]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
cb7a52ab7e0609d3b8ec2b55dcc312a3a1bb2794
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_local.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include <openssl/trace.h>
24 #include "internal/cryptlib.h"
25 #include "internal/refcount.h"
26 #include "internal/ktls.h"
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t,
29 SSL_MAC_BUF *mac, size_t macsize)
30 {
31 return ssl_undefined_function(ssl);
32 }
33
34 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
35 int t)
36 {
37 return ssl_undefined_function(ssl);
38 }
39
40 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
41 unsigned char *s, size_t t, size_t *u)
42 {
43 return ssl_undefined_function(ssl);
44 }
45
46 static int ssl_undefined_function_4(SSL *ssl, int r)
47 {
48 return ssl_undefined_function(ssl);
49 }
50
51 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
52 unsigned char *t)
53 {
54 return ssl_undefined_function(ssl);
55 }
56
57 static int ssl_undefined_function_6(int r)
58 {
59 return ssl_undefined_function(NULL);
60 }
61
62 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
63 const char *t, size_t u,
64 const unsigned char *v, size_t w, int x)
65 {
66 return ssl_undefined_function(ssl);
67 }
68
69 SSL3_ENC_METHOD ssl3_undef_enc_method = {
70 ssl_undefined_function_1,
71 ssl_undefined_function_2,
72 ssl_undefined_function,
73 ssl_undefined_function_3,
74 ssl_undefined_function_4,
75 ssl_undefined_function_5,
76 NULL, /* client_finished_label */
77 0, /* client_finished_label_len */
78 NULL, /* server_finished_label */
79 0, /* server_finished_label_len */
80 ssl_undefined_function_6,
81 ssl_undefined_function_7,
82 };
83
84 struct ssl_async_args {
85 SSL *s;
86 void *buf;
87 size_t num;
88 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
89 union {
90 int (*func_read) (SSL *, void *, size_t, size_t *);
91 int (*func_write) (SSL *, const void *, size_t, size_t *);
92 int (*func_other) (SSL *);
93 } f;
94 };
95
96 static const struct {
97 uint8_t mtype;
98 uint8_t ord;
99 int nid;
100 } dane_mds[] = {
101 {
102 DANETLS_MATCHING_FULL, 0, NID_undef
103 },
104 {
105 DANETLS_MATCHING_2256, 1, NID_sha256
106 },
107 {
108 DANETLS_MATCHING_2512, 2, NID_sha512
109 },
110 };
111
112 static int dane_ctx_enable(struct dane_ctx_st *dctx)
113 {
114 const EVP_MD **mdevp;
115 uint8_t *mdord;
116 uint8_t mdmax = DANETLS_MATCHING_LAST;
117 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
118 size_t i;
119
120 if (dctx->mdevp != NULL)
121 return 1;
122
123 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
124 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
125
126 if (mdord == NULL || mdevp == NULL) {
127 OPENSSL_free(mdord);
128 OPENSSL_free(mdevp);
129 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
130 return 0;
131 }
132
133 /* Install default entries */
134 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
135 const EVP_MD *md;
136
137 if (dane_mds[i].nid == NID_undef ||
138 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
139 continue;
140 mdevp[dane_mds[i].mtype] = md;
141 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
142 }
143
144 dctx->mdevp = mdevp;
145 dctx->mdord = mdord;
146 dctx->mdmax = mdmax;
147
148 return 1;
149 }
150
151 static void dane_ctx_final(struct dane_ctx_st *dctx)
152 {
153 OPENSSL_free(dctx->mdevp);
154 dctx->mdevp = NULL;
155
156 OPENSSL_free(dctx->mdord);
157 dctx->mdord = NULL;
158 dctx->mdmax = 0;
159 }
160
161 static void tlsa_free(danetls_record *t)
162 {
163 if (t == NULL)
164 return;
165 OPENSSL_free(t->data);
166 EVP_PKEY_free(t->spki);
167 OPENSSL_free(t);
168 }
169
170 static void dane_final(SSL_DANE *dane)
171 {
172 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
173 dane->trecs = NULL;
174
175 OSSL_STACK_OF_X509_free(dane->certs);
176 dane->certs = NULL;
177
178 X509_free(dane->mcert);
179 dane->mcert = NULL;
180 dane->mtlsa = NULL;
181 dane->mdpth = -1;
182 dane->pdpth = -1;
183 }
184
185 /*
186 * dane_copy - Copy dane configuration, sans verification state.
187 */
188 static int ssl_dane_dup(SSL *to, SSL *from)
189 {
190 int num;
191 int i;
192
193 if (!DANETLS_ENABLED(&from->dane))
194 return 1;
195
196 num = sk_danetls_record_num(from->dane.trecs);
197 dane_final(&to->dane);
198 to->dane.flags = from->dane.flags;
199 to->dane.dctx = &to->ctx->dane;
200 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
201
202 if (to->dane.trecs == NULL) {
203 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
204 return 0;
205 }
206
207 for (i = 0; i < num; ++i) {
208 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
209
210 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
211 t->data, t->dlen) <= 0)
212 return 0;
213 }
214 return 1;
215 }
216
217 static int dane_mtype_set(struct dane_ctx_st *dctx,
218 const EVP_MD *md, uint8_t mtype, uint8_t ord)
219 {
220 int i;
221
222 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
223 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
224 return 0;
225 }
226
227 if (mtype > dctx->mdmax) {
228 const EVP_MD **mdevp;
229 uint8_t *mdord;
230 int n = ((int)mtype) + 1;
231
232 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
233 if (mdevp == NULL) {
234 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
235 return -1;
236 }
237 dctx->mdevp = mdevp;
238
239 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
240 if (mdord == NULL) {
241 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
242 return -1;
243 }
244 dctx->mdord = mdord;
245
246 /* Zero-fill any gaps */
247 for (i = dctx->mdmax + 1; i < mtype; ++i) {
248 mdevp[i] = NULL;
249 mdord[i] = 0;
250 }
251
252 dctx->mdmax = mtype;
253 }
254
255 dctx->mdevp[mtype] = md;
256 /* Coerce ordinal of disabled matching types to 0 */
257 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
258
259 return 1;
260 }
261
262 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
263 {
264 if (mtype > dane->dctx->mdmax)
265 return NULL;
266 return dane->dctx->mdevp[mtype];
267 }
268
269 static int dane_tlsa_add(SSL_DANE *dane,
270 uint8_t usage,
271 uint8_t selector,
272 uint8_t mtype, const unsigned char *data, size_t dlen)
273 {
274 danetls_record *t;
275 const EVP_MD *md = NULL;
276 int ilen = (int)dlen;
277 int i;
278 int num;
279
280 if (dane->trecs == NULL) {
281 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_NOT_ENABLED);
282 return -1;
283 }
284
285 if (ilen < 0 || dlen != (size_t)ilen) {
286 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
287 return 0;
288 }
289
290 if (usage > DANETLS_USAGE_LAST) {
291 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
292 return 0;
293 }
294
295 if (selector > DANETLS_SELECTOR_LAST) {
296 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_SELECTOR);
297 return 0;
298 }
299
300 if (mtype != DANETLS_MATCHING_FULL) {
301 md = tlsa_md_get(dane, mtype);
302 if (md == NULL) {
303 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
304 return 0;
305 }
306 }
307
308 if (md != NULL && dlen != (size_t)EVP_MD_get_size(md)) {
309 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
310 return 0;
311 }
312 if (!data) {
313 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_NULL_DATA);
314 return 0;
315 }
316
317 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
318 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
319 return -1;
320 }
321
322 t->usage = usage;
323 t->selector = selector;
324 t->mtype = mtype;
325 t->data = OPENSSL_malloc(dlen);
326 if (t->data == NULL) {
327 tlsa_free(t);
328 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
329 return -1;
330 }
331 memcpy(t->data, data, dlen);
332 t->dlen = dlen;
333
334 /* Validate and cache full certificate or public key */
335 if (mtype == DANETLS_MATCHING_FULL) {
336 const unsigned char *p = data;
337 X509 *cert = NULL;
338 EVP_PKEY *pkey = NULL;
339
340 switch (selector) {
341 case DANETLS_SELECTOR_CERT:
342 if (!d2i_X509(&cert, &p, ilen) || p < data ||
343 dlen != (size_t)(p - data)) {
344 tlsa_free(t);
345 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
346 return 0;
347 }
348 if (X509_get0_pubkey(cert) == NULL) {
349 tlsa_free(t);
350 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
351 return 0;
352 }
353
354 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
355 X509_free(cert);
356 break;
357 }
358
359 /*
360 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
361 * records that contain full certificates of trust-anchors that are
362 * not present in the wire chain. For usage PKIX-TA(0), we augment
363 * the chain with untrusted Full(0) certificates from DNS, in case
364 * they are missing from the chain.
365 */
366 if ((dane->certs == NULL &&
367 (dane->certs = sk_X509_new_null()) == NULL) ||
368 !sk_X509_push(dane->certs, cert)) {
369 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
370 X509_free(cert);
371 tlsa_free(t);
372 return -1;
373 }
374 break;
375
376 case DANETLS_SELECTOR_SPKI:
377 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
378 dlen != (size_t)(p - data)) {
379 tlsa_free(t);
380 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
381 return 0;
382 }
383
384 /*
385 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
386 * records that contain full bare keys of trust-anchors that are
387 * not present in the wire chain.
388 */
389 if (usage == DANETLS_USAGE_DANE_TA)
390 t->spki = pkey;
391 else
392 EVP_PKEY_free(pkey);
393 break;
394 }
395 }
396
397 /*-
398 * Find the right insertion point for the new record.
399 *
400 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
401 * they can be processed first, as they require no chain building, and no
402 * expiration or hostname checks. Because DANE-EE(3) is numerically
403 * largest, this is accomplished via descending sort by "usage".
404 *
405 * We also sort in descending order by matching ordinal to simplify
406 * the implementation of digest agility in the verification code.
407 *
408 * The choice of order for the selector is not significant, so we
409 * use the same descending order for consistency.
410 */
411 num = sk_danetls_record_num(dane->trecs);
412 for (i = 0; i < num; ++i) {
413 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
414
415 if (rec->usage > usage)
416 continue;
417 if (rec->usage < usage)
418 break;
419 if (rec->selector > selector)
420 continue;
421 if (rec->selector < selector)
422 break;
423 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
424 continue;
425 break;
426 }
427
428 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
429 tlsa_free(t);
430 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
431 return -1;
432 }
433 dane->umask |= DANETLS_USAGE_BIT(usage);
434
435 return 1;
436 }
437
438 /*
439 * Return 0 if there is only one version configured and it was disabled
440 * at configure time. Return 1 otherwise.
441 */
442 static int ssl_check_allowed_versions(int min_version, int max_version)
443 {
444 int minisdtls = 0, maxisdtls = 0;
445
446 /* Figure out if we're doing DTLS versions or TLS versions */
447 if (min_version == DTLS1_BAD_VER
448 || min_version >> 8 == DTLS1_VERSION_MAJOR)
449 minisdtls = 1;
450 if (max_version == DTLS1_BAD_VER
451 || max_version >> 8 == DTLS1_VERSION_MAJOR)
452 maxisdtls = 1;
453 /* A wildcard version of 0 could be DTLS or TLS. */
454 if ((minisdtls && !maxisdtls && max_version != 0)
455 || (maxisdtls && !minisdtls && min_version != 0)) {
456 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
457 return 0;
458 }
459
460 if (minisdtls || maxisdtls) {
461 /* Do DTLS version checks. */
462 if (min_version == 0)
463 /* Ignore DTLS1_BAD_VER */
464 min_version = DTLS1_VERSION;
465 if (max_version == 0)
466 max_version = DTLS1_2_VERSION;
467 #ifdef OPENSSL_NO_DTLS1_2
468 if (max_version == DTLS1_2_VERSION)
469 max_version = DTLS1_VERSION;
470 #endif
471 #ifdef OPENSSL_NO_DTLS1
472 if (min_version == DTLS1_VERSION)
473 min_version = DTLS1_2_VERSION;
474 #endif
475 /* Done massaging versions; do the check. */
476 if (0
477 #ifdef OPENSSL_NO_DTLS1
478 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
479 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
480 #endif
481 #ifdef OPENSSL_NO_DTLS1_2
482 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
483 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
484 #endif
485 )
486 return 0;
487 } else {
488 /* Regular TLS version checks. */
489 if (min_version == 0)
490 min_version = SSL3_VERSION;
491 if (max_version == 0)
492 max_version = TLS1_3_VERSION;
493 #ifdef OPENSSL_NO_TLS1_3
494 if (max_version == TLS1_3_VERSION)
495 max_version = TLS1_2_VERSION;
496 #endif
497 #ifdef OPENSSL_NO_TLS1_2
498 if (max_version == TLS1_2_VERSION)
499 max_version = TLS1_1_VERSION;
500 #endif
501 #ifdef OPENSSL_NO_TLS1_1
502 if (max_version == TLS1_1_VERSION)
503 max_version = TLS1_VERSION;
504 #endif
505 #ifdef OPENSSL_NO_TLS1
506 if (max_version == TLS1_VERSION)
507 max_version = SSL3_VERSION;
508 #endif
509 #ifdef OPENSSL_NO_SSL3
510 if (min_version == SSL3_VERSION)
511 min_version = TLS1_VERSION;
512 #endif
513 #ifdef OPENSSL_NO_TLS1
514 if (min_version == TLS1_VERSION)
515 min_version = TLS1_1_VERSION;
516 #endif
517 #ifdef OPENSSL_NO_TLS1_1
518 if (min_version == TLS1_1_VERSION)
519 min_version = TLS1_2_VERSION;
520 #endif
521 #ifdef OPENSSL_NO_TLS1_2
522 if (min_version == TLS1_2_VERSION)
523 min_version = TLS1_3_VERSION;
524 #endif
525 /* Done massaging versions; do the check. */
526 if (0
527 #ifdef OPENSSL_NO_SSL3
528 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
529 #endif
530 #ifdef OPENSSL_NO_TLS1
531 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
532 #endif
533 #ifdef OPENSSL_NO_TLS1_1
534 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
535 #endif
536 #ifdef OPENSSL_NO_TLS1_2
537 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
538 #endif
539 #ifdef OPENSSL_NO_TLS1_3
540 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
541 #endif
542 )
543 return 0;
544 }
545 return 1;
546 }
547
548 #if defined(__TANDEM) && defined(OPENSSL_VPROC)
549 /*
550 * Define a VPROC function for HP NonStop build ssl library.
551 * This is used by platform version identification tools.
552 * Do not inline this procedure or make it static.
553 */
554 # define OPENSSL_VPROC_STRING_(x) x##_SSL
555 # define OPENSSL_VPROC_STRING(x) OPENSSL_VPROC_STRING_(x)
556 # define OPENSSL_VPROC_FUNC OPENSSL_VPROC_STRING(OPENSSL_VPROC)
557 void OPENSSL_VPROC_FUNC(void) {}
558 #endif
559
560
561 static void clear_ciphers(SSL *s)
562 {
563 /* clear the current cipher */
564 ssl_clear_cipher_ctx(s);
565 ssl_clear_hash_ctx(&s->read_hash);
566 ssl_clear_hash_ctx(&s->write_hash);
567 }
568
569 int SSL_clear(SSL *s)
570 {
571 if (s->method == NULL) {
572 ERR_raise(ERR_LIB_SSL, SSL_R_NO_METHOD_SPECIFIED);
573 return 0;
574 }
575
576 if (ssl_clear_bad_session(s)) {
577 SSL_SESSION_free(s->session);
578 s->session = NULL;
579 }
580 SSL_SESSION_free(s->psksession);
581 s->psksession = NULL;
582 OPENSSL_free(s->psksession_id);
583 s->psksession_id = NULL;
584 s->psksession_id_len = 0;
585 s->hello_retry_request = 0;
586 s->sent_tickets = 0;
587
588 s->error = 0;
589 s->hit = 0;
590 s->shutdown = 0;
591
592 if (s->renegotiate) {
593 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
594 return 0;
595 }
596
597 ossl_statem_clear(s);
598
599 s->version = s->method->version;
600 s->client_version = s->version;
601 s->rwstate = SSL_NOTHING;
602
603 BUF_MEM_free(s->init_buf);
604 s->init_buf = NULL;
605 clear_ciphers(s);
606 s->first_packet = 0;
607
608 s->key_update = SSL_KEY_UPDATE_NONE;
609
610 EVP_MD_CTX_free(s->pha_dgst);
611 s->pha_dgst = NULL;
612
613 /* Reset DANE verification result state */
614 s->dane.mdpth = -1;
615 s->dane.pdpth = -1;
616 X509_free(s->dane.mcert);
617 s->dane.mcert = NULL;
618 s->dane.mtlsa = NULL;
619
620 /* Clear the verification result peername */
621 X509_VERIFY_PARAM_move_peername(s->param, NULL);
622
623 /* Clear any shared connection state */
624 OPENSSL_free(s->shared_sigalgs);
625 s->shared_sigalgs = NULL;
626 s->shared_sigalgslen = 0;
627
628 /*
629 * Check to see if we were changed into a different method, if so, revert
630 * back.
631 */
632 if (s->method != s->ctx->method) {
633 s->method->ssl_free(s);
634 s->method = s->ctx->method;
635 if (!s->method->ssl_new(s))
636 return 0;
637 } else {
638 if (!s->method->ssl_clear(s))
639 return 0;
640 }
641
642 RECORD_LAYER_clear(&s->rlayer);
643
644 return 1;
645 }
646
647 #ifndef OPENSSL_NO_DEPRECATED_3_0
648 /** Used to change an SSL_CTXs default SSL method type */
649 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
650 {
651 STACK_OF(SSL_CIPHER) *sk;
652
653 ctx->method = meth;
654
655 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
656 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
657 return 0;
658 }
659 sk = ssl_create_cipher_list(ctx,
660 ctx->tls13_ciphersuites,
661 &(ctx->cipher_list),
662 &(ctx->cipher_list_by_id),
663 OSSL_default_cipher_list(), ctx->cert);
664 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
665 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
666 return 0;
667 }
668 return 1;
669 }
670 #endif
671
672 SSL *SSL_new(SSL_CTX *ctx)
673 {
674 SSL *s;
675
676 if (ctx == NULL) {
677 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_CTX);
678 return NULL;
679 }
680 if (ctx->method == NULL) {
681 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
682 return NULL;
683 }
684
685 s = OPENSSL_zalloc(sizeof(*s));
686 if (s == NULL)
687 goto err;
688
689 s->references = 1;
690 s->lock = CRYPTO_THREAD_lock_new();
691 if (s->lock == NULL) {
692 OPENSSL_free(s);
693 s = NULL;
694 goto err;
695 }
696
697 RECORD_LAYER_init(&s->rlayer, s);
698
699 s->options = ctx->options;
700 s->dane.flags = ctx->dane.flags;
701 s->min_proto_version = ctx->min_proto_version;
702 s->max_proto_version = ctx->max_proto_version;
703 s->mode = ctx->mode;
704 s->max_cert_list = ctx->max_cert_list;
705 s->max_early_data = ctx->max_early_data;
706 s->recv_max_early_data = ctx->recv_max_early_data;
707 s->num_tickets = ctx->num_tickets;
708 s->pha_enabled = ctx->pha_enabled;
709
710 /* Shallow copy of the ciphersuites stack */
711 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
712 if (s->tls13_ciphersuites == NULL)
713 goto err;
714
715 /*
716 * Earlier library versions used to copy the pointer to the CERT, not
717 * its contents; only when setting new parameters for the per-SSL
718 * copy, ssl_cert_new would be called (and the direct reference to
719 * the per-SSL_CTX settings would be lost, but those still were
720 * indirectly accessed for various purposes, and for that reason they
721 * used to be known as s->ctx->default_cert). Now we don't look at the
722 * SSL_CTX's CERT after having duplicated it once.
723 */
724 s->cert = ssl_cert_dup(ctx->cert);
725 if (s->cert == NULL)
726 goto err;
727
728 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
729 s->msg_callback = ctx->msg_callback;
730 s->msg_callback_arg = ctx->msg_callback_arg;
731 s->verify_mode = ctx->verify_mode;
732 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
733 s->record_padding_cb = ctx->record_padding_cb;
734 s->record_padding_arg = ctx->record_padding_arg;
735 s->block_padding = ctx->block_padding;
736 s->sid_ctx_length = ctx->sid_ctx_length;
737 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
738 goto err;
739 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
740 s->verify_callback = ctx->default_verify_callback;
741 s->generate_session_id = ctx->generate_session_id;
742
743 s->param = X509_VERIFY_PARAM_new();
744 if (s->param == NULL)
745 goto err;
746 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
747 s->quiet_shutdown = ctx->quiet_shutdown;
748
749 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
750 s->max_send_fragment = ctx->max_send_fragment;
751 s->split_send_fragment = ctx->split_send_fragment;
752 s->max_pipelines = ctx->max_pipelines;
753 if (s->max_pipelines > 1)
754 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
755 if (ctx->default_read_buf_len > 0)
756 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
757
758 SSL_CTX_up_ref(ctx);
759 s->ctx = ctx;
760 s->ext.debug_cb = 0;
761 s->ext.debug_arg = NULL;
762 s->ext.ticket_expected = 0;
763 s->ext.status_type = ctx->ext.status_type;
764 s->ext.status_expected = 0;
765 s->ext.ocsp.ids = NULL;
766 s->ext.ocsp.exts = NULL;
767 s->ext.ocsp.resp = NULL;
768 s->ext.ocsp.resp_len = 0;
769 SSL_CTX_up_ref(ctx);
770 s->session_ctx = ctx;
771 if (ctx->ext.ecpointformats) {
772 s->ext.ecpointformats =
773 OPENSSL_memdup(ctx->ext.ecpointformats,
774 ctx->ext.ecpointformats_len);
775 if (!s->ext.ecpointformats) {
776 s->ext.ecpointformats_len = 0;
777 goto err;
778 }
779 s->ext.ecpointformats_len =
780 ctx->ext.ecpointformats_len;
781 }
782 if (ctx->ext.supportedgroups) {
783 s->ext.supportedgroups =
784 OPENSSL_memdup(ctx->ext.supportedgroups,
785 ctx->ext.supportedgroups_len
786 * sizeof(*ctx->ext.supportedgroups));
787 if (!s->ext.supportedgroups) {
788 s->ext.supportedgroups_len = 0;
789 goto err;
790 }
791 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
792 }
793
794 #ifndef OPENSSL_NO_NEXTPROTONEG
795 s->ext.npn = NULL;
796 #endif
797
798 if (s->ctx->ext.alpn) {
799 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
800 if (s->ext.alpn == NULL) {
801 s->ext.alpn_len = 0;
802 goto err;
803 }
804 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
805 s->ext.alpn_len = s->ctx->ext.alpn_len;
806 }
807
808 s->verified_chain = NULL;
809 s->verify_result = X509_V_OK;
810
811 s->default_passwd_callback = ctx->default_passwd_callback;
812 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
813
814 s->method = ctx->method;
815
816 s->key_update = SSL_KEY_UPDATE_NONE;
817
818 s->allow_early_data_cb = ctx->allow_early_data_cb;
819 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
820
821 if (!s->method->ssl_new(s))
822 goto err;
823
824 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
825
826 if (!SSL_clear(s))
827 goto err;
828
829 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
830 goto err;
831
832 #ifndef OPENSSL_NO_PSK
833 s->psk_client_callback = ctx->psk_client_callback;
834 s->psk_server_callback = ctx->psk_server_callback;
835 #endif
836 s->psk_find_session_cb = ctx->psk_find_session_cb;
837 s->psk_use_session_cb = ctx->psk_use_session_cb;
838
839 s->async_cb = ctx->async_cb;
840 s->async_cb_arg = ctx->async_cb_arg;
841
842 s->job = NULL;
843
844 #ifndef OPENSSL_NO_CT
845 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
846 ctx->ct_validation_callback_arg))
847 goto err;
848 #endif
849
850 return s;
851 err:
852 SSL_free(s);
853 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
854 return NULL;
855 }
856
857 int SSL_is_dtls(const SSL *s)
858 {
859 return SSL_IS_DTLS(s) ? 1 : 0;
860 }
861
862 int SSL_up_ref(SSL *s)
863 {
864 int i;
865
866 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
867 return 0;
868
869 REF_PRINT_COUNT("SSL", s);
870 REF_ASSERT_ISNT(i < 2);
871 return ((i > 1) ? 1 : 0);
872 }
873
874 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
875 unsigned int sid_ctx_len)
876 {
877 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
878 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
879 return 0;
880 }
881 ctx->sid_ctx_length = sid_ctx_len;
882 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
883
884 return 1;
885 }
886
887 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
888 unsigned int sid_ctx_len)
889 {
890 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
891 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
892 return 0;
893 }
894 ssl->sid_ctx_length = sid_ctx_len;
895 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
896
897 return 1;
898 }
899
900 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
901 {
902 if (!CRYPTO_THREAD_write_lock(ctx->lock))
903 return 0;
904 ctx->generate_session_id = cb;
905 CRYPTO_THREAD_unlock(ctx->lock);
906 return 1;
907 }
908
909 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
910 {
911 if (!CRYPTO_THREAD_write_lock(ssl->lock))
912 return 0;
913 ssl->generate_session_id = cb;
914 CRYPTO_THREAD_unlock(ssl->lock);
915 return 1;
916 }
917
918 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
919 unsigned int id_len)
920 {
921 /*
922 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
923 * we can "construct" a session to give us the desired check - i.e. to
924 * find if there's a session in the hash table that would conflict with
925 * any new session built out of this id/id_len and the ssl_version in use
926 * by this SSL.
927 */
928 SSL_SESSION r, *p;
929
930 if (id_len > sizeof(r.session_id))
931 return 0;
932
933 r.ssl_version = ssl->version;
934 r.session_id_length = id_len;
935 memcpy(r.session_id, id, id_len);
936
937 if (!CRYPTO_THREAD_read_lock(ssl->session_ctx->lock))
938 return 0;
939 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
940 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
941 return (p != NULL);
942 }
943
944 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
945 {
946 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
947 }
948
949 int SSL_set_purpose(SSL *s, int purpose)
950 {
951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
952 }
953
954 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
955 {
956 return X509_VERIFY_PARAM_set_trust(s->param, trust);
957 }
958
959 int SSL_set_trust(SSL *s, int trust)
960 {
961 return X509_VERIFY_PARAM_set_trust(s->param, trust);
962 }
963
964 int SSL_set1_host(SSL *s, const char *hostname)
965 {
966 /* If a hostname is provided and parses as an IP address,
967 * treat it as such. */
968 if (hostname && X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname) == 1)
969 return 1;
970
971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
972 }
973
974 int SSL_add1_host(SSL *s, const char *hostname)
975 {
976 /* If a hostname is provided and parses as an IP address,
977 * treat it as such. */
978 if (hostname)
979 {
980 ASN1_OCTET_STRING *ip;
981 char *old_ip;
982
983 ip = a2i_IPADDRESS(hostname);
984 if (ip) {
985 /* We didn't want it; only to check if it *is* an IP address */
986 ASN1_OCTET_STRING_free(ip);
987
988 old_ip = X509_VERIFY_PARAM_get1_ip_asc(s->param);
989 if (old_ip)
990 {
991 OPENSSL_free(old_ip);
992 /* There can be only one IP address */
993 return 0;
994 }
995
996 return X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname);
997 }
998 }
999
1000 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
1001 }
1002
1003 void SSL_set_hostflags(SSL *s, unsigned int flags)
1004 {
1005 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
1006 }
1007
1008 const char *SSL_get0_peername(SSL *s)
1009 {
1010 return X509_VERIFY_PARAM_get0_peername(s->param);
1011 }
1012
1013 int SSL_CTX_dane_enable(SSL_CTX *ctx)
1014 {
1015 return dane_ctx_enable(&ctx->dane);
1016 }
1017
1018 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
1019 {
1020 unsigned long orig = ctx->dane.flags;
1021
1022 ctx->dane.flags |= flags;
1023 return orig;
1024 }
1025
1026 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1027 {
1028 unsigned long orig = ctx->dane.flags;
1029
1030 ctx->dane.flags &= ~flags;
1031 return orig;
1032 }
1033
1034 int SSL_dane_enable(SSL *s, const char *basedomain)
1035 {
1036 SSL_DANE *dane = &s->dane;
1037
1038 if (s->ctx->dane.mdmax == 0) {
1039 ERR_raise(ERR_LIB_SSL, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1040 return 0;
1041 }
1042 if (dane->trecs != NULL) {
1043 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_ALREADY_ENABLED);
1044 return 0;
1045 }
1046
1047 /*
1048 * Default SNI name. This rejects empty names, while set1_host below
1049 * accepts them and disables host name checks. To avoid side-effects with
1050 * invalid input, set the SNI name first.
1051 */
1052 if (s->ext.hostname == NULL) {
1053 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1054 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1055 return -1;
1056 }
1057 }
1058
1059 /* Primary RFC6125 reference identifier */
1060 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1061 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1062 return -1;
1063 }
1064
1065 dane->mdpth = -1;
1066 dane->pdpth = -1;
1067 dane->dctx = &s->ctx->dane;
1068 dane->trecs = sk_danetls_record_new_null();
1069
1070 if (dane->trecs == NULL) {
1071 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1072 return -1;
1073 }
1074 return 1;
1075 }
1076
1077 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1078 {
1079 unsigned long orig = ssl->dane.flags;
1080
1081 ssl->dane.flags |= flags;
1082 return orig;
1083 }
1084
1085 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1086 {
1087 unsigned long orig = ssl->dane.flags;
1088
1089 ssl->dane.flags &= ~flags;
1090 return orig;
1091 }
1092
1093 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1094 {
1095 SSL_DANE *dane = &s->dane;
1096
1097 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1098 return -1;
1099 if (dane->mtlsa) {
1100 if (mcert)
1101 *mcert = dane->mcert;
1102 if (mspki)
1103 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1104 }
1105 return dane->mdpth;
1106 }
1107
1108 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1109 uint8_t *mtype, const unsigned char **data, size_t *dlen)
1110 {
1111 SSL_DANE *dane = &s->dane;
1112
1113 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1114 return -1;
1115 if (dane->mtlsa) {
1116 if (usage)
1117 *usage = dane->mtlsa->usage;
1118 if (selector)
1119 *selector = dane->mtlsa->selector;
1120 if (mtype)
1121 *mtype = dane->mtlsa->mtype;
1122 if (data)
1123 *data = dane->mtlsa->data;
1124 if (dlen)
1125 *dlen = dane->mtlsa->dlen;
1126 }
1127 return dane->mdpth;
1128 }
1129
1130 SSL_DANE *SSL_get0_dane(SSL *s)
1131 {
1132 return &s->dane;
1133 }
1134
1135 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1136 uint8_t mtype, const unsigned char *data, size_t dlen)
1137 {
1138 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1139 }
1140
1141 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1142 uint8_t ord)
1143 {
1144 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1145 }
1146
1147 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1148 {
1149 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1150 }
1151
1152 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1153 {
1154 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1155 }
1156
1157 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1158 {
1159 return ctx->param;
1160 }
1161
1162 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1163 {
1164 return ssl->param;
1165 }
1166
1167 void SSL_certs_clear(SSL *s)
1168 {
1169 ssl_cert_clear_certs(s->cert);
1170 }
1171
1172 void SSL_free(SSL *s)
1173 {
1174 int i;
1175
1176 if (s == NULL)
1177 return;
1178 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1179 REF_PRINT_COUNT("SSL", s);
1180 if (i > 0)
1181 return;
1182 REF_ASSERT_ISNT(i < 0);
1183
1184 X509_VERIFY_PARAM_free(s->param);
1185 dane_final(&s->dane);
1186 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1187
1188 RECORD_LAYER_release(&s->rlayer);
1189
1190 /* Ignore return value */
1191 ssl_free_wbio_buffer(s);
1192
1193 BIO_free_all(s->wbio);
1194 s->wbio = NULL;
1195 BIO_free_all(s->rbio);
1196 s->rbio = NULL;
1197
1198 BUF_MEM_free(s->init_buf);
1199
1200 /* add extra stuff */
1201 sk_SSL_CIPHER_free(s->cipher_list);
1202 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1203 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1204 sk_SSL_CIPHER_free(s->peer_ciphers);
1205
1206 /* Make the next call work :-) */
1207 if (s->session != NULL) {
1208 ssl_clear_bad_session(s);
1209 SSL_SESSION_free(s->session);
1210 }
1211 SSL_SESSION_free(s->psksession);
1212 OPENSSL_free(s->psksession_id);
1213
1214 clear_ciphers(s);
1215
1216 ssl_cert_free(s->cert);
1217 OPENSSL_free(s->shared_sigalgs);
1218 /* Free up if allocated */
1219
1220 OPENSSL_free(s->ext.hostname);
1221 SSL_CTX_free(s->session_ctx);
1222 OPENSSL_free(s->ext.ecpointformats);
1223 OPENSSL_free(s->ext.peer_ecpointformats);
1224 OPENSSL_free(s->ext.supportedgroups);
1225 OPENSSL_free(s->ext.peer_supportedgroups);
1226 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1227 #ifndef OPENSSL_NO_OCSP
1228 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1229 #endif
1230 #ifndef OPENSSL_NO_CT
1231 SCT_LIST_free(s->scts);
1232 OPENSSL_free(s->ext.scts);
1233 #endif
1234 OPENSSL_free(s->ext.ocsp.resp);
1235 OPENSSL_free(s->ext.alpn);
1236 OPENSSL_free(s->ext.tls13_cookie);
1237 if (s->clienthello != NULL)
1238 OPENSSL_free(s->clienthello->pre_proc_exts);
1239 OPENSSL_free(s->clienthello);
1240 OPENSSL_free(s->pha_context);
1241 EVP_MD_CTX_free(s->pha_dgst);
1242
1243 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1244 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1245
1246 OSSL_STACK_OF_X509_free(s->verified_chain);
1247
1248 if (s->method != NULL)
1249 s->method->ssl_free(s);
1250
1251 SSL_CTX_free(s->ctx);
1252
1253 ASYNC_WAIT_CTX_free(s->waitctx);
1254
1255 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1256 OPENSSL_free(s->ext.npn);
1257 #endif
1258
1259 #ifndef OPENSSL_NO_SRTP
1260 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1261 #endif
1262
1263 CRYPTO_THREAD_lock_free(s->lock);
1264
1265 OPENSSL_free(s);
1266 }
1267
1268 void SSL_set0_rbio(SSL *s, BIO *rbio)
1269 {
1270 BIO_free_all(s->rbio);
1271 s->rbio = rbio;
1272 }
1273
1274 void SSL_set0_wbio(SSL *s, BIO *wbio)
1275 {
1276 /*
1277 * If the output buffering BIO is still in place, remove it
1278 */
1279 if (s->bbio != NULL)
1280 s->wbio = BIO_pop(s->wbio);
1281
1282 BIO_free_all(s->wbio);
1283 s->wbio = wbio;
1284
1285 /* Re-attach |bbio| to the new |wbio|. */
1286 if (s->bbio != NULL)
1287 s->wbio = BIO_push(s->bbio, s->wbio);
1288 }
1289
1290 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1291 {
1292 /*
1293 * For historical reasons, this function has many different cases in
1294 * ownership handling.
1295 */
1296
1297 /* If nothing has changed, do nothing */
1298 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1299 return;
1300
1301 /*
1302 * If the two arguments are equal then one fewer reference is granted by the
1303 * caller than we want to take
1304 */
1305 if (rbio != NULL && rbio == wbio)
1306 BIO_up_ref(rbio);
1307
1308 /*
1309 * If only the wbio is changed only adopt one reference.
1310 */
1311 if (rbio == SSL_get_rbio(s)) {
1312 SSL_set0_wbio(s, wbio);
1313 return;
1314 }
1315 /*
1316 * There is an asymmetry here for historical reasons. If only the rbio is
1317 * changed AND the rbio and wbio were originally different, then we only
1318 * adopt one reference.
1319 */
1320 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1321 SSL_set0_rbio(s, rbio);
1322 return;
1323 }
1324
1325 /* Otherwise, adopt both references. */
1326 SSL_set0_rbio(s, rbio);
1327 SSL_set0_wbio(s, wbio);
1328 }
1329
1330 BIO *SSL_get_rbio(const SSL *s)
1331 {
1332 return s->rbio;
1333 }
1334
1335 BIO *SSL_get_wbio(const SSL *s)
1336 {
1337 if (s->bbio != NULL) {
1338 /*
1339 * If |bbio| is active, the true caller-configured BIO is its
1340 * |next_bio|.
1341 */
1342 return BIO_next(s->bbio);
1343 }
1344 return s->wbio;
1345 }
1346
1347 int SSL_get_fd(const SSL *s)
1348 {
1349 return SSL_get_rfd(s);
1350 }
1351
1352 int SSL_get_rfd(const SSL *s)
1353 {
1354 int ret = -1;
1355 BIO *b, *r;
1356
1357 b = SSL_get_rbio(s);
1358 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1359 if (r != NULL)
1360 BIO_get_fd(r, &ret);
1361 return ret;
1362 }
1363
1364 int SSL_get_wfd(const SSL *s)
1365 {
1366 int ret = -1;
1367 BIO *b, *r;
1368
1369 b = SSL_get_wbio(s);
1370 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1371 if (r != NULL)
1372 BIO_get_fd(r, &ret);
1373 return ret;
1374 }
1375
1376 #ifndef OPENSSL_NO_SOCK
1377 int SSL_set_fd(SSL *s, int fd)
1378 {
1379 int ret = 0;
1380 BIO *bio = NULL;
1381
1382 bio = BIO_new(BIO_s_socket());
1383
1384 if (bio == NULL) {
1385 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1386 goto err;
1387 }
1388 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1389 SSL_set_bio(s, bio, bio);
1390 #ifndef OPENSSL_NO_KTLS
1391 /*
1392 * The new socket is created successfully regardless of ktls_enable.
1393 * ktls_enable doesn't change any functionality of the socket, except
1394 * changing the setsockopt to enable the processing of ktls_start.
1395 * Thus, it is not a problem to call it for non-TLS sockets.
1396 */
1397 ktls_enable(fd);
1398 #endif /* OPENSSL_NO_KTLS */
1399 ret = 1;
1400 err:
1401 return ret;
1402 }
1403
1404 int SSL_set_wfd(SSL *s, int fd)
1405 {
1406 BIO *rbio = SSL_get_rbio(s);
1407
1408 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1409 || (int)BIO_get_fd(rbio, NULL) != fd) {
1410 BIO *bio = BIO_new(BIO_s_socket());
1411
1412 if (bio == NULL) {
1413 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1414 return 0;
1415 }
1416 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1417 SSL_set0_wbio(s, bio);
1418 #ifndef OPENSSL_NO_KTLS
1419 /*
1420 * The new socket is created successfully regardless of ktls_enable.
1421 * ktls_enable doesn't change any functionality of the socket, except
1422 * changing the setsockopt to enable the processing of ktls_start.
1423 * Thus, it is not a problem to call it for non-TLS sockets.
1424 */
1425 ktls_enable(fd);
1426 #endif /* OPENSSL_NO_KTLS */
1427 } else {
1428 BIO_up_ref(rbio);
1429 SSL_set0_wbio(s, rbio);
1430 }
1431 return 1;
1432 }
1433
1434 int SSL_set_rfd(SSL *s, int fd)
1435 {
1436 BIO *wbio = SSL_get_wbio(s);
1437
1438 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1439 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1440 BIO *bio = BIO_new(BIO_s_socket());
1441
1442 if (bio == NULL) {
1443 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1444 return 0;
1445 }
1446 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1447 SSL_set0_rbio(s, bio);
1448 } else {
1449 BIO_up_ref(wbio);
1450 SSL_set0_rbio(s, wbio);
1451 }
1452
1453 return 1;
1454 }
1455 #endif
1456
1457 /* return length of latest Finished message we sent, copy to 'buf' */
1458 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1459 {
1460 size_t ret = 0;
1461
1462 ret = s->s3.tmp.finish_md_len;
1463 if (count > ret)
1464 count = ret;
1465 memcpy(buf, s->s3.tmp.finish_md, count);
1466 return ret;
1467 }
1468
1469 /* return length of latest Finished message we expected, copy to 'buf' */
1470 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1471 {
1472 size_t ret = 0;
1473
1474 ret = s->s3.tmp.peer_finish_md_len;
1475 if (count > ret)
1476 count = ret;
1477 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1478 return ret;
1479 }
1480
1481 int SSL_get_verify_mode(const SSL *s)
1482 {
1483 return s->verify_mode;
1484 }
1485
1486 int SSL_get_verify_depth(const SSL *s)
1487 {
1488 return X509_VERIFY_PARAM_get_depth(s->param);
1489 }
1490
1491 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1492 return s->verify_callback;
1493 }
1494
1495 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1496 {
1497 return ctx->verify_mode;
1498 }
1499
1500 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1501 {
1502 return X509_VERIFY_PARAM_get_depth(ctx->param);
1503 }
1504
1505 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1506 return ctx->default_verify_callback;
1507 }
1508
1509 void SSL_set_verify(SSL *s, int mode,
1510 int (*callback) (int ok, X509_STORE_CTX *ctx))
1511 {
1512 s->verify_mode = mode;
1513 if (callback != NULL)
1514 s->verify_callback = callback;
1515 }
1516
1517 void SSL_set_verify_depth(SSL *s, int depth)
1518 {
1519 X509_VERIFY_PARAM_set_depth(s->param, depth);
1520 }
1521
1522 void SSL_set_read_ahead(SSL *s, int yes)
1523 {
1524 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1525 }
1526
1527 int SSL_get_read_ahead(const SSL *s)
1528 {
1529 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1530 }
1531
1532 int SSL_pending(const SSL *s)
1533 {
1534 size_t pending = s->method->ssl_pending(s);
1535
1536 /*
1537 * SSL_pending cannot work properly if read-ahead is enabled
1538 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1539 * impossible to fix since SSL_pending cannot report errors that may be
1540 * observed while scanning the new data. (Note that SSL_pending() is
1541 * often used as a boolean value, so we'd better not return -1.)
1542 *
1543 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1544 * we just return INT_MAX.
1545 */
1546 return pending < INT_MAX ? (int)pending : INT_MAX;
1547 }
1548
1549 int SSL_has_pending(const SSL *s)
1550 {
1551 /*
1552 * Similar to SSL_pending() but returns a 1 to indicate that we have
1553 * unprocessed data available or 0 otherwise (as opposed to the number of
1554 * bytes available). Unlike SSL_pending() this will take into account
1555 * read_ahead data. A 1 return simply indicates that we have unprocessed
1556 * data. That data may not result in any application data, or we may fail
1557 * to parse the records for some reason.
1558 */
1559 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1560 return 1;
1561
1562 return RECORD_LAYER_read_pending(&s->rlayer);
1563 }
1564
1565 X509 *SSL_get1_peer_certificate(const SSL *s)
1566 {
1567 X509 *r = SSL_get0_peer_certificate(s);
1568
1569 if (r != NULL)
1570 X509_up_ref(r);
1571
1572 return r;
1573 }
1574
1575 X509 *SSL_get0_peer_certificate(const SSL *s)
1576 {
1577 if ((s == NULL) || (s->session == NULL))
1578 return NULL;
1579 else
1580 return s->session->peer;
1581 }
1582
1583 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1584 {
1585 STACK_OF(X509) *r;
1586
1587 if ((s == NULL) || (s->session == NULL))
1588 r = NULL;
1589 else
1590 r = s->session->peer_chain;
1591
1592 /*
1593 * If we are a client, cert_chain includes the peer's own certificate; if
1594 * we are a server, it does not.
1595 */
1596
1597 return r;
1598 }
1599
1600 /*
1601 * Now in theory, since the calling process own 't' it should be safe to
1602 * modify. We need to be able to read f without being hassled
1603 */
1604 int SSL_copy_session_id(SSL *t, const SSL *f)
1605 {
1606 int i;
1607 /* Do we need to do SSL locking? */
1608 if (!SSL_set_session(t, SSL_get_session(f))) {
1609 return 0;
1610 }
1611
1612 /*
1613 * what if we are setup for one protocol version but want to talk another
1614 */
1615 if (t->method != f->method) {
1616 t->method->ssl_free(t);
1617 t->method = f->method;
1618 if (t->method->ssl_new(t) == 0)
1619 return 0;
1620 }
1621
1622 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1623 ssl_cert_free(t->cert);
1624 t->cert = f->cert;
1625 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1626 return 0;
1627 }
1628
1629 return 1;
1630 }
1631
1632 /* Fix this so it checks all the valid key/cert options */
1633 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1634 {
1635 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1636 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
1637 return 0;
1638 }
1639 if (ctx->cert->key->privatekey == NULL) {
1640 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1641 return 0;
1642 }
1643 return X509_check_private_key
1644 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1645 }
1646
1647 /* Fix this function so that it takes an optional type parameter */
1648 int SSL_check_private_key(const SSL *ssl)
1649 {
1650 if (ssl == NULL) {
1651 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1652 return 0;
1653 }
1654 if (ssl->cert->key->x509 == NULL) {
1655 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
1656 return 0;
1657 }
1658 if (ssl->cert->key->privatekey == NULL) {
1659 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1660 return 0;
1661 }
1662 return X509_check_private_key(ssl->cert->key->x509,
1663 ssl->cert->key->privatekey);
1664 }
1665
1666 int SSL_waiting_for_async(SSL *s)
1667 {
1668 if (s->job)
1669 return 1;
1670
1671 return 0;
1672 }
1673
1674 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1675 {
1676 ASYNC_WAIT_CTX *ctx = s->waitctx;
1677
1678 if (ctx == NULL)
1679 return 0;
1680 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1681 }
1682
1683 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1684 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1685 {
1686 ASYNC_WAIT_CTX *ctx = s->waitctx;
1687
1688 if (ctx == NULL)
1689 return 0;
1690 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1691 numdelfds);
1692 }
1693
1694 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1695 {
1696 ctx->async_cb = callback;
1697 return 1;
1698 }
1699
1700 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1701 {
1702 ctx->async_cb_arg = arg;
1703 return 1;
1704 }
1705
1706 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1707 {
1708 s->async_cb = callback;
1709 return 1;
1710 }
1711
1712 int SSL_set_async_callback_arg(SSL *s, void *arg)
1713 {
1714 s->async_cb_arg = arg;
1715 return 1;
1716 }
1717
1718 int SSL_get_async_status(SSL *s, int *status)
1719 {
1720 ASYNC_WAIT_CTX *ctx = s->waitctx;
1721
1722 if (ctx == NULL)
1723 return 0;
1724 *status = ASYNC_WAIT_CTX_get_status(ctx);
1725 return 1;
1726 }
1727
1728 int SSL_accept(SSL *s)
1729 {
1730 if (s->handshake_func == NULL) {
1731 /* Not properly initialized yet */
1732 SSL_set_accept_state(s);
1733 }
1734
1735 return SSL_do_handshake(s);
1736 }
1737
1738 int SSL_connect(SSL *s)
1739 {
1740 if (s->handshake_func == NULL) {
1741 /* Not properly initialized yet */
1742 SSL_set_connect_state(s);
1743 }
1744
1745 return SSL_do_handshake(s);
1746 }
1747
1748 long SSL_get_default_timeout(const SSL *s)
1749 {
1750 return s->method->get_timeout();
1751 }
1752
1753 static int ssl_async_wait_ctx_cb(void *arg)
1754 {
1755 SSL *s = (SSL *)arg;
1756
1757 return s->async_cb(s, s->async_cb_arg);
1758 }
1759
1760 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1761 int (*func) (void *))
1762 {
1763 int ret;
1764 if (s->waitctx == NULL) {
1765 s->waitctx = ASYNC_WAIT_CTX_new();
1766 if (s->waitctx == NULL)
1767 return -1;
1768 if (s->async_cb != NULL
1769 && !ASYNC_WAIT_CTX_set_callback
1770 (s->waitctx, ssl_async_wait_ctx_cb, s))
1771 return -1;
1772 }
1773
1774 s->rwstate = SSL_NOTHING;
1775 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1776 sizeof(struct ssl_async_args))) {
1777 case ASYNC_ERR:
1778 s->rwstate = SSL_NOTHING;
1779 ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_INIT_ASYNC);
1780 return -1;
1781 case ASYNC_PAUSE:
1782 s->rwstate = SSL_ASYNC_PAUSED;
1783 return -1;
1784 case ASYNC_NO_JOBS:
1785 s->rwstate = SSL_ASYNC_NO_JOBS;
1786 return -1;
1787 case ASYNC_FINISH:
1788 s->job = NULL;
1789 return ret;
1790 default:
1791 s->rwstate = SSL_NOTHING;
1792 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1793 /* Shouldn't happen */
1794 return -1;
1795 }
1796 }
1797
1798 static int ssl_io_intern(void *vargs)
1799 {
1800 struct ssl_async_args *args;
1801 SSL *s;
1802 void *buf;
1803 size_t num;
1804
1805 args = (struct ssl_async_args *)vargs;
1806 s = args->s;
1807 buf = args->buf;
1808 num = args->num;
1809 switch (args->type) {
1810 case READFUNC:
1811 return args->f.func_read(s, buf, num, &s->asyncrw);
1812 case WRITEFUNC:
1813 return args->f.func_write(s, buf, num, &s->asyncrw);
1814 case OTHERFUNC:
1815 return args->f.func_other(s);
1816 }
1817 return -1;
1818 }
1819
1820 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1821 {
1822 if (s->handshake_func == NULL) {
1823 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
1824 return -1;
1825 }
1826
1827 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1828 s->rwstate = SSL_NOTHING;
1829 return 0;
1830 }
1831
1832 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1833 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1834 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1835 return 0;
1836 }
1837 /*
1838 * If we are a client and haven't received the ServerHello etc then we
1839 * better do that
1840 */
1841 ossl_statem_check_finish_init(s, 0);
1842
1843 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1844 struct ssl_async_args args;
1845 int ret;
1846
1847 args.s = s;
1848 args.buf = buf;
1849 args.num = num;
1850 args.type = READFUNC;
1851 args.f.func_read = s->method->ssl_read;
1852
1853 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1854 *readbytes = s->asyncrw;
1855 return ret;
1856 } else {
1857 return s->method->ssl_read(s, buf, num, readbytes);
1858 }
1859 }
1860
1861 int SSL_read(SSL *s, void *buf, int num)
1862 {
1863 int ret;
1864 size_t readbytes;
1865
1866 if (num < 0) {
1867 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1868 return -1;
1869 }
1870
1871 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1872
1873 /*
1874 * The cast is safe here because ret should be <= INT_MAX because num is
1875 * <= INT_MAX
1876 */
1877 if (ret > 0)
1878 ret = (int)readbytes;
1879
1880 return ret;
1881 }
1882
1883 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1884 {
1885 int ret = ssl_read_internal(s, buf, num, readbytes);
1886
1887 if (ret < 0)
1888 ret = 0;
1889 return ret;
1890 }
1891
1892 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1893 {
1894 int ret;
1895
1896 if (!s->server) {
1897 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1898 return SSL_READ_EARLY_DATA_ERROR;
1899 }
1900
1901 switch (s->early_data_state) {
1902 case SSL_EARLY_DATA_NONE:
1903 if (!SSL_in_before(s)) {
1904 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1905 return SSL_READ_EARLY_DATA_ERROR;
1906 }
1907 /* fall through */
1908
1909 case SSL_EARLY_DATA_ACCEPT_RETRY:
1910 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1911 ret = SSL_accept(s);
1912 if (ret <= 0) {
1913 /* NBIO or error */
1914 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1915 return SSL_READ_EARLY_DATA_ERROR;
1916 }
1917 /* fall through */
1918
1919 case SSL_EARLY_DATA_READ_RETRY:
1920 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1921 s->early_data_state = SSL_EARLY_DATA_READING;
1922 ret = SSL_read_ex(s, buf, num, readbytes);
1923 /*
1924 * State machine will update early_data_state to
1925 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1926 * message
1927 */
1928 if (ret > 0 || (ret <= 0 && s->early_data_state
1929 != SSL_EARLY_DATA_FINISHED_READING)) {
1930 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1931 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1932 : SSL_READ_EARLY_DATA_ERROR;
1933 }
1934 } else {
1935 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1936 }
1937 *readbytes = 0;
1938 return SSL_READ_EARLY_DATA_FINISH;
1939
1940 default:
1941 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1942 return SSL_READ_EARLY_DATA_ERROR;
1943 }
1944 }
1945
1946 int SSL_get_early_data_status(const SSL *s)
1947 {
1948 return s->ext.early_data;
1949 }
1950
1951 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1952 {
1953 if (s->handshake_func == NULL) {
1954 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
1955 return -1;
1956 }
1957
1958 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1959 return 0;
1960 }
1961 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1962 struct ssl_async_args args;
1963 int ret;
1964
1965 args.s = s;
1966 args.buf = buf;
1967 args.num = num;
1968 args.type = READFUNC;
1969 args.f.func_read = s->method->ssl_peek;
1970
1971 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1972 *readbytes = s->asyncrw;
1973 return ret;
1974 } else {
1975 return s->method->ssl_peek(s, buf, num, readbytes);
1976 }
1977 }
1978
1979 int SSL_peek(SSL *s, void *buf, int num)
1980 {
1981 int ret;
1982 size_t readbytes;
1983
1984 if (num < 0) {
1985 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1986 return -1;
1987 }
1988
1989 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1990
1991 /*
1992 * The cast is safe here because ret should be <= INT_MAX because num is
1993 * <= INT_MAX
1994 */
1995 if (ret > 0)
1996 ret = (int)readbytes;
1997
1998 return ret;
1999 }
2000
2001
2002 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
2003 {
2004 int ret = ssl_peek_internal(s, buf, num, readbytes);
2005
2006 if (ret < 0)
2007 ret = 0;
2008 return ret;
2009 }
2010
2011 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
2012 {
2013 if (s->handshake_func == NULL) {
2014 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2015 return -1;
2016 }
2017
2018 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2019 s->rwstate = SSL_NOTHING;
2020 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2021 return -1;
2022 }
2023
2024 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
2025 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
2026 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
2027 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2028 return 0;
2029 }
2030 /* If we are a client and haven't sent the Finished we better do that */
2031 ossl_statem_check_finish_init(s, 1);
2032
2033 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2034 int ret;
2035 struct ssl_async_args args;
2036
2037 args.s = s;
2038 args.buf = (void *)buf;
2039 args.num = num;
2040 args.type = WRITEFUNC;
2041 args.f.func_write = s->method->ssl_write;
2042
2043 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2044 *written = s->asyncrw;
2045 return ret;
2046 } else {
2047 return s->method->ssl_write(s, buf, num, written);
2048 }
2049 }
2050
2051 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2052 {
2053 ossl_ssize_t ret;
2054
2055 if (s->handshake_func == NULL) {
2056 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2057 return -1;
2058 }
2059
2060 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2061 s->rwstate = SSL_NOTHING;
2062 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2063 return -1;
2064 }
2065
2066 if (!BIO_get_ktls_send(s->wbio)) {
2067 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2068 return -1;
2069 }
2070
2071 /* If we have an alert to send, lets send it */
2072 if (s->s3.alert_dispatch) {
2073 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2074 if (ret <= 0) {
2075 /* SSLfatal() already called if appropriate */
2076 return ret;
2077 }
2078 /* if it went, fall through and send more stuff */
2079 }
2080
2081 s->rwstate = SSL_WRITING;
2082 if (BIO_flush(s->wbio) <= 0) {
2083 if (!BIO_should_retry(s->wbio)) {
2084 s->rwstate = SSL_NOTHING;
2085 } else {
2086 #ifdef EAGAIN
2087 set_sys_error(EAGAIN);
2088 #endif
2089 }
2090 return -1;
2091 }
2092
2093 #ifdef OPENSSL_NO_KTLS
2094 ERR_raise_data(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR,
2095 "can't call ktls_sendfile(), ktls disabled");
2096 return -1;
2097 #else
2098 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2099 if (ret < 0) {
2100 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2101 if ((get_last_sys_error() == EAGAIN) ||
2102 (get_last_sys_error() == EINTR) ||
2103 (get_last_sys_error() == EBUSY))
2104 BIO_set_retry_write(s->wbio);
2105 else
2106 #endif
2107 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2108 return ret;
2109 }
2110 s->rwstate = SSL_NOTHING;
2111 return ret;
2112 #endif
2113 }
2114
2115 int SSL_write(SSL *s, const void *buf, int num)
2116 {
2117 int ret;
2118 size_t written;
2119
2120 if (num < 0) {
2121 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
2122 return -1;
2123 }
2124
2125 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2126
2127 /*
2128 * The cast is safe here because ret should be <= INT_MAX because num is
2129 * <= INT_MAX
2130 */
2131 if (ret > 0)
2132 ret = (int)written;
2133
2134 return ret;
2135 }
2136
2137 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2138 {
2139 int ret = ssl_write_internal(s, buf, num, written);
2140
2141 if (ret < 0)
2142 ret = 0;
2143 return ret;
2144 }
2145
2146 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2147 {
2148 int ret, early_data_state;
2149 size_t writtmp;
2150 uint32_t partialwrite;
2151
2152 switch (s->early_data_state) {
2153 case SSL_EARLY_DATA_NONE:
2154 if (s->server
2155 || !SSL_in_before(s)
2156 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2157 && (s->psk_use_session_cb == NULL))) {
2158 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2159 return 0;
2160 }
2161 /* fall through */
2162
2163 case SSL_EARLY_DATA_CONNECT_RETRY:
2164 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2165 ret = SSL_connect(s);
2166 if (ret <= 0) {
2167 /* NBIO or error */
2168 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2169 return 0;
2170 }
2171 /* fall through */
2172
2173 case SSL_EARLY_DATA_WRITE_RETRY:
2174 s->early_data_state = SSL_EARLY_DATA_WRITING;
2175 /*
2176 * We disable partial write for early data because we don't keep track
2177 * of how many bytes we've written between the SSL_write_ex() call and
2178 * the flush if the flush needs to be retried)
2179 */
2180 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2181 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2182 ret = SSL_write_ex(s, buf, num, &writtmp);
2183 s->mode |= partialwrite;
2184 if (!ret) {
2185 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2186 return ret;
2187 }
2188 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2189 /* fall through */
2190
2191 case SSL_EARLY_DATA_WRITE_FLUSH:
2192 /* The buffering BIO is still in place so we need to flush it */
2193 if (statem_flush(s) != 1)
2194 return 0;
2195 *written = num;
2196 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2197 return 1;
2198
2199 case SSL_EARLY_DATA_FINISHED_READING:
2200 case SSL_EARLY_DATA_READ_RETRY:
2201 early_data_state = s->early_data_state;
2202 /* We are a server writing to an unauthenticated client */
2203 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2204 ret = SSL_write_ex(s, buf, num, written);
2205 /* The buffering BIO is still in place */
2206 if (ret)
2207 (void)BIO_flush(s->wbio);
2208 s->early_data_state = early_data_state;
2209 return ret;
2210
2211 default:
2212 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2213 return 0;
2214 }
2215 }
2216
2217 int SSL_shutdown(SSL *s)
2218 {
2219 /*
2220 * Note that this function behaves differently from what one might
2221 * expect. Return values are 0 for no success (yet), 1 for success; but
2222 * calling it once is usually not enough, even if blocking I/O is used
2223 * (see ssl3_shutdown).
2224 */
2225
2226 if (s->handshake_func == NULL) {
2227 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2228 return -1;
2229 }
2230
2231 if (!SSL_in_init(s)) {
2232 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2233 struct ssl_async_args args;
2234
2235 args.s = s;
2236 args.type = OTHERFUNC;
2237 args.f.func_other = s->method->ssl_shutdown;
2238
2239 return ssl_start_async_job(s, &args, ssl_io_intern);
2240 } else {
2241 return s->method->ssl_shutdown(s);
2242 }
2243 } else {
2244 ERR_raise(ERR_LIB_SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2245 return -1;
2246 }
2247 }
2248
2249 int SSL_key_update(SSL *s, int updatetype)
2250 {
2251 if (!SSL_IS_TLS13(s)) {
2252 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
2253 return 0;
2254 }
2255
2256 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2257 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2258 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_KEY_UPDATE_TYPE);
2259 return 0;
2260 }
2261
2262 if (!SSL_is_init_finished(s)) {
2263 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT);
2264 return 0;
2265 }
2266
2267 if (RECORD_LAYER_write_pending(&s->rlayer)) {
2268 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY);
2269 return 0;
2270 }
2271
2272 ossl_statem_set_in_init(s, 1);
2273 s->key_update = updatetype;
2274 return 1;
2275 }
2276
2277 int SSL_get_key_update_type(const SSL *s)
2278 {
2279 return s->key_update;
2280 }
2281
2282 /*
2283 * Can we accept a renegotiation request? If yes, set the flag and
2284 * return 1 if yes. If not, raise error and return 0.
2285 */
2286 static int can_renegotiate(const SSL *s)
2287 {
2288 if (SSL_IS_TLS13(s)) {
2289 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
2290 return 0;
2291 }
2292
2293 if ((s->options & SSL_OP_NO_RENEGOTIATION) != 0) {
2294 ERR_raise(ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION);
2295 return 0;
2296 }
2297
2298 return 1;
2299 }
2300
2301 int SSL_renegotiate(SSL *s)
2302 {
2303 if (!can_renegotiate(s))
2304 return 0;
2305
2306 s->renegotiate = 1;
2307 s->new_session = 1;
2308 return s->method->ssl_renegotiate(s);
2309 }
2310
2311 int SSL_renegotiate_abbreviated(SSL *s)
2312 {
2313 if (!can_renegotiate(s))
2314 return 0;
2315
2316 s->renegotiate = 1;
2317 s->new_session = 0;
2318 return s->method->ssl_renegotiate(s);
2319 }
2320
2321 int SSL_renegotiate_pending(const SSL *s)
2322 {
2323 /*
2324 * becomes true when negotiation is requested; false again once a
2325 * handshake has finished
2326 */
2327 return (s->renegotiate != 0);
2328 }
2329
2330 int SSL_new_session_ticket(SSL *s)
2331 {
2332 /* If we are in init because we're sending tickets, okay to send more. */
2333 if ((SSL_in_init(s) && s->ext.extra_tickets_expected == 0)
2334 || SSL_IS_FIRST_HANDSHAKE(s) || !s->server
2335 || !SSL_IS_TLS13(s))
2336 return 0;
2337 s->ext.extra_tickets_expected++;
2338 if (!RECORD_LAYER_write_pending(&s->rlayer) && !SSL_in_init(s))
2339 ossl_statem_set_in_init(s, 1);
2340 return 1;
2341 }
2342
2343 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2344 {
2345 long l;
2346
2347 switch (cmd) {
2348 case SSL_CTRL_GET_READ_AHEAD:
2349 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2350 case SSL_CTRL_SET_READ_AHEAD:
2351 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2352 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2353 return l;
2354
2355 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2356 s->msg_callback_arg = parg;
2357 return 1;
2358
2359 case SSL_CTRL_MODE:
2360 return (s->mode |= larg);
2361 case SSL_CTRL_CLEAR_MODE:
2362 return (s->mode &= ~larg);
2363 case SSL_CTRL_GET_MAX_CERT_LIST:
2364 return (long)s->max_cert_list;
2365 case SSL_CTRL_SET_MAX_CERT_LIST:
2366 if (larg < 0)
2367 return 0;
2368 l = (long)s->max_cert_list;
2369 s->max_cert_list = (size_t)larg;
2370 return l;
2371 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2372 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2373 return 0;
2374 #ifndef OPENSSL_NO_KTLS
2375 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2376 return 0;
2377 #endif /* OPENSSL_NO_KTLS */
2378 s->max_send_fragment = larg;
2379 if (s->max_send_fragment < s->split_send_fragment)
2380 s->split_send_fragment = s->max_send_fragment;
2381 return 1;
2382 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2383 if ((size_t)larg > s->max_send_fragment || larg == 0)
2384 return 0;
2385 s->split_send_fragment = larg;
2386 return 1;
2387 case SSL_CTRL_SET_MAX_PIPELINES:
2388 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2389 return 0;
2390 s->max_pipelines = larg;
2391 if (larg > 1)
2392 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2393 return 1;
2394 case SSL_CTRL_GET_RI_SUPPORT:
2395 return s->s3.send_connection_binding;
2396 case SSL_CTRL_CERT_FLAGS:
2397 return (s->cert->cert_flags |= larg);
2398 case SSL_CTRL_CLEAR_CERT_FLAGS:
2399 return (s->cert->cert_flags &= ~larg);
2400
2401 case SSL_CTRL_GET_RAW_CIPHERLIST:
2402 if (parg) {
2403 if (s->s3.tmp.ciphers_raw == NULL)
2404 return 0;
2405 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2406 return (int)s->s3.tmp.ciphers_rawlen;
2407 } else {
2408 return TLS_CIPHER_LEN;
2409 }
2410 case SSL_CTRL_GET_EXTMS_SUPPORT:
2411 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2412 return -1;
2413 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2414 return 1;
2415 else
2416 return 0;
2417 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2418 return ssl_check_allowed_versions(larg, s->max_proto_version)
2419 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2420 &s->min_proto_version);
2421 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2422 return s->min_proto_version;
2423 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2424 return ssl_check_allowed_versions(s->min_proto_version, larg)
2425 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2426 &s->max_proto_version);
2427 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2428 return s->max_proto_version;
2429 default:
2430 return s->method->ssl_ctrl(s, cmd, larg, parg);
2431 }
2432 }
2433
2434 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2435 {
2436 switch (cmd) {
2437 case SSL_CTRL_SET_MSG_CALLBACK:
2438 s->msg_callback = (void (*)
2439 (int write_p, int version, int content_type,
2440 const void *buf, size_t len, SSL *ssl,
2441 void *arg))(fp);
2442 return 1;
2443
2444 default:
2445 return s->method->ssl_callback_ctrl(s, cmd, fp);
2446 }
2447 }
2448
2449 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2450 {
2451 return ctx->sessions;
2452 }
2453
2454 static int ssl_tsan_load(SSL_CTX *ctx, TSAN_QUALIFIER int *stat)
2455 {
2456 int res = 0;
2457
2458 if (ssl_tsan_lock(ctx)) {
2459 res = tsan_load(stat);
2460 ssl_tsan_unlock(ctx);
2461 }
2462 return res;
2463 }
2464
2465 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2466 {
2467 long l;
2468 /* For some cases with ctx == NULL perform syntax checks */
2469 if (ctx == NULL) {
2470 switch (cmd) {
2471 case SSL_CTRL_SET_GROUPS_LIST:
2472 return tls1_set_groups_list(ctx, NULL, NULL, parg);
2473 case SSL_CTRL_SET_SIGALGS_LIST:
2474 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2475 return tls1_set_sigalgs_list(NULL, parg, 0);
2476 default:
2477 return 0;
2478 }
2479 }
2480
2481 switch (cmd) {
2482 case SSL_CTRL_GET_READ_AHEAD:
2483 return ctx->read_ahead;
2484 case SSL_CTRL_SET_READ_AHEAD:
2485 l = ctx->read_ahead;
2486 ctx->read_ahead = larg;
2487 return l;
2488
2489 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2490 ctx->msg_callback_arg = parg;
2491 return 1;
2492
2493 case SSL_CTRL_GET_MAX_CERT_LIST:
2494 return (long)ctx->max_cert_list;
2495 case SSL_CTRL_SET_MAX_CERT_LIST:
2496 if (larg < 0)
2497 return 0;
2498 l = (long)ctx->max_cert_list;
2499 ctx->max_cert_list = (size_t)larg;
2500 return l;
2501
2502 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2503 if (larg < 0)
2504 return 0;
2505 l = (long)ctx->session_cache_size;
2506 ctx->session_cache_size = (size_t)larg;
2507 return l;
2508 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2509 return (long)ctx->session_cache_size;
2510 case SSL_CTRL_SET_SESS_CACHE_MODE:
2511 l = ctx->session_cache_mode;
2512 ctx->session_cache_mode = larg;
2513 return l;
2514 case SSL_CTRL_GET_SESS_CACHE_MODE:
2515 return ctx->session_cache_mode;
2516
2517 case SSL_CTRL_SESS_NUMBER:
2518 return lh_SSL_SESSION_num_items(ctx->sessions);
2519 case SSL_CTRL_SESS_CONNECT:
2520 return ssl_tsan_load(ctx, &ctx->stats.sess_connect);
2521 case SSL_CTRL_SESS_CONNECT_GOOD:
2522 return ssl_tsan_load(ctx, &ctx->stats.sess_connect_good);
2523 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2524 return ssl_tsan_load(ctx, &ctx->stats.sess_connect_renegotiate);
2525 case SSL_CTRL_SESS_ACCEPT:
2526 return ssl_tsan_load(ctx, &ctx->stats.sess_accept);
2527 case SSL_CTRL_SESS_ACCEPT_GOOD:
2528 return ssl_tsan_load(ctx, &ctx->stats.sess_accept_good);
2529 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2530 return ssl_tsan_load(ctx, &ctx->stats.sess_accept_renegotiate);
2531 case SSL_CTRL_SESS_HIT:
2532 return ssl_tsan_load(ctx, &ctx->stats.sess_hit);
2533 case SSL_CTRL_SESS_CB_HIT:
2534 return ssl_tsan_load(ctx, &ctx->stats.sess_cb_hit);
2535 case SSL_CTRL_SESS_MISSES:
2536 return ssl_tsan_load(ctx, &ctx->stats.sess_miss);
2537 case SSL_CTRL_SESS_TIMEOUTS:
2538 return ssl_tsan_load(ctx, &ctx->stats.sess_timeout);
2539 case SSL_CTRL_SESS_CACHE_FULL:
2540 return ssl_tsan_load(ctx, &ctx->stats.sess_cache_full);
2541 case SSL_CTRL_MODE:
2542 return (ctx->mode |= larg);
2543 case SSL_CTRL_CLEAR_MODE:
2544 return (ctx->mode &= ~larg);
2545 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2546 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2547 return 0;
2548 ctx->max_send_fragment = larg;
2549 if (ctx->max_send_fragment < ctx->split_send_fragment)
2550 ctx->split_send_fragment = ctx->max_send_fragment;
2551 return 1;
2552 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2553 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2554 return 0;
2555 ctx->split_send_fragment = larg;
2556 return 1;
2557 case SSL_CTRL_SET_MAX_PIPELINES:
2558 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2559 return 0;
2560 ctx->max_pipelines = larg;
2561 return 1;
2562 case SSL_CTRL_CERT_FLAGS:
2563 return (ctx->cert->cert_flags |= larg);
2564 case SSL_CTRL_CLEAR_CERT_FLAGS:
2565 return (ctx->cert->cert_flags &= ~larg);
2566 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2567 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2568 && ssl_set_version_bound(ctx->method->version, (int)larg,
2569 &ctx->min_proto_version);
2570 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2571 return ctx->min_proto_version;
2572 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2573 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2574 && ssl_set_version_bound(ctx->method->version, (int)larg,
2575 &ctx->max_proto_version);
2576 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2577 return ctx->max_proto_version;
2578 default:
2579 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2580 }
2581 }
2582
2583 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2584 {
2585 switch (cmd) {
2586 case SSL_CTRL_SET_MSG_CALLBACK:
2587 ctx->msg_callback = (void (*)
2588 (int write_p, int version, int content_type,
2589 const void *buf, size_t len, SSL *ssl,
2590 void *arg))(fp);
2591 return 1;
2592
2593 default:
2594 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2595 }
2596 }
2597
2598 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2599 {
2600 if (a->id > b->id)
2601 return 1;
2602 if (a->id < b->id)
2603 return -1;
2604 return 0;
2605 }
2606
2607 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2608 const SSL_CIPHER *const *bp)
2609 {
2610 if ((*ap)->id > (*bp)->id)
2611 return 1;
2612 if ((*ap)->id < (*bp)->id)
2613 return -1;
2614 return 0;
2615 }
2616
2617 /** return a STACK of the ciphers available for the SSL and in order of
2618 * preference */
2619 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2620 {
2621 if (s != NULL) {
2622 if (s->cipher_list != NULL) {
2623 return s->cipher_list;
2624 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2625 return s->ctx->cipher_list;
2626 }
2627 }
2628 return NULL;
2629 }
2630
2631 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2632 {
2633 if ((s == NULL) || !s->server)
2634 return NULL;
2635 return s->peer_ciphers;
2636 }
2637
2638 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2639 {
2640 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2641 int i;
2642
2643 ciphers = SSL_get_ciphers(s);
2644 if (!ciphers)
2645 return NULL;
2646 if (!ssl_set_client_disabled(s))
2647 return NULL;
2648 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2649 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2650 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2651 if (!sk)
2652 sk = sk_SSL_CIPHER_new_null();
2653 if (!sk)
2654 return NULL;
2655 if (!sk_SSL_CIPHER_push(sk, c)) {
2656 sk_SSL_CIPHER_free(sk);
2657 return NULL;
2658 }
2659 }
2660 }
2661 return sk;
2662 }
2663
2664 /** return a STACK of the ciphers available for the SSL and in order of
2665 * algorithm id */
2666 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2667 {
2668 if (s != NULL) {
2669 if (s->cipher_list_by_id != NULL) {
2670 return s->cipher_list_by_id;
2671 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2672 return s->ctx->cipher_list_by_id;
2673 }
2674 }
2675 return NULL;
2676 }
2677
2678 /** The old interface to get the same thing as SSL_get_ciphers() */
2679 const char *SSL_get_cipher_list(const SSL *s, int n)
2680 {
2681 const SSL_CIPHER *c;
2682 STACK_OF(SSL_CIPHER) *sk;
2683
2684 if (s == NULL)
2685 return NULL;
2686 sk = SSL_get_ciphers(s);
2687 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2688 return NULL;
2689 c = sk_SSL_CIPHER_value(sk, n);
2690 if (c == NULL)
2691 return NULL;
2692 return c->name;
2693 }
2694
2695 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2696 * preference */
2697 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2698 {
2699 if (ctx != NULL)
2700 return ctx->cipher_list;
2701 return NULL;
2702 }
2703
2704 /*
2705 * Distinguish between ciphers controlled by set_ciphersuite() and
2706 * set_cipher_list() when counting.
2707 */
2708 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2709 {
2710 int i, num = 0;
2711 const SSL_CIPHER *c;
2712
2713 if (sk == NULL)
2714 return 0;
2715 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2716 c = sk_SSL_CIPHER_value(sk, i);
2717 if (c->min_tls >= TLS1_3_VERSION)
2718 continue;
2719 num++;
2720 }
2721 return num;
2722 }
2723
2724 /** specify the ciphers to be used by default by the SSL_CTX */
2725 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2726 {
2727 STACK_OF(SSL_CIPHER) *sk;
2728
2729 sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites,
2730 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2731 ctx->cert);
2732 /*
2733 * ssl_create_cipher_list may return an empty stack if it was unable to
2734 * find a cipher matching the given rule string (for example if the rule
2735 * string specifies a cipher which has been disabled). This is not an
2736 * error as far as ssl_create_cipher_list is concerned, and hence
2737 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2738 */
2739 if (sk == NULL)
2740 return 0;
2741 else if (cipher_list_tls12_num(sk) == 0) {
2742 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
2743 return 0;
2744 }
2745 return 1;
2746 }
2747
2748 /** specify the ciphers to be used by the SSL */
2749 int SSL_set_cipher_list(SSL *s, const char *str)
2750 {
2751 STACK_OF(SSL_CIPHER) *sk;
2752
2753 sk = ssl_create_cipher_list(s->ctx, s->tls13_ciphersuites,
2754 &s->cipher_list, &s->cipher_list_by_id, str,
2755 s->cert);
2756 /* see comment in SSL_CTX_set_cipher_list */
2757 if (sk == NULL)
2758 return 0;
2759 else if (cipher_list_tls12_num(sk) == 0) {
2760 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
2761 return 0;
2762 }
2763 return 1;
2764 }
2765
2766 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2767 {
2768 char *p;
2769 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2770 const SSL_CIPHER *c;
2771 int i;
2772
2773 if (!s->server
2774 || s->peer_ciphers == NULL
2775 || size < 2)
2776 return NULL;
2777
2778 p = buf;
2779 clntsk = s->peer_ciphers;
2780 srvrsk = SSL_get_ciphers(s);
2781 if (clntsk == NULL || srvrsk == NULL)
2782 return NULL;
2783
2784 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2785 return NULL;
2786
2787 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2788 int n;
2789
2790 c = sk_SSL_CIPHER_value(clntsk, i);
2791 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2792 continue;
2793
2794 n = strlen(c->name);
2795 if (n + 1 > size) {
2796 if (p != buf)
2797 --p;
2798 *p = '\0';
2799 return buf;
2800 }
2801 strcpy(p, c->name);
2802 p += n;
2803 *(p++) = ':';
2804 size -= n + 1;
2805 }
2806 p[-1] = '\0';
2807 return buf;
2808 }
2809
2810 /**
2811 * Return the requested servername (SNI) value. Note that the behaviour varies
2812 * depending on:
2813 * - whether this is called by the client or the server,
2814 * - if we are before or during/after the handshake,
2815 * - if a resumption or normal handshake is being attempted/has occurred
2816 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3
2817 *
2818 * Note that only the host_name type is defined (RFC 3546).
2819 */
2820 const char *SSL_get_servername(const SSL *s, const int type)
2821 {
2822 /*
2823 * If we don't know if we are the client or the server yet then we assume
2824 * client.
2825 */
2826 int server = s->handshake_func == NULL ? 0 : s->server;
2827 if (type != TLSEXT_NAMETYPE_host_name)
2828 return NULL;
2829
2830 if (server) {
2831 /**
2832 * Server side
2833 * In TLSv1.3 on the server SNI is not associated with the session
2834 * but in TLSv1.2 or below it is.
2835 *
2836 * Before the handshake:
2837 * - return NULL
2838 *
2839 * During/after the handshake (TLSv1.2 or below resumption occurred):
2840 * - If a servername was accepted by the server in the original
2841 * handshake then it will return that servername, or NULL otherwise.
2842 *
2843 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2844 * - The function will return the servername requested by the client in
2845 * this handshake or NULL if none was requested.
2846 */
2847 if (s->hit && !SSL_IS_TLS13(s))
2848 return s->session->ext.hostname;
2849 } else {
2850 /**
2851 * Client side
2852 *
2853 * Before the handshake:
2854 * - If a servername has been set via a call to
2855 * SSL_set_tlsext_host_name() then it will return that servername
2856 * - If one has not been set, but a TLSv1.2 resumption is being
2857 * attempted and the session from the original handshake had a
2858 * servername accepted by the server then it will return that
2859 * servername
2860 * - Otherwise it returns NULL
2861 *
2862 * During/after the handshake (TLSv1.2 or below resumption occurred):
2863 * - If the session from the original handshake had a servername accepted
2864 * by the server then it will return that servername.
2865 * - Otherwise it returns the servername set via
2866 * SSL_set_tlsext_host_name() (or NULL if it was not called).
2867 *
2868 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2869 * - It will return the servername set via SSL_set_tlsext_host_name()
2870 * (or NULL if it was not called).
2871 */
2872 if (SSL_in_before(s)) {
2873 if (s->ext.hostname == NULL
2874 && s->session != NULL
2875 && s->session->ssl_version != TLS1_3_VERSION)
2876 return s->session->ext.hostname;
2877 } else {
2878 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL)
2879 return s->session->ext.hostname;
2880 }
2881 }
2882
2883 return s->ext.hostname;
2884 }
2885
2886 int SSL_get_servername_type(const SSL *s)
2887 {
2888 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL)
2889 return TLSEXT_NAMETYPE_host_name;
2890 return -1;
2891 }
2892
2893 /*
2894 * SSL_select_next_proto implements the standard protocol selection. It is
2895 * expected that this function is called from the callback set by
2896 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2897 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2898 * not included in the length. A byte string of length 0 is invalid. No byte
2899 * string may be truncated. The current, but experimental algorithm for
2900 * selecting the protocol is: 1) If the server doesn't support NPN then this
2901 * is indicated to the callback. In this case, the client application has to
2902 * abort the connection or have a default application level protocol. 2) If
2903 * the server supports NPN, but advertises an empty list then the client
2904 * selects the first protocol in its list, but indicates via the API that this
2905 * fallback case was enacted. 3) Otherwise, the client finds the first
2906 * protocol in the server's list that it supports and selects this protocol.
2907 * This is because it's assumed that the server has better information about
2908 * which protocol a client should use. 4) If the client doesn't support any
2909 * of the server's advertised protocols, then this is treated the same as
2910 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2911 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2912 */
2913 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2914 const unsigned char *server,
2915 unsigned int server_len,
2916 const unsigned char *client, unsigned int client_len)
2917 {
2918 unsigned int i, j;
2919 const unsigned char *result;
2920 int status = OPENSSL_NPN_UNSUPPORTED;
2921
2922 /*
2923 * For each protocol in server preference order, see if we support it.
2924 */
2925 for (i = 0; i < server_len;) {
2926 for (j = 0; j < client_len;) {
2927 if (server[i] == client[j] &&
2928 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2929 /* We found a match */
2930 result = &server[i];
2931 status = OPENSSL_NPN_NEGOTIATED;
2932 goto found;
2933 }
2934 j += client[j];
2935 j++;
2936 }
2937 i += server[i];
2938 i++;
2939 }
2940
2941 /* There's no overlap between our protocols and the server's list. */
2942 result = client;
2943 status = OPENSSL_NPN_NO_OVERLAP;
2944
2945 found:
2946 *out = (unsigned char *)result + 1;
2947 *outlen = result[0];
2948 return status;
2949 }
2950
2951 #ifndef OPENSSL_NO_NEXTPROTONEG
2952 /*
2953 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2954 * client's requested protocol for this connection and returns 0. If the
2955 * client didn't request any protocol, then *data is set to NULL. Note that
2956 * the client can request any protocol it chooses. The value returned from
2957 * this function need not be a member of the list of supported protocols
2958 * provided by the callback.
2959 */
2960 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2961 unsigned *len)
2962 {
2963 *data = s->ext.npn;
2964 if (*data == NULL) {
2965 *len = 0;
2966 } else {
2967 *len = (unsigned int)s->ext.npn_len;
2968 }
2969 }
2970
2971 /*
2972 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2973 * a TLS server needs a list of supported protocols for Next Protocol
2974 * Negotiation. The returned list must be in wire format. The list is
2975 * returned by setting |out| to point to it and |outlen| to its length. This
2976 * memory will not be modified, but one should assume that the SSL* keeps a
2977 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2978 * wishes to advertise. Otherwise, no such extension will be included in the
2979 * ServerHello.
2980 */
2981 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2982 SSL_CTX_npn_advertised_cb_func cb,
2983 void *arg)
2984 {
2985 ctx->ext.npn_advertised_cb = cb;
2986 ctx->ext.npn_advertised_cb_arg = arg;
2987 }
2988
2989 /*
2990 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2991 * client needs to select a protocol from the server's provided list. |out|
2992 * must be set to point to the selected protocol (which may be within |in|).
2993 * The length of the protocol name must be written into |outlen|. The
2994 * server's advertised protocols are provided in |in| and |inlen|. The
2995 * callback can assume that |in| is syntactically valid. The client must
2996 * select a protocol. It is fatal to the connection if this callback returns
2997 * a value other than SSL_TLSEXT_ERR_OK.
2998 */
2999 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
3000 SSL_CTX_npn_select_cb_func cb,
3001 void *arg)
3002 {
3003 ctx->ext.npn_select_cb = cb;
3004 ctx->ext.npn_select_cb_arg = arg;
3005 }
3006 #endif
3007
3008 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len)
3009 {
3010 unsigned int idx;
3011
3012 if (protos_len < 2 || protos == NULL)
3013 return 0;
3014
3015 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) {
3016 if (protos[idx] == 0)
3017 return 0;
3018 }
3019 return idx == protos_len;
3020 }
3021 /*
3022 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
3023 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
3024 * length-prefixed strings). Returns 0 on success.
3025 */
3026 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
3027 unsigned int protos_len)
3028 {
3029 unsigned char *alpn;
3030
3031 if (protos_len == 0 || protos == NULL) {
3032 OPENSSL_free(ctx->ext.alpn);
3033 ctx->ext.alpn = NULL;
3034 ctx->ext.alpn_len = 0;
3035 return 0;
3036 }
3037 /* Not valid per RFC */
3038 if (!alpn_value_ok(protos, protos_len))
3039 return 1;
3040
3041 alpn = OPENSSL_memdup(protos, protos_len);
3042 if (alpn == NULL) {
3043 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3044 return 1;
3045 }
3046 OPENSSL_free(ctx->ext.alpn);
3047 ctx->ext.alpn = alpn;
3048 ctx->ext.alpn_len = protos_len;
3049
3050 return 0;
3051 }
3052
3053 /*
3054 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
3055 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
3056 * length-prefixed strings). Returns 0 on success.
3057 */
3058 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
3059 unsigned int protos_len)
3060 {
3061 unsigned char *alpn;
3062
3063 if (protos_len == 0 || protos == NULL) {
3064 OPENSSL_free(ssl->ext.alpn);
3065 ssl->ext.alpn = NULL;
3066 ssl->ext.alpn_len = 0;
3067 return 0;
3068 }
3069 /* Not valid per RFC */
3070 if (!alpn_value_ok(protos, protos_len))
3071 return 1;
3072
3073 alpn = OPENSSL_memdup(protos, protos_len);
3074 if (alpn == NULL) {
3075 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3076 return 1;
3077 }
3078 OPENSSL_free(ssl->ext.alpn);
3079 ssl->ext.alpn = alpn;
3080 ssl->ext.alpn_len = protos_len;
3081
3082 return 0;
3083 }
3084
3085 /*
3086 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
3087 * called during ClientHello processing in order to select an ALPN protocol
3088 * from the client's list of offered protocols.
3089 */
3090 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
3091 SSL_CTX_alpn_select_cb_func cb,
3092 void *arg)
3093 {
3094 ctx->ext.alpn_select_cb = cb;
3095 ctx->ext.alpn_select_cb_arg = arg;
3096 }
3097
3098 /*
3099 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
3100 * On return it sets |*data| to point to |*len| bytes of protocol name
3101 * (not including the leading length-prefix byte). If the server didn't
3102 * respond with a negotiated protocol then |*len| will be zero.
3103 */
3104 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
3105 unsigned int *len)
3106 {
3107 *data = ssl->s3.alpn_selected;
3108 if (*data == NULL)
3109 *len = 0;
3110 else
3111 *len = (unsigned int)ssl->s3.alpn_selected_len;
3112 }
3113
3114 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
3115 const char *label, size_t llen,
3116 const unsigned char *context, size_t contextlen,
3117 int use_context)
3118 {
3119 if (s->session == NULL
3120 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER))
3121 return -1;
3122
3123 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
3124 llen, context,
3125 contextlen, use_context);
3126 }
3127
3128 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
3129 const char *label, size_t llen,
3130 const unsigned char *context,
3131 size_t contextlen)
3132 {
3133 if (s->version != TLS1_3_VERSION)
3134 return 0;
3135
3136 return tls13_export_keying_material_early(s, out, olen, label, llen,
3137 context, contextlen);
3138 }
3139
3140 static unsigned long ssl_session_hash(const SSL_SESSION *a)
3141 {
3142 const unsigned char *session_id = a->session_id;
3143 unsigned long l;
3144 unsigned char tmp_storage[4];
3145
3146 if (a->session_id_length < sizeof(tmp_storage)) {
3147 memset(tmp_storage, 0, sizeof(tmp_storage));
3148 memcpy(tmp_storage, a->session_id, a->session_id_length);
3149 session_id = tmp_storage;
3150 }
3151
3152 l = (unsigned long)
3153 ((unsigned long)session_id[0]) |
3154 ((unsigned long)session_id[1] << 8L) |
3155 ((unsigned long)session_id[2] << 16L) |
3156 ((unsigned long)session_id[3] << 24L);
3157 return l;
3158 }
3159
3160 /*
3161 * NB: If this function (or indeed the hash function which uses a sort of
3162 * coarser function than this one) is changed, ensure
3163 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3164 * being able to construct an SSL_SESSION that will collide with any existing
3165 * session with a matching session ID.
3166 */
3167 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3168 {
3169 if (a->ssl_version != b->ssl_version)
3170 return 1;
3171 if (a->session_id_length != b->session_id_length)
3172 return 1;
3173 return memcmp(a->session_id, b->session_id, a->session_id_length);
3174 }
3175
3176 /*
3177 * These wrapper functions should remain rather than redeclaring
3178 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3179 * variable. The reason is that the functions aren't static, they're exposed
3180 * via ssl.h.
3181 */
3182
3183 SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq,
3184 const SSL_METHOD *meth)
3185 {
3186 SSL_CTX *ret = NULL;
3187
3188 if (meth == NULL) {
3189 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_METHOD_PASSED);
3190 return NULL;
3191 }
3192
3193 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3194 return NULL;
3195
3196 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3197 ERR_raise(ERR_LIB_SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3198 goto err;
3199 }
3200 ret = OPENSSL_zalloc(sizeof(*ret));
3201 if (ret == NULL)
3202 goto err;
3203
3204 /* Init the reference counting before any call to SSL_CTX_free */
3205 ret->references = 1;
3206 ret->lock = CRYPTO_THREAD_lock_new();
3207 if (ret->lock == NULL) {
3208 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3209 OPENSSL_free(ret);
3210 return NULL;
3211 }
3212
3213 #ifdef TSAN_REQUIRES_LOCKING
3214 ret->tsan_lock = CRYPTO_THREAD_lock_new();
3215 if (ret->tsan_lock == NULL) {
3216 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3217 goto err;
3218 }
3219 #endif
3220
3221 ret->libctx = libctx;
3222 if (propq != NULL) {
3223 ret->propq = OPENSSL_strdup(propq);
3224 if (ret->propq == NULL)
3225 goto err;
3226 }
3227
3228 ret->method = meth;
3229 ret->min_proto_version = 0;
3230 ret->max_proto_version = 0;
3231 ret->mode = SSL_MODE_AUTO_RETRY;
3232 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3233 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3234 /* We take the system default. */
3235 ret->session_timeout = meth->get_timeout();
3236 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3237 ret->verify_mode = SSL_VERIFY_NONE;
3238 if ((ret->cert = ssl_cert_new()) == NULL)
3239 goto err;
3240
3241 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3242 if (ret->sessions == NULL)
3243 goto err;
3244 ret->cert_store = X509_STORE_new();
3245 if (ret->cert_store == NULL)
3246 goto err;
3247 #ifndef OPENSSL_NO_CT
3248 ret->ctlog_store = CTLOG_STORE_new_ex(libctx, propq);
3249 if (ret->ctlog_store == NULL)
3250 goto err;
3251 #endif
3252
3253 /* initialize cipher/digest methods table */
3254 if (!ssl_load_ciphers(ret))
3255 goto err2;
3256 /* initialise sig algs */
3257 if (!ssl_setup_sig_algs(ret))
3258 goto err2;
3259
3260
3261 if (!ssl_load_groups(ret))
3262 goto err2;
3263
3264 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3265 goto err;
3266
3267 if (!ssl_create_cipher_list(ret,
3268 ret->tls13_ciphersuites,
3269 &ret->cipher_list, &ret->cipher_list_by_id,
3270 OSSL_default_cipher_list(), ret->cert)
3271 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3272 ERR_raise(ERR_LIB_SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3273 goto err2;
3274 }
3275
3276 ret->param = X509_VERIFY_PARAM_new();
3277 if (ret->param == NULL)
3278 goto err;
3279
3280 /*
3281 * If these aren't available from the provider we'll get NULL returns.
3282 * That's fine but will cause errors later if SSLv3 is negotiated
3283 */
3284 ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq);
3285 ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq);
3286
3287 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3288 goto err;
3289
3290 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3291 goto err;
3292
3293 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3294 goto err;
3295
3296 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3297 goto err;
3298
3299 /* No compression for DTLS */
3300 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3301 ret->comp_methods = SSL_COMP_get_compression_methods();
3302
3303 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3304 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3305
3306 /* Setup RFC5077 ticket keys */
3307 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name,
3308 sizeof(ret->ext.tick_key_name), 0) <= 0)
3309 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key,
3310 sizeof(ret->ext.secure->tick_hmac_key), 0) <= 0)
3311 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key,
3312 sizeof(ret->ext.secure->tick_aes_key), 0) <= 0))
3313 ret->options |= SSL_OP_NO_TICKET;
3314
3315 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key,
3316 sizeof(ret->ext.cookie_hmac_key), 0) <= 0)
3317 goto err;
3318
3319 #ifndef OPENSSL_NO_SRP
3320 if (!ssl_ctx_srp_ctx_init_intern(ret))
3321 goto err;
3322 #endif
3323 #ifndef OPENSSL_NO_ENGINE
3324 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3325 # define eng_strx(x) #x
3326 # define eng_str(x) eng_strx(x)
3327 /* Use specific client engine automatically... ignore errors */
3328 {
3329 ENGINE *eng;
3330 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3331 if (!eng) {
3332 ERR_clear_error();
3333 ENGINE_load_builtin_engines();
3334 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3335 }
3336 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3337 ERR_clear_error();
3338 }
3339 # endif
3340 #endif
3341 /*
3342 * Disable compression by default to prevent CRIME. Applications can
3343 * re-enable compression by configuring
3344 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3345 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3346 * middlebox compatibility by default. This may be disabled by default in
3347 * a later OpenSSL version.
3348 */
3349 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3350
3351 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3352
3353 /*
3354 * We cannot usefully set a default max_early_data here (which gets
3355 * propagated in SSL_new(), for the following reason: setting the
3356 * SSL field causes tls_construct_stoc_early_data() to tell the
3357 * client that early data will be accepted when constructing a TLS 1.3
3358 * session ticket, and the client will accordingly send us early data
3359 * when using that ticket (if the client has early data to send).
3360 * However, in order for the early data to actually be consumed by
3361 * the application, the application must also have calls to
3362 * SSL_read_early_data(); otherwise we'll just skip past the early data
3363 * and ignore it. So, since the application must add calls to
3364 * SSL_read_early_data(), we also require them to add
3365 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3366 * eliminating the bandwidth-wasting early data in the case described
3367 * above.
3368 */
3369 ret->max_early_data = 0;
3370
3371 /*
3372 * Default recv_max_early_data is a fully loaded single record. Could be
3373 * split across multiple records in practice. We set this differently to
3374 * max_early_data so that, in the default case, we do not advertise any
3375 * support for early_data, but if a client were to send us some (e.g.
3376 * because of an old, stale ticket) then we will tolerate it and skip over
3377 * it.
3378 */
3379 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3380
3381 /* By default we send two session tickets automatically in TLSv1.3 */
3382 ret->num_tickets = 2;
3383
3384 ssl_ctx_system_config(ret);
3385
3386 return ret;
3387 err:
3388 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3389 err2:
3390 SSL_CTX_free(ret);
3391 return NULL;
3392 }
3393
3394 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3395 {
3396 return SSL_CTX_new_ex(NULL, NULL, meth);
3397 }
3398
3399 int SSL_CTX_up_ref(SSL_CTX *ctx)
3400 {
3401 int i;
3402
3403 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3404 return 0;
3405
3406 REF_PRINT_COUNT("SSL_CTX", ctx);
3407 REF_ASSERT_ISNT(i < 2);
3408 return ((i > 1) ? 1 : 0);
3409 }
3410
3411 void SSL_CTX_free(SSL_CTX *a)
3412 {
3413 int i;
3414 size_t j;
3415
3416 if (a == NULL)
3417 return;
3418
3419 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3420 REF_PRINT_COUNT("SSL_CTX", a);
3421 if (i > 0)
3422 return;
3423 REF_ASSERT_ISNT(i < 0);
3424
3425 X509_VERIFY_PARAM_free(a->param);
3426 dane_ctx_final(&a->dane);
3427
3428 /*
3429 * Free internal session cache. However: the remove_cb() may reference
3430 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3431 * after the sessions were flushed.
3432 * As the ex_data handling routines might also touch the session cache,
3433 * the most secure solution seems to be: empty (flush) the cache, then
3434 * free ex_data, then finally free the cache.
3435 * (See ticket [openssl.org #212].)
3436 */
3437 if (a->sessions != NULL)
3438 SSL_CTX_flush_sessions(a, 0);
3439
3440 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3441 lh_SSL_SESSION_free(a->sessions);
3442 X509_STORE_free(a->cert_store);
3443 #ifndef OPENSSL_NO_CT
3444 CTLOG_STORE_free(a->ctlog_store);
3445 #endif
3446 sk_SSL_CIPHER_free(a->cipher_list);
3447 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3448 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3449 ssl_cert_free(a->cert);
3450 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3451 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3452 OSSL_STACK_OF_X509_free(a->extra_certs);
3453 a->comp_methods = NULL;
3454 #ifndef OPENSSL_NO_SRTP
3455 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3456 #endif
3457 #ifndef OPENSSL_NO_SRP
3458 ssl_ctx_srp_ctx_free_intern(a);
3459 #endif
3460 #ifndef OPENSSL_NO_ENGINE
3461 tls_engine_finish(a->client_cert_engine);
3462 #endif
3463
3464 OPENSSL_free(a->ext.ecpointformats);
3465 OPENSSL_free(a->ext.supportedgroups);
3466 OPENSSL_free(a->ext.supported_groups_default);
3467 OPENSSL_free(a->ext.alpn);
3468 OPENSSL_secure_free(a->ext.secure);
3469
3470 ssl_evp_md_free(a->md5);
3471 ssl_evp_md_free(a->sha1);
3472
3473 for (j = 0; j < SSL_ENC_NUM_IDX; j++)
3474 ssl_evp_cipher_free(a->ssl_cipher_methods[j]);
3475 for (j = 0; j < SSL_MD_NUM_IDX; j++)
3476 ssl_evp_md_free(a->ssl_digest_methods[j]);
3477 for (j = 0; j < a->group_list_len; j++) {
3478 OPENSSL_free(a->group_list[j].tlsname);
3479 OPENSSL_free(a->group_list[j].realname);
3480 OPENSSL_free(a->group_list[j].algorithm);
3481 }
3482 OPENSSL_free(a->group_list);
3483
3484 OPENSSL_free(a->sigalg_lookup_cache);
3485
3486 CRYPTO_THREAD_lock_free(a->lock);
3487 #ifdef TSAN_REQUIRES_LOCKING
3488 CRYPTO_THREAD_lock_free(a->tsan_lock);
3489 #endif
3490
3491 OPENSSL_free(a->propq);
3492
3493 OPENSSL_free(a);
3494 }
3495
3496 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3497 {
3498 ctx->default_passwd_callback = cb;
3499 }
3500
3501 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3502 {
3503 ctx->default_passwd_callback_userdata = u;
3504 }
3505
3506 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3507 {
3508 return ctx->default_passwd_callback;
3509 }
3510
3511 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3512 {
3513 return ctx->default_passwd_callback_userdata;
3514 }
3515
3516 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3517 {
3518 s->default_passwd_callback = cb;
3519 }
3520
3521 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3522 {
3523 s->default_passwd_callback_userdata = u;
3524 }
3525
3526 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3527 {
3528 return s->default_passwd_callback;
3529 }
3530
3531 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3532 {
3533 return s->default_passwd_callback_userdata;
3534 }
3535
3536 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3537 int (*cb) (X509_STORE_CTX *, void *),
3538 void *arg)
3539 {
3540 ctx->app_verify_callback = cb;
3541 ctx->app_verify_arg = arg;
3542 }
3543
3544 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3545 int (*cb) (int, X509_STORE_CTX *))
3546 {
3547 ctx->verify_mode = mode;
3548 ctx->default_verify_callback = cb;
3549 }
3550
3551 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3552 {
3553 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3554 }
3555
3556 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3557 {
3558 ssl_cert_set_cert_cb(c->cert, cb, arg);
3559 }
3560
3561 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3562 {
3563 ssl_cert_set_cert_cb(s->cert, cb, arg);
3564 }
3565
3566 void ssl_set_masks(SSL *s)
3567 {
3568 CERT *c = s->cert;
3569 uint32_t *pvalid = s->s3.tmp.valid_flags;
3570 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3571 unsigned long mask_k, mask_a;
3572 int have_ecc_cert, ecdsa_ok;
3573
3574 if (c == NULL)
3575 return;
3576
3577 dh_tmp = (c->dh_tmp != NULL
3578 || c->dh_tmp_cb != NULL
3579 || c->dh_tmp_auto);
3580
3581 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3582 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3583 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3584 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3585 mask_k = 0;
3586 mask_a = 0;
3587
3588 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3589 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3590
3591 #ifndef OPENSSL_NO_GOST
3592 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3593 mask_k |= SSL_kGOST | SSL_kGOST18;
3594 mask_a |= SSL_aGOST12;
3595 }
3596 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3597 mask_k |= SSL_kGOST | SSL_kGOST18;
3598 mask_a |= SSL_aGOST12;
3599 }
3600 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3601 mask_k |= SSL_kGOST;
3602 mask_a |= SSL_aGOST01;
3603 }
3604 #endif
3605
3606 if (rsa_enc)
3607 mask_k |= SSL_kRSA;
3608
3609 if (dh_tmp)
3610 mask_k |= SSL_kDHE;
3611
3612 /*
3613 * If we only have an RSA-PSS certificate allow RSA authentication
3614 * if TLS 1.2 and peer supports it.
3615 */
3616
3617 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3618 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3619 && TLS1_get_version(s) == TLS1_2_VERSION))
3620 mask_a |= SSL_aRSA;
3621
3622 if (dsa_sign) {
3623 mask_a |= SSL_aDSS;
3624 }
3625
3626 mask_a |= SSL_aNULL;
3627
3628 /*
3629 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3630 * depending on the key usage extension.
3631 */
3632 if (have_ecc_cert) {
3633 uint32_t ex_kusage;
3634 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3635 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3636 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3637 ecdsa_ok = 0;
3638 if (ecdsa_ok)
3639 mask_a |= SSL_aECDSA;
3640 }
3641 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3642 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3643 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3644 && TLS1_get_version(s) == TLS1_2_VERSION)
3645 mask_a |= SSL_aECDSA;
3646
3647 /* Allow Ed448 for TLS 1.2 if peer supports it */
3648 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3649 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3650 && TLS1_get_version(s) == TLS1_2_VERSION)
3651 mask_a |= SSL_aECDSA;
3652
3653 mask_k |= SSL_kECDHE;
3654
3655 #ifndef OPENSSL_NO_PSK
3656 mask_k |= SSL_kPSK;
3657 mask_a |= SSL_aPSK;
3658 if (mask_k & SSL_kRSA)
3659 mask_k |= SSL_kRSAPSK;
3660 if (mask_k & SSL_kDHE)
3661 mask_k |= SSL_kDHEPSK;
3662 if (mask_k & SSL_kECDHE)
3663 mask_k |= SSL_kECDHEPSK;
3664 #endif
3665
3666 s->s3.tmp.mask_k = mask_k;
3667 s->s3.tmp.mask_a = mask_a;
3668 }
3669
3670 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3671 {
3672 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3673 /* key usage, if present, must allow signing */
3674 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3675 ERR_raise(ERR_LIB_SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3676 return 0;
3677 }
3678 }
3679 return 1; /* all checks are ok */
3680 }
3681
3682 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3683 size_t *serverinfo_length)
3684 {
3685 CERT_PKEY *cpk = s->s3.tmp.cert;
3686 *serverinfo_length = 0;
3687
3688 if (cpk == NULL || cpk->serverinfo == NULL)
3689 return 0;
3690
3691 *serverinfo = cpk->serverinfo;
3692 *serverinfo_length = cpk->serverinfo_length;
3693 return 1;
3694 }
3695
3696 void ssl_update_cache(SSL *s, int mode)
3697 {
3698 int i;
3699
3700 /*
3701 * If the session_id_length is 0, we are not supposed to cache it, and it
3702 * would be rather hard to do anyway :-)
3703 */
3704 if (s->session->session_id_length == 0)
3705 return;
3706
3707 /*
3708 * If sid_ctx_length is 0 there is no specific application context
3709 * associated with this session, so when we try to resume it and
3710 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3711 * indication that this is actually a session for the proper application
3712 * context, and the *handshake* will fail, not just the resumption attempt.
3713 * Do not cache (on the server) these sessions that are not resumable
3714 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3715 */
3716 if (s->server && s->session->sid_ctx_length == 0
3717 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3718 return;
3719
3720 i = s->session_ctx->session_cache_mode;
3721 if ((i & mode) != 0
3722 && (!s->hit || SSL_IS_TLS13(s))) {
3723 /*
3724 * Add the session to the internal cache. In server side TLSv1.3 we
3725 * normally don't do this because by default it's a full stateless ticket
3726 * with only a dummy session id so there is no reason to cache it,
3727 * unless:
3728 * - we are doing early_data, in which case we cache so that we can
3729 * detect replays
3730 * - the application has set a remove_session_cb so needs to know about
3731 * session timeout events
3732 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3733 */
3734 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3735 && (!SSL_IS_TLS13(s)
3736 || !s->server
3737 || (s->max_early_data > 0
3738 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3739 || s->session_ctx->remove_session_cb != NULL
3740 || (s->options & SSL_OP_NO_TICKET) != 0))
3741 SSL_CTX_add_session(s->session_ctx, s->session);
3742
3743 /*
3744 * Add the session to the external cache. We do this even in server side
3745 * TLSv1.3 without early data because some applications just want to
3746 * know about the creation of a session and aren't doing a full cache.
3747 */
3748 if (s->session_ctx->new_session_cb != NULL) {
3749 SSL_SESSION_up_ref(s->session);
3750 if (!s->session_ctx->new_session_cb(s, s->session))
3751 SSL_SESSION_free(s->session);
3752 }
3753 }
3754
3755 /* auto flush every 255 connections */
3756 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3757 TSAN_QUALIFIER int *stat;
3758
3759 if (mode & SSL_SESS_CACHE_CLIENT)
3760 stat = &s->session_ctx->stats.sess_connect_good;
3761 else
3762 stat = &s->session_ctx->stats.sess_accept_good;
3763 if ((ssl_tsan_load(s->session_ctx, stat) & 0xff) == 0xff)
3764 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3765 }
3766 }
3767
3768 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3769 {
3770 return ctx->method;
3771 }
3772
3773 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3774 {
3775 return s->method;
3776 }
3777
3778 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3779 {
3780 int ret = 1;
3781
3782 if (s->method != meth) {
3783 const SSL_METHOD *sm = s->method;
3784 int (*hf) (SSL *) = s->handshake_func;
3785
3786 if (sm->version == meth->version)
3787 s->method = meth;
3788 else {
3789 sm->ssl_free(s);
3790 s->method = meth;
3791 ret = s->method->ssl_new(s);
3792 }
3793
3794 if (hf == sm->ssl_connect)
3795 s->handshake_func = meth->ssl_connect;
3796 else if (hf == sm->ssl_accept)
3797 s->handshake_func = meth->ssl_accept;
3798 }
3799 return ret;
3800 }
3801
3802 int SSL_get_error(const SSL *s, int i)
3803 {
3804 int reason;
3805 unsigned long l;
3806 BIO *bio;
3807
3808 if (i > 0)
3809 return SSL_ERROR_NONE;
3810
3811 /*
3812 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3813 * where we do encode the error
3814 */
3815 if ((l = ERR_peek_error()) != 0) {
3816 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3817 return SSL_ERROR_SYSCALL;
3818 else
3819 return SSL_ERROR_SSL;
3820 }
3821
3822 if (SSL_want_read(s)) {
3823 bio = SSL_get_rbio(s);
3824 if (BIO_should_read(bio))
3825 return SSL_ERROR_WANT_READ;
3826 else if (BIO_should_write(bio))
3827 /*
3828 * This one doesn't make too much sense ... We never try to write
3829 * to the rbio, and an application program where rbio and wbio
3830 * are separate couldn't even know what it should wait for.
3831 * However if we ever set s->rwstate incorrectly (so that we have
3832 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3833 * wbio *are* the same, this test works around that bug; so it
3834 * might be safer to keep it.
3835 */
3836 return SSL_ERROR_WANT_WRITE;
3837 else if (BIO_should_io_special(bio)) {
3838 reason = BIO_get_retry_reason(bio);
3839 if (reason == BIO_RR_CONNECT)
3840 return SSL_ERROR_WANT_CONNECT;
3841 else if (reason == BIO_RR_ACCEPT)
3842 return SSL_ERROR_WANT_ACCEPT;
3843 else
3844 return SSL_ERROR_SYSCALL; /* unknown */
3845 }
3846 }
3847
3848 if (SSL_want_write(s)) {
3849 /* Access wbio directly - in order to use the buffered bio if present */
3850 bio = s->wbio;
3851 if (BIO_should_write(bio))
3852 return SSL_ERROR_WANT_WRITE;
3853 else if (BIO_should_read(bio))
3854 /*
3855 * See above (SSL_want_read(s) with BIO_should_write(bio))
3856 */
3857 return SSL_ERROR_WANT_READ;
3858 else if (BIO_should_io_special(bio)) {
3859 reason = BIO_get_retry_reason(bio);
3860 if (reason == BIO_RR_CONNECT)
3861 return SSL_ERROR_WANT_CONNECT;
3862 else if (reason == BIO_RR_ACCEPT)
3863 return SSL_ERROR_WANT_ACCEPT;
3864 else
3865 return SSL_ERROR_SYSCALL;
3866 }
3867 }
3868 if (SSL_want_x509_lookup(s))
3869 return SSL_ERROR_WANT_X509_LOOKUP;
3870 if (SSL_want_retry_verify(s))
3871 return SSL_ERROR_WANT_RETRY_VERIFY;
3872 if (SSL_want_async(s))
3873 return SSL_ERROR_WANT_ASYNC;
3874 if (SSL_want_async_job(s))
3875 return SSL_ERROR_WANT_ASYNC_JOB;
3876 if (SSL_want_client_hello_cb(s))
3877 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3878
3879 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3880 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3881 return SSL_ERROR_ZERO_RETURN;
3882
3883 return SSL_ERROR_SYSCALL;
3884 }
3885
3886 static int ssl_do_handshake_intern(void *vargs)
3887 {
3888 struct ssl_async_args *args;
3889 SSL *s;
3890
3891 args = (struct ssl_async_args *)vargs;
3892 s = args->s;
3893
3894 return s->handshake_func(s);
3895 }
3896
3897 int SSL_do_handshake(SSL *s)
3898 {
3899 int ret = 1;
3900
3901 if (s->handshake_func == NULL) {
3902 ERR_raise(ERR_LIB_SSL, SSL_R_CONNECTION_TYPE_NOT_SET);
3903 return -1;
3904 }
3905
3906 ossl_statem_check_finish_init(s, -1);
3907
3908 s->method->ssl_renegotiate_check(s, 0);
3909
3910 if (SSL_in_init(s) || SSL_in_before(s)) {
3911 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3912 struct ssl_async_args args;
3913
3914 args.s = s;
3915
3916 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3917 } else {
3918 ret = s->handshake_func(s);
3919 }
3920 }
3921 return ret;
3922 }
3923
3924 void SSL_set_accept_state(SSL *s)
3925 {
3926 s->server = 1;
3927 s->shutdown = 0;
3928 ossl_statem_clear(s);
3929 s->handshake_func = s->method->ssl_accept;
3930 clear_ciphers(s);
3931 }
3932
3933 void SSL_set_connect_state(SSL *s)
3934 {
3935 s->server = 0;
3936 s->shutdown = 0;
3937 ossl_statem_clear(s);
3938 s->handshake_func = s->method->ssl_connect;
3939 clear_ciphers(s);
3940 }
3941
3942 int ssl_undefined_function(SSL *s)
3943 {
3944 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3945 return 0;
3946 }
3947
3948 int ssl_undefined_void_function(void)
3949 {
3950 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3951 return 0;
3952 }
3953
3954 int ssl_undefined_const_function(const SSL *s)
3955 {
3956 return 0;
3957 }
3958
3959 const SSL_METHOD *ssl_bad_method(int ver)
3960 {
3961 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3962 return NULL;
3963 }
3964
3965 const char *ssl_protocol_to_string(int version)
3966 {
3967 switch (version)
3968 {
3969 case TLS1_3_VERSION:
3970 return "TLSv1.3";
3971
3972 case TLS1_2_VERSION:
3973 return "TLSv1.2";
3974
3975 case TLS1_1_VERSION:
3976 return "TLSv1.1";
3977
3978 case TLS1_VERSION:
3979 return "TLSv1";
3980
3981 case SSL3_VERSION:
3982 return "SSLv3";
3983
3984 case DTLS1_BAD_VER:
3985 return "DTLSv0.9";
3986
3987 case DTLS1_VERSION:
3988 return "DTLSv1";
3989
3990 case DTLS1_2_VERSION:
3991 return "DTLSv1.2";
3992
3993 default:
3994 return "unknown";
3995 }
3996 }
3997
3998 const char *SSL_get_version(const SSL *s)
3999 {
4000 return ssl_protocol_to_string(s->version);
4001 }
4002
4003 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
4004 {
4005 STACK_OF(X509_NAME) *sk;
4006 X509_NAME *xn;
4007 int i;
4008
4009 if (src == NULL) {
4010 *dst = NULL;
4011 return 1;
4012 }
4013
4014 if ((sk = sk_X509_NAME_new_null()) == NULL)
4015 return 0;
4016 for (i = 0; i < sk_X509_NAME_num(src); i++) {
4017 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
4018 if (xn == NULL) {
4019 sk_X509_NAME_pop_free(sk, X509_NAME_free);
4020 return 0;
4021 }
4022 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
4023 X509_NAME_free(xn);
4024 sk_X509_NAME_pop_free(sk, X509_NAME_free);
4025 return 0;
4026 }
4027 }
4028 *dst = sk;
4029
4030 return 1;
4031 }
4032
4033 SSL *SSL_dup(SSL *s)
4034 {
4035 SSL *ret;
4036 int i;
4037
4038 /* If we're not quiescent, just up_ref! */
4039 if (!SSL_in_init(s) || !SSL_in_before(s)) {
4040 CRYPTO_UP_REF(&s->references, &i, s->lock);
4041 return s;
4042 }
4043
4044 /*
4045 * Otherwise, copy configuration state, and session if set.
4046 */
4047 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
4048 return NULL;
4049
4050 if (s->session != NULL) {
4051 /*
4052 * Arranges to share the same session via up_ref. This "copies"
4053 * session-id, SSL_METHOD, sid_ctx, and 'cert'
4054 */
4055 if (!SSL_copy_session_id(ret, s))
4056 goto err;
4057 } else {
4058 /*
4059 * No session has been established yet, so we have to expect that
4060 * s->cert or ret->cert will be changed later -- they should not both
4061 * point to the same object, and thus we can't use
4062 * SSL_copy_session_id.
4063 */
4064 if (!SSL_set_ssl_method(ret, s->method))
4065 goto err;
4066
4067 if (s->cert != NULL) {
4068 ssl_cert_free(ret->cert);
4069 ret->cert = ssl_cert_dup(s->cert);
4070 if (ret->cert == NULL)
4071 goto err;
4072 }
4073
4074 if (!SSL_set_session_id_context(ret, s->sid_ctx,
4075 (int)s->sid_ctx_length))
4076 goto err;
4077 }
4078
4079 if (!ssl_dane_dup(ret, s))
4080 goto err;
4081 ret->version = s->version;
4082 ret->options = s->options;
4083 ret->min_proto_version = s->min_proto_version;
4084 ret->max_proto_version = s->max_proto_version;
4085 ret->mode = s->mode;
4086 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
4087 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
4088 ret->msg_callback = s->msg_callback;
4089 ret->msg_callback_arg = s->msg_callback_arg;
4090 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
4091 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
4092 ret->generate_session_id = s->generate_session_id;
4093
4094 SSL_set_info_callback(ret, SSL_get_info_callback(s));
4095
4096 /* copy app data, a little dangerous perhaps */
4097 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
4098 goto err;
4099
4100 ret->server = s->server;
4101 if (s->handshake_func) {
4102 if (s->server)
4103 SSL_set_accept_state(ret);
4104 else
4105 SSL_set_connect_state(ret);
4106 }
4107 ret->shutdown = s->shutdown;
4108 ret->hit = s->hit;
4109
4110 ret->default_passwd_callback = s->default_passwd_callback;
4111 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
4112
4113 X509_VERIFY_PARAM_inherit(ret->param, s->param);
4114
4115 /* dup the cipher_list and cipher_list_by_id stacks */
4116 if (s->cipher_list != NULL) {
4117 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
4118 goto err;
4119 }
4120 if (s->cipher_list_by_id != NULL)
4121 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
4122 == NULL)
4123 goto err;
4124
4125 /* Dup the client_CA list */
4126 if (!dup_ca_names(&ret->ca_names, s->ca_names)
4127 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
4128 goto err;
4129
4130 return ret;
4131
4132 err:
4133 SSL_free(ret);
4134 return NULL;
4135 }
4136
4137 void ssl_clear_cipher_ctx(SSL *s)
4138 {
4139 if (s->enc_read_ctx != NULL) {
4140 EVP_CIPHER_CTX_free(s->enc_read_ctx);
4141 s->enc_read_ctx = NULL;
4142 }
4143 if (s->enc_write_ctx != NULL) {
4144 EVP_CIPHER_CTX_free(s->enc_write_ctx);
4145 s->enc_write_ctx = NULL;
4146 }
4147 #ifndef OPENSSL_NO_COMP
4148 COMP_CTX_free(s->expand);
4149 s->expand = NULL;
4150 COMP_CTX_free(s->compress);
4151 s->compress = NULL;
4152 #endif
4153 }
4154
4155 X509 *SSL_get_certificate(const SSL *s)
4156 {
4157 if (s->cert != NULL)
4158 return s->cert->key->x509;
4159 else
4160 return NULL;
4161 }
4162
4163 EVP_PKEY *SSL_get_privatekey(const SSL *s)
4164 {
4165 if (s->cert != NULL)
4166 return s->cert->key->privatekey;
4167 else
4168 return NULL;
4169 }
4170
4171 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
4172 {
4173 if (ctx->cert != NULL)
4174 return ctx->cert->key->x509;
4175 else
4176 return NULL;
4177 }
4178
4179 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4180 {
4181 if (ctx->cert != NULL)
4182 return ctx->cert->key->privatekey;
4183 else
4184 return NULL;
4185 }
4186
4187 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4188 {
4189 if ((s->session != NULL) && (s->session->cipher != NULL))
4190 return s->session->cipher;
4191 return NULL;
4192 }
4193
4194 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4195 {
4196 return s->s3.tmp.new_cipher;
4197 }
4198
4199 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4200 {
4201 #ifndef OPENSSL_NO_COMP
4202 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4203 #else
4204 return NULL;
4205 #endif
4206 }
4207
4208 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4209 {
4210 #ifndef OPENSSL_NO_COMP
4211 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4212 #else
4213 return NULL;
4214 #endif
4215 }
4216
4217 int ssl_init_wbio_buffer(SSL *s)
4218 {
4219 BIO *bbio;
4220
4221 if (s->bbio != NULL) {
4222 /* Already buffered. */
4223 return 1;
4224 }
4225
4226 bbio = BIO_new(BIO_f_buffer());
4227 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4228 BIO_free(bbio);
4229 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
4230 return 0;
4231 }
4232 s->bbio = bbio;
4233 s->wbio = BIO_push(bbio, s->wbio);
4234
4235 return 1;
4236 }
4237
4238 int ssl_free_wbio_buffer(SSL *s)
4239 {
4240 /* callers ensure s is never null */
4241 if (s->bbio == NULL)
4242 return 1;
4243
4244 s->wbio = BIO_pop(s->wbio);
4245 BIO_free(s->bbio);
4246 s->bbio = NULL;
4247
4248 return 1;
4249 }
4250
4251 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4252 {
4253 ctx->quiet_shutdown = mode;
4254 }
4255
4256 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4257 {
4258 return ctx->quiet_shutdown;
4259 }
4260
4261 void SSL_set_quiet_shutdown(SSL *s, int mode)
4262 {
4263 s->quiet_shutdown = mode;
4264 }
4265
4266 int SSL_get_quiet_shutdown(const SSL *s)
4267 {
4268 return s->quiet_shutdown;
4269 }
4270
4271 void SSL_set_shutdown(SSL *s, int mode)
4272 {
4273 s->shutdown = mode;
4274 }
4275
4276 int SSL_get_shutdown(const SSL *s)
4277 {
4278 return s->shutdown;
4279 }
4280
4281 int SSL_version(const SSL *s)
4282 {
4283 return s->version;
4284 }
4285
4286 int SSL_client_version(const SSL *s)
4287 {
4288 return s->client_version;
4289 }
4290
4291 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4292 {
4293 return ssl->ctx;
4294 }
4295
4296 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4297 {
4298 CERT *new_cert;
4299 if (ssl->ctx == ctx)
4300 return ssl->ctx;
4301 if (ctx == NULL)
4302 ctx = ssl->session_ctx;
4303 new_cert = ssl_cert_dup(ctx->cert);
4304 if (new_cert == NULL) {
4305 return NULL;
4306 }
4307
4308 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4309 ssl_cert_free(new_cert);
4310 return NULL;
4311 }
4312
4313 ssl_cert_free(ssl->cert);
4314 ssl->cert = new_cert;
4315
4316 /*
4317 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4318 * so setter APIs must prevent invalid lengths from entering the system.
4319 */
4320 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4321 return NULL;
4322
4323 /*
4324 * If the session ID context matches that of the parent SSL_CTX,
4325 * inherit it from the new SSL_CTX as well. If however the context does
4326 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4327 * leave it unchanged.
4328 */
4329 if ((ssl->ctx != NULL) &&
4330 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4331 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4332 ssl->sid_ctx_length = ctx->sid_ctx_length;
4333 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4334 }
4335
4336 SSL_CTX_up_ref(ctx);
4337 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4338 ssl->ctx = ctx;
4339
4340 return ssl->ctx;
4341 }
4342
4343 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4344 {
4345 return X509_STORE_set_default_paths_ex(ctx->cert_store, ctx->libctx,
4346 ctx->propq);
4347 }
4348
4349 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4350 {
4351 X509_LOOKUP *lookup;
4352
4353 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4354 if (lookup == NULL)
4355 return 0;
4356
4357 /* We ignore errors, in case the directory doesn't exist */
4358 ERR_set_mark();
4359
4360 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4361
4362 ERR_pop_to_mark();
4363
4364 return 1;
4365 }
4366
4367 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4368 {
4369 X509_LOOKUP *lookup;
4370
4371 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4372 if (lookup == NULL)
4373 return 0;
4374
4375 /* We ignore errors, in case the file doesn't exist */
4376 ERR_set_mark();
4377
4378 X509_LOOKUP_load_file_ex(lookup, NULL, X509_FILETYPE_DEFAULT, ctx->libctx,
4379 ctx->propq);
4380
4381 ERR_pop_to_mark();
4382
4383 return 1;
4384 }
4385
4386 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx)
4387 {
4388 X509_LOOKUP *lookup;
4389
4390 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store());
4391 if (lookup == NULL)
4392 return 0;
4393
4394 /* We ignore errors, in case the directory doesn't exist */
4395 ERR_set_mark();
4396
4397 X509_LOOKUP_add_store_ex(lookup, NULL, ctx->libctx, ctx->propq);
4398
4399 ERR_pop_to_mark();
4400
4401 return 1;
4402 }
4403
4404 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile)
4405 {
4406 return X509_STORE_load_file_ex(ctx->cert_store, CAfile, ctx->libctx,
4407 ctx->propq);
4408 }
4409
4410 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath)
4411 {
4412 return X509_STORE_load_path(ctx->cert_store, CApath);
4413 }
4414
4415 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore)
4416 {
4417 return X509_STORE_load_store_ex(ctx->cert_store, CAstore, ctx->libctx,
4418 ctx->propq);
4419 }
4420
4421 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4422 const char *CApath)
4423 {
4424 if (CAfile == NULL && CApath == NULL)
4425 return 0;
4426 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile))
4427 return 0;
4428 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath))
4429 return 0;
4430 return 1;
4431 }
4432
4433 void SSL_set_info_callback(SSL *ssl,
4434 void (*cb) (const SSL *ssl, int type, int val))
4435 {
4436 ssl->info_callback = cb;
4437 }
4438
4439 /*
4440 * One compiler (Diab DCC) doesn't like argument names in returned function
4441 * pointer.
4442 */
4443 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4444 int /* type */ ,
4445 int /* val */ ) {
4446 return ssl->info_callback;
4447 }
4448
4449 void SSL_set_verify_result(SSL *ssl, long arg)
4450 {
4451 ssl->verify_result = arg;
4452 }
4453
4454 long SSL_get_verify_result(const SSL *ssl)
4455 {
4456 return ssl->verify_result;
4457 }
4458
4459 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4460 {
4461 if (outlen == 0)
4462 return sizeof(ssl->s3.client_random);
4463 if (outlen > sizeof(ssl->s3.client_random))
4464 outlen = sizeof(ssl->s3.client_random);
4465 memcpy(out, ssl->s3.client_random, outlen);
4466 return outlen;
4467 }
4468
4469 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4470 {
4471 if (outlen == 0)
4472 return sizeof(ssl->s3.server_random);
4473 if (outlen > sizeof(ssl->s3.server_random))
4474 outlen = sizeof(ssl->s3.server_random);
4475 memcpy(out, ssl->s3.server_random, outlen);
4476 return outlen;
4477 }
4478
4479 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4480 unsigned char *out, size_t outlen)
4481 {
4482 if (outlen == 0)
4483 return session->master_key_length;
4484 if (outlen > session->master_key_length)
4485 outlen = session->master_key_length;
4486 memcpy(out, session->master_key, outlen);
4487 return outlen;
4488 }
4489
4490 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4491 size_t len)
4492 {
4493 if (len > sizeof(sess->master_key))
4494 return 0;
4495
4496 memcpy(sess->master_key, in, len);
4497 sess->master_key_length = len;
4498 return 1;
4499 }
4500
4501
4502 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4503 {
4504 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4505 }
4506
4507 void *SSL_get_ex_data(const SSL *s, int idx)
4508 {
4509 return CRYPTO_get_ex_data(&s->ex_data, idx);
4510 }
4511
4512 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4513 {
4514 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4515 }
4516
4517 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4518 {
4519 return CRYPTO_get_ex_data(&s->ex_data, idx);
4520 }
4521
4522 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4523 {
4524 return ctx->cert_store;
4525 }
4526
4527 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4528 {
4529 X509_STORE_free(ctx->cert_store);
4530 ctx->cert_store = store;
4531 }
4532
4533 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4534 {
4535 if (store != NULL)
4536 X509_STORE_up_ref(store);
4537 SSL_CTX_set_cert_store(ctx, store);
4538 }
4539
4540 int SSL_want(const SSL *s)
4541 {
4542 return s->rwstate;
4543 }
4544
4545 #ifndef OPENSSL_NO_PSK
4546 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4547 {
4548 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4549 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG);
4550 return 0;
4551 }
4552 OPENSSL_free(ctx->cert->psk_identity_hint);
4553 if (identity_hint != NULL) {
4554 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4555 if (ctx->cert->psk_identity_hint == NULL)
4556 return 0;
4557 } else
4558 ctx->cert->psk_identity_hint = NULL;
4559 return 1;
4560 }
4561
4562 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4563 {
4564 if (s == NULL)
4565 return 0;
4566
4567 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4568 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG);
4569 return 0;
4570 }
4571 OPENSSL_free(s->cert->psk_identity_hint);
4572 if (identity_hint != NULL) {
4573 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4574 if (s->cert->psk_identity_hint == NULL)
4575 return 0;
4576 } else
4577 s->cert->psk_identity_hint = NULL;
4578 return 1;
4579 }
4580
4581 const char *SSL_get_psk_identity_hint(const SSL *s)
4582 {
4583 if (s == NULL || s->session == NULL)
4584 return NULL;
4585 return s->session->psk_identity_hint;
4586 }
4587
4588 const char *SSL_get_psk_identity(const SSL *s)
4589 {
4590 if (s == NULL || s->session == NULL)
4591 return NULL;
4592 return s->session->psk_identity;
4593 }
4594
4595 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4596 {
4597 s->psk_client_callback = cb;
4598 }
4599
4600 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4601 {
4602 ctx->psk_client_callback = cb;
4603 }
4604
4605 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4606 {
4607 s->psk_server_callback = cb;
4608 }
4609
4610 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4611 {
4612 ctx->psk_server_callback = cb;
4613 }
4614 #endif
4615
4616 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4617 {
4618 s->psk_find_session_cb = cb;
4619 }
4620
4621 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4622 SSL_psk_find_session_cb_func cb)
4623 {
4624 ctx->psk_find_session_cb = cb;
4625 }
4626
4627 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4628 {
4629 s->psk_use_session_cb = cb;
4630 }
4631
4632 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4633 SSL_psk_use_session_cb_func cb)
4634 {
4635 ctx->psk_use_session_cb = cb;
4636 }
4637
4638 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4639 void (*cb) (int write_p, int version,
4640 int content_type, const void *buf,
4641 size_t len, SSL *ssl, void *arg))
4642 {
4643 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4644 }
4645
4646 void SSL_set_msg_callback(SSL *ssl,
4647 void (*cb) (int write_p, int version,
4648 int content_type, const void *buf,
4649 size_t len, SSL *ssl, void *arg))
4650 {
4651 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4652 }
4653
4654 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4655 int (*cb) (SSL *ssl,
4656 int
4657 is_forward_secure))
4658 {
4659 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4660 (void (*)(void))cb);
4661 }
4662
4663 void SSL_set_not_resumable_session_callback(SSL *ssl,
4664 int (*cb) (SSL *ssl,
4665 int is_forward_secure))
4666 {
4667 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4668 (void (*)(void))cb);
4669 }
4670
4671 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4672 size_t (*cb) (SSL *ssl, int type,
4673 size_t len, void *arg))
4674 {
4675 ctx->record_padding_cb = cb;
4676 }
4677
4678 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4679 {
4680 ctx->record_padding_arg = arg;
4681 }
4682
4683 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4684 {
4685 return ctx->record_padding_arg;
4686 }
4687
4688 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4689 {
4690 /* block size of 0 or 1 is basically no padding */
4691 if (block_size == 1)
4692 ctx->block_padding = 0;
4693 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4694 ctx->block_padding = block_size;
4695 else
4696 return 0;
4697 return 1;
4698 }
4699
4700 int SSL_set_record_padding_callback(SSL *ssl,
4701 size_t (*cb) (SSL *ssl, int type,
4702 size_t len, void *arg))
4703 {
4704 BIO *b;
4705
4706 b = SSL_get_wbio(ssl);
4707 if (b == NULL || !BIO_get_ktls_send(b)) {
4708 ssl->record_padding_cb = cb;
4709 return 1;
4710 }
4711 return 0;
4712 }
4713
4714 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4715 {
4716 ssl->record_padding_arg = arg;
4717 }
4718
4719 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4720 {
4721 return ssl->record_padding_arg;
4722 }
4723
4724 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4725 {
4726 /* block size of 0 or 1 is basically no padding */
4727 if (block_size == 1)
4728 ssl->block_padding = 0;
4729 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4730 ssl->block_padding = block_size;
4731 else
4732 return 0;
4733 return 1;
4734 }
4735
4736 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4737 {
4738 s->num_tickets = num_tickets;
4739
4740 return 1;
4741 }
4742
4743 size_t SSL_get_num_tickets(const SSL *s)
4744 {
4745 return s->num_tickets;
4746 }
4747
4748 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4749 {
4750 ctx->num_tickets = num_tickets;
4751
4752 return 1;
4753 }
4754
4755 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4756 {
4757 return ctx->num_tickets;
4758 }
4759
4760 /*
4761 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4762 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4763 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4764 * Returns the newly allocated ctx;
4765 */
4766
4767 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4768 {
4769 ssl_clear_hash_ctx(hash);
4770 *hash = EVP_MD_CTX_new();
4771 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4772 EVP_MD_CTX_free(*hash);
4773 *hash = NULL;
4774 return NULL;
4775 }
4776 return *hash;
4777 }
4778
4779 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4780 {
4781
4782 EVP_MD_CTX_free(*hash);
4783 *hash = NULL;
4784 }
4785
4786 /* Retrieve handshake hashes */
4787 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4788 size_t *hashlen)
4789 {
4790 EVP_MD_CTX *ctx = NULL;
4791 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4792 int hashleni = EVP_MD_CTX_get_size(hdgst);
4793 int ret = 0;
4794
4795 if (hashleni < 0 || (size_t)hashleni > outlen) {
4796 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4797 goto err;
4798 }
4799
4800 ctx = EVP_MD_CTX_new();
4801 if (ctx == NULL) {
4802 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4803 goto err;
4804 }
4805
4806 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4807 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4808 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4809 goto err;
4810 }
4811
4812 *hashlen = hashleni;
4813
4814 ret = 1;
4815 err:
4816 EVP_MD_CTX_free(ctx);
4817 return ret;
4818 }
4819
4820 int SSL_session_reused(const SSL *s)
4821 {
4822 return s->hit;
4823 }
4824
4825 int SSL_is_server(const SSL *s)
4826 {
4827 return s->server;
4828 }
4829
4830 #ifndef OPENSSL_NO_DEPRECATED_1_1_0
4831 void SSL_set_debug(SSL *s, int debug)
4832 {
4833 /* Old function was do-nothing anyway... */
4834 (void)s;
4835 (void)debug;
4836 }
4837 #endif
4838
4839 void SSL_set_security_level(SSL *s, int level)
4840 {
4841 s->cert->sec_level = level;
4842 }
4843
4844 int SSL_get_security_level(const SSL *s)
4845 {
4846 return s->cert->sec_level;
4847 }
4848
4849 void SSL_set_security_callback(SSL *s,
4850 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4851 int op, int bits, int nid,
4852 void *other, void *ex))
4853 {
4854 s->cert->sec_cb = cb;
4855 }
4856
4857 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4858 const SSL_CTX *ctx, int op,
4859 int bits, int nid, void *other,
4860 void *ex) {
4861 return s->cert->sec_cb;
4862 }
4863
4864 void SSL_set0_security_ex_data(SSL *s, void *ex)
4865 {
4866 s->cert->sec_ex = ex;
4867 }
4868
4869 void *SSL_get0_security_ex_data(const SSL *s)
4870 {
4871 return s->cert->sec_ex;
4872 }
4873
4874 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4875 {
4876 ctx->cert->sec_level = level;
4877 }
4878
4879 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4880 {
4881 return ctx->cert->sec_level;
4882 }
4883
4884 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4885 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4886 int op, int bits, int nid,
4887 void *other, void *ex))
4888 {
4889 ctx->cert->sec_cb = cb;
4890 }
4891
4892 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4893 const SSL_CTX *ctx,
4894 int op, int bits,
4895 int nid,
4896 void *other,
4897 void *ex) {
4898 return ctx->cert->sec_cb;
4899 }
4900
4901 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4902 {
4903 ctx->cert->sec_ex = ex;
4904 }
4905
4906 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4907 {
4908 return ctx->cert->sec_ex;
4909 }
4910
4911 uint64_t SSL_CTX_get_options(const SSL_CTX *ctx)
4912 {
4913 return ctx->options;
4914 }
4915
4916 uint64_t SSL_get_options(const SSL *s)
4917 {
4918 return s->options;
4919 }
4920
4921 uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t op)
4922 {
4923 return ctx->options |= op;
4924 }
4925
4926 uint64_t SSL_set_options(SSL *s, uint64_t op)
4927 {
4928 return s->options |= op;
4929 }
4930
4931 uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t op)
4932 {
4933 return ctx->options &= ~op;
4934 }
4935
4936 uint64_t SSL_clear_options(SSL *s, uint64_t op)
4937 {
4938 return s->options &= ~op;
4939 }
4940
4941 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4942 {
4943 return s->verified_chain;
4944 }
4945
4946 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4947
4948 #ifndef OPENSSL_NO_CT
4949
4950 /*
4951 * Moves SCTs from the |src| stack to the |dst| stack.
4952 * The source of each SCT will be set to |origin|.
4953 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4954 * the caller.
4955 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4956 */
4957 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4958 sct_source_t origin)
4959 {
4960 int scts_moved = 0;
4961 SCT *sct = NULL;
4962
4963 if (*dst == NULL) {
4964 *dst = sk_SCT_new_null();
4965 if (*dst == NULL) {
4966 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
4967 goto err;
4968 }
4969 }
4970
4971 while ((sct = sk_SCT_pop(src)) != NULL) {
4972 if (SCT_set_source(sct, origin) != 1)
4973 goto err;
4974
4975 if (sk_SCT_push(*dst, sct) <= 0)
4976 goto err;
4977 scts_moved += 1;
4978 }
4979
4980 return scts_moved;
4981 err:
4982 if (sct != NULL)
4983 sk_SCT_push(src, sct); /* Put the SCT back */
4984 return -1;
4985 }
4986
4987 /*
4988 * Look for data collected during ServerHello and parse if found.
4989 * Returns the number of SCTs extracted.
4990 */
4991 static int ct_extract_tls_extension_scts(SSL *s)
4992 {
4993 int scts_extracted = 0;
4994
4995 if (s->ext.scts != NULL) {
4996 const unsigned char *p = s->ext.scts;
4997 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4998
4999 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
5000
5001 SCT_LIST_free(scts);
5002 }
5003
5004 return scts_extracted;
5005 }
5006
5007 /*
5008 * Checks for an OCSP response and then attempts to extract any SCTs found if it
5009 * contains an SCT X509 extension. They will be stored in |s->scts|.
5010 * Returns:
5011 * - The number of SCTs extracted, assuming an OCSP response exists.
5012 * - 0 if no OCSP response exists or it contains no SCTs.
5013 * - A negative integer if an error occurs.
5014 */
5015 static int ct_extract_ocsp_response_scts(SSL *s)
5016 {
5017 # ifndef OPENSSL_NO_OCSP
5018 int scts_extracted = 0;
5019 const unsigned char *p;
5020 OCSP_BASICRESP *br = NULL;
5021 OCSP_RESPONSE *rsp = NULL;
5022 STACK_OF(SCT) *scts = NULL;
5023 int i;
5024
5025 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
5026 goto err;
5027
5028 p = s->ext.ocsp.resp;
5029 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
5030 if (rsp == NULL)
5031 goto err;
5032
5033 br = OCSP_response_get1_basic(rsp);
5034 if (br == NULL)
5035 goto err;
5036
5037 for (i = 0; i < OCSP_resp_count(br); ++i) {
5038 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
5039
5040 if (single == NULL)
5041 continue;
5042
5043 scts =
5044 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
5045 scts_extracted =
5046 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
5047 if (scts_extracted < 0)
5048 goto err;
5049 }
5050 err:
5051 SCT_LIST_free(scts);
5052 OCSP_BASICRESP_free(br);
5053 OCSP_RESPONSE_free(rsp);
5054 return scts_extracted;
5055 # else
5056 /* Behave as if no OCSP response exists */
5057 return 0;
5058 # endif
5059 }
5060
5061 /*
5062 * Attempts to extract SCTs from the peer certificate.
5063 * Return the number of SCTs extracted, or a negative integer if an error
5064 * occurs.
5065 */
5066 static int ct_extract_x509v3_extension_scts(SSL *s)
5067 {
5068 int scts_extracted = 0;
5069 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5070
5071 if (cert != NULL) {
5072 STACK_OF(SCT) *scts =
5073 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
5074
5075 scts_extracted =
5076 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
5077
5078 SCT_LIST_free(scts);
5079 }
5080
5081 return scts_extracted;
5082 }
5083
5084 /*
5085 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
5086 * response (if it exists) and X509v3 extensions in the certificate.
5087 * Returns NULL if an error occurs.
5088 */
5089 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
5090 {
5091 if (!s->scts_parsed) {
5092 if (ct_extract_tls_extension_scts(s) < 0 ||
5093 ct_extract_ocsp_response_scts(s) < 0 ||
5094 ct_extract_x509v3_extension_scts(s) < 0)
5095 goto err;
5096
5097 s->scts_parsed = 1;
5098 }
5099 return s->scts;
5100 err:
5101 return NULL;
5102 }
5103
5104 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
5105 const STACK_OF(SCT) *scts, void *unused_arg)
5106 {
5107 return 1;
5108 }
5109
5110 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
5111 const STACK_OF(SCT) *scts, void *unused_arg)
5112 {
5113 int count = scts != NULL ? sk_SCT_num(scts) : 0;
5114 int i;
5115
5116 for (i = 0; i < count; ++i) {
5117 SCT *sct = sk_SCT_value(scts, i);
5118 int status = SCT_get_validation_status(sct);
5119
5120 if (status == SCT_VALIDATION_STATUS_VALID)
5121 return 1;
5122 }
5123 ERR_raise(ERR_LIB_SSL, SSL_R_NO_VALID_SCTS);
5124 return 0;
5125 }
5126
5127 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
5128 void *arg)
5129 {
5130 /*
5131 * Since code exists that uses the custom extension handler for CT, look
5132 * for this and throw an error if they have already registered to use CT.
5133 */
5134 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
5135 TLSEXT_TYPE_signed_certificate_timestamp))
5136 {
5137 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5138 return 0;
5139 }
5140
5141 if (callback != NULL) {
5142 /*
5143 * If we are validating CT, then we MUST accept SCTs served via OCSP
5144 */
5145 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
5146 return 0;
5147 }
5148
5149 s->ct_validation_callback = callback;
5150 s->ct_validation_callback_arg = arg;
5151
5152 return 1;
5153 }
5154
5155 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
5156 ssl_ct_validation_cb callback, void *arg)
5157 {
5158 /*
5159 * Since code exists that uses the custom extension handler for CT, look for
5160 * this and throw an error if they have already registered to use CT.
5161 */
5162 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
5163 TLSEXT_TYPE_signed_certificate_timestamp))
5164 {
5165 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5166 return 0;
5167 }
5168
5169 ctx->ct_validation_callback = callback;
5170 ctx->ct_validation_callback_arg = arg;
5171 return 1;
5172 }
5173
5174 int SSL_ct_is_enabled(const SSL *s)
5175 {
5176 return s->ct_validation_callback != NULL;
5177 }
5178
5179 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
5180 {
5181 return ctx->ct_validation_callback != NULL;
5182 }
5183
5184 int ssl_validate_ct(SSL *s)
5185 {
5186 int ret = 0;
5187 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5188 X509 *issuer;
5189 SSL_DANE *dane = &s->dane;
5190 CT_POLICY_EVAL_CTX *ctx = NULL;
5191 const STACK_OF(SCT) *scts;
5192
5193 /*
5194 * If no callback is set, the peer is anonymous, or its chain is invalid,
5195 * skip SCT validation - just return success. Applications that continue
5196 * handshakes without certificates, with unverified chains, or pinned leaf
5197 * certificates are outside the scope of the WebPKI and CT.
5198 *
5199 * The above exclusions notwithstanding the vast majority of peers will
5200 * have rather ordinary certificate chains validated by typical
5201 * applications that perform certificate verification and therefore will
5202 * process SCTs when enabled.
5203 */
5204 if (s->ct_validation_callback == NULL || cert == NULL ||
5205 s->verify_result != X509_V_OK ||
5206 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5207 return 1;
5208
5209 /*
5210 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5211 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5212 */
5213 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5214 switch (dane->mtlsa->usage) {
5215 case DANETLS_USAGE_DANE_TA:
5216 case DANETLS_USAGE_DANE_EE:
5217 return 1;
5218 }
5219 }
5220
5221 ctx = CT_POLICY_EVAL_CTX_new_ex(s->ctx->libctx, s->ctx->propq);
5222 if (ctx == NULL) {
5223 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5224 goto end;
5225 }
5226
5227 issuer = sk_X509_value(s->verified_chain, 1);
5228 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5229 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5230 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5231 CT_POLICY_EVAL_CTX_set_time(
5232 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5233
5234 scts = SSL_get0_peer_scts(s);
5235
5236 /*
5237 * This function returns success (> 0) only when all the SCTs are valid, 0
5238 * when some are invalid, and < 0 on various internal errors (out of
5239 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5240 * reason to abort the handshake, that decision is up to the callback.
5241 * Therefore, we error out only in the unexpected case that the return
5242 * value is negative.
5243 *
5244 * XXX: One might well argue that the return value of this function is an
5245 * unfortunate design choice. Its job is only to determine the validation
5246 * status of each of the provided SCTs. So long as it correctly separates
5247 * the wheat from the chaff it should return success. Failure in this case
5248 * ought to correspond to an inability to carry out its duties.
5249 */
5250 if (SCT_LIST_validate(scts, ctx) < 0) {
5251 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_SCT_VERIFICATION_FAILED);
5252 goto end;
5253 }
5254
5255 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5256 if (ret < 0)
5257 ret = 0; /* This function returns 0 on failure */
5258 if (!ret)
5259 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_CALLBACK_FAILED);
5260
5261 end:
5262 CT_POLICY_EVAL_CTX_free(ctx);
5263 /*
5264 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5265 * failure return code here. Also the application may wish the complete
5266 * the handshake, and then disconnect cleanly at a higher layer, after
5267 * checking the verification status of the completed connection.
5268 *
5269 * We therefore force a certificate verification failure which will be
5270 * visible via SSL_get_verify_result() and cached as part of any resumed
5271 * session.
5272 *
5273 * Note: the permissive callback is for information gathering only, always
5274 * returns success, and does not affect verification status. Only the
5275 * strict callback or a custom application-specified callback can trigger
5276 * connection failure or record a verification error.
5277 */
5278 if (ret <= 0)
5279 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5280 return ret;
5281 }
5282
5283 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5284 {
5285 switch (validation_mode) {
5286 default:
5287 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE);
5288 return 0;
5289 case SSL_CT_VALIDATION_PERMISSIVE:
5290 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5291 case SSL_CT_VALIDATION_STRICT:
5292 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5293 }
5294 }
5295
5296 int SSL_enable_ct(SSL *s, int validation_mode)
5297 {
5298 switch (validation_mode) {
5299 default:
5300 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE);
5301 return 0;
5302 case SSL_CT_VALIDATION_PERMISSIVE:
5303 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5304 case SSL_CT_VALIDATION_STRICT:
5305 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5306 }
5307 }
5308
5309 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5310 {
5311 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5312 }
5313
5314 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5315 {
5316 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5317 }
5318
5319 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5320 {
5321 CTLOG_STORE_free(ctx->ctlog_store);
5322 ctx->ctlog_store = logs;
5323 }
5324
5325 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5326 {
5327 return ctx->ctlog_store;
5328 }
5329
5330 #endif /* OPENSSL_NO_CT */
5331
5332 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5333 void *arg)
5334 {
5335 c->client_hello_cb = cb;
5336 c->client_hello_cb_arg = arg;
5337 }
5338
5339 int SSL_client_hello_isv2(SSL *s)
5340 {
5341 if (s->clienthello == NULL)
5342 return 0;
5343 return s->clienthello->isv2;
5344 }
5345
5346 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5347 {
5348 if (s->clienthello == NULL)
5349 return 0;
5350 return s->clienthello->legacy_version;
5351 }
5352
5353 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5354 {
5355 if (s->clienthello == NULL)
5356 return 0;
5357 if (out != NULL)
5358 *out = s->clienthello->random;
5359 return SSL3_RANDOM_SIZE;
5360 }
5361
5362 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5363 {
5364 if (s->clienthello == NULL)
5365 return 0;
5366 if (out != NULL)
5367 *out = s->clienthello->session_id;
5368 return s->clienthello->session_id_len;
5369 }
5370
5371 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5372 {
5373 if (s->clienthello == NULL)
5374 return 0;
5375 if (out != NULL)
5376 *out = PACKET_data(&s->clienthello->ciphersuites);
5377 return PACKET_remaining(&s->clienthello->ciphersuites);
5378 }
5379
5380 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5381 {
5382 if (s->clienthello == NULL)
5383 return 0;
5384 if (out != NULL)
5385 *out = s->clienthello->compressions;
5386 return s->clienthello->compressions_len;
5387 }
5388
5389 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5390 {
5391 RAW_EXTENSION *ext;
5392 int *present;
5393 size_t num = 0, i;
5394
5395 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5396 return 0;
5397 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5398 ext = s->clienthello->pre_proc_exts + i;
5399 if (ext->present)
5400 num++;
5401 }
5402 if (num == 0) {
5403 *out = NULL;
5404 *outlen = 0;
5405 return 1;
5406 }
5407 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5408 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5409 return 0;
5410 }
5411 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5412 ext = s->clienthello->pre_proc_exts + i;
5413 if (ext->present) {
5414 if (ext->received_order >= num)
5415 goto err;
5416 present[ext->received_order] = ext->type;
5417 }
5418 }
5419 *out = present;
5420 *outlen = num;
5421 return 1;
5422 err:
5423 OPENSSL_free(present);
5424 return 0;
5425 }
5426
5427 int SSL_client_hello_get_extension_order(SSL *s, uint16_t *exts, size_t *num_exts)
5428 {
5429 RAW_EXTENSION *ext;
5430 size_t num = 0, i;
5431
5432 if (s->clienthello == NULL || num_exts == NULL)
5433 return 0;
5434 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5435 ext = s->clienthello->pre_proc_exts + i;
5436 if (ext->present)
5437 num++;
5438 }
5439 if (num == 0) {
5440 *num_exts = 0;
5441 return 1;
5442 }
5443 if (exts == NULL) {
5444 *num_exts = num;
5445 return 1;
5446 }
5447 if (*num_exts < num)
5448 return 0;
5449 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5450 ext = s->clienthello->pre_proc_exts + i;
5451 if (ext->present) {
5452 if (ext->received_order >= num)
5453 return 0;
5454 exts[ext->received_order] = ext->type;
5455 }
5456 }
5457 *num_exts = num;
5458 return 1;
5459 }
5460
5461 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5462 size_t *outlen)
5463 {
5464 size_t i;
5465 RAW_EXTENSION *r;
5466
5467 if (s->clienthello == NULL)
5468 return 0;
5469 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5470 r = s->clienthello->pre_proc_exts + i;
5471 if (r->present && r->type == type) {
5472 if (out != NULL)
5473 *out = PACKET_data(&r->data);
5474 if (outlen != NULL)
5475 *outlen = PACKET_remaining(&r->data);
5476 return 1;
5477 }
5478 }
5479 return 0;
5480 }
5481
5482 int SSL_free_buffers(SSL *ssl)
5483 {
5484 RECORD_LAYER *rl = &ssl->rlayer;
5485
5486 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5487 return 0;
5488
5489 RECORD_LAYER_release(rl);
5490 return 1;
5491 }
5492
5493 int SSL_alloc_buffers(SSL *ssl)
5494 {
5495 return ssl3_setup_buffers(ssl);
5496 }
5497
5498 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5499 {
5500 ctx->keylog_callback = cb;
5501 }
5502
5503 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5504 {
5505 return ctx->keylog_callback;
5506 }
5507
5508 static int nss_keylog_int(const char *prefix,
5509 SSL *ssl,
5510 const uint8_t *parameter_1,
5511 size_t parameter_1_len,
5512 const uint8_t *parameter_2,
5513 size_t parameter_2_len)
5514 {
5515 char *out = NULL;
5516 char *cursor = NULL;
5517 size_t out_len = 0;
5518 size_t i;
5519 size_t prefix_len;
5520
5521 if (ssl->ctx->keylog_callback == NULL)
5522 return 1;
5523
5524 /*
5525 * Our output buffer will contain the following strings, rendered with
5526 * space characters in between, terminated by a NULL character: first the
5527 * prefix, then the first parameter, then the second parameter. The
5528 * meaning of each parameter depends on the specific key material being
5529 * logged. Note that the first and second parameters are encoded in
5530 * hexadecimal, so we need a buffer that is twice their lengths.
5531 */
5532 prefix_len = strlen(prefix);
5533 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5534 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5535 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5536 return 0;
5537 }
5538
5539 strcpy(cursor, prefix);
5540 cursor += prefix_len;
5541 *cursor++ = ' ';
5542
5543 for (i = 0; i < parameter_1_len; i++) {
5544 sprintf(cursor, "%02x", parameter_1[i]);
5545 cursor += 2;
5546 }
5547 *cursor++ = ' ';
5548
5549 for (i = 0; i < parameter_2_len; i++) {
5550 sprintf(cursor, "%02x", parameter_2[i]);
5551 cursor += 2;
5552 }
5553 *cursor = '\0';
5554
5555 ssl->ctx->keylog_callback(ssl, (const char *)out);
5556 OPENSSL_clear_free(out, out_len);
5557 return 1;
5558
5559 }
5560
5561 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5562 const uint8_t *encrypted_premaster,
5563 size_t encrypted_premaster_len,
5564 const uint8_t *premaster,
5565 size_t premaster_len)
5566 {
5567 if (encrypted_premaster_len < 8) {
5568 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
5569 return 0;
5570 }
5571
5572 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5573 return nss_keylog_int("RSA",
5574 ssl,
5575 encrypted_premaster,
5576 8,
5577 premaster,
5578 premaster_len);
5579 }
5580
5581 int ssl_log_secret(SSL *ssl,
5582 const char *label,
5583 const uint8_t *secret,
5584 size_t secret_len)
5585 {
5586 return nss_keylog_int(label,
5587 ssl,
5588 ssl->s3.client_random,
5589 SSL3_RANDOM_SIZE,
5590 secret,
5591 secret_len);
5592 }
5593
5594 #define SSLV2_CIPHER_LEN 3
5595
5596 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5597 {
5598 int n;
5599
5600 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5601
5602 if (PACKET_remaining(cipher_suites) == 0) {
5603 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED);
5604 return 0;
5605 }
5606
5607 if (PACKET_remaining(cipher_suites) % n != 0) {
5608 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5609 return 0;
5610 }
5611
5612 OPENSSL_free(s->s3.tmp.ciphers_raw);
5613 s->s3.tmp.ciphers_raw = NULL;
5614 s->s3.tmp.ciphers_rawlen = 0;
5615
5616 if (sslv2format) {
5617 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5618 PACKET sslv2ciphers = *cipher_suites;
5619 unsigned int leadbyte;
5620 unsigned char *raw;
5621
5622 /*
5623 * We store the raw ciphers list in SSLv3+ format so we need to do some
5624 * preprocessing to convert the list first. If there are any SSLv2 only
5625 * ciphersuites with a non-zero leading byte then we are going to
5626 * slightly over allocate because we won't store those. But that isn't a
5627 * problem.
5628 */
5629 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5630 s->s3.tmp.ciphers_raw = raw;
5631 if (raw == NULL) {
5632 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5633 return 0;
5634 }
5635 for (s->s3.tmp.ciphers_rawlen = 0;
5636 PACKET_remaining(&sslv2ciphers) > 0;
5637 raw += TLS_CIPHER_LEN) {
5638 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5639 || (leadbyte == 0
5640 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5641 TLS_CIPHER_LEN))
5642 || (leadbyte != 0
5643 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5644 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET);
5645 OPENSSL_free(s->s3.tmp.ciphers_raw);
5646 s->s3.tmp.ciphers_raw = NULL;
5647 s->s3.tmp.ciphers_rawlen = 0;
5648 return 0;
5649 }
5650 if (leadbyte == 0)
5651 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5652 }
5653 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5654 &s->s3.tmp.ciphers_rawlen)) {
5655 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
5656 return 0;
5657 }
5658 return 1;
5659 }
5660
5661 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5662 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5663 STACK_OF(SSL_CIPHER) **scsvs)
5664 {
5665 PACKET pkt;
5666
5667 if (!PACKET_buf_init(&pkt, bytes, len))
5668 return 0;
5669 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5670 }
5671
5672 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5673 STACK_OF(SSL_CIPHER) **skp,
5674 STACK_OF(SSL_CIPHER) **scsvs_out,
5675 int sslv2format, int fatal)
5676 {
5677 const SSL_CIPHER *c;
5678 STACK_OF(SSL_CIPHER) *sk = NULL;
5679 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5680 int n;
5681 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5682 unsigned char cipher[SSLV2_CIPHER_LEN];
5683
5684 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5685
5686 if (PACKET_remaining(cipher_suites) == 0) {
5687 if (fatal)
5688 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED);
5689 else
5690 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHERS_SPECIFIED);
5691 return 0;
5692 }
5693
5694 if (PACKET_remaining(cipher_suites) % n != 0) {
5695 if (fatal)
5696 SSLfatal(s, SSL_AD_DECODE_ERROR,
5697 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5698 else
5699 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5700 return 0;
5701 }
5702
5703 sk = sk_SSL_CIPHER_new_null();
5704 scsvs = sk_SSL_CIPHER_new_null();
5705 if (sk == NULL || scsvs == NULL) {
5706 if (fatal)
5707 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5708 else
5709 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5710 goto err;
5711 }
5712
5713 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5714 /*
5715 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5716 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5717 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5718 */
5719 if (sslv2format && cipher[0] != '\0')
5720 continue;
5721
5722 /* For SSLv2-compat, ignore leading 0-byte. */
5723 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5724 if (c != NULL) {
5725 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5726 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5727 if (fatal)
5728 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5729 else
5730 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5731 goto err;
5732 }
5733 }
5734 }
5735 if (PACKET_remaining(cipher_suites) > 0) {
5736 if (fatal)
5737 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH);
5738 else
5739 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
5740 goto err;
5741 }
5742
5743 if (skp != NULL)
5744 *skp = sk;
5745 else
5746 sk_SSL_CIPHER_free(sk);
5747 if (scsvs_out != NULL)
5748 *scsvs_out = scsvs;
5749 else
5750 sk_SSL_CIPHER_free(scsvs);
5751 return 1;
5752 err:
5753 sk_SSL_CIPHER_free(sk);
5754 sk_SSL_CIPHER_free(scsvs);
5755 return 0;
5756 }
5757
5758 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5759 {
5760 ctx->max_early_data = max_early_data;
5761
5762 return 1;
5763 }
5764
5765 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5766 {
5767 return ctx->max_early_data;
5768 }
5769
5770 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5771 {
5772 s->max_early_data = max_early_data;
5773
5774 return 1;
5775 }
5776
5777 uint32_t SSL_get_max_early_data(const SSL *s)
5778 {
5779 return s->max_early_data;
5780 }
5781
5782 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5783 {
5784 ctx->recv_max_early_data = recv_max_early_data;
5785
5786 return 1;
5787 }
5788
5789 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5790 {
5791 return ctx->recv_max_early_data;
5792 }
5793
5794 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5795 {
5796 s->recv_max_early_data = recv_max_early_data;
5797
5798 return 1;
5799 }
5800
5801 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5802 {
5803 return s->recv_max_early_data;
5804 }
5805
5806 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5807 {
5808 /* Return any active Max Fragment Len extension */
5809 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5810 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5811
5812 /* return current SSL connection setting */
5813 return ssl->max_send_fragment;
5814 }
5815
5816 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5817 {
5818 /* Return a value regarding an active Max Fragment Len extension */
5819 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5820 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5821 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5822
5823 /* else limit |split_send_fragment| to current |max_send_fragment| */
5824 if (ssl->split_send_fragment > ssl->max_send_fragment)
5825 return ssl->max_send_fragment;
5826
5827 /* return current SSL connection setting */
5828 return ssl->split_send_fragment;
5829 }
5830
5831 int SSL_stateless(SSL *s)
5832 {
5833 int ret;
5834
5835 /* Ensure there is no state left over from a previous invocation */
5836 if (!SSL_clear(s))
5837 return 0;
5838
5839 ERR_clear_error();
5840
5841 s->s3.flags |= TLS1_FLAGS_STATELESS;
5842 ret = SSL_accept(s);
5843 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5844
5845 if (ret > 0 && s->ext.cookieok)
5846 return 1;
5847
5848 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5849 return 0;
5850
5851 return -1;
5852 }
5853
5854 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5855 {
5856 ctx->pha_enabled = val;
5857 }
5858
5859 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5860 {
5861 ssl->pha_enabled = val;
5862 }
5863
5864 int SSL_verify_client_post_handshake(SSL *ssl)
5865 {
5866 if (!SSL_IS_TLS13(ssl)) {
5867 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
5868 return 0;
5869 }
5870 if (!ssl->server) {
5871 ERR_raise(ERR_LIB_SSL, SSL_R_NOT_SERVER);
5872 return 0;
5873 }
5874
5875 if (!SSL_is_init_finished(ssl)) {
5876 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT);
5877 return 0;
5878 }
5879
5880 switch (ssl->post_handshake_auth) {
5881 case SSL_PHA_NONE:
5882 ERR_raise(ERR_LIB_SSL, SSL_R_EXTENSION_NOT_RECEIVED);
5883 return 0;
5884 default:
5885 case SSL_PHA_EXT_SENT:
5886 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
5887 return 0;
5888 case SSL_PHA_EXT_RECEIVED:
5889 break;
5890 case SSL_PHA_REQUEST_PENDING:
5891 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_PENDING);
5892 return 0;
5893 case SSL_PHA_REQUESTED:
5894 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_SENT);
5895 return 0;
5896 }
5897
5898 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5899
5900 /* checks verify_mode and algorithm_auth */
5901 if (!send_certificate_request(ssl)) {
5902 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5903 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CONFIG);
5904 return 0;
5905 }
5906
5907 ossl_statem_set_in_init(ssl, 1);
5908 return 1;
5909 }
5910
5911 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5912 SSL_CTX_generate_session_ticket_fn gen_cb,
5913 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5914 void *arg)
5915 {
5916 ctx->generate_ticket_cb = gen_cb;
5917 ctx->decrypt_ticket_cb = dec_cb;
5918 ctx->ticket_cb_data = arg;
5919 return 1;
5920 }
5921
5922 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5923 SSL_allow_early_data_cb_fn cb,
5924 void *arg)
5925 {
5926 ctx->allow_early_data_cb = cb;
5927 ctx->allow_early_data_cb_data = arg;
5928 }
5929
5930 void SSL_set_allow_early_data_cb(SSL *s,
5931 SSL_allow_early_data_cb_fn cb,
5932 void *arg)
5933 {
5934 s->allow_early_data_cb = cb;
5935 s->allow_early_data_cb_data = arg;
5936 }
5937
5938 const EVP_CIPHER *ssl_evp_cipher_fetch(OSSL_LIB_CTX *libctx,
5939 int nid,
5940 const char *properties)
5941 {
5942 const EVP_CIPHER *ciph;
5943
5944 ciph = tls_get_cipher_from_engine(nid);
5945 if (ciph != NULL)
5946 return ciph;
5947
5948 /*
5949 * If there is no engine cipher then we do an explicit fetch. This may fail
5950 * and that could be ok
5951 */
5952 ERR_set_mark();
5953 ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties);
5954 ERR_pop_to_mark();
5955 return ciph;
5956 }
5957
5958
5959 int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher)
5960 {
5961 /* Don't up-ref an implicit EVP_CIPHER */
5962 if (EVP_CIPHER_get0_provider(cipher) == NULL)
5963 return 1;
5964
5965 /*
5966 * The cipher was explicitly fetched and therefore it is safe to cast
5967 * away the const
5968 */
5969 return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher);
5970 }
5971
5972 void ssl_evp_cipher_free(const EVP_CIPHER *cipher)
5973 {
5974 if (cipher == NULL)
5975 return;
5976
5977 if (EVP_CIPHER_get0_provider(cipher) != NULL) {
5978 /*
5979 * The cipher was explicitly fetched and therefore it is safe to cast
5980 * away the const
5981 */
5982 EVP_CIPHER_free((EVP_CIPHER *)cipher);
5983 }
5984 }
5985
5986 const EVP_MD *ssl_evp_md_fetch(OSSL_LIB_CTX *libctx,
5987 int nid,
5988 const char *properties)
5989 {
5990 const EVP_MD *md;
5991
5992 md = tls_get_digest_from_engine(nid);
5993 if (md != NULL)
5994 return md;
5995
5996 /* Otherwise we do an explicit fetch */
5997 ERR_set_mark();
5998 md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties);
5999 ERR_pop_to_mark();
6000 return md;
6001 }
6002
6003 int ssl_evp_md_up_ref(const EVP_MD *md)
6004 {
6005 /* Don't up-ref an implicit EVP_MD */
6006 if (EVP_MD_get0_provider(md) == NULL)
6007 return 1;
6008
6009 /*
6010 * The digest was explicitly fetched and therefore it is safe to cast
6011 * away the const
6012 */
6013 return EVP_MD_up_ref((EVP_MD *)md);
6014 }
6015
6016 void ssl_evp_md_free(const EVP_MD *md)
6017 {
6018 if (md == NULL)
6019 return;
6020
6021 if (EVP_MD_get0_provider(md) != NULL) {
6022 /*
6023 * The digest was explicitly fetched and therefore it is safe to cast
6024 * away the const
6025 */
6026 EVP_MD_free((EVP_MD *)md);
6027 }
6028 }
6029
6030 int SSL_set0_tmp_dh_pkey(SSL *s, EVP_PKEY *dhpkey)
6031 {
6032 if (!ssl_security(s, SSL_SECOP_TMP_DH,
6033 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) {
6034 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL);
6035 return 0;
6036 }
6037 EVP_PKEY_free(s->cert->dh_tmp);
6038 s->cert->dh_tmp = dhpkey;
6039 return 1;
6040 }
6041
6042 int SSL_CTX_set0_tmp_dh_pkey(SSL_CTX *ctx, EVP_PKEY *dhpkey)
6043 {
6044 if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH,
6045 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) {
6046 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL);
6047 return 0;
6048 }
6049 EVP_PKEY_free(ctx->cert->dh_tmp);
6050 ctx->cert->dh_tmp = dhpkey;
6051 return 1;
6052 }