]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/pem/pvkfmt.c
Identify and move common internal libcrypto header files
[thirdparty/openssl.git] / crypto / pem / pvkfmt.c
1 /*
2 * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
3 * 2005.
4 */
5 /* ====================================================================
6 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58
59 /*
60 * Support for PVK format keys and related structures (such a PUBLICKEYBLOB
61 * and PRIVATEKEYBLOB).
62 */
63
64 #include "internal/cryptlib.h"
65 #include <openssl/pem.h>
66 #include <openssl/rand.h>
67 #include <openssl/bn.h>
68 #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
69 # include <openssl/dsa.h>
70 # include <openssl/rsa.h>
71
72 /*
73 * Utility function: read a DWORD (4 byte unsigned integer) in little endian
74 * format
75 */
76
77 static unsigned int read_ledword(const unsigned char **in)
78 {
79 const unsigned char *p = *in;
80 unsigned int ret;
81 ret = *p++;
82 ret |= (*p++ << 8);
83 ret |= (*p++ << 16);
84 ret |= (*p++ << 24);
85 *in = p;
86 return ret;
87 }
88
89 /*
90 * Read a BIGNUM in little endian format. The docs say that this should take
91 * up bitlen/8 bytes.
92 */
93
94 static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
95 {
96 const unsigned char *p;
97 unsigned char *tmpbuf, *q;
98 unsigned int i;
99 p = *in + nbyte - 1;
100 tmpbuf = OPENSSL_malloc(nbyte);
101 if (!tmpbuf)
102 return 0;
103 q = tmpbuf;
104 for (i = 0; i < nbyte; i++)
105 *q++ = *p--;
106 *r = BN_bin2bn(tmpbuf, nbyte, NULL);
107 OPENSSL_free(tmpbuf);
108 if (*r) {
109 *in += nbyte;
110 return 1;
111 } else
112 return 0;
113 }
114
115 /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
116
117 # define MS_PUBLICKEYBLOB 0x6
118 # define MS_PRIVATEKEYBLOB 0x7
119 # define MS_RSA1MAGIC 0x31415352L
120 # define MS_RSA2MAGIC 0x32415352L
121 # define MS_DSS1MAGIC 0x31535344L
122 # define MS_DSS2MAGIC 0x32535344L
123
124 # define MS_KEYALG_RSA_KEYX 0xa400
125 # define MS_KEYALG_DSS_SIGN 0x2200
126
127 # define MS_KEYTYPE_KEYX 0x1
128 # define MS_KEYTYPE_SIGN 0x2
129
130 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
131 # define MS_PVKMAGIC 0xb0b5f11eL
132 /* Salt length for PVK files */
133 # define PVK_SALTLEN 0x10
134
135 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
136 unsigned int bitlen, int ispub);
137 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
138 unsigned int bitlen, int ispub);
139
140 static int do_blob_header(const unsigned char **in, unsigned int length,
141 unsigned int *pmagic, unsigned int *pbitlen,
142 int *pisdss, int *pispub)
143 {
144 const unsigned char *p = *in;
145 if (length < 16)
146 return 0;
147 /* bType */
148 if (*p == MS_PUBLICKEYBLOB) {
149 if (*pispub == 0) {
150 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
151 return 0;
152 }
153 *pispub = 1;
154 } else if (*p == MS_PRIVATEKEYBLOB) {
155 if (*pispub == 1) {
156 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
157 return 0;
158 }
159 *pispub = 0;
160 } else
161 return 0;
162 p++;
163 /* Version */
164 if (*p++ != 0x2) {
165 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
166 return 0;
167 }
168 /* Ignore reserved, aiKeyAlg */
169 p += 6;
170 *pmagic = read_ledword(&p);
171 *pbitlen = read_ledword(&p);
172 *pisdss = 0;
173 switch (*pmagic) {
174
175 case MS_DSS1MAGIC:
176 *pisdss = 1;
177 case MS_RSA1MAGIC:
178 if (*pispub == 0) {
179 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
180 return 0;
181 }
182 break;
183
184 case MS_DSS2MAGIC:
185 *pisdss = 1;
186 case MS_RSA2MAGIC:
187 if (*pispub == 1) {
188 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
189 return 0;
190 }
191 break;
192
193 default:
194 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
195 return -1;
196 }
197 *in = p;
198 return 1;
199 }
200
201 static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
202 {
203 unsigned int nbyte, hnbyte;
204 nbyte = (bitlen + 7) >> 3;
205 hnbyte = (bitlen + 15) >> 4;
206 if (isdss) {
207
208 /*
209 * Expected length: 20 for q + 3 components bitlen each + 24 for seed
210 * structure.
211 */
212 if (ispub)
213 return 44 + 3 * nbyte;
214 /*
215 * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed
216 * structure.
217 */
218 else
219 return 64 + 2 * nbyte;
220 } else {
221 /* Expected length: 4 for 'e' + 'n' */
222 if (ispub)
223 return 4 + nbyte;
224 else
225 /*
226 * Expected length: 4 for 'e' and 7 other components. 2
227 * components are bitlen size, 5 are bitlen/2
228 */
229 return 4 + 2 * nbyte + 5 * hnbyte;
230 }
231
232 }
233
234 static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
235 int ispub)
236 {
237 const unsigned char *p = *in;
238 unsigned int bitlen, magic;
239 int isdss;
240 if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) {
241 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
242 return NULL;
243 }
244 length -= 16;
245 if (length < blob_length(bitlen, isdss, ispub)) {
246 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
247 return NULL;
248 }
249 if (isdss)
250 return b2i_dss(&p, length, bitlen, ispub);
251 else
252 return b2i_rsa(&p, length, bitlen, ispub);
253 }
254
255 static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
256 {
257 const unsigned char *p;
258 unsigned char hdr_buf[16], *buf = NULL;
259 unsigned int bitlen, magic, length;
260 int isdss;
261 EVP_PKEY *ret = NULL;
262 if (BIO_read(in, hdr_buf, 16) != 16) {
263 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
264 return NULL;
265 }
266 p = hdr_buf;
267 if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
268 return NULL;
269
270 length = blob_length(bitlen, isdss, ispub);
271 buf = OPENSSL_malloc(length);
272 if (!buf) {
273 PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
274 goto err;
275 }
276 p = buf;
277 if (BIO_read(in, buf, length) != (int)length) {
278 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
279 goto err;
280 }
281
282 if (isdss)
283 ret = b2i_dss(&p, length, bitlen, ispub);
284 else
285 ret = b2i_rsa(&p, length, bitlen, ispub);
286
287 err:
288 OPENSSL_free(buf);
289 return ret;
290 }
291
292 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
293 unsigned int bitlen, int ispub)
294 {
295 const unsigned char *p = *in;
296 EVP_PKEY *ret = NULL;
297 DSA *dsa = NULL;
298 BN_CTX *ctx = NULL;
299 unsigned int nbyte;
300 nbyte = (bitlen + 7) >> 3;
301
302 dsa = DSA_new();
303 ret = EVP_PKEY_new();
304 if (!dsa || !ret)
305 goto memerr;
306 if (!read_lebn(&p, nbyte, &dsa->p))
307 goto memerr;
308 if (!read_lebn(&p, 20, &dsa->q))
309 goto memerr;
310 if (!read_lebn(&p, nbyte, &dsa->g))
311 goto memerr;
312 if (ispub) {
313 if (!read_lebn(&p, nbyte, &dsa->pub_key))
314 goto memerr;
315 } else {
316 if (!read_lebn(&p, 20, &dsa->priv_key))
317 goto memerr;
318 /* Calculate public key */
319 if ((dsa->pub_key = BN_new()) == NULL)
320 goto memerr;
321 if ((ctx = BN_CTX_new()) == NULL)
322 goto memerr;
323
324 if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx))
325 goto memerr;
326 BN_CTX_free(ctx);
327 }
328
329 EVP_PKEY_set1_DSA(ret, dsa);
330 DSA_free(dsa);
331 *in = p;
332 return ret;
333
334 memerr:
335 PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
336 DSA_free(dsa);
337 EVP_PKEY_free(ret);
338 BN_CTX_free(ctx);
339 return NULL;
340 }
341
342 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
343 unsigned int bitlen, int ispub)
344 {
345 const unsigned char *p = *in;
346 EVP_PKEY *ret = NULL;
347 RSA *rsa = NULL;
348 unsigned int nbyte, hnbyte;
349 nbyte = (bitlen + 7) >> 3;
350 hnbyte = (bitlen + 15) >> 4;
351 rsa = RSA_new();
352 ret = EVP_PKEY_new();
353 if (!rsa || !ret)
354 goto memerr;
355 rsa->e = BN_new();
356 if (!rsa->e)
357 goto memerr;
358 if (!BN_set_word(rsa->e, read_ledword(&p)))
359 goto memerr;
360 if (!read_lebn(&p, nbyte, &rsa->n))
361 goto memerr;
362 if (!ispub) {
363 if (!read_lebn(&p, hnbyte, &rsa->p))
364 goto memerr;
365 if (!read_lebn(&p, hnbyte, &rsa->q))
366 goto memerr;
367 if (!read_lebn(&p, hnbyte, &rsa->dmp1))
368 goto memerr;
369 if (!read_lebn(&p, hnbyte, &rsa->dmq1))
370 goto memerr;
371 if (!read_lebn(&p, hnbyte, &rsa->iqmp))
372 goto memerr;
373 if (!read_lebn(&p, nbyte, &rsa->d))
374 goto memerr;
375 }
376
377 EVP_PKEY_set1_RSA(ret, rsa);
378 RSA_free(rsa);
379 *in = p;
380 return ret;
381 memerr:
382 PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
383 RSA_free(rsa);
384 EVP_PKEY_free(ret);
385 return NULL;
386 }
387
388 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
389 {
390 return do_b2i(in, length, 0);
391 }
392
393 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
394 {
395 return do_b2i(in, length, 1);
396 }
397
398 EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
399 {
400 return do_b2i_bio(in, 0);
401 }
402
403 EVP_PKEY *b2i_PublicKey_bio(BIO *in)
404 {
405 return do_b2i_bio(in, 1);
406 }
407
408 static void write_ledword(unsigned char **out, unsigned int dw)
409 {
410 unsigned char *p = *out;
411 *p++ = dw & 0xff;
412 *p++ = (dw >> 8) & 0xff;
413 *p++ = (dw >> 16) & 0xff;
414 *p++ = (dw >> 24) & 0xff;
415 *out = p;
416 }
417
418 static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
419 {
420 int nb, i;
421 unsigned char *p = *out, *q, c;
422 nb = BN_num_bytes(bn);
423 BN_bn2bin(bn, p);
424 q = p + nb - 1;
425 /* In place byte order reversal */
426 for (i = 0; i < nb / 2; i++) {
427 c = *p;
428 *p++ = *q;
429 *q-- = c;
430 }
431 *out += nb;
432 /* Pad with zeroes if we have to */
433 if (len > 0) {
434 len -= nb;
435 if (len > 0) {
436 memset(*out, 0, len);
437 *out += len;
438 }
439 }
440 }
441
442 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
443 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
444
445 static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
446 static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
447
448 static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
449 {
450 unsigned char *p;
451 unsigned int bitlen, magic = 0, keyalg;
452 int outlen, noinc = 0;
453 if (pk->type == EVP_PKEY_DSA) {
454 bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
455 keyalg = MS_KEYALG_DSS_SIGN;
456 } else if (pk->type == EVP_PKEY_RSA) {
457 bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
458 keyalg = MS_KEYALG_RSA_KEYX;
459 } else
460 return -1;
461 if (bitlen == 0)
462 return -1;
463 outlen = 16 + blob_length(bitlen,
464 keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
465 if (out == NULL)
466 return outlen;
467 if (*out)
468 p = *out;
469 else {
470 p = OPENSSL_malloc(outlen);
471 if (!p)
472 return -1;
473 *out = p;
474 noinc = 1;
475 }
476 if (ispub)
477 *p++ = MS_PUBLICKEYBLOB;
478 else
479 *p++ = MS_PRIVATEKEYBLOB;
480 *p++ = 0x2;
481 *p++ = 0;
482 *p++ = 0;
483 write_ledword(&p, keyalg);
484 write_ledword(&p, magic);
485 write_ledword(&p, bitlen);
486 if (keyalg == MS_KEYALG_DSS_SIGN)
487 write_dsa(&p, pk->pkey.dsa, ispub);
488 else
489 write_rsa(&p, pk->pkey.rsa, ispub);
490 if (!noinc)
491 *out += outlen;
492 return outlen;
493 }
494
495 static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
496 {
497 unsigned char *tmp = NULL;
498 int outlen, wrlen;
499 outlen = do_i2b(&tmp, pk, ispub);
500 if (outlen < 0)
501 return -1;
502 wrlen = BIO_write(out, tmp, outlen);
503 OPENSSL_free(tmp);
504 if (wrlen == outlen)
505 return outlen;
506 return -1;
507 }
508
509 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
510 {
511 int bitlen;
512 bitlen = BN_num_bits(dsa->p);
513 if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
514 || (BN_num_bits(dsa->g) > bitlen))
515 goto badkey;
516 if (ispub) {
517 if (BN_num_bits(dsa->pub_key) > bitlen)
518 goto badkey;
519 *pmagic = MS_DSS1MAGIC;
520 } else {
521 if (BN_num_bits(dsa->priv_key) > 160)
522 goto badkey;
523 *pmagic = MS_DSS2MAGIC;
524 }
525
526 return bitlen;
527 badkey:
528 PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
529 return 0;
530 }
531
532 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
533 {
534 int nbyte, hnbyte, bitlen;
535 if (BN_num_bits(rsa->e) > 32)
536 goto badkey;
537 bitlen = BN_num_bits(rsa->n);
538 nbyte = BN_num_bytes(rsa->n);
539 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
540 if (ispub) {
541 *pmagic = MS_RSA1MAGIC;
542 return bitlen;
543 } else {
544 *pmagic = MS_RSA2MAGIC;
545 /*
546 * For private key each component must fit within nbyte or hnbyte.
547 */
548 if (BN_num_bytes(rsa->d) > nbyte)
549 goto badkey;
550 if ((BN_num_bytes(rsa->iqmp) > hnbyte)
551 || (BN_num_bytes(rsa->p) > hnbyte)
552 || (BN_num_bytes(rsa->q) > hnbyte)
553 || (BN_num_bytes(rsa->dmp1) > hnbyte)
554 || (BN_num_bytes(rsa->dmq1) > hnbyte))
555 goto badkey;
556 }
557 return bitlen;
558 badkey:
559 PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
560 return 0;
561 }
562
563 static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
564 {
565 int nbyte, hnbyte;
566 nbyte = BN_num_bytes(rsa->n);
567 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
568 write_lebn(out, rsa->e, 4);
569 write_lebn(out, rsa->n, -1);
570 if (ispub)
571 return;
572 write_lebn(out, rsa->p, hnbyte);
573 write_lebn(out, rsa->q, hnbyte);
574 write_lebn(out, rsa->dmp1, hnbyte);
575 write_lebn(out, rsa->dmq1, hnbyte);
576 write_lebn(out, rsa->iqmp, hnbyte);
577 write_lebn(out, rsa->d, nbyte);
578 }
579
580 static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
581 {
582 int nbyte;
583 nbyte = BN_num_bytes(dsa->p);
584 write_lebn(out, dsa->p, nbyte);
585 write_lebn(out, dsa->q, 20);
586 write_lebn(out, dsa->g, nbyte);
587 if (ispub)
588 write_lebn(out, dsa->pub_key, nbyte);
589 else
590 write_lebn(out, dsa->priv_key, 20);
591 /* Set "invalid" for seed structure values */
592 memset(*out, 0xff, 24);
593 *out += 24;
594 return;
595 }
596
597 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
598 {
599 return do_i2b_bio(out, pk, 0);
600 }
601
602 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
603 {
604 return do_i2b_bio(out, pk, 1);
605 }
606
607 # ifndef OPENSSL_NO_RC4
608
609 static int do_PVK_header(const unsigned char **in, unsigned int length,
610 int skip_magic,
611 unsigned int *psaltlen, unsigned int *pkeylen)
612 {
613 const unsigned char *p = *in;
614 unsigned int pvk_magic, is_encrypted;
615 if (skip_magic) {
616 if (length < 20) {
617 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
618 return 0;
619 }
620 length -= 20;
621 } else {
622 if (length < 24) {
623 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
624 return 0;
625 }
626 length -= 24;
627 pvk_magic = read_ledword(&p);
628 if (pvk_magic != MS_PVKMAGIC) {
629 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
630 return 0;
631 }
632 }
633 /* Skip reserved */
634 p += 4;
635 /*
636 * keytype =
637 */ read_ledword(&p);
638 is_encrypted = read_ledword(&p);
639 *psaltlen = read_ledword(&p);
640 *pkeylen = read_ledword(&p);
641
642 if (is_encrypted && !*psaltlen) {
643 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
644 return 0;
645 }
646
647 *in = p;
648 return 1;
649 }
650
651 static int derive_pvk_key(unsigned char *key,
652 const unsigned char *salt, unsigned int saltlen,
653 const unsigned char *pass, int passlen)
654 {
655 EVP_MD_CTX mctx;
656 int rv = 1;
657 EVP_MD_CTX_init(&mctx);
658 if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
659 || !EVP_DigestUpdate(&mctx, salt, saltlen)
660 || !EVP_DigestUpdate(&mctx, pass, passlen)
661 || !EVP_DigestFinal_ex(&mctx, key, NULL))
662 rv = 0;
663
664 EVP_MD_CTX_cleanup(&mctx);
665 return rv;
666 }
667
668 static EVP_PKEY *do_PVK_body(const unsigned char **in,
669 unsigned int saltlen, unsigned int keylen,
670 pem_password_cb *cb, void *u)
671 {
672 EVP_PKEY *ret = NULL;
673 const unsigned char *p = *in;
674 unsigned int magic;
675 unsigned char *enctmp = NULL, *q;
676
677 EVP_CIPHER_CTX cctx;
678 EVP_CIPHER_CTX_init(&cctx);
679 if (saltlen) {
680 char psbuf[PEM_BUFSIZE];
681 unsigned char keybuf[20];
682 int enctmplen, inlen;
683 if (cb)
684 inlen = cb(psbuf, PEM_BUFSIZE, 0, u);
685 else
686 inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
687 if (inlen <= 0) {
688 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ);
689 return NULL;
690 }
691 enctmp = OPENSSL_malloc(keylen + 8);
692 if (!enctmp) {
693 PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
694 return NULL;
695 }
696 if (!derive_pvk_key(keybuf, p, saltlen,
697 (unsigned char *)psbuf, inlen))
698 return NULL;
699 p += saltlen;
700 /* Copy BLOBHEADER across, decrypt rest */
701 memcpy(enctmp, p, 8);
702 p += 8;
703 if (keylen < 8) {
704 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT);
705 return NULL;
706 }
707 inlen = keylen - 8;
708 q = enctmp + 8;
709 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
710 goto err;
711 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
712 goto err;
713 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
714 goto err;
715 magic = read_ledword((const unsigned char **)&q);
716 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
717 q = enctmp + 8;
718 memset(keybuf + 5, 0, 11);
719 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
720 goto err;
721 OPENSSL_cleanse(keybuf, 20);
722 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
723 goto err;
724 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
725 goto err;
726 magic = read_ledword((const unsigned char **)&q);
727 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
728 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
729 goto err;
730 }
731 } else
732 OPENSSL_cleanse(keybuf, 20);
733 p = enctmp;
734 }
735
736 ret = b2i_PrivateKey(&p, keylen);
737 err:
738 EVP_CIPHER_CTX_cleanup(&cctx);
739 OPENSSL_free(enctmp);
740 return ret;
741 }
742
743 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
744 {
745 unsigned char pvk_hdr[24], *buf = NULL;
746 const unsigned char *p;
747 int buflen;
748 EVP_PKEY *ret = NULL;
749 unsigned int saltlen, keylen;
750 if (BIO_read(in, pvk_hdr, 24) != 24) {
751 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
752 return NULL;
753 }
754 p = pvk_hdr;
755
756 if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
757 return 0;
758 buflen = (int)keylen + saltlen;
759 buf = OPENSSL_malloc(buflen);
760 if (!buf) {
761 PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
762 return 0;
763 }
764 p = buf;
765 if (BIO_read(in, buf, buflen) != buflen) {
766 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
767 goto err;
768 }
769 ret = do_PVK_body(&p, saltlen, keylen, cb, u);
770
771 err:
772 OPENSSL_clear_free(buf, buflen);
773 return ret;
774 }
775
776 static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel,
777 pem_password_cb *cb, void *u)
778 {
779 int outlen = 24, pklen;
780 unsigned char *p, *salt = NULL;
781 EVP_CIPHER_CTX cctx;
782 EVP_CIPHER_CTX_init(&cctx);
783 if (enclevel)
784 outlen += PVK_SALTLEN;
785 pklen = do_i2b(NULL, pk, 0);
786 if (pklen < 0)
787 return -1;
788 outlen += pklen;
789 if (!out)
790 return outlen;
791 if (*out)
792 p = *out;
793 else {
794 p = OPENSSL_malloc(outlen);
795 if (!p) {
796 PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE);
797 return -1;
798 }
799 *out = p;
800 }
801
802 write_ledword(&p, MS_PVKMAGIC);
803 write_ledword(&p, 0);
804 if (pk->type == EVP_PKEY_DSA)
805 write_ledword(&p, MS_KEYTYPE_SIGN);
806 else
807 write_ledword(&p, MS_KEYTYPE_KEYX);
808 write_ledword(&p, enclevel ? 1 : 0);
809 write_ledword(&p, enclevel ? PVK_SALTLEN : 0);
810 write_ledword(&p, pklen);
811 if (enclevel) {
812 if (RAND_bytes(p, PVK_SALTLEN) <= 0)
813 goto error;
814 salt = p;
815 p += PVK_SALTLEN;
816 }
817 do_i2b(&p, pk, 0);
818 if (enclevel == 0)
819 return outlen;
820 else {
821 char psbuf[PEM_BUFSIZE];
822 unsigned char keybuf[20];
823 int enctmplen, inlen;
824 if (cb)
825 inlen = cb(psbuf, PEM_BUFSIZE, 1, u);
826 else
827 inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u);
828 if (inlen <= 0) {
829 PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ);
830 goto error;
831 }
832 if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
833 (unsigned char *)psbuf, inlen))
834 goto error;
835 if (enclevel == 1)
836 memset(keybuf + 5, 0, 11);
837 p = salt + PVK_SALTLEN + 8;
838 if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
839 goto error;
840 OPENSSL_cleanse(keybuf, 20);
841 if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
842 goto error;
843 if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
844 goto error;
845 }
846 EVP_CIPHER_CTX_cleanup(&cctx);
847 return outlen;
848
849 error:
850 EVP_CIPHER_CTX_cleanup(&cctx);
851 return -1;
852 }
853
854 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
855 pem_password_cb *cb, void *u)
856 {
857 unsigned char *tmp = NULL;
858 int outlen, wrlen;
859 outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
860 if (outlen < 0)
861 return -1;
862 wrlen = BIO_write(out, tmp, outlen);
863 OPENSSL_free(tmp);
864 if (wrlen == outlen) {
865 PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
866 return outlen;
867 }
868 return -1;
869 }
870
871 # endif
872
873 #endif