]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
14ea4a84966d2f912d9b021dfdb05ff4eac6fee9
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include "../e_os.h" /* strcasecmp */
15 #include <openssl/evp.h>
16 #include <openssl/pem.h>
17 #include <openssl/err.h>
18 #include <openssl/provider.h>
19 #include <openssl/x509v3.h>
20 #include <openssl/pkcs12.h>
21 #include <openssl/kdf.h>
22 #include <openssl/params.h>
23 #include <openssl/core_names.h>
24 #include "internal/numbers.h"
25 #include "internal/nelem.h"
26 #include "crypto/evp.h"
27 #include "testutil.h"
28 #include "evp_test.h"
29
30 #define AAD_NUM 4
31
32 typedef struct evp_test_method_st EVP_TEST_METHOD;
33
34 /* Structure holding test information */
35 typedef struct evp_test_st {
36 STANZA s; /* Common test stanza */
37 char *name;
38 int skip; /* Current test should be skipped */
39 const EVP_TEST_METHOD *meth; /* method for this test */
40 const char *err, *aux_err; /* Error string for test */
41 char *expected_err; /* Expected error value of test */
42 char *reason; /* Expected error reason string */
43 void *data; /* test specific data */
44 } EVP_TEST;
45
46 /* Test method structure */
47 struct evp_test_method_st {
48 /* Name of test as it appears in file */
49 const char *name;
50 /* Initialise test for "alg" */
51 int (*init) (EVP_TEST * t, const char *alg);
52 /* Clean up method */
53 void (*cleanup) (EVP_TEST * t);
54 /* Test specific name value pair processing */
55 int (*parse) (EVP_TEST * t, const char *name, const char *value);
56 /* Run the test itself */
57 int (*run_test) (EVP_TEST * t);
58 };
59
60 /* Linked list of named keys. */
61 typedef struct key_list_st {
62 char *name;
63 EVP_PKEY *key;
64 struct key_list_st *next;
65 } KEY_LIST;
66
67 typedef enum OPTION_choice {
68 OPT_ERR = -1,
69 OPT_EOF = 0,
70 OPT_CONFIG_FILE,
71 OPT_TEST_ENUM
72 } OPTION_CHOICE;
73
74 static OSSL_PROVIDER *prov_null = NULL;
75 static OPENSSL_CTX *libctx = NULL;
76
77 /* List of public and private keys */
78 static KEY_LIST *private_keys;
79 static KEY_LIST *public_keys;
80
81 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
82 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
83 static int is_digest_disabled(const char *name);
84 static int is_pkey_disabled(const char *name);
85 static int is_mac_disabled(const char *name);
86 static int is_cipher_disabled(const char *name);
87 static int is_kdf_disabled(const char *name);
88
89 /*
90 * Compare two memory regions for equality, returning zero if they differ.
91 * However, if there is expected to be an error and the actual error
92 * matches then the memory is expected to be different so handle this
93 * case without producing unnecessary test framework output.
94 */
95 static int memory_err_compare(EVP_TEST *t, const char *err,
96 const void *expected, size_t expected_len,
97 const void *got, size_t got_len)
98 {
99 int r;
100
101 if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
102 r = !TEST_mem_ne(expected, expected_len, got, got_len);
103 else
104 r = TEST_mem_eq(expected, expected_len, got, got_len);
105 if (!r)
106 t->err = err;
107 return r;
108 }
109
110 /*
111 * Structure used to hold a list of blocks of memory to test
112 * calls to "update" like functions.
113 */
114 struct evp_test_buffer_st {
115 unsigned char *buf;
116 size_t buflen;
117 size_t count;
118 int count_set;
119 };
120
121 static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
122 {
123 if (db != NULL) {
124 OPENSSL_free(db->buf);
125 OPENSSL_free(db);
126 }
127 }
128
129 /* append buffer to a list */
130 static int evp_test_buffer_append(const char *value,
131 STACK_OF(EVP_TEST_BUFFER) **sk)
132 {
133 EVP_TEST_BUFFER *db = NULL;
134
135 if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
136 goto err;
137
138 if (!parse_bin(value, &db->buf, &db->buflen))
139 goto err;
140 db->count = 1;
141 db->count_set = 0;
142
143 if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
144 goto err;
145 if (!sk_EVP_TEST_BUFFER_push(*sk, db))
146 goto err;
147
148 return 1;
149
150 err:
151 evp_test_buffer_free(db);
152 return 0;
153 }
154
155 /* replace last buffer in list with copies of itself */
156 static int evp_test_buffer_ncopy(const char *value,
157 STACK_OF(EVP_TEST_BUFFER) *sk)
158 {
159 EVP_TEST_BUFFER *db;
160 unsigned char *tbuf, *p;
161 size_t tbuflen;
162 int ncopy = atoi(value);
163 int i;
164
165 if (ncopy <= 0)
166 return 0;
167 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
168 return 0;
169 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
170
171 tbuflen = db->buflen * ncopy;
172 if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
173 return 0;
174 for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
175 memcpy(p, db->buf, db->buflen);
176
177 OPENSSL_free(db->buf);
178 db->buf = tbuf;
179 db->buflen = tbuflen;
180 return 1;
181 }
182
183 /* set repeat count for last buffer in list */
184 static int evp_test_buffer_set_count(const char *value,
185 STACK_OF(EVP_TEST_BUFFER) *sk)
186 {
187 EVP_TEST_BUFFER *db;
188 int count = atoi(value);
189
190 if (count <= 0)
191 return 0;
192
193 if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
194 return 0;
195
196 db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
197 if (db->count_set != 0)
198 return 0;
199
200 db->count = (size_t)count;
201 db->count_set = 1;
202 return 1;
203 }
204
205 /* call "fn" with each element of the list in turn */
206 static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
207 int (*fn)(void *ctx,
208 const unsigned char *buf,
209 size_t buflen),
210 void *ctx)
211 {
212 int i;
213
214 for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
215 EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
216 size_t j;
217
218 for (j = 0; j < tb->count; j++) {
219 if (fn(ctx, tb->buf, tb->buflen) <= 0)
220 return 0;
221 }
222 }
223 return 1;
224 }
225
226 /*
227 * Unescape some sequences in string literals (only \n for now).
228 * Return an allocated buffer, set |out_len|. If |input_len|
229 * is zero, get an empty buffer but set length to zero.
230 */
231 static unsigned char* unescape(const char *input, size_t input_len,
232 size_t *out_len)
233 {
234 unsigned char *ret, *p;
235 size_t i;
236
237 if (input_len == 0) {
238 *out_len = 0;
239 return OPENSSL_zalloc(1);
240 }
241
242 /* Escaping is non-expanding; over-allocate original size for simplicity. */
243 if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
244 return NULL;
245
246 for (i = 0; i < input_len; i++) {
247 if (*input == '\\') {
248 if (i == input_len - 1 || *++input != 'n') {
249 TEST_error("Bad escape sequence in file");
250 goto err;
251 }
252 *p++ = '\n';
253 i++;
254 input++;
255 } else {
256 *p++ = *input++;
257 }
258 }
259
260 *out_len = p - ret;
261 return ret;
262
263 err:
264 OPENSSL_free(ret);
265 return NULL;
266 }
267
268 /*
269 * For a hex string "value" convert to a binary allocated buffer.
270 * Return 1 on success or 0 on failure.
271 */
272 static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
273 {
274 long len;
275
276 /* Check for NULL literal */
277 if (strcmp(value, "NULL") == 0) {
278 *buf = NULL;
279 *buflen = 0;
280 return 1;
281 }
282
283 /* Check for empty value */
284 if (*value == '\0') {
285 /*
286 * Don't return NULL for zero length buffer. This is needed for
287 * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
288 * buffer even if the key length is 0, in order to detect key reset.
289 */
290 *buf = OPENSSL_malloc(1);
291 if (*buf == NULL)
292 return 0;
293 **buf = 0;
294 *buflen = 0;
295 return 1;
296 }
297
298 /* Check for string literal */
299 if (value[0] == '"') {
300 size_t vlen = strlen(++value);
301
302 if (vlen == 0 || value[vlen - 1] != '"')
303 return 0;
304 vlen--;
305 *buf = unescape(value, vlen, buflen);
306 return *buf == NULL ? 0 : 1;
307 }
308
309 /* Otherwise assume as hex literal and convert it to binary buffer */
310 if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
311 TEST_info("Can't convert %s", value);
312 TEST_openssl_errors();
313 return -1;
314 }
315 /* Size of input buffer means we'll never overflow */
316 *buflen = len;
317 return 1;
318 }
319
320 /**
321 ** MESSAGE DIGEST TESTS
322 **/
323
324 typedef struct digest_data_st {
325 /* Digest this test is for */
326 const EVP_MD *digest;
327 EVP_MD *fetched_digest;
328 /* Input to digest */
329 STACK_OF(EVP_TEST_BUFFER) *input;
330 /* Expected output */
331 unsigned char *output;
332 size_t output_len;
333 /* Padding type */
334 int pad_type;
335 } DIGEST_DATA;
336
337 static int digest_test_init(EVP_TEST *t, const char *alg)
338 {
339 DIGEST_DATA *mdat;
340 const EVP_MD *digest;
341 EVP_MD *fetched_digest;
342
343 if (is_digest_disabled(alg)) {
344 TEST_info("skipping, '%s' is disabled", alg);
345 t->skip = 1;
346 return 1;
347 }
348
349 if ((digest = fetched_digest = EVP_MD_fetch(libctx, alg, NULL)) == NULL
350 && (digest = EVP_get_digestbyname(alg)) == NULL)
351 return 0;
352 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
353 return 0;
354 t->data = mdat;
355 mdat->digest = digest;
356 mdat->fetched_digest = fetched_digest;
357 mdat->pad_type = 0;
358 if (fetched_digest != NULL)
359 TEST_info("%s is fetched", alg);
360 return 1;
361 }
362
363 static void digest_test_cleanup(EVP_TEST *t)
364 {
365 DIGEST_DATA *mdat = t->data;
366
367 sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
368 OPENSSL_free(mdat->output);
369 EVP_MD_free(mdat->fetched_digest);
370 }
371
372 static int digest_test_parse(EVP_TEST *t,
373 const char *keyword, const char *value)
374 {
375 DIGEST_DATA *mdata = t->data;
376
377 if (strcmp(keyword, "Input") == 0)
378 return evp_test_buffer_append(value, &mdata->input);
379 if (strcmp(keyword, "Output") == 0)
380 return parse_bin(value, &mdata->output, &mdata->output_len);
381 if (strcmp(keyword, "Count") == 0)
382 return evp_test_buffer_set_count(value, mdata->input);
383 if (strcmp(keyword, "Ncopy") == 0)
384 return evp_test_buffer_ncopy(value, mdata->input);
385 if (strcmp(keyword, "Padding") == 0)
386 return (mdata->pad_type = atoi(value)) > 0;
387 return 0;
388 }
389
390 static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
391 {
392 return EVP_DigestUpdate(ctx, buf, buflen);
393 }
394
395 static int digest_test_run(EVP_TEST *t)
396 {
397 DIGEST_DATA *expected = t->data;
398 EVP_MD_CTX *mctx;
399 unsigned char *got = NULL;
400 unsigned int got_len;
401 OSSL_PARAM params[2];
402
403 t->err = "TEST_FAILURE";
404 if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
405 goto err;
406
407 got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
408 expected->output_len : EVP_MAX_MD_SIZE);
409 if (!TEST_ptr(got))
410 goto err;
411
412 if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
413 t->err = "DIGESTINIT_ERROR";
414 goto err;
415 }
416 if (expected->pad_type > 0) {
417 params[0] = OSSL_PARAM_construct_int(OSSL_DIGEST_PARAM_PAD_TYPE,
418 &expected->pad_type);
419 params[1] = OSSL_PARAM_construct_end();
420 if (!TEST_int_gt(EVP_MD_CTX_set_params(mctx, params), 0)) {
421 t->err = "PARAMS_ERROR";
422 goto err;
423 }
424 }
425 if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
426 t->err = "DIGESTUPDATE_ERROR";
427 goto err;
428 }
429
430 if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
431 EVP_MD_CTX *mctx_cpy;
432 char dont[] = "touch";
433
434 if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) {
435 goto err;
436 }
437 if (!EVP_MD_CTX_copy(mctx_cpy, mctx)) {
438 EVP_MD_CTX_free(mctx_cpy);
439 goto err;
440 }
441 if (!EVP_DigestFinalXOF(mctx_cpy, (unsigned char *)dont, 0)) {
442 EVP_MD_CTX_free(mctx_cpy);
443 t->err = "DIGESTFINALXOF_ERROR";
444 goto err;
445 }
446 if (!TEST_str_eq(dont, "touch")) {
447 EVP_MD_CTX_free(mctx_cpy);
448 t->err = "DIGESTFINALXOF_ERROR";
449 goto err;
450 }
451 EVP_MD_CTX_free(mctx_cpy);
452
453 got_len = expected->output_len;
454 if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
455 t->err = "DIGESTFINALXOF_ERROR";
456 goto err;
457 }
458 } else {
459 if (!EVP_DigestFinal(mctx, got, &got_len)) {
460 t->err = "DIGESTFINAL_ERROR";
461 goto err;
462 }
463 }
464 if (!TEST_int_eq(expected->output_len, got_len)) {
465 t->err = "DIGEST_LENGTH_MISMATCH";
466 goto err;
467 }
468 if (!memory_err_compare(t, "DIGEST_MISMATCH",
469 expected->output, expected->output_len,
470 got, got_len))
471 goto err;
472
473 t->err = NULL;
474
475 err:
476 OPENSSL_free(got);
477 EVP_MD_CTX_free(mctx);
478 return 1;
479 }
480
481 static const EVP_TEST_METHOD digest_test_method = {
482 "Digest",
483 digest_test_init,
484 digest_test_cleanup,
485 digest_test_parse,
486 digest_test_run
487 };
488
489 /**
490 *** CIPHER TESTS
491 **/
492
493 typedef struct cipher_data_st {
494 const EVP_CIPHER *cipher;
495 EVP_CIPHER *fetched_cipher;
496 int enc;
497 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
498 int aead;
499 unsigned char *key;
500 size_t key_len;
501 size_t key_bits; /* Used by RC2 */
502 unsigned char *iv;
503 unsigned int rounds;
504 size_t iv_len;
505 unsigned char *plaintext;
506 size_t plaintext_len;
507 unsigned char *ciphertext;
508 size_t ciphertext_len;
509 /* GCM, CCM, OCB and SIV only */
510 unsigned char *aad[AAD_NUM];
511 size_t aad_len[AAD_NUM];
512 unsigned char *tag;
513 const char *cts_mode;
514 size_t tag_len;
515 int tag_late;
516 } CIPHER_DATA;
517
518 static int cipher_test_init(EVP_TEST *t, const char *alg)
519 {
520 const EVP_CIPHER *cipher;
521 EVP_CIPHER *fetched_cipher;
522 CIPHER_DATA *cdat;
523 int m;
524
525 if (is_cipher_disabled(alg)) {
526 t->skip = 1;
527 TEST_info("skipping, '%s' is disabled", alg);
528 return 1;
529 }
530
531 if ((cipher = fetched_cipher = EVP_CIPHER_fetch(libctx, alg, NULL)) == NULL
532 && (cipher = EVP_get_cipherbyname(alg)) == NULL)
533 return 0;
534
535 cdat = OPENSSL_zalloc(sizeof(*cdat));
536 cdat->cipher = cipher;
537 cdat->fetched_cipher = fetched_cipher;
538 cdat->enc = -1;
539 m = EVP_CIPHER_mode(cipher);
540 if (m == EVP_CIPH_GCM_MODE
541 || m == EVP_CIPH_OCB_MODE
542 || m == EVP_CIPH_SIV_MODE
543 || m == EVP_CIPH_CCM_MODE)
544 cdat->aead = m;
545 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
546 cdat->aead = -1;
547 else
548 cdat->aead = 0;
549
550 t->data = cdat;
551 if (fetched_cipher != NULL)
552 TEST_info("%s is fetched", alg);
553 return 1;
554 }
555
556 static void cipher_test_cleanup(EVP_TEST *t)
557 {
558 int i;
559 CIPHER_DATA *cdat = t->data;
560
561 OPENSSL_free(cdat->key);
562 OPENSSL_free(cdat->iv);
563 OPENSSL_free(cdat->ciphertext);
564 OPENSSL_free(cdat->plaintext);
565 for (i = 0; i < AAD_NUM; i++)
566 OPENSSL_free(cdat->aad[i]);
567 OPENSSL_free(cdat->tag);
568 EVP_CIPHER_free(cdat->fetched_cipher);
569 }
570
571 static int cipher_test_parse(EVP_TEST *t, const char *keyword,
572 const char *value)
573 {
574 CIPHER_DATA *cdat = t->data;
575 int i;
576
577 if (strcmp(keyword, "Key") == 0)
578 return parse_bin(value, &cdat->key, &cdat->key_len);
579 if (strcmp(keyword, "Rounds") == 0) {
580 i = atoi(value);
581 if (i < 0)
582 return -1;
583 cdat->rounds = (unsigned int)i;
584 return 1;
585 }
586 if (strcmp(keyword, "IV") == 0)
587 return parse_bin(value, &cdat->iv, &cdat->iv_len);
588 if (strcmp(keyword, "Plaintext") == 0)
589 return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
590 if (strcmp(keyword, "Ciphertext") == 0)
591 return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
592 if (strcmp(keyword, "KeyBits") == 0) {
593 i = atoi(value);
594 if (i < 0)
595 return -1;
596 cdat->key_bits = (size_t)i;
597 return 1;
598 }
599 if (cdat->aead) {
600 if (strcmp(keyword, "AAD") == 0) {
601 for (i = 0; i < AAD_NUM; i++) {
602 if (cdat->aad[i] == NULL)
603 return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]);
604 }
605 return -1;
606 }
607 if (strcmp(keyword, "Tag") == 0)
608 return parse_bin(value, &cdat->tag, &cdat->tag_len);
609 if (strcmp(keyword, "SetTagLate") == 0) {
610 if (strcmp(value, "TRUE") == 0)
611 cdat->tag_late = 1;
612 else if (strcmp(value, "FALSE") == 0)
613 cdat->tag_late = 0;
614 else
615 return -1;
616 return 1;
617 }
618 }
619
620 if (strcmp(keyword, "Operation") == 0) {
621 if (strcmp(value, "ENCRYPT") == 0)
622 cdat->enc = 1;
623 else if (strcmp(value, "DECRYPT") == 0)
624 cdat->enc = 0;
625 else
626 return -1;
627 return 1;
628 }
629 if (strcmp(keyword, "CTSMode") == 0) {
630 cdat->cts_mode = value;
631 return 1;
632 }
633 return 0;
634 }
635
636 static int cipher_test_enc(EVP_TEST *t, int enc,
637 size_t out_misalign, size_t inp_misalign, int frag)
638 {
639 CIPHER_DATA *expected = t->data;
640 unsigned char *in, *expected_out, *tmp = NULL;
641 size_t in_len, out_len, donelen = 0;
642 int ok = 0, tmplen, chunklen, tmpflen, i;
643 EVP_CIPHER_CTX *ctx_base = NULL;
644 EVP_CIPHER_CTX *ctx = NULL;
645
646 t->err = "TEST_FAILURE";
647 if (!TEST_ptr(ctx_base = EVP_CIPHER_CTX_new()))
648 goto err;
649 if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
650 goto err;
651 EVP_CIPHER_CTX_set_flags(ctx_base, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
652 if (enc) {
653 in = expected->plaintext;
654 in_len = expected->plaintext_len;
655 expected_out = expected->ciphertext;
656 out_len = expected->ciphertext_len;
657 } else {
658 in = expected->ciphertext;
659 in_len = expected->ciphertext_len;
660 expected_out = expected->plaintext;
661 out_len = expected->plaintext_len;
662 }
663 if (inp_misalign == (size_t)-1) {
664 /* Exercise in-place encryption */
665 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
666 if (!tmp)
667 goto err;
668 in = memcpy(tmp + out_misalign, in, in_len);
669 } else {
670 inp_misalign += 16 - ((out_misalign + in_len) & 15);
671 /*
672 * 'tmp' will store both output and copy of input. We make the copy
673 * of input to specifically aligned part of 'tmp'. So we just
674 * figured out how much padding would ensure the required alignment,
675 * now we allocate extended buffer and finally copy the input just
676 * past inp_misalign in expression below. Output will be written
677 * past out_misalign...
678 */
679 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
680 inp_misalign + in_len);
681 if (!tmp)
682 goto err;
683 in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
684 inp_misalign, in, in_len);
685 }
686 if (!EVP_CipherInit_ex(ctx_base, expected->cipher, NULL, NULL, NULL, enc)) {
687 t->err = "CIPHERINIT_ERROR";
688 goto err;
689 }
690 if (expected->cts_mode != NULL) {
691 OSSL_PARAM params[2];
692
693 params[0] = OSSL_PARAM_construct_utf8_string(OSSL_CIPHER_PARAM_CTS_MODE,
694 (char *)expected->cts_mode,
695 0);
696 params[1] = OSSL_PARAM_construct_end();
697 if (!EVP_CIPHER_CTX_set_params(ctx_base, params)) {
698 t->err = "INVALID_CTS_MODE";
699 goto err;
700 }
701 }
702 if (expected->iv) {
703 if (expected->aead) {
704 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_IVLEN,
705 expected->iv_len, 0)) {
706 t->err = "INVALID_IV_LENGTH";
707 goto err;
708 }
709 } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx_base)) {
710 t->err = "INVALID_IV_LENGTH";
711 goto err;
712 }
713 }
714 if (expected->aead) {
715 unsigned char *tag;
716 /*
717 * If encrypting or OCB just set tag length initially, otherwise
718 * set tag length and value.
719 */
720 if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
721 t->err = "TAG_LENGTH_SET_ERROR";
722 tag = NULL;
723 } else {
724 t->err = "TAG_SET_ERROR";
725 tag = expected->tag;
726 }
727 if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
728 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_TAG,
729 expected->tag_len, tag))
730 goto err;
731 }
732 }
733
734 if (expected->rounds > 0) {
735 int rounds = (int)expected->rounds;
736
737 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC5_ROUNDS, rounds, NULL)) {
738 t->err = "INVALID_ROUNDS";
739 goto err;
740 }
741 }
742
743 if (!EVP_CIPHER_CTX_set_key_length(ctx_base, expected->key_len)) {
744 t->err = "INVALID_KEY_LENGTH";
745 goto err;
746 }
747 if (expected->key_bits > 0) {
748 int bits = (int)expected->key_bits;
749
750 if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC2_KEY_BITS, bits, NULL)) {
751 t->err = "INVALID KEY BITS";
752 goto err;
753 }
754 }
755 if (!EVP_CipherInit_ex(ctx_base, NULL, NULL, expected->key, expected->iv, -1)) {
756 t->err = "KEY_SET_ERROR";
757 goto err;
758 }
759
760 /* Check that we get the same IV back */
761 if (expected->iv != NULL) {
762 /* Some (e.g., GCM) tests use IVs longer than EVP_MAX_IV_LENGTH. */
763 unsigned char iv[128];
764 if (!TEST_true(EVP_CIPHER_CTX_get_iv_state(ctx_base, iv, sizeof(iv)))
765 || ((EVP_CIPHER_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
766 && !TEST_mem_eq(expected->iv, expected->iv_len, iv,
767 expected->iv_len))) {
768 t->err = "INVALID_IV";
769 goto err;
770 }
771 }
772
773 /* Test that the cipher dup functions correctly if it is supported */
774 if (EVP_CIPHER_CTX_copy(ctx, ctx_base)) {
775 EVP_CIPHER_CTX_free(ctx_base);
776 ctx_base = NULL;
777 } else {
778 EVP_CIPHER_CTX_free(ctx);
779 ctx = ctx_base;
780 }
781
782 if (expected->aead == EVP_CIPH_CCM_MODE) {
783 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
784 t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
785 goto err;
786 }
787 }
788 if (expected->aad[0] != NULL) {
789 t->err = "AAD_SET_ERROR";
790 if (!frag) {
791 for (i = 0; expected->aad[i] != NULL; i++) {
792 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i],
793 expected->aad_len[i]))
794 goto err;
795 }
796 } else {
797 /*
798 * Supply the AAD in chunks less than the block size where possible
799 */
800 for (i = 0; expected->aad[i] != NULL; i++) {
801 if (expected->aad_len[i] > 0) {
802 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1))
803 goto err;
804 donelen++;
805 }
806 if (expected->aad_len[i] > 2) {
807 if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
808 expected->aad[i] + donelen,
809 expected->aad_len[i] - 2))
810 goto err;
811 donelen += expected->aad_len[i] - 2;
812 }
813 if (expected->aad_len[i] > 1
814 && !EVP_CipherUpdate(ctx, NULL, &chunklen,
815 expected->aad[i] + donelen, 1))
816 goto err;
817 }
818 }
819 }
820
821 if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) {
822 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
823 expected->tag_len, expected->tag)) {
824 t->err = "TAG_SET_ERROR";
825 goto err;
826 }
827 }
828
829 EVP_CIPHER_CTX_set_padding(ctx, 0);
830 t->err = "CIPHERUPDATE_ERROR";
831 tmplen = 0;
832 if (!frag) {
833 /* We supply the data all in one go */
834 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
835 goto err;
836 } else {
837 /* Supply the data in chunks less than the block size where possible */
838 if (in_len > 0) {
839 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
840 goto err;
841 tmplen += chunklen;
842 in++;
843 in_len--;
844 }
845 if (in_len > 1) {
846 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
847 in, in_len - 1))
848 goto err;
849 tmplen += chunklen;
850 in += in_len - 1;
851 in_len = 1;
852 }
853 if (in_len > 0 ) {
854 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
855 in, 1))
856 goto err;
857 tmplen += chunklen;
858 }
859 }
860 if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
861 t->err = "CIPHERFINAL_ERROR";
862 goto err;
863 }
864 if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
865 tmp + out_misalign, tmplen + tmpflen))
866 goto err;
867 if (enc && expected->aead) {
868 unsigned char rtag[16];
869
870 if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
871 t->err = "TAG_LENGTH_INTERNAL_ERROR";
872 goto err;
873 }
874 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
875 expected->tag_len, rtag)) {
876 t->err = "TAG_RETRIEVE_ERROR";
877 goto err;
878 }
879 if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
880 expected->tag, expected->tag_len,
881 rtag, expected->tag_len))
882 goto err;
883 }
884 t->err = NULL;
885 ok = 1;
886 err:
887 OPENSSL_free(tmp);
888 if (ctx != ctx_base)
889 EVP_CIPHER_CTX_free(ctx_base);
890 EVP_CIPHER_CTX_free(ctx);
891 return ok;
892 }
893
894 static int cipher_test_run(EVP_TEST *t)
895 {
896 CIPHER_DATA *cdat = t->data;
897 int rv, frag = 0;
898 size_t out_misalign, inp_misalign;
899
900 if (!cdat->key) {
901 t->err = "NO_KEY";
902 return 0;
903 }
904 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
905 /* IV is optional and usually omitted in wrap mode */
906 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
907 t->err = "NO_IV";
908 return 0;
909 }
910 }
911 if (cdat->aead && !cdat->tag) {
912 t->err = "NO_TAG";
913 return 0;
914 }
915 for (out_misalign = 0; out_misalign <= 1;) {
916 static char aux_err[64];
917 t->aux_err = aux_err;
918 for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
919 if (inp_misalign == (size_t)-1) {
920 /* kludge: inp_misalign == -1 means "exercise in-place" */
921 BIO_snprintf(aux_err, sizeof(aux_err),
922 "%s in-place, %sfragmented",
923 out_misalign ? "misaligned" : "aligned",
924 frag ? "" : "not ");
925 } else {
926 BIO_snprintf(aux_err, sizeof(aux_err),
927 "%s output and %s input, %sfragmented",
928 out_misalign ? "misaligned" : "aligned",
929 inp_misalign ? "misaligned" : "aligned",
930 frag ? "" : "not ");
931 }
932 if (cdat->enc) {
933 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
934 /* Not fatal errors: return */
935 if (rv != 1) {
936 if (rv < 0)
937 return 0;
938 return 1;
939 }
940 }
941 if (cdat->enc != 1) {
942 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
943 /* Not fatal errors: return */
944 if (rv != 1) {
945 if (rv < 0)
946 return 0;
947 return 1;
948 }
949 }
950 }
951
952 if (out_misalign == 1 && frag == 0) {
953 /*
954 * XTS, SIV, CCM and Wrap modes have special requirements about input
955 * lengths so we don't fragment for those
956 */
957 if (cdat->aead == EVP_CIPH_CCM_MODE
958 || ((EVP_CIPHER_flags(cdat->cipher) & EVP_CIPH_FLAG_CTS) != 0)
959 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE
960 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
961 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
962 break;
963 out_misalign = 0;
964 frag++;
965 } else {
966 out_misalign++;
967 }
968 }
969 t->aux_err = NULL;
970
971 return 1;
972 }
973
974 static const EVP_TEST_METHOD cipher_test_method = {
975 "Cipher",
976 cipher_test_init,
977 cipher_test_cleanup,
978 cipher_test_parse,
979 cipher_test_run
980 };
981
982
983 /**
984 ** MAC TESTS
985 **/
986
987 typedef struct mac_data_st {
988 /* MAC type in one form or another */
989 char *mac_name;
990 EVP_MAC *mac; /* for mac_test_run_mac */
991 int type; /* for mac_test_run_pkey */
992 /* Algorithm string for this MAC */
993 char *alg;
994 /* MAC key */
995 unsigned char *key;
996 size_t key_len;
997 /* MAC IV (GMAC) */
998 unsigned char *iv;
999 size_t iv_len;
1000 /* Input to MAC */
1001 unsigned char *input;
1002 size_t input_len;
1003 /* Expected output */
1004 unsigned char *output;
1005 size_t output_len;
1006 unsigned char *custom;
1007 size_t custom_len;
1008 /* MAC salt (blake2) */
1009 unsigned char *salt;
1010 size_t salt_len;
1011 /* Collection of controls */
1012 STACK_OF(OPENSSL_STRING) *controls;
1013 } MAC_DATA;
1014
1015 static int mac_test_init(EVP_TEST *t, const char *alg)
1016 {
1017 EVP_MAC *mac = NULL;
1018 int type = NID_undef;
1019 MAC_DATA *mdat;
1020
1021 if (is_mac_disabled(alg)) {
1022 TEST_info("skipping, '%s' is disabled", alg);
1023 t->skip = 1;
1024 return 1;
1025 }
1026 if ((mac = EVP_MAC_fetch(libctx, alg, NULL)) == NULL) {
1027 /*
1028 * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
1029 * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
1030 * the EVP_PKEY method.
1031 */
1032 size_t sz = strlen(alg);
1033 static const char epilogue[] = " by EVP_PKEY";
1034
1035 if (sz >= sizeof(epilogue)
1036 && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
1037 sz -= sizeof(epilogue) - 1;
1038
1039 if (strncmp(alg, "HMAC", sz) == 0)
1040 type = EVP_PKEY_HMAC;
1041 else if (strncmp(alg, "CMAC", sz) == 0)
1042 type = EVP_PKEY_CMAC;
1043 else if (strncmp(alg, "Poly1305", sz) == 0)
1044 type = EVP_PKEY_POLY1305;
1045 else if (strncmp(alg, "SipHash", sz) == 0)
1046 type = EVP_PKEY_SIPHASH;
1047 else
1048 return 0;
1049 }
1050
1051 mdat = OPENSSL_zalloc(sizeof(*mdat));
1052 mdat->type = type;
1053 mdat->mac_name = OPENSSL_strdup(alg);
1054 mdat->mac = mac;
1055 mdat->controls = sk_OPENSSL_STRING_new_null();
1056 t->data = mdat;
1057 return 1;
1058 }
1059
1060 /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
1061 static void openssl_free(char *m)
1062 {
1063 OPENSSL_free(m);
1064 }
1065
1066 static void mac_test_cleanup(EVP_TEST *t)
1067 {
1068 MAC_DATA *mdat = t->data;
1069
1070 EVP_MAC_free(mdat->mac);
1071 OPENSSL_free(mdat->mac_name);
1072 sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
1073 OPENSSL_free(mdat->alg);
1074 OPENSSL_free(mdat->key);
1075 OPENSSL_free(mdat->iv);
1076 OPENSSL_free(mdat->custom);
1077 OPENSSL_free(mdat->salt);
1078 OPENSSL_free(mdat->input);
1079 OPENSSL_free(mdat->output);
1080 }
1081
1082 static int mac_test_parse(EVP_TEST *t,
1083 const char *keyword, const char *value)
1084 {
1085 MAC_DATA *mdata = t->data;
1086
1087 if (strcmp(keyword, "Key") == 0)
1088 return parse_bin(value, &mdata->key, &mdata->key_len);
1089 if (strcmp(keyword, "IV") == 0)
1090 return parse_bin(value, &mdata->iv, &mdata->iv_len);
1091 if (strcmp(keyword, "Custom") == 0)
1092 return parse_bin(value, &mdata->custom, &mdata->custom_len);
1093 if (strcmp(keyword, "Salt") == 0)
1094 return parse_bin(value, &mdata->salt, &mdata->salt_len);
1095 if (strcmp(keyword, "Algorithm") == 0) {
1096 mdata->alg = OPENSSL_strdup(value);
1097 if (!mdata->alg)
1098 return -1;
1099 return 1;
1100 }
1101 if (strcmp(keyword, "Input") == 0)
1102 return parse_bin(value, &mdata->input, &mdata->input_len);
1103 if (strcmp(keyword, "Output") == 0)
1104 return parse_bin(value, &mdata->output, &mdata->output_len);
1105 if (strcmp(keyword, "Ctrl") == 0)
1106 return sk_OPENSSL_STRING_push(mdata->controls,
1107 OPENSSL_strdup(value)) != 0;
1108 return 0;
1109 }
1110
1111 static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
1112 const char *value)
1113 {
1114 int rv;
1115 char *p, *tmpval;
1116
1117 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
1118 return 0;
1119 p = strchr(tmpval, ':');
1120 if (p != NULL)
1121 *p++ = '\0';
1122 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1123 if (rv == -2)
1124 t->err = "PKEY_CTRL_INVALID";
1125 else if (rv <= 0)
1126 t->err = "PKEY_CTRL_ERROR";
1127 else
1128 rv = 1;
1129 OPENSSL_free(tmpval);
1130 return rv > 0;
1131 }
1132
1133 static int mac_test_run_pkey(EVP_TEST *t)
1134 {
1135 MAC_DATA *expected = t->data;
1136 EVP_MD_CTX *mctx = NULL;
1137 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
1138 EVP_PKEY *key = NULL;
1139 const char *mdname = NULL;
1140 EVP_CIPHER *cipher = NULL;
1141 unsigned char *got = NULL;
1142 size_t got_len;
1143 int i;
1144
1145 if (expected->alg == NULL)
1146 TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
1147 else
1148 TEST_info("Trying the EVP_PKEY %s test with %s",
1149 OBJ_nid2sn(expected->type), expected->alg);
1150
1151 if (expected->type == EVP_PKEY_CMAC) {
1152 if (expected->alg != NULL && is_cipher_disabled(expected->alg)) {
1153 TEST_info("skipping, PKEY CMAC '%s' is disabled", expected->alg);
1154 t->skip = 1;
1155 t->err = NULL;
1156 goto err;
1157 }
1158 if (!TEST_ptr(cipher = EVP_CIPHER_fetch(libctx, expected->alg, NULL))) {
1159 t->err = "MAC_KEY_CREATE_ERROR";
1160 goto err;
1161 }
1162 key = EVP_PKEY_new_CMAC_key_with_libctx(expected->key,
1163 expected->key_len,
1164 EVP_CIPHER_name(cipher),
1165 libctx, NULL);
1166 } else {
1167 key = EVP_PKEY_new_raw_private_key_with_libctx(libctx,
1168 OBJ_nid2sn(expected->type),
1169 NULL, expected->key,
1170 expected->key_len);
1171 }
1172 if (key == NULL) {
1173 t->err = "MAC_KEY_CREATE_ERROR";
1174 goto err;
1175 }
1176
1177 if (expected->type == EVP_PKEY_HMAC && expected->alg != NULL) {
1178 if (is_digest_disabled(expected->alg)) {
1179 TEST_info("skipping, HMAC '%s' is disabled", expected->alg);
1180 t->skip = 1;
1181 t->err = NULL;
1182 goto err;
1183 }
1184 mdname = expected->alg;
1185 }
1186 if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
1187 t->err = "INTERNAL_ERROR";
1188 goto err;
1189 }
1190 if (!EVP_DigestSignInit_with_libctx(mctx, &pctx, mdname, libctx, NULL, key)) {
1191 t->err = "DIGESTSIGNINIT_ERROR";
1192 goto err;
1193 }
1194 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
1195 if (!mac_test_ctrl_pkey(t, pctx,
1196 sk_OPENSSL_STRING_value(expected->controls,
1197 i))) {
1198 t->err = "EVPPKEYCTXCTRL_ERROR";
1199 goto err;
1200 }
1201 if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
1202 t->err = "DIGESTSIGNUPDATE_ERROR";
1203 goto err;
1204 }
1205 if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
1206 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1207 goto err;
1208 }
1209 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1210 t->err = "TEST_FAILURE";
1211 goto err;
1212 }
1213 if (!EVP_DigestSignFinal(mctx, got, &got_len)
1214 || !memory_err_compare(t, "TEST_MAC_ERR",
1215 expected->output, expected->output_len,
1216 got, got_len)) {
1217 t->err = "TEST_MAC_ERR";
1218 goto err;
1219 }
1220 t->err = NULL;
1221 err:
1222 EVP_CIPHER_free(cipher);
1223 EVP_MD_CTX_free(mctx);
1224 OPENSSL_free(got);
1225 EVP_PKEY_CTX_free(genctx);
1226 EVP_PKEY_free(key);
1227 return 1;
1228 }
1229
1230 static int mac_test_run_mac(EVP_TEST *t)
1231 {
1232 MAC_DATA *expected = t->data;
1233 EVP_MAC_CTX *ctx = NULL;
1234 unsigned char *got = NULL;
1235 size_t got_len;
1236 int i;
1237 OSSL_PARAM params[21];
1238 size_t params_n = 0;
1239 size_t params_n_allocstart = 0;
1240 const OSSL_PARAM *defined_params =
1241 EVP_MAC_settable_ctx_params(expected->mac);
1242
1243 if (expected->alg == NULL)
1244 TEST_info("Trying the EVP_MAC %s test", expected->mac_name);
1245 else
1246 TEST_info("Trying the EVP_MAC %s test with %s",
1247 expected->mac_name, expected->alg);
1248
1249 if (expected->alg != NULL) {
1250 /*
1251 * The underlying algorithm may be a cipher or a digest.
1252 * We don't know which it is, but we can ask the MAC what it
1253 * should be and bet on that.
1254 */
1255 if (OSSL_PARAM_locate_const(defined_params,
1256 OSSL_MAC_PARAM_CIPHER) != NULL) {
1257 params[params_n++] =
1258 OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
1259 expected->alg, 0);
1260 } else if (OSSL_PARAM_locate_const(defined_params,
1261 OSSL_MAC_PARAM_DIGEST) != NULL) {
1262 params[params_n++] =
1263 OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
1264 expected->alg, 0);
1265 } else {
1266 t->err = "MAC_BAD_PARAMS";
1267 goto err;
1268 }
1269 }
1270 if (expected->key != NULL)
1271 params[params_n++] =
1272 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
1273 expected->key,
1274 expected->key_len);
1275 if (expected->custom != NULL)
1276 params[params_n++] =
1277 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
1278 expected->custom,
1279 expected->custom_len);
1280 if (expected->salt != NULL)
1281 params[params_n++] =
1282 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_SALT,
1283 expected->salt,
1284 expected->salt_len);
1285 if (expected->iv != NULL)
1286 params[params_n++] =
1287 OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
1288 expected->iv,
1289 expected->iv_len);
1290
1291 /* Unknown controls. They must match parameters that the MAC recognizes */
1292 if (params_n + sk_OPENSSL_STRING_num(expected->controls)
1293 >= OSSL_NELEM(params)) {
1294 t->err = "MAC_TOO_MANY_PARAMETERS";
1295 goto err;
1296 }
1297 params_n_allocstart = params_n;
1298 for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
1299 char *tmpkey, *tmpval;
1300 char *value = sk_OPENSSL_STRING_value(expected->controls, i);
1301
1302 if (!TEST_ptr(tmpkey = OPENSSL_strdup(value))) {
1303 t->err = "MAC_PARAM_ERROR";
1304 goto err;
1305 }
1306 tmpval = strchr(tmpkey, ':');
1307 if (tmpval != NULL)
1308 *tmpval++ = '\0';
1309
1310 if (tmpval == NULL
1311 || !OSSL_PARAM_allocate_from_text(&params[params_n],
1312 defined_params,
1313 tmpkey, tmpval,
1314 strlen(tmpval), NULL)) {
1315 OPENSSL_free(tmpkey);
1316 t->err = "MAC_PARAM_ERROR";
1317 goto err;
1318 }
1319 params_n++;
1320
1321 OPENSSL_free(tmpkey);
1322 }
1323 params[params_n] = OSSL_PARAM_construct_end();
1324
1325 if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) {
1326 t->err = "MAC_CREATE_ERROR";
1327 goto err;
1328 }
1329
1330 if (!EVP_MAC_CTX_set_params(ctx, params)) {
1331 t->err = "MAC_BAD_PARAMS";
1332 goto err;
1333 }
1334 if (!EVP_MAC_init(ctx)) {
1335 t->err = "MAC_INIT_ERROR";
1336 goto err;
1337 }
1338 if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
1339 t->err = "MAC_UPDATE_ERROR";
1340 goto err;
1341 }
1342 if (!EVP_MAC_final(ctx, NULL, &got_len, 0)) {
1343 t->err = "MAC_FINAL_LENGTH_ERROR";
1344 goto err;
1345 }
1346 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1347 t->err = "TEST_FAILURE";
1348 goto err;
1349 }
1350 if (!EVP_MAC_final(ctx, got, &got_len, got_len)
1351 || !memory_err_compare(t, "TEST_MAC_ERR",
1352 expected->output, expected->output_len,
1353 got, got_len)) {
1354 t->err = "TEST_MAC_ERR";
1355 goto err;
1356 }
1357 t->err = NULL;
1358 err:
1359 while (params_n-- > params_n_allocstart) {
1360 OPENSSL_free(params[params_n].data);
1361 }
1362 EVP_MAC_CTX_free(ctx);
1363 OPENSSL_free(got);
1364 return 1;
1365 }
1366
1367 static int mac_test_run(EVP_TEST *t)
1368 {
1369 MAC_DATA *expected = t->data;
1370
1371 if (expected->mac != NULL)
1372 return mac_test_run_mac(t);
1373 return mac_test_run_pkey(t);
1374 }
1375
1376 static const EVP_TEST_METHOD mac_test_method = {
1377 "MAC",
1378 mac_test_init,
1379 mac_test_cleanup,
1380 mac_test_parse,
1381 mac_test_run
1382 };
1383
1384
1385 /**
1386 ** PUBLIC KEY TESTS
1387 ** These are all very similar and share much common code.
1388 **/
1389
1390 typedef struct pkey_data_st {
1391 /* Context for this operation */
1392 EVP_PKEY_CTX *ctx;
1393 /* Key operation to perform */
1394 int (*keyop) (EVP_PKEY_CTX *ctx,
1395 unsigned char *sig, size_t *siglen,
1396 const unsigned char *tbs, size_t tbslen);
1397 /* Input to MAC */
1398 unsigned char *input;
1399 size_t input_len;
1400 /* Expected output */
1401 unsigned char *output;
1402 size_t output_len;
1403 } PKEY_DATA;
1404
1405 /*
1406 * Perform public key operation setup: lookup key, allocated ctx and call
1407 * the appropriate initialisation function
1408 */
1409 static int pkey_test_init(EVP_TEST *t, const char *name,
1410 int use_public,
1411 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1412 int (*keyop)(EVP_PKEY_CTX *ctx,
1413 unsigned char *sig, size_t *siglen,
1414 const unsigned char *tbs,
1415 size_t tbslen))
1416 {
1417 PKEY_DATA *kdata;
1418 EVP_PKEY *pkey = NULL;
1419 int rv = 0;
1420
1421 if (use_public)
1422 rv = find_key(&pkey, name, public_keys);
1423 if (rv == 0)
1424 rv = find_key(&pkey, name, private_keys);
1425 if (rv == 0 || pkey == NULL) {
1426 TEST_info("skipping, key '%s' is disabled", name);
1427 t->skip = 1;
1428 return 1;
1429 }
1430
1431 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
1432 EVP_PKEY_free(pkey);
1433 return 0;
1434 }
1435 kdata->keyop = keyop;
1436 if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new_from_pkey(libctx, pkey, NULL))) {
1437 EVP_PKEY_free(pkey);
1438 OPENSSL_free(kdata);
1439 return 0;
1440 }
1441 if (keyopinit(kdata->ctx) <= 0)
1442 t->err = "KEYOP_INIT_ERROR";
1443 t->data = kdata;
1444 return 1;
1445 }
1446
1447 static void pkey_test_cleanup(EVP_TEST *t)
1448 {
1449 PKEY_DATA *kdata = t->data;
1450
1451 OPENSSL_free(kdata->input);
1452 OPENSSL_free(kdata->output);
1453 EVP_PKEY_CTX_free(kdata->ctx);
1454 }
1455
1456 static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
1457 const char *value)
1458 {
1459 int rv;
1460 char *p, *tmpval;
1461
1462 if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
1463 return 0;
1464 p = strchr(tmpval, ':');
1465 if (p != NULL)
1466 *p++ = '\0';
1467 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1468 if (rv == -2) {
1469 t->err = "PKEY_CTRL_INVALID";
1470 rv = 1;
1471 } else if (p != NULL && rv <= 0) {
1472 if (is_digest_disabled(p) || is_cipher_disabled(p)) {
1473 TEST_info("skipping, '%s' is disabled", p);
1474 t->skip = 1;
1475 rv = 1;
1476 } else {
1477 t->err = "PKEY_CTRL_ERROR";
1478 rv = 1;
1479 }
1480 }
1481 OPENSSL_free(tmpval);
1482 return rv > 0;
1483 }
1484
1485 static int pkey_test_parse(EVP_TEST *t,
1486 const char *keyword, const char *value)
1487 {
1488 PKEY_DATA *kdata = t->data;
1489 if (strcmp(keyword, "Input") == 0)
1490 return parse_bin(value, &kdata->input, &kdata->input_len);
1491 if (strcmp(keyword, "Output") == 0)
1492 return parse_bin(value, &kdata->output, &kdata->output_len);
1493 if (strcmp(keyword, "Ctrl") == 0)
1494 return pkey_test_ctrl(t, kdata->ctx, value);
1495 return 0;
1496 }
1497
1498 static int pkey_test_run(EVP_TEST *t)
1499 {
1500 PKEY_DATA *expected = t->data;
1501 unsigned char *got = NULL;
1502 size_t got_len;
1503 EVP_PKEY_CTX *copy = NULL;
1504
1505 if (expected->keyop(expected->ctx, NULL, &got_len,
1506 expected->input, expected->input_len) <= 0
1507 || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
1508 t->err = "KEYOP_LENGTH_ERROR";
1509 goto err;
1510 }
1511 if (expected->keyop(expected->ctx, got, &got_len,
1512 expected->input, expected->input_len) <= 0) {
1513 t->err = "KEYOP_ERROR";
1514 goto err;
1515 }
1516 if (!memory_err_compare(t, "KEYOP_MISMATCH",
1517 expected->output, expected->output_len,
1518 got, got_len))
1519 goto err;
1520
1521 t->err = NULL;
1522 OPENSSL_free(got);
1523 got = NULL;
1524
1525 /* Repeat the test on a copy. */
1526 if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) {
1527 t->err = "INTERNAL_ERROR";
1528 goto err;
1529 }
1530 if (expected->keyop(copy, NULL, &got_len, expected->input,
1531 expected->input_len) <= 0
1532 || !TEST_ptr(got = OPENSSL_malloc(got_len))) {
1533 t->err = "KEYOP_LENGTH_ERROR";
1534 goto err;
1535 }
1536 if (expected->keyop(copy, got, &got_len, expected->input,
1537 expected->input_len) <= 0) {
1538 t->err = "KEYOP_ERROR";
1539 goto err;
1540 }
1541 if (!memory_err_compare(t, "KEYOP_MISMATCH",
1542 expected->output, expected->output_len,
1543 got, got_len))
1544 goto err;
1545
1546 err:
1547 OPENSSL_free(got);
1548 EVP_PKEY_CTX_free(copy);
1549 return 1;
1550 }
1551
1552 static int sign_test_init(EVP_TEST *t, const char *name)
1553 {
1554 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1555 }
1556
1557 static const EVP_TEST_METHOD psign_test_method = {
1558 "Sign",
1559 sign_test_init,
1560 pkey_test_cleanup,
1561 pkey_test_parse,
1562 pkey_test_run
1563 };
1564
1565 static int verify_recover_test_init(EVP_TEST *t, const char *name)
1566 {
1567 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1568 EVP_PKEY_verify_recover);
1569 }
1570
1571 static const EVP_TEST_METHOD pverify_recover_test_method = {
1572 "VerifyRecover",
1573 verify_recover_test_init,
1574 pkey_test_cleanup,
1575 pkey_test_parse,
1576 pkey_test_run
1577 };
1578
1579 static int decrypt_test_init(EVP_TEST *t, const char *name)
1580 {
1581 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1582 EVP_PKEY_decrypt);
1583 }
1584
1585 static const EVP_TEST_METHOD pdecrypt_test_method = {
1586 "Decrypt",
1587 decrypt_test_init,
1588 pkey_test_cleanup,
1589 pkey_test_parse,
1590 pkey_test_run
1591 };
1592
1593 static int verify_test_init(EVP_TEST *t, const char *name)
1594 {
1595 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1596 }
1597
1598 static int verify_test_run(EVP_TEST *t)
1599 {
1600 PKEY_DATA *kdata = t->data;
1601
1602 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1603 kdata->input, kdata->input_len) <= 0)
1604 t->err = "VERIFY_ERROR";
1605 return 1;
1606 }
1607
1608 static const EVP_TEST_METHOD pverify_test_method = {
1609 "Verify",
1610 verify_test_init,
1611 pkey_test_cleanup,
1612 pkey_test_parse,
1613 verify_test_run
1614 };
1615
1616 static int pderive_test_init(EVP_TEST *t, const char *name)
1617 {
1618 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1619 }
1620
1621 static int pderive_test_parse(EVP_TEST *t,
1622 const char *keyword, const char *value)
1623 {
1624 PKEY_DATA *kdata = t->data;
1625
1626 if (strcmp(keyword, "PeerKey") == 0) {
1627 EVP_PKEY *peer;
1628 if (find_key(&peer, value, public_keys) == 0)
1629 return -1;
1630 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0) {
1631 t->err = "DERIVE_SET_PEER_ERROR";
1632 return 1;
1633 }
1634 t->err = NULL;
1635 return 1;
1636 }
1637 if (strcmp(keyword, "SharedSecret") == 0)
1638 return parse_bin(value, &kdata->output, &kdata->output_len);
1639 if (strcmp(keyword, "Ctrl") == 0)
1640 return pkey_test_ctrl(t, kdata->ctx, value);
1641 return 0;
1642 }
1643
1644 static int pderive_test_run(EVP_TEST *t)
1645 {
1646 PKEY_DATA *expected = t->data;
1647 unsigned char *got = NULL;
1648 size_t got_len;
1649
1650 if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
1651 t->err = "DERIVE_ERROR";
1652 goto err;
1653 }
1654 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
1655 t->err = "DERIVE_ERROR";
1656 goto err;
1657 }
1658 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
1659 t->err = "DERIVE_ERROR";
1660 goto err;
1661 }
1662 if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
1663 expected->output, expected->output_len,
1664 got, got_len))
1665 goto err;
1666
1667 t->err = NULL;
1668 err:
1669 OPENSSL_free(got);
1670 return 1;
1671 }
1672
1673 static const EVP_TEST_METHOD pderive_test_method = {
1674 "Derive",
1675 pderive_test_init,
1676 pkey_test_cleanup,
1677 pderive_test_parse,
1678 pderive_test_run
1679 };
1680
1681
1682 /**
1683 ** PBE TESTS
1684 **/
1685
1686 typedef enum pbe_type_enum {
1687 PBE_TYPE_INVALID = 0,
1688 PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
1689 } PBE_TYPE;
1690
1691 typedef struct pbe_data_st {
1692 PBE_TYPE pbe_type;
1693 /* scrypt parameters */
1694 uint64_t N, r, p, maxmem;
1695 /* PKCS#12 parameters */
1696 int id, iter;
1697 const EVP_MD *md;
1698 /* password */
1699 unsigned char *pass;
1700 size_t pass_len;
1701 /* salt */
1702 unsigned char *salt;
1703 size_t salt_len;
1704 /* Expected output */
1705 unsigned char *key;
1706 size_t key_len;
1707 } PBE_DATA;
1708
1709 #ifndef OPENSSL_NO_SCRYPT
1710 /* Parse unsigned decimal 64 bit integer value */
1711 static int parse_uint64(const char *value, uint64_t *pr)
1712 {
1713 const char *p = value;
1714
1715 if (!TEST_true(*p)) {
1716 TEST_info("Invalid empty integer value");
1717 return -1;
1718 }
1719 for (*pr = 0; *p; ) {
1720 if (*pr > UINT64_MAX / 10) {
1721 TEST_error("Integer overflow in string %s", value);
1722 return -1;
1723 }
1724 *pr *= 10;
1725 if (!TEST_true(isdigit((unsigned char)*p))) {
1726 TEST_error("Invalid character in string %s", value);
1727 return -1;
1728 }
1729 *pr += *p - '0';
1730 p++;
1731 }
1732 return 1;
1733 }
1734
1735 static int scrypt_test_parse(EVP_TEST *t,
1736 const char *keyword, const char *value)
1737 {
1738 PBE_DATA *pdata = t->data;
1739
1740 if (strcmp(keyword, "N") == 0)
1741 return parse_uint64(value, &pdata->N);
1742 if (strcmp(keyword, "p") == 0)
1743 return parse_uint64(value, &pdata->p);
1744 if (strcmp(keyword, "r") == 0)
1745 return parse_uint64(value, &pdata->r);
1746 if (strcmp(keyword, "maxmem") == 0)
1747 return parse_uint64(value, &pdata->maxmem);
1748 return 0;
1749 }
1750 #endif
1751
1752 static int pbkdf2_test_parse(EVP_TEST *t,
1753 const char *keyword, const char *value)
1754 {
1755 PBE_DATA *pdata = t->data;
1756
1757 if (strcmp(keyword, "iter") == 0) {
1758 pdata->iter = atoi(value);
1759 if (pdata->iter <= 0)
1760 return -1;
1761 return 1;
1762 }
1763 if (strcmp(keyword, "MD") == 0) {
1764 pdata->md = EVP_get_digestbyname(value);
1765 if (pdata->md == NULL)
1766 return -1;
1767 return 1;
1768 }
1769 return 0;
1770 }
1771
1772 static int pkcs12_test_parse(EVP_TEST *t,
1773 const char *keyword, const char *value)
1774 {
1775 PBE_DATA *pdata = t->data;
1776
1777 if (strcmp(keyword, "id") == 0) {
1778 pdata->id = atoi(value);
1779 if (pdata->id <= 0)
1780 return -1;
1781 return 1;
1782 }
1783 return pbkdf2_test_parse(t, keyword, value);
1784 }
1785
1786 static int pbe_test_init(EVP_TEST *t, const char *alg)
1787 {
1788 PBE_DATA *pdat;
1789 PBE_TYPE pbe_type = PBE_TYPE_INVALID;
1790
1791 if (is_kdf_disabled(alg)) {
1792 TEST_info("skipping, '%s' is disabled", alg);
1793 t->skip = 1;
1794 return 1;
1795 }
1796 if (strcmp(alg, "scrypt") == 0) {
1797 pbe_type = PBE_TYPE_SCRYPT;
1798 } else if (strcmp(alg, "pbkdf2") == 0) {
1799 pbe_type = PBE_TYPE_PBKDF2;
1800 } else if (strcmp(alg, "pkcs12") == 0) {
1801 pbe_type = PBE_TYPE_PKCS12;
1802 } else {
1803 TEST_error("Unknown pbe algorithm %s", alg);
1804 }
1805 pdat = OPENSSL_zalloc(sizeof(*pdat));
1806 pdat->pbe_type = pbe_type;
1807 t->data = pdat;
1808 return 1;
1809 }
1810
1811 static void pbe_test_cleanup(EVP_TEST *t)
1812 {
1813 PBE_DATA *pdat = t->data;
1814
1815 OPENSSL_free(pdat->pass);
1816 OPENSSL_free(pdat->salt);
1817 OPENSSL_free(pdat->key);
1818 }
1819
1820 static int pbe_test_parse(EVP_TEST *t,
1821 const char *keyword, const char *value)
1822 {
1823 PBE_DATA *pdata = t->data;
1824
1825 if (strcmp(keyword, "Password") == 0)
1826 return parse_bin(value, &pdata->pass, &pdata->pass_len);
1827 if (strcmp(keyword, "Salt") == 0)
1828 return parse_bin(value, &pdata->salt, &pdata->salt_len);
1829 if (strcmp(keyword, "Key") == 0)
1830 return parse_bin(value, &pdata->key, &pdata->key_len);
1831 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1832 return pbkdf2_test_parse(t, keyword, value);
1833 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1834 return pkcs12_test_parse(t, keyword, value);
1835 #ifndef OPENSSL_NO_SCRYPT
1836 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1837 return scrypt_test_parse(t, keyword, value);
1838 #endif
1839 return 0;
1840 }
1841
1842 static int pbe_test_run(EVP_TEST *t)
1843 {
1844 PBE_DATA *expected = t->data;
1845 unsigned char *key;
1846 EVP_MD *fetched_digest = NULL;
1847 OPENSSL_CTX *save_libctx;
1848
1849 save_libctx = OPENSSL_CTX_set0_default(libctx);
1850
1851 if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
1852 t->err = "INTERNAL_ERROR";
1853 goto err;
1854 }
1855 if (expected->pbe_type == PBE_TYPE_PBKDF2) {
1856 if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
1857 expected->salt, expected->salt_len,
1858 expected->iter, expected->md,
1859 expected->key_len, key) == 0) {
1860 t->err = "PBKDF2_ERROR";
1861 goto err;
1862 }
1863 #ifndef OPENSSL_NO_SCRYPT
1864 } else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
1865 if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
1866 expected->salt, expected->salt_len,
1867 expected->N, expected->r, expected->p,
1868 expected->maxmem, key, expected->key_len) == 0) {
1869 t->err = "SCRYPT_ERROR";
1870 goto err;
1871 }
1872 #endif
1873 } else if (expected->pbe_type == PBE_TYPE_PKCS12) {
1874 fetched_digest = EVP_MD_fetch(libctx, EVP_MD_name(expected->md), NULL);
1875 if (fetched_digest == NULL) {
1876 t->err = "PKCS12_ERROR";
1877 goto err;
1878 }
1879 if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
1880 expected->salt, expected->salt_len,
1881 expected->id, expected->iter, expected->key_len,
1882 key, fetched_digest) == 0) {
1883 t->err = "PKCS12_ERROR";
1884 goto err;
1885 }
1886 }
1887 if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
1888 key, expected->key_len))
1889 goto err;
1890
1891 t->err = NULL;
1892 err:
1893 EVP_MD_free(fetched_digest);
1894 OPENSSL_free(key);
1895 OPENSSL_CTX_set0_default(save_libctx);
1896 return 1;
1897 }
1898
1899 static const EVP_TEST_METHOD pbe_test_method = {
1900 "PBE",
1901 pbe_test_init,
1902 pbe_test_cleanup,
1903 pbe_test_parse,
1904 pbe_test_run
1905 };
1906
1907
1908 /**
1909 ** BASE64 TESTS
1910 **/
1911
1912 typedef enum {
1913 BASE64_CANONICAL_ENCODING = 0,
1914 BASE64_VALID_ENCODING = 1,
1915 BASE64_INVALID_ENCODING = 2
1916 } base64_encoding_type;
1917
1918 typedef struct encode_data_st {
1919 /* Input to encoding */
1920 unsigned char *input;
1921 size_t input_len;
1922 /* Expected output */
1923 unsigned char *output;
1924 size_t output_len;
1925 base64_encoding_type encoding;
1926 } ENCODE_DATA;
1927
1928 static int encode_test_init(EVP_TEST *t, const char *encoding)
1929 {
1930 ENCODE_DATA *edata;
1931
1932 if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
1933 return 0;
1934 if (strcmp(encoding, "canonical") == 0) {
1935 edata->encoding = BASE64_CANONICAL_ENCODING;
1936 } else if (strcmp(encoding, "valid") == 0) {
1937 edata->encoding = BASE64_VALID_ENCODING;
1938 } else if (strcmp(encoding, "invalid") == 0) {
1939 edata->encoding = BASE64_INVALID_ENCODING;
1940 if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
1941 goto err;
1942 } else {
1943 TEST_error("Bad encoding: %s."
1944 " Should be one of {canonical, valid, invalid}",
1945 encoding);
1946 goto err;
1947 }
1948 t->data = edata;
1949 return 1;
1950 err:
1951 OPENSSL_free(edata);
1952 return 0;
1953 }
1954
1955 static void encode_test_cleanup(EVP_TEST *t)
1956 {
1957 ENCODE_DATA *edata = t->data;
1958
1959 OPENSSL_free(edata->input);
1960 OPENSSL_free(edata->output);
1961 memset(edata, 0, sizeof(*edata));
1962 }
1963
1964 static int encode_test_parse(EVP_TEST *t,
1965 const char *keyword, const char *value)
1966 {
1967 ENCODE_DATA *edata = t->data;
1968
1969 if (strcmp(keyword, "Input") == 0)
1970 return parse_bin(value, &edata->input, &edata->input_len);
1971 if (strcmp(keyword, "Output") == 0)
1972 return parse_bin(value, &edata->output, &edata->output_len);
1973 return 0;
1974 }
1975
1976 static int encode_test_run(EVP_TEST *t)
1977 {
1978 ENCODE_DATA *expected = t->data;
1979 unsigned char *encode_out = NULL, *decode_out = NULL;
1980 int output_len, chunk_len;
1981 EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
1982
1983 if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
1984 t->err = "INTERNAL_ERROR";
1985 goto err;
1986 }
1987
1988 if (expected->encoding == BASE64_CANONICAL_ENCODING) {
1989
1990 if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
1991 || !TEST_ptr(encode_out =
1992 OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
1993 goto err;
1994
1995 EVP_EncodeInit(encode_ctx);
1996 if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1997 expected->input, expected->input_len)))
1998 goto err;
1999
2000 output_len = chunk_len;
2001
2002 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
2003 output_len += chunk_len;
2004
2005 if (!memory_err_compare(t, "BAD_ENCODING",
2006 expected->output, expected->output_len,
2007 encode_out, output_len))
2008 goto err;
2009 }
2010
2011 if (!TEST_ptr(decode_out =
2012 OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
2013 goto err;
2014
2015 EVP_DecodeInit(decode_ctx);
2016 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
2017 expected->output_len) < 0) {
2018 t->err = "DECODE_ERROR";
2019 goto err;
2020 }
2021 output_len = chunk_len;
2022
2023 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
2024 t->err = "DECODE_ERROR";
2025 goto err;
2026 }
2027 output_len += chunk_len;
2028
2029 if (expected->encoding != BASE64_INVALID_ENCODING
2030 && !memory_err_compare(t, "BAD_DECODING",
2031 expected->input, expected->input_len,
2032 decode_out, output_len)) {
2033 t->err = "BAD_DECODING";
2034 goto err;
2035 }
2036
2037 t->err = NULL;
2038 err:
2039 OPENSSL_free(encode_out);
2040 OPENSSL_free(decode_out);
2041 EVP_ENCODE_CTX_free(decode_ctx);
2042 EVP_ENCODE_CTX_free(encode_ctx);
2043 return 1;
2044 }
2045
2046 static const EVP_TEST_METHOD encode_test_method = {
2047 "Encoding",
2048 encode_test_init,
2049 encode_test_cleanup,
2050 encode_test_parse,
2051 encode_test_run,
2052 };
2053
2054
2055 /**
2056 ** RAND TESTS
2057 **/
2058 #define MAX_RAND_REPEATS 15
2059
2060 typedef struct rand_data_pass_st {
2061 unsigned char *entropy;
2062 unsigned char *reseed_entropy;
2063 unsigned char *nonce;
2064 unsigned char *pers;
2065 unsigned char *reseed_addin;
2066 unsigned char *addinA;
2067 unsigned char *addinB;
2068 unsigned char *pr_entropyA;
2069 unsigned char *pr_entropyB;
2070 unsigned char *output;
2071 size_t entropy_len, nonce_len, pers_len, addinA_len, addinB_len,
2072 pr_entropyA_len, pr_entropyB_len, output_len, reseed_entropy_len,
2073 reseed_addin_len;
2074 } RAND_DATA_PASS;
2075
2076 typedef struct rand_data_st {
2077 /* Context for this operation */
2078 EVP_RAND_CTX *ctx;
2079 EVP_RAND_CTX *parent;
2080 int n;
2081 int prediction_resistance;
2082 int use_df;
2083 unsigned int generate_bits;
2084 char *cipher;
2085 char *digest;
2086
2087 /* Expected output */
2088 RAND_DATA_PASS data[MAX_RAND_REPEATS];
2089 } RAND_DATA;
2090
2091 static int rand_test_init(EVP_TEST *t, const char *name)
2092 {
2093 RAND_DATA *rdata;
2094 EVP_RAND *rand;
2095 OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
2096 unsigned int strength = 256;
2097
2098 if (!TEST_ptr(rdata = OPENSSL_zalloc(sizeof(*rdata))))
2099 return 0;
2100
2101 /* TEST-RAND is available in the FIPS provider but not with "fips=yes" */
2102 rand = EVP_RAND_fetch(libctx, "TEST-RAND", "-fips");
2103 if (rand == NULL)
2104 goto err;
2105 rdata->parent = EVP_RAND_CTX_new(rand, NULL);
2106 EVP_RAND_free(rand);
2107 if (rdata->parent == NULL)
2108 goto err;
2109
2110 *params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
2111 if (!EVP_RAND_set_ctx_params(rdata->parent, params))
2112 goto err;
2113
2114 rand = EVP_RAND_fetch(libctx, name, NULL);
2115 if (rand == NULL)
2116 goto err;
2117 rdata->ctx = EVP_RAND_CTX_new(rand, rdata->parent);
2118 EVP_RAND_free(rand);
2119 if (rdata->ctx == NULL)
2120 goto err;
2121
2122 rdata->n = -1;
2123 t->data = rdata;
2124 return 1;
2125 err:
2126 EVP_RAND_CTX_free(rdata->parent);
2127 OPENSSL_free(rdata);
2128 return 0;
2129 }
2130
2131 static void rand_test_cleanup(EVP_TEST *t)
2132 {
2133 RAND_DATA *rdata = t->data;
2134 int i;
2135
2136 OPENSSL_free(rdata->cipher);
2137 OPENSSL_free(rdata->digest);
2138
2139 for (i = 0; i <= rdata->n; i++) {
2140 OPENSSL_free(rdata->data[i].entropy);
2141 OPENSSL_free(rdata->data[i].reseed_entropy);
2142 OPENSSL_free(rdata->data[i].nonce);
2143 OPENSSL_free(rdata->data[i].pers);
2144 OPENSSL_free(rdata->data[i].reseed_addin);
2145 OPENSSL_free(rdata->data[i].addinA);
2146 OPENSSL_free(rdata->data[i].addinB);
2147 OPENSSL_free(rdata->data[i].pr_entropyA);
2148 OPENSSL_free(rdata->data[i].pr_entropyB);
2149 OPENSSL_free(rdata->data[i].output);
2150 }
2151 EVP_RAND_CTX_free(rdata->ctx);
2152 EVP_RAND_CTX_free(rdata->parent);
2153 }
2154
2155 static int rand_test_parse(EVP_TEST *t,
2156 const char *keyword, const char *value)
2157 {
2158 RAND_DATA *rdata = t->data;
2159 RAND_DATA_PASS *item;
2160 const char *p;
2161 int n;
2162
2163 if ((p = strchr(keyword, '.')) != NULL) {
2164 n = atoi(++p);
2165 if (n >= MAX_RAND_REPEATS)
2166 return 0;
2167 if (n > rdata->n)
2168 rdata->n = n;
2169 item = rdata->data + n;
2170 if (strncmp(keyword, "Entropy.", sizeof("Entropy")) == 0)
2171 return parse_bin(value, &item->entropy, &item->entropy_len);
2172 if (strncmp(keyword, "ReseedEntropy.", sizeof("ReseedEntropy")) == 0)
2173 return parse_bin(value, &item->reseed_entropy,
2174 &item->reseed_entropy_len);
2175 if (strncmp(keyword, "Nonce.", sizeof("Nonce")) == 0)
2176 return parse_bin(value, &item->nonce, &item->nonce_len);
2177 if (strncmp(keyword, "PersonalisationString.",
2178 sizeof("PersonalisationString")) == 0)
2179 return parse_bin(value, &item->pers, &item->pers_len);
2180 if (strncmp(keyword, "ReseedAdditionalInput.",
2181 sizeof("ReseedAdditionalInput")) == 0)
2182 return parse_bin(value, &item->reseed_addin,
2183 &item->reseed_addin_len);
2184 if (strncmp(keyword, "AdditionalInputA.",
2185 sizeof("AdditionalInputA")) == 0)
2186 return parse_bin(value, &item->addinA, &item->addinA_len);
2187 if (strncmp(keyword, "AdditionalInputB.",
2188 sizeof("AdditionalInputB")) == 0)
2189 return parse_bin(value, &item->addinB, &item->addinB_len);
2190 if (strncmp(keyword, "EntropyPredictionResistanceA.",
2191 sizeof("EntropyPredictionResistanceA")) == 0)
2192 return parse_bin(value, &item->pr_entropyA, &item->pr_entropyA_len);
2193 if (strncmp(keyword, "EntropyPredictionResistanceB.",
2194 sizeof("EntropyPredictionResistanceB")) == 0)
2195 return parse_bin(value, &item->pr_entropyB, &item->pr_entropyB_len);
2196 if (strncmp(keyword, "Output.", sizeof("Output")) == 0)
2197 return parse_bin(value, &item->output, &item->output_len);
2198 } else {
2199 if (strcmp(keyword, "Cipher") == 0)
2200 return TEST_ptr(rdata->cipher = OPENSSL_strdup(value));
2201 if (strcmp(keyword, "Digest") == 0)
2202 return TEST_ptr(rdata->digest = OPENSSL_strdup(value));
2203 if (strcmp(keyword, "DerivationFunction") == 0) {
2204 rdata->use_df = atoi(value) != 0;
2205 return 1;
2206 }
2207 if (strcmp(keyword, "GenerateBits") == 0) {
2208 if ((n = atoi(value)) <= 0 || n % 8 != 0)
2209 return 0;
2210 rdata->generate_bits = (unsigned int)n;
2211 return 1;
2212 }
2213 if (strcmp(keyword, "PredictionResistance") == 0) {
2214 rdata->prediction_resistance = atoi(value) != 0;
2215 return 1;
2216 }
2217 }
2218 return 0;
2219 }
2220
2221 static int rand_test_run(EVP_TEST *t)
2222 {
2223 RAND_DATA *expected = t->data;
2224 RAND_DATA_PASS *item;
2225 unsigned char *got;
2226 size_t got_len = expected->generate_bits / 8;
2227 OSSL_PARAM params[5], *p = params;
2228 int i = -1, ret = 0;
2229 unsigned int strength;
2230 unsigned char *z;
2231
2232 if (!TEST_ptr(got = OPENSSL_malloc(got_len)))
2233 return 0;
2234
2235 *p++ = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_USE_DF, &expected->use_df);
2236 if (expected->cipher != NULL)
2237 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER,
2238 expected->cipher, 0);
2239 if (expected->digest != NULL)
2240 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_DIGEST,
2241 expected->digest, 0);
2242 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_MAC, "HMAC", 0);
2243 *p = OSSL_PARAM_construct_end();
2244 if (!TEST_true(EVP_RAND_set_ctx_params(expected->ctx, params)))
2245 goto err;
2246
2247 strength = EVP_RAND_strength(expected->ctx);
2248 for (i = 0; i <= expected->n; i++) {
2249 item = expected->data + i;
2250
2251 p = params;
2252 z = item->entropy != NULL ? item->entropy : (unsigned char *)"";
2253 *p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
2254 z, item->entropy_len);
2255 z = item->nonce != NULL ? item->nonce : (unsigned char *)"";
2256 *p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_NONCE,
2257 z, item->nonce_len);
2258 *p = OSSL_PARAM_construct_end();
2259 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params))
2260 || !TEST_true(EVP_RAND_instantiate(expected->parent, strength,
2261 0, NULL, 0)))
2262 goto err;
2263
2264 z = item->pers != NULL ? item->pers : (unsigned char *)"";
2265 if (!TEST_true(EVP_RAND_instantiate
2266 (expected->ctx, strength,
2267 expected->prediction_resistance, z,
2268 item->pers_len)))
2269 goto err;
2270
2271 if (item->reseed_entropy != NULL) {
2272 params[0] = OSSL_PARAM_construct_octet_string
2273 (OSSL_RAND_PARAM_TEST_ENTROPY, item->reseed_entropy,
2274 item->reseed_entropy_len);
2275 params[1] = OSSL_PARAM_construct_end();
2276 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
2277 goto err;
2278
2279 if (!TEST_true(EVP_RAND_reseed
2280 (expected->ctx, expected->prediction_resistance,
2281 NULL, 0, item->reseed_addin,
2282 item->reseed_addin_len)))
2283 goto err;
2284 }
2285 if (item->pr_entropyA != NULL) {
2286 params[0] = OSSL_PARAM_construct_octet_string
2287 (OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyA,
2288 item->pr_entropyA_len);
2289 params[1] = OSSL_PARAM_construct_end();
2290 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
2291 goto err;
2292 }
2293 if (!TEST_true(EVP_RAND_generate
2294 (expected->ctx, got, got_len,
2295 strength, expected->prediction_resistance,
2296 item->addinA, item->addinA_len)))
2297 goto err;
2298
2299 if (item->pr_entropyB != NULL) {
2300 params[0] = OSSL_PARAM_construct_octet_string
2301 (OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyB,
2302 item->pr_entropyB_len);
2303 params[1] = OSSL_PARAM_construct_end();
2304 if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
2305 return 0;
2306 }
2307 if (!TEST_true(EVP_RAND_generate
2308 (expected->ctx, got, got_len,
2309 strength, expected->prediction_resistance,
2310 item->addinB, item->addinB_len)))
2311 goto err;
2312 if (!TEST_mem_eq(got, got_len, item->output, item->output_len))
2313 goto err;
2314 if (!TEST_true(EVP_RAND_uninstantiate(expected->ctx))
2315 || !TEST_true(EVP_RAND_uninstantiate(expected->parent))
2316 || !TEST_true(EVP_RAND_verify_zeroization(expected->ctx))
2317 || !TEST_int_eq(EVP_RAND_state(expected->ctx),
2318 EVP_RAND_STATE_UNINITIALISED))
2319 goto err;
2320 }
2321 t->err = NULL;
2322 ret = 1;
2323
2324 err:
2325 if (ret == 0 && i >= 0)
2326 TEST_info("Error in test case %d of %d\n", i, expected->n + 1);
2327 OPENSSL_free(got);
2328 return ret;
2329 }
2330
2331 static const EVP_TEST_METHOD rand_test_method = {
2332 "RAND",
2333 rand_test_init,
2334 rand_test_cleanup,
2335 rand_test_parse,
2336 rand_test_run
2337 };
2338
2339
2340 /**
2341 ** KDF TESTS
2342 **/
2343 typedef struct kdf_data_st {
2344 /* Context for this operation */
2345 EVP_KDF_CTX *ctx;
2346 /* Expected output */
2347 unsigned char *output;
2348 size_t output_len;
2349 OSSL_PARAM params[20];
2350 OSSL_PARAM *p;
2351 } KDF_DATA;
2352
2353 /*
2354 * Perform public key operation setup: lookup key, allocated ctx and call
2355 * the appropriate initialisation function
2356 */
2357 static int kdf_test_init(EVP_TEST *t, const char *name)
2358 {
2359 KDF_DATA *kdata;
2360 EVP_KDF *kdf;
2361
2362 if (is_kdf_disabled(name)) {
2363 TEST_info("skipping, '%s' is disabled", name);
2364 t->skip = 1;
2365 return 1;
2366 }
2367
2368 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
2369 return 0;
2370 kdata->p = kdata->params;
2371 *kdata->p = OSSL_PARAM_construct_end();
2372
2373 kdf = EVP_KDF_fetch(libctx, name, NULL);
2374 if (kdf == NULL) {
2375 OPENSSL_free(kdata);
2376 return 0;
2377 }
2378 kdata->ctx = EVP_KDF_CTX_new(kdf);
2379 EVP_KDF_free(kdf);
2380 if (kdata->ctx == NULL) {
2381 OPENSSL_free(kdata);
2382 return 0;
2383 }
2384 t->data = kdata;
2385 return 1;
2386 }
2387
2388 static void kdf_test_cleanup(EVP_TEST *t)
2389 {
2390 KDF_DATA *kdata = t->data;
2391 OSSL_PARAM *p;
2392
2393 for (p = kdata->params; p->key != NULL; p++)
2394 OPENSSL_free(p->data);
2395 OPENSSL_free(kdata->output);
2396 EVP_KDF_CTX_free(kdata->ctx);
2397 }
2398
2399 static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
2400 const char *value)
2401 {
2402 KDF_DATA *kdata = t->data;
2403 int rv;
2404 char *p, *name;
2405 const OSSL_PARAM *defs = EVP_KDF_settable_ctx_params(EVP_KDF_CTX_kdf(kctx));
2406
2407 if (!TEST_ptr(name = OPENSSL_strdup(value)))
2408 return 0;
2409 p = strchr(name, ':');
2410 if (p != NULL)
2411 *p++ = '\0';
2412
2413 rv = OSSL_PARAM_allocate_from_text(kdata->p, defs, name, p,
2414 p != NULL ? strlen(p) : 0, NULL);
2415 *++kdata->p = OSSL_PARAM_construct_end();
2416 if (!rv) {
2417 t->err = "KDF_PARAM_ERROR";
2418 OPENSSL_free(name);
2419 return 0;
2420 }
2421 if (p != NULL && strcmp(name, "digest") == 0) {
2422 if (is_digest_disabled(p)) {
2423 TEST_info("skipping, '%s' is disabled", p);
2424 t->skip = 1;
2425 }
2426 }
2427 if (p != NULL && strcmp(name, "cipher") == 0) {
2428 if (is_cipher_disabled(p)) {
2429 TEST_info("skipping, '%s' is disabled", p);
2430 t->skip = 1;
2431 }
2432 }
2433 OPENSSL_free(name);
2434 return 1;
2435 }
2436
2437 static int kdf_test_parse(EVP_TEST *t,
2438 const char *keyword, const char *value)
2439 {
2440 KDF_DATA *kdata = t->data;
2441
2442 if (strcmp(keyword, "Output") == 0)
2443 return parse_bin(value, &kdata->output, &kdata->output_len);
2444 if (strncmp(keyword, "Ctrl", 4) == 0)
2445 return kdf_test_ctrl(t, kdata->ctx, value);
2446 return 0;
2447 }
2448
2449 static int kdf_test_run(EVP_TEST *t)
2450 {
2451 KDF_DATA *expected = t->data;
2452 unsigned char *got = NULL;
2453 size_t got_len = expected->output_len;
2454
2455 if (!EVP_KDF_CTX_set_params(expected->ctx, expected->params)) {
2456 t->err = "KDF_CTRL_ERROR";
2457 return 1;
2458 }
2459 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2460 t->err = "INTERNAL_ERROR";
2461 goto err;
2462 }
2463 if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) {
2464 t->err = "KDF_DERIVE_ERROR";
2465 goto err;
2466 }
2467 if (!memory_err_compare(t, "KDF_MISMATCH",
2468 expected->output, expected->output_len,
2469 got, got_len))
2470 goto err;
2471
2472 t->err = NULL;
2473
2474 err:
2475 OPENSSL_free(got);
2476 return 1;
2477 }
2478
2479 static const EVP_TEST_METHOD kdf_test_method = {
2480 "KDF",
2481 kdf_test_init,
2482 kdf_test_cleanup,
2483 kdf_test_parse,
2484 kdf_test_run
2485 };
2486
2487 /**
2488 ** PKEY KDF TESTS
2489 **/
2490
2491 typedef struct pkey_kdf_data_st {
2492 /* Context for this operation */
2493 EVP_PKEY_CTX *ctx;
2494 /* Expected output */
2495 unsigned char *output;
2496 size_t output_len;
2497 } PKEY_KDF_DATA;
2498
2499 /*
2500 * Perform public key operation setup: lookup key, allocated ctx and call
2501 * the appropriate initialisation function
2502 */
2503 static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
2504 {
2505 PKEY_KDF_DATA *kdata = NULL;
2506
2507 if (is_kdf_disabled(name)) {
2508 TEST_info("skipping, '%s' is disabled", name);
2509 t->skip = 1;
2510 return 1;
2511 }
2512
2513 if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
2514 return 0;
2515
2516 kdata->ctx = EVP_PKEY_CTX_new_from_name(libctx, name, NULL);
2517 if (kdata->ctx == NULL
2518 || EVP_PKEY_derive_init(kdata->ctx) <= 0)
2519 goto err;
2520
2521 t->data = kdata;
2522 return 1;
2523 err:
2524 EVP_PKEY_CTX_free(kdata->ctx);
2525 OPENSSL_free(kdata);
2526 return 0;
2527 }
2528
2529 static void pkey_kdf_test_cleanup(EVP_TEST *t)
2530 {
2531 PKEY_KDF_DATA *kdata = t->data;
2532
2533 OPENSSL_free(kdata->output);
2534 EVP_PKEY_CTX_free(kdata->ctx);
2535 }
2536
2537 static int pkey_kdf_test_parse(EVP_TEST *t,
2538 const char *keyword, const char *value)
2539 {
2540 PKEY_KDF_DATA *kdata = t->data;
2541
2542 if (strcmp(keyword, "Output") == 0)
2543 return parse_bin(value, &kdata->output, &kdata->output_len);
2544 if (strncmp(keyword, "Ctrl", 4) == 0)
2545 return pkey_test_ctrl(t, kdata->ctx, value);
2546 return 0;
2547 }
2548
2549 static int pkey_kdf_test_run(EVP_TEST *t)
2550 {
2551 PKEY_KDF_DATA *expected = t->data;
2552 unsigned char *got = NULL;
2553 size_t got_len = expected->output_len;
2554
2555 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2556 t->err = "INTERNAL_ERROR";
2557 goto err;
2558 }
2559 if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
2560 t->err = "KDF_DERIVE_ERROR";
2561 goto err;
2562 }
2563 if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
2564 t->err = "KDF_MISMATCH";
2565 goto err;
2566 }
2567 t->err = NULL;
2568
2569 err:
2570 OPENSSL_free(got);
2571 return 1;
2572 }
2573
2574 static const EVP_TEST_METHOD pkey_kdf_test_method = {
2575 "PKEYKDF",
2576 pkey_kdf_test_init,
2577 pkey_kdf_test_cleanup,
2578 pkey_kdf_test_parse,
2579 pkey_kdf_test_run
2580 };
2581
2582 /**
2583 ** KEYPAIR TESTS
2584 **/
2585
2586 typedef struct keypair_test_data_st {
2587 EVP_PKEY *privk;
2588 EVP_PKEY *pubk;
2589 } KEYPAIR_TEST_DATA;
2590
2591 static int keypair_test_init(EVP_TEST *t, const char *pair)
2592 {
2593 KEYPAIR_TEST_DATA *data;
2594 int rv = 0;
2595 EVP_PKEY *pk = NULL, *pubk = NULL;
2596 char *pub, *priv = NULL;
2597
2598 /* Split private and public names. */
2599 if (!TEST_ptr(priv = OPENSSL_strdup(pair))
2600 || !TEST_ptr(pub = strchr(priv, ':'))) {
2601 t->err = "PARSING_ERROR";
2602 goto end;
2603 }
2604 *pub++ = '\0';
2605
2606 if (!TEST_true(find_key(&pk, priv, private_keys))) {
2607 TEST_info("Can't find private key: %s", priv);
2608 t->err = "MISSING_PRIVATE_KEY";
2609 goto end;
2610 }
2611 if (!TEST_true(find_key(&pubk, pub, public_keys))) {
2612 TEST_info("Can't find public key: %s", pub);
2613 t->err = "MISSING_PUBLIC_KEY";
2614 goto end;
2615 }
2616
2617 if (pk == NULL && pubk == NULL) {
2618 /* Both keys are listed but unsupported: skip this test */
2619 t->skip = 1;
2620 rv = 1;
2621 goto end;
2622 }
2623
2624 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
2625 goto end;
2626 data->privk = pk;
2627 data->pubk = pubk;
2628 t->data = data;
2629 rv = 1;
2630 t->err = NULL;
2631
2632 end:
2633 OPENSSL_free(priv);
2634 return rv;
2635 }
2636
2637 static void keypair_test_cleanup(EVP_TEST *t)
2638 {
2639 OPENSSL_free(t->data);
2640 t->data = NULL;
2641 }
2642
2643 /*
2644 * For tests that do not accept any custom keywords.
2645 */
2646 static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
2647 {
2648 return 0;
2649 }
2650
2651 static int keypair_test_run(EVP_TEST *t)
2652 {
2653 int rv = 0;
2654 const KEYPAIR_TEST_DATA *pair = t->data;
2655
2656 if (pair->privk == NULL || pair->pubk == NULL) {
2657 /*
2658 * this can only happen if only one of the keys is not set
2659 * which means that one of them was unsupported while the
2660 * other isn't: hence a key type mismatch.
2661 */
2662 t->err = "KEYPAIR_TYPE_MISMATCH";
2663 rv = 1;
2664 goto end;
2665 }
2666
2667 if ((rv = EVP_PKEY_eq(pair->privk, pair->pubk)) != 1 ) {
2668 if ( 0 == rv ) {
2669 t->err = "KEYPAIR_MISMATCH";
2670 } else if ( -1 == rv ) {
2671 t->err = "KEYPAIR_TYPE_MISMATCH";
2672 } else if ( -2 == rv ) {
2673 t->err = "UNSUPPORTED_KEY_COMPARISON";
2674 } else {
2675 TEST_error("Unexpected error in key comparison");
2676 rv = 0;
2677 goto end;
2678 }
2679 rv = 1;
2680 goto end;
2681 }
2682
2683 rv = 1;
2684 t->err = NULL;
2685
2686 end:
2687 return rv;
2688 }
2689
2690 static const EVP_TEST_METHOD keypair_test_method = {
2691 "PrivPubKeyPair",
2692 keypair_test_init,
2693 keypair_test_cleanup,
2694 void_test_parse,
2695 keypair_test_run
2696 };
2697
2698 /**
2699 ** KEYGEN TEST
2700 **/
2701
2702 typedef struct keygen_test_data_st {
2703 EVP_PKEY_CTX *genctx; /* Keygen context to use */
2704 char *keyname; /* Key name to store key or NULL */
2705 } KEYGEN_TEST_DATA;
2706
2707 static int keygen_test_init(EVP_TEST *t, const char *alg)
2708 {
2709 KEYGEN_TEST_DATA *data;
2710 EVP_PKEY_CTX *genctx;
2711 int nid = OBJ_sn2nid(alg);
2712
2713 if (nid == NID_undef) {
2714 nid = OBJ_ln2nid(alg);
2715 if (nid == NID_undef)
2716 return 0;
2717 }
2718
2719 if (is_pkey_disabled(alg)) {
2720 t->skip = 1;
2721 return 1;
2722 }
2723 if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_from_name(libctx, alg, NULL)))
2724 goto err;
2725
2726 if (EVP_PKEY_keygen_init(genctx) <= 0) {
2727 t->err = "KEYGEN_INIT_ERROR";
2728 goto err;
2729 }
2730
2731 if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
2732 goto err;
2733 data->genctx = genctx;
2734 data->keyname = NULL;
2735 t->data = data;
2736 t->err = NULL;
2737 return 1;
2738
2739 err:
2740 EVP_PKEY_CTX_free(genctx);
2741 return 0;
2742 }
2743
2744 static void keygen_test_cleanup(EVP_TEST *t)
2745 {
2746 KEYGEN_TEST_DATA *keygen = t->data;
2747
2748 EVP_PKEY_CTX_free(keygen->genctx);
2749 OPENSSL_free(keygen->keyname);
2750 OPENSSL_free(t->data);
2751 t->data = NULL;
2752 }
2753
2754 static int keygen_test_parse(EVP_TEST *t,
2755 const char *keyword, const char *value)
2756 {
2757 KEYGEN_TEST_DATA *keygen = t->data;
2758
2759 if (strcmp(keyword, "KeyName") == 0)
2760 return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
2761 if (strcmp(keyword, "Ctrl") == 0)
2762 return pkey_test_ctrl(t, keygen->genctx, value);
2763 return 0;
2764 }
2765
2766 static int keygen_test_run(EVP_TEST *t)
2767 {
2768 KEYGEN_TEST_DATA *keygen = t->data;
2769 EVP_PKEY *pkey = NULL;
2770 int rv = 1;
2771
2772 if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
2773 t->err = "KEYGEN_GENERATE_ERROR";
2774 goto err;
2775 }
2776
2777 if (!evp_pkey_is_provided(pkey)) {
2778 TEST_info("Warning: legacy key generated %s", keygen->keyname);
2779 goto err;
2780 }
2781 if (keygen->keyname != NULL) {
2782 KEY_LIST *key;
2783
2784 rv = 0;
2785 if (find_key(NULL, keygen->keyname, private_keys)) {
2786 TEST_info("Duplicate key %s", keygen->keyname);
2787 goto err;
2788 }
2789
2790 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
2791 goto err;
2792 key->name = keygen->keyname;
2793 keygen->keyname = NULL;
2794 key->key = pkey;
2795 key->next = private_keys;
2796 private_keys = key;
2797 rv = 1;
2798 } else {
2799 EVP_PKEY_free(pkey);
2800 }
2801
2802 t->err = NULL;
2803
2804 err:
2805 return rv;
2806 }
2807
2808 static const EVP_TEST_METHOD keygen_test_method = {
2809 "KeyGen",
2810 keygen_test_init,
2811 keygen_test_cleanup,
2812 keygen_test_parse,
2813 keygen_test_run,
2814 };
2815
2816 /**
2817 ** DIGEST SIGN+VERIFY TESTS
2818 **/
2819
2820 typedef struct {
2821 int is_verify; /* Set to 1 if verifying */
2822 int is_oneshot; /* Set to 1 for one shot operation */
2823 const EVP_MD *md; /* Digest to use */
2824 EVP_MD_CTX *ctx; /* Digest context */
2825 EVP_PKEY_CTX *pctx;
2826 STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
2827 unsigned char *osin; /* Input data if one shot */
2828 size_t osin_len; /* Input length data if one shot */
2829 unsigned char *output; /* Expected output */
2830 size_t output_len; /* Expected output length */
2831 } DIGESTSIGN_DATA;
2832
2833 static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
2834 int is_oneshot)
2835 {
2836 const EVP_MD *md = NULL;
2837 DIGESTSIGN_DATA *mdat;
2838
2839 if (strcmp(alg, "NULL") != 0) {
2840 if (is_digest_disabled(alg)) {
2841 t->skip = 1;
2842 return 1;
2843 }
2844 md = EVP_get_digestbyname(alg);
2845 if (md == NULL)
2846 return 0;
2847 }
2848 if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
2849 return 0;
2850 mdat->md = md;
2851 if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
2852 OPENSSL_free(mdat);
2853 return 0;
2854 }
2855 mdat->is_verify = is_verify;
2856 mdat->is_oneshot = is_oneshot;
2857 t->data = mdat;
2858 return 1;
2859 }
2860
2861 static int digestsign_test_init(EVP_TEST *t, const char *alg)
2862 {
2863 return digestsigver_test_init(t, alg, 0, 0);
2864 }
2865
2866 static void digestsigver_test_cleanup(EVP_TEST *t)
2867 {
2868 DIGESTSIGN_DATA *mdata = t->data;
2869
2870 EVP_MD_CTX_free(mdata->ctx);
2871 sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
2872 OPENSSL_free(mdata->osin);
2873 OPENSSL_free(mdata->output);
2874 OPENSSL_free(mdata);
2875 t->data = NULL;
2876 }
2877
2878 static int digestsigver_test_parse(EVP_TEST *t,
2879 const char *keyword, const char *value)
2880 {
2881 DIGESTSIGN_DATA *mdata = t->data;
2882
2883 if (strcmp(keyword, "Key") == 0) {
2884 EVP_PKEY *pkey = NULL;
2885 int rv = 0;
2886 const char *name = mdata->md == NULL ? NULL : EVP_MD_name(mdata->md);
2887
2888 if (mdata->is_verify)
2889 rv = find_key(&pkey, value, public_keys);
2890 if (rv == 0)
2891 rv = find_key(&pkey, value, private_keys);
2892 if (rv == 0 || pkey == NULL) {
2893 t->skip = 1;
2894 return 1;
2895 }
2896 if (mdata->is_verify) {
2897 if (!EVP_DigestVerifyInit_with_libctx(mdata->ctx, &mdata->pctx,
2898 name, libctx, NULL, pkey))
2899 t->err = "DIGESTVERIFYINIT_ERROR";
2900 return 1;
2901 }
2902 if (!EVP_DigestSignInit_with_libctx(mdata->ctx, &mdata->pctx,
2903 name, libctx, NULL, pkey))
2904 t->err = "DIGESTSIGNINIT_ERROR";
2905 return 1;
2906 }
2907
2908 if (strcmp(keyword, "Input") == 0) {
2909 if (mdata->is_oneshot)
2910 return parse_bin(value, &mdata->osin, &mdata->osin_len);
2911 return evp_test_buffer_append(value, &mdata->input);
2912 }
2913 if (strcmp(keyword, "Output") == 0)
2914 return parse_bin(value, &mdata->output, &mdata->output_len);
2915
2916 if (!mdata->is_oneshot) {
2917 if (strcmp(keyword, "Count") == 0)
2918 return evp_test_buffer_set_count(value, mdata->input);
2919 if (strcmp(keyword, "Ncopy") == 0)
2920 return evp_test_buffer_ncopy(value, mdata->input);
2921 }
2922 if (strcmp(keyword, "Ctrl") == 0) {
2923 if (mdata->pctx == NULL)
2924 return -1;
2925 return pkey_test_ctrl(t, mdata->pctx, value);
2926 }
2927 return 0;
2928 }
2929
2930 static int digestsign_update_fn(void *ctx, const unsigned char *buf,
2931 size_t buflen)
2932 {
2933 return EVP_DigestSignUpdate(ctx, buf, buflen);
2934 }
2935
2936 static int digestsign_test_run(EVP_TEST *t)
2937 {
2938 DIGESTSIGN_DATA *expected = t->data;
2939 unsigned char *got = NULL;
2940 size_t got_len;
2941
2942 if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
2943 expected->ctx)) {
2944 t->err = "DIGESTUPDATE_ERROR";
2945 goto err;
2946 }
2947
2948 if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
2949 t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
2950 goto err;
2951 }
2952 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
2953 t->err = "MALLOC_FAILURE";
2954 goto err;
2955 }
2956 if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
2957 t->err = "DIGESTSIGNFINAL_ERROR";
2958 goto err;
2959 }
2960 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
2961 expected->output, expected->output_len,
2962 got, got_len))
2963 goto err;
2964
2965 t->err = NULL;
2966 err:
2967 OPENSSL_free(got);
2968 return 1;
2969 }
2970
2971 static const EVP_TEST_METHOD digestsign_test_method = {
2972 "DigestSign",
2973 digestsign_test_init,
2974 digestsigver_test_cleanup,
2975 digestsigver_test_parse,
2976 digestsign_test_run
2977 };
2978
2979 static int digestverify_test_init(EVP_TEST *t, const char *alg)
2980 {
2981 return digestsigver_test_init(t, alg, 1, 0);
2982 }
2983
2984 static int digestverify_update_fn(void *ctx, const unsigned char *buf,
2985 size_t buflen)
2986 {
2987 return EVP_DigestVerifyUpdate(ctx, buf, buflen);
2988 }
2989
2990 static int digestverify_test_run(EVP_TEST *t)
2991 {
2992 DIGESTSIGN_DATA *mdata = t->data;
2993
2994 if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
2995 t->err = "DIGESTUPDATE_ERROR";
2996 return 1;
2997 }
2998
2999 if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
3000 mdata->output_len) <= 0)
3001 t->err = "VERIFY_ERROR";
3002 return 1;
3003 }
3004
3005 static const EVP_TEST_METHOD digestverify_test_method = {
3006 "DigestVerify",
3007 digestverify_test_init,
3008 digestsigver_test_cleanup,
3009 digestsigver_test_parse,
3010 digestverify_test_run
3011 };
3012
3013 static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
3014 {
3015 return digestsigver_test_init(t, alg, 0, 1);
3016 }
3017
3018 static int oneshot_digestsign_test_run(EVP_TEST *t)
3019 {
3020 DIGESTSIGN_DATA *expected = t->data;
3021 unsigned char *got = NULL;
3022 size_t got_len;
3023
3024 if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
3025 expected->osin, expected->osin_len)) {
3026 t->err = "DIGESTSIGN_LENGTH_ERROR";
3027 goto err;
3028 }
3029 if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
3030 t->err = "MALLOC_FAILURE";
3031 goto err;
3032 }
3033 if (!EVP_DigestSign(expected->ctx, got, &got_len,
3034 expected->osin, expected->osin_len)) {
3035 t->err = "DIGESTSIGN_ERROR";
3036 goto err;
3037 }
3038 if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
3039 expected->output, expected->output_len,
3040 got, got_len))
3041 goto err;
3042
3043 t->err = NULL;
3044 err:
3045 OPENSSL_free(got);
3046 return 1;
3047 }
3048
3049 static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
3050 "OneShotDigestSign",
3051 oneshot_digestsign_test_init,
3052 digestsigver_test_cleanup,
3053 digestsigver_test_parse,
3054 oneshot_digestsign_test_run
3055 };
3056
3057 static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
3058 {
3059 return digestsigver_test_init(t, alg, 1, 1);
3060 }
3061
3062 static int oneshot_digestverify_test_run(EVP_TEST *t)
3063 {
3064 DIGESTSIGN_DATA *mdata = t->data;
3065
3066 if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
3067 mdata->osin, mdata->osin_len) <= 0)
3068 t->err = "VERIFY_ERROR";
3069 return 1;
3070 }
3071
3072 static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
3073 "OneShotDigestVerify",
3074 oneshot_digestverify_test_init,
3075 digestsigver_test_cleanup,
3076 digestsigver_test_parse,
3077 oneshot_digestverify_test_run
3078 };
3079
3080
3081 /**
3082 ** PARSING AND DISPATCH
3083 **/
3084
3085 static const EVP_TEST_METHOD *evp_test_list[] = {
3086 &rand_test_method,
3087 &cipher_test_method,
3088 &digest_test_method,
3089 &digestsign_test_method,
3090 &digestverify_test_method,
3091 &encode_test_method,
3092 &kdf_test_method,
3093 &pkey_kdf_test_method,
3094 &keypair_test_method,
3095 &keygen_test_method,
3096 &mac_test_method,
3097 &oneshot_digestsign_test_method,
3098 &oneshot_digestverify_test_method,
3099 &pbe_test_method,
3100 &pdecrypt_test_method,
3101 &pderive_test_method,
3102 &psign_test_method,
3103 &pverify_recover_test_method,
3104 &pverify_test_method,
3105 NULL
3106 };
3107
3108 static const EVP_TEST_METHOD *find_test(const char *name)
3109 {
3110 const EVP_TEST_METHOD **tt;
3111
3112 for (tt = evp_test_list; *tt; tt++) {
3113 if (strcmp(name, (*tt)->name) == 0)
3114 return *tt;
3115 }
3116 return NULL;
3117 }
3118
3119 static void clear_test(EVP_TEST *t)
3120 {
3121 test_clearstanza(&t->s);
3122 ERR_clear_error();
3123 if (t->data != NULL) {
3124 if (t->meth != NULL)
3125 t->meth->cleanup(t);
3126 OPENSSL_free(t->data);
3127 t->data = NULL;
3128 }
3129 OPENSSL_free(t->expected_err);
3130 t->expected_err = NULL;
3131 OPENSSL_free(t->reason);
3132 t->reason = NULL;
3133
3134 /* Text literal. */
3135 t->err = NULL;
3136 t->skip = 0;
3137 t->meth = NULL;
3138 }
3139
3140 /* Check for errors in the test structure; return 1 if okay, else 0. */
3141 static int check_test_error(EVP_TEST *t)
3142 {
3143 unsigned long err;
3144 const char *reason;
3145
3146 if (t->err == NULL && t->expected_err == NULL)
3147 return 1;
3148 if (t->err != NULL && t->expected_err == NULL) {
3149 if (t->aux_err != NULL) {
3150 TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
3151 t->s.test_file, t->s.start, t->aux_err, t->err);
3152 } else {
3153 TEST_info("%s:%d: Source of above error; unexpected error %s",
3154 t->s.test_file, t->s.start, t->err);
3155 }
3156 return 0;
3157 }
3158 if (t->err == NULL && t->expected_err != NULL) {
3159 TEST_info("%s:%d: Succeeded but was expecting %s",
3160 t->s.test_file, t->s.start, t->expected_err);
3161 return 0;
3162 }
3163
3164 if (strcmp(t->err, t->expected_err) != 0) {
3165 TEST_info("%s:%d: Expected %s got %s",
3166 t->s.test_file, t->s.start, t->expected_err, t->err);
3167 return 0;
3168 }
3169
3170 if (t->reason == NULL)
3171 return 1;
3172
3173 if (t->reason == NULL) {
3174 TEST_info("%s:%d: Test is missing function or reason code",
3175 t->s.test_file, t->s.start);
3176 return 0;
3177 }
3178
3179 err = ERR_peek_error();
3180 if (err == 0) {
3181 TEST_info("%s:%d: Expected error \"%s\" not set",
3182 t->s.test_file, t->s.start, t->reason);
3183 return 0;
3184 }
3185
3186 reason = ERR_reason_error_string(err);
3187 if (reason == NULL) {
3188 TEST_info("%s:%d: Expected error \"%s\", no strings available."
3189 " Assuming ok.",
3190 t->s.test_file, t->s.start, t->reason);
3191 return 1;
3192 }
3193
3194 if (strcmp(reason, t->reason) == 0)
3195 return 1;
3196
3197 TEST_info("%s:%d: Expected error \"%s\", got \"%s\"",
3198 t->s.test_file, t->s.start, t->reason, reason);
3199
3200 return 0;
3201 }
3202
3203 /* Run a parsed test. Log a message and return 0 on error. */
3204 static int run_test(EVP_TEST *t)
3205 {
3206 if (t->meth == NULL)
3207 return 1;
3208 t->s.numtests++;
3209 if (t->skip) {
3210 t->s.numskip++;
3211 } else {
3212 /* run the test */
3213 if (t->err == NULL && t->meth->run_test(t) != 1) {
3214 TEST_info("%s:%d %s error",
3215 t->s.test_file, t->s.start, t->meth->name);
3216 return 0;
3217 }
3218 if (!check_test_error(t)) {
3219 TEST_openssl_errors();
3220 t->s.errors++;
3221 }
3222 }
3223
3224 /* clean it up */
3225 return 1;
3226 }
3227
3228 static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
3229 {
3230 for (; lst != NULL; lst = lst->next) {
3231 if (strcmp(lst->name, name) == 0) {
3232 if (ppk != NULL)
3233 *ppk = lst->key;
3234 return 1;
3235 }
3236 }
3237 return 0;
3238 }
3239
3240 static void free_key_list(KEY_LIST *lst)
3241 {
3242 while (lst != NULL) {
3243 KEY_LIST *next = lst->next;
3244
3245 EVP_PKEY_free(lst->key);
3246 OPENSSL_free(lst->name);
3247 OPENSSL_free(lst);
3248 lst = next;
3249 }
3250 }
3251
3252 /*
3253 * Is the key type an unsupported algorithm?
3254 */
3255 static int key_unsupported(void)
3256 {
3257 long err = ERR_peek_last_error();
3258
3259 if (ERR_GET_LIB(err) == ERR_LIB_EVP
3260 && (ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM)) {
3261 ERR_clear_error();
3262 return 1;
3263 }
3264 #ifndef OPENSSL_NO_EC
3265 /*
3266 * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
3267 * hint to an unsupported algorithm/curve (e.g. if binary EC support is
3268 * disabled).
3269 */
3270 if (ERR_GET_LIB(err) == ERR_LIB_EC
3271 && (ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP
3272 || ERR_GET_REASON(err) == EC_R_INVALID_CURVE)) {
3273 ERR_clear_error();
3274 return 1;
3275 }
3276 #endif /* OPENSSL_NO_EC */
3277 return 0;
3278 }
3279
3280 /* NULL out the value from |pp| but return it. This "steals" a pointer. */
3281 static char *take_value(PAIR *pp)
3282 {
3283 char *p = pp->value;
3284
3285 pp->value = NULL;
3286 return p;
3287 }
3288
3289 /*
3290 * Return 1 if one of the providers named in the string is available.
3291 * The provider names are separated with whitespace.
3292 * NOTE: destructive function, it inserts '\0' after each provider name.
3293 */
3294 static int prov_available(char *providers)
3295 {
3296 char *p;
3297 int more = 1;
3298
3299 while (more) {
3300 for (; isspace(*providers); providers++)
3301 continue;
3302 if (*providers == '\0')
3303 break; /* End of the road */
3304 for (p = providers; *p != '\0' && !isspace(*p); p++)
3305 continue;
3306 if (*p == '\0')
3307 more = 0;
3308 else
3309 *p = '\0';
3310 if (OSSL_PROVIDER_available(libctx, providers))
3311 return 1; /* Found one */
3312 }
3313 return 0;
3314 }
3315
3316 /* Read and parse one test. Return 0 if failure, 1 if okay. */
3317 static int parse(EVP_TEST *t)
3318 {
3319 KEY_LIST *key, **klist;
3320 EVP_PKEY *pkey;
3321 PAIR *pp;
3322 int i, skip_availablein = 0;
3323
3324 top:
3325 do {
3326 if (BIO_eof(t->s.fp))
3327 return EOF;
3328 clear_test(t);
3329 if (!test_readstanza(&t->s))
3330 return 0;
3331 } while (t->s.numpairs == 0);
3332 pp = &t->s.pairs[0];
3333
3334 /* Are we adding a key? */
3335 klist = NULL;
3336 pkey = NULL;
3337 start:
3338 if (strcmp(pp->key, "PrivateKey") == 0) {
3339 pkey = PEM_read_bio_PrivateKey_ex(t->s.key, NULL, 0, NULL, libctx, NULL);
3340 if (pkey == NULL && !key_unsupported()) {
3341 EVP_PKEY_free(pkey);
3342 TEST_info("Can't read private key %s", pp->value);
3343 TEST_openssl_errors();
3344 return 0;
3345 }
3346 klist = &private_keys;
3347 } else if (strcmp(pp->key, "PublicKey") == 0) {
3348 pkey = PEM_read_bio_PUBKEY_ex(t->s.key, NULL, 0, NULL, libctx, NULL);
3349 if (pkey == NULL && !key_unsupported()) {
3350 EVP_PKEY_free(pkey);
3351 TEST_info("Can't read public key %s", pp->value);
3352 TEST_openssl_errors();
3353 return 0;
3354 }
3355 klist = &public_keys;
3356 } else if (strcmp(pp->key, "PrivateKeyRaw") == 0
3357 || strcmp(pp->key, "PublicKeyRaw") == 0 ) {
3358 char *strnid = NULL, *keydata = NULL;
3359 unsigned char *keybin;
3360 size_t keylen;
3361 int nid;
3362
3363 if (strcmp(pp->key, "PrivateKeyRaw") == 0)
3364 klist = &private_keys;
3365 else
3366 klist = &public_keys;
3367
3368 strnid = strchr(pp->value, ':');
3369 if (strnid != NULL) {
3370 *strnid++ = '\0';
3371 keydata = strchr(strnid, ':');
3372 if (keydata != NULL)
3373 *keydata++ = '\0';
3374 }
3375 if (keydata == NULL) {
3376 TEST_info("Failed to parse %s value", pp->key);
3377 return 0;
3378 }
3379
3380 nid = OBJ_txt2nid(strnid);
3381 if (nid == NID_undef) {
3382 TEST_info("Unrecognised algorithm NID");
3383 return 0;
3384 }
3385 if (!parse_bin(keydata, &keybin, &keylen)) {
3386 TEST_info("Failed to create binary key");
3387 return 0;
3388 }
3389 if (klist == &private_keys)
3390 pkey = EVP_PKEY_new_raw_private_key_with_libctx(libctx, strnid, NULL,
3391 keybin, keylen);
3392 else
3393 pkey = EVP_PKEY_new_raw_public_key_with_libctx(libctx, strnid, NULL,
3394 keybin, keylen);
3395 if (pkey == NULL && !key_unsupported()) {
3396 TEST_info("Can't read %s data", pp->key);
3397 OPENSSL_free(keybin);
3398 TEST_openssl_errors();
3399 return 0;
3400 }
3401 OPENSSL_free(keybin);
3402 } else if (strcmp(pp->key, "Availablein") == 0) {
3403 if (!prov_available(pp->value)) {
3404 TEST_info("skipping, '%s' provider not available: %s:%d",
3405 pp->value, t->s.test_file, t->s.start);
3406 t->skip = 1;
3407 return 0;
3408 }
3409 skip_availablein++;
3410 pp++;
3411 goto start;
3412 }
3413
3414 /* If we have a key add to list */
3415 if (klist != NULL) {
3416 if (find_key(NULL, pp->value, *klist)) {
3417 TEST_info("Duplicate key %s", pp->value);
3418 return 0;
3419 }
3420 if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
3421 return 0;
3422 key->name = take_value(pp);
3423 key->key = pkey;
3424 key->next = *klist;
3425 *klist = key;
3426
3427 /* Go back and start a new stanza. */
3428 if ((t->s.numpairs - skip_availablein) != 1)
3429 TEST_info("Line %d: missing blank line\n", t->s.curr);
3430 goto top;
3431 }
3432
3433 /* Find the test, based on first keyword. */
3434 if (!TEST_ptr(t->meth = find_test(pp->key)))
3435 return 0;
3436 if (!t->meth->init(t, pp->value)) {
3437 TEST_error("unknown %s: %s\n", pp->key, pp->value);
3438 return 0;
3439 }
3440 if (t->skip == 1) {
3441 /* TEST_info("skipping %s %s", pp->key, pp->value); */
3442 return 0;
3443 }
3444
3445 for (pp++, i = 1; i < (t->s.numpairs - skip_availablein); pp++, i++) {
3446 if (strcmp(pp->key, "Securitycheck") == 0) {
3447 #if defined(OPENSSL_NO_FIPS_SECURITYCHECKS)
3448 TEST_info("skipping, securitycheck is not available: %s:%d",
3449 t->s.test_file, t->s.start);
3450 t->skip = 1;
3451 return 0;
3452 #endif
3453 } else if (strcmp(pp->key, "Availablein") == 0) {
3454 TEST_info("Line %d: 'Availablein' should be the first option",
3455 t->s.curr);
3456 return 0;
3457 } else if (strcmp(pp->key, "Result") == 0) {
3458 if (t->expected_err != NULL) {
3459 TEST_info("Line %d: multiple result lines", t->s.curr);
3460 return 0;
3461 }
3462 t->expected_err = take_value(pp);
3463 } else if (strcmp(pp->key, "Function") == 0) {
3464 /* Ignore old line. */
3465 } else if (strcmp(pp->key, "Reason") == 0) {
3466 if (t->reason != NULL) {
3467 TEST_info("Line %d: multiple reason lines", t->s.curr);
3468 return 0;
3469 }
3470 t->reason = take_value(pp);
3471 } else {
3472 /* Must be test specific line: try to parse it */
3473 int rv = t->meth->parse(t, pp->key, pp->value);
3474
3475 if (rv == 0) {
3476 TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
3477 return 0;
3478 }
3479 if (rv < 0) {
3480 TEST_info("Line %d: error processing keyword %s = %s\n",
3481 t->s.curr, pp->key, pp->value);
3482 return 0;
3483 }
3484 }
3485 }
3486
3487 return 1;
3488 }
3489
3490 static int run_file_tests(int i)
3491 {
3492 EVP_TEST *t;
3493 const char *testfile = test_get_argument(i);
3494 int c;
3495
3496 if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
3497 return 0;
3498 if (!test_start_file(&t->s, testfile)) {
3499 OPENSSL_free(t);
3500 return 0;
3501 }
3502
3503 while (!BIO_eof(t->s.fp)) {
3504 c = parse(t);
3505 if (t->skip) {
3506 t->s.numskip++;
3507 continue;
3508 }
3509 if (c == 0 || !run_test(t)) {
3510 t->s.errors++;
3511 break;
3512 }
3513 }
3514 test_end_file(&t->s);
3515 clear_test(t);
3516
3517 free_key_list(public_keys);
3518 free_key_list(private_keys);
3519 BIO_free(t->s.key);
3520 c = t->s.errors;
3521 OPENSSL_free(t);
3522 return c == 0;
3523 }
3524
3525 const OPTIONS *test_get_options(void)
3526 {
3527 static const OPTIONS test_options[] = {
3528 OPT_TEST_OPTIONS_WITH_EXTRA_USAGE("[file...]\n"),
3529 { "config", OPT_CONFIG_FILE, '<',
3530 "The configuration file to use for the libctx" },
3531 { OPT_HELP_STR, 1, '-',
3532 "file\tFile to run tests on.\n" },
3533 { NULL }
3534 };
3535 return test_options;
3536 }
3537
3538 int setup_tests(void)
3539 {
3540 size_t n;
3541 char *config_file = NULL;
3542
3543 OPTION_CHOICE o;
3544
3545 while ((o = opt_next()) != OPT_EOF) {
3546 switch (o) {
3547 case OPT_CONFIG_FILE:
3548 config_file = opt_arg();
3549 break;
3550 case OPT_TEST_CASES:
3551 break;
3552 default:
3553 case OPT_ERR:
3554 return 0;
3555 }
3556 }
3557
3558 /*
3559 * Load the 'null' provider into the default library context to ensure that
3560 * the the tests do not fallback to using the default provider.
3561 */
3562 prov_null = OSSL_PROVIDER_load(NULL, "null");
3563 if (prov_null == NULL) {
3564 opt_printf_stderr("Failed to load null provider into default libctx\n");
3565 return 0;
3566 }
3567
3568 /* load the provider via configuration into the created library context */
3569 libctx = OPENSSL_CTX_new();
3570 if (libctx == NULL
3571 || !OPENSSL_CTX_load_config(libctx, config_file)) {
3572 TEST_error("Failed to load config %s\n", config_file);
3573 return 0;
3574 }
3575
3576 n = test_get_argument_count();
3577 if (n == 0)
3578 return 0;
3579
3580 ADD_ALL_TESTS(run_file_tests, n);
3581 return 1;
3582 }
3583
3584 void cleanup_tests(void)
3585 {
3586 OSSL_PROVIDER_unload(prov_null);
3587 OPENSSL_CTX_free(libctx);
3588 }
3589
3590 #define STR_STARTS_WITH(str, pre) strncasecmp(pre, str, strlen(pre)) == 0
3591 #define STR_ENDS_WITH(str, pre) \
3592 strlen(str) < strlen(pre) ? 0 : (strcasecmp(pre, str + strlen(str) - strlen(pre)) == 0)
3593
3594 static int is_digest_disabled(const char *name)
3595 {
3596 #ifdef OPENSSL_NO_BLAKE2
3597 if (STR_STARTS_WITH(name, "BLAKE"))
3598 return 1;
3599 #endif
3600 #ifdef OPENSSL_NO_MD2
3601 if (strcasecmp(name, "MD2") == 0)
3602 return 1;
3603 #endif
3604 #ifdef OPENSSL_NO_MDC2
3605 if (strcasecmp(name, "MDC2") == 0)
3606 return 1;
3607 #endif
3608 #ifdef OPENSSL_NO_MD4
3609 if (strcasecmp(name, "MD4") == 0)
3610 return 1;
3611 #endif
3612 #ifdef OPENSSL_NO_MD5
3613 if (strcasecmp(name, "MD5") == 0)
3614 return 1;
3615 #endif
3616 #ifdef OPENSSL_NO_RMD160
3617 if (strcasecmp(name, "RIPEMD160") == 0)
3618 return 1;
3619 #endif
3620 #ifdef OPENSSL_NO_SM3
3621 if (strcasecmp(name, "SM3") == 0)
3622 return 1;
3623 #endif
3624 #ifdef OPENSSL_NO_WHIRLPOOL
3625 if (strcasecmp(name, "WHIRLPOOL") == 0)
3626 return 1;
3627 #endif
3628 return 0;
3629 }
3630
3631 static int is_pkey_disabled(const char *name)
3632 {
3633 #ifdef OPENSSL_NO_RSA
3634 if (STR_STARTS_WITH(name, "RSA"))
3635 return 1;
3636 #endif
3637 #ifdef OPENSSL_NO_EC
3638 if (STR_STARTS_WITH(name, "EC"))
3639 return 1;
3640 #endif
3641 #ifdef OPENSSL_NO_DH
3642 if (STR_STARTS_WITH(name, "DH"))
3643 return 1;
3644 #endif
3645 #ifdef OPENSSL_NO_DSA
3646 if (STR_STARTS_WITH(name, "DSA"))
3647 return 1;
3648 #endif
3649 return 0;
3650 }
3651
3652 static int is_mac_disabled(const char *name)
3653 {
3654 #ifdef OPENSSL_NO_BLAKE2
3655 if (STR_STARTS_WITH(name, "BLAKE2BMAC")
3656 || STR_STARTS_WITH(name, "BLAKE2SMAC"))
3657 return 1;
3658 #endif
3659 #ifdef OPENSSL_NO_CMAC
3660 if (STR_STARTS_WITH(name, "CMAC"))
3661 return 1;
3662 #endif
3663 #ifdef OPENSSL_NO_POLY1305
3664 if (STR_STARTS_WITH(name, "Poly1305"))
3665 return 1;
3666 #endif
3667 #ifdef OPENSSL_NO_SIPHASH
3668 if (STR_STARTS_WITH(name, "SipHash"))
3669 return 1;
3670 #endif
3671 return 0;
3672 }
3673 static int is_kdf_disabled(const char *name)
3674 {
3675 #ifdef OPENSSL_NO_SCRYPT
3676 if (STR_ENDS_WITH(name, "SCRYPT"))
3677 return 1;
3678 #endif
3679 #ifdef OPENSSL_NO_CMS
3680 if (strcasecmp(name, "X942KDF") == 0)
3681 return 1;
3682 #endif /* OPENSSL_NO_CMS */
3683 return 0;
3684 }
3685
3686 static int is_cipher_disabled(const char *name)
3687 {
3688 #ifdef OPENSSL_NO_ARIA
3689 if (STR_STARTS_WITH(name, "ARIA"))
3690 return 1;
3691 #endif
3692 #ifdef OPENSSL_NO_BF
3693 if (STR_STARTS_WITH(name, "BF"))
3694 return 1;
3695 #endif
3696 #ifdef OPENSSL_NO_CAMELLIA
3697 if (STR_STARTS_WITH(name, "CAMELLIA"))
3698 return 1;
3699 #endif
3700 #ifdef OPENSSL_NO_CAST
3701 if (STR_STARTS_WITH(name, "CAST"))
3702 return 1;
3703 #endif
3704 #ifdef OPENSSL_NO_CHACHA
3705 if (STR_STARTS_WITH(name, "CHACHA"))
3706 return 1;
3707 #endif
3708 #ifdef OPENSSL_NO_POLY1305
3709 if (STR_ENDS_WITH(name, "Poly1305"))
3710 return 1;
3711 #endif
3712 #ifdef OPENSSL_NO_DES
3713 if (STR_STARTS_WITH(name, "DES"))
3714 return 1;
3715 #endif
3716 #ifdef OPENSSL_NO_OCB
3717 if (STR_ENDS_WITH(name, "OCB"))
3718 return 1;
3719 #endif
3720 #ifdef OPENSSL_NO_IDEA
3721 if (STR_STARTS_WITH(name, "IDEA"))
3722 return 1;
3723 #endif
3724 #ifdef OPENSSL_NO_RC2
3725 if (STR_STARTS_WITH(name, "RC2"))
3726 return 1;
3727 #endif
3728 #ifdef OPENSSL_NO_RC4
3729 if (STR_STARTS_WITH(name, "RC4"))
3730 return 1;
3731 #endif
3732 #ifdef OPENSSL_NO_RC5
3733 if (STR_STARTS_WITH(name, "RC5"))
3734 return 1;
3735 #endif
3736 #ifdef OPENSSL_NO_SEED
3737 if (STR_STARTS_WITH(name, "SEED"))
3738 return 1;
3739 #endif
3740 #ifdef OPENSSL_NO_SIV
3741 if (STR_ENDS_WITH(name, "SIV"))
3742 return 1;
3743 #endif
3744 #ifdef OPENSSL_NO_SM4
3745 if (STR_STARTS_WITH(name, "SM4"))
3746 return 1;
3747 #endif
3748 return 0;
3749 }