]> git.ipfire.org Git - thirdparty/systemd.git/blob - man/systemd.resource-control.xml
Merge pull request #26785 from keszybz/udev-distcheck
[thirdparty/systemd.git] / man / systemd.resource-control.xml
1 <?xml version='1.0'?>
2 <!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
4 <!-- SPDX-License-Identifier: LGPL-2.1-or-later -->
5
6 <refentry id="systemd.resource-control" xmlns:xi="http://www.w3.org/2001/XInclude">
7 <refentryinfo>
8 <title>systemd.resource-control</title>
9 <productname>systemd</productname>
10 </refentryinfo>
11
12 <refmeta>
13 <refentrytitle>systemd.resource-control</refentrytitle>
14 <manvolnum>5</manvolnum>
15 </refmeta>
16
17 <refnamediv>
18 <refname>systemd.resource-control</refname>
19 <refpurpose>Resource control unit settings</refpurpose>
20 </refnamediv>
21
22 <refsynopsisdiv>
23 <para>
24 <filename><replaceable>slice</replaceable>.slice</filename>,
25 <filename><replaceable>scope</replaceable>.scope</filename>,
26 <filename><replaceable>service</replaceable>.service</filename>,
27 <filename><replaceable>socket</replaceable>.socket</filename>,
28 <filename><replaceable>mount</replaceable>.mount</filename>,
29 <filename><replaceable>swap</replaceable>.swap</filename>
30 </para>
31 </refsynopsisdiv>
32
33 <refsect1>
34 <title>Description</title>
35
36 <para>Unit configuration files for services, slices, scopes, sockets, mount points, and swap devices share a subset
37 of configuration options for resource control of spawned processes. Internally, this relies on the Linux Control
38 Groups (cgroups) kernel concept for organizing processes in a hierarchical tree of named groups for the purpose of
39 resource management.</para>
40
41 <para>This man page lists the configuration options shared by
42 those six unit types. See
43 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
44 for the common options of all unit configuration files, and
45 <citerefentry><refentrytitle>systemd.slice</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
46 <citerefentry><refentrytitle>systemd.scope</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
47 <citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
48 <citerefentry><refentrytitle>systemd.socket</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
49 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
50 and
51 <citerefentry><refentrytitle>systemd.swap</refentrytitle><manvolnum>5</manvolnum></citerefentry>
52 for more information on the specific unit configuration files. The
53 resource control configuration options are configured in the
54 [Slice], [Scope], [Service], [Socket], [Mount], or [Swap]
55 sections, depending on the unit type.</para>
56
57 <para>In addition, options which control resources available to programs
58 <emphasis>executed</emphasis> by systemd are listed in
59 <citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
60 Those options complement options listed here.</para>
61
62 <refsect2>
63 <title>Enabling and disabling controllers</title>
64
65 <para>Controllers in the cgroup hierarchy are hierarchical, and resource control is realized by
66 distributing resource assignments between siblings in branches of the cgroup hierarchy. There is no
67 need to explicitly <emphasis>enable</emphasis> a cgroup controller for a unit.
68 <command>systemd</command> will instruct the kernel to enable a controller for a given unit when this
69 unit has configuration for a given controller. For example, when <varname>CPUWeight=</varname> is set,
70 the <option>cpu</option> controller will be enabled, and when <varname>TasksMax=</varname> are set, the
71 <option>pids</option> controller will be enabled. In addition, various controllers may be also be
72 enabled explicitly via the
73 <varname>MemoryAccounting=</varname>/<varname>TasksAccounting=</varname>/<varname>IOAccounting=</varname>
74 settings. Because of how the cgroup hierarchy works, controllers will be automatically enabled for all
75 parent units and for any sibling units starting with the lowest level at which a controller is enabled.
76 Units for which a controller is enabled may be subject to resource control even if they don't have any
77 explicit configuration.</para>
78
79 <para>Setting <varname>Delegate=</varname> enables any delegated controllers for that unit (see below).
80 The delegatee may then enable controllers for its children as appropriate. In particular, if the
81 delegatee is <command>systemd</command> (in the <filename>user@.service</filename> unit), it will
82 repeat the same logic as the system instance and enable controllers for user units which have resource
83 limits configured, and their siblings and parents and parents' siblings.</para>
84
85 <para>Controllers may be <emphasis>disabled</emphasis> for parts of the cgroup hierarchy with
86 <varname>DisableControllers=</varname> (see below).</para>
87
88 <example>
89 <title>Enabling and disabling controllers</title>
90
91 <programlisting>
92 -.slice
93 / \
94 /-----/ \--------------\
95 / \
96 system.slice user.slice
97 / \ / \
98 / \ / \
99 / \ user@42.service user@1000.service
100 / \ Delegate= Delegate=yes
101 a.service b.slice / \
102 CPUWeight=20 DisableControllers=cpu / \
103 / \ app.slice session.slice
104 / \ CPUWeight=100 CPUWeight=100
105 / \
106 b1.service b2.service
107 CPUWeight=1000
108 </programlisting>
109
110 <para>In this hierarchy, the <option>cpu</option> controller is enabled for all units shown except
111 <filename>b1.service</filename> and <filename>b2.service</filename>. Because there is no explicit
112 configuration for <filename>system.slice</filename> and <filename>user.slice</filename>, CPU
113 resources will be split equally between them. Similarly, resources are allocated equally between
114 children of <filename>user.slice</filename> and between the child slices beneath
115 <filename>user@1000.service</filename>. Assuming that there is no futher configuration of resources
116 or delegation below slices <filename>app.slice</filename> or <filename>session.slice</filename>, the
117 <option>cpu</option> controller would not be enabled for units in those slices and CPU resources
118 would be further allocated using other mechanisms, e.g. based on nice levels. The manager for user
119 42 has delegation enabled without any controllers, i.e. it can manipulate its subtree of the cgroup
120 hierarchy, but without resource control.</para>
121
122 <para>In the slice <filename>system.slice</filename>, CPU resources are split 1:6 for service
123 <filename>a.service</filename>, and 5:6 for slice <filename>b.slice</filename>, because slice
124 <filename>b.slice</filename> gets the default value of 100 for <filename>cpu.weight</filename> when
125 <varname>CPUWeight=</varname> is not set.</para>
126
127 <para><varname>CPUWeight=</varname> setting in service <filename>b2.service</filename> is neutralized
128 by <varname>DisableControllers=</varname> in slice <filename>b.slice</filename>, so the
129 <option>cpu</option> controller would not be enabled for services <filename>b1.service</filename> and
130 <filename>b2.service</filename>, and CPU resources would be further allocated using other mechanisms,
131 e.g. based on nice levels.</para>
132 </example>
133 </refsect2>
134
135 <refsect2>
136 <title>Setting resource controls for a group of related units</title>
137
138 <para>As described in
139 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>, the
140 settings listed here may be set through the main file of a unit and drop-in snippets in
141 <filename index="false">*.d/</filename> directories. The list of directories searched for drop-ins
142 includes names formed by repeatedly truncating the unit name after all dashes. This is particularly
143 convenient to set resource limits for a group of units with similar names.</para>
144
145 <para>For example, every user gets their own slice
146 <filename>user-<replaceable>nnn</replaceable>.slice</filename>. Drop-ins with local configuration that
147 affect user 1000 may be placed in
148 <filename index="false">/etc/systemd/system/user-1000.slice</filename>,
149 <filename index="false">/etc/systemd/system/user-1000.slice.d/*.conf</filename>, but also
150 <filename index="false">/etc/systemd/system/user-.slice.d/*.conf</filename>. This last directory
151 applies to all user slices.</para>
152 </refsect2>
153
154 <para>See the <ulink
155 url="https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface">New
156 Control Group Interfaces</ulink> for an introduction on how to make
157 use of resource control APIs from programs.</para>
158 </refsect1>
159
160 <refsect1>
161 <title>Implicit Dependencies</title>
162
163 <para>The following dependencies are implicitly added:</para>
164
165 <itemizedlist>
166 <listitem><para>Units with the <varname>Slice=</varname> setting set automatically acquire
167 <varname>Requires=</varname> and <varname>After=</varname> dependencies on the specified
168 slice unit.</para></listitem>
169 </itemizedlist>
170 </refsect1>
171
172 <!-- We don't have any default dependency here. -->
173
174 <refsect1>
175 <title>Options</title>
176
177 <para>Units of the types listed above can have settings
178 for resource control configuration:</para>
179
180 <variablelist class='unit-directives'>
181
182 <varlistentry>
183 <term><varname>CPUAccounting=</varname></term>
184
185 <listitem>
186 <para>Turn on CPU usage accounting for this unit. Takes a
187 boolean argument. Note that turning on CPU accounting for
188 one unit will also implicitly turn it on for all units
189 contained in the same slice and for all its parent slices
190 and the units contained therein. The system default for this
191 setting may be controlled with
192 <varname>DefaultCPUAccounting=</varname> in
193 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
194
195 <para>Under the unified cgroup hierarchy, CPU accounting is available for all units and this
196 setting has no effect.</para>
197 </listitem>
198 </varlistentry>
199
200 <varlistentry>
201 <term><varname>CPUWeight=<replaceable>weight</replaceable></varname></term>
202 <term><varname>StartupCPUWeight=<replaceable>weight</replaceable></varname></term>
203
204 <listitem>
205 <para>These settings control the <option>cpu</option> controller in the unified hierarchy.</para>
206
207 <para>These options accept an integer value or a the special string "idle":</para>
208 <itemizedlist>
209 <listitem>
210 <para>If set to an integer value, assign the specified CPU time weight to the processes
211 executed, if the unified control group hierarchy is used on the system. These options control
212 the <literal>cpu.weight</literal> control group attribute. The allowed range is 1 to 10000.
213 Defaults to unset, but the kernel default is 100. For details about this control group
214 attribute, see <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups
215 v2</ulink> and <ulink url="https://docs.kernel.org/scheduler/sched-design-CFS.html">CFS
216 Scheduler</ulink>. The available CPU time is split up among all units within one slice
217 relative to their CPU time weight. A higher weight means more CPU time, a lower weight means
218 less.</para>
219 </listitem>
220 <listitem>
221 <para>If set to the special string "idle", mark the cgroup for "idle scheduling", which means
222 that it will get CPU resources only when there are no processes not marked in this way to execute in this
223 cgroup or its siblings. This setting corresponds to the <literal>cpu.idle</literal> cgroup attribute.</para>
224
225 <para>Note that this value only has an effect on cgroup-v2, for cgroup-v1 it is equivalent to the minimum weight.</para>
226 </listitem>
227 </itemizedlist>
228
229 <para>While <varname>StartupCPUWeight=</varname> applies to the startup and shutdown phases of the system,
230 <varname>CPUWeight=</varname> applies to normal runtime of the system, and if the former is not set also to
231 the startup and shutdown phases. Using <varname>StartupCPUWeight=</varname> allows prioritizing specific services at
232 boot-up and shutdown differently than during normal runtime.</para>
233
234 <para>In addition to the resource allocation performed by the <option>cpu</option> controller, the
235 kernel may automatically divide resources based on session-id grouping, see "The autogroup feature"
236 in <citerefentry
237 project='man-pages'><refentrytitle>sched</refentrytitle><manvolnum>7</manvolnum></citerefentry>.
238 The effect of this feature is similar to the <option>cpu</option> controller with no explicit
239 configuration, so users should be careful to not mistake one for the other.</para>
240 </listitem>
241 </varlistentry>
242
243 <varlistentry>
244 <term><varname>CPUQuota=</varname></term>
245
246 <listitem>
247 <para>This setting controls the <option>cpu</option> controller in the unified hierarchy.</para>
248
249 <para>Assign the specified CPU time quota to the processes executed. Takes a percentage value, suffixed with
250 "%". The percentage specifies how much CPU time the unit shall get at maximum, relative to the total CPU time
251 available on one CPU. Use values &gt; 100% for allotting CPU time on more than one CPU. This controls the
252 <literal>cpu.max</literal> attribute on the unified control group hierarchy and
253 <literal>cpu.cfs_quota_us</literal> on legacy. For details about these control group attributes, see <ulink
254 url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups v2</ulink> and <ulink
255 url="https://docs.kernel.org/scheduler/sched-bwc.html">CFS Bandwidth Control</ulink>.
256 Setting <varname>CPUQuota=</varname> to an empty value unsets the quota.</para>
257
258 <para>Example: <varname>CPUQuota=20%</varname> ensures that the executed processes will never get more than
259 20% CPU time on one CPU.</para>
260
261 </listitem>
262 </varlistentry>
263
264 <varlistentry>
265 <term><varname>CPUQuotaPeriodSec=</varname></term>
266
267 <listitem>
268 <para>This setting controls the <option>cpu</option> controller in the unified hierarchy.</para>
269
270 <para>Assign the duration over which the CPU time quota specified by <varname>CPUQuota=</varname> is measured.
271 Takes a time duration value in seconds, with an optional suffix such as "ms" for milliseconds (or "s" for seconds.)
272 The default setting is 100ms. The period is clamped to the range supported by the kernel, which is [1ms, 1000ms].
273 Additionally, the period is adjusted up so that the quota interval is also at least 1ms.
274 Setting <varname>CPUQuotaPeriodSec=</varname> to an empty value resets it to the default.</para>
275
276 <para>This controls the second field of <literal>cpu.max</literal> attribute on the unified control group hierarchy
277 and <literal>cpu.cfs_period_us</literal> on legacy. For details about these control group attributes, see
278 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups v2</ulink> and
279 <ulink url="https://docs.kernel.org/scheduler/sched-design-CFS.html">CFS Scheduler</ulink>.</para>
280
281 <para>Example: <varname>CPUQuotaPeriodSec=10ms</varname> to request that the CPU quota is measured in periods of 10ms.</para>
282 </listitem>
283 </varlistentry>
284
285 <varlistentry>
286 <term><varname>AllowedCPUs=</varname></term>
287 <term><varname>StartupAllowedCPUs=</varname></term>
288
289 <listitem>
290 <para>This setting controls the <option>cpuset</option> controller in the unified hierarchy.</para>
291
292 <para>Restrict processes to be executed on specific CPUs. Takes a list of CPU indices or ranges separated by either
293 whitespace or commas. CPU ranges are specified by the lower and upper CPU indices separated by a dash.</para>
294
295 <para>Setting <varname>AllowedCPUs=</varname> or <varname>StartupAllowedCPUs=</varname> doesn't guarantee that all
296 of the CPUs will be used by the processes as it may be limited by parent units. The effective configuration is
297 reported as <varname>EffectiveCPUs=</varname>.</para>
298
299 <para>While <varname>StartupAllowedCPUs=</varname> applies to the startup and shutdown phases of the system,
300 <varname>AllowedCPUs=</varname> applies to normal runtime of the system, and if the former is not set also to
301 the startup and shutdown phases. Using <varname>StartupAllowedCPUs=</varname> allows prioritizing specific services at
302 boot-up and shutdown differently than during normal runtime.</para>
303
304 <para>This setting is supported only with the unified control group hierarchy.</para>
305 </listitem>
306 </varlistentry>
307
308 <varlistentry>
309 <term><varname>AllowedMemoryNodes=</varname></term>
310 <term><varname>StartupAllowedMemoryNodes=</varname></term>
311
312 <listitem>
313 <para>These settings control the <option>cpuset</option> controller in the unified hierarchy.</para>
314
315 <para>Restrict processes to be executed on specific memory NUMA nodes. Takes a list of memory NUMA nodes indices
316 or ranges separated by either whitespace or commas. Memory NUMA nodes ranges are specified by the lower and upper
317 NUMA nodes indices separated by a dash.</para>
318
319 <para>Setting <varname>AllowedMemoryNodes=</varname> or <varname>StartupAllowedMemoryNodes=</varname> doesn't
320 guarantee that all of the memory NUMA nodes will be used by the processes as it may be limited by parent units.
321 The effective configuration is reported as <varname>EffectiveMemoryNodes=</varname>.</para>
322
323 <para>While <varname>StartupAllowedMemoryNodes=</varname> applies to the startup and shutdown phases of the system,
324 <varname>AllowedMemoryNodes=</varname> applies to normal runtime of the system, and if the former is not set also to
325 the startup and shutdown phases. Using <varname>StartupAllowedMemoryNodes=</varname> allows prioritizing specific services at
326 boot-up and shutdown differently than during normal runtime.</para>
327
328 <para>This setting is supported only with the unified control group hierarchy.</para>
329 </listitem>
330 </varlistentry>
331
332 <varlistentry>
333 <term><varname>MemoryAccounting=</varname></term>
334
335 <listitem>
336 <para>This setting controls the <option>memory</option> controller in the unified hierarchy.</para>
337
338 <para>Turn on process and kernel memory accounting for this
339 unit. Takes a boolean argument. Note that turning on memory
340 accounting for one unit will also implicitly turn it on for
341 all units contained in the same slice and for all its parent
342 slices and the units contained therein. The system default
343 for this setting may be controlled with
344 <varname>DefaultMemoryAccounting=</varname> in
345 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
346 </listitem>
347 </varlistentry>
348
349 <varlistentry>
350 <term><varname>MemoryMin=<replaceable>bytes</replaceable></varname>, <varname>MemoryLow=<replaceable>bytes</replaceable></varname></term>
351 <term><varname>StartupMemoryLow=<replaceable>bytes</replaceable></varname>, <varname>DefaultStartupMemoryLow=<replaceable>bytes</replaceable></varname></term>
352
353 <listitem>
354 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
355
356 <para>Specify the memory usage protection of the executed processes in this unit.
357 When reclaiming memory, the unit is treated as if it was using less memory resulting in memory
358 to be preferentially reclaimed from unprotected units.
359 Using <varname>MemoryLow=</varname> results in a weaker protection where memory may still
360 be reclaimed to avoid invoking the OOM killer in case there is no other reclaimable memory.</para>
361 <para>
362 For a protection to be effective, it is generally required to set a corresponding
363 allocation on all ancestors, which is then distributed between children
364 (with the exception of the root slice).
365 Any <varname>MemoryMin=</varname> or <varname>MemoryLow=</varname> allocation that is not
366 explicitly distributed to specific children is used to create a shared protection for all children.
367 As this is a shared protection, the children will freely compete for the memory.</para>
368
369 <para>Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is
370 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a
371 percentage value may be specified, which is taken relative to the installed physical memory on the
372 system. If assigned the special value <literal>infinity</literal>, all available memory is protected, which may be
373 useful in order to always inherit all of the protection afforded by ancestors.
374 This controls the <literal>memory.min</literal> or <literal>memory.low</literal> control group attribute.
375 For details about this control group attribute, see <ulink
376 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
377
378 <para>Units may have their children use a default <literal>memory.min</literal> or
379 <literal>memory.low</literal> value by specifying <varname>DefaultMemoryMin=</varname> or
380 <varname>DefaultMemoryLow=</varname>, which has the same semantics as
381 <varname>MemoryMin=</varname> and <varname>MemoryLow=</varname>, or <varname>DefaultStartupMemoryLow=</varname>
382 which has the same semantics as <varname>StartupMemoryLow=</varname>.
383 This setting does not affect <literal>memory.min</literal> or <literal>memory.low</literal>
384 in the unit itself.
385 Using it to set a default child allocation is only useful on kernels older than 5.7,
386 which do not support the <literal>memory_recursiveprot</literal> cgroup2 mount option.</para>
387
388 <para>While <varname>StartupMemoryLow=</varname> applies to the startup and shutdown phases of the system,
389 <varname>MemoryMin=</varname> applies to normal runtime of the system, and if the former is not set also to
390 the startup and shutdown phases. Using <varname>StartupMemoryLow=</varname> allows prioritizing specific services at
391 boot-up and shutdown differently than during normal runtime.</para>
392 </listitem>
393 </varlistentry>
394
395 <varlistentry>
396 <term><varname>MemoryHigh=<replaceable>bytes</replaceable></varname></term>
397 <term><varname>StartupMemoryHigh=<replaceable>bytes</replaceable></varname></term>
398
399 <listitem>
400 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
401
402 <para>Specify the throttling limit on memory usage of the executed processes in this unit. Memory usage may go
403 above the limit if unavoidable, but the processes are heavily slowed down and memory is taken away
404 aggressively in such cases. This is the main mechanism to control memory usage of a unit.</para>
405
406 <para>Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is
407 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a
408 percentage value may be specified, which is taken relative to the installed physical memory on the
409 system. If assigned the
410 special value <literal>infinity</literal>, no memory throttling is applied. This controls the
411 <literal>memory.high</literal> control group attribute. For details about this control group attribute, see
412 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
413
414 <para>While <varname>StartupMemoryHigh=</varname> applies to the startup and shutdown phases of the system,
415 <varname>MemoryHigh=</varname> applies to normal runtime of the system, and if the former is not set also to
416 the startup and shutdown phases. Using <varname>StartupMemoryHigh=</varname> allows prioritizing specific services at
417 boot-up and shutdown differently than during normal runtime.</para>
418 </listitem>
419 </varlistentry>
420
421 <varlistentry>
422 <term><varname>MemoryMax=<replaceable>bytes</replaceable></varname></term>
423 <term><varname>StartupMemoryMax=<replaceable>bytes</replaceable></varname></term>
424
425 <listitem>
426 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
427
428 <para>Specify the absolute limit on memory usage of the executed processes in this unit. If memory usage
429 cannot be contained under the limit, out-of-memory killer is invoked inside the unit. It is recommended to
430 use <varname>MemoryHigh=</varname> as the main control mechanism and use <varname>MemoryMax=</varname> as the
431 last line of defense.</para>
432
433 <para>Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is
434 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a
435 percentage value may be specified, which is taken relative to the installed physical memory on the system. If
436 assigned the special value <literal>infinity</literal>, no memory limit is applied. This controls the
437 <literal>memory.max</literal> control group attribute. For details about this control group attribute, see
438 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
439
440 <para>While <varname>StartupMemoryMax=</varname> applies to the startup and shutdown phases of the system,
441 <varname>MemoryMax=</varname> applies to normal runtime of the system, and if the former is not set also to
442 the startup and shutdown phases. Using <varname>StartupMemoryMax=</varname> allows prioritizing specific services at
443 boot-up and shutdown differently than during normal runtime.</para>
444 </listitem>
445 </varlistentry>
446
447 <varlistentry>
448 <term><varname>MemorySwapMax=<replaceable>bytes</replaceable></varname></term>
449 <term><varname>StartupMemorySwapMax=<replaceable>bytes</replaceable></varname></term>
450
451 <listitem>
452 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
453
454 <para>Specify the absolute limit on swap usage of the executed processes in this unit.</para>
455
456 <para>Takes a swap size in bytes. If the value is suffixed with K, M, G or T, the specified swap size is
457 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. If assigned the
458 special value <literal>infinity</literal>, no swap limit is applied. These settings control the
459 <literal>memory.swap.max</literal> control group attribute. For details about this control group attribute,
460 see <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
461
462 <para>While <varname>StartupMemorySwapMax=</varname> applies to the startup and shutdown phases of the system,
463 <varname>MemorySwapMax=</varname> applies to normal runtime of the system, and if the former is not set also to
464 the startup and shutdown phases. Using <varname>StartupMemorySwapMax=</varname> allows prioritizing specific services at
465 boot-up and shutdown differently than during normal runtime.</para>
466 </listitem>
467 </varlistentry>
468
469 <varlistentry>
470 <term><varname>MemoryZSwapMax=<replaceable>bytes</replaceable></varname></term>
471 <term><varname>StartupMemoryZSwapMax=<replaceable>bytes</replaceable></varname></term>
472
473 <listitem>
474 <para>These settings control the <option>memory</option> controller in the unified hierarchy.</para>
475
476 <para>Specify the absolute limit on zswap usage of the processes in this unit. Zswap is a lightweight compressed
477 cache for swap pages. It takes pages that are in the process of being swapped out and attempts to compress them into a
478 dynamically allocated RAM-based memory pool. If the limit specified is hit, no entries from this unit will be
479 stored in the pool until existing entries are faulted back or written out to disk. See the kernel's
480 <ulink url="https://www.kernel.org/doc/html/latest/admin-guide/mm/zswap.html">Zswap</ulink> documentation for more details.</para>
481
482 <para>Takes a size in bytes. If the value is suffixed with K, M, G or T, the specified size is
483 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. If assigned the
484 special value <literal>infinity</literal>, no limit is applied. These settings control the
485 <literal>memory.zswap.max</literal> control group attribute. For details about this control group attribute,
486 see <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files">Memory Interface Files</ulink>.</para>
487
488 <para>While <varname>StartupMemoryZSwapMax=</varname> applies to the startup and shutdown phases of the system,
489 <varname>MemoryZSwapMax=</varname> applies to normal runtime of the system, and if the former is not set also to
490 the startup and shutdown phases. Using <varname>StartupMemoryZSwapMax=</varname> allows prioritizing specific services at
491 boot-up and shutdown differently than during normal runtime.</para>
492 </listitem>
493 </varlistentry>
494
495 <varlistentry>
496 <term><varname>TasksAccounting=</varname></term>
497
498 <listitem>
499 <para>This setting controls the <option>pids</option> controller in the unified hierarchy.</para>
500
501 <para>Turn on task accounting for this unit. Takes a boolean argument. If enabled, the kernel will
502 keep track of the total number of tasks in the unit and its children. This number includes both
503 kernel threads and userspace processes, with each thread counted individually. Note that turning on
504 tasks accounting for one unit will also implicitly turn it on for all units contained in the same
505 slice and for all its parent slices and the units contained therein. The system default for this
506 setting may be controlled with <varname>DefaultTasksAccounting=</varname> in
507 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
508 </listitem>
509 </varlistentry>
510
511 <varlistentry>
512 <term><varname>TasksMax=<replaceable>N</replaceable></varname></term>
513
514 <listitem>
515 <para>This setting controls the <option>pids</option> controller in the unified hierarchy.</para>
516
517 <para>Specify the maximum number of tasks that may be created in the unit. This ensures that the
518 number of tasks accounted for the unit (see above) stays below a specific limit. This either takes
519 an absolute number of tasks or a percentage value that is taken relative to the configured maximum
520 number of tasks on the system. If assigned the special value <literal>infinity</literal>, no tasks
521 limit is applied. This controls the <literal>pids.max</literal> control group attribute. For
522 details about this control group attribute, the
523 <ulink url="https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#pid">pids controller
524 </ulink>.</para>
525
526 <para>The system default for this setting may be controlled with
527 <varname>DefaultTasksMax=</varname> in
528 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
529 </listitem>
530 </varlistentry>
531
532 <varlistentry>
533 <term><varname>IOAccounting=</varname></term>
534
535 <listitem>
536 <para>This setting controls the <option>io</option> controller in the unified hierarchy.</para>
537
538 <para>Turn on Block I/O accounting for this unit, if the unified control group hierarchy is used on the
539 system. Takes a boolean argument. Note that turning on block I/O accounting for one unit will also implicitly
540 turn it on for all units contained in the same slice and all for its parent slices and the units contained
541 therein. The system default for this setting may be controlled with <varname>DefaultIOAccounting=</varname>
542 in
543 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
544 </listitem>
545 </varlistentry>
546
547 <varlistentry>
548 <term><varname>IOWeight=<replaceable>weight</replaceable></varname></term>
549 <term><varname>StartupIOWeight=<replaceable>weight</replaceable></varname></term>
550
551 <listitem>
552 <para>These settings control the <option>io</option> controller in the unified hierarchy.</para>
553
554 <para>Set the default overall block I/O weight for the executed processes, if the unified control
555 group hierarchy is used on the system. Takes a single weight value (between 1 and 10000) to set the
556 default block I/O weight. This controls the <literal>io.weight</literal> control group attribute,
557 which defaults to 100. For details about this control group attribute, see <ulink
558 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO
559 Interface Files</ulink>. The available I/O bandwidth is split up among all units within one slice
560 relative to their block I/O weight. A higher weight means more I/O bandwidth, a lower weight means
561 less.</para>
562
563 <para>While <varname>StartupIOWeight=</varname> applies
564 to the startup and shutdown phases of the system,
565 <varname>IOWeight=</varname> applies to the later runtime of
566 the system, and if the former is not set also to the startup
567 and shutdown phases. This allows prioritizing specific services at boot-up
568 and shutdown differently than during runtime.</para>
569 </listitem>
570 </varlistentry>
571
572 <varlistentry>
573 <term><varname>IODeviceWeight=<replaceable>device</replaceable> <replaceable>weight</replaceable></varname></term>
574
575 <listitem>
576 <para>This setting controls the <option>io</option> controller in the unified hierarchy.</para>
577
578 <para>Set the per-device overall block I/O weight for the executed processes, if the unified control group
579 hierarchy is used on the system. Takes a space-separated pair of a file path and a weight value to specify
580 the device specific weight value, between 1 and 10000. (Example: <literal>/dev/sda 1000</literal>). The file
581 path may be specified as path to a block device node or as any other file, in which case the backing block
582 device of the file system of the file is determined. This controls the <literal>io.weight</literal> control
583 group attribute, which defaults to 100. Use this option multiple times to set weights for multiple devices.
584 For details about this control group attribute, see <ulink
585 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.</para>
586
587 <para>The specified device node should reference a block device that has an I/O scheduler
588 associated, i.e. should not refer to partition or loopback block devices, but to the originating,
589 physical device. When a path to a regular file or directory is specified it is attempted to
590 discover the correct originating device backing the file system of the specified path. This works
591 correctly only for simpler cases, where the file system is directly placed on a partition or
592 physical block device, or where simple 1:1 encryption using dm-crypt/LUKS is used. This discovery
593 does not cover complex storage and in particular RAID and volume management storage devices.</para>
594 </listitem>
595 </varlistentry>
596
597 <varlistentry>
598 <term><varname>IOReadBandwidthMax=<replaceable>device</replaceable> <replaceable>bytes</replaceable></varname></term>
599 <term><varname>IOWriteBandwidthMax=<replaceable>device</replaceable> <replaceable>bytes</replaceable></varname></term>
600
601 <listitem>
602 <para>These settings control the <option>io</option> controller in the unified hierarchy.</para>
603
604 <para>Set the per-device overall block I/O bandwidth maximum limit for the executed processes, if the unified
605 control group hierarchy is used on the system. This limit is not work-conserving and the executed processes
606 are not allowed to use more even if the device has idle capacity. Takes a space-separated pair of a file
607 path and a bandwidth value (in bytes per second) to specify the device specific bandwidth. The file path may
608 be a path to a block device node, or as any other file in which case the backing block device of the file
609 system of the file is used. If the bandwidth is suffixed with K, M, G, or T, the specified bandwidth is
610 parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes, respectively, to the base of 1000. (Example:
611 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 5M"). This controls the <literal>io.max</literal> control
612 group attributes. Use this option multiple times to set bandwidth limits for multiple devices. For details
613 about this control group attribute, see <ulink
614 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.
615 </para>
616
617 <para>Similar restrictions on block device discovery as for <varname>IODeviceWeight=</varname> apply, see above.</para>
618 </listitem>
619 </varlistentry>
620
621 <varlistentry>
622 <term><varname>IOReadIOPSMax=<replaceable>device</replaceable> <replaceable>IOPS</replaceable></varname></term>
623 <term><varname>IOWriteIOPSMax=<replaceable>device</replaceable> <replaceable>IOPS</replaceable></varname></term>
624
625 <listitem>
626 <para>These settings control the <option>io</option> controller in the unified hierarchy.</para>
627
628 <para>Set the per-device overall block I/O IOs-Per-Second maximum limit for the executed processes, if the
629 unified control group hierarchy is used on the system. This limit is not work-conserving and the executed
630 processes are not allowed to use more even if the device has idle capacity. Takes a space-separated pair of
631 a file path and an IOPS value to specify the device specific IOPS. The file path may be a path to a block
632 device node, or as any other file in which case the backing block device of the file system of the file is
633 used. If the IOPS is suffixed with K, M, G, or T, the specified IOPS is parsed as KiloIOPS, MegaIOPS,
634 GigaIOPS, or TeraIOPS, respectively, to the base of 1000. (Example:
635 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 1K"). This controls the <literal>io.max</literal> control
636 group attributes. Use this option multiple times to set IOPS limits for multiple devices. For details about
637 this control group attribute, see <ulink
638 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.
639 </para>
640
641 <para>Similar restrictions on block device discovery as for <varname>IODeviceWeight=</varname> apply, see above.</para>
642 </listitem>
643 </varlistentry>
644
645 <varlistentry>
646 <term><varname>IODeviceLatencyTargetSec=<replaceable>device</replaceable> <replaceable>target</replaceable></varname></term>
647
648 <listitem>
649 <para>This setting controls the <option>io</option> controller in the unified hierarchy.</para>
650
651 <para>Set the per-device average target I/O latency for the executed processes, if the unified control group
652 hierarchy is used on the system. Takes a file path and a timespan separated by a space to specify
653 the device specific latency target. (Example: "/dev/sda 25ms"). The file path may be specified
654 as path to a block device node or as any other file, in which case the backing block device of the file
655 system of the file is determined. This controls the <literal>io.latency</literal> control group
656 attribute. Use this option multiple times to set latency target for multiple devices. For details about this
657 control group attribute, see <ulink
658 url="https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files">IO Interface Files</ulink>.</para>
659
660 <para>Implies <literal>IOAccounting=yes</literal>.</para>
661
662 <para>These settings are supported only if the unified control group hierarchy is used.</para>
663
664 <para>Similar restrictions on block device discovery as for <varname>IODeviceWeight=</varname> apply, see above.</para>
665 </listitem>
666 </varlistentry>
667
668 <varlistentry>
669 <term><varname>IPAccounting=</varname></term>
670
671 <listitem>
672 <para>Takes a boolean argument. If true, turns on IPv4 and IPv6 network traffic accounting for packets sent
673 or received by the unit. When this option is turned on, all IPv4 and IPv6 sockets created by any process of
674 the unit are accounted for.</para>
675
676 <para>When this option is used in socket units, it applies to all IPv4 and IPv6 sockets
677 associated with it (including both listening and connection sockets where this applies). Note that for
678 socket-activated services, this configuration setting and the accounting data of the service unit and the
679 socket unit are kept separate, and displayed separately. No propagation of the setting and the collected
680 statistics is done, in either direction. Moreover, any traffic sent or received on any of the socket unit's
681 sockets is accounted to the socket unit — and never to the service unit it might have activated, even if the
682 socket is used by it.</para>
683
684 <para>The system default for this setting may be controlled with <varname>DefaultIPAccounting=</varname> in
685 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
686 </listitem>
687 </varlistentry>
688
689 <varlistentry>
690 <term><varname>IPAddressAllow=<replaceable>ADDRESS[/PREFIXLENGTH]…</replaceable></varname></term>
691 <term><varname>IPAddressDeny=<replaceable>ADDRESS[/PREFIXLENGTH]…</replaceable></varname></term>
692
693 <listitem>
694 <para>Turn on network traffic filtering for IP packets sent and received over
695 <constant>AF_INET</constant> and <constant>AF_INET6</constant> sockets. Both directives take a
696 space separated list of IPv4 or IPv6 addresses, each optionally suffixed with an address prefix
697 length in bits after a <literal>/</literal> character. If the suffix is omitted, the address is
698 considered a host address, i.e. the filter covers the whole address (32 bits for IPv4, 128 bits for
699 IPv6).</para>
700
701 <para>The access lists configured with this option are applied to all sockets created by processes
702 of this unit (or in the case of socket units, associated with it). The lists are implicitly
703 combined with any lists configured for any of the parent slice units this unit might be a member
704 of. By default both access lists are empty. Both ingress and egress traffic is filtered by these
705 settings. In case of ingress traffic the source IP address is checked against these access lists,
706 in case of egress traffic the destination IP address is checked. The following rules are applied in
707 turn:</para>
708
709 <itemizedlist>
710 <listitem><para>Access is granted when the checked IP address matches an entry in the
711 <varname>IPAddressAllow=</varname> list.</para></listitem>
712
713 <listitem><para>Otherwise, access is denied when the checked IP address matches an entry in the
714 <varname>IPAddressDeny=</varname> list.</para></listitem>
715
716 <listitem><para>Otherwise, access is granted.</para></listitem>
717 </itemizedlist>
718
719 <para>In order to implement an allow-listing IP firewall, it is recommended to use a
720 <varname>IPAddressDeny=</varname><constant>any</constant> setting on an upper-level slice unit
721 (such as the root slice <filename>-.slice</filename> or the slice containing all system services
722 <filename>system.slice</filename> – see
723 <citerefentry><refentrytitle>systemd.special</refentrytitle><manvolnum>7</manvolnum></citerefentry>
724 for details on these slice units), plus individual per-service <varname>IPAddressAllow=</varname>
725 lines permitting network access to relevant services, and only them.</para>
726
727 <para>Note that for socket-activated services, the IP access list configured on the socket unit
728 applies to all sockets associated with it directly, but not to any sockets created by the
729 ultimately activated services for it. Conversely, the IP access list configured for the service is
730 not applied to any sockets passed into the service via socket activation. Thus, it is usually a
731 good idea to replicate the IP access lists on both the socket and the service unit. Nevertheless,
732 it may make sense to maintain one list more open and the other one more restricted, depending on
733 the usecase.</para>
734
735 <para>If these settings are used multiple times in the same unit the specified lists are combined. If an
736 empty string is assigned to these settings the specific access list is reset and all previous settings undone.</para>
737
738 <para>In place of explicit IPv4 or IPv6 address and prefix length specifications a small set of symbolic
739 names may be used. The following names are defined:</para>
740
741 <table>
742 <title>Special address/network names</title>
743
744 <tgroup cols='3'>
745 <colspec colname='name'/>
746 <colspec colname='definition'/>
747 <colspec colname='meaning'/>
748
749 <thead>
750 <row>
751 <entry>Symbolic Name</entry>
752 <entry>Definition</entry>
753 <entry>Meaning</entry>
754 </row>
755 </thead>
756
757 <tbody>
758 <row>
759 <entry><constant>any</constant></entry>
760 <entry>0.0.0.0/0 ::/0</entry>
761 <entry>Any host</entry>
762 </row>
763
764 <row>
765 <entry><constant>localhost</constant></entry>
766 <entry>127.0.0.0/8 ::1/128</entry>
767 <entry>All addresses on the local loopback</entry>
768 </row>
769
770 <row>
771 <entry><constant>link-local</constant></entry>
772 <entry>169.254.0.0/16 fe80::/64</entry>
773 <entry>All link-local IP addresses</entry>
774 </row>
775
776 <row>
777 <entry><constant>multicast</constant></entry>
778 <entry>224.0.0.0/4 ff00::/8</entry>
779 <entry>All IP multicasting addresses</entry>
780 </row>
781 </tbody>
782 </tgroup>
783 </table>
784
785 <para>Note that these settings might not be supported on some systems (for example if eBPF control group
786 support is not enabled in the underlying kernel or container manager). These settings will have no effect in
787 that case. If compatibility with such systems is desired it is hence recommended to not exclusively rely on
788 them for IP security.</para>
789
790 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
791 </listitem>
792 </varlistentry>
793
794 <varlistentry>
795 <term><varname>IPIngressFilterPath=<replaceable>BPF_FS_PROGRAM_PATH</replaceable></varname></term>
796 <term><varname>IPEgressFilterPath=<replaceable>BPF_FS_PROGRAM_PATH</replaceable></varname></term>
797
798 <listitem>
799 <para>Add custom network traffic filters implemented as BPF programs, applying to all IP packets
800 sent and received over <constant>AF_INET</constant> and <constant>AF_INET6</constant> sockets.
801 Takes an absolute path to a pinned BPF program in the BPF virtual filesystem (<filename>/sys/fs/bpf/</filename>).
802 </para>
803
804 <para>The filters configured with this option are applied to all sockets created by processes
805 of this unit (or in the case of socket units, associated with it). The filters are loaded in addition
806 to filters any of the parent slice units this unit might be a member of as well as any
807 <varname>IPAddressAllow=</varname> and <varname>IPAddressDeny=</varname> filters in any of these units.
808 By default there are no filters specified.</para>
809
810 <para>If these settings are used multiple times in the same unit all the specified programs are attached. If an
811 empty string is assigned to these settings the program list is reset and all previous specified programs ignored.</para>
812
813 <para>If the path <replaceable>BPF_FS_PROGRAM_PATH</replaceable> in <varname>IPIngressFilterPath=</varname> assignment
814 is already being handled by <varname>BPFProgram=</varname> ingress hook, e.g.
815 <varname>BPFProgram=</varname><constant>ingress</constant>:<replaceable>BPF_FS_PROGRAM_PATH</replaceable>,
816 the assignment will be still considered valid and the program will be attached to a cgroup. Same for
817 <varname>IPEgressFilterPath=</varname> path and <constant>egress</constant> hook.</para>
818
819 <para>Note that for socket-activated services, the IP filter programs configured on the socket unit apply to
820 all sockets associated with it directly, but not to any sockets created by the ultimately activated services
821 for it. Conversely, the IP filter programs configured for the service are not applied to any sockets passed into
822 the service via socket activation. Thus, it is usually a good idea, to replicate the IP filter programs on both
823 the socket and the service unit, however it often makes sense to maintain one configuration more open and the other
824 one more restricted, depending on the usecase.</para>
825
826 <para>Note that these settings might not be supported on some systems (for example if eBPF control group
827 support is not enabled in the underlying kernel or container manager). These settings will fail the service in
828 that case. If compatibility with such systems is desired it is hence recommended to attach your filter manually
829 (requires <varname>Delegate=</varname><constant>yes</constant>) instead of using this setting.</para>
830 </listitem>
831 </varlistentry>
832
833 <varlistentry>
834 <term><varname>BPFProgram=<replaceable>type</replaceable><constant>:</constant><replaceable>program-path</replaceable></varname></term>
835 <listitem>
836 <para>Add a custom cgroup BPF program.</para>
837
838 <para><varname>BPFProgram=</varname> allows attaching BPF hooks to the cgroup of a systemd unit.
839 (This generalizes the functionality exposed via <varname>IPEgressFilterPath=</varname> for egress and
840 <varname>IPIngressFilterPath=</varname> for ingress.)
841 Cgroup-bpf hooks in the form of BPF programs loaded to the BPF filesystem are attached with cgroup-bpf attach
842 flags determined by the unit. For details about attachment types and flags see <ulink
843 url="https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/include/uapi/linux/bpf.h"/>.
844 For general BPF documentation please refer to <ulink url="https://docs.kernel.org/bpf/index.html"/>.</para>
845
846 <para>The specification of BPF program consists of a <replaceable>type</replaceable> followed by a
847 <replaceable>program-path</replaceable> with <literal>:</literal> as the separator:
848 <replaceable>type</replaceable><constant>:</constant><replaceable>program-path</replaceable>.</para>
849
850 <para><replaceable>type</replaceable> is the string name of BPF attach type also used in
851 <command>bpftool</command>. <replaceable>type</replaceable> can be one of <constant>egress</constant>,
852 <constant>ingress</constant>, <constant>sock_create</constant>, <constant>sock_ops</constant>,
853 <constant>device</constant>, <constant>bind4</constant>, <constant>bind6</constant>,
854 <constant>connect4</constant>, <constant>connect6</constant>, <constant>post_bind4</constant>,
855 <constant>post_bind6</constant>, <constant>sendmsg4</constant>, <constant>sendmsg6</constant>,
856 <constant>sysctl</constant>, <constant>recvmsg4</constant>, <constant>recvmsg6</constant>,
857 <constant>getsockopt</constant>, <constant>setsockopt</constant>.</para>
858
859 <para>Setting <varname>BPFProgram=</varname> to an empty value makes previous assignments ineffective.</para>
860 <para>Multiple assignments of the same <replaceable>type</replaceable>:<replaceable>program-path</replaceable>
861 value have the same effect as a single assignment: the program with the path <replaceable>program-path</replaceable>
862 will be attached to cgroup hook <replaceable>type</replaceable> just once.</para>
863 <para>If BPF <constant>egress</constant> pinned to <replaceable>program-path</replaceable> path is already being
864 handled by <varname>IPEgressFilterPath=</varname>, <varname>BPFProgram=</varname>
865 assignment will be considered valid and <varname>BPFProgram=</varname> will be attached to a cgroup.
866 Similarly for <constant>ingress</constant> hook and <varname>IPIngressFilterPath=</varname> assignment.</para>
867
868 <para>BPF programs passed with <varname>BPFProgram=</varname> are attached to the cgroup of a unit with BPF
869 attach flag <constant>multi</constant>, that allows further attachments of the same
870 <replaceable>type</replaceable> within cgroup hierarchy topped by the unit cgroup.</para>
871
872 <para>Examples:<programlisting>
873 BPFProgram=egress:/sys/fs/bpf/egress-hook
874 BPFProgram=bind6:/sys/fs/bpf/sock-addr-hook
875 </programlisting></para>
876 </listitem>
877 </varlistentry>
878
879 <varlistentry>
880 <term><varname>SocketBindAllow=<replaceable>bind-rule</replaceable></varname></term>
881 <term><varname>SocketBindDeny=<replaceable>bind-rule</replaceable></varname></term>
882
883 <listitem>
884 <para>Allow or deny binding a socket address to a socket by matching it with the <replaceable>bind-rule</replaceable> and
885 applying a corresponding action if there is a match.</para>
886
887 <para><replaceable>bind-rule</replaceable> describes socket properties such as <replaceable>address-family</replaceable>,
888 <replaceable>transport-protocol</replaceable> and <replaceable>ip-ports</replaceable>.</para>
889
890 <para><replaceable>bind-rule</replaceable> :=
891 { [<replaceable>address-family</replaceable><constant>:</constant>][<replaceable>transport-protocol</replaceable><constant>:</constant>][<replaceable>ip-ports</replaceable>] | <constant>any</constant> }</para>
892
893 <para><replaceable>address-family</replaceable> := { <constant>ipv4</constant> | <constant>ipv6</constant> }</para>
894
895 <para><replaceable>transport-protocol</replaceable> := { <constant>tcp</constant> | <constant>udp</constant> }</para>
896
897 <para><replaceable>ip-ports</replaceable> := { <replaceable>ip-port</replaceable> | <replaceable>ip-port-range</replaceable> }</para>
898
899 <para>An optional <replaceable>address-family</replaceable> expects <constant>ipv4</constant> or <constant>ipv6</constant> values.
900 If not specified, a rule will be matched for both IPv4 and IPv6 addresses and applied depending on other socket fields, e.g. <replaceable>transport-protocol</replaceable>,
901 <replaceable>ip-port</replaceable>.</para>
902
903 <para>An optional <replaceable>transport-protocol</replaceable> expects <constant>tcp</constant> or <constant>udp</constant> transport protocol names.
904 If not specified, a rule will be matched for any transport protocol.</para>
905
906 <para>An optional <replaceable>ip-port</replaceable> value must lie within 165535 interval inclusively, i.e.
907 dynamic port <constant>0</constant> is not allowed. A range of sequential ports is described by
908 <replaceable>ip-port-range</replaceable> := <replaceable>ip-port-low</replaceable><constant>-</constant><replaceable>ip-port-high</replaceable>,
909 where <replaceable>ip-port-low</replaceable> is smaller than or equal to <replaceable>ip-port-high</replaceable>
910 and both are within 165535 inclusively.</para>
911
912 <para>A special value <constant>any</constant> can be used to apply a rule to any address family, transport protocol and any port with a positive value.</para>
913
914 <para>To allow multiple rules assign <varname>SocketBindAllow=</varname> or <varname>SocketBindDeny=</varname> multiple times.
915 To clear the existing assignments pass an empty <varname>SocketBindAllow=</varname> or <varname>SocketBindDeny=</varname>
916 assignment.</para>
917
918 <para>For each of <varname>SocketBindAllow=</varname> and <varname>SocketBindDeny=</varname>, maximum allowed number of assignments is
919 <constant>128</constant>.</para>
920
921 <itemizedlist>
922 <listitem><para>Binding to a socket is allowed when a socket address matches an entry in the
923 <varname>SocketBindAllow=</varname> list.</para></listitem>
924
925 <listitem><para>Otherwise, binding is denied when the socket address matches an entry in the
926 <varname>SocketBindDeny=</varname> list.</para></listitem>
927
928 <listitem><para>Otherwise, binding is allowed.</para></listitem>
929 </itemizedlist>
930
931 <para>The feature is implemented with <constant>cgroup/bind4</constant> and <constant>cgroup/bind6</constant> cgroup-bpf hooks.</para>
932 <para>Examples:<programlisting>
933 # Allow binding IPv6 socket addresses with a port greater than or equal to 10000.
934 [Service]
935 SocketBindAllow=ipv6:10000-65535
936 SocketBindDeny=any
937
938 # Allow binding IPv4 and IPv6 socket addresses with 1234 and 4321 ports.
939 [Service]
940 SocketBindAllow=1234
941 SocketBindAllow=4321
942 SocketBindDeny=any
943
944 # Deny binding IPv6 socket addresses.
945 [Service]
946 SocketBindDeny=ipv6
947
948 # Deny binding IPv4 and IPv6 socket addresses.
949 [Service]
950 SocketBindDeny=any
951
952 # Allow binding only over TCP
953 [Service]
954 SocketBindAllow=tcp
955 SocketBindDeny=any
956
957 # Allow binding only over IPv6/TCP
958 [Service]
959 SocketBindAllow=ipv6:tcp
960 SocketBindDeny=any
961
962 # Allow binding ports within 10000-65535 range over IPv4/UDP.
963 [Service]
964 SocketBindAllow=ipv4:udp:10000-65535
965 SocketBindDeny=any
966</programlisting></para>
967
968 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
969 </listitem>
970 </varlistentry>
971
972 <varlistentry>
973 <term><varname>RestrictNetworkInterfaces=</varname></term>
974
975 <listitem>
976 <para>Takes a list of space-separated network interface names. This option restricts the network
977 interfaces that processes of this unit can use. By default processes can only use the network interfaces
978 listed (allow-list). If the first character of the rule is <literal>~</literal>, the effect is inverted:
979 the processes can only use network interfaces not listed (deny-list).
980 </para>
981
982 <para>This option can appear multiple times, in which case the network interface names are merged. If the
983 empty string is assigned the set is reset, all prior assignments will have not effect.
984 </para>
985
986 <para>If you specify both types of this option (i.e. allow-listing and deny-listing), the first encountered
987 will take precedence and will dictate the default action (allow vs deny). Then the next occurrences of this
988 option will add or delete the listed network interface names from the set, depending of its type and the
989 default action.
990 </para>
991
992 <para>The loopback interface ("lo") is not treated in any special way, you have to configure it explicitly
993 in the unit file.
994 </para>
995 <para>Example 1: allow-list
996 <programlisting>
997 RestrictNetworkInterfaces=eth1
998 RestrictNetworkInterfaces=eth2</programlisting>
999 Programs in the unit will be only able to use the eth1 and eth2 network
1000 interfaces.
1001 </para>
1002
1003 <para>Example 2: deny-list
1004 <programlisting>
1005 RestrictNetworkInterfaces=~eth1 eth2</programlisting>
1006 Programs in the unit will be able to use any network interface but eth1 and eth2.
1007 </para>
1008
1009 <para>Example 3: mixed
1010 <programlisting>
1011 RestrictNetworkInterfaces=eth1 eth2
1012 RestrictNetworkInterfaces=~eth1</programlisting>
1013 Programs in the unit will be only able to use the eth2 network interface.
1014 </para>
1015
1016 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
1017 </listitem>
1018 </varlistentry>
1019
1020 <varlistentry>
1021 <term><varname>DeviceAllow=</varname></term>
1022
1023 <listitem>
1024 <para>Control access to specific device nodes by the executed processes. Takes two space-separated
1025 strings: a device node specifier followed by a combination of <constant>r</constant>,
1026 <constant>w</constant>, <constant>m</constant> to control <emphasis>r</emphasis>eading,
1027 <emphasis>w</emphasis>riting, or creation of the specific device nodes by the unit
1028 (<emphasis>m</emphasis>knod), respectively. This functionality is implemented using eBPF
1029 filtering.</para>
1030
1031 <para>When access to <emphasis>all</emphasis> physical devices should be disallowed,
1032 <varname>PrivateDevices=</varname> may be used instead. See
1033 <citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
1034 </para>
1035
1036 <para>The device node specifier is either a path to a device node in the file system, starting with
1037 <filename>/dev/</filename>, or a string starting with either <literal>char-</literal> or
1038 <literal>block-</literal> followed by a device group name, as listed in
1039 <filename>/proc/devices</filename>. The latter is useful to allow-list all current and future
1040 devices belonging to a specific device group at once. The device group is matched according to
1041 filename globbing rules, you may hence use the <literal>*</literal> and <literal>?</literal>
1042 wildcards. (Note that such globbing wildcards are not available for device node path
1043 specifications!) In order to match device nodes by numeric major/minor, use device node paths in
1044 the <filename>/dev/char/</filename> and <filename>/dev/block/</filename> directories. However,
1045 matching devices by major/minor is generally not recommended as assignments are neither stable nor
1046 portable between systems or different kernel versions.</para>
1047
1048 <para>Examples: <filename>/dev/sda5</filename> is a path to a device node, referring to an ATA or
1049 SCSI block device. <literal>char-pts</literal> and <literal>char-alsa</literal> are specifiers for
1050 all pseudo TTYs and all ALSA sound devices, respectively. <literal>char-cpu/*</literal> is a
1051 specifier matching all CPU related device groups.</para>
1052
1053 <para>Note that allow lists defined this way should only reference device groups which are
1054 resolvable at the time the unit is started. Any device groups not resolvable then are not added to
1055 the device allow list. In order to work around this limitation, consider extending service units
1056 with a pair of <command>After=modprobe@xyz.service</command> and
1057 <command>Wants=modprobe@xyz.service</command> lines that load the necessary kernel module
1058 implementing the device group if missing.
1059 Example: <programlisting>
1060 [Unit]
1061 Wants=modprobe@loop.service
1062 After=modprobe@loop.service
1063
1064 [Service]
1065 DeviceAllow=block-loop
1066 DeviceAllow=/dev/loop-control
1067</programlisting></para>
1068
1069 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
1070 </listitem>
1071 </varlistentry>
1072
1073 <varlistentry>
1074 <term><varname>DevicePolicy=auto|closed|strict</varname></term>
1075
1076 <listitem>
1077 <para>
1078 Control the policy for allowing device access:
1079 </para>
1080 <variablelist>
1081 <varlistentry>
1082 <term><option>strict</option></term>
1083 <listitem>
1084 <para>means to only allow types of access that are
1085 explicitly specified.</para>
1086 </listitem>
1087 </varlistentry>
1088
1089 <varlistentry>
1090 <term><option>closed</option></term>
1091 <listitem>
1092 <para>in addition, allows access to standard pseudo
1093 devices including
1094 <filename>/dev/null</filename>,
1095 <filename>/dev/zero</filename>,
1096 <filename>/dev/full</filename>,
1097 <filename>/dev/random</filename>, and
1098 <filename>/dev/urandom</filename>.
1099 </para>
1100 </listitem>
1101 </varlistentry>
1102
1103 <varlistentry>
1104 <term><option>auto</option></term>
1105 <listitem>
1106 <para>
1107 in addition, allows access to all devices if no
1108 explicit <varname>DeviceAllow=</varname> is present.
1109 This is the default.
1110 </para>
1111 </listitem>
1112 </varlistentry>
1113 </variablelist>
1114
1115 <xi:include href="cgroup-sandboxing.xml" xpointer="singular"/>
1116 </listitem>
1117 </varlistentry>
1118
1119 <varlistentry>
1120 <term><varname>Slice=</varname></term>
1121
1122 <listitem>
1123 <para>The name of the slice unit to place the unit
1124 in. Defaults to <filename>system.slice</filename> for all
1125 non-instantiated units of all unit types (except for slice
1126 units themselves see below). Instance units are by default
1127 placed in a subslice of <filename>system.slice</filename>
1128 that is named after the template name.</para>
1129
1130 <para>This option may be used to arrange systemd units in a
1131 hierarchy of slices each of which might have resource
1132 settings applied.</para>
1133
1134 <para>For units of type slice, the only accepted value for
1135 this setting is the parent slice. Since the name of a slice
1136 unit implies the parent slice, it is hence redundant to ever
1137 set this parameter directly for slice units.</para>
1138
1139 <para>Special care should be taken when relying on the default slice assignment in templated service units
1140 that have <varname>DefaultDependencies=no</varname> set, see
1141 <citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>, section
1142 "Default Dependencies" for details.</para>
1143
1144 </listitem>
1145 </varlistentry>
1146
1147 <varlistentry>
1148 <term><varname>Delegate=</varname></term>
1149
1150 <listitem>
1151 <para>Turns on delegation of further resource control partitioning to processes of the unit. Units where this
1152 is enabled may create and manage their own private subhierarchy of control groups below the control group of
1153 the unit itself. For unprivileged services (i.e. those using the <varname>User=</varname> setting) the unit's
1154 control group will be made accessible to the relevant user.</para>
1155
1156 <para>When enabled the service manager will refrain from manipulating control groups or moving
1157 processes below the unit's control group, so that a clear concept of ownership is established: the
1158 control group tree at the level of the unit's control group and above (i.e. towards the root
1159 control group) is owned and managed by the service manager of the host, while the control group
1160 tree below the unit's control group is owned and managed by the unit itself.</para>
1161
1162 <para>Takes either a boolean argument or a (possibly empty) list of control group controller names.
1163 If true, delegation is turned on, and all supported controllers are enabled for the unit, making
1164 them available to the unit's processes for management. If false, delegation is turned off entirely
1165 (and no additional controllers are enabled). If set to a list of controllers, delegation is turned
1166 on, and the specified controllers are enabled for the unit. Assigning the empty string will enable
1167 delegation, but reset the list of controllers, and all assignments prior to this will have no
1168 effect. Note that additional controllers other than the ones specified might be made available as
1169 well, depending on configuration of the containing slice unit or other units contained in it.
1170 Defaults to false.</para>
1171
1172 <para>Note that controller delegation to less privileged code is only safe on the unified control
1173 group hierarchy. Accordingly, access to the specified controllers will not be granted to
1174 unprivileged services on the legacy hierarchy, even when requested.</para>
1175
1176 <xi:include href="supported-controllers.xml" xpointer="controllers-text" />
1177
1178 <para>Not all of these controllers are available on all kernels however, and some are specific to
1179 the unified hierarchy while others are specific to the legacy hierarchy. Also note that the kernel
1180 might support further controllers, which aren't covered here yet as delegation is either not
1181 supported at all for them or not defined cleanly.</para>
1182
1183 <para>Note that because of the hierarchical nature of cgroup hierarchy, any controllers that are
1184 delegated will be enabled for the parent and sibling units of the unit with delegation.</para>
1185
1186 <para>For further details on the delegation model consult <ulink
1187 url="https://systemd.io/CGROUP_DELEGATION">Control Group APIs and Delegation</ulink>.</para>
1188 </listitem>
1189 </varlistentry>
1190
1191 <varlistentry>
1192 <term><varname>DisableControllers=</varname></term>
1193
1194 <listitem>
1195 <para>Disables controllers from being enabled for a unit's children. If a controller listed is
1196 already in use in its subtree, the controller will be removed from the subtree. This can be used to
1197 avoid configuration in child units from being able to implicitly or explicitly enable a controller.
1198 Defaults to empty.</para>
1199
1200 <para>Multiple controllers may be specified, separated by spaces. You may also pass
1201 <varname>DisableControllers=</varname> multiple times, in which case each new instance adds another controller
1202 to disable. Passing <varname>DisableControllers=</varname> by itself with no controller name present resets
1203 the disabled controller list.</para>
1204
1205 <para>It may not be possible to disable a controller after units have been started, if the unit or
1206 any child of the unit in question delegates controllers to its children, as any delegated subtree
1207 of the cgroup hierarchy is unmanaged by systemd.</para>
1208
1209 <xi:include href="supported-controllers.xml" xpointer="controllers-text" />
1210 </listitem>
1211 </varlistentry>
1212
1213 <varlistentry>
1214 <term><varname>ManagedOOMSwap=auto|kill</varname></term>
1215 <term><varname>ManagedOOMMemoryPressure=auto|kill</varname></term>
1216
1217 <listitem>
1218 <para>Specifies how
1219 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
1220 will act on this unit's cgroups. Defaults to <option>auto</option>.</para>
1221
1222 <para>When set to <option>kill</option>, the unit becomes a candidate for monitoring by
1223 <command>systemd-oomd</command>. If the cgroup passes the limits set by
1224 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry> or
1225 the unit configuration, <command>systemd-oomd</command> will select a descendant cgroup and send
1226 <constant>SIGKILL</constant> to all of the processes under it. You can find more details on
1227 candidates and kill behavior at
1228 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
1229 and
1230 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
1231
1232 <para>Setting either of these properties to <option>kill</option> will also result in
1233 <varname>After=</varname> and <varname>Wants=</varname> dependencies on
1234 <filename>systemd-oomd.service</filename> unless <varname>DefaultDependencies=no</varname>.</para>
1235
1236 <para>When set to <option>auto</option>, <command>systemd-oomd</command> will not actively use this
1237 cgroup's data for monitoring and detection. However, if an ancestor cgroup has one of these
1238 properties set to <option>kill</option>, a unit with <option>auto</option> can still be a candidate
1239 for <command>systemd-oomd</command> to terminate.</para>
1240 </listitem>
1241 </varlistentry>
1242
1243 <varlistentry>
1244 <term><varname>ManagedOOMMemoryPressureLimit=</varname></term>
1245
1246 <listitem>
1247 <para>Overrides the default memory pressure limit set by
1248 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry> for
1249 this unit (cgroup). Takes a percentage value between 0% and 100%, inclusive. This property is
1250 ignored unless <varname>ManagedOOMMemoryPressure=</varname><option>kill</option>. Defaults to 0%,
1251 which means to use the default set by
1252 <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
1253 </para>
1254 </listitem>
1255 </varlistentry>
1256
1257 <varlistentry>
1258 <term><varname>ManagedOOMPreference=none|avoid|omit</varname></term>
1259
1260 <listitem>
1261 <para>Allows deprioritizing or omitting this unit's cgroup as a candidate when
1262 <command>systemd-oomd</command> needs to act. Requires support for extended attributes (see
1263 <citerefentry project='man-pages'><refentrytitle>xattr</refentrytitle><manvolnum>7</manvolnum></citerefentry>)
1264 in order to use <option>avoid</option> or <option>omit</option>.</para>
1265
1266 <para>When calculating candidates to relieve swap usage, <command>systemd-oomd</command> will
1267 only respect these extended attributes if the unit's cgroup is owned by root.</para>
1268
1269 <para>When calculating candidates to relieve memory pressure, <command>systemd-oomd</command>
1270 will only respect these extended attributes if the unit's cgroup is owned by root, or if the
1271 unit's cgroup owner, and the owner of the monitored ancestor cgroup are the same. For example,
1272 if <command>systemd-oomd</command> is calculating candidates for <filename>-.slice</filename>,
1273 then extended attributes set on descendants of <filename>/user.slice/user-1000.slice/user@1000.service/</filename>
1274 will be ignored because the descendants are owned by UID 1000, and <filename>-.slice</filename>
1275 is owned by UID 0. But, if calculating candidates for
1276 <filename>/user.slice/user-1000.slice/user@1000.service/</filename>, then extended attributes set
1277 on the descendants would be respected.</para>
1278
1279 <para>If this property is set to <option>avoid</option>, the service manager will convey this to
1280 <command>systemd-oomd</command>, which will only select this cgroup if there are no other viable
1281 candidates.</para>
1282
1283 <para>If this property is set to <option>omit</option>, the service manager will convey this to
1284 <command>systemd-oomd</command>, which will ignore this cgroup as a candidate and will not perform
1285 any actions on it.</para>
1286
1287 <para>It is recommended to use <option>avoid</option> and <option>omit</option> sparingly, as it
1288 can adversely affect <command>systemd-oomd</command>'s kill behavior. Also note that these extended
1289 attributes are not applied recursively to cgroups under this unit's cgroup.</para>
1290
1291 <para>Defaults to <option>none</option> which means <command>systemd-oomd</command> will rank this
1292 unit's cgroup as defined in
1293 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>
1294 and <citerefentry><refentrytitle>oomd.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
1295 </para>
1296 </listitem>
1297 </varlistentry>
1298
1299 <varlistentry>
1300 <term><varname>MemoryPressureWatch=</varname></term>
1301
1302 <listitem><para>Controls memory pressure monitoring for invoked processes. Takes one of
1303 <literal>off</literal>, <literal>on</literal>, <literal>auto</literal> or <literal>skip</literal>. If
1304 <literal>off</literal> tells the service not to watch for memory pressure events, by setting the
1305 <varname>$MEMORY_PRESSURE_WATCH</varname> environment variable to the literal string
1306 <filename>/dev/null</filename>. If <literal>on</literal> tells the service to watch for memory
1307 pressure events. This enables memory accounting for the service, and ensures the
1308 <filename>memory.pressure</filename> cgroup attribute files is accessible for read and write to the
1309 service's user. It then sets the <varname>$MEMORY_PRESSURE_WATCH</varname> environment variable for
1310 processes invoked by the unit to the file system path to this file. The threshold information
1311 configured with <varname>MemoryPressureThresholdSec=</varname> is encoded in the
1312 <varname>$MEMORY_PRESSURE_WRITE</varname> environment variable. If the <literal>auto</literal> value
1313 is set the protocol is enabled if memory accounting is anyway enabled for the unit, and disabled
1314 otherwise. If set to <literal>skip</literal> the logic is neither enabled, nor disabled and the two
1315 environment variables are not set.</para>
1316
1317 <para>Note that services are free to use the two environment variables, but it's unproblematic if
1318 they ignore them. Memory pressure handling must be implemented individually in each service, and
1319 usually means different things for different software. For further details on memory pressure
1320 handling see <ulink url="https://systemd.io/MEMORY_PRESSURE">Memory Pressure Handling in
1321 systemd</ulink>.</para>
1322
1323 <para>Services implemented using
1324 <citerefentry><refentrytitle>sd-event</refentrytitle><manvolnum>3</manvolnum></citerefentry> may use
1325 <citerefentry><refentrytitle>sd_event_add_memory_pressure</refentrytitle><manvolnum>3</manvolnum></citerefentry>
1326 to watch for and handle memory pressure events.</para>
1327
1328 <para>If not explicit set, defaults to the <varname>DefaultMemoryPressureWatch=</varname> setting in
1329 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para></listitem>
1330 </varlistentry>
1331
1332 <varlistentry>
1333 <term><varname>MemoryPressureThresholdSec=</varname></term>
1334
1335 <listitem><para>Sets the memory pressure threshold time for memory pressure monitor as configured via
1336 <varname>MemoryPressureWatch=</varname>. Specifies the maximum allocation latency before a memory
1337 pressure event is signalled to the service, per 2s window. If not specified defaults to the
1338 <varname>DefaultMemoryPressureThresholdSec=</varname> setting in
1339 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>
1340 (which in turn defaults to 200ms). The specified value expects a time unit such as
1341 <literal>ms</literal> or <literal>µs</literal>, see
1342 <citerefentry><refentrytitle>systemd.time</refentrytitle><manvolnum>7</manvolnum></citerefentry> for
1343 details on the permitted syntax.</para></listitem>
1344 </varlistentry>
1345 </variablelist>
1346 </refsect1>
1347
1348 <refsect1>
1349 <title>History</title>
1350
1351 <variablelist>
1352 <varlistentry>
1353 <term>systemd 252</term>
1354 <listitem><para> Options for controlling the Legacy Control Group Hierarchy (<ulink
1355 url="https://docs.kernel.org/admin-guide/cgroup-v1/index.html">Control Groups version 1</ulink>)
1356 are now fully deprecated:
1357 <varname>CPUShares=<replaceable>weight</replaceable></varname>,
1358 <varname>StartupCPUShares=<replaceable>weight</replaceable></varname>,
1359 <varname>MemoryLimit=<replaceable>bytes</replaceable></varname>,
1360 <varname>BlockIOAccounting=</varname>,
1361 <varname>BlockIOWeight=<replaceable>weight</replaceable></varname>,
1362 <varname>StartupBlockIOWeight=<replaceable>weight</replaceable></varname>,
1363 <varname>BlockIODeviceWeight=<replaceable>device</replaceable>
1364 <replaceable>weight</replaceable></varname>,
1365 <varname>BlockIOReadBandwidth=<replaceable>device</replaceable>
1366 <replaceable>bytes</replaceable></varname>,
1367 <varname>BlockIOWriteBandwidth=<replaceable>device</replaceable> <replaceable>bytes</replaceable></varname>.
1368 Please switch to the unified cgroup hierarchy.</para></listitem>
1369 </varlistentry>
1370 </variablelist>
1371 </refsect1>
1372
1373 <refsect1>
1374 <title>See Also</title>
1375 <para>
1376 <citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
1377 <citerefentry><refentrytitle>systemd-system.conf</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1378 <citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1379 <citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1380 <citerefentry><refentrytitle>systemd.slice</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1381 <citerefentry><refentrytitle>systemd.scope</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1382 <citerefentry><refentrytitle>systemd.socket</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1383 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1384 <citerefentry><refentrytitle>systemd.swap</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1385 <citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
1386 <citerefentry><refentrytitle>systemd.directives</refentrytitle><manvolnum>7</manvolnum></citerefentry>,
1387 <citerefentry><refentrytitle>systemd.special</refentrytitle><manvolnum>7</manvolnum></citerefentry>,
1388 <citerefentry><refentrytitle>systemd-oomd.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
1389 The documentation for control groups and specific controllers in the Linux kernel:
1390 <ulink url="https://docs.kernel.org/admin-guide/cgroup-v2.html">Control Groups v2</ulink>.
1391 </para>
1392 </refsect1>
1393 </refentry>