]> git.ipfire.org Git - thirdparty/openssl.git/blob - providers/implementations/encode_decode/encode_key2any.c
Copyright year updates
[thirdparty/openssl.git] / providers / implementations / encode_decode / encode_key2any.c
1 /*
2 * Copyright 2020-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * Low level APIs are deprecated for public use, but still ok for internal use.
12 */
13 #include "internal/deprecated.h"
14
15 #include <openssl/core.h>
16 #include <openssl/core_dispatch.h>
17 #include <openssl/core_names.h>
18 #include <openssl/crypto.h>
19 #include <openssl/params.h>
20 #include <openssl/asn1.h>
21 #include <openssl/err.h>
22 #include <openssl/pem.h>
23 #include <openssl/x509.h>
24 #include <openssl/pkcs12.h> /* PKCS8_encrypt() */
25 #include <openssl/dh.h>
26 #include <openssl/dsa.h>
27 #include <openssl/ec.h>
28 #include <openssl/proverr.h>
29 #include "internal/passphrase.h"
30 #include "internal/cryptlib.h"
31 #include "crypto/ecx.h"
32 #include "crypto/rsa.h"
33 #include "prov/implementations.h"
34 #include "prov/bio.h"
35 #include "prov/provider_ctx.h"
36 #include "prov/der_rsa.h"
37 #include "endecoder_local.h"
38
39 #if defined(OPENSSL_NO_DH) && defined(OPENSSL_NO_DSA) && defined(OPENSSL_NO_EC)
40 # define OPENSSL_NO_KEYPARAMS
41 #endif
42
43 struct key2any_ctx_st {
44 PROV_CTX *provctx;
45
46 /* Set to 0 if parameters should not be saved (dsa only) */
47 int save_parameters;
48
49 /* Set to 1 if intending to encrypt/decrypt, otherwise 0 */
50 int cipher_intent;
51
52 EVP_CIPHER *cipher;
53
54 struct ossl_passphrase_data_st pwdata;
55 };
56
57 typedef int check_key_type_fn(const void *key, int nid);
58 typedef int key_to_paramstring_fn(const void *key, int nid, int save,
59 void **str, int *strtype);
60 typedef int key_to_der_fn(BIO *out, const void *key,
61 int key_nid, const char *pemname,
62 key_to_paramstring_fn *p2s, i2d_of_void *k2d,
63 struct key2any_ctx_st *ctx);
64 typedef int write_bio_of_void_fn(BIO *bp, const void *x);
65
66
67 /* Free the blob allocated during key_to_paramstring_fn */
68 static void free_asn1_data(int type, void *data)
69 {
70 switch (type) {
71 case V_ASN1_OBJECT:
72 ASN1_OBJECT_free(data);
73 break;
74 case V_ASN1_SEQUENCE:
75 ASN1_STRING_free(data);
76 break;
77 }
78 }
79
80 static PKCS8_PRIV_KEY_INFO *key_to_p8info(const void *key, int key_nid,
81 void *params, int params_type,
82 i2d_of_void *k2d)
83 {
84 /* der, derlen store the key DER output and its length */
85 unsigned char *der = NULL;
86 int derlen;
87 /* The final PKCS#8 info */
88 PKCS8_PRIV_KEY_INFO *p8info = NULL;
89
90 if ((p8info = PKCS8_PRIV_KEY_INFO_new()) == NULL
91 || (derlen = k2d(key, &der)) <= 0
92 || !PKCS8_pkey_set0(p8info, OBJ_nid2obj(key_nid), 0,
93 params_type, params, der, derlen)) {
94 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
95 PKCS8_PRIV_KEY_INFO_free(p8info);
96 OPENSSL_free(der);
97 p8info = NULL;
98 }
99
100 return p8info;
101 }
102
103 static X509_SIG *p8info_to_encp8(PKCS8_PRIV_KEY_INFO *p8info,
104 struct key2any_ctx_st *ctx)
105 {
106 X509_SIG *p8 = NULL;
107 char kstr[PEM_BUFSIZE];
108 size_t klen = 0;
109 OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
110
111 if (ctx->cipher == NULL)
112 return NULL;
113
114 if (!ossl_pw_get_passphrase(kstr, sizeof(kstr), &klen, NULL, 1,
115 &ctx->pwdata)) {
116 ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_GET_PASSPHRASE);
117 return NULL;
118 }
119 /* First argument == -1 means "standard" */
120 p8 = PKCS8_encrypt_ex(-1, ctx->cipher, kstr, klen, NULL, 0, 0, p8info, libctx, NULL);
121 OPENSSL_cleanse(kstr, klen);
122 return p8;
123 }
124
125 static X509_SIG *key_to_encp8(const void *key, int key_nid,
126 void *params, int params_type,
127 i2d_of_void *k2d, struct key2any_ctx_st *ctx)
128 {
129 PKCS8_PRIV_KEY_INFO *p8info =
130 key_to_p8info(key, key_nid, params, params_type, k2d);
131 X509_SIG *p8 = NULL;
132
133 if (p8info == NULL) {
134 free_asn1_data(params_type, params);
135 } else {
136 p8 = p8info_to_encp8(p8info, ctx);
137 PKCS8_PRIV_KEY_INFO_free(p8info);
138 }
139 return p8;
140 }
141
142 static X509_PUBKEY *key_to_pubkey(const void *key, int key_nid,
143 void *params, int params_type,
144 i2d_of_void k2d)
145 {
146 /* der, derlen store the key DER output and its length */
147 unsigned char *der = NULL;
148 int derlen;
149 /* The final X509_PUBKEY */
150 X509_PUBKEY *xpk = NULL;
151
152
153 if ((xpk = X509_PUBKEY_new()) == NULL
154 || (derlen = k2d(key, &der)) <= 0
155 || !X509_PUBKEY_set0_param(xpk, OBJ_nid2obj(key_nid),
156 params_type, params, der, derlen)) {
157 ERR_raise(ERR_LIB_PROV, ERR_R_X509_LIB);
158 X509_PUBKEY_free(xpk);
159 OPENSSL_free(der);
160 xpk = NULL;
161 }
162
163 return xpk;
164 }
165
166 /*
167 * key_to_epki_* produce encoded output with the private key data in a
168 * EncryptedPrivateKeyInfo structure (defined by PKCS#8). They require
169 * that there's an intent to encrypt, anything else is an error.
170 *
171 * key_to_pki_* primarily produce encoded output with the private key data
172 * in a PrivateKeyInfo structure (also defined by PKCS#8). However, if
173 * there is an intent to encrypt the data, the corresponding key_to_epki_*
174 * function is used instead.
175 *
176 * key_to_spki_* produce encoded output with the public key data in an
177 * X.509 SubjectPublicKeyInfo.
178 *
179 * Key parameters don't have any defined envelopment of this kind, but are
180 * included in some manner in the output from the functions described above,
181 * either in the AlgorithmIdentifier's parameter field, or as part of the
182 * key data itself.
183 */
184
185 static int key_to_epki_der_priv_bio(BIO *out, const void *key,
186 int key_nid,
187 ossl_unused const char *pemname,
188 key_to_paramstring_fn *p2s,
189 i2d_of_void *k2d,
190 struct key2any_ctx_st *ctx)
191 {
192 int ret = 0;
193 void *str = NULL;
194 int strtype = V_ASN1_UNDEF;
195 X509_SIG *p8;
196
197 if (!ctx->cipher_intent)
198 return 0;
199
200 if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
201 &str, &strtype))
202 return 0;
203
204 p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
205 if (p8 != NULL)
206 ret = i2d_PKCS8_bio(out, p8);
207
208 X509_SIG_free(p8);
209
210 return ret;
211 }
212
213 static int key_to_epki_pem_priv_bio(BIO *out, const void *key,
214 int key_nid,
215 ossl_unused const char *pemname,
216 key_to_paramstring_fn *p2s,
217 i2d_of_void *k2d,
218 struct key2any_ctx_st *ctx)
219 {
220 int ret = 0;
221 void *str = NULL;
222 int strtype = V_ASN1_UNDEF;
223 X509_SIG *p8;
224
225 if (!ctx->cipher_intent)
226 return 0;
227
228 if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
229 &str, &strtype))
230 return 0;
231
232 p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
233 if (p8 != NULL)
234 ret = PEM_write_bio_PKCS8(out, p8);
235
236 X509_SIG_free(p8);
237
238 return ret;
239 }
240
241 static int key_to_pki_der_priv_bio(BIO *out, const void *key,
242 int key_nid,
243 ossl_unused const char *pemname,
244 key_to_paramstring_fn *p2s,
245 i2d_of_void *k2d,
246 struct key2any_ctx_st *ctx)
247 {
248 int ret = 0;
249 void *str = NULL;
250 int strtype = V_ASN1_UNDEF;
251 PKCS8_PRIV_KEY_INFO *p8info;
252
253 if (ctx->cipher_intent)
254 return key_to_epki_der_priv_bio(out, key, key_nid, pemname,
255 p2s, k2d, ctx);
256
257 if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
258 &str, &strtype))
259 return 0;
260
261 p8info = key_to_p8info(key, key_nid, str, strtype, k2d);
262
263 if (p8info != NULL)
264 ret = i2d_PKCS8_PRIV_KEY_INFO_bio(out, p8info);
265 else
266 free_asn1_data(strtype, str);
267
268 PKCS8_PRIV_KEY_INFO_free(p8info);
269
270 return ret;
271 }
272
273 static int key_to_pki_pem_priv_bio(BIO *out, const void *key,
274 int key_nid,
275 ossl_unused const char *pemname,
276 key_to_paramstring_fn *p2s,
277 i2d_of_void *k2d,
278 struct key2any_ctx_st *ctx)
279 {
280 int ret = 0;
281 void *str = NULL;
282 int strtype = V_ASN1_UNDEF;
283 PKCS8_PRIV_KEY_INFO *p8info;
284
285 if (ctx->cipher_intent)
286 return key_to_epki_pem_priv_bio(out, key, key_nid, pemname,
287 p2s, k2d, ctx);
288
289 if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
290 &str, &strtype))
291 return 0;
292
293 p8info = key_to_p8info(key, key_nid, str, strtype, k2d);
294
295 if (p8info != NULL)
296 ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(out, p8info);
297 else
298 free_asn1_data(strtype, str);
299
300 PKCS8_PRIV_KEY_INFO_free(p8info);
301
302 return ret;
303 }
304
305 static int key_to_spki_der_pub_bio(BIO *out, const void *key,
306 int key_nid,
307 ossl_unused const char *pemname,
308 key_to_paramstring_fn *p2s,
309 i2d_of_void *k2d,
310 struct key2any_ctx_st *ctx)
311 {
312 int ret = 0;
313 void *str = NULL;
314 int strtype = V_ASN1_UNDEF;
315 X509_PUBKEY *xpk = NULL;
316
317 if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
318 &str, &strtype))
319 return 0;
320
321 xpk = key_to_pubkey(key, key_nid, str, strtype, k2d);
322
323 if (xpk != NULL)
324 ret = i2d_X509_PUBKEY_bio(out, xpk);
325
326 /* Also frees |str| */
327 X509_PUBKEY_free(xpk);
328 return ret;
329 }
330
331 static int key_to_spki_pem_pub_bio(BIO *out, const void *key,
332 int key_nid,
333 ossl_unused const char *pemname,
334 key_to_paramstring_fn *p2s,
335 i2d_of_void *k2d,
336 struct key2any_ctx_st *ctx)
337 {
338 int ret = 0;
339 void *str = NULL;
340 int strtype = V_ASN1_UNDEF;
341 X509_PUBKEY *xpk = NULL;
342
343 if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
344 &str, &strtype))
345 return 0;
346
347 xpk = key_to_pubkey(key, key_nid, str, strtype, k2d);
348
349 if (xpk != NULL)
350 ret = PEM_write_bio_X509_PUBKEY(out, xpk);
351 else
352 free_asn1_data(strtype, str);
353
354 /* Also frees |str| */
355 X509_PUBKEY_free(xpk);
356 return ret;
357 }
358
359 /*
360 * key_to_type_specific_* produce encoded output with type specific key data,
361 * no envelopment; the same kind of output as the type specific i2d_ and
362 * PEM_write_ functions, which is often a simple SEQUENCE of INTEGER.
363 *
364 * OpenSSL tries to discourage production of new keys in this form, because
365 * of the ambiguity when trying to recognise them, but can't deny that PKCS#1
366 * et al still are live standards.
367 *
368 * Note that these functions completely ignore p2s, and rather rely entirely
369 * on k2d to do the complete work.
370 */
371 static int key_to_type_specific_der_bio(BIO *out, const void *key,
372 int key_nid,
373 ossl_unused const char *pemname,
374 key_to_paramstring_fn *p2s,
375 i2d_of_void *k2d,
376 struct key2any_ctx_st *ctx)
377 {
378 unsigned char *der = NULL;
379 int derlen;
380 int ret;
381
382 if ((derlen = k2d(key, &der)) <= 0) {
383 ERR_raise(ERR_LIB_PROV, ERR_R_PROV_LIB);
384 return 0;
385 }
386
387 ret = BIO_write(out, der, derlen);
388 OPENSSL_free(der);
389 return ret > 0;
390 }
391 #define key_to_type_specific_der_priv_bio key_to_type_specific_der_bio
392 #define key_to_type_specific_der_pub_bio key_to_type_specific_der_bio
393 #define key_to_type_specific_der_param_bio key_to_type_specific_der_bio
394
395 static int key_to_type_specific_pem_bio_cb(BIO *out, const void *key,
396 int key_nid, const char *pemname,
397 key_to_paramstring_fn *p2s,
398 i2d_of_void *k2d,
399 struct key2any_ctx_st *ctx,
400 pem_password_cb *cb, void *cbarg)
401 {
402 return
403 PEM_ASN1_write_bio(k2d, pemname, out, key, ctx->cipher,
404 NULL, 0, cb, cbarg) > 0;
405 }
406
407 static int key_to_type_specific_pem_priv_bio(BIO *out, const void *key,
408 int key_nid, const char *pemname,
409 key_to_paramstring_fn *p2s,
410 i2d_of_void *k2d,
411 struct key2any_ctx_st *ctx)
412 {
413 return key_to_type_specific_pem_bio_cb(out, key, key_nid, pemname,
414 p2s, k2d, ctx,
415 ossl_pw_pem_password, &ctx->pwdata);
416 }
417
418 static int key_to_type_specific_pem_pub_bio(BIO *out, const void *key,
419 int key_nid, const char *pemname,
420 key_to_paramstring_fn *p2s,
421 i2d_of_void *k2d,
422 struct key2any_ctx_st *ctx)
423 {
424 return key_to_type_specific_pem_bio_cb(out, key, key_nid, pemname,
425 p2s, k2d, ctx, NULL, NULL);
426 }
427
428 #ifndef OPENSSL_NO_KEYPARAMS
429 static int key_to_type_specific_pem_param_bio(BIO *out, const void *key,
430 int key_nid, const char *pemname,
431 key_to_paramstring_fn *p2s,
432 i2d_of_void *k2d,
433 struct key2any_ctx_st *ctx)
434 {
435 return key_to_type_specific_pem_bio_cb(out, key, key_nid, pemname,
436 p2s, k2d, ctx, NULL, NULL);
437 }
438 #endif
439
440 /* ---------------------------------------------------------------------- */
441
442 #ifndef OPENSSL_NO_DH
443 static int prepare_dh_params(const void *dh, int nid, int save,
444 void **pstr, int *pstrtype)
445 {
446 ASN1_STRING *params = ASN1_STRING_new();
447
448 if (params == NULL) {
449 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
450 return 0;
451 }
452
453 if (nid == EVP_PKEY_DHX)
454 params->length = i2d_DHxparams(dh, &params->data);
455 else
456 params->length = i2d_DHparams(dh, &params->data);
457
458 if (params->length <= 0) {
459 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
460 ASN1_STRING_free(params);
461 return 0;
462 }
463 params->type = V_ASN1_SEQUENCE;
464
465 *pstr = params;
466 *pstrtype = V_ASN1_SEQUENCE;
467 return 1;
468 }
469
470 static int dh_spki_pub_to_der(const void *dh, unsigned char **pder)
471 {
472 const BIGNUM *bn = NULL;
473 ASN1_INTEGER *pub_key = NULL;
474 int ret;
475
476 if ((bn = DH_get0_pub_key(dh)) == NULL) {
477 ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
478 return 0;
479 }
480 if ((pub_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
481 ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
482 return 0;
483 }
484
485 ret = i2d_ASN1_INTEGER(pub_key, pder);
486
487 ASN1_STRING_clear_free(pub_key);
488 return ret;
489 }
490
491 static int dh_pki_priv_to_der(const void *dh, unsigned char **pder)
492 {
493 const BIGNUM *bn = NULL;
494 ASN1_INTEGER *priv_key = NULL;
495 int ret;
496
497 if ((bn = DH_get0_priv_key(dh)) == NULL) {
498 ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PRIVATE_KEY);
499 return 0;
500 }
501 if ((priv_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
502 ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
503 return 0;
504 }
505
506 ret = i2d_ASN1_INTEGER(priv_key, pder);
507
508 ASN1_STRING_clear_free(priv_key);
509 return ret;
510 }
511
512 # define dh_epki_priv_to_der dh_pki_priv_to_der
513
514 static int dh_type_specific_params_to_der(const void *dh, unsigned char **pder)
515 {
516 if (DH_test_flags(dh, DH_FLAG_TYPE_DHX))
517 return i2d_DHxparams(dh, pder);
518 return i2d_DHparams(dh, pder);
519 }
520
521 /*
522 * DH doesn't have i2d_DHPrivateKey or i2d_DHPublicKey, so we can't make
523 * corresponding functions here.
524 */
525 # define dh_type_specific_priv_to_der NULL
526 # define dh_type_specific_pub_to_der NULL
527
528 static int dh_check_key_type(const void *dh, int expected_type)
529 {
530 int type =
531 DH_test_flags(dh, DH_FLAG_TYPE_DHX) ? EVP_PKEY_DHX : EVP_PKEY_DH;
532
533 return type == expected_type;
534 }
535
536 # define dh_evp_type EVP_PKEY_DH
537 # define dhx_evp_type EVP_PKEY_DHX
538 # define dh_input_type "DH"
539 # define dhx_input_type "DHX"
540 # define dh_pem_type "DH"
541 # define dhx_pem_type "X9.42 DH"
542 #endif
543
544 /* ---------------------------------------------------------------------- */
545
546 #ifndef OPENSSL_NO_DSA
547 static int encode_dsa_params(const void *dsa, int nid,
548 void **pstr, int *pstrtype)
549 {
550 ASN1_STRING *params = ASN1_STRING_new();
551
552 if (params == NULL) {
553 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
554 return 0;
555 }
556
557 params->length = i2d_DSAparams(dsa, &params->data);
558
559 if (params->length <= 0) {
560 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
561 ASN1_STRING_free(params);
562 return 0;
563 }
564
565 *pstrtype = V_ASN1_SEQUENCE;
566 *pstr = params;
567 return 1;
568 }
569
570 static int prepare_dsa_params(const void *dsa, int nid, int save,
571 void **pstr, int *pstrtype)
572 {
573 const BIGNUM *p = DSA_get0_p(dsa);
574 const BIGNUM *q = DSA_get0_q(dsa);
575 const BIGNUM *g = DSA_get0_g(dsa);
576
577 if (save && p != NULL && q != NULL && g != NULL)
578 return encode_dsa_params(dsa, nid, pstr, pstrtype);
579
580 *pstr = NULL;
581 *pstrtype = V_ASN1_UNDEF;
582 return 1;
583 }
584
585 static int dsa_spki_pub_to_der(const void *dsa, unsigned char **pder)
586 {
587 const BIGNUM *bn = NULL;
588 ASN1_INTEGER *pub_key = NULL;
589 int ret;
590
591 if ((bn = DSA_get0_pub_key(dsa)) == NULL) {
592 ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
593 return 0;
594 }
595 if ((pub_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
596 ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
597 return 0;
598 }
599
600 ret = i2d_ASN1_INTEGER(pub_key, pder);
601
602 ASN1_STRING_clear_free(pub_key);
603 return ret;
604 }
605
606 static int dsa_pki_priv_to_der(const void *dsa, unsigned char **pder)
607 {
608 const BIGNUM *bn = NULL;
609 ASN1_INTEGER *priv_key = NULL;
610 int ret;
611
612 if ((bn = DSA_get0_priv_key(dsa)) == NULL) {
613 ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PRIVATE_KEY);
614 return 0;
615 }
616 if ((priv_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
617 ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
618 return 0;
619 }
620
621 ret = i2d_ASN1_INTEGER(priv_key, pder);
622
623 ASN1_STRING_clear_free(priv_key);
624 return ret;
625 }
626
627 # define dsa_epki_priv_to_der dsa_pki_priv_to_der
628
629 # define dsa_type_specific_priv_to_der (i2d_of_void *)i2d_DSAPrivateKey
630 # define dsa_type_specific_pub_to_der (i2d_of_void *)i2d_DSAPublicKey
631 # define dsa_type_specific_params_to_der (i2d_of_void *)i2d_DSAparams
632
633 # define dsa_check_key_type NULL
634 # define dsa_evp_type EVP_PKEY_DSA
635 # define dsa_input_type "DSA"
636 # define dsa_pem_type "DSA"
637 #endif
638
639 /* ---------------------------------------------------------------------- */
640
641 #ifndef OPENSSL_NO_EC
642 static int prepare_ec_explicit_params(const void *eckey,
643 void **pstr, int *pstrtype)
644 {
645 ASN1_STRING *params = ASN1_STRING_new();
646
647 if (params == NULL) {
648 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
649 return 0;
650 }
651
652 params->length = i2d_ECParameters(eckey, &params->data);
653 if (params->length <= 0) {
654 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
655 ASN1_STRING_free(params);
656 return 0;
657 }
658
659 *pstrtype = V_ASN1_SEQUENCE;
660 *pstr = params;
661 return 1;
662 }
663
664 /*
665 * This implements EcpkParameters, where the CHOICE is based on whether there
666 * is a curve name (curve nid) to be found or not. See RFC 3279 for details.
667 */
668 static int prepare_ec_params(const void *eckey, int nid, int save,
669 void **pstr, int *pstrtype)
670 {
671 int curve_nid;
672 const EC_GROUP *group = EC_KEY_get0_group(eckey);
673 ASN1_OBJECT *params = NULL;
674
675 if (group == NULL)
676 return 0;
677 curve_nid = EC_GROUP_get_curve_name(group);
678 if (curve_nid != NID_undef) {
679 params = OBJ_nid2obj(curve_nid);
680 if (params == NULL)
681 return 0;
682 }
683
684 if (curve_nid != NID_undef
685 && (EC_GROUP_get_asn1_flag(group) & OPENSSL_EC_NAMED_CURVE)) {
686 /* The CHOICE came to namedCurve */
687 if (OBJ_length(params) == 0) {
688 /* Some curves might not have an associated OID */
689 ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_OID);
690 ASN1_OBJECT_free(params);
691 return 0;
692 }
693 *pstr = params;
694 *pstrtype = V_ASN1_OBJECT;
695 return 1;
696 } else {
697 /* The CHOICE came to ecParameters */
698 return prepare_ec_explicit_params(eckey, pstr, pstrtype);
699 }
700 }
701
702 static int ec_spki_pub_to_der(const void *eckey, unsigned char **pder)
703 {
704 if (EC_KEY_get0_public_key(eckey) == NULL) {
705 ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
706 return 0;
707 }
708 return i2o_ECPublicKey(eckey, pder);
709 }
710
711 static int ec_pki_priv_to_der(const void *veckey, unsigned char **pder)
712 {
713 EC_KEY *eckey = (EC_KEY *)veckey;
714 unsigned int old_flags;
715 int ret = 0;
716
717 /*
718 * For PKCS8 the curve name appears in the PKCS8_PRIV_KEY_INFO object
719 * as the pkeyalg->parameter field. (For a named curve this is an OID)
720 * The pkey field is an octet string that holds the encoded
721 * ECPrivateKey SEQUENCE with the optional parameters field omitted.
722 * We omit this by setting the EC_PKEY_NO_PARAMETERS flag.
723 */
724 old_flags = EC_KEY_get_enc_flags(eckey); /* save old flags */
725 EC_KEY_set_enc_flags(eckey, old_flags | EC_PKEY_NO_PARAMETERS);
726 ret = i2d_ECPrivateKey(eckey, pder);
727 EC_KEY_set_enc_flags(eckey, old_flags); /* restore old flags */
728 return ret; /* return the length of the der encoded data */
729 }
730
731 # define ec_epki_priv_to_der ec_pki_priv_to_der
732
733 # define ec_type_specific_params_to_der (i2d_of_void *)i2d_ECParameters
734 /* No ec_type_specific_pub_to_der, there simply is no such thing */
735 # define ec_type_specific_priv_to_der (i2d_of_void *)i2d_ECPrivateKey
736
737 # define ec_check_key_type NULL
738 # define ec_evp_type EVP_PKEY_EC
739 # define ec_input_type "EC"
740 # define ec_pem_type "EC"
741
742 # ifndef OPENSSL_NO_SM2
743 /*
744 * Albeit SM2 is a slightly different algorithm than ECDSA, the key type
745 * encoding (in all places where an AlgorithmIdentifier is produced, such
746 * as PrivateKeyInfo and SubjectPublicKeyInfo) is the same as for ECC keys
747 * according to the example in GM/T 0015-2012, appendix D.2.
748 * This leaves the distinction of SM2 keys to the EC group (which is found
749 * in AlgorithmIdentified.params).
750 */
751 # define sm2_evp_type ec_evp_type
752 # define sm2_input_type "SM2"
753 # define sm2_pem_type "SM2"
754 # endif
755 #endif
756
757 /* ---------------------------------------------------------------------- */
758
759 #ifndef OPENSSL_NO_ECX
760 # define prepare_ecx_params NULL
761
762 static int ecx_spki_pub_to_der(const void *vecxkey, unsigned char **pder)
763 {
764 const ECX_KEY *ecxkey = vecxkey;
765 unsigned char *keyblob;
766
767 if (ecxkey == NULL) {
768 ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
769 return 0;
770 }
771
772 keyblob = OPENSSL_memdup(ecxkey->pubkey, ecxkey->keylen);
773 if (keyblob == NULL)
774 return 0;
775
776 *pder = keyblob;
777 return ecxkey->keylen;
778 }
779
780 static int ecx_pki_priv_to_der(const void *vecxkey, unsigned char **pder)
781 {
782 const ECX_KEY *ecxkey = vecxkey;
783 ASN1_OCTET_STRING oct;
784 int keybloblen;
785
786 if (ecxkey == NULL || ecxkey->privkey == NULL) {
787 ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
788 return 0;
789 }
790
791 oct.data = ecxkey->privkey;
792 oct.length = ecxkey->keylen;
793 oct.flags = 0;
794
795 keybloblen = i2d_ASN1_OCTET_STRING(&oct, pder);
796 if (keybloblen < 0) {
797 ERR_raise(ERR_LIB_PROV, ERR_R_ASN1_LIB);
798 return 0;
799 }
800
801 return keybloblen;
802 }
803
804 # define ecx_epki_priv_to_der ecx_pki_priv_to_der
805
806 /*
807 * ED25519, ED448, X25519 and X448 only has PKCS#8 / SubjectPublicKeyInfo
808 * representation, so we don't define ecx_type_specific_[priv,pub,params]_to_der.
809 */
810
811 # define ecx_check_key_type NULL
812
813 # define ed25519_evp_type EVP_PKEY_ED25519
814 # define ed448_evp_type EVP_PKEY_ED448
815 # define x25519_evp_type EVP_PKEY_X25519
816 # define x448_evp_type EVP_PKEY_X448
817 # define ed25519_input_type "ED25519"
818 # define ed448_input_type "ED448"
819 # define x25519_input_type "X25519"
820 # define x448_input_type "X448"
821 # define ed25519_pem_type "ED25519"
822 # define ed448_pem_type "ED448"
823 # define x25519_pem_type "X25519"
824 # define x448_pem_type "X448"
825 #endif
826
827 /* ---------------------------------------------------------------------- */
828
829 /*
830 * Helper functions to prepare RSA-PSS params for encoding. We would
831 * have simply written the whole AlgorithmIdentifier, but existing libcrypto
832 * functionality doesn't allow that.
833 */
834
835 static int prepare_rsa_params(const void *rsa, int nid, int save,
836 void **pstr, int *pstrtype)
837 {
838 const RSA_PSS_PARAMS_30 *pss = ossl_rsa_get0_pss_params_30((RSA *)rsa);
839
840 *pstr = NULL;
841
842 switch (RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK)) {
843 case RSA_FLAG_TYPE_RSA:
844 /* If plain RSA, the parameters shall be NULL */
845 *pstrtype = V_ASN1_NULL;
846 return 1;
847 case RSA_FLAG_TYPE_RSASSAPSS:
848 if (ossl_rsa_pss_params_30_is_unrestricted(pss)) {
849 *pstrtype = V_ASN1_UNDEF;
850 return 1;
851 } else {
852 ASN1_STRING *astr = NULL;
853 WPACKET pkt;
854 unsigned char *str = NULL;
855 size_t str_sz = 0;
856 int i;
857
858 for (i = 0; i < 2; i++) {
859 switch (i) {
860 case 0:
861 if (!WPACKET_init_null_der(&pkt))
862 goto err;
863 break;
864 case 1:
865 if ((str = OPENSSL_malloc(str_sz)) == NULL
866 || !WPACKET_init_der(&pkt, str, str_sz)) {
867 WPACKET_cleanup(&pkt);
868 goto err;
869 }
870 break;
871 }
872 if (!ossl_DER_w_RSASSA_PSS_params(&pkt, -1, pss)
873 || !WPACKET_finish(&pkt)
874 || !WPACKET_get_total_written(&pkt, &str_sz)) {
875 WPACKET_cleanup(&pkt);
876 goto err;
877 }
878 WPACKET_cleanup(&pkt);
879
880 /*
881 * If no PSS parameters are going to be written, there's no
882 * point going for another iteration.
883 * This saves us from getting |str| allocated just to have it
884 * immediately de-allocated.
885 */
886 if (str_sz == 0)
887 break;
888 }
889
890 if ((astr = ASN1_STRING_new()) == NULL)
891 goto err;
892 *pstrtype = V_ASN1_SEQUENCE;
893 ASN1_STRING_set0(astr, str, (int)str_sz);
894 *pstr = astr;
895
896 return 1;
897 err:
898 OPENSSL_free(str);
899 return 0;
900 }
901 }
902
903 /* Currently unsupported RSA key type */
904 return 0;
905 }
906
907 /*
908 * RSA is extremely simple, as PKCS#1 is used for the PKCS#8 |privateKey|
909 * field as well as the SubjectPublicKeyInfo |subjectPublicKey| field.
910 */
911 #define rsa_pki_priv_to_der rsa_type_specific_priv_to_der
912 #define rsa_epki_priv_to_der rsa_type_specific_priv_to_der
913 #define rsa_spki_pub_to_der rsa_type_specific_pub_to_der
914 #define rsa_type_specific_priv_to_der (i2d_of_void *)i2d_RSAPrivateKey
915 #define rsa_type_specific_pub_to_der (i2d_of_void *)i2d_RSAPublicKey
916 #define rsa_type_specific_params_to_der NULL
917
918 static int rsa_check_key_type(const void *rsa, int expected_type)
919 {
920 switch (RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK)) {
921 case RSA_FLAG_TYPE_RSA:
922 return expected_type == EVP_PKEY_RSA;
923 case RSA_FLAG_TYPE_RSASSAPSS:
924 return expected_type == EVP_PKEY_RSA_PSS;
925 }
926
927 /* Currently unsupported RSA key type */
928 return EVP_PKEY_NONE;
929 }
930
931 #define rsa_evp_type EVP_PKEY_RSA
932 #define rsapss_evp_type EVP_PKEY_RSA_PSS
933 #define rsa_input_type "RSA"
934 #define rsapss_input_type "RSA-PSS"
935 #define rsa_pem_type "RSA"
936 #define rsapss_pem_type "RSA-PSS"
937
938 /* ---------------------------------------------------------------------- */
939
940 static OSSL_FUNC_decoder_newctx_fn key2any_newctx;
941 static OSSL_FUNC_decoder_freectx_fn key2any_freectx;
942
943 static void *key2any_newctx(void *provctx)
944 {
945 struct key2any_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx));
946
947 if (ctx != NULL) {
948 ctx->provctx = provctx;
949 ctx->save_parameters = 1;
950 }
951
952 return ctx;
953 }
954
955 static void key2any_freectx(void *vctx)
956 {
957 struct key2any_ctx_st *ctx = vctx;
958
959 ossl_pw_clear_passphrase_data(&ctx->pwdata);
960 EVP_CIPHER_free(ctx->cipher);
961 OPENSSL_free(ctx);
962 }
963
964 static const OSSL_PARAM *key2any_settable_ctx_params(ossl_unused void *provctx)
965 {
966 static const OSSL_PARAM settables[] = {
967 OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_CIPHER, NULL, 0),
968 OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_PROPERTIES, NULL, 0),
969 OSSL_PARAM_END,
970 };
971
972 return settables;
973 }
974
975 static int key2any_set_ctx_params(void *vctx, const OSSL_PARAM params[])
976 {
977 struct key2any_ctx_st *ctx = vctx;
978 OSSL_LIB_CTX *libctx = ossl_prov_ctx_get0_libctx(ctx->provctx);
979 const OSSL_PARAM *cipherp =
980 OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_CIPHER);
981 const OSSL_PARAM *propsp =
982 OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_PROPERTIES);
983 const OSSL_PARAM *save_paramsp =
984 OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_SAVE_PARAMETERS);
985
986 if (cipherp != NULL) {
987 const char *ciphername = NULL;
988 const char *props = NULL;
989
990 if (!OSSL_PARAM_get_utf8_string_ptr(cipherp, &ciphername))
991 return 0;
992 if (propsp != NULL && !OSSL_PARAM_get_utf8_string_ptr(propsp, &props))
993 return 0;
994
995 EVP_CIPHER_free(ctx->cipher);
996 ctx->cipher = NULL;
997 ctx->cipher_intent = ciphername != NULL;
998 if (ciphername != NULL
999 && ((ctx->cipher =
1000 EVP_CIPHER_fetch(libctx, ciphername, props)) == NULL))
1001 return 0;
1002 }
1003
1004 if (save_paramsp != NULL) {
1005 if (!OSSL_PARAM_get_int(save_paramsp, &ctx->save_parameters))
1006 return 0;
1007 }
1008 return 1;
1009 }
1010
1011 static int key2any_check_selection(int selection, int selection_mask)
1012 {
1013 /*
1014 * The selections are kinda sorta "levels", i.e. each selection given
1015 * here is assumed to include those following.
1016 */
1017 int checks[] = {
1018 OSSL_KEYMGMT_SELECT_PRIVATE_KEY,
1019 OSSL_KEYMGMT_SELECT_PUBLIC_KEY,
1020 OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
1021 };
1022 size_t i;
1023
1024 /* The decoder implementations made here support guessing */
1025 if (selection == 0)
1026 return 1;
1027
1028 for (i = 0; i < OSSL_NELEM(checks); i++) {
1029 int check1 = (selection & checks[i]) != 0;
1030 int check2 = (selection_mask & checks[i]) != 0;
1031
1032 /*
1033 * If the caller asked for the currently checked bit(s), return
1034 * whether the decoder description says it's supported.
1035 */
1036 if (check1)
1037 return check2;
1038 }
1039
1040 /* This should be dead code, but just to be safe... */
1041 return 0;
1042 }
1043
1044 static int key2any_encode(struct key2any_ctx_st *ctx, OSSL_CORE_BIO *cout,
1045 const void *key, int type, const char *pemname,
1046 check_key_type_fn *checker,
1047 key_to_der_fn *writer,
1048 OSSL_PASSPHRASE_CALLBACK *pwcb, void *pwcbarg,
1049 key_to_paramstring_fn *key2paramstring,
1050 i2d_of_void *key2der)
1051 {
1052 int ret = 0;
1053
1054 if (key == NULL) {
1055 ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
1056 } else if (writer != NULL
1057 && (checker == NULL || checker(key, type))) {
1058 BIO *out = ossl_bio_new_from_core_bio(ctx->provctx, cout);
1059
1060 if (out != NULL
1061 && (pwcb == NULL
1062 || ossl_pw_set_ossl_passphrase_cb(&ctx->pwdata, pwcb, pwcbarg)))
1063 ret =
1064 writer(out, key, type, pemname, key2paramstring, key2der, ctx);
1065
1066 BIO_free(out);
1067 } else {
1068 ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT);
1069 }
1070 return ret;
1071 }
1072
1073 #define DO_PRIVATE_KEY_selection_mask OSSL_KEYMGMT_SELECT_PRIVATE_KEY
1074 #define DO_PRIVATE_KEY(impl, type, kind, output) \
1075 if ((selection & DO_PRIVATE_KEY_selection_mask) != 0) \
1076 return key2any_encode(ctx, cout, key, impl##_evp_type, \
1077 impl##_pem_type " PRIVATE KEY", \
1078 type##_check_key_type, \
1079 key_to_##kind##_##output##_priv_bio, \
1080 cb, cbarg, prepare_##type##_params, \
1081 type##_##kind##_priv_to_der);
1082
1083 #define DO_PUBLIC_KEY_selection_mask OSSL_KEYMGMT_SELECT_PUBLIC_KEY
1084 #define DO_PUBLIC_KEY(impl, type, kind, output) \
1085 if ((selection & DO_PUBLIC_KEY_selection_mask) != 0) \
1086 return key2any_encode(ctx, cout, key, impl##_evp_type, \
1087 impl##_pem_type " PUBLIC KEY", \
1088 type##_check_key_type, \
1089 key_to_##kind##_##output##_pub_bio, \
1090 cb, cbarg, prepare_##type##_params, \
1091 type##_##kind##_pub_to_der);
1092
1093 #define DO_PARAMETERS_selection_mask OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
1094 #define DO_PARAMETERS(impl, type, kind, output) \
1095 if ((selection & DO_PARAMETERS_selection_mask) != 0) \
1096 return key2any_encode(ctx, cout, key, impl##_evp_type, \
1097 impl##_pem_type " PARAMETERS", \
1098 type##_check_key_type, \
1099 key_to_##kind##_##output##_param_bio, \
1100 NULL, NULL, NULL, \
1101 type##_##kind##_params_to_der);
1102
1103 /*-
1104 * Implement the kinds of output structure that can be produced. They are
1105 * referred to by name, and for each name, the following macros are defined
1106 * (braces not included):
1107 *
1108 * DO_{kind}_selection_mask
1109 *
1110 * A mask of selection bits that must not be zero. This is used as a
1111 * selection criterion for each implementation.
1112 * This mask must never be zero.
1113 *
1114 * DO_{kind}
1115 *
1116 * The performing macro. It must use the DO_ macros defined above,
1117 * always in this order:
1118 *
1119 * - DO_PRIVATE_KEY
1120 * - DO_PUBLIC_KEY
1121 * - DO_PARAMETERS
1122 *
1123 * Any of those may be omitted, but the relative order must still be
1124 * the same.
1125 */
1126
1127 /*
1128 * PKCS#8 defines two structures for private keys only:
1129 * - PrivateKeyInfo (raw unencrypted form)
1130 * - EncryptedPrivateKeyInfo (encrypted wrapping)
1131 *
1132 * To allow a certain amount of flexibility, we allow the routines
1133 * for PrivateKeyInfo to also produce EncryptedPrivateKeyInfo if a
1134 * passphrase callback has been passed to them.
1135 */
1136 #define DO_PrivateKeyInfo_selection_mask DO_PRIVATE_KEY_selection_mask
1137 #define DO_PrivateKeyInfo(impl, type, output) \
1138 DO_PRIVATE_KEY(impl, type, pki, output)
1139
1140 #define DO_EncryptedPrivateKeyInfo_selection_mask DO_PRIVATE_KEY_selection_mask
1141 #define DO_EncryptedPrivateKeyInfo(impl, type, output) \
1142 DO_PRIVATE_KEY(impl, type, epki, output)
1143
1144 /* SubjectPublicKeyInfo is a structure for public keys only */
1145 #define DO_SubjectPublicKeyInfo_selection_mask DO_PUBLIC_KEY_selection_mask
1146 #define DO_SubjectPublicKeyInfo(impl, type, output) \
1147 DO_PUBLIC_KEY(impl, type, spki, output)
1148
1149 /*
1150 * "type-specific" is a uniform name for key type specific output for private
1151 * and public keys as well as key parameters. This is used internally in
1152 * libcrypto so it doesn't have to have special knowledge about select key
1153 * types, but also when no better name has been found. If there are more
1154 * expressive DO_ names above, those are preferred.
1155 *
1156 * Three forms exist:
1157 *
1158 * - type_specific_keypair Only supports private and public key
1159 * - type_specific_params Only supports parameters
1160 * - type_specific Supports all parts of an EVP_PKEY
1161 * - type_specific_no_pub Supports all parts of an EVP_PKEY
1162 * except public key
1163 */
1164 #define DO_type_specific_params_selection_mask DO_PARAMETERS_selection_mask
1165 #define DO_type_specific_params(impl, type, output) \
1166 DO_PARAMETERS(impl, type, type_specific, output)
1167 #define DO_type_specific_keypair_selection_mask \
1168 ( DO_PRIVATE_KEY_selection_mask | DO_PUBLIC_KEY_selection_mask )
1169 #define DO_type_specific_keypair(impl, type, output) \
1170 DO_PRIVATE_KEY(impl, type, type_specific, output) \
1171 DO_PUBLIC_KEY(impl, type, type_specific, output)
1172 #define DO_type_specific_selection_mask \
1173 ( DO_type_specific_keypair_selection_mask \
1174 | DO_type_specific_params_selection_mask )
1175 #define DO_type_specific(impl, type, output) \
1176 DO_type_specific_keypair(impl, type, output) \
1177 DO_type_specific_params(impl, type, output)
1178 #define DO_type_specific_no_pub_selection_mask \
1179 ( DO_PRIVATE_KEY_selection_mask | DO_PARAMETERS_selection_mask)
1180 #define DO_type_specific_no_pub(impl, type, output) \
1181 DO_PRIVATE_KEY(impl, type, type_specific, output) \
1182 DO_type_specific_params(impl, type, output)
1183
1184 /*
1185 * Type specific aliases for the cases where we need to refer to them by
1186 * type name.
1187 * This only covers key types that are represented with i2d_{TYPE}PrivateKey,
1188 * i2d_{TYPE}PublicKey and i2d_{TYPE}params / i2d_{TYPE}Parameters.
1189 */
1190 #define DO_RSA_selection_mask DO_type_specific_keypair_selection_mask
1191 #define DO_RSA(impl, type, output) DO_type_specific_keypair(impl, type, output)
1192
1193 #define DO_DH_selection_mask DO_type_specific_params_selection_mask
1194 #define DO_DH(impl, type, output) DO_type_specific_params(impl, type, output)
1195
1196 #define DO_DHX_selection_mask DO_type_specific_params_selection_mask
1197 #define DO_DHX(impl, type, output) DO_type_specific_params(impl, type, output)
1198
1199 #define DO_DSA_selection_mask DO_type_specific_selection_mask
1200 #define DO_DSA(impl, type, output) DO_type_specific(impl, type, output)
1201
1202 #define DO_EC_selection_mask DO_type_specific_no_pub_selection_mask
1203 #define DO_EC(impl, type, output) DO_type_specific_no_pub(impl, type, output)
1204
1205 #define DO_SM2_selection_mask DO_type_specific_no_pub_selection_mask
1206 #define DO_SM2(impl, type, output) DO_type_specific_no_pub(impl, type, output)
1207
1208 /* PKCS#1 defines a structure for RSA private and public keys */
1209 #define DO_PKCS1_selection_mask DO_RSA_selection_mask
1210 #define DO_PKCS1(impl, type, output) DO_RSA(impl, type, output)
1211
1212 /* PKCS#3 defines a structure for DH parameters */
1213 #define DO_PKCS3_selection_mask DO_DH_selection_mask
1214 #define DO_PKCS3(impl, type, output) DO_DH(impl, type, output)
1215 /* X9.42 defines a structure for DHx parameters */
1216 #define DO_X9_42_selection_mask DO_DHX_selection_mask
1217 #define DO_X9_42(impl, type, output) DO_DHX(impl, type, output)
1218
1219 /* X9.62 defines a structure for EC keys and parameters */
1220 #define DO_X9_62_selection_mask DO_EC_selection_mask
1221 #define DO_X9_62(impl, type, output) DO_EC(impl, type, output)
1222
1223 /*
1224 * MAKE_ENCODER is the single driver for creating OSSL_DISPATCH tables.
1225 * It takes the following arguments:
1226 *
1227 * impl This is the key type name that's being implemented.
1228 * type This is the type name for the set of functions that implement
1229 * the key type. For example, ed25519, ed448, x25519 and x448
1230 * are all implemented with the exact same set of functions.
1231 * evp_type The corresponding EVP_PKEY_xxx type macro for each key.
1232 * Necessary because we currently use EVP_PKEY with legacy
1233 * native keys internally. This will need to be refactored
1234 * when that legacy support goes away.
1235 * kind What kind of support to implement. These translate into
1236 * the DO_##kind macros above.
1237 * output The output type to implement. may be der or pem.
1238 *
1239 * The resulting OSSL_DISPATCH array gets the following name (expressed in
1240 * C preprocessor terms) from those arguments:
1241 *
1242 * ossl_##impl##_to_##kind##_##output##_encoder_functions
1243 */
1244 #define MAKE_ENCODER(impl, type, evp_type, kind, output) \
1245 static OSSL_FUNC_encoder_import_object_fn \
1246 impl##_to_##kind##_##output##_import_object; \
1247 static OSSL_FUNC_encoder_free_object_fn \
1248 impl##_to_##kind##_##output##_free_object; \
1249 static OSSL_FUNC_encoder_encode_fn \
1250 impl##_to_##kind##_##output##_encode; \
1251 \
1252 static void * \
1253 impl##_to_##kind##_##output##_import_object(void *vctx, int selection, \
1254 const OSSL_PARAM params[]) \
1255 { \
1256 struct key2any_ctx_st *ctx = vctx; \
1257 \
1258 return ossl_prov_import_key(ossl_##impl##_keymgmt_functions, \
1259 ctx->provctx, selection, params); \
1260 } \
1261 static void impl##_to_##kind##_##output##_free_object(void *key) \
1262 { \
1263 ossl_prov_free_key(ossl_##impl##_keymgmt_functions, key); \
1264 } \
1265 static int impl##_to_##kind##_##output##_does_selection(void *ctx, \
1266 int selection) \
1267 { \
1268 return key2any_check_selection(selection, \
1269 DO_##kind##_selection_mask); \
1270 } \
1271 static int \
1272 impl##_to_##kind##_##output##_encode(void *ctx, OSSL_CORE_BIO *cout, \
1273 const void *key, \
1274 const OSSL_PARAM key_abstract[], \
1275 int selection, \
1276 OSSL_PASSPHRASE_CALLBACK *cb, \
1277 void *cbarg) \
1278 { \
1279 /* We don't deal with abstract objects */ \
1280 if (key_abstract != NULL) { \
1281 ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT); \
1282 return 0; \
1283 } \
1284 DO_##kind(impl, type, output) \
1285 \
1286 ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT); \
1287 return 0; \
1288 } \
1289 const OSSL_DISPATCH \
1290 ossl_##impl##_to_##kind##_##output##_encoder_functions[] = { \
1291 { OSSL_FUNC_ENCODER_NEWCTX, \
1292 (void (*)(void))key2any_newctx }, \
1293 { OSSL_FUNC_ENCODER_FREECTX, \
1294 (void (*)(void))key2any_freectx }, \
1295 { OSSL_FUNC_ENCODER_SETTABLE_CTX_PARAMS, \
1296 (void (*)(void))key2any_settable_ctx_params }, \
1297 { OSSL_FUNC_ENCODER_SET_CTX_PARAMS, \
1298 (void (*)(void))key2any_set_ctx_params }, \
1299 { OSSL_FUNC_ENCODER_DOES_SELECTION, \
1300 (void (*)(void))impl##_to_##kind##_##output##_does_selection }, \
1301 { OSSL_FUNC_ENCODER_IMPORT_OBJECT, \
1302 (void (*)(void))impl##_to_##kind##_##output##_import_object }, \
1303 { OSSL_FUNC_ENCODER_FREE_OBJECT, \
1304 (void (*)(void))impl##_to_##kind##_##output##_free_object }, \
1305 { OSSL_FUNC_ENCODER_ENCODE, \
1306 (void (*)(void))impl##_to_##kind##_##output##_encode }, \
1307 OSSL_DISPATCH_END \
1308 }
1309
1310 /*
1311 * Replacements for i2d_{TYPE}PrivateKey, i2d_{TYPE}PublicKey,
1312 * i2d_{TYPE}params, as they exist.
1313 */
1314 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, type_specific_keypair, der);
1315 #ifndef OPENSSL_NO_DH
1316 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, type_specific_params, der);
1317 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, type_specific_params, der);
1318 #endif
1319 #ifndef OPENSSL_NO_DSA
1320 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, type_specific, der);
1321 #endif
1322 #ifndef OPENSSL_NO_EC
1323 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, type_specific_no_pub, der);
1324 # ifndef OPENSSL_NO_SM2
1325 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, type_specific_no_pub, der);
1326 # endif
1327 #endif
1328
1329 /*
1330 * Replacements for PEM_write_bio_{TYPE}PrivateKey,
1331 * PEM_write_bio_{TYPE}PublicKey, PEM_write_bio_{TYPE}params, as they exist.
1332 */
1333 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, type_specific_keypair, pem);
1334 #ifndef OPENSSL_NO_DH
1335 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, type_specific_params, pem);
1336 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, type_specific_params, pem);
1337 #endif
1338 #ifndef OPENSSL_NO_DSA
1339 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, type_specific, pem);
1340 #endif
1341 #ifndef OPENSSL_NO_EC
1342 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, type_specific_no_pub, pem);
1343 # ifndef OPENSSL_NO_SM2
1344 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, type_specific_no_pub, pem);
1345 # endif
1346 #endif
1347
1348 /*
1349 * PKCS#8 and SubjectPublicKeyInfo support. This may duplicate some of the
1350 * implementations specified above, but are more specific.
1351 * The SubjectPublicKeyInfo implementations also replace the
1352 * PEM_write_bio_{TYPE}_PUBKEY functions.
1353 * For PEM, these are expected to be used by PEM_write_bio_PrivateKey(),
1354 * PEM_write_bio_PUBKEY() and PEM_write_bio_Parameters().
1355 */
1356 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, EncryptedPrivateKeyInfo, der);
1357 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, EncryptedPrivateKeyInfo, pem);
1358 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, PrivateKeyInfo, der);
1359 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, PrivateKeyInfo, pem);
1360 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, SubjectPublicKeyInfo, der);
1361 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, SubjectPublicKeyInfo, pem);
1362 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, EncryptedPrivateKeyInfo, der);
1363 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, EncryptedPrivateKeyInfo, pem);
1364 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, PrivateKeyInfo, der);
1365 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, PrivateKeyInfo, pem);
1366 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, SubjectPublicKeyInfo, der);
1367 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, SubjectPublicKeyInfo, pem);
1368 #ifndef OPENSSL_NO_DH
1369 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, EncryptedPrivateKeyInfo, der);
1370 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, EncryptedPrivateKeyInfo, pem);
1371 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, PrivateKeyInfo, der);
1372 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, PrivateKeyInfo, pem);
1373 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, SubjectPublicKeyInfo, der);
1374 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, SubjectPublicKeyInfo, pem);
1375 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, EncryptedPrivateKeyInfo, der);
1376 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, EncryptedPrivateKeyInfo, pem);
1377 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, PrivateKeyInfo, der);
1378 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, PrivateKeyInfo, pem);
1379 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, SubjectPublicKeyInfo, der);
1380 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, SubjectPublicKeyInfo, pem);
1381 #endif
1382 #ifndef OPENSSL_NO_DSA
1383 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, EncryptedPrivateKeyInfo, der);
1384 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, EncryptedPrivateKeyInfo, pem);
1385 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, PrivateKeyInfo, der);
1386 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, PrivateKeyInfo, pem);
1387 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, SubjectPublicKeyInfo, der);
1388 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, SubjectPublicKeyInfo, pem);
1389 #endif
1390 #ifndef OPENSSL_NO_EC
1391 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, EncryptedPrivateKeyInfo, der);
1392 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, EncryptedPrivateKeyInfo, pem);
1393 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, PrivateKeyInfo, der);
1394 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, PrivateKeyInfo, pem);
1395 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, SubjectPublicKeyInfo, der);
1396 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, SubjectPublicKeyInfo, pem);
1397 # ifndef OPENSSL_NO_SM2
1398 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, EncryptedPrivateKeyInfo, der);
1399 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, EncryptedPrivateKeyInfo, pem);
1400 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, PrivateKeyInfo, der);
1401 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, PrivateKeyInfo, pem);
1402 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, SubjectPublicKeyInfo, der);
1403 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, SubjectPublicKeyInfo, pem);
1404 # endif
1405 # ifndef OPENSSL_NO_ECX
1406 MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, EncryptedPrivateKeyInfo, der);
1407 MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, EncryptedPrivateKeyInfo, pem);
1408 MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, PrivateKeyInfo, der);
1409 MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, PrivateKeyInfo, pem);
1410 MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, SubjectPublicKeyInfo, der);
1411 MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, SubjectPublicKeyInfo, pem);
1412 MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, EncryptedPrivateKeyInfo, der);
1413 MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, EncryptedPrivateKeyInfo, pem);
1414 MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, PrivateKeyInfo, der);
1415 MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, PrivateKeyInfo, pem);
1416 MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, SubjectPublicKeyInfo, der);
1417 MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, SubjectPublicKeyInfo, pem);
1418 MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, EncryptedPrivateKeyInfo, der);
1419 MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, EncryptedPrivateKeyInfo, pem);
1420 MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, PrivateKeyInfo, der);
1421 MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, PrivateKeyInfo, pem);
1422 MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, SubjectPublicKeyInfo, der);
1423 MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, SubjectPublicKeyInfo, pem);
1424 MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, EncryptedPrivateKeyInfo, der);
1425 MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, EncryptedPrivateKeyInfo, pem);
1426 MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, PrivateKeyInfo, der);
1427 MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, PrivateKeyInfo, pem);
1428 MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, SubjectPublicKeyInfo, der);
1429 MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, SubjectPublicKeyInfo, pem);
1430 # endif
1431 #endif
1432
1433 /*
1434 * Support for key type specific output formats. Not all key types have
1435 * this, we only aim to duplicate what is available in 1.1.1 as
1436 * i2d_TYPEPrivateKey(), i2d_TYPEPublicKey() and i2d_TYPEparams().
1437 * For example, there are no publicly available i2d_ function for
1438 * ED25519, ED448, X25519 or X448, and they therefore only have PKCS#8
1439 * and SubjectPublicKeyInfo implementations as implemented above.
1440 */
1441 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, RSA, der);
1442 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, RSA, pem);
1443 #ifndef OPENSSL_NO_DH
1444 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, DH, der);
1445 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, DH, pem);
1446 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, DHX, der);
1447 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, DHX, pem);
1448 #endif
1449 #ifndef OPENSSL_NO_DSA
1450 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, DSA, der);
1451 MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, DSA, pem);
1452 #endif
1453 #ifndef OPENSSL_NO_EC
1454 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, EC, der);
1455 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, EC, pem);
1456 # ifndef OPENSSL_NO_SM2
1457 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, SM2, der);
1458 MAKE_ENCODER(sm2, ec, EVP_PKEY_EC, SM2, pem);
1459 # endif
1460 #endif
1461
1462 /* Convenience structure names */
1463 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, PKCS1, der);
1464 MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, PKCS1, pem);
1465 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, PKCS1, der);
1466 MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA_PSS, PKCS1, pem);
1467 #ifndef OPENSSL_NO_DH
1468 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, PKCS3, der); /* parameters only */
1469 MAKE_ENCODER(dh, dh, EVP_PKEY_DH, PKCS3, pem); /* parameters only */
1470 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, X9_42, der); /* parameters only */
1471 MAKE_ENCODER(dhx, dh, EVP_PKEY_DHX, X9_42, pem); /* parameters only */
1472 #endif
1473 #ifndef OPENSSL_NO_EC
1474 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, X9_62, der);
1475 MAKE_ENCODER(ec, ec, EVP_PKEY_EC, X9_62, pem);
1476 #endif