]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/boot/efi/sha256.c
login: respect install_sysconfdir_samples in meson file
[thirdparty/systemd.git] / src / boot / efi / sha256.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 /* Stolen from glibc and converted to UEFI style. In glibc it comes with the following copyright blurb: */
4
5 /* Functions to compute SHA256 message digest of files or memory blocks.
6 according to the definition of SHA256 in FIPS 180-2.
7 Copyright (C) 2007-2019 Free Software Foundation, Inc.
8 This file is part of the GNU C Library.
9
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
14
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 Lesser General Public License for more details.
19
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
25
26 #include "sha256.h"
27
28 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
29 # define SWAP(n) \
30 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
31 # define SWAP64(n) \
32 (((n) << 56) \
33 | (((n) & 0xff00) << 40) \
34 | (((n) & 0xff0000) << 24) \
35 | (((n) & 0xff000000) << 8) \
36 | (((n) >> 8) & 0xff000000) \
37 | (((n) >> 24) & 0xff0000) \
38 | (((n) >> 40) & 0xff00) \
39 | ((n) >> 56))
40 #else
41 # define SWAP(n) (n)
42 # define SWAP64(n) (n)
43 #endif
44
45 /* This array contains the bytes used to pad the buffer to the next
46 64-byte boundary. (FIPS 180-2:5.1.1) */
47 static const UINT8 fillbuf[64] = {
48 0x80, 0 /* , 0, 0, ... */
49 };
50
51 /* Constants for SHA256 from FIPS 180-2:4.2.2. */
52 static const UINT32 K[64] = {
53 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
54 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
55 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
56 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
57 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
58 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
59 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
60 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
61 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
62 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
63 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
64 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
65 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
66 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
67 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
68 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
69 };
70
71 static void sha256_process_block(const void *, UINTN, struct sha256_ctx *);
72
73 /* Initialize structure containing state of computation.
74 (FIPS 180-2:5.3.2) */
75 void sha256_init_ctx(struct sha256_ctx *ctx) {
76 ctx->H[0] = 0x6a09e667;
77 ctx->H[1] = 0xbb67ae85;
78 ctx->H[2] = 0x3c6ef372;
79 ctx->H[3] = 0xa54ff53a;
80 ctx->H[4] = 0x510e527f;
81 ctx->H[5] = 0x9b05688c;
82 ctx->H[6] = 0x1f83d9ab;
83 ctx->H[7] = 0x5be0cd19;
84
85 ctx->total64 = 0;
86 ctx->buflen = 0;
87 }
88
89 /* Process the remaining bytes in the internal buffer and the usual
90 prolog according to the standard and write the result to RESBUF.
91
92 IMPORTANT: On some systems it is required that RESBUF is correctly
93 aligned for a 32 bits value. */
94 void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) {
95 /* Take yet unprocessed bytes into account. */
96 UINT32 bytes = ctx->buflen;
97 UINTN pad;
98
99 /* Now count remaining bytes. */
100 ctx->total64 += bytes;
101
102 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
103 CopyMem (&ctx->buffer[bytes], fillbuf, pad);
104
105 /* Put the 64-bit file length in *bits* at the end of the buffer. */
106 ctx->buffer32[(bytes + pad + 4) / 4] = SWAP (ctx->total[TOTAL64_low] << 3);
107 ctx->buffer32[(bytes + pad) / 4] = SWAP ((ctx->total[TOTAL64_high] << 3)
108 | (ctx->total[TOTAL64_low] >> 29));
109
110 /* Process last bytes. */
111 sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
112
113 /* Put result from CTX in first 32 bytes following RESBUF. */
114 for (UINTN i = 0; i < 8; ++i)
115 ((UINT32 *) resbuf)[i] = SWAP (ctx->H[i]);
116
117 return resbuf;
118 }
119
120 void sha256_process_bytes(const void *buffer, UINTN len, struct sha256_ctx *ctx) {
121 /* When we already have some bits in our internal buffer concatenate
122 both inputs first. */
123
124 if (ctx->buflen != 0) {
125 UINTN left_over = ctx->buflen;
126 UINTN add = 128 - left_over > len ? len : 128 - left_over;
127
128 CopyMem (&ctx->buffer[left_over], buffer, add);
129 ctx->buflen += add;
130
131 if (ctx->buflen > 64) {
132 sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
133
134 ctx->buflen &= 63;
135 /* The regions in the following copy operation cannot overlap. */
136 CopyMem (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
137 ctx->buflen);
138 }
139
140 buffer = (const char *) buffer + add;
141 len -= add;
142 }
143
144 /* Process available complete blocks. */
145 if (len >= 64) {
146
147 /* The condition below is from glibc's string/string-inline.c.
148 * See definition of _STRING_INLINE_unaligned. */
149 #if !defined(__mc68020__) && !defined(__s390__) && !defined(__i386__)
150
151 /* To check alignment gcc has an appropriate operator. Other compilers don't. */
152 # if __GNUC__ >= 2
153 # define UNALIGNED_P(p) (((UINTN) p) % __alignof__ (UINT32) != 0)
154 # else
155 # define UNALIGNED_P(p) (((UINTN) p) % sizeof (UINT32) != 0)
156 # endif
157 if (UNALIGNED_P (buffer))
158 while (len > 64) {
159 CopyMem (ctx->buffer, buffer, 64);
160 sha256_process_block (ctx->buffer, 64, ctx);
161 buffer = (const char *) buffer + 64;
162 len -= 64;
163 }
164 else
165 #endif
166 {
167 sha256_process_block (buffer, len & ~63, ctx);
168 buffer = (const char *) buffer + (len & ~63);
169 len &= 63;
170 }
171 }
172
173 /* Move remaining bytes into internal buffer. */
174 if (len > 0) {
175 UINTN left_over = ctx->buflen;
176
177 CopyMem (&ctx->buffer[left_over], buffer, len);
178 left_over += len;
179 if (left_over >= 64) {
180 sha256_process_block (ctx->buffer, 64, ctx);
181 left_over -= 64;
182 CopyMem (ctx->buffer, &ctx->buffer[64], left_over);
183 }
184 ctx->buflen = left_over;
185 }
186 }
187
188
189 /* Process LEN bytes of BUFFER, accumulating context into CTX.
190 It is assumed that LEN % 64 == 0. */
191 static void sha256_process_block(const void *buffer, UINTN len, struct sha256_ctx *ctx) {
192 const UINT32 *words = buffer;
193 UINTN nwords = len / sizeof (UINT32);
194 UINT32 a = ctx->H[0];
195 UINT32 b = ctx->H[1];
196 UINT32 c = ctx->H[2];
197 UINT32 d = ctx->H[3];
198 UINT32 e = ctx->H[4];
199 UINT32 f = ctx->H[5];
200 UINT32 g = ctx->H[6];
201 UINT32 h = ctx->H[7];
202
203 /* First increment the byte count. FIPS 180-2 specifies the possible
204 length of the file up to 2^64 bits. Here we only compute the
205 number of bytes. */
206 ctx->total64 += len;
207
208 /* Process all bytes in the buffer with 64 bytes in each round of
209 the loop. */
210 while (nwords > 0) {
211 UINT32 W[64];
212 UINT32 a_save = a;
213 UINT32 b_save = b;
214 UINT32 c_save = c;
215 UINT32 d_save = d;
216 UINT32 e_save = e;
217 UINT32 f_save = f;
218 UINT32 g_save = g;
219 UINT32 h_save = h;
220
221 /* Operators defined in FIPS 180-2:4.1.2. */
222 #define Ch(x, y, z) ((x & y) ^ (~x & z))
223 #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
224 #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
225 #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
226 #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
227 #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
228
229 /* It is unfortunate that C does not provide an operator for
230 cyclic rotation. Hope the C compiler is smart enough. */
231 #define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
232
233 /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
234 for (UINTN t = 0; t < 16; ++t) {
235 W[t] = SWAP (*words);
236 ++words;
237 }
238 for (UINTN t = 16; t < 64; ++t)
239 W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
240
241 /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
242 for (UINTN t = 0; t < 64; ++t) {
243 UINT32 T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
244 UINT32 T2 = S0 (a) + Maj (a, b, c);
245 h = g;
246 g = f;
247 f = e;
248 e = d + T1;
249 d = c;
250 c = b;
251 b = a;
252 a = T1 + T2;
253 }
254
255 /* Add the starting values of the context according to FIPS 180-2:6.2.2
256 step 4. */
257 a += a_save;
258 b += b_save;
259 c += c_save;
260 d += d_save;
261 e += e_save;
262 f += f_save;
263 g += g_save;
264 h += h_save;
265
266 /* Prepare for the next round. */
267 nwords -= 16;
268 }
269
270 /* Put checksum in context given as argument. */
271 ctx->H[0] = a;
272 ctx->H[1] = b;
273 ctx->H[2] = c;
274 ctx->H[3] = d;
275 ctx->H[4] = e;
276 ctx->H[5] = f;
277 ctx->H[6] = g;
278 ctx->H[7] = h;
279 }