]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/drbg_lib.c
812a52fa5a067917b739f85fca745cce41560d36
[thirdparty/openssl.git] / crypto / rand / drbg_lib.c
1 /*
2 * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <string.h>
11 #include <openssl/crypto.h>
12 #include <openssl/err.h>
13 #include <openssl/rand.h>
14 #include "rand_lcl.h"
15 #include "internal/thread_once.h"
16 #include "internal/rand_int.h"
17 #include "internal/cryptlib_int.h"
18
19 /*
20 * Support framework for NIST SP 800-90A DRBG
21 *
22 * See manual page RAND_DRBG(7) for a general overview.
23 *
24 * The OpenSSL model is to have new and free functions, and that new
25 * does all initialization. That is not the NIST model, which has
26 * instantiation and un-instantiate, and re-use within a new/free
27 * lifecycle. (No doubt this comes from the desire to support hardware
28 * DRBG, where allocation of resources on something like an HSM is
29 * a much bigger deal than just re-setting an allocated resource.)
30 */
31
32
33 typedef struct drbg_global_st {
34 /*
35 * The three shared DRBG instances
36 *
37 * There are three shared DRBG instances: <master>, <public>, and <private>.
38 */
39
40 /*
41 * The <master> DRBG
42 *
43 * Not used directly by the application, only for reseeding the two other
44 * DRBGs. It reseeds itself by pulling either randomness from os entropy
45 * sources or by consuming randomness which was added by RAND_add().
46 *
47 * The <master> DRBG is a global instance which is accessed concurrently by
48 * all threads. The necessary locking is managed automatically by its child
49 * DRBG instances during reseeding.
50 */
51 RAND_DRBG *master_drbg;
52 /*
53 * The <public> DRBG
54 *
55 * Used by default for generating random bytes using RAND_bytes().
56 *
57 * The <public> DRBG is thread-local, i.e., there is one instance per
58 * thread.
59 */
60 CRYPTO_THREAD_LOCAL public_drbg;
61 /*
62 * The <private> DRBG
63 *
64 * Used by default for generating private keys using RAND_priv_bytes()
65 *
66 * The <private> DRBG is thread-local, i.e., there is one instance per
67 * thread.
68 */
69 CRYPTO_THREAD_LOCAL private_drbg;
70 } DRBG_GLOBAL;
71
72 typedef struct drbg_nonce_global_st {
73 CRYPTO_RWLOCK *rand_nonce_lock;
74 int rand_nonce_count;
75 } DRBG_NONCE_GLOBAL;
76
77 /* NIST SP 800-90A DRBG recommends the use of a personalization string. */
78 static const char ossl_pers_string[] = DRBG_DEFAULT_PERS_STRING;
79
80 #define RAND_DRBG_TYPE_FLAGS ( \
81 RAND_DRBG_FLAG_MASTER | RAND_DRBG_FLAG_PUBLIC | RAND_DRBG_FLAG_PRIVATE )
82
83 #define RAND_DRBG_TYPE_MASTER 0
84 #define RAND_DRBG_TYPE_PUBLIC 1
85 #define RAND_DRBG_TYPE_PRIVATE 2
86
87 /* Defaults */
88 static int rand_drbg_type[3] = {
89 RAND_DRBG_TYPE, /* Master */
90 RAND_DRBG_TYPE, /* Public */
91 RAND_DRBG_TYPE /* Private */
92 };
93 static unsigned int rand_drbg_flags[3] = {
94 RAND_DRBG_FLAGS | RAND_DRBG_FLAG_MASTER, /* Master */
95 RAND_DRBG_FLAGS | RAND_DRBG_FLAG_PUBLIC, /* Public */
96 RAND_DRBG_FLAGS | RAND_DRBG_FLAG_PRIVATE /* Private */
97 };
98
99 static unsigned int master_reseed_interval = MASTER_RESEED_INTERVAL;
100 static unsigned int slave_reseed_interval = SLAVE_RESEED_INTERVAL;
101
102 static time_t master_reseed_time_interval = MASTER_RESEED_TIME_INTERVAL;
103 static time_t slave_reseed_time_interval = SLAVE_RESEED_TIME_INTERVAL;
104
105 /* A logical OR of all used DRBG flag bits (currently there is only one) */
106 static const unsigned int rand_drbg_used_flags =
107 RAND_DRBG_FLAG_CTR_NO_DF | RAND_DRBG_FLAG_HMAC | RAND_DRBG_TYPE_FLAGS;
108
109
110 static RAND_DRBG *drbg_setup(OPENSSL_CTX *ctx, RAND_DRBG *parent, int drbg_type);
111
112 static RAND_DRBG *rand_drbg_new(OPENSSL_CTX *ctx,
113 int secure,
114 int type,
115 unsigned int flags,
116 RAND_DRBG *parent);
117
118 static int is_ctr(int type)
119 {
120 switch (type) {
121 case NID_aes_128_ctr:
122 case NID_aes_192_ctr:
123 case NID_aes_256_ctr:
124 return 1;
125 default:
126 return 0;
127 }
128 }
129
130 static int is_digest(int type)
131 {
132 switch (type) {
133 case NID_sha1:
134 case NID_sha224:
135 case NID_sha256:
136 case NID_sha384:
137 case NID_sha512:
138 case NID_sha512_224:
139 case NID_sha512_256:
140 case NID_sha3_224:
141 case NID_sha3_256:
142 case NID_sha3_384:
143 case NID_sha3_512:
144 return 1;
145 default:
146 return 0;
147 }
148 }
149
150 /*
151 * Initialize the OPENSSL_CTX global DRBGs on first use.
152 * Returns the allocated global data on success or NULL on failure.
153 */
154 static void *drbg_ossl_ctx_new(OPENSSL_CTX *libctx)
155 {
156 DRBG_GLOBAL *dgbl = OPENSSL_zalloc(sizeof(*dgbl));
157
158 if (dgbl == NULL)
159 return NULL;
160
161 #ifndef FIPS_MODE
162 /*
163 * We need to ensure that base libcrypto thread handling has been
164 * initialised.
165 */
166 OPENSSL_init_crypto(0, NULL);
167 #endif
168
169 if (!CRYPTO_THREAD_init_local(&dgbl->private_drbg, NULL))
170 goto err1;
171
172 if (!CRYPTO_THREAD_init_local(&dgbl->public_drbg, NULL))
173 goto err2;
174
175 dgbl->master_drbg = drbg_setup(libctx, NULL, RAND_DRBG_TYPE_MASTER);
176 if (dgbl->master_drbg == NULL)
177 goto err3;
178
179 return dgbl;
180
181 err3:
182 CRYPTO_THREAD_cleanup_local(&dgbl->public_drbg);
183 err2:
184 CRYPTO_THREAD_cleanup_local(&dgbl->private_drbg);
185 err1:
186 OPENSSL_free(dgbl);
187 return NULL;
188 }
189
190 static void drbg_ossl_ctx_free(void *vdgbl)
191 {
192 DRBG_GLOBAL *dgbl = vdgbl;
193
194 RAND_DRBG_free(dgbl->master_drbg);
195 CRYPTO_THREAD_cleanup_local(&dgbl->private_drbg);
196 CRYPTO_THREAD_cleanup_local(&dgbl->public_drbg);
197
198 OPENSSL_free(dgbl);
199 }
200
201 static const OPENSSL_CTX_METHOD drbg_ossl_ctx_method = {
202 drbg_ossl_ctx_new,
203 drbg_ossl_ctx_free,
204 };
205
206 /*
207 * drbg_ossl_ctx_new() calls drgb_setup() which calls rand_drbg_get_nonce()
208 * which needs to get the rand_nonce_lock out of the OPENSSL_CTX...but since
209 * drbg_ossl_ctx_new() hasn't finished running yet we need the rand_nonce_lock
210 * to be in a different global data object. Otherwise we will go into an
211 * infinite recursion loop.
212 */
213 static void *drbg_nonce_ossl_ctx_new(OPENSSL_CTX *libctx)
214 {
215 DRBG_NONCE_GLOBAL *dngbl = OPENSSL_zalloc(sizeof(*dngbl));
216
217 if (dngbl == NULL)
218 return NULL;
219
220 dngbl->rand_nonce_lock = CRYPTO_THREAD_lock_new();
221 if (dngbl->rand_nonce_lock == NULL) {
222 OPENSSL_free(dngbl);
223 return NULL;
224 }
225
226 return dngbl;
227 }
228
229 static void drbg_nonce_ossl_ctx_free(void *vdngbl)
230 {
231 DRBG_NONCE_GLOBAL *dngbl = vdngbl;
232
233 CRYPTO_THREAD_lock_free(dngbl->rand_nonce_lock);
234
235 OPENSSL_free(dngbl);
236 }
237
238 static const OPENSSL_CTX_METHOD drbg_nonce_ossl_ctx_method = {
239 drbg_nonce_ossl_ctx_new,
240 drbg_nonce_ossl_ctx_free,
241 };
242
243 static DRBG_GLOBAL *drbg_get_global(OPENSSL_CTX *libctx)
244 {
245 return openssl_ctx_get_data(libctx, OPENSSL_CTX_DRBG_INDEX,
246 &drbg_ossl_ctx_method);
247 }
248
249 /* Implements the get_nonce() callback (see RAND_DRBG_set_callbacks()) */
250 size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
251 unsigned char **pout,
252 int entropy, size_t min_len, size_t max_len)
253 {
254 size_t ret = 0;
255 RAND_POOL *pool;
256 DRBG_NONCE_GLOBAL *dngbl
257 = openssl_ctx_get_data(drbg->libctx, OPENSSL_CTX_DRBG_NONCE_INDEX,
258 &drbg_nonce_ossl_ctx_method);
259 struct {
260 void *instance;
261 int count;
262 } data;
263
264 if (dngbl == NULL)
265 return 0;
266
267 memset(&data, 0, sizeof(data));
268 pool = rand_pool_new(0, min_len, max_len);
269 if (pool == NULL)
270 return 0;
271
272 if (rand_pool_add_nonce_data(pool) == 0)
273 goto err;
274
275 data.instance = drbg;
276 CRYPTO_atomic_add(&dngbl->rand_nonce_count, 1, &data.count,
277 dngbl->rand_nonce_lock);
278
279 if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
280 goto err;
281
282 ret = rand_pool_length(pool);
283 *pout = rand_pool_detach(pool);
284
285 err:
286 rand_pool_free(pool);
287
288 return ret;
289 }
290
291 /*
292 * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
293 *
294 */
295 void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
296 unsigned char *out, size_t outlen)
297 {
298 OPENSSL_secure_clear_free(out, outlen);
299 }
300
301 /*
302 * Set/initialize |drbg| to be of type |type|, with optional |flags|.
303 *
304 * If |type| and |flags| are zero, use the defaults
305 *
306 * Returns 1 on success, 0 on failure.
307 */
308 int RAND_DRBG_set(RAND_DRBG *drbg, int type, unsigned int flags)
309 {
310 int ret = 1;
311
312 if (type == 0 && flags == 0) {
313 type = rand_drbg_type[RAND_DRBG_TYPE_MASTER];
314 flags = rand_drbg_flags[RAND_DRBG_TYPE_MASTER];
315 }
316
317 /* If set is called multiple times - clear the old one */
318 if (drbg->type != 0 && (type != drbg->type || flags != drbg->flags)) {
319 drbg->meth->uninstantiate(drbg);
320 rand_pool_free(drbg->adin_pool);
321 drbg->adin_pool = NULL;
322 }
323
324 drbg->state = DRBG_UNINITIALISED;
325 drbg->flags = flags;
326 drbg->type = type;
327
328 if (type == 0) {
329 /* Uninitialized; that's okay. */
330 drbg->meth = NULL;
331 return 1;
332 } else if (is_ctr(type)) {
333 ret = drbg_ctr_init(drbg);
334 } else if (is_digest(type)) {
335 if (flags & RAND_DRBG_FLAG_HMAC)
336 ret = drbg_hmac_init(drbg);
337 else
338 ret = drbg_hash_init(drbg);
339 } else {
340 drbg->type = 0;
341 drbg->flags = 0;
342 drbg->meth = NULL;
343 RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_UNSUPPORTED_DRBG_TYPE);
344 return 0;
345 }
346
347 if (ret == 0) {
348 drbg->state = DRBG_ERROR;
349 RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_ERROR_INITIALISING_DRBG);
350 }
351 return ret;
352 }
353
354 /*
355 * Set/initialize default |type| and |flag| for new drbg instances.
356 *
357 * Returns 1 on success, 0 on failure.
358 */
359 int RAND_DRBG_set_defaults(int type, unsigned int flags)
360 {
361 int all;
362 if (!(is_digest(type) || is_ctr(type))) {
363 RANDerr(RAND_F_RAND_DRBG_SET_DEFAULTS, RAND_R_UNSUPPORTED_DRBG_TYPE);
364 return 0;
365 }
366
367 if ((flags & ~rand_drbg_used_flags) != 0) {
368 RANDerr(RAND_F_RAND_DRBG_SET_DEFAULTS, RAND_R_UNSUPPORTED_DRBG_FLAGS);
369 return 0;
370 }
371
372 all = ((flags & RAND_DRBG_TYPE_FLAGS) == 0);
373 if (all || (flags & RAND_DRBG_FLAG_MASTER) != 0) {
374 rand_drbg_type[RAND_DRBG_TYPE_MASTER] = type;
375 rand_drbg_flags[RAND_DRBG_TYPE_MASTER] = flags | RAND_DRBG_FLAG_MASTER;
376 }
377 if (all || (flags & RAND_DRBG_FLAG_PUBLIC) != 0) {
378 rand_drbg_type[RAND_DRBG_TYPE_PUBLIC] = type;
379 rand_drbg_flags[RAND_DRBG_TYPE_PUBLIC] = flags | RAND_DRBG_FLAG_PUBLIC;
380 }
381 if (all || (flags & RAND_DRBG_FLAG_PRIVATE) != 0) {
382 rand_drbg_type[RAND_DRBG_TYPE_PRIVATE] = type;
383 rand_drbg_flags[RAND_DRBG_TYPE_PRIVATE] = flags | RAND_DRBG_FLAG_PRIVATE;
384 }
385 return 1;
386 }
387
388
389 /*
390 * Allocate memory and initialize a new DRBG. The DRBG is allocated on
391 * the secure heap if |secure| is nonzero and the secure heap is enabled.
392 * The |parent|, if not NULL, will be used as random source for reseeding.
393 *
394 * Returns a pointer to the new DRBG instance on success, NULL on failure.
395 */
396 static RAND_DRBG *rand_drbg_new(OPENSSL_CTX *ctx,
397 int secure,
398 int type,
399 unsigned int flags,
400 RAND_DRBG *parent)
401 {
402 RAND_DRBG *drbg = secure ? OPENSSL_secure_zalloc(sizeof(*drbg))
403 : OPENSSL_zalloc(sizeof(*drbg));
404
405 if (drbg == NULL) {
406 RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE);
407 return NULL;
408 }
409
410 drbg->libctx = ctx;
411 drbg->secure = secure && CRYPTO_secure_allocated(drbg);
412 drbg->fork_count = rand_fork_count;
413 drbg->parent = parent;
414
415 if (parent == NULL) {
416 #ifdef FIPS_MODE
417 drbg->get_entropy = rand_crngt_get_entropy;
418 drbg->cleanup_entropy = rand_crngt_cleanup_entropy;
419 #else
420 drbg->get_entropy = rand_drbg_get_entropy;
421 drbg->cleanup_entropy = rand_drbg_cleanup_entropy;
422 #endif
423 #ifndef RAND_DRBG_GET_RANDOM_NONCE
424 drbg->get_nonce = rand_drbg_get_nonce;
425 drbg->cleanup_nonce = rand_drbg_cleanup_nonce;
426 #endif
427
428 drbg->reseed_interval = master_reseed_interval;
429 drbg->reseed_time_interval = master_reseed_time_interval;
430 } else {
431 drbg->get_entropy = rand_drbg_get_entropy;
432 drbg->cleanup_entropy = rand_drbg_cleanup_entropy;
433 /*
434 * Do not provide nonce callbacks, the child DRBGs will
435 * obtain their nonce using random bits from the parent.
436 */
437
438 drbg->reseed_interval = slave_reseed_interval;
439 drbg->reseed_time_interval = slave_reseed_time_interval;
440 }
441
442 if (RAND_DRBG_set(drbg, type, flags) == 0)
443 goto err;
444
445 if (parent != NULL) {
446 rand_drbg_lock(parent);
447 if (drbg->strength > parent->strength) {
448 /*
449 * We currently don't support the algorithm from NIST SP 800-90C
450 * 10.1.2 to use a weaker DRBG as source
451 */
452 rand_drbg_unlock(parent);
453 RANDerr(RAND_F_RAND_DRBG_NEW, RAND_R_PARENT_STRENGTH_TOO_WEAK);
454 goto err;
455 }
456 rand_drbg_unlock(parent);
457 }
458
459 return drbg;
460
461 err:
462 RAND_DRBG_free(drbg);
463
464 return NULL;
465 }
466
467 RAND_DRBG *RAND_DRBG_new_ex(OPENSSL_CTX *ctx, int type, unsigned int flags,
468 RAND_DRBG *parent)
469 {
470 return rand_drbg_new(ctx, 0, type, flags, parent);
471 }
472
473 RAND_DRBG *RAND_DRBG_new(int type, unsigned int flags, RAND_DRBG *parent)
474 {
475 return RAND_DRBG_new_ex(NULL, type, flags, parent);
476 }
477
478 RAND_DRBG *RAND_DRBG_secure_new_ex(OPENSSL_CTX *ctx, int type,
479 unsigned int flags, RAND_DRBG *parent)
480 {
481 return rand_drbg_new(ctx, 1, type, flags, parent);
482 }
483
484 RAND_DRBG *RAND_DRBG_secure_new(int type, unsigned int flags, RAND_DRBG *parent)
485 {
486 return RAND_DRBG_secure_new_ex(NULL, type, flags, parent);
487 }
488 /*
489 * Uninstantiate |drbg| and free all memory.
490 */
491 void RAND_DRBG_free(RAND_DRBG *drbg)
492 {
493 if (drbg == NULL)
494 return;
495
496 if (drbg->meth != NULL)
497 drbg->meth->uninstantiate(drbg);
498 rand_pool_free(drbg->adin_pool);
499 CRYPTO_THREAD_lock_free(drbg->lock);
500 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DRBG, drbg, &drbg->ex_data);
501
502 if (drbg->secure)
503 OPENSSL_secure_clear_free(drbg, sizeof(*drbg));
504 else
505 OPENSSL_clear_free(drbg, sizeof(*drbg));
506 }
507
508 /*
509 * Instantiate |drbg|, after it has been initialized. Use |pers| and
510 * |perslen| as prediction-resistance input.
511 *
512 * Requires that drbg->lock is already locked for write, if non-null.
513 *
514 * Returns 1 on success, 0 on failure.
515 */
516 int RAND_DRBG_instantiate(RAND_DRBG *drbg,
517 const unsigned char *pers, size_t perslen)
518 {
519 unsigned char *nonce = NULL, *entropy = NULL;
520 size_t noncelen = 0, entropylen = 0;
521 size_t min_entropy = drbg->strength;
522 size_t min_entropylen = drbg->min_entropylen;
523 size_t max_entropylen = drbg->max_entropylen;
524
525 if (perslen > drbg->max_perslen) {
526 RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
527 RAND_R_PERSONALISATION_STRING_TOO_LONG);
528 goto end;
529 }
530
531 if (drbg->meth == NULL) {
532 RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
533 RAND_R_NO_DRBG_IMPLEMENTATION_SELECTED);
534 goto end;
535 }
536
537 if (drbg->state != DRBG_UNINITIALISED) {
538 RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
539 drbg->state == DRBG_ERROR ? RAND_R_IN_ERROR_STATE
540 : RAND_R_ALREADY_INSTANTIATED);
541 goto end;
542 }
543
544 drbg->state = DRBG_ERROR;
545
546 /*
547 * NIST SP800-90Ar1 section 9.1 says you can combine getting the entropy
548 * and nonce in 1 call by increasing the entropy with 50% and increasing
549 * the minimum length to accomadate the length of the nonce.
550 * We do this in case a nonce is require and get_nonce is NULL.
551 */
552 if (drbg->min_noncelen > 0 && drbg->get_nonce == NULL) {
553 min_entropy += drbg->strength / 2;
554 min_entropylen += drbg->min_noncelen;
555 max_entropylen += drbg->max_noncelen;
556 }
557
558 drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter);
559 if (drbg->reseed_next_counter) {
560 drbg->reseed_next_counter++;
561 if(!drbg->reseed_next_counter)
562 drbg->reseed_next_counter = 1;
563 }
564
565 if (drbg->get_entropy != NULL)
566 entropylen = drbg->get_entropy(drbg, &entropy, min_entropy,
567 min_entropylen, max_entropylen, 0);
568 if (entropylen < min_entropylen
569 || entropylen > max_entropylen) {
570 RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_ENTROPY);
571 goto end;
572 }
573
574 if (drbg->min_noncelen > 0 && drbg->get_nonce != NULL) {
575 noncelen = drbg->get_nonce(drbg, &nonce, drbg->strength / 2,
576 drbg->min_noncelen, drbg->max_noncelen);
577 if (noncelen < drbg->min_noncelen || noncelen > drbg->max_noncelen) {
578 RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_NONCE);
579 goto end;
580 }
581 }
582
583 if (!drbg->meth->instantiate(drbg, entropy, entropylen,
584 nonce, noncelen, pers, perslen)) {
585 RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_INSTANTIATING_DRBG);
586 goto end;
587 }
588
589 drbg->state = DRBG_READY;
590 drbg->reseed_gen_counter = 1;
591 drbg->reseed_time = time(NULL);
592 tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter);
593
594 end:
595 if (entropy != NULL && drbg->cleanup_entropy != NULL)
596 drbg->cleanup_entropy(drbg, entropy, entropylen);
597 if (nonce != NULL && drbg->cleanup_nonce != NULL)
598 drbg->cleanup_nonce(drbg, nonce, noncelen);
599 if (drbg->state == DRBG_READY)
600 return 1;
601 return 0;
602 }
603
604 /*
605 * Uninstantiate |drbg|. Must be instantiated before it can be used.
606 *
607 * Requires that drbg->lock is already locked for write, if non-null.
608 *
609 * Returns 1 on success, 0 on failure.
610 */
611 int RAND_DRBG_uninstantiate(RAND_DRBG *drbg)
612 {
613 int index = -1, type, flags;
614 if (drbg->meth == NULL) {
615 drbg->state = DRBG_ERROR;
616 RANDerr(RAND_F_RAND_DRBG_UNINSTANTIATE,
617 RAND_R_NO_DRBG_IMPLEMENTATION_SELECTED);
618 return 0;
619 }
620
621 /* Clear the entire drbg->ctr struct, then reset some important
622 * members of the drbg->ctr struct (e.g. keysize, df_ks) to their
623 * initial values.
624 */
625 drbg->meth->uninstantiate(drbg);
626
627 /* The reset uses the default values for type and flags */
628 if (drbg->flags & RAND_DRBG_FLAG_MASTER)
629 index = RAND_DRBG_TYPE_MASTER;
630 else if (drbg->flags & RAND_DRBG_FLAG_PRIVATE)
631 index = RAND_DRBG_TYPE_PRIVATE;
632 else if (drbg->flags & RAND_DRBG_FLAG_PUBLIC)
633 index = RAND_DRBG_TYPE_PUBLIC;
634
635 if (index != -1) {
636 flags = rand_drbg_flags[index];
637 type = rand_drbg_type[index];
638 } else {
639 flags = drbg->flags;
640 type = drbg->type;
641 }
642 return RAND_DRBG_set(drbg, type, flags);
643 }
644
645 /*
646 * Reseed |drbg|, mixing in the specified data
647 *
648 * Requires that drbg->lock is already locked for write, if non-null.
649 *
650 * Returns 1 on success, 0 on failure.
651 */
652 int RAND_DRBG_reseed(RAND_DRBG *drbg,
653 const unsigned char *adin, size_t adinlen,
654 int prediction_resistance)
655 {
656 unsigned char *entropy = NULL;
657 size_t entropylen = 0;
658
659 if (drbg->state == DRBG_ERROR) {
660 RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_IN_ERROR_STATE);
661 return 0;
662 }
663 if (drbg->state == DRBG_UNINITIALISED) {
664 RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_NOT_INSTANTIATED);
665 return 0;
666 }
667
668 if (adin == NULL) {
669 adinlen = 0;
670 } else if (adinlen > drbg->max_adinlen) {
671 RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
672 return 0;
673 }
674
675 drbg->state = DRBG_ERROR;
676
677 drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter);
678 if (drbg->reseed_next_counter) {
679 drbg->reseed_next_counter++;
680 if(!drbg->reseed_next_counter)
681 drbg->reseed_next_counter = 1;
682 }
683
684 if (drbg->get_entropy != NULL)
685 entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength,
686 drbg->min_entropylen,
687 drbg->max_entropylen,
688 prediction_resistance);
689 if (entropylen < drbg->min_entropylen
690 || entropylen > drbg->max_entropylen) {
691 RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ERROR_RETRIEVING_ENTROPY);
692 goto end;
693 }
694
695 if (!drbg->meth->reseed(drbg, entropy, entropylen, adin, adinlen))
696 goto end;
697
698 drbg->state = DRBG_READY;
699 drbg->reseed_gen_counter = 1;
700 drbg->reseed_time = time(NULL);
701 tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter);
702
703 end:
704 if (entropy != NULL && drbg->cleanup_entropy != NULL)
705 drbg->cleanup_entropy(drbg, entropy, entropylen);
706 if (drbg->state == DRBG_READY)
707 return 1;
708 return 0;
709 }
710
711 /*
712 * Restart |drbg|, using the specified entropy or additional input
713 *
714 * Tries its best to get the drbg instantiated by all means,
715 * regardless of its current state.
716 *
717 * Optionally, a |buffer| of |len| random bytes can be passed,
718 * which is assumed to contain at least |entropy| bits of entropy.
719 *
720 * If |entropy| > 0, the buffer content is used as entropy input.
721 *
722 * If |entropy| == 0, the buffer content is used as additional input
723 *
724 * Returns 1 on success, 0 on failure.
725 *
726 * This function is used internally only.
727 */
728 int rand_drbg_restart(RAND_DRBG *drbg,
729 const unsigned char *buffer, size_t len, size_t entropy)
730 {
731 int reseeded = 0;
732 const unsigned char *adin = NULL;
733 size_t adinlen = 0;
734
735 if (drbg->seed_pool != NULL) {
736 RANDerr(RAND_F_RAND_DRBG_RESTART, ERR_R_INTERNAL_ERROR);
737 drbg->state = DRBG_ERROR;
738 rand_pool_free(drbg->seed_pool);
739 drbg->seed_pool = NULL;
740 return 0;
741 }
742
743 if (buffer != NULL) {
744 if (entropy > 0) {
745 if (drbg->max_entropylen < len) {
746 RANDerr(RAND_F_RAND_DRBG_RESTART,
747 RAND_R_ENTROPY_INPUT_TOO_LONG);
748 drbg->state = DRBG_ERROR;
749 return 0;
750 }
751
752 if (entropy > 8 * len) {
753 RANDerr(RAND_F_RAND_DRBG_RESTART, RAND_R_ENTROPY_OUT_OF_RANGE);
754 drbg->state = DRBG_ERROR;
755 return 0;
756 }
757
758 /* will be picked up by the rand_drbg_get_entropy() callback */
759 drbg->seed_pool = rand_pool_attach(buffer, len, entropy);
760 if (drbg->seed_pool == NULL)
761 return 0;
762 } else {
763 if (drbg->max_adinlen < len) {
764 RANDerr(RAND_F_RAND_DRBG_RESTART,
765 RAND_R_ADDITIONAL_INPUT_TOO_LONG);
766 drbg->state = DRBG_ERROR;
767 return 0;
768 }
769 adin = buffer;
770 adinlen = len;
771 }
772 }
773
774 /* repair error state */
775 if (drbg->state == DRBG_ERROR)
776 RAND_DRBG_uninstantiate(drbg);
777
778 /* repair uninitialized state */
779 if (drbg->state == DRBG_UNINITIALISED) {
780 /* reinstantiate drbg */
781 RAND_DRBG_instantiate(drbg,
782 (const unsigned char *) ossl_pers_string,
783 sizeof(ossl_pers_string) - 1);
784 /* already reseeded. prevent second reseeding below */
785 reseeded = (drbg->state == DRBG_READY);
786 }
787
788 /* refresh current state if entropy or additional input has been provided */
789 if (drbg->state == DRBG_READY) {
790 if (adin != NULL) {
791 /*
792 * mix in additional input without reseeding
793 *
794 * Similar to RAND_DRBG_reseed(), but the provided additional
795 * data |adin| is mixed into the current state without pulling
796 * entropy from the trusted entropy source using get_entropy().
797 * This is not a reseeding in the strict sense of NIST SP 800-90A.
798 */
799 drbg->meth->reseed(drbg, adin, adinlen, NULL, 0);
800 } else if (reseeded == 0) {
801 /* do a full reseeding if it has not been done yet above */
802 RAND_DRBG_reseed(drbg, NULL, 0, 0);
803 }
804 }
805
806 rand_pool_free(drbg->seed_pool);
807 drbg->seed_pool = NULL;
808
809 return drbg->state == DRBG_READY;
810 }
811
812 /*
813 * Generate |outlen| bytes into the buffer at |out|. Reseed if we need
814 * to or if |prediction_resistance| is set. Additional input can be
815 * sent in |adin| and |adinlen|.
816 *
817 * Requires that drbg->lock is already locked for write, if non-null.
818 *
819 * Returns 1 on success, 0 on failure.
820 *
821 */
822 int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen,
823 int prediction_resistance,
824 const unsigned char *adin, size_t adinlen)
825 {
826 int reseed_required = 0;
827
828 if (drbg->state != DRBG_READY) {
829 /* try to recover from previous errors */
830 rand_drbg_restart(drbg, NULL, 0, 0);
831
832 if (drbg->state == DRBG_ERROR) {
833 RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_IN_ERROR_STATE);
834 return 0;
835 }
836 if (drbg->state == DRBG_UNINITIALISED) {
837 RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_NOT_INSTANTIATED);
838 return 0;
839 }
840 }
841
842 if (outlen > drbg->max_request) {
843 RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG);
844 return 0;
845 }
846 if (adinlen > drbg->max_adinlen) {
847 RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
848 return 0;
849 }
850
851 if (drbg->fork_count != rand_fork_count) {
852 drbg->fork_count = rand_fork_count;
853 reseed_required = 1;
854 }
855
856 if (drbg->reseed_interval > 0) {
857 if (drbg->reseed_gen_counter > drbg->reseed_interval)
858 reseed_required = 1;
859 }
860 if (drbg->reseed_time_interval > 0) {
861 time_t now = time(NULL);
862 if (now < drbg->reseed_time
863 || now - drbg->reseed_time >= drbg->reseed_time_interval)
864 reseed_required = 1;
865 }
866 if (drbg->parent != NULL) {
867 unsigned int reseed_counter = tsan_load(&drbg->reseed_prop_counter);
868 if (reseed_counter > 0
869 && tsan_load(&drbg->parent->reseed_prop_counter)
870 != reseed_counter)
871 reseed_required = 1;
872 }
873
874 if (reseed_required || prediction_resistance) {
875 if (!RAND_DRBG_reseed(drbg, adin, adinlen, prediction_resistance)) {
876 RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_RESEED_ERROR);
877 return 0;
878 }
879 adin = NULL;
880 adinlen = 0;
881 }
882
883 if (!drbg->meth->generate(drbg, out, outlen, adin, adinlen)) {
884 drbg->state = DRBG_ERROR;
885 RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_GENERATE_ERROR);
886 return 0;
887 }
888
889 drbg->reseed_gen_counter++;
890
891 return 1;
892 }
893
894 /*
895 * Generates |outlen| random bytes and stores them in |out|. It will
896 * using the given |drbg| to generate the bytes.
897 *
898 * Requires that drbg->lock is already locked for write, if non-null.
899 *
900 * Returns 1 on success 0 on failure.
901 */
902 int RAND_DRBG_bytes(RAND_DRBG *drbg, unsigned char *out, size_t outlen)
903 {
904 unsigned char *additional = NULL;
905 size_t additional_len;
906 size_t chunk;
907 size_t ret = 0;
908
909 if (drbg->adin_pool == NULL) {
910 if (drbg->type == 0)
911 goto err;
912 drbg->adin_pool = rand_pool_new(0, 0, drbg->max_adinlen);
913 if (drbg->adin_pool == NULL)
914 goto err;
915 }
916
917 additional_len = rand_drbg_get_additional_data(drbg->adin_pool,
918 &additional);
919
920 for ( ; outlen > 0; outlen -= chunk, out += chunk) {
921 chunk = outlen;
922 if (chunk > drbg->max_request)
923 chunk = drbg->max_request;
924 ret = RAND_DRBG_generate(drbg, out, chunk, 0, additional, additional_len);
925 if (!ret)
926 goto err;
927 }
928 ret = 1;
929
930 err:
931 if (additional != NULL)
932 rand_drbg_cleanup_additional_data(drbg->adin_pool, additional);
933
934 return ret;
935 }
936
937 /*
938 * Set the RAND_DRBG callbacks for obtaining entropy and nonce.
939 *
940 * Setting the callbacks is allowed only if the drbg has not been
941 * initialized yet. Otherwise, the operation will fail.
942 *
943 * Returns 1 on success, 0 on failure.
944 */
945 int RAND_DRBG_set_callbacks(RAND_DRBG *drbg,
946 RAND_DRBG_get_entropy_fn get_entropy,
947 RAND_DRBG_cleanup_entropy_fn cleanup_entropy,
948 RAND_DRBG_get_nonce_fn get_nonce,
949 RAND_DRBG_cleanup_nonce_fn cleanup_nonce)
950 {
951 if (drbg->state != DRBG_UNINITIALISED
952 || drbg->parent != NULL)
953 return 0;
954 drbg->get_entropy = get_entropy;
955 drbg->cleanup_entropy = cleanup_entropy;
956 drbg->get_nonce = get_nonce;
957 drbg->cleanup_nonce = cleanup_nonce;
958 return 1;
959 }
960
961 /*
962 * Set the reseed interval.
963 *
964 * The drbg will reseed automatically whenever the number of generate
965 * requests exceeds the given reseed interval. If the reseed interval
966 * is 0, then this feature is disabled.
967 *
968 * Returns 1 on success, 0 on failure.
969 */
970 int RAND_DRBG_set_reseed_interval(RAND_DRBG *drbg, unsigned int interval)
971 {
972 if (interval > MAX_RESEED_INTERVAL)
973 return 0;
974 drbg->reseed_interval = interval;
975 return 1;
976 }
977
978 /*
979 * Set the reseed time interval.
980 *
981 * The drbg will reseed automatically whenever the time elapsed since
982 * the last reseeding exceeds the given reseed time interval. For safety,
983 * a reseeding will also occur if the clock has been reset to a smaller
984 * value.
985 *
986 * Returns 1 on success, 0 on failure.
987 */
988 int RAND_DRBG_set_reseed_time_interval(RAND_DRBG *drbg, time_t interval)
989 {
990 if (interval > MAX_RESEED_TIME_INTERVAL)
991 return 0;
992 drbg->reseed_time_interval = interval;
993 return 1;
994 }
995
996 /*
997 * Set the default values for reseed (time) intervals of new DRBG instances
998 *
999 * The default values can be set independently for master DRBG instances
1000 * (without a parent) and slave DRBG instances (with parent).
1001 *
1002 * Returns 1 on success, 0 on failure.
1003 */
1004
1005 int RAND_DRBG_set_reseed_defaults(
1006 unsigned int _master_reseed_interval,
1007 unsigned int _slave_reseed_interval,
1008 time_t _master_reseed_time_interval,
1009 time_t _slave_reseed_time_interval
1010 )
1011 {
1012 if (_master_reseed_interval > MAX_RESEED_INTERVAL
1013 || _slave_reseed_interval > MAX_RESEED_INTERVAL)
1014 return 0;
1015
1016 if (_master_reseed_time_interval > MAX_RESEED_TIME_INTERVAL
1017 || _slave_reseed_time_interval > MAX_RESEED_TIME_INTERVAL)
1018 return 0;
1019
1020 master_reseed_interval = _master_reseed_interval;
1021 slave_reseed_interval = _slave_reseed_interval;
1022
1023 master_reseed_time_interval = _master_reseed_time_interval;
1024 slave_reseed_time_interval = _slave_reseed_time_interval;
1025
1026 return 1;
1027 }
1028
1029 /*
1030 * Locks the given drbg. Locking a drbg which does not have locking
1031 * enabled is considered a successful no-op.
1032 *
1033 * Returns 1 on success, 0 on failure.
1034 */
1035 int rand_drbg_lock(RAND_DRBG *drbg)
1036 {
1037 if (drbg->lock != NULL)
1038 return CRYPTO_THREAD_write_lock(drbg->lock);
1039
1040 return 1;
1041 }
1042
1043 /*
1044 * Unlocks the given drbg. Unlocking a drbg which does not have locking
1045 * enabled is considered a successful no-op.
1046 *
1047 * Returns 1 on success, 0 on failure.
1048 */
1049 int rand_drbg_unlock(RAND_DRBG *drbg)
1050 {
1051 if (drbg->lock != NULL)
1052 return CRYPTO_THREAD_unlock(drbg->lock);
1053
1054 return 1;
1055 }
1056
1057 /*
1058 * Enables locking for the given drbg
1059 *
1060 * Locking can only be enabled if the random generator
1061 * is in the uninitialized state.
1062 *
1063 * Returns 1 on success, 0 on failure.
1064 */
1065 int rand_drbg_enable_locking(RAND_DRBG *drbg)
1066 {
1067 if (drbg->state != DRBG_UNINITIALISED) {
1068 RANDerr(RAND_F_RAND_DRBG_ENABLE_LOCKING,
1069 RAND_R_DRBG_ALREADY_INITIALIZED);
1070 return 0;
1071 }
1072
1073 if (drbg->lock == NULL) {
1074 if (drbg->parent != NULL && drbg->parent->lock == NULL) {
1075 RANDerr(RAND_F_RAND_DRBG_ENABLE_LOCKING,
1076 RAND_R_PARENT_LOCKING_NOT_ENABLED);
1077 return 0;
1078 }
1079
1080 drbg->lock = CRYPTO_THREAD_lock_new();
1081 if (drbg->lock == NULL) {
1082 RANDerr(RAND_F_RAND_DRBG_ENABLE_LOCKING,
1083 RAND_R_FAILED_TO_CREATE_LOCK);
1084 return 0;
1085 }
1086 }
1087
1088 return 1;
1089 }
1090
1091 /*
1092 * Get and set the EXDATA
1093 */
1094 int RAND_DRBG_set_ex_data(RAND_DRBG *drbg, int idx, void *arg)
1095 {
1096 return CRYPTO_set_ex_data(&drbg->ex_data, idx, arg);
1097 }
1098
1099 void *RAND_DRBG_get_ex_data(const RAND_DRBG *drbg, int idx)
1100 {
1101 return CRYPTO_get_ex_data(&drbg->ex_data, idx);
1102 }
1103
1104
1105 /*
1106 * The following functions provide a RAND_METHOD that works on the
1107 * global DRBG. They lock.
1108 */
1109
1110 /*
1111 * Allocates a new global DRBG on the secure heap (if enabled) and
1112 * initializes it with default settings.
1113 *
1114 * Returns a pointer to the new DRBG instance on success, NULL on failure.
1115 */
1116 static RAND_DRBG *drbg_setup(OPENSSL_CTX *ctx, RAND_DRBG *parent, int drbg_type)
1117 {
1118 RAND_DRBG *drbg;
1119
1120 drbg = RAND_DRBG_secure_new_ex(ctx, rand_drbg_type[drbg_type],
1121 rand_drbg_flags[drbg_type], parent);
1122 if (drbg == NULL)
1123 return NULL;
1124
1125 /* Only the master DRBG needs to have a lock */
1126 if (parent == NULL && rand_drbg_enable_locking(drbg) == 0)
1127 goto err;
1128
1129 /* enable seed propagation */
1130 tsan_store(&drbg->reseed_prop_counter, 1);
1131
1132 /*
1133 * Ignore instantiation error to support just-in-time instantiation.
1134 *
1135 * The state of the drbg will be checked in RAND_DRBG_generate() and
1136 * an automatic recovery is attempted.
1137 */
1138 (void)RAND_DRBG_instantiate(drbg,
1139 (const unsigned char *) ossl_pers_string,
1140 sizeof(ossl_pers_string) - 1);
1141 return drbg;
1142
1143 err:
1144 RAND_DRBG_free(drbg);
1145 return NULL;
1146 }
1147
1148 static void drbg_delete_thread_state(void *arg)
1149 {
1150 OPENSSL_CTX *ctx = arg;
1151 DRBG_GLOBAL *dgbl = drbg_get_global(ctx);
1152 RAND_DRBG *drbg;
1153
1154 if (dgbl == NULL)
1155 return;
1156 drbg = CRYPTO_THREAD_get_local(&dgbl->public_drbg);
1157 CRYPTO_THREAD_set_local(&dgbl->public_drbg, NULL);
1158 RAND_DRBG_free(drbg);
1159
1160 drbg = CRYPTO_THREAD_get_local(&dgbl->private_drbg);
1161 CRYPTO_THREAD_set_local(&dgbl->private_drbg, NULL);
1162 RAND_DRBG_free(drbg);
1163 }
1164
1165 /* Implements the default OpenSSL RAND_bytes() method */
1166 static int drbg_bytes(unsigned char *out, int count)
1167 {
1168 int ret;
1169 RAND_DRBG *drbg = RAND_DRBG_get0_public();
1170
1171 if (drbg == NULL)
1172 return 0;
1173
1174 ret = RAND_DRBG_bytes(drbg, out, count);
1175
1176 return ret;
1177 }
1178
1179 /*
1180 * Calculates the minimum length of a full entropy buffer
1181 * which is necessary to seed (i.e. instantiate) the DRBG
1182 * successfully.
1183 */
1184 size_t rand_drbg_seedlen(RAND_DRBG *drbg)
1185 {
1186 /*
1187 * If no os entropy source is available then RAND_seed(buffer, bufsize)
1188 * is expected to succeed if and only if the buffer length satisfies
1189 * the following requirements, which follow from the calculations
1190 * in RAND_DRBG_instantiate().
1191 */
1192 size_t min_entropy = drbg->strength;
1193 size_t min_entropylen = drbg->min_entropylen;
1194
1195 /*
1196 * Extra entropy for the random nonce in the absence of a
1197 * get_nonce callback, see comment in RAND_DRBG_instantiate().
1198 */
1199 if (drbg->min_noncelen > 0 && drbg->get_nonce == NULL) {
1200 min_entropy += drbg->strength / 2;
1201 min_entropylen += drbg->min_noncelen;
1202 }
1203
1204 /*
1205 * Convert entropy requirement from bits to bytes
1206 * (dividing by 8 without rounding upwards, because
1207 * all entropy requirements are divisible by 8).
1208 */
1209 min_entropy >>= 3;
1210
1211 /* Return a value that satisfies both requirements */
1212 return min_entropy > min_entropylen ? min_entropy : min_entropylen;
1213 }
1214
1215 /* Implements the default OpenSSL RAND_add() method */
1216 static int drbg_add(const void *buf, int num, double randomness)
1217 {
1218 int ret = 0;
1219 RAND_DRBG *drbg = RAND_DRBG_get0_master();
1220 size_t buflen;
1221 size_t seedlen;
1222
1223 if (drbg == NULL)
1224 return 0;
1225
1226 if (num < 0 || randomness < 0.0)
1227 return 0;
1228
1229 rand_drbg_lock(drbg);
1230 seedlen = rand_drbg_seedlen(drbg);
1231
1232 buflen = (size_t)num;
1233
1234 #ifdef FIPS_MODE
1235 /*
1236 * NIST SP-800-90A mandates that entropy *shall not* be provided
1237 * by the consuming application. By setting the randomness to zero,
1238 * we ensure that the buffer contents will be added to the internal
1239 * state of the DRBG only as additional data.
1240 *
1241 * (NIST SP-800-90Ar1, Sections 9.1 and 9.2)
1242 */
1243 randomness = 0.0;
1244 #endif
1245 if (buflen < seedlen || randomness < (double) seedlen) {
1246 #if defined(OPENSSL_RAND_SEED_NONE)
1247 /*
1248 * If no os entropy source is available, a reseeding will fail
1249 * inevitably. So we use a trick to mix the buffer contents into
1250 * the DRBG state without forcing a reseeding: we generate a
1251 * dummy random byte, using the buffer content as additional data.
1252 * Note: This won't work with RAND_DRBG_FLAG_CTR_NO_DF.
1253 */
1254 unsigned char dummy[1];
1255
1256 ret = RAND_DRBG_generate(drbg, dummy, sizeof(dummy), 0, buf, buflen);
1257 rand_drbg_unlock(drbg);
1258 return ret;
1259 #else
1260 /*
1261 * If an os entropy source is available then we declare the buffer content
1262 * as additional data by setting randomness to zero and trigger a regular
1263 * reseeding.
1264 */
1265 randomness = 0.0;
1266 #endif
1267 }
1268
1269 if (randomness > (double)seedlen) {
1270 /*
1271 * The purpose of this check is to bound |randomness| by a
1272 * relatively small value in order to prevent an integer
1273 * overflow when multiplying by 8 in the rand_drbg_restart()
1274 * call below. Note that randomness is measured in bytes,
1275 * not bits, so this value corresponds to eight times the
1276 * security strength.
1277 */
1278 randomness = (double)seedlen;
1279 }
1280
1281 ret = rand_drbg_restart(drbg, buf, buflen, (size_t)(8 * randomness));
1282 rand_drbg_unlock(drbg);
1283
1284 return ret;
1285 }
1286
1287 /* Implements the default OpenSSL RAND_seed() method */
1288 static int drbg_seed(const void *buf, int num)
1289 {
1290 return drbg_add(buf, num, num);
1291 }
1292
1293 /* Implements the default OpenSSL RAND_status() method */
1294 static int drbg_status(void)
1295 {
1296 int ret;
1297 RAND_DRBG *drbg = RAND_DRBG_get0_master();
1298
1299 if (drbg == NULL)
1300 return 0;
1301
1302 rand_drbg_lock(drbg);
1303 ret = drbg->state == DRBG_READY ? 1 : 0;
1304 rand_drbg_unlock(drbg);
1305 return ret;
1306 }
1307
1308 /*
1309 * Get the master DRBG.
1310 * Returns pointer to the DRBG on success, NULL on failure.
1311 *
1312 */
1313 RAND_DRBG *OPENSSL_CTX_get0_master_drbg(OPENSSL_CTX *ctx)
1314 {
1315 DRBG_GLOBAL *dgbl = drbg_get_global(ctx);
1316
1317 if (dgbl == NULL)
1318 return NULL;
1319
1320 return dgbl->master_drbg;
1321 }
1322
1323 RAND_DRBG *RAND_DRBG_get0_master(void)
1324 {
1325 return OPENSSL_CTX_get0_master_drbg(NULL);
1326 }
1327
1328 /*
1329 * Get the public DRBG.
1330 * Returns pointer to the DRBG on success, NULL on failure.
1331 */
1332 RAND_DRBG *OPENSSL_CTX_get0_public_drbg(OPENSSL_CTX *ctx)
1333 {
1334 DRBG_GLOBAL *dgbl = drbg_get_global(ctx);
1335 RAND_DRBG *drbg;
1336
1337 if (dgbl == NULL)
1338 return NULL;
1339
1340 drbg = CRYPTO_THREAD_get_local(&dgbl->public_drbg);
1341 if (drbg == NULL) {
1342 ctx = openssl_ctx_get_concrete(ctx);
1343 if (!ossl_init_thread_start(NULL, ctx, drbg_delete_thread_state))
1344 return NULL;
1345 drbg = drbg_setup(ctx, dgbl->master_drbg, RAND_DRBG_TYPE_PUBLIC);
1346 CRYPTO_THREAD_set_local(&dgbl->public_drbg, drbg);
1347 }
1348 return drbg;
1349 }
1350
1351 RAND_DRBG *RAND_DRBG_get0_public(void)
1352 {
1353 return OPENSSL_CTX_get0_public_drbg(NULL);
1354 }
1355
1356 /*
1357 * Get the private DRBG.
1358 * Returns pointer to the DRBG on success, NULL on failure.
1359 */
1360 RAND_DRBG *OPENSSL_CTX_get0_private_drbg(OPENSSL_CTX *ctx)
1361 {
1362 DRBG_GLOBAL *dgbl = drbg_get_global(ctx);
1363 RAND_DRBG *drbg;
1364
1365 if (dgbl == NULL)
1366 return NULL;
1367
1368 drbg = CRYPTO_THREAD_get_local(&dgbl->private_drbg);
1369 if (drbg == NULL) {
1370 ctx = openssl_ctx_get_concrete(ctx);
1371 if (!ossl_init_thread_start(NULL, ctx, drbg_delete_thread_state))
1372 return NULL;
1373 drbg = drbg_setup(ctx, dgbl->master_drbg, RAND_DRBG_TYPE_PRIVATE);
1374 CRYPTO_THREAD_set_local(&dgbl->private_drbg, drbg);
1375 }
1376 return drbg;
1377 }
1378
1379 RAND_DRBG *RAND_DRBG_get0_private(void)
1380 {
1381 return OPENSSL_CTX_get0_private_drbg(NULL);
1382 }
1383
1384 RAND_METHOD rand_meth = {
1385 drbg_seed,
1386 drbg_bytes,
1387 NULL,
1388 drbg_add,
1389 drbg_bytes,
1390 drbg_status
1391 };
1392
1393 RAND_METHOD *RAND_OpenSSL(void)
1394 {
1395 #ifndef FIPS_MODE
1396 return &rand_meth;
1397 #else
1398 return NULL;
1399 #endif
1400 }