
29 * From the wikipedia article "Linear hashing is used in the BDB Berkeley
30 * database system, which in turn is used by many software systems such as
31 * OpenLDAP, using a C implementation derived from the CACM article and first
32 * published on the Usenet in 1988 by Esmond Pitt."
33 *
34 * The CACM paper is available here:
35 * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
36 */
37
38 #undef MIN_NODES
39 #define MIN_NODES 16
40 #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */
41 #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */
42
43 static int expand(OPENSSL_LHASH *lh);
44 static void contract(OPENSSL_LHASH *lh);
45 static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
46
47 OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
48 {
49 OPENSSL_LHASH *ret;
50
51 if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
52 /*
53 * Do not set the error code, because the ERR code uses LHASH
54 * and we want to avoid possible endless error loop.
55 * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE);
56 */
57 return NULL;
58 }
59 if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
60 goto err;
61 ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
62 ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
63 ret->num_nodes = MIN_NODES / 2;
64 ret->num_alloc_nodes = MIN_NODES;
65 ret->pmax = MIN_NODES / 2;
66 ret->up_load = UP_LOAD;
67 ret->down_load = DOWN_LOAD;
68 return ret;
69
70 err:
71 OPENSSL_free(ret->b);
72 OPENSSL_free(ret);
73 return NULL;
74 }
75
76 void OPENSSL_LH_free(OPENSSL_LHASH *lh)
77 {
78 unsigned int i;
79 OPENSSL_LH_NODE *n, *nn;
80
81 if (lh == NULL)
82 return;
83
84 for (i = 0; i < lh->num_nodes; i++) {
85 n = lh->b[i];
86 while (n != NULL) {
87 nn = n->next;
88 OPENSSL_free(n);
89 n = nn;
90 }
91 }
92 OPENSSL_free(lh->b);
93 OPENSSL_free(lh);
94 }
95
96 void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
97 {
98 unsigned long hash;
99 OPENSSL_LH_NODE *nn, **rn;
100 void *ret;
101
102 lh->error = 0;
103 if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
104 return NULL; /* 'lh->error++' already done in 'expand' */
105
106 rn = getrn(lh, data, &hash);
107
108 if (*rn == NULL) {
109 if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
110 lh->error++;
111 return NULL;
112 }
113 nn->data = data;
114 nn->next = NULL;
115 nn->hash = hash;
116 *rn = nn;
117 ret = NULL;
118 lh->num_insert++;
119 lh->num_items++;
120 } else { /* replace same key */
121 ret = (*rn)->data;
122 (*rn)->data = data;
123 lh->num_replace++;
124 }
125 return ret;
126 }
127
128 void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
129 {
130 unsigned long hash;
131 OPENSSL_LH_NODE *nn, **rn;
132 void *ret;
133
134 lh->error = 0;
135 rn = getrn(lh, data, &hash);
136
137 if (*rn == NULL) {
138 lh->num_no_delete++;
139 return NULL;
140 } else {
141 nn = *rn;
142 *rn = nn->next;
143 ret = nn->data;
144 OPENSSL_free(nn);
145 lh->num_delete++;
146 }
147
148 lh->num_items--;
149 if ((lh->num_nodes > MIN_NODES) &&
150 (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
151 contract(lh);
152
153 return ret;
154 }
155
156 void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
157 {
158 unsigned long hash;
159 OPENSSL_LH_NODE **rn;
160 void *ret;
161
162 tsan_store((TSAN_QUALIFIER int *)&lh->error, 0);
163
164 rn = getrn(lh, data, &hash);
165
166 if (*rn == NULL) {
167 tsan_counter(&lh->num_retrieve_miss);
168 return NULL;
169 } else {
170 ret = (*rn)->data;
171 tsan_counter(&lh->num_retrieve);
172 }
173
174 return ret;
175 }
176
177 static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
178 OPENSSL_LH_DOALL_FUNC func,
179 OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
180 {
181 int i;
182 OPENSSL_LH_NODE *a, *n;
183
184 if (lh == NULL)
185 return;
186
187 /*
188 * reverse the order so we search from 'top to bottom' We were having
189 * memory leaks otherwise
190 */
191 for (i = lh->num_nodes - 1; i >= 0; i--) {
192 a = lh->b[i];
193 while (a != NULL) {
194 n = a->next;
195 if (use_arg)
196 func_arg(a->data, arg);
197 else
198 func(a->data);
199 a = n;
200 }
201 }
202 }
203
204 void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
205 {
206 doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
207 }
208
209 void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
210 {
211 doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
212 }
213
214 static int expand(OPENSSL_LHASH *lh)
215 {
216 OPENSSL_LH_NODE **n, **n1, **n2, *np;
217 unsigned int p, pmax, nni, j;
218 unsigned long hash;
219
220 nni = lh->num_alloc_nodes;
221 p = lh->p;
222 pmax = lh->pmax;
223 if (p + 1 >= pmax) {
224 j = nni * 2;
225 n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
226 if (n == NULL) {
227 lh->error++;
228 return 0;
229 }
230 lh->b = n;
231 memset(n + nni, 0, sizeof(*n) * (j - nni));
232 lh->pmax = nni;
233 lh->num_alloc_nodes = j;
234 lh->num_expand_reallocs++;
235 lh->p = 0;
236 } else {
237 lh->p++;
238 }
239
240 lh->num_nodes++;
241 lh->num_expands++;
242 n1 = &(lh->b[p]);
243 n2 = &(lh->b[p + pmax]);
244 *n2 = NULL;
245
246 for (np = *n1; np != NULL;) {
247 hash = np->hash;
248 if ((hash % nni) != p) { /* move it */
249 *n1 = (*n1)->next;
250 np->next = *n2;
251 *n2 = np;
252 } else
253 n1 = &((*n1)->next);
254 np = *n1;
255 }
256
257 return 1;
258 }
259
260 static void contract(OPENSSL_LHASH *lh)
261 {
262 OPENSSL_LH_NODE **n, *n1, *np;
263
264 np = lh->b[lh->p + lh->pmax - 1];
265 lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
266 if (lh->p == 0) {
267 n = OPENSSL_realloc(lh->b,
268 (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
269 if (n == NULL) {
270 /* fputs("realloc error in lhash",stderr); */
271 lh->error++;
272 return;
273 }
274 lh->num_contract_reallocs++;
275 lh->num_alloc_nodes /= 2;
276 lh->pmax /= 2;
277 lh->p = lh->pmax - 1;
278 lh->b = n;
279 } else
280 lh->p--;
281
282 lh->num_nodes--;
283 lh->num_contracts++;
284
285 n1 = lh->b[(int)lh->p];
286 if (n1 == NULL)
287 lh->b[(int)lh->p] = np;
288 else {
289 while (n1->next != NULL)
290 n1 = n1->next;
291 n1->next = np;
292 }
293 }
294
295 static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
296 const void *data, unsigned long *rhash)
297 {
298 OPENSSL_LH_NODE **ret, *n1;
299 unsigned long hash, nn;
300 OPENSSL_LH_COMPFUNC cf;
301
302 hash = (*(lh->hash)) (data);
303 tsan_counter(&lh->num_hash_calls);
304 *rhash = hash;
305
306 nn = hash % lh->pmax;
307 if (nn < lh->p)
308 nn = hash % lh->num_alloc_nodes;
309
310 cf = lh->comp;
311 ret = &(lh->b[(int)nn]);
312 for (n1 = *ret; n1 != NULL; n1 = n1->next) {
313 tsan_counter(&lh->num_hash_comps);
314 if (n1->hash != hash) {
315 ret = &(n1->next);
316 continue;
317 }
318 tsan_counter(&lh->num_comp_calls);
319 if (cf(n1->data, data) == 0)
320 break;
321 ret = &(n1->next);
322 }
323 return ret;
324 }
325
326 /*
327 * The following hash seems to work very well on normal text strings no
328 * collisions on /usr/dict/words and it distributes on %2^n quite well, not
329 * as good as MD5, but still good.
330 */
331 unsigned long OPENSSL_LH_strhash(const char *c)
332 {
333 unsigned long ret = 0;
334 long n;
335 unsigned long v;
336 int r;
337
338 if ((c == NULL) || (*c == '\0'))
339 return ret;
340
341 n = 0x100;
342 while (*c) {
343 v = n | (*c);
344 n += 0x100;
345 r = (int)((v >> 2) ^ v) & 0x0f;
346 ret = (ret << r) | (ret >> (32 - r));
347 ret &= 0xFFFFFFFFL;
348 ret ^= v * v;
349 c++;
350 }
351 return (ret >> 16) ^ ret;
352 }
353
354 unsigned long openssl_lh_strcasehash(const char *c)
355 {
356 unsigned long ret = 0;
357 long n;
358 unsigned long v;
359 int r;
360
361 if (c == NULL || *c == '\0')
362 return ret;
363
364 for (n = 0x100; *c != '\0'; n += 0x100) {
365 v = n | ossl_tolower(*c);
366 r = (int)((v >> 2) ^ v) & 0x0f;
367 ret = (ret << r) | (ret >> (32 - r));
368 ret &= 0xFFFFFFFFL;
369 ret ^= v * v;
370 c++;
371 }
372 return (ret >> 16) ^ ret;
373 }
374
375 unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
376 {
377 return lh ? lh->num_items : 0;
378 }
379
380 unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
381 {
382 return lh->down_load;
383 }
384
385 void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
386 {
387 lh->down_load = down_load;
388 }
389
390 int OPENSSL_LH_error(OPENSSL_LHASH *lh)
391 {
392 return lh->error;
393 }