]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Copyright year updates
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include "quic/quic_local.h"
28 #include <openssl/ct.h>
29
30 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33 SSL3_ENC_METHOD const TLSv1_enc_data = {
34 tls1_setup_key_block,
35 tls1_generate_master_secret,
36 tls1_change_cipher_state,
37 tls1_final_finish_mac,
38 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40 tls1_alert_code,
41 tls1_export_keying_material,
42 0,
43 ssl3_set_handshake_header,
44 tls_close_construct_packet,
45 ssl3_handshake_write
46 };
47
48 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49 tls1_setup_key_block,
50 tls1_generate_master_secret,
51 tls1_change_cipher_state,
52 tls1_final_finish_mac,
53 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55 tls1_alert_code,
56 tls1_export_keying_material,
57 SSL_ENC_FLAG_EXPLICIT_IV,
58 ssl3_set_handshake_header,
59 tls_close_construct_packet,
60 ssl3_handshake_write
61 };
62
63 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64 tls1_setup_key_block,
65 tls1_generate_master_secret,
66 tls1_change_cipher_state,
67 tls1_final_finish_mac,
68 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70 tls1_alert_code,
71 tls1_export_keying_material,
72 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74 ssl3_set_handshake_header,
75 tls_close_construct_packet,
76 ssl3_handshake_write
77 };
78
79 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80 tls13_setup_key_block,
81 tls13_generate_master_secret,
82 tls13_change_cipher_state,
83 tls13_final_finish_mac,
84 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86 tls13_alert_code,
87 tls13_export_keying_material,
88 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89 ssl3_set_handshake_header,
90 tls_close_construct_packet,
91 ssl3_handshake_write
92 };
93
94 OSSL_TIME tls1_default_timeout(void)
95 {
96 /*
97 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98 * http, the cache would over fill
99 */
100 return ossl_seconds2time(60 * 60 * 2);
101 }
102
103 int tls1_new(SSL *s)
104 {
105 if (!ssl3_new(s))
106 return 0;
107 if (!s->method->ssl_clear(s))
108 return 0;
109
110 return 1;
111 }
112
113 void tls1_free(SSL *s)
114 {
115 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117 if (sc == NULL)
118 return;
119
120 OPENSSL_free(sc->ext.session_ticket);
121 ssl3_free(s);
122 }
123
124 int tls1_clear(SSL *s)
125 {
126 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128 if (sc == NULL)
129 return 0;
130
131 if (!ssl3_clear(s))
132 return 0;
133
134 if (s->method->version == TLS_ANY_VERSION)
135 sc->version = TLS_MAX_VERSION_INTERNAL;
136 else
137 sc->version = s->method->version;
138
139 return 1;
140 }
141
142 /* Legacy NID to group_id mapping. Only works for groups we know about */
143 static const struct {
144 int nid;
145 uint16_t group_id;
146 } nid_to_group[] = {
147 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192 };
193
194 static const unsigned char ecformats_default[] = {
195 TLSEXT_ECPOINTFORMAT_uncompressed,
196 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198 };
199
200 /* The default curves */
201 static const uint16_t supported_groups_default[] = {
202 OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
203 OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
204 OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
205 OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
206 OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
207 OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
208 OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
209 OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
210 OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
211 OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
212 OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
213 OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
214 OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
215 OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
216 OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
217 OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
218 OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
219 };
220
221 static const uint16_t suiteb_curves[] = {
222 OSSL_TLS_GROUP_ID_secp256r1,
223 OSSL_TLS_GROUP_ID_secp384r1,
224 };
225
226 struct provider_ctx_data_st {
227 SSL_CTX *ctx;
228 OSSL_PROVIDER *provider;
229 };
230
231 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
232 static OSSL_CALLBACK add_provider_groups;
233 static int add_provider_groups(const OSSL_PARAM params[], void *data)
234 {
235 struct provider_ctx_data_st *pgd = data;
236 SSL_CTX *ctx = pgd->ctx;
237 OSSL_PROVIDER *provider = pgd->provider;
238 const OSSL_PARAM *p;
239 TLS_GROUP_INFO *ginf = NULL;
240 EVP_KEYMGMT *keymgmt;
241 unsigned int gid;
242 unsigned int is_kem = 0;
243 int ret = 0;
244
245 if (ctx->group_list_max_len == ctx->group_list_len) {
246 TLS_GROUP_INFO *tmp = NULL;
247
248 if (ctx->group_list_max_len == 0)
249 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251 else
252 tmp = OPENSSL_realloc(ctx->group_list,
253 (ctx->group_list_max_len
254 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255 * sizeof(TLS_GROUP_INFO));
256 if (tmp == NULL)
257 return 0;
258 ctx->group_list = tmp;
259 memset(tmp + ctx->group_list_max_len,
260 0,
261 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263 }
264
265 ginf = &ctx->group_list[ctx->group_list_len];
266
267 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270 goto err;
271 }
272 ginf->tlsname = OPENSSL_strdup(p->data);
273 if (ginf->tlsname == NULL)
274 goto err;
275
276 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279 goto err;
280 }
281 ginf->realname = OPENSSL_strdup(p->data);
282 if (ginf->realname == NULL)
283 goto err;
284
285 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288 goto err;
289 }
290 ginf->group_id = (uint16_t)gid;
291
292 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295 goto err;
296 }
297 ginf->algorithm = OPENSSL_strdup(p->data);
298 if (ginf->algorithm == NULL)
299 goto err;
300
301 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304 goto err;
305 }
306
307 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310 goto err;
311 }
312 ginf->is_kem = 1 & is_kem;
313
314 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317 goto err;
318 }
319
320 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323 goto err;
324 }
325
326 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329 goto err;
330 }
331
332 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335 goto err;
336 }
337 /*
338 * Now check that the algorithm is actually usable for our property query
339 * string. Regardless of the result we still return success because we have
340 * successfully processed this group, even though we may decide not to use
341 * it.
342 */
343 ret = 1;
344 ERR_set_mark();
345 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346 if (keymgmt != NULL) {
347 /*
348 * We have successfully fetched the algorithm - however if the provider
349 * doesn't match this one then we ignore it.
350 *
351 * Note: We're cheating a little here. Technically if the same algorithm
352 * is available from more than one provider then it is undefined which
353 * implementation you will get back. Theoretically this could be
354 * different every time...we assume here that you'll always get the
355 * same one back if you repeat the exact same fetch. Is this a reasonable
356 * assumption to make (in which case perhaps we should document this
357 * behaviour)?
358 */
359 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360 /* We have a match - so we will use this group */
361 ctx->group_list_len++;
362 ginf = NULL;
363 }
364 EVP_KEYMGMT_free(keymgmt);
365 }
366 ERR_pop_to_mark();
367 err:
368 if (ginf != NULL) {
369 OPENSSL_free(ginf->tlsname);
370 OPENSSL_free(ginf->realname);
371 OPENSSL_free(ginf->algorithm);
372 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373 }
374 return ret;
375 }
376
377 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378 {
379 struct provider_ctx_data_st pgd;
380
381 pgd.ctx = vctx;
382 pgd.provider = provider;
383 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384 add_provider_groups, &pgd);
385 }
386
387 int ssl_load_groups(SSL_CTX *ctx)
388 {
389 size_t i, j, num_deflt_grps = 0;
390 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393 return 0;
394
395 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396 for (j = 0; j < ctx->group_list_len; j++) {
397 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399 break;
400 }
401 }
402 }
403
404 if (num_deflt_grps == 0)
405 return 1;
406
407 ctx->ext.supported_groups_default
408 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410 if (ctx->ext.supported_groups_default == NULL)
411 return 0;
412
413 memcpy(ctx->ext.supported_groups_default,
414 tmp_supp_groups,
415 num_deflt_grps * sizeof(tmp_supp_groups[0]));
416 ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418 return 1;
419 }
420
421 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
422 static OSSL_CALLBACK add_provider_sigalgs;
423 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424 {
425 struct provider_ctx_data_st *pgd = data;
426 SSL_CTX *ctx = pgd->ctx;
427 OSSL_PROVIDER *provider = pgd->provider;
428 const OSSL_PARAM *p;
429 TLS_SIGALG_INFO *sinf = NULL;
430 EVP_KEYMGMT *keymgmt;
431 const char *keytype;
432 unsigned int code_point = 0;
433 int ret = 0;
434
435 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436 TLS_SIGALG_INFO *tmp = NULL;
437
438 if (ctx->sigalg_list_max_len == 0)
439 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441 else
442 tmp = OPENSSL_realloc(ctx->sigalg_list,
443 (ctx->sigalg_list_max_len
444 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445 * sizeof(TLS_SIGALG_INFO));
446 if (tmp == NULL)
447 return 0;
448 ctx->sigalg_list = tmp;
449 memset(tmp + ctx->sigalg_list_max_len, 0,
450 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452 }
453
454 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456 /* First, mandatory parameters */
457 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460 goto err;
461 }
462 OPENSSL_free(sinf->sigalg_name);
463 sinf->sigalg_name = OPENSSL_strdup(p->data);
464 if (sinf->sigalg_name == NULL)
465 goto err;
466
467 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470 goto err;
471 }
472 OPENSSL_free(sinf->name);
473 sinf->name = OPENSSL_strdup(p->data);
474 if (sinf->name == NULL)
475 goto err;
476
477 p = OSSL_PARAM_locate_const(params,
478 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479 if (p == NULL
480 || !OSSL_PARAM_get_uint(p, &code_point)
481 || code_point > UINT16_MAX) {
482 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483 goto err;
484 }
485 sinf->code_point = (uint16_t)code_point;
486
487 p = OSSL_PARAM_locate_const(params,
488 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491 goto err;
492 }
493
494 /* Now, optional parameters */
495 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496 if (p == NULL) {
497 sinf->sigalg_oid = NULL;
498 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499 goto err;
500 } else {
501 OPENSSL_free(sinf->sigalg_oid);
502 sinf->sigalg_oid = OPENSSL_strdup(p->data);
503 if (sinf->sigalg_oid == NULL)
504 goto err;
505 }
506
507 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508 if (p == NULL) {
509 sinf->sig_name = NULL;
510 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511 goto err;
512 } else {
513 OPENSSL_free(sinf->sig_name);
514 sinf->sig_name = OPENSSL_strdup(p->data);
515 if (sinf->sig_name == NULL)
516 goto err;
517 }
518
519 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520 if (p == NULL) {
521 sinf->sig_oid = NULL;
522 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523 goto err;
524 } else {
525 OPENSSL_free(sinf->sig_oid);
526 sinf->sig_oid = OPENSSL_strdup(p->data);
527 if (sinf->sig_oid == NULL)
528 goto err;
529 }
530
531 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532 if (p == NULL) {
533 sinf->hash_name = NULL;
534 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535 goto err;
536 } else {
537 OPENSSL_free(sinf->hash_name);
538 sinf->hash_name = OPENSSL_strdup(p->data);
539 if (sinf->hash_name == NULL)
540 goto err;
541 }
542
543 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544 if (p == NULL) {
545 sinf->hash_oid = NULL;
546 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547 goto err;
548 } else {
549 OPENSSL_free(sinf->hash_oid);
550 sinf->hash_oid = OPENSSL_strdup(p->data);
551 if (sinf->hash_oid == NULL)
552 goto err;
553 }
554
555 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556 if (p == NULL) {
557 sinf->keytype = NULL;
558 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559 goto err;
560 } else {
561 OPENSSL_free(sinf->keytype);
562 sinf->keytype = OPENSSL_strdup(p->data);
563 if (sinf->keytype == NULL)
564 goto err;
565 }
566
567 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568 if (p == NULL) {
569 sinf->keytype_oid = NULL;
570 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571 goto err;
572 } else {
573 OPENSSL_free(sinf->keytype_oid);
574 sinf->keytype_oid = OPENSSL_strdup(p->data);
575 if (sinf->keytype_oid == NULL)
576 goto err;
577 }
578
579 /* The remaining parameters below are mandatory again */
580 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583 goto err;
584 }
585 if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586 ((sinf->mintls < TLS1_3_VERSION))) {
587 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588 ret = 1;
589 goto err;
590 }
591
592 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595 goto err;
596 }
597 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598 ((sinf->maxtls < sinf->mintls))) {
599 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600 goto err;
601 }
602 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603 ((sinf->maxtls < TLS1_3_VERSION))) {
604 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605 ret = 1;
606 goto err;
607 }
608
609 /*
610 * Now check that the algorithm is actually usable for our property query
611 * string. Regardless of the result we still return success because we have
612 * successfully processed this signature, even though we may decide not to
613 * use it.
614 */
615 ret = 1;
616 ERR_set_mark();
617 keytype = (sinf->keytype != NULL
618 ? sinf->keytype
619 : (sinf->sig_name != NULL
620 ? sinf->sig_name
621 : sinf->sigalg_name));
622 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623 if (keymgmt != NULL) {
624 /*
625 * We have successfully fetched the algorithm - however if the provider
626 * doesn't match this one then we ignore it.
627 *
628 * Note: We're cheating a little here. Technically if the same algorithm
629 * is available from more than one provider then it is undefined which
630 * implementation you will get back. Theoretically this could be
631 * different every time...we assume here that you'll always get the
632 * same one back if you repeat the exact same fetch. Is this a reasonable
633 * assumption to make (in which case perhaps we should document this
634 * behaviour)?
635 */
636 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637 /*
638 * We have a match - so we could use this signature;
639 * Check proper object registration first, though.
640 * Don't care about return value as this may have been
641 * done within providers or previous calls to
642 * add_provider_sigalgs.
643 */
644 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645 /* sanity check: Without successful registration don't use alg */
646 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649 goto err;
650 }
651 if (sinf->sig_name != NULL)
652 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653 if (sinf->keytype != NULL)
654 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655 if (sinf->hash_name != NULL)
656 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658 (sinf->hash_name != NULL
659 ? OBJ_txt2nid(sinf->hash_name)
660 : NID_undef),
661 OBJ_txt2nid(keytype));
662 ctx->sigalg_list_len++;
663 sinf = NULL;
664 }
665 EVP_KEYMGMT_free(keymgmt);
666 }
667 ERR_pop_to_mark();
668 err:
669 if (sinf != NULL) {
670 OPENSSL_free(sinf->name);
671 sinf->name = NULL;
672 OPENSSL_free(sinf->sigalg_name);
673 sinf->sigalg_name = NULL;
674 OPENSSL_free(sinf->sigalg_oid);
675 sinf->sigalg_oid = NULL;
676 OPENSSL_free(sinf->sig_name);
677 sinf->sig_name = NULL;
678 OPENSSL_free(sinf->sig_oid);
679 sinf->sig_oid = NULL;
680 OPENSSL_free(sinf->hash_name);
681 sinf->hash_name = NULL;
682 OPENSSL_free(sinf->hash_oid);
683 sinf->hash_oid = NULL;
684 OPENSSL_free(sinf->keytype);
685 sinf->keytype = NULL;
686 OPENSSL_free(sinf->keytype_oid);
687 sinf->keytype_oid = NULL;
688 }
689 return ret;
690 }
691
692 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693 {
694 struct provider_ctx_data_st pgd;
695
696 pgd.ctx = vctx;
697 pgd.provider = provider;
698 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699 add_provider_sigalgs, &pgd);
700 /*
701 * Always OK, even if provider doesn't support the capability:
702 * Reconsider testing retval when legacy sigalgs are also loaded this way.
703 */
704 return 1;
705 }
706
707 int ssl_load_sigalgs(SSL_CTX *ctx)
708 {
709 size_t i;
710 SSL_CERT_LOOKUP lu;
711
712 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713 return 0;
714
715 /* now populate ctx->ssl_cert_info */
716 if (ctx->sigalg_list_len > 0) {
717 OPENSSL_free(ctx->ssl_cert_info);
718 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
719 if (ctx->ssl_cert_info == NULL)
720 return 0;
721 for(i = 0; i < ctx->sigalg_list_len; i++) {
722 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
723 ctx->ssl_cert_info[i].amask = SSL_aANY;
724 }
725 }
726
727 /*
728 * For now, leave it at this: legacy sigalgs stay in their own
729 * data structures until "legacy cleanup" occurs.
730 */
731
732 return 1;
733 }
734
735 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
736 {
737 size_t i;
738
739 for (i = 0; i < ctx->group_list_len; i++) {
740 if (strcmp(ctx->group_list[i].tlsname, name) == 0
741 || strcmp(ctx->group_list[i].realname, name) == 0)
742 return ctx->group_list[i].group_id;
743 }
744
745 return 0;
746 }
747
748 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
749 {
750 size_t i;
751
752 for (i = 0; i < ctx->group_list_len; i++) {
753 if (ctx->group_list[i].group_id == group_id)
754 return &ctx->group_list[i];
755 }
756
757 return NULL;
758 }
759
760 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
761 {
762 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
763
764 if (tls_group_info == NULL)
765 return NULL;
766
767 return tls_group_info->tlsname;
768 }
769
770 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
771 {
772 size_t i;
773
774 if (group_id == 0)
775 return NID_undef;
776
777 /*
778 * Return well known Group NIDs - for backwards compatibility. This won't
779 * work for groups we don't know about.
780 */
781 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
782 {
783 if (nid_to_group[i].group_id == group_id)
784 return nid_to_group[i].nid;
785 }
786 if (!include_unknown)
787 return NID_undef;
788 return TLSEXT_nid_unknown | (int)group_id;
789 }
790
791 uint16_t tls1_nid2group_id(int nid)
792 {
793 size_t i;
794
795 /*
796 * Return well known Group ids - for backwards compatibility. This won't
797 * work for groups we don't know about.
798 */
799 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
800 {
801 if (nid_to_group[i].nid == nid)
802 return nid_to_group[i].group_id;
803 }
804
805 return 0;
806 }
807
808 /*
809 * Set *pgroups to the supported groups list and *pgroupslen to
810 * the number of groups supported.
811 */
812 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813 size_t *pgroupslen)
814 {
815 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817 /* For Suite B mode only include P-256, P-384 */
818 switch (tls1_suiteb(s)) {
819 case SSL_CERT_FLAG_SUITEB_128_LOS:
820 *pgroups = suiteb_curves;
821 *pgroupslen = OSSL_NELEM(suiteb_curves);
822 break;
823
824 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825 *pgroups = suiteb_curves;
826 *pgroupslen = 1;
827 break;
828
829 case SSL_CERT_FLAG_SUITEB_192_LOS:
830 *pgroups = suiteb_curves + 1;
831 *pgroupslen = 1;
832 break;
833
834 default:
835 if (s->ext.supportedgroups == NULL) {
836 *pgroups = sctx->ext.supported_groups_default;
837 *pgroupslen = sctx->ext.supported_groups_default_len;
838 } else {
839 *pgroups = s->ext.supportedgroups;
840 *pgroupslen = s->ext.supportedgroups_len;
841 }
842 break;
843 }
844 }
845
846 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847 int minversion, int maxversion,
848 int isec, int *okfortls13)
849 {
850 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851 group_id);
852 int ret;
853 int group_minversion, group_maxversion;
854
855 if (okfortls13 != NULL)
856 *okfortls13 = 0;
857
858 if (ginfo == NULL)
859 return 0;
860
861 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
862 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
863
864 if (group_minversion < 0 || group_maxversion < 0)
865 return 0;
866 if (group_maxversion == 0)
867 ret = 1;
868 else
869 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
870 if (group_minversion > 0)
871 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
872
873 if (!SSL_CONNECTION_IS_DTLS(s)) {
874 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
875 *okfortls13 = (group_maxversion == 0)
876 || (group_maxversion >= TLS1_3_VERSION);
877 }
878 ret &= !isec
879 || strcmp(ginfo->algorithm, "EC") == 0
880 || strcmp(ginfo->algorithm, "X25519") == 0
881 || strcmp(ginfo->algorithm, "X448") == 0;
882
883 return ret;
884 }
885
886 /* See if group is allowed by security callback */
887 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
888 {
889 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
890 group);
891 unsigned char gtmp[2];
892
893 if (ginfo == NULL)
894 return 0;
895
896 gtmp[0] = group >> 8;
897 gtmp[1] = group & 0xff;
898 return ssl_security(s, op, ginfo->secbits,
899 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
900 }
901
902 /* Return 1 if "id" is in "list" */
903 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
904 {
905 size_t i;
906 for (i = 0; i < listlen; i++)
907 if (list[i] == id)
908 return 1;
909 return 0;
910 }
911
912 /*-
913 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
914 * if there is no match.
915 * For nmatch == -1, return number of matches
916 * For nmatch == -2, return the id of the group to use for
917 * a tmp key, or 0 if there is no match.
918 */
919 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
920 {
921 const uint16_t *pref, *supp;
922 size_t num_pref, num_supp, i;
923 int k;
924 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
925
926 /* Can't do anything on client side */
927 if (s->server == 0)
928 return 0;
929 if (nmatch == -2) {
930 if (tls1_suiteb(s)) {
931 /*
932 * For Suite B ciphersuite determines curve: we already know
933 * these are acceptable due to previous checks.
934 */
935 unsigned long cid = s->s3.tmp.new_cipher->id;
936
937 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
938 return OSSL_TLS_GROUP_ID_secp256r1;
939 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
940 return OSSL_TLS_GROUP_ID_secp384r1;
941 /* Should never happen */
942 return 0;
943 }
944 /* If not Suite B just return first preference shared curve */
945 nmatch = 0;
946 }
947 /*
948 * If server preference set, our groups are the preference order
949 * otherwise peer decides.
950 */
951 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
952 tls1_get_supported_groups(s, &pref, &num_pref);
953 tls1_get_peer_groups(s, &supp, &num_supp);
954 } else {
955 tls1_get_peer_groups(s, &pref, &num_pref);
956 tls1_get_supported_groups(s, &supp, &num_supp);
957 }
958
959 for (k = 0, i = 0; i < num_pref; i++) {
960 uint16_t id = pref[i];
961 const TLS_GROUP_INFO *inf;
962 int minversion, maxversion;
963
964 if (!tls1_in_list(id, supp, num_supp)
965 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
966 continue;
967 inf = tls1_group_id_lookup(ctx, id);
968 if (!ossl_assert(inf != NULL))
969 return 0;
970
971 minversion = SSL_CONNECTION_IS_DTLS(s)
972 ? inf->mindtls : inf->mintls;
973 maxversion = SSL_CONNECTION_IS_DTLS(s)
974 ? inf->maxdtls : inf->maxtls;
975 if (maxversion == -1)
976 continue;
977 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
978 || (maxversion != 0
979 && ssl_version_cmp(s, s->version, maxversion) > 0))
980 continue;
981
982 if (nmatch == k)
983 return id;
984 k++;
985 }
986 if (nmatch == -1)
987 return k;
988 /* Out of range (nmatch > k). */
989 return 0;
990 }
991
992 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
993 int *groups, size_t ngroups)
994 {
995 uint16_t *glist;
996 size_t i;
997 /*
998 * Bitmap of groups included to detect duplicates: two variables are added
999 * to detect duplicates as some values are more than 32.
1000 */
1001 unsigned long *dup_list = NULL;
1002 unsigned long dup_list_egrp = 0;
1003 unsigned long dup_list_dhgrp = 0;
1004
1005 if (ngroups == 0) {
1006 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1007 return 0;
1008 }
1009 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1010 return 0;
1011 for (i = 0; i < ngroups; i++) {
1012 unsigned long idmask;
1013 uint16_t id;
1014 id = tls1_nid2group_id(groups[i]);
1015 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1016 goto err;
1017 idmask = 1L << (id & 0x00FF);
1018 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1019 if (!id || ((*dup_list) & idmask))
1020 goto err;
1021 *dup_list |= idmask;
1022 glist[i] = id;
1023 }
1024 OPENSSL_free(*pext);
1025 *pext = glist;
1026 *pextlen = ngroups;
1027 return 1;
1028 err:
1029 OPENSSL_free(glist);
1030 return 0;
1031 }
1032
1033 # define GROUPLIST_INCREMENT 40
1034 # define GROUP_NAME_BUFFER_LENGTH 64
1035 typedef struct {
1036 SSL_CTX *ctx;
1037 size_t gidcnt;
1038 size_t gidmax;
1039 uint16_t *gid_arr;
1040 } gid_cb_st;
1041
1042 static int gid_cb(const char *elem, int len, void *arg)
1043 {
1044 gid_cb_st *garg = arg;
1045 size_t i;
1046 uint16_t gid = 0;
1047 char etmp[GROUP_NAME_BUFFER_LENGTH];
1048 int ignore_unknown = 0;
1049
1050 if (elem == NULL)
1051 return 0;
1052 if (elem[0] == '?') {
1053 ignore_unknown = 1;
1054 ++elem;
1055 --len;
1056 }
1057 if (garg->gidcnt == garg->gidmax) {
1058 uint16_t *tmp =
1059 OPENSSL_realloc(garg->gid_arr,
1060 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1061 if (tmp == NULL)
1062 return 0;
1063 garg->gidmax += GROUPLIST_INCREMENT;
1064 garg->gid_arr = tmp;
1065 }
1066 if (len > (int)(sizeof(etmp) - 1))
1067 return 0;
1068 memcpy(etmp, elem, len);
1069 etmp[len] = 0;
1070
1071 gid = tls1_group_name2id(garg->ctx, etmp);
1072 if (gid == 0) {
1073 /* Unknown group - ignore, if ignore_unknown */
1074 return ignore_unknown;
1075 }
1076 for (i = 0; i < garg->gidcnt; i++)
1077 if (garg->gid_arr[i] == gid) {
1078 /* Duplicate group - ignore */
1079 return 1;
1080 }
1081 garg->gid_arr[garg->gidcnt++] = gid;
1082 return 1;
1083 }
1084
1085 /* Set groups based on a colon separated list */
1086 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1087 const char *str)
1088 {
1089 gid_cb_st gcb;
1090 uint16_t *tmparr;
1091 int ret = 0;
1092
1093 gcb.gidcnt = 0;
1094 gcb.gidmax = GROUPLIST_INCREMENT;
1095 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1096 if (gcb.gid_arr == NULL)
1097 return 0;
1098 gcb.ctx = ctx;
1099 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1100 goto end;
1101 if (gcb.gidcnt == 0) {
1102 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1103 "No valid groups in '%s'", str);
1104 goto end;
1105 }
1106 if (pext == NULL) {
1107 ret = 1;
1108 goto end;
1109 }
1110
1111 /*
1112 * gid_cb ensurse there are no duplicates so we can just go ahead and set
1113 * the result
1114 */
1115 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1116 if (tmparr == NULL)
1117 goto end;
1118 OPENSSL_free(*pext);
1119 *pext = tmparr;
1120 *pextlen = gcb.gidcnt;
1121 ret = 1;
1122 end:
1123 OPENSSL_free(gcb.gid_arr);
1124 return ret;
1125 }
1126
1127 /* Check a group id matches preferences */
1128 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1129 int check_own_groups)
1130 {
1131 const uint16_t *groups;
1132 size_t groups_len;
1133
1134 if (group_id == 0)
1135 return 0;
1136
1137 /* Check for Suite B compliance */
1138 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1139 unsigned long cid = s->s3.tmp.new_cipher->id;
1140
1141 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1142 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1143 return 0;
1144 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1145 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1146 return 0;
1147 } else {
1148 /* Should never happen */
1149 return 0;
1150 }
1151 }
1152
1153 if (check_own_groups) {
1154 /* Check group is one of our preferences */
1155 tls1_get_supported_groups(s, &groups, &groups_len);
1156 if (!tls1_in_list(group_id, groups, groups_len))
1157 return 0;
1158 }
1159
1160 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1161 return 0;
1162
1163 /* For clients, nothing more to check */
1164 if (!s->server)
1165 return 1;
1166
1167 /* Check group is one of peers preferences */
1168 tls1_get_peer_groups(s, &groups, &groups_len);
1169
1170 /*
1171 * RFC 4492 does not require the supported elliptic curves extension
1172 * so if it is not sent we can just choose any curve.
1173 * It is invalid to send an empty list in the supported groups
1174 * extension, so groups_len == 0 always means no extension.
1175 */
1176 if (groups_len == 0)
1177 return 1;
1178 return tls1_in_list(group_id, groups, groups_len);
1179 }
1180
1181 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1182 size_t *num_formats)
1183 {
1184 /*
1185 * If we have a custom point format list use it otherwise use default
1186 */
1187 if (s->ext.ecpointformats) {
1188 *pformats = s->ext.ecpointformats;
1189 *num_formats = s->ext.ecpointformats_len;
1190 } else {
1191 *pformats = ecformats_default;
1192 /* For Suite B we don't support char2 fields */
1193 if (tls1_suiteb(s))
1194 *num_formats = sizeof(ecformats_default) - 1;
1195 else
1196 *num_formats = sizeof(ecformats_default);
1197 }
1198 }
1199
1200 /* Check a key is compatible with compression extension */
1201 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1202 {
1203 unsigned char comp_id;
1204 size_t i;
1205 int point_conv;
1206
1207 /* If not an EC key nothing to check */
1208 if (!EVP_PKEY_is_a(pkey, "EC"))
1209 return 1;
1210
1211
1212 /* Get required compression id */
1213 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1214 if (point_conv == 0)
1215 return 0;
1216 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1217 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1218 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1219 /*
1220 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1221 * this check.
1222 */
1223 return 1;
1224 } else {
1225 int field_type = EVP_PKEY_get_field_type(pkey);
1226
1227 if (field_type == NID_X9_62_prime_field)
1228 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1229 else if (field_type == NID_X9_62_characteristic_two_field)
1230 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1231 else
1232 return 0;
1233 }
1234 /*
1235 * If point formats extension present check it, otherwise everything is
1236 * supported (see RFC4492).
1237 */
1238 if (s->ext.peer_ecpointformats == NULL)
1239 return 1;
1240
1241 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1242 if (s->ext.peer_ecpointformats[i] == comp_id)
1243 return 1;
1244 }
1245 return 0;
1246 }
1247
1248 /* Return group id of a key */
1249 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1250 {
1251 int curve_nid = ssl_get_EC_curve_nid(pkey);
1252
1253 if (curve_nid == NID_undef)
1254 return 0;
1255 return tls1_nid2group_id(curve_nid);
1256 }
1257
1258 /*
1259 * Check cert parameters compatible with extensions: currently just checks EC
1260 * certificates have compatible curves and compression.
1261 */
1262 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1263 {
1264 uint16_t group_id;
1265 EVP_PKEY *pkey;
1266 pkey = X509_get0_pubkey(x);
1267 if (pkey == NULL)
1268 return 0;
1269 /* If not EC nothing to do */
1270 if (!EVP_PKEY_is_a(pkey, "EC"))
1271 return 1;
1272 /* Check compression */
1273 if (!tls1_check_pkey_comp(s, pkey))
1274 return 0;
1275 group_id = tls1_get_group_id(pkey);
1276 /*
1277 * For a server we allow the certificate to not be in our list of supported
1278 * groups.
1279 */
1280 if (!tls1_check_group_id(s, group_id, !s->server))
1281 return 0;
1282 /*
1283 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1284 * SHA384+P-384.
1285 */
1286 if (check_ee_md && tls1_suiteb(s)) {
1287 int check_md;
1288 size_t i;
1289
1290 /* Check to see we have necessary signing algorithm */
1291 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1292 check_md = NID_ecdsa_with_SHA256;
1293 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1294 check_md = NID_ecdsa_with_SHA384;
1295 else
1296 return 0; /* Should never happen */
1297 for (i = 0; i < s->shared_sigalgslen; i++) {
1298 if (check_md == s->shared_sigalgs[i]->sigandhash)
1299 return 1;
1300 }
1301 return 0;
1302 }
1303 return 1;
1304 }
1305
1306 /*
1307 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1308 * @s: SSL connection
1309 * @cid: Cipher ID we're considering using
1310 *
1311 * Checks that the kECDHE cipher suite we're considering using
1312 * is compatible with the client extensions.
1313 *
1314 * Returns 0 when the cipher can't be used or 1 when it can.
1315 */
1316 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1317 {
1318 /* If not Suite B just need a shared group */
1319 if (!tls1_suiteb(s))
1320 return tls1_shared_group(s, 0) != 0;
1321 /*
1322 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1323 * curves permitted.
1324 */
1325 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1326 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1327 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1328 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1329
1330 return 0;
1331 }
1332
1333 /* Default sigalg schemes */
1334 static const uint16_t tls12_sigalgs[] = {
1335 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1336 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1337 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1338 TLSEXT_SIGALG_ed25519,
1339 TLSEXT_SIGALG_ed448,
1340 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1341 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1342 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1343
1344 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1345 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1346 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1347 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1348 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1349 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1350
1351 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1352 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1353 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1354
1355 TLSEXT_SIGALG_ecdsa_sha224,
1356 TLSEXT_SIGALG_ecdsa_sha1,
1357
1358 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1359 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1360
1361 TLSEXT_SIGALG_dsa_sha224,
1362 TLSEXT_SIGALG_dsa_sha1,
1363
1364 TLSEXT_SIGALG_dsa_sha256,
1365 TLSEXT_SIGALG_dsa_sha384,
1366 TLSEXT_SIGALG_dsa_sha512,
1367
1368 #ifndef OPENSSL_NO_GOST
1369 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1370 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1371 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1372 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1373 TLSEXT_SIGALG_gostr34102001_gostr3411,
1374 #endif
1375 };
1376
1377
1378 static const uint16_t suiteb_sigalgs[] = {
1379 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1380 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1381 };
1382
1383 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1384 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1385 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1386 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1387 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1388 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1389 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1390 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1391 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1392 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1393 {"ed25519", TLSEXT_SIGALG_ed25519,
1394 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1395 NID_undef, NID_undef, 1},
1396 {"ed448", TLSEXT_SIGALG_ed448,
1397 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1398 NID_undef, NID_undef, 1},
1399 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1400 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1401 NID_ecdsa_with_SHA224, NID_undef, 1},
1402 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1403 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1404 NID_ecdsa_with_SHA1, NID_undef, 1},
1405 {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1406 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1407 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1408 {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1409 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1410 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1411 {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1412 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1413 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1414 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1415 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1416 NID_undef, NID_undef, 1},
1417 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1418 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1419 NID_undef, NID_undef, 1},
1420 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1421 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1422 NID_undef, NID_undef, 1},
1423 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1424 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1425 NID_undef, NID_undef, 1},
1426 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1427 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1428 NID_undef, NID_undef, 1},
1429 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1430 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1431 NID_undef, NID_undef, 1},
1432 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1433 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1434 NID_sha256WithRSAEncryption, NID_undef, 1},
1435 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1436 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1437 NID_sha384WithRSAEncryption, NID_undef, 1},
1438 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1439 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1440 NID_sha512WithRSAEncryption, NID_undef, 1},
1441 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1442 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1443 NID_sha224WithRSAEncryption, NID_undef, 1},
1444 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1445 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1446 NID_sha1WithRSAEncryption, NID_undef, 1},
1447 {NULL, TLSEXT_SIGALG_dsa_sha256,
1448 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1449 NID_dsa_with_SHA256, NID_undef, 1},
1450 {NULL, TLSEXT_SIGALG_dsa_sha384,
1451 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1452 NID_undef, NID_undef, 1},
1453 {NULL, TLSEXT_SIGALG_dsa_sha512,
1454 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1455 NID_undef, NID_undef, 1},
1456 {NULL, TLSEXT_SIGALG_dsa_sha224,
1457 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1458 NID_undef, NID_undef, 1},
1459 {NULL, TLSEXT_SIGALG_dsa_sha1,
1460 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1461 NID_dsaWithSHA1, NID_undef, 1},
1462 #ifndef OPENSSL_NO_GOST
1463 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1464 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1465 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1466 NID_undef, NID_undef, 1},
1467 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1468 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1469 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1470 NID_undef, NID_undef, 1},
1471 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1472 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1473 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1474 NID_undef, NID_undef, 1},
1475 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1476 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1477 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1478 NID_undef, NID_undef, 1},
1479 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1480 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1481 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1482 NID_undef, NID_undef, 1}
1483 #endif
1484 };
1485 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1486 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1487 "rsa_pkcs1_md5_sha1", 0,
1488 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1489 EVP_PKEY_RSA, SSL_PKEY_RSA,
1490 NID_undef, NID_undef, 1
1491 };
1492
1493 /*
1494 * Default signature algorithm values used if signature algorithms not present.
1495 * From RFC5246. Note: order must match certificate index order.
1496 */
1497 static const uint16_t tls_default_sigalg[] = {
1498 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1499 0, /* SSL_PKEY_RSA_PSS_SIGN */
1500 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1501 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1502 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1503 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1504 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1505 0, /* SSL_PKEY_ED25519 */
1506 0, /* SSL_PKEY_ED448 */
1507 };
1508
1509 int ssl_setup_sigalgs(SSL_CTX *ctx)
1510 {
1511 size_t i, cache_idx, sigalgs_len;
1512 const SIGALG_LOOKUP *lu;
1513 SIGALG_LOOKUP *cache = NULL;
1514 uint16_t *tls12_sigalgs_list = NULL;
1515 EVP_PKEY *tmpkey = EVP_PKEY_new();
1516 int ret = 0;
1517
1518 if (ctx == NULL)
1519 goto err;
1520
1521 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1522
1523 cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1524 if (cache == NULL || tmpkey == NULL)
1525 goto err;
1526
1527 tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1528 if (tls12_sigalgs_list == NULL)
1529 goto err;
1530
1531 ERR_set_mark();
1532 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1533 for (i = 0, lu = sigalg_lookup_tbl;
1534 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1535 EVP_PKEY_CTX *pctx;
1536
1537 cache[i] = *lu;
1538 tls12_sigalgs_list[i] = tls12_sigalgs[i];
1539
1540 /*
1541 * Check hash is available.
1542 * This test is not perfect. A provider could have support
1543 * for a signature scheme, but not a particular hash. However the hash
1544 * could be available from some other loaded provider. In that case it
1545 * could be that the signature is available, and the hash is available
1546 * independently - but not as a combination. We ignore this for now.
1547 */
1548 if (lu->hash != NID_undef
1549 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1550 cache[i].enabled = 0;
1551 continue;
1552 }
1553
1554 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1555 cache[i].enabled = 0;
1556 continue;
1557 }
1558 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1559 /* If unable to create pctx we assume the sig algorithm is unavailable */
1560 if (pctx == NULL)
1561 cache[i].enabled = 0;
1562 EVP_PKEY_CTX_free(pctx);
1563 }
1564
1565 /* Now complete cache and tls12_sigalgs list with provider sig information */
1566 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1567 for (i = 0; i < ctx->sigalg_list_len; i++) {
1568 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1569 cache[cache_idx].name = si.name;
1570 cache[cache_idx].sigalg = si.code_point;
1571 tls12_sigalgs_list[cache_idx] = si.code_point;
1572 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1573 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1574 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1575 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1576 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1577 cache[cache_idx].curve = NID_undef;
1578 /* all provided sigalgs are enabled by load */
1579 cache[cache_idx].enabled = 1;
1580 cache_idx++;
1581 }
1582 ERR_pop_to_mark();
1583 ctx->sigalg_lookup_cache = cache;
1584 ctx->tls12_sigalgs = tls12_sigalgs_list;
1585 ctx->tls12_sigalgs_len = sigalgs_len;
1586 cache = NULL;
1587 tls12_sigalgs_list = NULL;
1588
1589 ret = 1;
1590 err:
1591 OPENSSL_free(cache);
1592 OPENSSL_free(tls12_sigalgs_list);
1593 EVP_PKEY_free(tmpkey);
1594 return ret;
1595 }
1596
1597 /* Lookup TLS signature algorithm */
1598 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1599 uint16_t sigalg)
1600 {
1601 size_t i;
1602 const SIGALG_LOOKUP *lu;
1603
1604 for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1605 i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1606 lu++, i++) {
1607 if (lu->sigalg == sigalg) {
1608 if (!lu->enabled)
1609 return NULL;
1610 return lu;
1611 }
1612 }
1613 return NULL;
1614 }
1615 /* Lookup hash: return 0 if invalid or not enabled */
1616 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1617 {
1618 const EVP_MD *md;
1619
1620 if (lu == NULL)
1621 return 0;
1622 /* lu->hash == NID_undef means no associated digest */
1623 if (lu->hash == NID_undef) {
1624 md = NULL;
1625 } else {
1626 md = ssl_md(ctx, lu->hash_idx);
1627 if (md == NULL)
1628 return 0;
1629 }
1630 if (pmd)
1631 *pmd = md;
1632 return 1;
1633 }
1634
1635 /*
1636 * Check if key is large enough to generate RSA-PSS signature.
1637 *
1638 * The key must greater than or equal to 2 * hash length + 2.
1639 * SHA512 has a hash length of 64 bytes, which is incompatible
1640 * with a 128 byte (1024 bit) key.
1641 */
1642 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1643 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1644 const SIGALG_LOOKUP *lu)
1645 {
1646 const EVP_MD *md;
1647
1648 if (pkey == NULL)
1649 return 0;
1650 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1651 return 0;
1652 if (EVP_MD_get_size(md) <= 0)
1653 return 0;
1654 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1655 return 0;
1656 return 1;
1657 }
1658
1659 /*
1660 * Returns a signature algorithm when the peer did not send a list of supported
1661 * signature algorithms. The signature algorithm is fixed for the certificate
1662 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1663 * certificate type from |s| will be used.
1664 * Returns the signature algorithm to use, or NULL on error.
1665 */
1666 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1667 int idx)
1668 {
1669 if (idx == -1) {
1670 if (s->server) {
1671 size_t i;
1672
1673 /* Work out index corresponding to ciphersuite */
1674 for (i = 0; i < s->ssl_pkey_num; i++) {
1675 const SSL_CERT_LOOKUP *clu
1676 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1677
1678 if (clu == NULL)
1679 continue;
1680 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1681 idx = i;
1682 break;
1683 }
1684 }
1685
1686 /*
1687 * Some GOST ciphersuites allow more than one signature algorithms
1688 * */
1689 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1690 int real_idx;
1691
1692 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1693 real_idx--) {
1694 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1695 idx = real_idx;
1696 break;
1697 }
1698 }
1699 }
1700 /*
1701 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1702 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1703 */
1704 else if (idx == SSL_PKEY_GOST12_256) {
1705 int real_idx;
1706
1707 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1708 real_idx--) {
1709 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1710 idx = real_idx;
1711 break;
1712 }
1713 }
1714 }
1715 } else {
1716 idx = s->cert->key - s->cert->pkeys;
1717 }
1718 }
1719 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1720 return NULL;
1721
1722 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1723 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1724
1725 if (lu == NULL)
1726 return NULL;
1727 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1728 return NULL;
1729 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1730 return NULL;
1731 return lu;
1732 }
1733 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1734 return NULL;
1735 return &legacy_rsa_sigalg;
1736 }
1737 /* Set peer sigalg based key type */
1738 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1739 {
1740 size_t idx;
1741 const SIGALG_LOOKUP *lu;
1742
1743 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1744 return 0;
1745 lu = tls1_get_legacy_sigalg(s, idx);
1746 if (lu == NULL)
1747 return 0;
1748 s->s3.tmp.peer_sigalg = lu;
1749 return 1;
1750 }
1751
1752 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1753 {
1754 /*
1755 * If Suite B mode use Suite B sigalgs only, ignore any other
1756 * preferences.
1757 */
1758 switch (tls1_suiteb(s)) {
1759 case SSL_CERT_FLAG_SUITEB_128_LOS:
1760 *psigs = suiteb_sigalgs;
1761 return OSSL_NELEM(suiteb_sigalgs);
1762
1763 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1764 *psigs = suiteb_sigalgs;
1765 return 1;
1766
1767 case SSL_CERT_FLAG_SUITEB_192_LOS:
1768 *psigs = suiteb_sigalgs + 1;
1769 return 1;
1770 }
1771 /*
1772 * We use client_sigalgs (if not NULL) if we're a server
1773 * and sending a certificate request or if we're a client and
1774 * determining which shared algorithm to use.
1775 */
1776 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1777 *psigs = s->cert->client_sigalgs;
1778 return s->cert->client_sigalgslen;
1779 } else if (s->cert->conf_sigalgs) {
1780 *psigs = s->cert->conf_sigalgs;
1781 return s->cert->conf_sigalgslen;
1782 } else {
1783 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1784 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1785 }
1786 }
1787
1788 /*
1789 * Called by servers only. Checks that we have a sig alg that supports the
1790 * specified EC curve.
1791 */
1792 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1793 {
1794 const uint16_t *sigs;
1795 size_t siglen, i;
1796
1797 if (s->cert->conf_sigalgs) {
1798 sigs = s->cert->conf_sigalgs;
1799 siglen = s->cert->conf_sigalgslen;
1800 } else {
1801 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1802 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1803 }
1804
1805 for (i = 0; i < siglen; i++) {
1806 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1807
1808 if (lu == NULL)
1809 continue;
1810 if (lu->sig == EVP_PKEY_EC
1811 && lu->curve != NID_undef
1812 && curve == lu->curve)
1813 return 1;
1814 }
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * Return the number of security bits for the signature algorithm, or 0 on
1821 * error.
1822 */
1823 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1824 {
1825 const EVP_MD *md = NULL;
1826 int secbits = 0;
1827
1828 if (!tls1_lookup_md(ctx, lu, &md))
1829 return 0;
1830 if (md != NULL)
1831 {
1832 int md_type = EVP_MD_get_type(md);
1833
1834 /* Security bits: half digest bits */
1835 secbits = EVP_MD_get_size(md) * 4;
1836 if (secbits <= 0)
1837 return 0;
1838 /*
1839 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1840 * they're no longer accepted at security level 1. The real values don't
1841 * really matter as long as they're lower than 80, which is our
1842 * security level 1.
1843 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1844 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1845 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1846 * puts a chosen-prefix attack for MD5 at 2^39.
1847 */
1848 if (md_type == NID_sha1)
1849 secbits = 64;
1850 else if (md_type == NID_md5_sha1)
1851 secbits = 67;
1852 else if (md_type == NID_md5)
1853 secbits = 39;
1854 } else {
1855 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1856 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1857 secbits = 128;
1858 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1859 secbits = 224;
1860 }
1861 /*
1862 * For provider-based sigalgs we have secbits information available
1863 * in the (provider-loaded) sigalg_list structure
1864 */
1865 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1866 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1867 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1868 }
1869 return secbits;
1870 }
1871
1872 /*
1873 * Check signature algorithm is consistent with sent supported signature
1874 * algorithms and if so set relevant digest and signature scheme in
1875 * s.
1876 */
1877 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1878 {
1879 const uint16_t *sent_sigs;
1880 const EVP_MD *md = NULL;
1881 char sigalgstr[2];
1882 size_t sent_sigslen, i, cidx;
1883 int pkeyid = -1;
1884 const SIGALG_LOOKUP *lu;
1885 int secbits = 0;
1886
1887 pkeyid = EVP_PKEY_get_id(pkey);
1888
1889 if (SSL_CONNECTION_IS_TLS13(s)) {
1890 /* Disallow DSA for TLS 1.3 */
1891 if (pkeyid == EVP_PKEY_DSA) {
1892 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1893 return 0;
1894 }
1895 /* Only allow PSS for TLS 1.3 */
1896 if (pkeyid == EVP_PKEY_RSA)
1897 pkeyid = EVP_PKEY_RSA_PSS;
1898 }
1899 lu = tls1_lookup_sigalg(s, sig);
1900 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1901 if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1902 pkeyid = lu->sig;
1903
1904 /* Should never happen */
1905 if (pkeyid == -1)
1906 return -1;
1907
1908 /*
1909 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1910 * is consistent with signature: RSA keys can be used for RSA-PSS
1911 */
1912 if (lu == NULL
1913 || (SSL_CONNECTION_IS_TLS13(s)
1914 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1915 || (pkeyid != lu->sig
1916 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1917 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1918 return 0;
1919 }
1920 /* Check the sigalg is consistent with the key OID */
1921 if (!ssl_cert_lookup_by_nid(
1922 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1923 &cidx, SSL_CONNECTION_GET_CTX(s))
1924 || lu->sig_idx != (int)cidx) {
1925 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1926 return 0;
1927 }
1928
1929 if (pkeyid == EVP_PKEY_EC) {
1930
1931 /* Check point compression is permitted */
1932 if (!tls1_check_pkey_comp(s, pkey)) {
1933 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1934 SSL_R_ILLEGAL_POINT_COMPRESSION);
1935 return 0;
1936 }
1937
1938 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1939 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1940 int curve = ssl_get_EC_curve_nid(pkey);
1941
1942 if (lu->curve != NID_undef && curve != lu->curve) {
1943 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1944 return 0;
1945 }
1946 }
1947 if (!SSL_CONNECTION_IS_TLS13(s)) {
1948 /* Check curve matches extensions */
1949 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1950 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1951 return 0;
1952 }
1953 if (tls1_suiteb(s)) {
1954 /* Check sigalg matches a permissible Suite B value */
1955 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1956 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1957 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1958 SSL_R_WRONG_SIGNATURE_TYPE);
1959 return 0;
1960 }
1961 }
1962 }
1963 } else if (tls1_suiteb(s)) {
1964 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1965 return 0;
1966 }
1967
1968 /* Check signature matches a type we sent */
1969 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1970 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1971 if (sig == *sent_sigs)
1972 break;
1973 }
1974 /* Allow fallback to SHA1 if not strict mode */
1975 if (i == sent_sigslen && (lu->hash != NID_sha1
1976 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1977 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1978 return 0;
1979 }
1980 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1981 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1982 return 0;
1983 }
1984 /*
1985 * Make sure security callback allows algorithm. For historical
1986 * reasons we have to pass the sigalg as a two byte char array.
1987 */
1988 sigalgstr[0] = (sig >> 8) & 0xff;
1989 sigalgstr[1] = sig & 0xff;
1990 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1991 if (secbits == 0 ||
1992 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1993 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1994 (void *)sigalgstr)) {
1995 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1996 return 0;
1997 }
1998 /* Store the sigalg the peer uses */
1999 s->s3.tmp.peer_sigalg = lu;
2000 return 1;
2001 }
2002
2003 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2004 {
2005 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2006
2007 if (sc == NULL)
2008 return 0;
2009
2010 if (sc->s3.tmp.peer_sigalg == NULL)
2011 return 0;
2012 *pnid = sc->s3.tmp.peer_sigalg->sig;
2013 return 1;
2014 }
2015
2016 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2017 {
2018 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2019
2020 if (sc == NULL)
2021 return 0;
2022
2023 if (sc->s3.tmp.sigalg == NULL)
2024 return 0;
2025 *pnid = sc->s3.tmp.sigalg->sig;
2026 return 1;
2027 }
2028
2029 /*
2030 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2031 * supported, doesn't appear in supported signature algorithms, isn't supported
2032 * by the enabled protocol versions or by the security level.
2033 *
2034 * This function should only be used for checking which ciphers are supported
2035 * by the client.
2036 *
2037 * Call ssl_cipher_disabled() to check that it's enabled or not.
2038 */
2039 int ssl_set_client_disabled(SSL_CONNECTION *s)
2040 {
2041 s->s3.tmp.mask_a = 0;
2042 s->s3.tmp.mask_k = 0;
2043 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2044 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2045 &s->s3.tmp.max_ver, NULL) != 0)
2046 return 0;
2047 #ifndef OPENSSL_NO_PSK
2048 /* with PSK there must be client callback set */
2049 if (!s->psk_client_callback) {
2050 s->s3.tmp.mask_a |= SSL_aPSK;
2051 s->s3.tmp.mask_k |= SSL_PSK;
2052 }
2053 #endif /* OPENSSL_NO_PSK */
2054 #ifndef OPENSSL_NO_SRP
2055 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2056 s->s3.tmp.mask_a |= SSL_aSRP;
2057 s->s3.tmp.mask_k |= SSL_kSRP;
2058 }
2059 #endif
2060 return 1;
2061 }
2062
2063 /*
2064 * ssl_cipher_disabled - check that a cipher is disabled or not
2065 * @s: SSL connection that you want to use the cipher on
2066 * @c: cipher to check
2067 * @op: Security check that you want to do
2068 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2069 *
2070 * Returns 1 when it's disabled, 0 when enabled.
2071 */
2072 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2073 int op, int ecdhe)
2074 {
2075 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2076 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2077
2078 if (c->algorithm_mkey & s->s3.tmp.mask_k
2079 || c->algorithm_auth & s->s3.tmp.mask_a)
2080 return 1;
2081 if (s->s3.tmp.max_ver == 0)
2082 return 1;
2083
2084 if (SSL_IS_QUIC_HANDSHAKE(s))
2085 /* For QUIC, only allow these ciphersuites. */
2086 switch (SSL_CIPHER_get_id(c)) {
2087 case TLS1_3_CK_AES_128_GCM_SHA256:
2088 case TLS1_3_CK_AES_256_GCM_SHA384:
2089 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2090 break;
2091 default:
2092 return 1;
2093 }
2094
2095 /*
2096 * For historical reasons we will allow ECHDE to be selected by a server
2097 * in SSLv3 if we are a client
2098 */
2099 if (minversion == TLS1_VERSION
2100 && ecdhe
2101 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2102 minversion = SSL3_VERSION;
2103
2104 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2105 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2106 return 1;
2107
2108 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2109 }
2110
2111 int tls_use_ticket(SSL_CONNECTION *s)
2112 {
2113 if ((s->options & SSL_OP_NO_TICKET))
2114 return 0;
2115 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2116 }
2117
2118 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2119 {
2120 size_t i;
2121
2122 /* Clear any shared signature algorithms */
2123 OPENSSL_free(s->shared_sigalgs);
2124 s->shared_sigalgs = NULL;
2125 s->shared_sigalgslen = 0;
2126
2127 /* Clear certificate validity flags */
2128 if (s->s3.tmp.valid_flags)
2129 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2130 else
2131 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2132 if (s->s3.tmp.valid_flags == NULL)
2133 return 0;
2134 /*
2135 * If peer sent no signature algorithms check to see if we support
2136 * the default algorithm for each certificate type
2137 */
2138 if (s->s3.tmp.peer_cert_sigalgs == NULL
2139 && s->s3.tmp.peer_sigalgs == NULL) {
2140 const uint16_t *sent_sigs;
2141 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2142
2143 for (i = 0; i < s->ssl_pkey_num; i++) {
2144 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2145 size_t j;
2146
2147 if (lu == NULL)
2148 continue;
2149 /* Check default matches a type we sent */
2150 for (j = 0; j < sent_sigslen; j++) {
2151 if (lu->sigalg == sent_sigs[j]) {
2152 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2153 break;
2154 }
2155 }
2156 }
2157 return 1;
2158 }
2159
2160 if (!tls1_process_sigalgs(s)) {
2161 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2162 return 0;
2163 }
2164 if (s->shared_sigalgs != NULL)
2165 return 1;
2166
2167 /* Fatal error if no shared signature algorithms */
2168 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2169 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2170 return 0;
2171 }
2172
2173 /*-
2174 * Gets the ticket information supplied by the client if any.
2175 *
2176 * hello: The parsed ClientHello data
2177 * ret: (output) on return, if a ticket was decrypted, then this is set to
2178 * point to the resulting session.
2179 */
2180 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2181 CLIENTHELLO_MSG *hello,
2182 SSL_SESSION **ret)
2183 {
2184 size_t size;
2185 RAW_EXTENSION *ticketext;
2186
2187 *ret = NULL;
2188 s->ext.ticket_expected = 0;
2189
2190 /*
2191 * If tickets disabled or not supported by the protocol version
2192 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2193 * resumption.
2194 */
2195 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2196 return SSL_TICKET_NONE;
2197
2198 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2199 if (!ticketext->present)
2200 return SSL_TICKET_NONE;
2201
2202 size = PACKET_remaining(&ticketext->data);
2203
2204 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2205 hello->session_id, hello->session_id_len, ret);
2206 }
2207
2208 /*-
2209 * tls_decrypt_ticket attempts to decrypt a session ticket.
2210 *
2211 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2212 * expecting a pre-shared key ciphersuite, in which case we have no use for
2213 * session tickets and one will never be decrypted, nor will
2214 * s->ext.ticket_expected be set to 1.
2215 *
2216 * Side effects:
2217 * Sets s->ext.ticket_expected to 1 if the server will have to issue
2218 * a new session ticket to the client because the client indicated support
2219 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2220 * a session ticket or we couldn't use the one it gave us, or if
2221 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2222 * Otherwise, s->ext.ticket_expected is set to 0.
2223 *
2224 * etick: points to the body of the session ticket extension.
2225 * eticklen: the length of the session tickets extension.
2226 * sess_id: points at the session ID.
2227 * sesslen: the length of the session ID.
2228 * psess: (output) on return, if a ticket was decrypted, then this is set to
2229 * point to the resulting session.
2230 */
2231 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2232 const unsigned char *etick,
2233 size_t eticklen,
2234 const unsigned char *sess_id,
2235 size_t sesslen, SSL_SESSION **psess)
2236 {
2237 SSL_SESSION *sess = NULL;
2238 unsigned char *sdec;
2239 const unsigned char *p;
2240 int slen, ivlen, renew_ticket = 0, declen;
2241 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2242 size_t mlen;
2243 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2244 SSL_HMAC *hctx = NULL;
2245 EVP_CIPHER_CTX *ctx = NULL;
2246 SSL_CTX *tctx = s->session_ctx;
2247 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2248
2249 if (eticklen == 0) {
2250 /*
2251 * The client will accept a ticket but doesn't currently have
2252 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2253 */
2254 ret = SSL_TICKET_EMPTY;
2255 goto end;
2256 }
2257 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2258 /*
2259 * Indicate that the ticket couldn't be decrypted rather than
2260 * generating the session from ticket now, trigger
2261 * abbreviated handshake based on external mechanism to
2262 * calculate the master secret later.
2263 */
2264 ret = SSL_TICKET_NO_DECRYPT;
2265 goto end;
2266 }
2267
2268 /* Need at least keyname + iv */
2269 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2270 ret = SSL_TICKET_NO_DECRYPT;
2271 goto end;
2272 }
2273
2274 /* Initialize session ticket encryption and HMAC contexts */
2275 hctx = ssl_hmac_new(tctx);
2276 if (hctx == NULL) {
2277 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2278 goto end;
2279 }
2280 ctx = EVP_CIPHER_CTX_new();
2281 if (ctx == NULL) {
2282 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2283 goto end;
2284 }
2285 #ifndef OPENSSL_NO_DEPRECATED_3_0
2286 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2287 #else
2288 if (tctx->ext.ticket_key_evp_cb != NULL)
2289 #endif
2290 {
2291 unsigned char *nctick = (unsigned char *)etick;
2292 int rv = 0;
2293
2294 if (tctx->ext.ticket_key_evp_cb != NULL)
2295 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2296 nctick + TLSEXT_KEYNAME_LENGTH,
2297 ctx,
2298 ssl_hmac_get0_EVP_MAC_CTX(hctx),
2299 0);
2300 #ifndef OPENSSL_NO_DEPRECATED_3_0
2301 else if (tctx->ext.ticket_key_cb != NULL)
2302 /* if 0 is returned, write an empty ticket */
2303 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2304 nctick + TLSEXT_KEYNAME_LENGTH,
2305 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2306 #endif
2307 if (rv < 0) {
2308 ret = SSL_TICKET_FATAL_ERR_OTHER;
2309 goto end;
2310 }
2311 if (rv == 0) {
2312 ret = SSL_TICKET_NO_DECRYPT;
2313 goto end;
2314 }
2315 if (rv == 2)
2316 renew_ticket = 1;
2317 } else {
2318 EVP_CIPHER *aes256cbc = NULL;
2319
2320 /* Check key name matches */
2321 if (memcmp(etick, tctx->ext.tick_key_name,
2322 TLSEXT_KEYNAME_LENGTH) != 0) {
2323 ret = SSL_TICKET_NO_DECRYPT;
2324 goto end;
2325 }
2326
2327 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2328 sctx->propq);
2329 if (aes256cbc == NULL
2330 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2331 sizeof(tctx->ext.secure->tick_hmac_key),
2332 "SHA256") <= 0
2333 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2334 tctx->ext.secure->tick_aes_key,
2335 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2336 EVP_CIPHER_free(aes256cbc);
2337 ret = SSL_TICKET_FATAL_ERR_OTHER;
2338 goto end;
2339 }
2340 EVP_CIPHER_free(aes256cbc);
2341 if (SSL_CONNECTION_IS_TLS13(s))
2342 renew_ticket = 1;
2343 }
2344 /*
2345 * Attempt to process session ticket, first conduct sanity and integrity
2346 * checks on ticket.
2347 */
2348 mlen = ssl_hmac_size(hctx);
2349 if (mlen == 0) {
2350 ret = SSL_TICKET_FATAL_ERR_OTHER;
2351 goto end;
2352 }
2353
2354 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2355 if (ivlen < 0) {
2356 ret = SSL_TICKET_FATAL_ERR_OTHER;
2357 goto end;
2358 }
2359
2360 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2361 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2362 ret = SSL_TICKET_NO_DECRYPT;
2363 goto end;
2364 }
2365 eticklen -= mlen;
2366 /* Check HMAC of encrypted ticket */
2367 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2368 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2369 ret = SSL_TICKET_FATAL_ERR_OTHER;
2370 goto end;
2371 }
2372
2373 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2374 ret = SSL_TICKET_NO_DECRYPT;
2375 goto end;
2376 }
2377 /* Attempt to decrypt session data */
2378 /* Move p after IV to start of encrypted ticket, update length */
2379 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2380 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2381 sdec = OPENSSL_malloc(eticklen);
2382 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2383 (int)eticklen) <= 0) {
2384 OPENSSL_free(sdec);
2385 ret = SSL_TICKET_FATAL_ERR_OTHER;
2386 goto end;
2387 }
2388 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2389 OPENSSL_free(sdec);
2390 ret = SSL_TICKET_NO_DECRYPT;
2391 goto end;
2392 }
2393 slen += declen;
2394 p = sdec;
2395
2396 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2397 slen -= p - sdec;
2398 OPENSSL_free(sdec);
2399 if (sess) {
2400 /* Some additional consistency checks */
2401 if (slen != 0) {
2402 SSL_SESSION_free(sess);
2403 sess = NULL;
2404 ret = SSL_TICKET_NO_DECRYPT;
2405 goto end;
2406 }
2407 /*
2408 * The session ID, if non-empty, is used by some clients to detect
2409 * that the ticket has been accepted. So we copy it to the session
2410 * structure. If it is empty set length to zero as required by
2411 * standard.
2412 */
2413 if (sesslen) {
2414 memcpy(sess->session_id, sess_id, sesslen);
2415 sess->session_id_length = sesslen;
2416 }
2417 if (renew_ticket)
2418 ret = SSL_TICKET_SUCCESS_RENEW;
2419 else
2420 ret = SSL_TICKET_SUCCESS;
2421 goto end;
2422 }
2423 ERR_clear_error();
2424 /*
2425 * For session parse failure, indicate that we need to send a new ticket.
2426 */
2427 ret = SSL_TICKET_NO_DECRYPT;
2428
2429 end:
2430 EVP_CIPHER_CTX_free(ctx);
2431 ssl_hmac_free(hctx);
2432
2433 /*
2434 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2435 * detected above. The callback is responsible for checking |ret| before it
2436 * performs any action
2437 */
2438 if (s->session_ctx->decrypt_ticket_cb != NULL
2439 && (ret == SSL_TICKET_EMPTY
2440 || ret == SSL_TICKET_NO_DECRYPT
2441 || ret == SSL_TICKET_SUCCESS
2442 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2443 size_t keyname_len = eticklen;
2444 int retcb;
2445
2446 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2447 keyname_len = TLSEXT_KEYNAME_LENGTH;
2448 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2449 sess, etick, keyname_len,
2450 ret,
2451 s->session_ctx->ticket_cb_data);
2452 switch (retcb) {
2453 case SSL_TICKET_RETURN_ABORT:
2454 ret = SSL_TICKET_FATAL_ERR_OTHER;
2455 break;
2456
2457 case SSL_TICKET_RETURN_IGNORE:
2458 ret = SSL_TICKET_NONE;
2459 SSL_SESSION_free(sess);
2460 sess = NULL;
2461 break;
2462
2463 case SSL_TICKET_RETURN_IGNORE_RENEW:
2464 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2465 ret = SSL_TICKET_NO_DECRYPT;
2466 /* else the value of |ret| will already do the right thing */
2467 SSL_SESSION_free(sess);
2468 sess = NULL;
2469 break;
2470
2471 case SSL_TICKET_RETURN_USE:
2472 case SSL_TICKET_RETURN_USE_RENEW:
2473 if (ret != SSL_TICKET_SUCCESS
2474 && ret != SSL_TICKET_SUCCESS_RENEW)
2475 ret = SSL_TICKET_FATAL_ERR_OTHER;
2476 else if (retcb == SSL_TICKET_RETURN_USE)
2477 ret = SSL_TICKET_SUCCESS;
2478 else
2479 ret = SSL_TICKET_SUCCESS_RENEW;
2480 break;
2481
2482 default:
2483 ret = SSL_TICKET_FATAL_ERR_OTHER;
2484 }
2485 }
2486
2487 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2488 switch (ret) {
2489 case SSL_TICKET_NO_DECRYPT:
2490 case SSL_TICKET_SUCCESS_RENEW:
2491 case SSL_TICKET_EMPTY:
2492 s->ext.ticket_expected = 1;
2493 }
2494 }
2495
2496 *psess = sess;
2497
2498 return ret;
2499 }
2500
2501 /* Check to see if a signature algorithm is allowed */
2502 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2503 const SIGALG_LOOKUP *lu)
2504 {
2505 unsigned char sigalgstr[2];
2506 int secbits;
2507
2508 if (lu == NULL || !lu->enabled)
2509 return 0;
2510 /* DSA is not allowed in TLS 1.3 */
2511 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2512 return 0;
2513 /*
2514 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2515 * spec
2516 */
2517 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2518 && s->s3.tmp.min_ver >= TLS1_3_VERSION
2519 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2520 || lu->hash_idx == SSL_MD_MD5_IDX
2521 || lu->hash_idx == SSL_MD_SHA224_IDX))
2522 return 0;
2523
2524 /* See if public key algorithm allowed */
2525 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2526 return 0;
2527
2528 if (lu->sig == NID_id_GostR3410_2012_256
2529 || lu->sig == NID_id_GostR3410_2012_512
2530 || lu->sig == NID_id_GostR3410_2001) {
2531 /* We never allow GOST sig algs on the server with TLSv1.3 */
2532 if (s->server && SSL_CONNECTION_IS_TLS13(s))
2533 return 0;
2534 if (!s->server
2535 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2536 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2537 int i, num;
2538 STACK_OF(SSL_CIPHER) *sk;
2539
2540 /*
2541 * We're a client that could negotiate TLSv1.3. We only allow GOST
2542 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2543 * ciphersuites enabled.
2544 */
2545
2546 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2547 return 0;
2548
2549 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2550 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2551 for (i = 0; i < num; i++) {
2552 const SSL_CIPHER *c;
2553
2554 c = sk_SSL_CIPHER_value(sk, i);
2555 /* Skip disabled ciphers */
2556 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2557 continue;
2558
2559 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2560 break;
2561 }
2562 if (i == num)
2563 return 0;
2564 }
2565 }
2566
2567 /* Finally see if security callback allows it */
2568 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2569 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2570 sigalgstr[1] = lu->sigalg & 0xff;
2571 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2572 }
2573
2574 /*
2575 * Get a mask of disabled public key algorithms based on supported signature
2576 * algorithms. For example if no signature algorithm supports RSA then RSA is
2577 * disabled.
2578 */
2579
2580 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2581 {
2582 const uint16_t *sigalgs;
2583 size_t i, sigalgslen;
2584 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2585 /*
2586 * Go through all signature algorithms seeing if we support any
2587 * in disabled_mask.
2588 */
2589 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2590 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2591 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2592 const SSL_CERT_LOOKUP *clu;
2593
2594 if (lu == NULL)
2595 continue;
2596
2597 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2598 SSL_CONNECTION_GET_CTX(s));
2599 if (clu == NULL)
2600 continue;
2601
2602 /* If algorithm is disabled see if we can enable it */
2603 if ((clu->amask & disabled_mask) != 0
2604 && tls12_sigalg_allowed(s, op, lu))
2605 disabled_mask &= ~clu->amask;
2606 }
2607 *pmask_a |= disabled_mask;
2608 }
2609
2610 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2611 const uint16_t *psig, size_t psiglen)
2612 {
2613 size_t i;
2614 int rv = 0;
2615
2616 for (i = 0; i < psiglen; i++, psig++) {
2617 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2618
2619 if (lu == NULL
2620 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2621 continue;
2622 if (!WPACKET_put_bytes_u16(pkt, *psig))
2623 return 0;
2624 /*
2625 * If TLS 1.3 must have at least one valid TLS 1.3 message
2626 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2627 */
2628 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2629 || (lu->sig != EVP_PKEY_RSA
2630 && lu->hash != NID_sha1
2631 && lu->hash != NID_sha224)))
2632 rv = 1;
2633 }
2634 if (rv == 0)
2635 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2636 return rv;
2637 }
2638
2639 /* Given preference and allowed sigalgs set shared sigalgs */
2640 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2641 const SIGALG_LOOKUP **shsig,
2642 const uint16_t *pref, size_t preflen,
2643 const uint16_t *allow, size_t allowlen)
2644 {
2645 const uint16_t *ptmp, *atmp;
2646 size_t i, j, nmatch = 0;
2647 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2648 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2649
2650 /* Skip disabled hashes or signature algorithms */
2651 if (lu == NULL
2652 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2653 continue;
2654 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2655 if (*ptmp == *atmp) {
2656 nmatch++;
2657 if (shsig)
2658 *shsig++ = lu;
2659 break;
2660 }
2661 }
2662 }
2663 return nmatch;
2664 }
2665
2666 /* Set shared signature algorithms for SSL structures */
2667 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2668 {
2669 const uint16_t *pref, *allow, *conf;
2670 size_t preflen, allowlen, conflen;
2671 size_t nmatch;
2672 const SIGALG_LOOKUP **salgs = NULL;
2673 CERT *c = s->cert;
2674 unsigned int is_suiteb = tls1_suiteb(s);
2675
2676 OPENSSL_free(s->shared_sigalgs);
2677 s->shared_sigalgs = NULL;
2678 s->shared_sigalgslen = 0;
2679 /* If client use client signature algorithms if not NULL */
2680 if (!s->server && c->client_sigalgs && !is_suiteb) {
2681 conf = c->client_sigalgs;
2682 conflen = c->client_sigalgslen;
2683 } else if (c->conf_sigalgs && !is_suiteb) {
2684 conf = c->conf_sigalgs;
2685 conflen = c->conf_sigalgslen;
2686 } else
2687 conflen = tls12_get_psigalgs(s, 0, &conf);
2688 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2689 pref = conf;
2690 preflen = conflen;
2691 allow = s->s3.tmp.peer_sigalgs;
2692 allowlen = s->s3.tmp.peer_sigalgslen;
2693 } else {
2694 allow = conf;
2695 allowlen = conflen;
2696 pref = s->s3.tmp.peer_sigalgs;
2697 preflen = s->s3.tmp.peer_sigalgslen;
2698 }
2699 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2700 if (nmatch) {
2701 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2702 return 0;
2703 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2704 } else {
2705 salgs = NULL;
2706 }
2707 s->shared_sigalgs = salgs;
2708 s->shared_sigalgslen = nmatch;
2709 return 1;
2710 }
2711
2712 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2713 {
2714 unsigned int stmp;
2715 size_t size, i;
2716 uint16_t *buf;
2717
2718 size = PACKET_remaining(pkt);
2719
2720 /* Invalid data length */
2721 if (size == 0 || (size & 1) != 0)
2722 return 0;
2723
2724 size >>= 1;
2725
2726 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2727 return 0;
2728 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2729 buf[i] = stmp;
2730
2731 if (i != size) {
2732 OPENSSL_free(buf);
2733 return 0;
2734 }
2735
2736 OPENSSL_free(*pdest);
2737 *pdest = buf;
2738 *pdestlen = size;
2739
2740 return 1;
2741 }
2742
2743 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2744 {
2745 /* Extension ignored for inappropriate versions */
2746 if (!SSL_USE_SIGALGS(s))
2747 return 1;
2748 /* Should never happen */
2749 if (s->cert == NULL)
2750 return 0;
2751
2752 if (cert)
2753 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2754 &s->s3.tmp.peer_cert_sigalgslen);
2755 else
2756 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2757 &s->s3.tmp.peer_sigalgslen);
2758
2759 }
2760
2761 /* Set preferred digest for each key type */
2762
2763 int tls1_process_sigalgs(SSL_CONNECTION *s)
2764 {
2765 size_t i;
2766 uint32_t *pvalid = s->s3.tmp.valid_flags;
2767
2768 if (!tls1_set_shared_sigalgs(s))
2769 return 0;
2770
2771 for (i = 0; i < s->ssl_pkey_num; i++)
2772 pvalid[i] = 0;
2773
2774 for (i = 0; i < s->shared_sigalgslen; i++) {
2775 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2776 int idx = sigptr->sig_idx;
2777
2778 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2779 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2780 continue;
2781 /* If not disabled indicate we can explicitly sign */
2782 if (pvalid[idx] == 0
2783 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2784 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2785 }
2786 return 1;
2787 }
2788
2789 int SSL_get_sigalgs(SSL *s, int idx,
2790 int *psign, int *phash, int *psignhash,
2791 unsigned char *rsig, unsigned char *rhash)
2792 {
2793 uint16_t *psig;
2794 size_t numsigalgs;
2795 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2796
2797 if (sc == NULL)
2798 return 0;
2799
2800 psig = sc->s3.tmp.peer_sigalgs;
2801 numsigalgs = sc->s3.tmp.peer_sigalgslen;
2802
2803 if (psig == NULL || numsigalgs > INT_MAX)
2804 return 0;
2805 if (idx >= 0) {
2806 const SIGALG_LOOKUP *lu;
2807
2808 if (idx >= (int)numsigalgs)
2809 return 0;
2810 psig += idx;
2811 if (rhash != NULL)
2812 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2813 if (rsig != NULL)
2814 *rsig = (unsigned char)(*psig & 0xff);
2815 lu = tls1_lookup_sigalg(sc, *psig);
2816 if (psign != NULL)
2817 *psign = lu != NULL ? lu->sig : NID_undef;
2818 if (phash != NULL)
2819 *phash = lu != NULL ? lu->hash : NID_undef;
2820 if (psignhash != NULL)
2821 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2822 }
2823 return (int)numsigalgs;
2824 }
2825
2826 int SSL_get_shared_sigalgs(SSL *s, int idx,
2827 int *psign, int *phash, int *psignhash,
2828 unsigned char *rsig, unsigned char *rhash)
2829 {
2830 const SIGALG_LOOKUP *shsigalgs;
2831 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2832
2833 if (sc == NULL)
2834 return 0;
2835
2836 if (sc->shared_sigalgs == NULL
2837 || idx < 0
2838 || idx >= (int)sc->shared_sigalgslen
2839 || sc->shared_sigalgslen > INT_MAX)
2840 return 0;
2841 shsigalgs = sc->shared_sigalgs[idx];
2842 if (phash != NULL)
2843 *phash = shsigalgs->hash;
2844 if (psign != NULL)
2845 *psign = shsigalgs->sig;
2846 if (psignhash != NULL)
2847 *psignhash = shsigalgs->sigandhash;
2848 if (rsig != NULL)
2849 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2850 if (rhash != NULL)
2851 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2852 return (int)sc->shared_sigalgslen;
2853 }
2854
2855 /* Maximum possible number of unique entries in sigalgs array */
2856 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2857
2858 typedef struct {
2859 size_t sigalgcnt;
2860 /* TLSEXT_SIGALG_XXX values */
2861 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2862 SSL_CTX *ctx;
2863 } sig_cb_st;
2864
2865 static void get_sigorhash(int *psig, int *phash, const char *str)
2866 {
2867 if (strcmp(str, "RSA") == 0) {
2868 *psig = EVP_PKEY_RSA;
2869 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2870 *psig = EVP_PKEY_RSA_PSS;
2871 } else if (strcmp(str, "DSA") == 0) {
2872 *psig = EVP_PKEY_DSA;
2873 } else if (strcmp(str, "ECDSA") == 0) {
2874 *psig = EVP_PKEY_EC;
2875 } else {
2876 *phash = OBJ_sn2nid(str);
2877 if (*phash == NID_undef)
2878 *phash = OBJ_ln2nid(str);
2879 }
2880 }
2881 /* Maximum length of a signature algorithm string component */
2882 #define TLS_MAX_SIGSTRING_LEN 40
2883
2884 static int sig_cb(const char *elem, int len, void *arg)
2885 {
2886 sig_cb_st *sarg = arg;
2887 size_t i = 0;
2888 const SIGALG_LOOKUP *s;
2889 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2890 int sig_alg = NID_undef, hash_alg = NID_undef;
2891 int ignore_unknown = 0;
2892
2893 if (elem == NULL)
2894 return 0;
2895 if (elem[0] == '?') {
2896 ignore_unknown = 1;
2897 ++elem;
2898 --len;
2899 }
2900 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2901 return 0;
2902 if (len > (int)(sizeof(etmp) - 1))
2903 return 0;
2904 memcpy(etmp, elem, len);
2905 etmp[len] = 0;
2906 p = strchr(etmp, '+');
2907 /*
2908 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2909 * if there's no '+' in the provided name, look for the new-style combined
2910 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2911 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2912 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2913 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2914 * in the table.
2915 */
2916 if (p == NULL) {
2917 /* Load provider sigalgs */
2918 if (sarg->ctx != NULL) {
2919 /* Check if a provider supports the sigalg */
2920 for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2921 if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2922 && strcmp(etmp,
2923 sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
2924 sarg->sigalgs[sarg->sigalgcnt++] =
2925 sarg->ctx->sigalg_list[i].code_point;
2926 break;
2927 }
2928 }
2929 }
2930 /* Check the built-in sigalgs */
2931 if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
2932 for (i = 0, s = sigalg_lookup_tbl;
2933 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
2934 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2935 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2936 break;
2937 }
2938 }
2939 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2940 /* Ignore unknown algorithms if ignore_unknown */
2941 return ignore_unknown;
2942 }
2943 }
2944 } else {
2945 *p = 0;
2946 p++;
2947 if (*p == 0)
2948 return 0;
2949 get_sigorhash(&sig_alg, &hash_alg, etmp);
2950 get_sigorhash(&sig_alg, &hash_alg, p);
2951 if (sig_alg == NID_undef || hash_alg == NID_undef) {
2952 /* Ignore unknown algorithms if ignore_unknown */
2953 return ignore_unknown;
2954 }
2955 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2956 i++, s++) {
2957 if (s->hash == hash_alg && s->sig == sig_alg) {
2958 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2959 break;
2960 }
2961 }
2962 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2963 /* Ignore unknown algorithms if ignore_unknown */
2964 return ignore_unknown;
2965 }
2966 }
2967
2968 /* Ignore duplicates */
2969 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2970 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2971 sarg->sigalgcnt--;
2972 return 1;
2973 }
2974 }
2975 return 1;
2976 }
2977
2978 /*
2979 * Set supported signature algorithms based on a colon separated list of the
2980 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2981 */
2982 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
2983 {
2984 sig_cb_st sig;
2985 sig.sigalgcnt = 0;
2986
2987 if (ctx != NULL && ssl_load_sigalgs(ctx)) {
2988 sig.ctx = ctx;
2989 }
2990 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2991 return 0;
2992 if (sig.sigalgcnt == 0) {
2993 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
2994 "No valid signature algorithms in '%s'", str);
2995 return 0;
2996 }
2997 if (c == NULL)
2998 return 1;
2999 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3000 }
3001
3002 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3003 int client)
3004 {
3005 uint16_t *sigalgs;
3006
3007 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3008 return 0;
3009 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3010
3011 if (client) {
3012 OPENSSL_free(c->client_sigalgs);
3013 c->client_sigalgs = sigalgs;
3014 c->client_sigalgslen = salglen;
3015 } else {
3016 OPENSSL_free(c->conf_sigalgs);
3017 c->conf_sigalgs = sigalgs;
3018 c->conf_sigalgslen = salglen;
3019 }
3020
3021 return 1;
3022 }
3023
3024 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3025 {
3026 uint16_t *sigalgs, *sptr;
3027 size_t i;
3028
3029 if (salglen & 1)
3030 return 0;
3031 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3032 return 0;
3033 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3034 size_t j;
3035 const SIGALG_LOOKUP *curr;
3036 int md_id = *psig_nids++;
3037 int sig_id = *psig_nids++;
3038
3039 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3040 j++, curr++) {
3041 if (curr->hash == md_id && curr->sig == sig_id) {
3042 *sptr++ = curr->sigalg;
3043 break;
3044 }
3045 }
3046
3047 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3048 goto err;
3049 }
3050
3051 if (client) {
3052 OPENSSL_free(c->client_sigalgs);
3053 c->client_sigalgs = sigalgs;
3054 c->client_sigalgslen = salglen / 2;
3055 } else {
3056 OPENSSL_free(c->conf_sigalgs);
3057 c->conf_sigalgs = sigalgs;
3058 c->conf_sigalgslen = salglen / 2;
3059 }
3060
3061 return 1;
3062
3063 err:
3064 OPENSSL_free(sigalgs);
3065 return 0;
3066 }
3067
3068 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3069 {
3070 int sig_nid, use_pc_sigalgs = 0;
3071 size_t i;
3072 const SIGALG_LOOKUP *sigalg;
3073 size_t sigalgslen;
3074
3075 if (default_nid == -1)
3076 return 1;
3077 sig_nid = X509_get_signature_nid(x);
3078 if (default_nid)
3079 return sig_nid == default_nid ? 1 : 0;
3080
3081 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3082 /*
3083 * If we're in TLSv1.3 then we only get here if we're checking the
3084 * chain. If the peer has specified peer_cert_sigalgs then we use them
3085 * otherwise we default to normal sigalgs.
3086 */
3087 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3088 use_pc_sigalgs = 1;
3089 } else {
3090 sigalgslen = s->shared_sigalgslen;
3091 }
3092 for (i = 0; i < sigalgslen; i++) {
3093 sigalg = use_pc_sigalgs
3094 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3095 : s->shared_sigalgs[i];
3096 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3097 return 1;
3098 }
3099 return 0;
3100 }
3101
3102 /* Check to see if a certificate issuer name matches list of CA names */
3103 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3104 {
3105 const X509_NAME *nm;
3106 int i;
3107 nm = X509_get_issuer_name(x);
3108 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3109 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3110 return 1;
3111 }
3112 return 0;
3113 }
3114
3115 /*
3116 * Check certificate chain is consistent with TLS extensions and is usable by
3117 * server. This servers two purposes: it allows users to check chains before
3118 * passing them to the server and it allows the server to check chains before
3119 * attempting to use them.
3120 */
3121
3122 /* Flags which need to be set for a certificate when strict mode not set */
3123
3124 #define CERT_PKEY_VALID_FLAGS \
3125 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3126 /* Strict mode flags */
3127 #define CERT_PKEY_STRICT_FLAGS \
3128 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3129 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3130
3131 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3132 STACK_OF(X509) *chain, int idx)
3133 {
3134 int i;
3135 int rv = 0;
3136 int check_flags = 0, strict_mode;
3137 CERT_PKEY *cpk = NULL;
3138 CERT *c = s->cert;
3139 uint32_t *pvalid;
3140 unsigned int suiteb_flags = tls1_suiteb(s);
3141
3142 /*
3143 * Meaning of idx:
3144 * idx == -1 means SSL_check_chain() invocation
3145 * idx == -2 means checking client certificate chains
3146 * idx >= 0 means checking SSL_PKEY index
3147 *
3148 * For RPK, where there may be no cert, we ignore -1
3149 */
3150 if (idx != -1) {
3151 if (idx == -2) {
3152 cpk = c->key;
3153 idx = (int)(cpk - c->pkeys);
3154 } else
3155 cpk = c->pkeys + idx;
3156 pvalid = s->s3.tmp.valid_flags + idx;
3157 x = cpk->x509;
3158 pk = cpk->privatekey;
3159 chain = cpk->chain;
3160 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3161 if (tls12_rpk_and_privkey(s, idx)) {
3162 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3163 return 0;
3164 *pvalid = rv = CERT_PKEY_RPK;
3165 return rv;
3166 }
3167 /* If no cert or key, forget it */
3168 if (x == NULL || pk == NULL)
3169 goto end;
3170 } else {
3171 size_t certidx;
3172
3173 if (x == NULL || pk == NULL)
3174 return 0;
3175
3176 if (ssl_cert_lookup_by_pkey(pk, &certidx,
3177 SSL_CONNECTION_GET_CTX(s)) == NULL)
3178 return 0;
3179 idx = certidx;
3180 pvalid = s->s3.tmp.valid_flags + idx;
3181
3182 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3183 check_flags = CERT_PKEY_STRICT_FLAGS;
3184 else
3185 check_flags = CERT_PKEY_VALID_FLAGS;
3186 strict_mode = 1;
3187 }
3188
3189 if (suiteb_flags) {
3190 int ok;
3191 if (check_flags)
3192 check_flags |= CERT_PKEY_SUITEB;
3193 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3194 if (ok == X509_V_OK)
3195 rv |= CERT_PKEY_SUITEB;
3196 else if (!check_flags)
3197 goto end;
3198 }
3199
3200 /*
3201 * Check all signature algorithms are consistent with signature
3202 * algorithms extension if TLS 1.2 or later and strict mode.
3203 */
3204 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3205 && strict_mode) {
3206 int default_nid;
3207 int rsign = 0;
3208
3209 if (s->s3.tmp.peer_cert_sigalgs != NULL
3210 || s->s3.tmp.peer_sigalgs != NULL) {
3211 default_nid = 0;
3212 /* If no sigalgs extension use defaults from RFC5246 */
3213 } else {
3214 switch (idx) {
3215 case SSL_PKEY_RSA:
3216 rsign = EVP_PKEY_RSA;
3217 default_nid = NID_sha1WithRSAEncryption;
3218 break;
3219
3220 case SSL_PKEY_DSA_SIGN:
3221 rsign = EVP_PKEY_DSA;
3222 default_nid = NID_dsaWithSHA1;
3223 break;
3224
3225 case SSL_PKEY_ECC:
3226 rsign = EVP_PKEY_EC;
3227 default_nid = NID_ecdsa_with_SHA1;
3228 break;
3229
3230 case SSL_PKEY_GOST01:
3231 rsign = NID_id_GostR3410_2001;
3232 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3233 break;
3234
3235 case SSL_PKEY_GOST12_256:
3236 rsign = NID_id_GostR3410_2012_256;
3237 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3238 break;
3239
3240 case SSL_PKEY_GOST12_512:
3241 rsign = NID_id_GostR3410_2012_512;
3242 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3243 break;
3244
3245 default:
3246 default_nid = -1;
3247 break;
3248 }
3249 }
3250 /*
3251 * If peer sent no signature algorithms extension and we have set
3252 * preferred signature algorithms check we support sha1.
3253 */
3254 if (default_nid > 0 && c->conf_sigalgs) {
3255 size_t j;
3256 const uint16_t *p = c->conf_sigalgs;
3257 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3258 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3259
3260 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3261 break;
3262 }
3263 if (j == c->conf_sigalgslen) {
3264 if (check_flags)
3265 goto skip_sigs;
3266 else
3267 goto end;
3268 }
3269 }
3270 /* Check signature algorithm of each cert in chain */
3271 if (SSL_CONNECTION_IS_TLS13(s)) {
3272 /*
3273 * We only get here if the application has called SSL_check_chain(),
3274 * so check_flags is always set.
3275 */
3276 if (find_sig_alg(s, x, pk) != NULL)
3277 rv |= CERT_PKEY_EE_SIGNATURE;
3278 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3279 if (!check_flags)
3280 goto end;
3281 } else
3282 rv |= CERT_PKEY_EE_SIGNATURE;
3283 rv |= CERT_PKEY_CA_SIGNATURE;
3284 for (i = 0; i < sk_X509_num(chain); i++) {
3285 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3286 if (check_flags) {
3287 rv &= ~CERT_PKEY_CA_SIGNATURE;
3288 break;
3289 } else
3290 goto end;
3291 }
3292 }
3293 }
3294 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3295 else if (check_flags)
3296 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3297 skip_sigs:
3298 /* Check cert parameters are consistent */
3299 if (tls1_check_cert_param(s, x, 1))
3300 rv |= CERT_PKEY_EE_PARAM;
3301 else if (!check_flags)
3302 goto end;
3303 if (!s->server)
3304 rv |= CERT_PKEY_CA_PARAM;
3305 /* In strict mode check rest of chain too */
3306 else if (strict_mode) {
3307 rv |= CERT_PKEY_CA_PARAM;
3308 for (i = 0; i < sk_X509_num(chain); i++) {
3309 X509 *ca = sk_X509_value(chain, i);
3310 if (!tls1_check_cert_param(s, ca, 0)) {
3311 if (check_flags) {
3312 rv &= ~CERT_PKEY_CA_PARAM;
3313 break;
3314 } else
3315 goto end;
3316 }
3317 }
3318 }
3319 if (!s->server && strict_mode) {
3320 STACK_OF(X509_NAME) *ca_dn;
3321 int check_type = 0;
3322
3323 if (EVP_PKEY_is_a(pk, "RSA"))
3324 check_type = TLS_CT_RSA_SIGN;
3325 else if (EVP_PKEY_is_a(pk, "DSA"))
3326 check_type = TLS_CT_DSS_SIGN;
3327 else if (EVP_PKEY_is_a(pk, "EC"))
3328 check_type = TLS_CT_ECDSA_SIGN;
3329
3330 if (check_type) {
3331 const uint8_t *ctypes = s->s3.tmp.ctype;
3332 size_t j;
3333
3334 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3335 if (*ctypes == check_type) {
3336 rv |= CERT_PKEY_CERT_TYPE;
3337 break;
3338 }
3339 }
3340 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3341 goto end;
3342 } else {
3343 rv |= CERT_PKEY_CERT_TYPE;
3344 }
3345
3346 ca_dn = s->s3.tmp.peer_ca_names;
3347
3348 if (ca_dn == NULL
3349 || sk_X509_NAME_num(ca_dn) == 0
3350 || ssl_check_ca_name(ca_dn, x))
3351 rv |= CERT_PKEY_ISSUER_NAME;
3352 else
3353 for (i = 0; i < sk_X509_num(chain); i++) {
3354 X509 *xtmp = sk_X509_value(chain, i);
3355
3356 if (ssl_check_ca_name(ca_dn, xtmp)) {
3357 rv |= CERT_PKEY_ISSUER_NAME;
3358 break;
3359 }
3360 }
3361
3362 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3363 goto end;
3364 } else
3365 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3366
3367 if (!check_flags || (rv & check_flags) == check_flags)
3368 rv |= CERT_PKEY_VALID;
3369
3370 end:
3371
3372 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3373 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3374 else
3375 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3376
3377 /*
3378 * When checking a CERT_PKEY structure all flags are irrelevant if the
3379 * chain is invalid.
3380 */
3381 if (!check_flags) {
3382 if (rv & CERT_PKEY_VALID) {
3383 *pvalid = rv;
3384 } else {
3385 /* Preserve sign and explicit sign flag, clear rest */
3386 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3387 return 0;
3388 }
3389 }
3390 return rv;
3391 }
3392
3393 /* Set validity of certificates in an SSL structure */
3394 void tls1_set_cert_validity(SSL_CONNECTION *s)
3395 {
3396 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3397 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3398 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3399 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3400 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3401 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3402 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3403 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3404 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3405 }
3406
3407 /* User level utility function to check a chain is suitable */
3408 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3409 {
3410 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3411
3412 if (sc == NULL)
3413 return 0;
3414
3415 return tls1_check_chain(sc, x, pk, chain, -1);
3416 }
3417
3418 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3419 {
3420 EVP_PKEY *dhp = NULL;
3421 BIGNUM *p;
3422 int dh_secbits = 80, sec_level_bits;
3423 EVP_PKEY_CTX *pctx = NULL;
3424 OSSL_PARAM_BLD *tmpl = NULL;
3425 OSSL_PARAM *params = NULL;
3426 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3427
3428 if (s->cert->dh_tmp_auto != 2) {
3429 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3430 if (s->s3.tmp.new_cipher->strength_bits == 256)
3431 dh_secbits = 128;
3432 else
3433 dh_secbits = 80;
3434 } else {
3435 if (s->s3.tmp.cert == NULL)
3436 return NULL;
3437 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3438 }
3439 }
3440
3441 /* Do not pick a prime that is too weak for the current security level */
3442 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3443 NULL, NULL);
3444 if (dh_secbits < sec_level_bits)
3445 dh_secbits = sec_level_bits;
3446
3447 if (dh_secbits >= 192)
3448 p = BN_get_rfc3526_prime_8192(NULL);
3449 else if (dh_secbits >= 152)
3450 p = BN_get_rfc3526_prime_4096(NULL);
3451 else if (dh_secbits >= 128)
3452 p = BN_get_rfc3526_prime_3072(NULL);
3453 else if (dh_secbits >= 112)
3454 p = BN_get_rfc3526_prime_2048(NULL);
3455 else
3456 p = BN_get_rfc2409_prime_1024(NULL);
3457 if (p == NULL)
3458 goto err;
3459
3460 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3461 if (pctx == NULL
3462 || EVP_PKEY_fromdata_init(pctx) != 1)
3463 goto err;
3464
3465 tmpl = OSSL_PARAM_BLD_new();
3466 if (tmpl == NULL
3467 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3468 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3469 goto err;
3470
3471 params = OSSL_PARAM_BLD_to_param(tmpl);
3472 if (params == NULL
3473 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3474 goto err;
3475
3476 err:
3477 OSSL_PARAM_free(params);
3478 OSSL_PARAM_BLD_free(tmpl);
3479 EVP_PKEY_CTX_free(pctx);
3480 BN_free(p);
3481 return dhp;
3482 }
3483
3484 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3485 int op)
3486 {
3487 int secbits = -1;
3488 EVP_PKEY *pkey = X509_get0_pubkey(x);
3489
3490 if (pkey) {
3491 /*
3492 * If no parameters this will return -1 and fail using the default
3493 * security callback for any non-zero security level. This will
3494 * reject keys which omit parameters but this only affects DSA and
3495 * omission of parameters is never (?) done in practice.
3496 */
3497 secbits = EVP_PKEY_get_security_bits(pkey);
3498 }
3499 if (s != NULL)
3500 return ssl_security(s, op, secbits, 0, x);
3501 else
3502 return ssl_ctx_security(ctx, op, secbits, 0, x);
3503 }
3504
3505 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3506 int op)
3507 {
3508 /* Lookup signature algorithm digest */
3509 int secbits, nid, pknid;
3510
3511 /* Don't check signature if self signed */
3512 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3513 return 1;
3514 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3515 secbits = -1;
3516 /* If digest NID not defined use signature NID */
3517 if (nid == NID_undef)
3518 nid = pknid;
3519 if (s != NULL)
3520 return ssl_security(s, op, secbits, nid, x);
3521 else
3522 return ssl_ctx_security(ctx, op, secbits, nid, x);
3523 }
3524
3525 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3526 int is_ee)
3527 {
3528 if (vfy)
3529 vfy = SSL_SECOP_PEER;
3530 if (is_ee) {
3531 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3532 return SSL_R_EE_KEY_TOO_SMALL;
3533 } else {
3534 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3535 return SSL_R_CA_KEY_TOO_SMALL;
3536 }
3537 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3538 return SSL_R_CA_MD_TOO_WEAK;
3539 return 1;
3540 }
3541
3542 /*
3543 * Check security of a chain, if |sk| includes the end entity certificate then
3544 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3545 * one to the peer. Return values: 1 if ok otherwise error code to use
3546 */
3547
3548 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3549 X509 *x, int vfy)
3550 {
3551 int rv, start_idx, i;
3552
3553 if (x == NULL) {
3554 x = sk_X509_value(sk, 0);
3555 if (x == NULL)
3556 return ERR_R_INTERNAL_ERROR;
3557 start_idx = 1;
3558 } else
3559 start_idx = 0;
3560
3561 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3562 if (rv != 1)
3563 return rv;
3564
3565 for (i = start_idx; i < sk_X509_num(sk); i++) {
3566 x = sk_X509_value(sk, i);
3567 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3568 if (rv != 1)
3569 return rv;
3570 }
3571 return 1;
3572 }
3573
3574 /*
3575 * For TLS 1.2 servers check if we have a certificate which can be used
3576 * with the signature algorithm "lu" and return index of certificate.
3577 */
3578
3579 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3580 const SIGALG_LOOKUP *lu)
3581 {
3582 int sig_idx = lu->sig_idx;
3583 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3584 SSL_CONNECTION_GET_CTX(s));
3585
3586 /* If not recognised or not supported by cipher mask it is not suitable */
3587 if (clu == NULL
3588 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3589 || (clu->nid == EVP_PKEY_RSA_PSS
3590 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3591 return -1;
3592
3593 /* If doing RPK, the CERT_PKEY won't be "valid" */
3594 if (tls12_rpk_and_privkey(s, sig_idx))
3595 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3596
3597 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3598 }
3599
3600 /*
3601 * Checks the given cert against signature_algorithm_cert restrictions sent by
3602 * the peer (if any) as well as whether the hash from the sigalg is usable with
3603 * the key.
3604 * Returns true if the cert is usable and false otherwise.
3605 */
3606 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3607 X509 *x, EVP_PKEY *pkey)
3608 {
3609 const SIGALG_LOOKUP *lu;
3610 int mdnid, pknid, supported;
3611 size_t i;
3612 const char *mdname = NULL;
3613 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3614
3615 /*
3616 * If the given EVP_PKEY cannot support signing with this digest,
3617 * the answer is simply 'no'.
3618 */
3619 if (sig->hash != NID_undef)
3620 mdname = OBJ_nid2sn(sig->hash);
3621 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3622 mdname,
3623 sctx->propq);
3624 if (supported <= 0)
3625 return 0;
3626
3627 /*
3628 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3629 * on the sigalg with which the certificate was signed (by its issuer).
3630 */
3631 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3632 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3633 return 0;
3634 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3635 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3636 if (lu == NULL)
3637 continue;
3638
3639 /*
3640 * This does not differentiate between the
3641 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3642 * have a chain here that lets us look at the key OID in the
3643 * signing certificate.
3644 */
3645 if (mdnid == lu->hash && pknid == lu->sig)
3646 return 1;
3647 }
3648 return 0;
3649 }
3650
3651 /*
3652 * Without signat_algorithms_cert, any certificate for which we have
3653 * a viable public key is permitted.
3654 */
3655 return 1;
3656 }
3657
3658 /*
3659 * Returns true if |s| has a usable certificate configured for use
3660 * with signature scheme |sig|.
3661 * "Usable" includes a check for presence as well as applying
3662 * the signature_algorithm_cert restrictions sent by the peer (if any).
3663 * Returns false if no usable certificate is found.
3664 */
3665 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3666 {
3667 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3668 if (idx == -1)
3669 idx = sig->sig_idx;
3670 if (!ssl_has_cert(s, idx))
3671 return 0;
3672
3673 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3674 s->cert->pkeys[idx].privatekey);
3675 }
3676
3677 /*
3678 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3679 * specified signature scheme |sig|, or false otherwise.
3680 */
3681 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3682 EVP_PKEY *pkey)
3683 {
3684 size_t idx;
3685
3686 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3687 return 0;
3688
3689 /* Check the key is consistent with the sig alg */
3690 if ((int)idx != sig->sig_idx)
3691 return 0;
3692
3693 return check_cert_usable(s, sig, x, pkey);
3694 }
3695
3696 /*
3697 * Find a signature scheme that works with the supplied certificate |x| and key
3698 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3699 * available certs/keys to find one that works.
3700 */
3701 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3702 EVP_PKEY *pkey)
3703 {
3704 const SIGALG_LOOKUP *lu = NULL;
3705 size_t i;
3706 int curve = -1;
3707 EVP_PKEY *tmppkey;
3708 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3709
3710 /* Look for a shared sigalgs matching possible certificates */
3711 for (i = 0; i < s->shared_sigalgslen; i++) {
3712 lu = s->shared_sigalgs[i];
3713
3714 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3715 if (lu->hash == NID_sha1
3716 || lu->hash == NID_sha224
3717 || lu->sig == EVP_PKEY_DSA
3718 || lu->sig == EVP_PKEY_RSA)
3719 continue;
3720 /* Check that we have a cert, and signature_algorithms_cert */
3721 if (!tls1_lookup_md(sctx, lu, NULL))
3722 continue;
3723 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3724 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3725 continue;
3726
3727 tmppkey = (pkey != NULL) ? pkey
3728 : s->cert->pkeys[lu->sig_idx].privatekey;
3729
3730 if (lu->sig == EVP_PKEY_EC) {
3731 if (curve == -1)
3732 curve = ssl_get_EC_curve_nid(tmppkey);
3733 if (lu->curve != NID_undef && curve != lu->curve)
3734 continue;
3735 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3736 /* validate that key is large enough for the signature algorithm */
3737 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3738 continue;
3739 }
3740 break;
3741 }
3742
3743 if (i == s->shared_sigalgslen)
3744 return NULL;
3745
3746 return lu;
3747 }
3748
3749 /*
3750 * Choose an appropriate signature algorithm based on available certificates
3751 * Sets chosen certificate and signature algorithm.
3752 *
3753 * For servers if we fail to find a required certificate it is a fatal error,
3754 * an appropriate error code is set and a TLS alert is sent.
3755 *
3756 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3757 * a fatal error: we will either try another certificate or not present one
3758 * to the server. In this case no error is set.
3759 */
3760 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3761 {
3762 const SIGALG_LOOKUP *lu = NULL;
3763 int sig_idx = -1;
3764
3765 s->s3.tmp.cert = NULL;
3766 s->s3.tmp.sigalg = NULL;
3767
3768 if (SSL_CONNECTION_IS_TLS13(s)) {
3769 lu = find_sig_alg(s, NULL, NULL);
3770 if (lu == NULL) {
3771 if (!fatalerrs)
3772 return 1;
3773 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3774 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3775 return 0;
3776 }
3777 } else {
3778 /* If ciphersuite doesn't require a cert nothing to do */
3779 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3780 return 1;
3781 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3782 return 1;
3783
3784 if (SSL_USE_SIGALGS(s)) {
3785 size_t i;
3786 if (s->s3.tmp.peer_sigalgs != NULL) {
3787 int curve = -1;
3788 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3789
3790 /* For Suite B need to match signature algorithm to curve */
3791 if (tls1_suiteb(s))
3792 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3793 .privatekey);
3794
3795 /*
3796 * Find highest preference signature algorithm matching
3797 * cert type
3798 */
3799 for (i = 0; i < s->shared_sigalgslen; i++) {
3800 lu = s->shared_sigalgs[i];
3801
3802 if (s->server) {
3803 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3804 continue;
3805 } else {
3806 int cc_idx = s->cert->key - s->cert->pkeys;
3807
3808 sig_idx = lu->sig_idx;
3809 if (cc_idx != sig_idx)
3810 continue;
3811 }
3812 /* Check that we have a cert, and sig_algs_cert */
3813 if (!has_usable_cert(s, lu, sig_idx))
3814 continue;
3815 if (lu->sig == EVP_PKEY_RSA_PSS) {
3816 /* validate that key is large enough for the signature algorithm */
3817 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3818
3819 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3820 continue;
3821 }
3822 if (curve == -1 || lu->curve == curve)
3823 break;
3824 }
3825 #ifndef OPENSSL_NO_GOST
3826 /*
3827 * Some Windows-based implementations do not send GOST algorithms indication
3828 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3829 * we have to assume GOST support.
3830 */
3831 if (i == s->shared_sigalgslen
3832 && (s->s3.tmp.new_cipher->algorithm_auth
3833 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3834 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3835 if (!fatalerrs)
3836 return 1;
3837 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3838 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3839 return 0;
3840 } else {
3841 i = 0;
3842 sig_idx = lu->sig_idx;
3843 }
3844 }
3845 #endif
3846 if (i == s->shared_sigalgslen) {
3847 if (!fatalerrs)
3848 return 1;
3849 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3850 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3851 return 0;
3852 }
3853 } else {
3854 /*
3855 * If we have no sigalg use defaults
3856 */
3857 const uint16_t *sent_sigs;
3858 size_t sent_sigslen;
3859
3860 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3861 if (!fatalerrs)
3862 return 1;
3863 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3864 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3865 return 0;
3866 }
3867
3868 /* Check signature matches a type we sent */
3869 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3870 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3871 if (lu->sigalg == *sent_sigs
3872 && has_usable_cert(s, lu, lu->sig_idx))
3873 break;
3874 }
3875 if (i == sent_sigslen) {
3876 if (!fatalerrs)
3877 return 1;
3878 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3879 SSL_R_WRONG_SIGNATURE_TYPE);
3880 return 0;
3881 }
3882 }
3883 } else {
3884 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3885 if (!fatalerrs)
3886 return 1;
3887 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3888 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3889 return 0;
3890 }
3891 }
3892 }
3893 if (sig_idx == -1)
3894 sig_idx = lu->sig_idx;
3895 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3896 s->cert->key = s->s3.tmp.cert;
3897 s->s3.tmp.sigalg = lu;
3898 return 1;
3899 }
3900
3901 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3902 {
3903 if (mode != TLSEXT_max_fragment_length_DISABLED
3904 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3905 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3906 return 0;
3907 }
3908
3909 ctx->ext.max_fragment_len_mode = mode;
3910 return 1;
3911 }
3912
3913 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3914 {
3915 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3916
3917 if (sc == NULL
3918 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3919 return 0;
3920
3921 if (mode != TLSEXT_max_fragment_length_DISABLED
3922 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3923 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3924 return 0;
3925 }
3926
3927 sc->ext.max_fragment_len_mode = mode;
3928 return 1;
3929 }
3930
3931 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3932 {
3933 return session->ext.max_fragment_len_mode;
3934 }
3935
3936 /*
3937 * Helper functions for HMAC access with legacy support included.
3938 */
3939 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3940 {
3941 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3942 EVP_MAC *mac = NULL;
3943
3944 if (ret == NULL)
3945 return NULL;
3946 #ifndef OPENSSL_NO_DEPRECATED_3_0
3947 if (ctx->ext.ticket_key_evp_cb == NULL
3948 && ctx->ext.ticket_key_cb != NULL) {
3949 if (!ssl_hmac_old_new(ret))
3950 goto err;
3951 return ret;
3952 }
3953 #endif
3954 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3955 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3956 goto err;
3957 EVP_MAC_free(mac);
3958 return ret;
3959 err:
3960 EVP_MAC_CTX_free(ret->ctx);
3961 EVP_MAC_free(mac);
3962 OPENSSL_free(ret);
3963 return NULL;
3964 }
3965
3966 void ssl_hmac_free(SSL_HMAC *ctx)
3967 {
3968 if (ctx != NULL) {
3969 EVP_MAC_CTX_free(ctx->ctx);
3970 #ifndef OPENSSL_NO_DEPRECATED_3_0
3971 ssl_hmac_old_free(ctx);
3972 #endif
3973 OPENSSL_free(ctx);
3974 }
3975 }
3976
3977 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3978 {
3979 return ctx->ctx;
3980 }
3981
3982 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3983 {
3984 OSSL_PARAM params[2], *p = params;
3985
3986 if (ctx->ctx != NULL) {
3987 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3988 *p = OSSL_PARAM_construct_end();
3989 if (EVP_MAC_init(ctx->ctx, key, len, params))
3990 return 1;
3991 }
3992 #ifndef OPENSSL_NO_DEPRECATED_3_0
3993 if (ctx->old_ctx != NULL)
3994 return ssl_hmac_old_init(ctx, key, len, md);
3995 #endif
3996 return 0;
3997 }
3998
3999 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4000 {
4001 if (ctx->ctx != NULL)
4002 return EVP_MAC_update(ctx->ctx, data, len);
4003 #ifndef OPENSSL_NO_DEPRECATED_3_0
4004 if (ctx->old_ctx != NULL)
4005 return ssl_hmac_old_update(ctx, data, len);
4006 #endif
4007 return 0;
4008 }
4009
4010 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4011 size_t max_size)
4012 {
4013 if (ctx->ctx != NULL)
4014 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4015 #ifndef OPENSSL_NO_DEPRECATED_3_0
4016 if (ctx->old_ctx != NULL)
4017 return ssl_hmac_old_final(ctx, md, len);
4018 #endif
4019 return 0;
4020 }
4021
4022 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4023 {
4024 if (ctx->ctx != NULL)
4025 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4026 #ifndef OPENSSL_NO_DEPRECATED_3_0
4027 if (ctx->old_ctx != NULL)
4028 return ssl_hmac_old_size(ctx);
4029 #endif
4030 return 0;
4031 }
4032
4033 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4034 {
4035 char gname[OSSL_MAX_NAME_SIZE];
4036
4037 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4038 return OBJ_txt2nid(gname);
4039
4040 return NID_undef;
4041 }
4042
4043 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4044 const unsigned char *enckey,
4045 size_t enckeylen)
4046 {
4047 if (EVP_PKEY_is_a(pkey, "DH")) {
4048 int bits = EVP_PKEY_get_bits(pkey);
4049
4050 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4051 /* the encoded key must be padded to the length of the p */
4052 return 0;
4053 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4054 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4055 || enckey[0] != 0x04)
4056 return 0;
4057 }
4058
4059 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4060 }