]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/fd-util.c
various: use _NEG_ macros to reduce indentation
[thirdparty/systemd.git] / src / basic / fd-util.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #if WANT_LINUX_FS_H
6 #include <linux/fs.h>
7 #endif
8 #include <linux/magic.h>
9 #include <sys/ioctl.h>
10 #include <sys/resource.h>
11 #include <sys/stat.h>
12 #include <unistd.h>
13
14 #include "alloc-util.h"
15 #include "dirent-util.h"
16 #include "fd-util.h"
17 #include "fileio.h"
18 #include "fs-util.h"
19 #include "io-util.h"
20 #include "macro.h"
21 #include "missing_fcntl.h"
22 #include "missing_fs.h"
23 #include "missing_syscall.h"
24 #include "mountpoint-util.h"
25 #include "parse-util.h"
26 #include "path-util.h"
27 #include "process-util.h"
28 #include "socket-util.h"
29 #include "sort-util.h"
30 #include "stat-util.h"
31 #include "stdio-util.h"
32 #include "tmpfile-util.h"
33
34 /* The maximum number of iterations in the loop to close descriptors in the fallback case
35 * when /proc/self/fd/ is inaccessible. */
36 #define MAX_FD_LOOP_LIMIT (1024*1024)
37
38 int close_nointr(int fd) {
39 assert(fd >= 0);
40
41 if (close(fd) >= 0)
42 return 0;
43
44 /*
45 * Just ignore EINTR; a retry loop is the wrong thing to do on
46 * Linux.
47 *
48 * http://lkml.indiana.edu/hypermail/linux/kernel/0509.1/0877.html
49 * https://bugzilla.gnome.org/show_bug.cgi?id=682819
50 * http://utcc.utoronto.ca/~cks/space/blog/unix/CloseEINTR
51 * https://sites.google.com/site/michaelsafyan/software-engineering/checkforeintrwheninvokingclosethinkagain
52 */
53 if (errno == EINTR)
54 return 0;
55
56 return -errno;
57 }
58
59 int safe_close(int fd) {
60 /*
61 * Like close_nointr() but cannot fail. Guarantees errno is unchanged. Is a noop for negative fds,
62 * and returns -EBADF, so that it can be used in this syntax:
63 *
64 * fd = safe_close(fd);
65 */
66
67 if (fd >= 0) {
68 PROTECT_ERRNO;
69
70 /* The kernel might return pretty much any error code
71 * via close(), but the fd will be closed anyway. The
72 * only condition we want to check for here is whether
73 * the fd was invalid at all... */
74
75 assert_se(close_nointr(fd) != -EBADF);
76 }
77
78 return -EBADF;
79 }
80
81 void safe_close_pair(int p[static 2]) {
82 assert(p);
83
84 if (p[0] == p[1]) {
85 /* Special case pairs which use the same fd in both
86 * directions... */
87 p[0] = p[1] = safe_close(p[0]);
88 return;
89 }
90
91 p[0] = safe_close(p[0]);
92 p[1] = safe_close(p[1]);
93 }
94
95 void close_many(const int fds[], size_t n_fd) {
96 assert(fds || n_fd <= 0);
97
98 for (size_t i = 0; i < n_fd; i++)
99 safe_close(fds[i]);
100 }
101
102 int fclose_nointr(FILE *f) {
103 assert(f);
104
105 /* Same as close_nointr(), but for fclose() */
106
107 errno = 0; /* Extra safety: if the FILE* object is not encapsulating an fd, it might not set errno
108 * correctly. Let's hence initialize it to zero first, so that we aren't confused by any
109 * prior errno here */
110 if (fclose(f) == 0)
111 return 0;
112
113 if (errno == EINTR)
114 return 0;
115
116 return errno_or_else(EIO);
117 }
118
119 FILE* safe_fclose(FILE *f) {
120
121 /* Same as safe_close(), but for fclose() */
122
123 if (f) {
124 PROTECT_ERRNO;
125
126 assert_se(fclose_nointr(f) != -EBADF);
127 }
128
129 return NULL;
130 }
131
132 DIR* safe_closedir(DIR *d) {
133
134 if (d) {
135 PROTECT_ERRNO;
136
137 assert_se(closedir(d) >= 0 || errno != EBADF);
138 }
139
140 return NULL;
141 }
142
143 int fd_nonblock(int fd, bool nonblock) {
144 int flags, nflags;
145
146 assert(fd >= 0);
147
148 flags = fcntl(fd, F_GETFL, 0);
149 if (flags < 0)
150 return -errno;
151
152 nflags = UPDATE_FLAG(flags, O_NONBLOCK, nonblock);
153 if (nflags == flags)
154 return 0;
155
156 return RET_NERRNO(fcntl(fd, F_SETFL, nflags));
157 }
158
159 int fd_cloexec(int fd, bool cloexec) {
160 int flags, nflags;
161
162 assert(fd >= 0);
163
164 flags = fcntl(fd, F_GETFD, 0);
165 if (flags < 0)
166 return -errno;
167
168 nflags = UPDATE_FLAG(flags, FD_CLOEXEC, cloexec);
169 if (nflags == flags)
170 return 0;
171
172 return RET_NERRNO(fcntl(fd, F_SETFD, nflags));
173 }
174
175 int fd_cloexec_many(const int fds[], size_t n_fds, bool cloexec) {
176 int ret = 0, r;
177
178 assert(n_fds == 0 || fds);
179
180 for (size_t i = 0; i < n_fds; i++) {
181 if (fds[i] < 0) /* Skip gracefully over already invalidated fds */
182 continue;
183
184 r = fd_cloexec(fds[i], cloexec);
185 if (r < 0 && ret >= 0) /* Continue going, but return first error */
186 ret = r;
187 else
188 ret = 1; /* report if we did anything */
189 }
190
191 return ret;
192 }
193
194 static bool fd_in_set(int fd, const int fdset[], size_t n_fdset) {
195 assert(n_fdset == 0 || fdset);
196
197 for (size_t i = 0; i < n_fdset; i++) {
198 if (fdset[i] < 0)
199 continue;
200
201 if (fdset[i] == fd)
202 return true;
203 }
204
205 return false;
206 }
207
208 int get_max_fd(void) {
209 struct rlimit rl;
210 rlim_t m;
211
212 /* Return the highest possible fd, based RLIMIT_NOFILE, but enforcing FD_SETSIZE-1 as lower boundary
213 * and INT_MAX as upper boundary. */
214
215 if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
216 return -errno;
217
218 m = MAX(rl.rlim_cur, rl.rlim_max);
219 if (m < FD_SETSIZE) /* Let's always cover at least 1024 fds */
220 return FD_SETSIZE-1;
221
222 if (m == RLIM_INFINITY || m > INT_MAX) /* Saturate on overflow. After all fds are "int", hence can
223 * never be above INT_MAX */
224 return INT_MAX;
225
226 return (int) (m - 1);
227 }
228
229 static int close_all_fds_frugal(const int except[], size_t n_except) {
230 int max_fd, r = 0;
231
232 assert(n_except == 0 || except);
233
234 /* This is the inner fallback core of close_all_fds(). This never calls malloc() or opendir() or so
235 * and hence is safe to be called in signal handler context. Most users should call close_all_fds(),
236 * but when we assume we are called from signal handler context, then use this simpler call
237 * instead. */
238
239 max_fd = get_max_fd();
240 if (max_fd < 0)
241 return max_fd;
242
243 /* Refuse to do the loop over more too many elements. It's better to fail immediately than to
244 * spin the CPU for a long time. */
245 if (max_fd > MAX_FD_LOOP_LIMIT)
246 return log_debug_errno(SYNTHETIC_ERRNO(EPERM),
247 "Refusing to loop over %d potential fds.",
248 max_fd);
249
250 for (int fd = 3; fd >= 0; fd = fd < max_fd ? fd + 1 : -EBADF) {
251 int q;
252
253 if (fd_in_set(fd, except, n_except))
254 continue;
255
256 q = close_nointr(fd);
257 if (q < 0 && q != -EBADF && r >= 0)
258 r = q;
259 }
260
261 return r;
262 }
263
264 static bool have_close_range = true; /* Assume we live in the future */
265
266 static int close_all_fds_special_case(const int except[], size_t n_except) {
267 assert(n_except == 0 || except);
268
269 /* Handles a few common special cases separately, since they are common and can be optimized really
270 * nicely, since we won't need sorting for them. Returns > 0 if the special casing worked, 0
271 * otherwise. */
272
273 if (!have_close_range)
274 return 0;
275
276 if (n_except == 1 && except[0] < 0) /* Minor optimization: if we only got one fd, and it's invalid,
277 * we got none */
278 n_except = 0;
279
280 switch (n_except) {
281
282 case 0:
283 /* Close everything. Yay! */
284
285 if (close_range(3, -1, 0) >= 0)
286 return 1;
287
288 if (ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)) {
289 have_close_range = false;
290 return 0;
291 }
292
293 return -errno;
294
295 case 1:
296 /* Close all but exactly one, then we don't need no sorting. This is a pretty common
297 * case, hence let's handle it specially. */
298
299 if ((except[0] <= 3 || close_range(3, except[0]-1, 0) >= 0) &&
300 (except[0] >= INT_MAX || close_range(MAX(3, except[0]+1), -1, 0) >= 0))
301 return 1;
302
303 if (ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)) {
304 have_close_range = false;
305 return 0;
306 }
307
308 return -errno;
309
310 default:
311 return 0;
312 }
313 }
314
315 int close_all_fds_without_malloc(const int except[], size_t n_except) {
316 int r;
317
318 assert(n_except == 0 || except);
319
320 r = close_all_fds_special_case(except, n_except);
321 if (r < 0)
322 return r;
323 if (r > 0) /* special case worked! */
324 return 0;
325
326 return close_all_fds_frugal(except, n_except);
327 }
328
329 int close_all_fds(const int except[], size_t n_except) {
330 _cleanup_closedir_ DIR *d = NULL;
331 int r = 0;
332
333 assert(n_except == 0 || except);
334
335 r = close_all_fds_special_case(except, n_except);
336 if (r < 0)
337 return r;
338 if (r > 0) /* special case worked! */
339 return 0;
340
341 if (have_close_range) {
342 _cleanup_free_ int *sorted_malloc = NULL;
343 size_t n_sorted;
344 int *sorted;
345
346 /* In the best case we have close_range() to close all fds between a start and an end fd,
347 * which we can use on the "inverted" exception array, i.e. all intervals between all
348 * adjacent pairs from the sorted exception array. This changes loop complexity from O(n)
349 * where n is number of open fds to O(mâ‹…log(m)) where m is the number of fds to keep
350 * open. Given that we assume n ≫ m that's preferable to us. */
351
352 assert(n_except < SIZE_MAX);
353 n_sorted = n_except + 1;
354
355 if (n_sorted > 64) /* Use heap for large numbers of fds, stack otherwise */
356 sorted = sorted_malloc = new(int, n_sorted);
357 else
358 sorted = newa(int, n_sorted);
359
360 if (sorted) {
361 memcpy(sorted, except, n_except * sizeof(int));
362
363 /* Let's add fd 2 to the list of fds, to simplify the loop below, as this
364 * allows us to cover the head of the array the same way as the body */
365 sorted[n_sorted-1] = 2;
366
367 typesafe_qsort(sorted, n_sorted, cmp_int);
368
369 for (size_t i = 0; i < n_sorted-1; i++) {
370 int start, end;
371
372 start = MAX(sorted[i], 2); /* The first three fds shall always remain open */
373 end = MAX(sorted[i+1], 2);
374
375 assert(end >= start);
376
377 if (end - start <= 1)
378 continue;
379
380 /* Close everything between the start and end fds (both of which shall stay open) */
381 if (close_range(start + 1, end - 1, 0) < 0) {
382 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
383 return -errno;
384
385 have_close_range = false;
386 break;
387 }
388 }
389
390 if (have_close_range) {
391 /* The loop succeeded. Let's now close everything beyond the end */
392
393 if (sorted[n_sorted-1] >= INT_MAX) /* Dont let the addition below overflow */
394 return 0;
395
396 if (close_range(sorted[n_sorted-1] + 1, -1, 0) >= 0)
397 return 0;
398
399 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
400 return -errno;
401
402 have_close_range = false;
403 }
404 }
405
406 /* Fallback on OOM or if close_range() is not supported */
407 }
408
409 d = opendir("/proc/self/fd");
410 if (!d)
411 return close_all_fds_frugal(except, n_except); /* ultimate fallback if /proc/ is not available */
412
413 FOREACH_DIRENT(de, d, return -errno) {
414 int fd = -EBADF, q;
415
416 if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN))
417 continue;
418
419 fd = parse_fd(de->d_name);
420 if (fd < 0)
421 /* Let's better ignore this, just in case */
422 continue;
423
424 if (fd < 3)
425 continue;
426
427 if (fd == dirfd(d))
428 continue;
429
430 if (fd_in_set(fd, except, n_except))
431 continue;
432
433 q = close_nointr(fd);
434 if (q < 0 && q != -EBADF && r >= 0) /* Valgrind has its own FD and doesn't want to have it closed */
435 r = q;
436 }
437
438 return r;
439 }
440
441 int same_fd(int a, int b) {
442 struct stat sta, stb;
443 pid_t pid;
444 int r, fa, fb;
445
446 assert(a >= 0);
447 assert(b >= 0);
448
449 /* Compares two file descriptors. Note that semantics are quite different depending on whether we
450 * have kcmp() or we don't. If we have kcmp() this will only return true for dup()ed file
451 * descriptors, but not otherwise. If we don't have kcmp() this will also return true for two fds of
452 * the same file, created by separate open() calls. Since we use this call mostly for filtering out
453 * duplicates in the fd store this difference hopefully doesn't matter too much. */
454
455 if (a == b)
456 return true;
457
458 /* Try to use kcmp() if we have it. */
459 pid = getpid_cached();
460 r = kcmp(pid, pid, KCMP_FILE, a, b);
461 if (r == 0)
462 return true;
463 if (r > 0)
464 return false;
465 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
466 return -errno;
467
468 /* We don't have kcmp(), use fstat() instead. */
469 if (fstat(a, &sta) < 0)
470 return -errno;
471
472 if (fstat(b, &stb) < 0)
473 return -errno;
474
475 if (!stat_inode_same(&sta, &stb))
476 return false;
477
478 /* We consider all device fds different, since two device fds might refer to quite different device
479 * contexts even though they share the same inode and backing dev_t. */
480
481 if (S_ISCHR(sta.st_mode) || S_ISBLK(sta.st_mode))
482 return false;
483
484 /* The fds refer to the same inode on disk, let's also check if they have the same fd flags. This is
485 * useful to distinguish the read and write side of a pipe created with pipe(). */
486 fa = fcntl(a, F_GETFL);
487 if (fa < 0)
488 return -errno;
489
490 fb = fcntl(b, F_GETFL);
491 if (fb < 0)
492 return -errno;
493
494 return fa == fb;
495 }
496
497 void cmsg_close_all(struct msghdr *mh) {
498 struct cmsghdr *cmsg;
499
500 assert(mh);
501
502 CMSG_FOREACH(cmsg, mh)
503 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS)
504 close_many(CMSG_TYPED_DATA(cmsg, int),
505 (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int));
506 }
507
508 bool fdname_is_valid(const char *s) {
509 const char *p;
510
511 /* Validates a name for $LISTEN_FDNAMES. We basically allow
512 * everything ASCII that's not a control character. Also, as
513 * special exception the ":" character is not allowed, as we
514 * use that as field separator in $LISTEN_FDNAMES.
515 *
516 * Note that the empty string is explicitly allowed
517 * here. However, we limit the length of the names to 255
518 * characters. */
519
520 if (!s)
521 return false;
522
523 for (p = s; *p; p++) {
524 if (*p < ' ')
525 return false;
526 if (*p >= 127)
527 return false;
528 if (*p == ':')
529 return false;
530 }
531
532 return p - s <= FDNAME_MAX;
533 }
534
535 int fd_get_path(int fd, char **ret) {
536 int r;
537
538 assert(fd >= 0 || fd == AT_FDCWD);
539
540 if (fd == AT_FDCWD)
541 return safe_getcwd(ret);
542
543 r = readlink_malloc(FORMAT_PROC_FD_PATH(fd), ret);
544 if (r == -ENOENT) {
545 /* ENOENT can mean two things: that the fd does not exist or that /proc is not mounted. Let's make
546 * things debuggable and distinguish the two. */
547
548 if (proc_mounted() == 0)
549 return -ENOSYS; /* /proc is not available or not set up properly, we're most likely in some chroot
550 * environment. */
551 return -EBADF; /* The directory exists, hence it's the fd that doesn't. */
552 }
553
554 return r;
555 }
556
557 int move_fd(int from, int to, int cloexec) {
558 int r;
559
560 /* Move fd 'from' to 'to', make sure FD_CLOEXEC remains equal if requested, and release the old fd. If
561 * 'cloexec' is passed as -1, the original FD_CLOEXEC is inherited for the new fd. If it is 0, it is turned
562 * off, if it is > 0 it is turned on. */
563
564 if (from < 0)
565 return -EBADF;
566 if (to < 0)
567 return -EBADF;
568
569 if (from == to) {
570
571 if (cloexec >= 0) {
572 r = fd_cloexec(to, cloexec);
573 if (r < 0)
574 return r;
575 }
576
577 return to;
578 }
579
580 if (cloexec < 0) {
581 int fl;
582
583 fl = fcntl(from, F_GETFD, 0);
584 if (fl < 0)
585 return -errno;
586
587 cloexec = !!(fl & FD_CLOEXEC);
588 }
589
590 r = dup3(from, to, cloexec ? O_CLOEXEC : 0);
591 if (r < 0)
592 return -errno;
593
594 assert(r == to);
595
596 safe_close(from);
597
598 return to;
599 }
600
601 int fd_move_above_stdio(int fd) {
602 int flags, copy;
603 PROTECT_ERRNO;
604
605 /* Moves the specified file descriptor if possible out of the range [0…2], i.e. the range of
606 * stdin/stdout/stderr. If it can't be moved outside of this range the original file descriptor is
607 * returned. This call is supposed to be used for long-lasting file descriptors we allocate in our code that
608 * might get loaded into foreign code, and where we want ensure our fds are unlikely used accidentally as
609 * stdin/stdout/stderr of unrelated code.
610 *
611 * Note that this doesn't fix any real bugs, it just makes it less likely that our code will be affected by
612 * buggy code from others that mindlessly invokes 'fprintf(stderr, …' or similar in places where stderr has
613 * been closed before.
614 *
615 * This function is written in a "best-effort" and "least-impact" style. This means whenever we encounter an
616 * error we simply return the original file descriptor, and we do not touch errno. */
617
618 if (fd < 0 || fd > 2)
619 return fd;
620
621 flags = fcntl(fd, F_GETFD, 0);
622 if (flags < 0)
623 return fd;
624
625 if (flags & FD_CLOEXEC)
626 copy = fcntl(fd, F_DUPFD_CLOEXEC, 3);
627 else
628 copy = fcntl(fd, F_DUPFD, 3);
629 if (copy < 0)
630 return fd;
631
632 assert(copy > 2);
633
634 (void) close(fd);
635 return copy;
636 }
637
638 int rearrange_stdio(int original_input_fd, int original_output_fd, int original_error_fd) {
639 int fd[3] = { original_input_fd, /* Put together an array of fds we work on */
640 original_output_fd,
641 original_error_fd },
642 null_fd = -EBADF, /* If we open /dev/null, we store the fd to it here */
643 copy_fd[3] = { -EBADF, -EBADF, -EBADF }, /* This contains all fds we duplicate here
644 * temporarily, and hence need to close at the end. */
645 r;
646 bool null_readable, null_writable;
647
648 /* Sets up stdin, stdout, stderr with the three file descriptors passed in. If any of the descriptors
649 * is specified as -EBADF it will be connected with /dev/null instead. If any of the file descriptors
650 * is passed as itself (e.g. stdin as STDIN_FILENO) it is left unmodified, but the O_CLOEXEC bit is
651 * turned off should it be on.
652 *
653 * Note that if any of the passed file descriptors are > 2 they will be closed — both on success and
654 * on failure! Thus, callers should assume that when this function returns the input fds are
655 * invalidated.
656 *
657 * Note that when this function fails stdin/stdout/stderr might remain half set up!
658 *
659 * O_CLOEXEC is turned off for all three file descriptors (which is how it should be for
660 * stdin/stdout/stderr). */
661
662 null_readable = original_input_fd < 0;
663 null_writable = original_output_fd < 0 || original_error_fd < 0;
664
665 /* First step, open /dev/null once, if we need it */
666 if (null_readable || null_writable) {
667
668 /* Let's open this with O_CLOEXEC first, and convert it to non-O_CLOEXEC when we move the fd to the final position. */
669 null_fd = open("/dev/null", (null_readable && null_writable ? O_RDWR :
670 null_readable ? O_RDONLY : O_WRONLY) | O_CLOEXEC);
671 if (null_fd < 0) {
672 r = -errno;
673 goto finish;
674 }
675
676 /* If this fd is in the 0…2 range, let's move it out of it */
677 if (null_fd < 3) {
678 int copy;
679
680 copy = fcntl(null_fd, F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
681 if (copy < 0) {
682 r = -errno;
683 goto finish;
684 }
685
686 close_and_replace(null_fd, copy);
687 }
688 }
689
690 /* Let's assemble fd[] with the fds to install in place of stdin/stdout/stderr */
691 for (int i = 0; i < 3; i++) {
692
693 if (fd[i] < 0)
694 fd[i] = null_fd; /* A negative parameter means: connect this one to /dev/null */
695 else if (fd[i] != i && fd[i] < 3) {
696 /* This fd is in the 0…2 territory, but not at its intended place, move it out of there, so that we can work there. */
697 copy_fd[i] = fcntl(fd[i], F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
698 if (copy_fd[i] < 0) {
699 r = -errno;
700 goto finish;
701 }
702
703 fd[i] = copy_fd[i];
704 }
705 }
706
707 /* At this point we now have the fds to use in fd[], and they are all above the stdio range, so that
708 * we have freedom to move them around. If the fds already were at the right places then the specific
709 * fds are -EBADF. Let's now move them to the right places. This is the point of no return. */
710 for (int i = 0; i < 3; i++) {
711
712 if (fd[i] == i) {
713
714 /* fd is already in place, but let's make sure O_CLOEXEC is off */
715 r = fd_cloexec(i, false);
716 if (r < 0)
717 goto finish;
718
719 } else {
720 assert(fd[i] > 2);
721
722 if (dup2(fd[i], i) < 0) { /* Turns off O_CLOEXEC on the new fd. */
723 r = -errno;
724 goto finish;
725 }
726 }
727 }
728
729 r = 0;
730
731 finish:
732 /* Close the original fds, but only if they were outside of the stdio range. Also, properly check for the same
733 * fd passed in multiple times. */
734 safe_close_above_stdio(original_input_fd);
735 if (original_output_fd != original_input_fd)
736 safe_close_above_stdio(original_output_fd);
737 if (original_error_fd != original_input_fd && original_error_fd != original_output_fd)
738 safe_close_above_stdio(original_error_fd);
739
740 /* Close the copies we moved > 2 */
741 for (int i = 0; i < 3; i++)
742 safe_close(copy_fd[i]);
743
744 /* Close our null fd, if it's > 2 */
745 safe_close_above_stdio(null_fd);
746
747 return r;
748 }
749
750 int fd_reopen(int fd, int flags) {
751 int new_fd, r;
752
753 assert(fd >= 0 || fd == AT_FDCWD);
754
755 /* Reopens the specified fd with new flags. This is useful for convert an O_PATH fd into a regular one, or to
756 * turn O_RDWR fds into O_RDONLY fds.
757 *
758 * This doesn't work on sockets (since they cannot be open()ed, ever).
759 *
760 * This implicitly resets the file read index to 0.
761 *
762 * If AT_FDCWD is specified as file descriptor gets an fd to the current cwd.
763 *
764 * If the specified file descriptor refers to a symlink via O_PATH, then this function cannot be used
765 * to follow that symlink. Because we cannot have non-O_PATH fds to symlinks reopening it without
766 * O_PATH will always result in -ELOOP. Or in other words: if you have an O_PATH fd to a symlink you
767 * can reopen it only if you pass O_PATH again. */
768
769 if (FLAGS_SET(flags, O_NOFOLLOW))
770 /* O_NOFOLLOW is not allowed in fd_reopen(), because after all this is primarily implemented
771 * via a symlink-based interface in /proc/self/fd. Let's refuse this here early. Note that
772 * the kernel would generate ELOOP here too, hence this manual check is mostly redundant –
773 * the only reason we add it here is so that the O_DIRECTORY special case (see below) behaves
774 * the same way as the non-O_DIRECTORY case. */
775 return -ELOOP;
776
777 if (FLAGS_SET(flags, O_DIRECTORY) || fd == AT_FDCWD) {
778 /* If we shall reopen the fd as directory we can just go via "." and thus bypass the whole
779 * magic /proc/ directory, and make ourselves independent of that being mounted. */
780 new_fd = openat(fd, ".", flags | O_DIRECTORY);
781 if (new_fd < 0)
782 return -errno;
783
784 return new_fd;
785 }
786
787 assert(fd >= 0);
788
789 new_fd = open(FORMAT_PROC_FD_PATH(fd), flags);
790 if (new_fd < 0) {
791 if (errno != ENOENT)
792 return -errno;
793
794 r = proc_mounted();
795 if (r == 0)
796 return -ENOSYS; /* if we have no /proc/, the concept is not implementable */
797
798 return r > 0 ? -EBADF : -ENOENT; /* If /proc/ is definitely around then this means the fd is
799 * not valid, otherwise let's propagate the original
800 * error */
801 }
802
803 return new_fd;
804 }
805
806 int fd_reopen_condition(
807 int fd,
808 int flags,
809 int mask,
810 int *ret_new_fd) {
811
812 int r, new_fd;
813
814 assert(fd >= 0);
815
816 /* Invokes fd_reopen(fd, flags), but only if the existing F_GETFL flags don't match the specified
817 * flags (masked by the specified mask). This is useful for converting O_PATH fds into real fds if
818 * needed, but only then. */
819
820 r = fcntl(fd, F_GETFL);
821 if (r < 0)
822 return -errno;
823
824 if ((r & mask) == (flags & mask)) {
825 *ret_new_fd = -EBADF;
826 return fd;
827 }
828
829 new_fd = fd_reopen(fd, flags);
830 if (new_fd < 0)
831 return new_fd;
832
833 *ret_new_fd = new_fd;
834 return new_fd;
835 }
836
837 int fd_is_opath(int fd) {
838 int r;
839
840 assert(fd >= 0);
841
842 r = fcntl(fd, F_GETFL);
843 if (r < 0)
844 return -errno;
845
846 return FLAGS_SET(r, O_PATH);
847 }
848
849 int read_nr_open(void) {
850 _cleanup_free_ char *nr_open = NULL;
851 int r;
852
853 /* Returns the kernel's current fd limit, either by reading it of /proc/sys if that works, or using the
854 * hard-coded default compiled-in value of current kernels (1M) if not. This call will never fail. */
855
856 r = read_one_line_file("/proc/sys/fs/nr_open", &nr_open);
857 if (r < 0)
858 log_debug_errno(r, "Failed to read /proc/sys/fs/nr_open, ignoring: %m");
859 else {
860 int v;
861
862 r = safe_atoi(nr_open, &v);
863 if (r < 0)
864 log_debug_errno(r, "Failed to parse /proc/sys/fs/nr_open value '%s', ignoring: %m", nr_open);
865 else
866 return v;
867 }
868
869 /* If we fail, fall back to the hard-coded kernel limit of 1024 * 1024. */
870 return 1024 * 1024;
871 }
872
873 int fd_get_diskseq(int fd, uint64_t *ret) {
874 uint64_t diskseq;
875
876 assert(fd >= 0);
877 assert(ret);
878
879 if (ioctl(fd, BLKGETDISKSEQ, &diskseq) < 0) {
880 /* Note that the kernel is weird: non-existing ioctls currently return EINVAL
881 * rather than ENOTTY on loopback block devices. They should fix that in the kernel,
882 * but in the meantime we accept both here. */
883 if (!ERRNO_IS_NOT_SUPPORTED(errno) && errno != EINVAL)
884 return -errno;
885
886 return -EOPNOTSUPP;
887 }
888
889 *ret = diskseq;
890
891 return 0;
892 }
893
894 int path_is_root_at(int dir_fd, const char *path) {
895 STRUCT_NEW_STATX_DEFINE(st);
896 STRUCT_NEW_STATX_DEFINE(pst);
897 _cleanup_close_ int fd = -EBADF;
898 int r;
899
900 assert(dir_fd >= 0 || dir_fd == AT_FDCWD);
901
902 if (!isempty(path)) {
903 fd = openat(dir_fd, path, O_PATH|O_DIRECTORY|O_CLOEXEC);
904 if (fd < 0)
905 return errno == ENOTDIR ? false : -errno;
906
907 dir_fd = fd;
908 }
909
910 r = statx_fallback(dir_fd, ".", 0, STATX_TYPE|STATX_INO|STATX_MNT_ID, &st.sx);
911 if (r == -ENOTDIR)
912 return false;
913 if (r < 0)
914 return r;
915
916 r = statx_fallback(dir_fd, "..", 0, STATX_TYPE|STATX_INO|STATX_MNT_ID, &pst.sx);
917 if (r < 0)
918 return r;
919
920 /* First, compare inode. If these are different, the fd does not point to the root directory "/". */
921 if (!statx_inode_same(&st.sx, &pst.sx))
922 return false;
923
924 /* Even if the parent directory has the same inode, the fd may not point to the root directory "/",
925 * and we also need to check that the mount ids are the same. Otherwise, a construct like the
926 * following could be used to trick us:
927 *
928 * $ mkdir /tmp/x /tmp/x/y
929 * $ mount --bind /tmp/x /tmp/x/y
930 *
931 * Note, statx() does not provide the mount ID and path_get_mnt_id_at() does not work when an old
932 * kernel is used. In that case, let's assume that we do not have such spurious mount points in an
933 * early boot stage, and silently skip the following check. */
934
935 if (!FLAGS_SET(st.nsx.stx_mask, STATX_MNT_ID)) {
936 int mntid;
937
938 r = path_get_mnt_id_at_fallback(dir_fd, "", &mntid);
939 if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
940 return true; /* skip the mount ID check */
941 if (r < 0)
942 return r;
943 assert(mntid >= 0);
944
945 st.nsx.stx_mnt_id = mntid;
946 st.nsx.stx_mask |= STATX_MNT_ID;
947 }
948
949 if (!FLAGS_SET(pst.nsx.stx_mask, STATX_MNT_ID)) {
950 int mntid;
951
952 r = path_get_mnt_id_at_fallback(dir_fd, "..", &mntid);
953 if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
954 return true; /* skip the mount ID check */
955 if (r < 0)
956 return r;
957 assert(mntid >= 0);
958
959 pst.nsx.stx_mnt_id = mntid;
960 pst.nsx.stx_mask |= STATX_MNT_ID;
961 }
962
963 return statx_mount_same(&st.nsx, &pst.nsx);
964 }
965
966 const char *accmode_to_string(int flags) {
967 switch (flags & O_ACCMODE) {
968 case O_RDONLY:
969 return "ro";
970 case O_WRONLY:
971 return "wo";
972 case O_RDWR:
973 return "rw";
974 default:
975 return NULL;
976 }
977 }