]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/poly1305/poly1305_base2_44.c
Update copyright year
[thirdparty/openssl.git] / crypto / poly1305 / poly1305_base2_44.c
1 /*
2 * Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * This module is meant to be used as template for base 2^44 assembly
12 * implementation[s]. On side note compiler-generated code is not
13 * slower than compiler-generated base 2^64 code on [high-end] x86_64,
14 * even though amount of multiplications is 50% higher. Go figure...
15 */
16 #include <stdlib.h>
17
18 typedef unsigned char u8;
19 typedef unsigned int u32;
20 typedef unsigned long u64;
21 typedef uint128_t u128;
22
23 typedef struct {
24 u64 h[3];
25 u64 s[2];
26 u64 r[3];
27 } poly1305_internal;
28
29 #define POLY1305_BLOCK_SIZE 16
30
31 /* pick 64-bit unsigned integer in little endian order */
32 static u64 U8TOU64(const unsigned char *p)
33 {
34 return (((u64)(p[0] & 0xff)) |
35 ((u64)(p[1] & 0xff) << 8) |
36 ((u64)(p[2] & 0xff) << 16) |
37 ((u64)(p[3] & 0xff) << 24) |
38 ((u64)(p[4] & 0xff) << 32) |
39 ((u64)(p[5] & 0xff) << 40) |
40 ((u64)(p[6] & 0xff) << 48) |
41 ((u64)(p[7] & 0xff) << 56));
42 }
43
44 /* store a 64-bit unsigned integer in little endian */
45 static void U64TO8(unsigned char *p, u64 v)
46 {
47 p[0] = (unsigned char)((v) & 0xff);
48 p[1] = (unsigned char)((v >> 8) & 0xff);
49 p[2] = (unsigned char)((v >> 16) & 0xff);
50 p[3] = (unsigned char)((v >> 24) & 0xff);
51 p[4] = (unsigned char)((v >> 32) & 0xff);
52 p[5] = (unsigned char)((v >> 40) & 0xff);
53 p[6] = (unsigned char)((v >> 48) & 0xff);
54 p[7] = (unsigned char)((v >> 56) & 0xff);
55 }
56
57 int poly1305_init(void *ctx, const unsigned char key[16])
58 {
59 poly1305_internal *st = (poly1305_internal *)ctx;
60 u64 r0, r1;
61
62 /* h = 0 */
63 st->h[0] = 0;
64 st->h[1] = 0;
65 st->h[2] = 0;
66
67 r0 = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
68 r1 = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
69
70 /* break r1:r0 to three 44-bit digits, masks are 1<<44-1 */
71 st->r[0] = r0 & 0x0fffffffffff;
72 st->r[1] = ((r0 >> 44) | (r1 << 20)) & 0x0fffffffffff;
73 st->r[2] = (r1 >> 24);
74
75 st->s[0] = (st->r[1] + (st->r[1] << 2)) << 2;
76 st->s[1] = (st->r[2] + (st->r[2] << 2)) << 2;
77
78 return 0;
79 }
80
81 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
82 u32 padbit)
83 {
84 poly1305_internal *st = (poly1305_internal *)ctx;
85 u64 r0, r1, r2;
86 u64 s1, s2;
87 u64 h0, h1, h2, c;
88 u128 d0, d1, d2;
89 u64 pad = (u64)padbit << 40;
90
91 r0 = st->r[0];
92 r1 = st->r[1];
93 r2 = st->r[2];
94
95 s1 = st->s[0];
96 s2 = st->s[1];
97
98 h0 = st->h[0];
99 h1 = st->h[1];
100 h2 = st->h[2];
101
102 while (len >= POLY1305_BLOCK_SIZE) {
103 u64 m0, m1;
104
105 m0 = U8TOU64(inp + 0);
106 m1 = U8TOU64(inp + 8);
107
108 /* h += m[i], m[i] is broken to 44-bit digits */
109 h0 += m0 & 0x0fffffffffff;
110 h1 += ((m0 >> 44) | (m1 << 20)) & 0x0fffffffffff;
111 h2 += (m1 >> 24) + pad;
112
113 /* h *= r "%" p, where "%" stands for "partial remainder" */
114 d0 = ((u128)h0 * r0) + ((u128)h1 * s2) + ((u128)h2 * s1);
115 d1 = ((u128)h0 * r1) + ((u128)h1 * r0) + ((u128)h2 * s2);
116 d2 = ((u128)h0 * r2) + ((u128)h1 * r1) + ((u128)h2 * r0);
117
118 /* "lazy" reduction step */
119 h0 = (u64)d0 & 0x0fffffffffff;
120 h1 = (u64)(d1 += (u64)(d0 >> 44)) & 0x0fffffffffff;
121 h2 = (u64)(d2 += (u64)(d1 >> 44)) & 0x03ffffffffff; /* last 42 bits */
122
123 c = (d2 >> 42);
124 h0 += c + (c << 2);
125
126 inp += POLY1305_BLOCK_SIZE;
127 len -= POLY1305_BLOCK_SIZE;
128 }
129
130 st->h[0] = h0;
131 st->h[1] = h1;
132 st->h[2] = h2;
133 }
134
135 void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
136 {
137 poly1305_internal *st = (poly1305_internal *) ctx;
138 u64 h0, h1, h2;
139 u64 g0, g1, g2;
140 u128 t;
141 u64 mask;
142
143 h0 = st->h[0];
144 h1 = st->h[1];
145 h2 = st->h[2];
146
147 /* after "lazy" reduction, convert 44+bit digits to 64-bit ones */
148 h0 = (u64)(t = (u128)h0 + (h1 << 44)); h1 >>= 20;
149 h1 = (u64)(t = (u128)h1 + (h2 << 24) + (t >> 64)); h2 >>= 40;
150 h2 += (u64)(t >> 64);
151
152 /* compare to modulus by computing h + -p */
153 g0 = (u64)(t = (u128)h0 + 5);
154 g1 = (u64)(t = (u128)h1 + (t >> 64));
155 g2 = h2 + (u64)(t >> 64);
156
157 /* if there was carry into 131st bit, h1:h0 = g1:g0 */
158 mask = 0 - (g2 >> 2);
159 g0 &= mask;
160 g1 &= mask;
161 mask = ~mask;
162 h0 = (h0 & mask) | g0;
163 h1 = (h1 & mask) | g1;
164
165 /* mac = (h + nonce) % (2^128) */
166 h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
167 h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
168
169 U64TO8(mac + 0, h0);
170 U64TO8(mac + 8, h1);
171 }