]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
Merge pull request #30775 from yuwata/network-nexthop-is-ready
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <fcntl.h>
4
5 #include "sd-messages.h"
6
7 #include "af-list.h"
8 #include "alloc-util.h"
9 #include "blockdev-util.h"
10 #include "bpf-devices.h"
11 #include "bpf-firewall.h"
12 #include "bpf-foreign.h"
13 #include "bpf-socket-bind.h"
14 #include "btrfs-util.h"
15 #include "bus-error.h"
16 #include "bus-locator.h"
17 #include "cgroup-setup.h"
18 #include "cgroup-util.h"
19 #include "cgroup.h"
20 #include "devnum-util.h"
21 #include "fd-util.h"
22 #include "fileio.h"
23 #include "firewall-util.h"
24 #include "in-addr-prefix-util.h"
25 #include "inotify-util.h"
26 #include "io-util.h"
27 #include "ip-protocol-list.h"
28 #include "limits-util.h"
29 #include "nulstr-util.h"
30 #include "parse-util.h"
31 #include "path-util.h"
32 #include "percent-util.h"
33 #include "process-util.h"
34 #include "procfs-util.h"
35 #include "restrict-ifaces.h"
36 #include "set.h"
37 #include "special.h"
38 #include "stdio-util.h"
39 #include "string-table.h"
40 #include "string-util.h"
41 #include "virt.h"
42
43 #if BPF_FRAMEWORK
44 #include "bpf-dlopen.h"
45 #include "bpf-link.h"
46 #include "bpf/restrict_fs/restrict-fs-skel.h"
47 #endif
48
49 #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
50
51 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
52 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
53 * out specific attributes from us. */
54 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
55
56 uint64_t cgroup_tasks_max_resolve(const CGroupTasksMax *tasks_max) {
57 if (tasks_max->scale == 0)
58 return tasks_max->value;
59
60 return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
61 }
62
63 bool manager_owns_host_root_cgroup(Manager *m) {
64 assert(m);
65
66 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
67 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
68 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
69 * we run in any kind of container virtualization. */
70
71 if (MANAGER_IS_USER(m))
72 return false;
73
74 if (detect_container() > 0)
75 return false;
76
77 return empty_or_root(m->cgroup_root);
78 }
79
80 bool unit_has_startup_cgroup_constraints(Unit *u) {
81 assert(u);
82
83 /* Returns true if this unit has any directives which apply during
84 * startup/shutdown phases. */
85
86 CGroupContext *c;
87
88 c = unit_get_cgroup_context(u);
89 if (!c)
90 return false;
91
92 return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
93 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
94 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
95 c->startup_cpuset_cpus.set ||
96 c->startup_cpuset_mems.set ||
97 c->startup_memory_high_set ||
98 c->startup_memory_max_set ||
99 c->startup_memory_swap_max_set||
100 c->startup_memory_zswap_max_set ||
101 c->startup_memory_low_set;
102 }
103
104 bool unit_has_host_root_cgroup(Unit *u) {
105 assert(u);
106
107 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
108 * the manager manages the root cgroup. */
109
110 if (!manager_owns_host_root_cgroup(u->manager))
111 return false;
112
113 return unit_has_name(u, SPECIAL_ROOT_SLICE);
114 }
115
116 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
117 int r;
118
119 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
120 if (r < 0)
121 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
122 strna(attribute), empty_to_root(u->cgroup_path), (int) strcspn(value, NEWLINE), value);
123
124 return r;
125 }
126
127 static void cgroup_compat_warn(void) {
128 static bool cgroup_compat_warned = false;
129
130 if (cgroup_compat_warned)
131 return;
132
133 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
134 "See cgroup-compat debug messages for details.");
135
136 cgroup_compat_warned = true;
137 }
138
139 #define log_cgroup_compat(unit, fmt, ...) do { \
140 cgroup_compat_warn(); \
141 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
142 } while (false)
143
144 void cgroup_context_init(CGroupContext *c) {
145 assert(c);
146
147 /* Initialize everything to the kernel defaults. When initializing a bool member to 'true', make
148 * sure to serialize in execute-serialize.c using serialize_bool() instead of
149 * serialize_bool_elide(), as sd-executor will initialize here to 'true', but serialize_bool_elide()
150 * skips serialization if the value is 'false' (as that's the common default), so if the value at
151 * runtime is zero it would be lost after deserialization. Same when initializing uint64_t and other
152 * values, update/add a conditional serialization check. This is to minimize the amount of
153 * serialized data that is sent to the sd-executor, so that there is less work to do on the default
154 * cases. */
155
156 *c = (CGroupContext) {
157 .cpu_weight = CGROUP_WEIGHT_INVALID,
158 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
159 .cpu_quota_per_sec_usec = USEC_INFINITY,
160 .cpu_quota_period_usec = USEC_INFINITY,
161
162 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
163 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
164
165 .memory_high = CGROUP_LIMIT_MAX,
166 .startup_memory_high = CGROUP_LIMIT_MAX,
167 .memory_max = CGROUP_LIMIT_MAX,
168 .startup_memory_max = CGROUP_LIMIT_MAX,
169 .memory_swap_max = CGROUP_LIMIT_MAX,
170 .startup_memory_swap_max = CGROUP_LIMIT_MAX,
171 .memory_zswap_max = CGROUP_LIMIT_MAX,
172 .startup_memory_zswap_max = CGROUP_LIMIT_MAX,
173
174 .memory_limit = CGROUP_LIMIT_MAX,
175
176 .io_weight = CGROUP_WEIGHT_INVALID,
177 .startup_io_weight = CGROUP_WEIGHT_INVALID,
178
179 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
180 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
181
182 .tasks_max = CGROUP_TASKS_MAX_UNSET,
183
184 .moom_swap = MANAGED_OOM_AUTO,
185 .moom_mem_pressure = MANAGED_OOM_AUTO,
186 .moom_preference = MANAGED_OOM_PREFERENCE_NONE,
187
188 .memory_pressure_watch = _CGROUP_PRESSURE_WATCH_INVALID,
189 .memory_pressure_threshold_usec = USEC_INFINITY,
190 };
191 }
192
193 int cgroup_context_add_io_device_weight_dup(CGroupContext *c, const CGroupIODeviceWeight *w) {
194 _cleanup_free_ CGroupIODeviceWeight *n = NULL;
195
196 assert(c);
197 assert(w);
198
199 n = new(CGroupIODeviceWeight, 1);
200 if (!n)
201 return -ENOMEM;
202
203 *n = (CGroupIODeviceWeight) {
204 .path = strdup(w->path),
205 .weight = w->weight,
206 };
207 if (!n->path)
208 return -ENOMEM;
209
210 LIST_PREPEND(device_weights, c->io_device_weights, TAKE_PTR(n));
211 return 0;
212 }
213
214 int cgroup_context_add_io_device_limit_dup(CGroupContext *c, const CGroupIODeviceLimit *l) {
215 _cleanup_free_ CGroupIODeviceLimit *n = NULL;
216
217 assert(c);
218 assert(l);
219
220 n = new0(CGroupIODeviceLimit, 1);
221 if (!n)
222 return -ENOMEM;
223
224 n->path = strdup(l->path);
225 if (!n->path)
226 return -ENOMEM;
227
228 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
229 n->limits[type] = l->limits[type];
230
231 LIST_PREPEND(device_limits, c->io_device_limits, TAKE_PTR(n));
232 return 0;
233 }
234
235 int cgroup_context_add_io_device_latency_dup(CGroupContext *c, const CGroupIODeviceLatency *l) {
236 _cleanup_free_ CGroupIODeviceLatency *n = NULL;
237
238 assert(c);
239 assert(l);
240
241 n = new(CGroupIODeviceLatency, 1);
242 if (!n)
243 return -ENOMEM;
244
245 *n = (CGroupIODeviceLatency) {
246 .path = strdup(l->path),
247 .target_usec = l->target_usec,
248 };
249 if (!n->path)
250 return -ENOMEM;
251
252 LIST_PREPEND(device_latencies, c->io_device_latencies, TAKE_PTR(n));
253 return 0;
254 }
255
256 int cgroup_context_add_block_io_device_weight_dup(CGroupContext *c, const CGroupBlockIODeviceWeight *w) {
257 _cleanup_free_ CGroupBlockIODeviceWeight *n = NULL;
258
259 assert(c);
260 assert(w);
261
262 n = new(CGroupBlockIODeviceWeight, 1);
263 if (!n)
264 return -ENOMEM;
265
266 *n = (CGroupBlockIODeviceWeight) {
267 .path = strdup(w->path),
268 .weight = w->weight,
269 };
270 if (!n->path)
271 return -ENOMEM;
272
273 LIST_PREPEND(device_weights, c->blockio_device_weights, TAKE_PTR(n));
274 return 0;
275 }
276
277 int cgroup_context_add_block_io_device_bandwidth_dup(CGroupContext *c, const CGroupBlockIODeviceBandwidth *b) {
278 _cleanup_free_ CGroupBlockIODeviceBandwidth *n = NULL;
279
280 assert(c);
281 assert(b);
282
283 n = new(CGroupBlockIODeviceBandwidth, 1);
284 if (!n)
285 return -ENOMEM;
286
287 *n = (CGroupBlockIODeviceBandwidth) {
288 .rbps = b->rbps,
289 .wbps = b->wbps,
290 };
291
292 LIST_PREPEND(device_bandwidths, c->blockio_device_bandwidths, TAKE_PTR(n));
293 return 0;
294 }
295
296 int cgroup_context_add_device_allow_dup(CGroupContext *c, const CGroupDeviceAllow *a) {
297 _cleanup_free_ CGroupDeviceAllow *n = NULL;
298
299 assert(c);
300 assert(a);
301
302 n = new(CGroupDeviceAllow, 1);
303 if (!n)
304 return -ENOMEM;
305
306 *n = (CGroupDeviceAllow) {
307 .path = strdup(a->path),
308 .permissions = a->permissions,
309 };
310 if (!n->path)
311 return -ENOMEM;
312
313 LIST_PREPEND(device_allow, c->device_allow, TAKE_PTR(n));
314 return 0;
315 }
316
317 static int cgroup_context_add_socket_bind_item_dup(CGroupContext *c, const CGroupSocketBindItem *i, CGroupSocketBindItem *h) {
318 _cleanup_free_ CGroupSocketBindItem *n = NULL;
319
320 assert(c);
321 assert(i);
322
323 n = new(CGroupSocketBindItem, 1);
324 if (!n)
325 return -ENOMEM;
326
327 *n = (CGroupSocketBindItem) {
328 .address_family = i->address_family,
329 .ip_protocol = i->ip_protocol,
330 .nr_ports = i->nr_ports,
331 .port_min = i->port_min,
332 };
333
334 LIST_PREPEND(socket_bind_items, h, TAKE_PTR(n));
335 return 0;
336 }
337
338 int cgroup_context_add_socket_bind_item_allow_dup(CGroupContext *c, const CGroupSocketBindItem *i) {
339 return cgroup_context_add_socket_bind_item_dup(c, i, c->socket_bind_allow);
340 }
341
342 int cgroup_context_add_socket_bind_item_deny_dup(CGroupContext *c, const CGroupSocketBindItem *i) {
343 return cgroup_context_add_socket_bind_item_dup(c, i, c->socket_bind_deny);
344 }
345
346 int cgroup_context_copy(CGroupContext *dst, const CGroupContext *src) {
347 struct in_addr_prefix *i;
348 char *iface;
349 int r;
350
351 assert(src);
352 assert(dst);
353
354 dst->cpu_accounting = src->cpu_accounting;
355 dst->io_accounting = src->io_accounting;
356 dst->blockio_accounting = src->blockio_accounting;
357 dst->memory_accounting = src->memory_accounting;
358 dst->tasks_accounting = src->tasks_accounting;
359 dst->ip_accounting = src->ip_accounting;
360
361 dst->memory_oom_group = src->memory_oom_group;
362
363 dst->cpu_weight = src->cpu_weight;
364 dst->startup_cpu_weight = src->startup_cpu_weight;
365 dst->cpu_quota_per_sec_usec = src->cpu_quota_per_sec_usec;
366 dst->cpu_quota_period_usec = src->cpu_quota_period_usec;
367
368 dst->cpuset_cpus = src->cpuset_cpus;
369 dst->startup_cpuset_cpus = src->startup_cpuset_cpus;
370 dst->cpuset_mems = src->cpuset_mems;
371 dst->startup_cpuset_mems = src->startup_cpuset_mems;
372
373 dst->io_weight = src->io_weight;
374 dst->startup_io_weight = src->startup_io_weight;
375
376 LIST_FOREACH_BACKWARDS(device_weights, w, LIST_FIND_TAIL(device_weights, src->io_device_weights)) {
377 r = cgroup_context_add_io_device_weight_dup(dst, w);
378 if (r < 0)
379 return r;
380 }
381
382 LIST_FOREACH_BACKWARDS(device_limits, l, LIST_FIND_TAIL(device_limits, src->io_device_limits)) {
383 r = cgroup_context_add_io_device_limit_dup(dst, l);
384 if (r < 0)
385 return r;
386 }
387
388 LIST_FOREACH_BACKWARDS(device_latencies, l, LIST_FIND_TAIL(device_latencies, src->io_device_latencies)) {
389 r = cgroup_context_add_io_device_latency_dup(dst, l);
390 if (r < 0)
391 return r;
392 }
393
394 dst->default_memory_min = src->default_memory_min;
395 dst->default_memory_low = src->default_memory_low;
396 dst->default_startup_memory_low = src->default_startup_memory_low;
397 dst->memory_min = src->memory_min;
398 dst->memory_low = src->memory_low;
399 dst->startup_memory_low = src->startup_memory_low;
400 dst->memory_high = src->memory_high;
401 dst->startup_memory_high = src->startup_memory_high;
402 dst->memory_max = src->memory_max;
403 dst->startup_memory_max = src->startup_memory_max;
404 dst->memory_swap_max = src->memory_swap_max;
405 dst->startup_memory_swap_max = src->startup_memory_swap_max;
406 dst->memory_zswap_max = src->memory_zswap_max;
407 dst->startup_memory_zswap_max = src->startup_memory_zswap_max;
408
409 dst->default_memory_min_set = src->default_memory_min_set;
410 dst->default_memory_low_set = src->default_memory_low_set;
411 dst->default_startup_memory_low_set = src->default_startup_memory_low_set;
412 dst->memory_min_set = src->memory_min_set;
413 dst->memory_low_set = src->memory_low_set;
414 dst->startup_memory_low_set = src->startup_memory_low_set;
415 dst->startup_memory_high_set = src->startup_memory_high_set;
416 dst->startup_memory_max_set = src->startup_memory_max_set;
417 dst->startup_memory_swap_max_set = src->startup_memory_swap_max_set;
418 dst->startup_memory_zswap_max_set = src->startup_memory_zswap_max_set;
419
420 SET_FOREACH(i, src->ip_address_allow) {
421 r = in_addr_prefix_add(&dst->ip_address_allow, i);
422 if (r < 0)
423 return r;
424 }
425
426 SET_FOREACH(i, src->ip_address_deny) {
427 r = in_addr_prefix_add(&dst->ip_address_deny, i);
428 if (r < 0)
429 return r;
430 }
431
432 dst->ip_address_allow_reduced = src->ip_address_allow_reduced;
433 dst->ip_address_deny_reduced = src->ip_address_deny_reduced;
434
435 if (!strv_isempty(src->ip_filters_ingress)) {
436 dst->ip_filters_ingress = strv_copy(src->ip_filters_ingress);
437 if (!dst->ip_filters_ingress)
438 return -ENOMEM;
439 }
440
441 if (!strv_isempty(src->ip_filters_egress)) {
442 dst->ip_filters_egress = strv_copy(src->ip_filters_egress);
443 if (!dst->ip_filters_egress)
444 return -ENOMEM;
445 }
446
447 LIST_FOREACH_BACKWARDS(programs, l, LIST_FIND_TAIL(programs, src->bpf_foreign_programs)) {
448 r = cgroup_context_add_bpf_foreign_program_dup(dst, l);
449 if (r < 0)
450 return r;
451 }
452
453 SET_FOREACH(iface, src->restrict_network_interfaces) {
454 r = set_put_strdup(&dst->restrict_network_interfaces, iface);
455 if (r < 0)
456 return r;
457 }
458 dst->restrict_network_interfaces_is_allow_list = src->restrict_network_interfaces_is_allow_list;
459
460 dst->cpu_shares = src->cpu_shares;
461 dst->startup_cpu_shares = src->startup_cpu_shares;
462
463 dst->blockio_weight = src->blockio_weight;
464 dst->startup_blockio_weight = src->startup_blockio_weight;
465
466 LIST_FOREACH_BACKWARDS(device_weights, l, LIST_FIND_TAIL(device_weights, src->blockio_device_weights)) {
467 r = cgroup_context_add_block_io_device_weight_dup(dst, l);
468 if (r < 0)
469 return r;
470 }
471
472 LIST_FOREACH_BACKWARDS(device_bandwidths, l, LIST_FIND_TAIL(device_bandwidths, src->blockio_device_bandwidths)) {
473 r = cgroup_context_add_block_io_device_bandwidth_dup(dst, l);
474 if (r < 0)
475 return r;
476 }
477
478 dst->memory_limit = src->memory_limit;
479
480 dst->device_policy = src->device_policy;
481 LIST_FOREACH_BACKWARDS(device_allow, l, LIST_FIND_TAIL(device_allow, src->device_allow)) {
482 r = cgroup_context_add_device_allow_dup(dst, l);
483 if (r < 0)
484 return r;
485 }
486
487 LIST_FOREACH_BACKWARDS(socket_bind_items, l, LIST_FIND_TAIL(socket_bind_items, src->socket_bind_allow)) {
488 r = cgroup_context_add_socket_bind_item_allow_dup(dst, l);
489 if (r < 0)
490 return r;
491
492 }
493
494 LIST_FOREACH_BACKWARDS(socket_bind_items, l, LIST_FIND_TAIL(socket_bind_items, src->socket_bind_deny)) {
495 r = cgroup_context_add_socket_bind_item_deny_dup(dst, l);
496 if (r < 0)
497 return r;
498 }
499
500 dst->tasks_max = src->tasks_max;
501
502 return 0;
503 }
504
505 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
506 assert(c);
507 assert(a);
508
509 LIST_REMOVE(device_allow, c->device_allow, a);
510 free(a->path);
511 free(a);
512 }
513
514 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
515 assert(c);
516 assert(w);
517
518 LIST_REMOVE(device_weights, c->io_device_weights, w);
519 free(w->path);
520 free(w);
521 }
522
523 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
524 assert(c);
525 assert(l);
526
527 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
528 free(l->path);
529 free(l);
530 }
531
532 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
533 assert(c);
534 assert(l);
535
536 LIST_REMOVE(device_limits, c->io_device_limits, l);
537 free(l->path);
538 free(l);
539 }
540
541 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
542 assert(c);
543 assert(w);
544
545 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
546 free(w->path);
547 free(w);
548 }
549
550 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
551 assert(c);
552 assert(b);
553
554 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
555 free(b->path);
556 free(b);
557 }
558
559 void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
560 assert(c);
561 assert(p);
562
563 LIST_REMOVE(programs, c->bpf_foreign_programs, p);
564 free(p->bpffs_path);
565 free(p);
566 }
567
568 void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
569 assert(head);
570
571 LIST_CLEAR(socket_bind_items, *head, free);
572 }
573
574 void cgroup_context_done(CGroupContext *c) {
575 assert(c);
576
577 while (c->io_device_weights)
578 cgroup_context_free_io_device_weight(c, c->io_device_weights);
579
580 while (c->io_device_latencies)
581 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
582
583 while (c->io_device_limits)
584 cgroup_context_free_io_device_limit(c, c->io_device_limits);
585
586 while (c->blockio_device_weights)
587 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
588
589 while (c->blockio_device_bandwidths)
590 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
591
592 while (c->device_allow)
593 cgroup_context_free_device_allow(c, c->device_allow);
594
595 cgroup_context_remove_socket_bind(&c->socket_bind_allow);
596 cgroup_context_remove_socket_bind(&c->socket_bind_deny);
597
598 c->ip_address_allow = set_free(c->ip_address_allow);
599 c->ip_address_deny = set_free(c->ip_address_deny);
600
601 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
602 c->ip_filters_egress = strv_free(c->ip_filters_egress);
603
604 while (c->bpf_foreign_programs)
605 cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
606
607 c->restrict_network_interfaces = set_free_free(c->restrict_network_interfaces);
608
609 cpu_set_reset(&c->cpuset_cpus);
610 cpu_set_reset(&c->startup_cpuset_cpus);
611 cpu_set_reset(&c->cpuset_mems);
612 cpu_set_reset(&c->startup_cpuset_mems);
613
614 c->delegate_subgroup = mfree(c->delegate_subgroup);
615
616 nft_set_context_clear(&c->nft_set_context);
617 }
618
619 static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
620 assert(u);
621
622 if (!u->cgroup_realized)
623 return -EOWNERDEAD;
624
625 return cg_get_attribute_as_uint64("memory", u->cgroup_path, file, ret);
626 }
627
628 static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
629 CGroupContext *c;
630 CGroupMask m;
631 const char *file;
632 uint64_t unit_value;
633 int r;
634
635 /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
636 * return -ENODATA) on cgroup v1.
637 *
638 * Returns:
639 *
640 * <0: On error.
641 * 0: If the kernel memory setting doesn't match our configuration.
642 * >0: If the kernel memory setting matches our configuration.
643 *
644 * The following values are only guaranteed to be populated on return >=0:
645 *
646 * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
647 * - ret_kernel_value will contain the actual value presented by the kernel. */
648
649 assert(u);
650
651 r = cg_all_unified();
652 if (r < 0)
653 return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
654
655 /* Unsupported on v1.
656 *
657 * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
658 * silently masked the controller. */
659 if (r == 0)
660 return -ENODATA;
661
662 /* The root slice doesn't have any controller files, so we can't compare anything. */
663 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
664 return -ENODATA;
665
666 /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
667 * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
668 * avoid specious errors in these scenarios, check that we even expect the memory controller to be
669 * enabled at all. */
670 m = unit_get_target_mask(u);
671 if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
672 return -ENODATA;
673
674 assert_se(c = unit_get_cgroup_context(u));
675
676 bool startup = u->manager && IN_SET(manager_state(u->manager), MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
677
678 if (streq(property_name, "MemoryLow")) {
679 unit_value = unit_get_ancestor_memory_low(u);
680 file = "memory.low";
681 } else if (startup && streq(property_name, "StartupMemoryLow")) {
682 unit_value = unit_get_ancestor_startup_memory_low(u);
683 file = "memory.low";
684 } else if (streq(property_name, "MemoryMin")) {
685 unit_value = unit_get_ancestor_memory_min(u);
686 file = "memory.min";
687 } else if (streq(property_name, "MemoryHigh")) {
688 unit_value = c->memory_high;
689 file = "memory.high";
690 } else if (startup && streq(property_name, "StartupMemoryHigh")) {
691 unit_value = c->startup_memory_high;
692 file = "memory.high";
693 } else if (streq(property_name, "MemoryMax")) {
694 unit_value = c->memory_max;
695 file = "memory.max";
696 } else if (startup && streq(property_name, "StartupMemoryMax")) {
697 unit_value = c->startup_memory_max;
698 file = "memory.max";
699 } else if (streq(property_name, "MemorySwapMax")) {
700 unit_value = c->memory_swap_max;
701 file = "memory.swap.max";
702 } else if (startup && streq(property_name, "StartupMemorySwapMax")) {
703 unit_value = c->startup_memory_swap_max;
704 file = "memory.swap.max";
705 } else if (streq(property_name, "MemoryZSwapMax")) {
706 unit_value = c->memory_zswap_max;
707 file = "memory.zswap.max";
708 } else if (startup && streq(property_name, "StartupMemoryZSwapMax")) {
709 unit_value = c->startup_memory_zswap_max;
710 file = "memory.zswap.max";
711 } else
712 return -EINVAL;
713
714 r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
715 if (r < 0)
716 return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
717
718 /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
719 * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
720 * our internal page-counting. To support those future kernels, just check the value itself first
721 * without any page-alignment. */
722 if (*ret_kernel_value == unit_value) {
723 *ret_unit_value = unit_value;
724 return 1;
725 }
726
727 /* The current kernel behaviour, by comparison, is that even if you write a particular number of
728 * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
729 * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
730 * cricket. */
731 if (unit_value != CGROUP_LIMIT_MAX)
732 unit_value = PAGE_ALIGN_DOWN(unit_value);
733
734 *ret_unit_value = unit_value;
735
736 return *ret_kernel_value == *ret_unit_value;
737 }
738
739 #define FORMAT_CGROUP_DIFF_MAX 128
740
741 static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) {
742 uint64_t kval, sval;
743 int r;
744
745 assert(u);
746 assert(buf);
747 assert(l > 0);
748
749 r = unit_compare_memory_limit(u, property_name, &sval, &kval);
750
751 /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
752 * In the absence of reliably being able to detect whether memcg swap support is available or not,
753 * only complain if the error is not ENOENT. This is similarly the case for memory.zswap.max relying
754 * on CONFIG_ZSWAP. */
755 if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
756 (r == -ENOENT && STR_IN_SET(property_name,
757 "MemorySwapMax",
758 "StartupMemorySwapMax",
759 "MemoryZSwapMax",
760 "StartupMemoryZSwapMax")))
761 buf[0] = 0;
762 else if (r < 0) {
763 errno = -r;
764 (void) snprintf(buf, l, " (error getting kernel value: %m)");
765 } else
766 (void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
767
768 return buf;
769 }
770
771 const char *cgroup_device_permissions_to_string(CGroupDevicePermissions p) {
772 static const char *table[_CGROUP_DEVICE_PERMISSIONS_MAX] = {
773 /* Lets simply define a table with every possible combination. As long as those are just 8 we
774 * can get away with it. If this ever grows to more we need to revisit this logic though. */
775 [0] = "",
776 [CGROUP_DEVICE_READ] = "r",
777 [CGROUP_DEVICE_WRITE] = "w",
778 [CGROUP_DEVICE_MKNOD] = "m",
779 [CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE] = "rw",
780 [CGROUP_DEVICE_READ|CGROUP_DEVICE_MKNOD] = "rm",
781 [CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "wm",
782 [CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "rwm",
783 };
784
785 if (p < 0 || p >= _CGROUP_DEVICE_PERMISSIONS_MAX)
786 return NULL;
787
788 return table[p];
789 }
790
791 CGroupDevicePermissions cgroup_device_permissions_from_string(const char *s) {
792 CGroupDevicePermissions p = 0;
793
794 if (!s)
795 return _CGROUP_DEVICE_PERMISSIONS_INVALID;
796
797 for (const char *c = s; *c; c++) {
798 if (*c == 'r')
799 p |= CGROUP_DEVICE_READ;
800 else if (*c == 'w')
801 p |= CGROUP_DEVICE_WRITE;
802 else if (*c == 'm')
803 p |= CGROUP_DEVICE_MKNOD;
804 else
805 return _CGROUP_DEVICE_PERMISSIONS_INVALID;
806 }
807
808 return p;
809 }
810
811 void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
812 _cleanup_free_ char *disable_controllers_str = NULL, *delegate_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
813 CGroupContext *c;
814 struct in_addr_prefix *iaai;
815
816 char cda[FORMAT_CGROUP_DIFF_MAX];
817 char cdb[FORMAT_CGROUP_DIFF_MAX];
818 char cdc[FORMAT_CGROUP_DIFF_MAX];
819 char cdd[FORMAT_CGROUP_DIFF_MAX];
820 char cde[FORMAT_CGROUP_DIFF_MAX];
821 char cdf[FORMAT_CGROUP_DIFF_MAX];
822 char cdg[FORMAT_CGROUP_DIFF_MAX];
823 char cdh[FORMAT_CGROUP_DIFF_MAX];
824 char cdi[FORMAT_CGROUP_DIFF_MAX];
825 char cdj[FORMAT_CGROUP_DIFF_MAX];
826 char cdk[FORMAT_CGROUP_DIFF_MAX];
827
828 assert(u);
829 assert(f);
830
831 assert_se(c = unit_get_cgroup_context(u));
832
833 prefix = strempty(prefix);
834
835 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
836 (void) cg_mask_to_string(c->delegate_controllers, &delegate_controllers_str);
837
838 /* "Delegate=" means "yes, but no controllers". Show this as "(none)". */
839 const char *delegate_str = delegate_controllers_str ?: c->delegate ? "(none)" : "no";
840
841 cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
842 startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
843 cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
844 startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
845
846 fprintf(f,
847 "%sCPUAccounting: %s\n"
848 "%sIOAccounting: %s\n"
849 "%sBlockIOAccounting: %s\n"
850 "%sMemoryAccounting: %s\n"
851 "%sTasksAccounting: %s\n"
852 "%sIPAccounting: %s\n"
853 "%sCPUWeight: %" PRIu64 "\n"
854 "%sStartupCPUWeight: %" PRIu64 "\n"
855 "%sCPUShares: %" PRIu64 "\n"
856 "%sStartupCPUShares: %" PRIu64 "\n"
857 "%sCPUQuotaPerSecSec: %s\n"
858 "%sCPUQuotaPeriodSec: %s\n"
859 "%sAllowedCPUs: %s\n"
860 "%sStartupAllowedCPUs: %s\n"
861 "%sAllowedMemoryNodes: %s\n"
862 "%sStartupAllowedMemoryNodes: %s\n"
863 "%sIOWeight: %" PRIu64 "\n"
864 "%sStartupIOWeight: %" PRIu64 "\n"
865 "%sBlockIOWeight: %" PRIu64 "\n"
866 "%sStartupBlockIOWeight: %" PRIu64 "\n"
867 "%sDefaultMemoryMin: %" PRIu64 "\n"
868 "%sDefaultMemoryLow: %" PRIu64 "\n"
869 "%sMemoryMin: %" PRIu64 "%s\n"
870 "%sMemoryLow: %" PRIu64 "%s\n"
871 "%sStartupMemoryLow: %" PRIu64 "%s\n"
872 "%sMemoryHigh: %" PRIu64 "%s\n"
873 "%sStartupMemoryHigh: %" PRIu64 "%s\n"
874 "%sMemoryMax: %" PRIu64 "%s\n"
875 "%sStartupMemoryMax: %" PRIu64 "%s\n"
876 "%sMemorySwapMax: %" PRIu64 "%s\n"
877 "%sStartupMemorySwapMax: %" PRIu64 "%s\n"
878 "%sMemoryZSwapMax: %" PRIu64 "%s\n"
879 "%sStartupMemoryZSwapMax: %" PRIu64 "%s\n"
880 "%sMemoryLimit: %" PRIu64 "\n"
881 "%sTasksMax: %" PRIu64 "\n"
882 "%sDevicePolicy: %s\n"
883 "%sDisableControllers: %s\n"
884 "%sDelegate: %s\n"
885 "%sManagedOOMSwap: %s\n"
886 "%sManagedOOMMemoryPressure: %s\n"
887 "%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
888 "%sManagedOOMPreference: %s\n"
889 "%sMemoryPressureWatch: %s\n"
890 "%sCoredumpReceive: %s\n",
891 prefix, yes_no(c->cpu_accounting),
892 prefix, yes_no(c->io_accounting),
893 prefix, yes_no(c->blockio_accounting),
894 prefix, yes_no(c->memory_accounting),
895 prefix, yes_no(c->tasks_accounting),
896 prefix, yes_no(c->ip_accounting),
897 prefix, c->cpu_weight,
898 prefix, c->startup_cpu_weight,
899 prefix, c->cpu_shares,
900 prefix, c->startup_cpu_shares,
901 prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
902 prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
903 prefix, strempty(cpuset_cpus),
904 prefix, strempty(startup_cpuset_cpus),
905 prefix, strempty(cpuset_mems),
906 prefix, strempty(startup_cpuset_mems),
907 prefix, c->io_weight,
908 prefix, c->startup_io_weight,
909 prefix, c->blockio_weight,
910 prefix, c->startup_blockio_weight,
911 prefix, c->default_memory_min,
912 prefix, c->default_memory_low,
913 prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"),
914 prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"),
915 prefix, c->startup_memory_low, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "StartupMemoryLow"),
916 prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryHigh"),
917 prefix, c->startup_memory_high, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "StartupMemoryHigh"),
918 prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdf, sizeof(cdf), u, "MemoryMax"),
919 prefix, c->startup_memory_max, format_cgroup_memory_limit_comparison(cdg, sizeof(cdg), u, "StartupMemoryMax"),
920 prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cdh, sizeof(cdh), u, "MemorySwapMax"),
921 prefix, c->startup_memory_swap_max, format_cgroup_memory_limit_comparison(cdi, sizeof(cdi), u, "StartupMemorySwapMax"),
922 prefix, c->memory_zswap_max, format_cgroup_memory_limit_comparison(cdj, sizeof(cdj), u, "MemoryZSwapMax"),
923 prefix, c->startup_memory_zswap_max, format_cgroup_memory_limit_comparison(cdk, sizeof(cdk), u, "StartupMemoryZSwapMax"),
924 prefix, c->memory_limit,
925 prefix, cgroup_tasks_max_resolve(&c->tasks_max),
926 prefix, cgroup_device_policy_to_string(c->device_policy),
927 prefix, strempty(disable_controllers_str),
928 prefix, delegate_str,
929 prefix, managed_oom_mode_to_string(c->moom_swap),
930 prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
931 prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
932 prefix, managed_oom_preference_to_string(c->moom_preference),
933 prefix, cgroup_pressure_watch_to_string(c->memory_pressure_watch),
934 prefix, yes_no(c->coredump_receive));
935
936 if (c->delegate_subgroup)
937 fprintf(f, "%sDelegateSubgroup: %s\n",
938 prefix, c->delegate_subgroup);
939
940 if (c->memory_pressure_threshold_usec != USEC_INFINITY)
941 fprintf(f, "%sMemoryPressureThresholdSec: %s\n",
942 prefix, FORMAT_TIMESPAN(c->memory_pressure_threshold_usec, 1));
943
944 LIST_FOREACH(device_allow, a, c->device_allow)
945 /* strna() below should be redundant, for avoiding -Werror=format-overflow= error. See #30223. */
946 fprintf(f,
947 "%sDeviceAllow: %s %s\n",
948 prefix,
949 a->path,
950 strna(cgroup_device_permissions_to_string(a->permissions)));
951
952 LIST_FOREACH(device_weights, iw, c->io_device_weights)
953 fprintf(f,
954 "%sIODeviceWeight: %s %" PRIu64 "\n",
955 prefix,
956 iw->path,
957 iw->weight);
958
959 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
960 fprintf(f,
961 "%sIODeviceLatencyTargetSec: %s %s\n",
962 prefix,
963 l->path,
964 FORMAT_TIMESPAN(l->target_usec, 1));
965
966 LIST_FOREACH(device_limits, il, c->io_device_limits)
967 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
968 if (il->limits[type] != cgroup_io_limit_defaults[type])
969 fprintf(f,
970 "%s%s: %s %s\n",
971 prefix,
972 cgroup_io_limit_type_to_string(type),
973 il->path,
974 FORMAT_BYTES(il->limits[type]));
975
976 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
977 fprintf(f,
978 "%sBlockIODeviceWeight: %s %" PRIu64,
979 prefix,
980 w->path,
981 w->weight);
982
983 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
984 if (b->rbps != CGROUP_LIMIT_MAX)
985 fprintf(f,
986 "%sBlockIOReadBandwidth: %s %s\n",
987 prefix,
988 b->path,
989 FORMAT_BYTES(b->rbps));
990 if (b->wbps != CGROUP_LIMIT_MAX)
991 fprintf(f,
992 "%sBlockIOWriteBandwidth: %s %s\n",
993 prefix,
994 b->path,
995 FORMAT_BYTES(b->wbps));
996 }
997
998 SET_FOREACH(iaai, c->ip_address_allow)
999 fprintf(f, "%sIPAddressAllow: %s\n", prefix,
1000 IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
1001 SET_FOREACH(iaai, c->ip_address_deny)
1002 fprintf(f, "%sIPAddressDeny: %s\n", prefix,
1003 IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
1004
1005 STRV_FOREACH(path, c->ip_filters_ingress)
1006 fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
1007 STRV_FOREACH(path, c->ip_filters_egress)
1008 fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
1009
1010 LIST_FOREACH(programs, p, c->bpf_foreign_programs)
1011 fprintf(f, "%sBPFProgram: %s:%s",
1012 prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
1013
1014 if (c->socket_bind_allow) {
1015 fprintf(f, "%sSocketBindAllow: ", prefix);
1016 cgroup_context_dump_socket_bind_items(c->socket_bind_allow, f);
1017 fputc('\n', f);
1018 }
1019
1020 if (c->socket_bind_deny) {
1021 fprintf(f, "%sSocketBindDeny: ", prefix);
1022 cgroup_context_dump_socket_bind_items(c->socket_bind_deny, f);
1023 fputc('\n', f);
1024 }
1025
1026 if (c->restrict_network_interfaces) {
1027 char *iface;
1028 SET_FOREACH(iface, c->restrict_network_interfaces)
1029 fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
1030 }
1031
1032 FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets)
1033 fprintf(f, "%sNFTSet: %s:%s:%s:%s\n", prefix, nft_set_source_to_string(nft_set->source),
1034 nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set);
1035 }
1036
1037 void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
1038 const char *family, *colon1, *protocol = "", *colon2 = "";
1039
1040 family = strempty(af_to_ipv4_ipv6(item->address_family));
1041 colon1 = isempty(family) ? "" : ":";
1042
1043 if (item->ip_protocol != 0) {
1044 protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
1045 colon2 = ":";
1046 }
1047
1048 if (item->nr_ports == 0)
1049 fprintf(f, "%s%s%s%sany", family, colon1, protocol, colon2);
1050 else if (item->nr_ports == 1)
1051 fprintf(f, "%s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
1052 else {
1053 uint16_t port_max = item->port_min + item->nr_ports - 1;
1054 fprintf(f, "%s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
1055 item->port_min, port_max);
1056 }
1057 }
1058
1059 void cgroup_context_dump_socket_bind_items(const CGroupSocketBindItem *items, FILE *f) {
1060 bool first = true;
1061
1062 LIST_FOREACH(socket_bind_items, bi, items) {
1063 if (first)
1064 first = false;
1065 else
1066 fputc(' ', f);
1067
1068 cgroup_context_dump_socket_bind_item(bi, f);
1069 }
1070 }
1071
1072 int cgroup_context_add_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
1073 _cleanup_free_ CGroupDeviceAllow *a = NULL;
1074 _cleanup_free_ char *d = NULL;
1075
1076 assert(c);
1077 assert(dev);
1078 assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
1079
1080 if (p == 0)
1081 p = _CGROUP_DEVICE_PERMISSIONS_ALL;
1082
1083 a = new(CGroupDeviceAllow, 1);
1084 if (!a)
1085 return -ENOMEM;
1086
1087 d = strdup(dev);
1088 if (!d)
1089 return -ENOMEM;
1090
1091 *a = (CGroupDeviceAllow) {
1092 .path = TAKE_PTR(d),
1093 .permissions = p,
1094 };
1095
1096 LIST_PREPEND(device_allow, c->device_allow, a);
1097 TAKE_PTR(a);
1098
1099 return 0;
1100 }
1101
1102 int cgroup_context_add_or_update_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
1103 assert(c);
1104 assert(dev);
1105 assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
1106
1107 if (p == 0)
1108 p = _CGROUP_DEVICE_PERMISSIONS_ALL;
1109
1110 LIST_FOREACH(device_allow, b, c->device_allow)
1111 if (path_equal(b->path, dev)) {
1112 b->permissions = p;
1113 return 0;
1114 }
1115
1116 return cgroup_context_add_device_allow(c, dev, p);
1117 }
1118
1119 int cgroup_context_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
1120 CGroupBPFForeignProgram *p;
1121 _cleanup_free_ char *d = NULL;
1122
1123 assert(c);
1124 assert(bpffs_path);
1125
1126 if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
1127 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized: %m");
1128
1129 d = strdup(bpffs_path);
1130 if (!d)
1131 return log_oom();
1132
1133 p = new(CGroupBPFForeignProgram, 1);
1134 if (!p)
1135 return log_oom();
1136
1137 *p = (CGroupBPFForeignProgram) {
1138 .attach_type = attach_type,
1139 .bpffs_path = TAKE_PTR(d),
1140 };
1141
1142 LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
1143
1144 return 0;
1145 }
1146
1147 #define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
1148 uint64_t unit_get_ancestor_##entry(Unit *u) { \
1149 CGroupContext *c; \
1150 \
1151 /* 1. Is entry set in this unit? If so, use that. \
1152 * 2. Is the default for this entry set in any \
1153 * ancestor? If so, use that. \
1154 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
1155 \
1156 assert(u); \
1157 \
1158 c = unit_get_cgroup_context(u); \
1159 if (c && c->entry##_set) \
1160 return c->entry; \
1161 \
1162 while ((u = UNIT_GET_SLICE(u))) { \
1163 c = unit_get_cgroup_context(u); \
1164 if (c && c->default_##entry##_set) \
1165 return c->default_##entry; \
1166 } \
1167 \
1168 /* We've reached the root, but nobody had default for \
1169 * this entry set, so set it to the kernel default. */ \
1170 return CGROUP_LIMIT_MIN; \
1171 }
1172
1173 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
1174 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(startup_memory_low);
1175 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
1176
1177 static void unit_set_xattr_graceful(Unit *u, const char *name, const void *data, size_t size) {
1178 int r;
1179
1180 assert(u);
1181 assert(name);
1182
1183 if (!u->cgroup_path)
1184 return;
1185
1186 r = cg_set_xattr(u->cgroup_path, name, data, size, 0);
1187 if (r < 0)
1188 log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(u->cgroup_path));
1189 }
1190
1191 static void unit_remove_xattr_graceful(Unit *u, const char *name) {
1192 int r;
1193
1194 assert(u);
1195 assert(name);
1196
1197 if (!u->cgroup_path)
1198 return;
1199
1200 r = cg_remove_xattr(u->cgroup_path, name);
1201 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
1202 log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(u->cgroup_path));
1203 }
1204
1205 static void cgroup_oomd_xattr_apply(Unit *u) {
1206 CGroupContext *c;
1207
1208 assert(u);
1209
1210 c = unit_get_cgroup_context(u);
1211 if (!c)
1212 return;
1213
1214 if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
1215 unit_set_xattr_graceful(u, "user.oomd_omit", "1", 1);
1216
1217 if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
1218 unit_set_xattr_graceful(u, "user.oomd_avoid", "1", 1);
1219
1220 if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
1221 unit_remove_xattr_graceful(u, "user.oomd_avoid");
1222
1223 if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
1224 unit_remove_xattr_graceful(u, "user.oomd_omit");
1225 }
1226
1227 static int cgroup_log_xattr_apply(Unit *u) {
1228 ExecContext *c;
1229 size_t len, allowed_patterns_len, denied_patterns_len;
1230 _cleanup_free_ char *patterns = NULL, *allowed_patterns = NULL, *denied_patterns = NULL;
1231 char *last;
1232 int r;
1233
1234 assert(u);
1235
1236 c = unit_get_exec_context(u);
1237 if (!c)
1238 /* Some unit types have a cgroup context but no exec context, so we do not log
1239 * any error here to avoid confusion. */
1240 return 0;
1241
1242 if (set_isempty(c->log_filter_allowed_patterns) && set_isempty(c->log_filter_denied_patterns)) {
1243 unit_remove_xattr_graceful(u, "user.journald_log_filter_patterns");
1244 return 0;
1245 }
1246
1247 r = set_make_nulstr(c->log_filter_allowed_patterns, &allowed_patterns, &allowed_patterns_len);
1248 if (r < 0)
1249 return log_debug_errno(r, "Failed to make nulstr from set: %m");
1250
1251 r = set_make_nulstr(c->log_filter_denied_patterns, &denied_patterns, &denied_patterns_len);
1252 if (r < 0)
1253 return log_debug_errno(r, "Failed to make nulstr from set: %m");
1254
1255 /* Use nul character separated strings without trailing nul */
1256 allowed_patterns_len = LESS_BY(allowed_patterns_len, 1u);
1257 denied_patterns_len = LESS_BY(denied_patterns_len, 1u);
1258
1259 len = allowed_patterns_len + 1 + denied_patterns_len;
1260 patterns = new(char, len);
1261 if (!patterns)
1262 return log_oom_debug();
1263
1264 last = mempcpy_safe(patterns, allowed_patterns, allowed_patterns_len);
1265 *(last++) = '\xff';
1266 memcpy_safe(last, denied_patterns, denied_patterns_len);
1267
1268 unit_set_xattr_graceful(u, "user.journald_log_filter_patterns", patterns, len);
1269
1270 return 0;
1271 }
1272
1273 static void cgroup_invocation_id_xattr_apply(Unit *u) {
1274 bool b;
1275
1276 assert(u);
1277
1278 b = !sd_id128_is_null(u->invocation_id);
1279 FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
1280 if (b)
1281 unit_set_xattr_graceful(u, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
1282 else
1283 unit_remove_xattr_graceful(u, xn);
1284 }
1285 }
1286
1287 static void cgroup_coredump_xattr_apply(Unit *u) {
1288 CGroupContext *c;
1289
1290 assert(u);
1291
1292 c = unit_get_cgroup_context(u);
1293 if (!c)
1294 return;
1295
1296 if (unit_cgroup_delegate(u) && c->coredump_receive)
1297 unit_set_xattr_graceful(u, "user.coredump_receive", "1", 1);
1298 else
1299 unit_remove_xattr_graceful(u, "user.coredump_receive");
1300 }
1301
1302 static void cgroup_delegate_xattr_apply(Unit *u) {
1303 bool b;
1304
1305 assert(u);
1306
1307 /* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
1308 * didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
1309 * and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
1310 * given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
1311 * since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
1312 * security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
1313 * be a big problem given this communicates delegation state to clients, but the manager never reads
1314 * it. */
1315 b = unit_cgroup_delegate(u);
1316 FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
1317 if (b)
1318 unit_set_xattr_graceful(u, xn, "1", 1);
1319 else
1320 unit_remove_xattr_graceful(u, xn);
1321 }
1322 }
1323
1324 static void cgroup_survive_xattr_apply(Unit *u) {
1325 int r;
1326
1327 assert(u);
1328
1329 if (u->survive_final_kill_signal) {
1330 r = cg_set_xattr(
1331 u->cgroup_path,
1332 "user.survive_final_kill_signal",
1333 "1",
1334 1,
1335 /* flags= */ 0);
1336 /* user xattr support was added in kernel v5.7 */
1337 if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
1338 r = cg_set_xattr(
1339 u->cgroup_path,
1340 "trusted.survive_final_kill_signal",
1341 "1",
1342 1,
1343 /* flags= */ 0);
1344 if (r < 0)
1345 log_unit_debug_errno(u,
1346 r,
1347 "Failed to set 'survive_final_kill_signal' xattr on control "
1348 "group %s, ignoring: %m",
1349 empty_to_root(u->cgroup_path));
1350 } else {
1351 unit_remove_xattr_graceful(u, "user.survive_final_kill_signal");
1352 unit_remove_xattr_graceful(u, "trusted.survive_final_kill_signal");
1353 }
1354 }
1355
1356 static void cgroup_xattr_apply(Unit *u) {
1357 assert(u);
1358
1359 /* The 'user.*' xattrs can be set from a user manager. */
1360 cgroup_oomd_xattr_apply(u);
1361 cgroup_log_xattr_apply(u);
1362 cgroup_coredump_xattr_apply(u);
1363
1364 if (!MANAGER_IS_SYSTEM(u->manager))
1365 return;
1366
1367 cgroup_invocation_id_xattr_apply(u);
1368 cgroup_delegate_xattr_apply(u);
1369 cgroup_survive_xattr_apply(u);
1370 }
1371
1372 static int lookup_block_device(const char *p, dev_t *ret) {
1373 dev_t rdev, dev = 0;
1374 mode_t mode;
1375 int r;
1376
1377 assert(p);
1378 assert(ret);
1379
1380 r = device_path_parse_major_minor(p, &mode, &rdev);
1381 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
1382 struct stat st;
1383
1384 if (stat(p, &st) < 0)
1385 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
1386
1387 mode = st.st_mode;
1388 rdev = st.st_rdev;
1389 dev = st.st_dev;
1390 } else if (r < 0)
1391 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
1392
1393 if (S_ISCHR(mode))
1394 return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
1395 "Device node '%s' is a character device, but block device needed.", p);
1396 if (S_ISBLK(mode))
1397 *ret = rdev;
1398 else if (major(dev) != 0)
1399 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
1400 else {
1401 /* If this is btrfs, getting the backing block device is a bit harder */
1402 r = btrfs_get_block_device(p, ret);
1403 if (r == -ENOTTY)
1404 return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
1405 "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
1406 if (r < 0)
1407 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
1408 }
1409
1410 /* If this is a LUKS/DM device, recursively try to get the originating block device */
1411 while (block_get_originating(*ret, ret) > 0);
1412
1413 /* If this is a partition, try to get the originating block device */
1414 (void) block_get_whole_disk(*ret, ret);
1415 return 0;
1416 }
1417
1418 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
1419 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
1420 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
1421 }
1422
1423 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
1424 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
1425 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
1426 }
1427
1428 static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
1429 return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
1430 }
1431
1432 static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
1433 return c->cpuset_mems.set || c->startup_cpuset_mems.set;
1434 }
1435
1436 uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
1437 assert(c);
1438
1439 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1440 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
1441 return c->startup_cpu_weight;
1442 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
1443 return c->cpu_weight;
1444 else
1445 return CGROUP_WEIGHT_DEFAULT;
1446 }
1447
1448 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
1449 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1450 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
1451 return c->startup_cpu_shares;
1452 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
1453 return c->cpu_shares;
1454 else
1455 return CGROUP_CPU_SHARES_DEFAULT;
1456 }
1457
1458 static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
1459 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1460 c->startup_cpuset_cpus.set)
1461 return &c->startup_cpuset_cpus;
1462 else
1463 return &c->cpuset_cpus;
1464 }
1465
1466 static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
1467 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1468 c->startup_cpuset_mems.set)
1469 return &c->startup_cpuset_mems;
1470 else
1471 return &c->cpuset_mems;
1472 }
1473
1474 usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
1475 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
1476 * need to be higher than that boundary. quota is specified in USecPerSec.
1477 * Additionally, period must be at most max_period. */
1478 assert(quota > 0);
1479
1480 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
1481 }
1482
1483 static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
1484 usec_t new_period;
1485
1486 if (quota == USEC_INFINITY)
1487 /* Always use default period for infinity quota. */
1488 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
1489
1490 if (period == USEC_INFINITY)
1491 /* Default period was requested. */
1492 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
1493
1494 /* Clamp to interval [1ms, 1s] */
1495 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
1496
1497 if (new_period != period) {
1498 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
1499 "Clamping CPU interval for cpu.max: period is now %s",
1500 FORMAT_TIMESPAN(new_period, 1));
1501 u->warned_clamping_cpu_quota_period = true;
1502 }
1503
1504 return new_period;
1505 }
1506
1507 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
1508 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1509
1510 if (weight == CGROUP_WEIGHT_IDLE)
1511 return;
1512 xsprintf(buf, "%" PRIu64 "\n", weight);
1513 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
1514 }
1515
1516 static void cgroup_apply_unified_cpu_idle(Unit *u, uint64_t weight) {
1517 int r;
1518 bool is_idle;
1519 const char *idle_val;
1520
1521 is_idle = weight == CGROUP_WEIGHT_IDLE;
1522 idle_val = one_zero(is_idle);
1523 r = cg_set_attribute("cpu", u->cgroup_path, "cpu.idle", idle_val);
1524 if (r < 0 && (r != -ENOENT || is_idle))
1525 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%s': %m",
1526 "cpu.idle", empty_to_root(u->cgroup_path), idle_val);
1527 }
1528
1529 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
1530 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
1531
1532 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
1533 if (quota != USEC_INFINITY)
1534 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
1535 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
1536 else
1537 xsprintf(buf, "max " USEC_FMT "\n", period);
1538 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
1539 }
1540
1541 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
1542 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1543
1544 xsprintf(buf, "%" PRIu64 "\n", shares);
1545 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
1546 }
1547
1548 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
1549 char buf[DECIMAL_STR_MAX(usec_t) + 2];
1550
1551 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
1552
1553 xsprintf(buf, USEC_FMT "\n", period);
1554 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
1555
1556 if (quota != USEC_INFINITY) {
1557 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
1558 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
1559 } else
1560 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
1561 }
1562
1563 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
1564 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
1565 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1566 }
1567
1568 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
1569 /* we don't support idle in cgroupv1 */
1570 if (weight == CGROUP_WEIGHT_IDLE)
1571 return CGROUP_CPU_SHARES_MIN;
1572
1573 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1574 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
1575 }
1576
1577 static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
1578 _cleanup_free_ char *buf = NULL;
1579
1580 buf = cpu_set_to_range_string(cpus);
1581 if (!buf) {
1582 log_oom();
1583 return;
1584 }
1585
1586 (void) set_attribute_and_warn(u, "cpuset", name, buf);
1587 }
1588
1589 static bool cgroup_context_has_io_config(CGroupContext *c) {
1590 return c->io_accounting ||
1591 c->io_weight != CGROUP_WEIGHT_INVALID ||
1592 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
1593 c->io_device_weights ||
1594 c->io_device_latencies ||
1595 c->io_device_limits;
1596 }
1597
1598 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
1599 return c->blockio_accounting ||
1600 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1601 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1602 c->blockio_device_weights ||
1603 c->blockio_device_bandwidths;
1604 }
1605
1606 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
1607 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1608 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
1609 return c->startup_io_weight;
1610 if (c->io_weight != CGROUP_WEIGHT_INVALID)
1611 return c->io_weight;
1612 return CGROUP_WEIGHT_DEFAULT;
1613 }
1614
1615 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
1616 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1617 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1618 return c->startup_blockio_weight;
1619 if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1620 return c->blockio_weight;
1621 return CGROUP_BLKIO_WEIGHT_DEFAULT;
1622 }
1623
1624 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
1625 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
1626 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1627 }
1628
1629 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
1630 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1631 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
1632 }
1633
1634 static int set_bfq_weight(Unit *u, const char *controller, dev_t dev, uint64_t io_weight) {
1635 static const char * const prop_names[] = {
1636 "IOWeight",
1637 "BlockIOWeight",
1638 "IODeviceWeight",
1639 "BlockIODeviceWeight",
1640 };
1641 static bool warned = false;
1642 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
1643 const char *p;
1644 uint64_t bfq_weight;
1645 int r;
1646
1647 /* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
1648 * See also: https://github.com/systemd/systemd/pull/13335 and
1649 * https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
1650 p = strjoina(controller, ".bfq.weight");
1651 /* Adjust to kernel range is 1..1000, the default is 100. */
1652 bfq_weight = BFQ_WEIGHT(io_weight);
1653
1654 if (major(dev) > 0)
1655 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), bfq_weight);
1656 else
1657 xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
1658
1659 r = cg_set_attribute(controller, u->cgroup_path, p, buf);
1660
1661 /* FIXME: drop this when kernels prior
1662 * 795fe54c2a82 ("bfq: Add per-device weight") v5.4
1663 * are not interesting anymore. Old kernels will fail with EINVAL, while new kernels won't return
1664 * EINVAL on properly formatted input by us. Treat EINVAL accordingly. */
1665 if (r == -EINVAL && major(dev) > 0) {
1666 if (!warned) {
1667 log_unit_warning(u, "Kernel version does not accept per-device setting in %s.", p);
1668 warned = true;
1669 }
1670 r = -EOPNOTSUPP; /* mask as unconfigured device */
1671 } else if (r >= 0 && io_weight != bfq_weight)
1672 log_unit_debug(u, "%s=%" PRIu64 " scaled to %s=%" PRIu64,
1673 prop_names[2*(major(dev) > 0) + streq(controller, "blkio")],
1674 io_weight, p, bfq_weight);
1675 return r;
1676 }
1677
1678 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
1679 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1680 dev_t dev;
1681 int r, r1, r2;
1682
1683 if (lookup_block_device(dev_path, &dev) < 0)
1684 return;
1685
1686 r1 = set_bfq_weight(u, "io", dev, io_weight);
1687
1688 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), io_weight);
1689 r2 = cg_set_attribute("io", u->cgroup_path, "io.weight", buf);
1690
1691 /* Look at the configured device, when both fail, prefer io.weight errno. */
1692 r = r2 == -EOPNOTSUPP ? r1 : r2;
1693
1694 if (r < 0)
1695 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r),
1696 r, "Failed to set 'io[.bfq].weight' attribute on '%s' to '%.*s': %m",
1697 empty_to_root(u->cgroup_path), (int) strcspn(buf, NEWLINE), buf);
1698 }
1699
1700 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
1701 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1702 dev_t dev;
1703 int r;
1704
1705 r = lookup_block_device(dev_path, &dev);
1706 if (r < 0)
1707 return;
1708
1709 xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), blkio_weight);
1710 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
1711 }
1712
1713 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
1714 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
1715 dev_t dev;
1716 int r;
1717
1718 r = lookup_block_device(dev_path, &dev);
1719 if (r < 0)
1720 return;
1721
1722 if (target != USEC_INFINITY)
1723 xsprintf(buf, DEVNUM_FORMAT_STR " target=%" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), target);
1724 else
1725 xsprintf(buf, DEVNUM_FORMAT_STR " target=max\n", DEVNUM_FORMAT_VAL(dev));
1726
1727 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
1728 }
1729
1730 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
1731 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
1732 buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
1733 dev_t dev;
1734
1735 if (lookup_block_device(dev_path, &dev) < 0)
1736 return;
1737
1738 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1739 if (limits[type] != cgroup_io_limit_defaults[type])
1740 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
1741 else
1742 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
1743
1744 xsprintf(buf, DEVNUM_FORMAT_STR " rbps=%s wbps=%s riops=%s wiops=%s\n", DEVNUM_FORMAT_VAL(dev),
1745 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
1746 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
1747 (void) set_attribute_and_warn(u, "io", "io.max", buf);
1748 }
1749
1750 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
1751 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1752 dev_t dev;
1753
1754 if (lookup_block_device(dev_path, &dev) < 0)
1755 return;
1756
1757 sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), rbps);
1758 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
1759
1760 sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), wbps);
1761 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
1762 }
1763
1764 static bool unit_has_unified_memory_config(Unit *u) {
1765 CGroupContext *c;
1766
1767 assert(u);
1768
1769 assert_se(c = unit_get_cgroup_context(u));
1770
1771 return unit_get_ancestor_memory_min(u) > 0 ||
1772 unit_get_ancestor_memory_low(u) > 0 || unit_get_ancestor_startup_memory_low(u) > 0 ||
1773 c->memory_high != CGROUP_LIMIT_MAX || c->startup_memory_high_set ||
1774 c->memory_max != CGROUP_LIMIT_MAX || c->startup_memory_max_set ||
1775 c->memory_swap_max != CGROUP_LIMIT_MAX || c->startup_memory_swap_max_set ||
1776 c->memory_zswap_max != CGROUP_LIMIT_MAX || c->startup_memory_zswap_max_set;
1777 }
1778
1779 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
1780 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
1781
1782 if (v != CGROUP_LIMIT_MAX)
1783 xsprintf(buf, "%" PRIu64 "\n", v);
1784
1785 (void) set_attribute_and_warn(u, "memory", file, buf);
1786 }
1787
1788 static void cgroup_apply_firewall(Unit *u) {
1789 assert(u);
1790
1791 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
1792
1793 if (bpf_firewall_compile(u) < 0)
1794 return;
1795
1796 (void) bpf_firewall_load_custom(u);
1797 (void) bpf_firewall_install(u);
1798 }
1799
1800 void unit_modify_nft_set(Unit *u, bool add) {
1801 int r;
1802
1803 assert(u);
1804
1805 if (!MANAGER_IS_SYSTEM(u->manager))
1806 return;
1807
1808 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1809 return;
1810
1811 if (cg_all_unified() <= 0)
1812 return;
1813
1814 if (u->cgroup_id == 0)
1815 return;
1816
1817 if (!u->manager->fw_ctx) {
1818 r = fw_ctx_new_full(&u->manager->fw_ctx, /* init_tables= */ false);
1819 if (r < 0)
1820 return;
1821
1822 assert(u->manager->fw_ctx);
1823 }
1824
1825 CGroupContext *c = ASSERT_PTR(unit_get_cgroup_context(u));
1826
1827 FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets) {
1828 if (nft_set->source != NFT_SET_SOURCE_CGROUP)
1829 continue;
1830
1831 uint64_t element = u->cgroup_id;
1832
1833 r = nft_set_element_modify_any(u->manager->fw_ctx, add, nft_set->nfproto, nft_set->table, nft_set->set, &element, sizeof(element));
1834 if (r < 0)
1835 log_warning_errno(r, "Failed to %s NFT set: family %s, table %s, set %s, cgroup %" PRIu64 ", ignoring: %m",
1836 add? "add" : "delete", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, u->cgroup_id);
1837 else
1838 log_debug("%s NFT set: family %s, table %s, set %s, cgroup %" PRIu64,
1839 add? "Added" : "Deleted", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, u->cgroup_id);
1840 }
1841 }
1842
1843 static void cgroup_apply_socket_bind(Unit *u) {
1844 assert(u);
1845
1846 (void) bpf_socket_bind_install(u);
1847 }
1848
1849 static void cgroup_apply_restrict_network_interfaces(Unit *u) {
1850 assert(u);
1851
1852 (void) restrict_network_interfaces_install(u);
1853 }
1854
1855 static int cgroup_apply_devices(Unit *u) {
1856 _cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
1857 const char *path;
1858 CGroupContext *c;
1859 CGroupDevicePolicy policy;
1860 int r;
1861
1862 assert_se(c = unit_get_cgroup_context(u));
1863 assert_se(path = u->cgroup_path);
1864
1865 policy = c->device_policy;
1866
1867 if (cg_all_unified() > 0) {
1868 r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
1869 if (r < 0)
1870 return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1871
1872 } else {
1873 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
1874 * EINVAL here. */
1875
1876 if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
1877 r = cg_set_attribute("devices", path, "devices.deny", "a");
1878 else
1879 r = cg_set_attribute("devices", path, "devices.allow", "a");
1880 if (r < 0)
1881 log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1882 "Failed to reset devices.allow/devices.deny: %m");
1883 }
1884
1885 bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
1886 (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
1887 if (allow_list_static)
1888 (void) bpf_devices_allow_list_static(prog, path);
1889
1890 bool any = allow_list_static;
1891 LIST_FOREACH(device_allow, a, c->device_allow) {
1892 const char *val;
1893
1894 if (a->permissions == 0)
1895 continue;
1896
1897 if (path_startswith(a->path, "/dev/"))
1898 r = bpf_devices_allow_list_device(prog, path, a->path, a->permissions);
1899 else if ((val = startswith(a->path, "block-")))
1900 r = bpf_devices_allow_list_major(prog, path, val, 'b', a->permissions);
1901 else if ((val = startswith(a->path, "char-")))
1902 r = bpf_devices_allow_list_major(prog, path, val, 'c', a->permissions);
1903 else {
1904 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1905 continue;
1906 }
1907
1908 if (r >= 0)
1909 any = true;
1910 }
1911
1912 if (prog && !any) {
1913 log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter.");
1914
1915 /* The kernel verifier would reject a program we would build with the normal intro and outro
1916 but no allow-listing rules (outro would contain an unreachable instruction for successful
1917 return). */
1918 policy = CGROUP_DEVICE_POLICY_STRICT;
1919 }
1920
1921 r = bpf_devices_apply_policy(&prog, policy, any, path, &u->bpf_device_control_installed);
1922 if (r < 0) {
1923 static bool warned = false;
1924
1925 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1926 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1927 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1928 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1929
1930 warned = true;
1931 }
1932 return r;
1933 }
1934
1935 static void set_io_weight(Unit *u, uint64_t weight) {
1936 char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
1937
1938 assert(u);
1939
1940 (void) set_bfq_weight(u, "io", makedev(0, 0), weight);
1941
1942 xsprintf(buf, "default %" PRIu64 "\n", weight);
1943 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1944 }
1945
1946 static void set_blkio_weight(Unit *u, uint64_t weight) {
1947 char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
1948
1949 assert(u);
1950
1951 (void) set_bfq_weight(u, "blkio", makedev(0, 0), weight);
1952
1953 xsprintf(buf, "%" PRIu64 "\n", weight);
1954 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1955 }
1956
1957 static void cgroup_apply_bpf_foreign_program(Unit *u) {
1958 assert(u);
1959
1960 (void) bpf_foreign_install(u);
1961 }
1962
1963 static void cgroup_context_apply(
1964 Unit *u,
1965 CGroupMask apply_mask,
1966 ManagerState state) {
1967
1968 const char *path;
1969 CGroupContext *c;
1970 bool is_host_root, is_local_root;
1971 int r;
1972
1973 assert(u);
1974
1975 /* Nothing to do? Exit early! */
1976 if (apply_mask == 0)
1977 return;
1978
1979 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
1980 * attributes should only be managed for cgroups further down the tree. */
1981 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
1982 is_host_root = unit_has_host_root_cgroup(u);
1983
1984 assert_se(c = unit_get_cgroup_context(u));
1985 assert_se(path = u->cgroup_path);
1986
1987 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
1988 path = "/";
1989
1990 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
1991 * then), and missing cgroups, i.e. EROFS and ENOENT. */
1992
1993 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
1994 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
1995 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
1996 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
1997 * we couldn't even write to them if we wanted to). */
1998 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
1999
2000 if (cg_all_unified() > 0) {
2001 uint64_t weight;
2002
2003 if (cgroup_context_has_cpu_weight(c))
2004 weight = cgroup_context_cpu_weight(c, state);
2005 else if (cgroup_context_has_cpu_shares(c)) {
2006 uint64_t shares;
2007
2008 shares = cgroup_context_cpu_shares(c, state);
2009 weight = cgroup_cpu_shares_to_weight(shares);
2010
2011 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
2012 shares, weight, path);
2013 } else
2014 weight = CGROUP_WEIGHT_DEFAULT;
2015
2016 cgroup_apply_unified_cpu_idle(u, weight);
2017 cgroup_apply_unified_cpu_weight(u, weight);
2018 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
2019
2020 } else {
2021 uint64_t shares;
2022
2023 if (cgroup_context_has_cpu_weight(c)) {
2024 uint64_t weight;
2025
2026 weight = cgroup_context_cpu_weight(c, state);
2027 shares = cgroup_cpu_weight_to_shares(weight);
2028
2029 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
2030 weight, shares, path);
2031 } else if (cgroup_context_has_cpu_shares(c))
2032 shares = cgroup_context_cpu_shares(c, state);
2033 else
2034 shares = CGROUP_CPU_SHARES_DEFAULT;
2035
2036 cgroup_apply_legacy_cpu_shares(u, shares);
2037 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
2038 }
2039 }
2040
2041 if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
2042 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
2043 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
2044 }
2045
2046 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
2047 * controller), and in case of containers we want to leave control of these attributes to the container manager
2048 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
2049 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
2050 bool has_io, has_blockio;
2051 uint64_t weight;
2052
2053 has_io = cgroup_context_has_io_config(c);
2054 has_blockio = cgroup_context_has_blockio_config(c);
2055
2056 if (has_io)
2057 weight = cgroup_context_io_weight(c, state);
2058 else if (has_blockio) {
2059 uint64_t blkio_weight;
2060
2061 blkio_weight = cgroup_context_blkio_weight(c, state);
2062 weight = cgroup_weight_blkio_to_io(blkio_weight);
2063
2064 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
2065 blkio_weight, weight);
2066 } else
2067 weight = CGROUP_WEIGHT_DEFAULT;
2068
2069 set_io_weight(u, weight);
2070
2071 if (has_io) {
2072 LIST_FOREACH(device_weights, w, c->io_device_weights)
2073 cgroup_apply_io_device_weight(u, w->path, w->weight);
2074
2075 LIST_FOREACH(device_limits, limit, c->io_device_limits)
2076 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
2077
2078 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
2079 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
2080
2081 } else if (has_blockio) {
2082 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
2083 weight = cgroup_weight_blkio_to_io(w->weight);
2084
2085 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
2086 w->weight, weight, w->path);
2087
2088 cgroup_apply_io_device_weight(u, w->path, weight);
2089 }
2090
2091 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
2092 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
2093
2094 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
2095 limits[type] = cgroup_io_limit_defaults[type];
2096
2097 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
2098 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
2099
2100 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
2101 b->rbps, b->wbps, b->path);
2102
2103 cgroup_apply_io_device_limit(u, b->path, limits);
2104 }
2105 }
2106 }
2107
2108 if (apply_mask & CGROUP_MASK_BLKIO) {
2109 bool has_io, has_blockio;
2110
2111 has_io = cgroup_context_has_io_config(c);
2112 has_blockio = cgroup_context_has_blockio_config(c);
2113
2114 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
2115 * left to our container manager, too. */
2116 if (!is_local_root) {
2117 uint64_t weight;
2118
2119 if (has_io) {
2120 uint64_t io_weight;
2121
2122 io_weight = cgroup_context_io_weight(c, state);
2123 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
2124
2125 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
2126 io_weight, weight);
2127 } else if (has_blockio)
2128 weight = cgroup_context_blkio_weight(c, state);
2129 else
2130 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
2131
2132 set_blkio_weight(u, weight);
2133
2134 if (has_io)
2135 LIST_FOREACH(device_weights, w, c->io_device_weights) {
2136 weight = cgroup_weight_io_to_blkio(w->weight);
2137
2138 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
2139 w->weight, weight, w->path);
2140
2141 cgroup_apply_blkio_device_weight(u, w->path, weight);
2142 }
2143 else if (has_blockio)
2144 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
2145 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
2146 }
2147
2148 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
2149 * roots, as there we want the container manager to handle it */
2150 if (is_host_root || !is_local_root) {
2151 if (has_io)
2152 LIST_FOREACH(device_limits, l, c->io_device_limits) {
2153 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
2154 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
2155
2156 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
2157 }
2158 else if (has_blockio)
2159 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
2160 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
2161 }
2162 }
2163
2164 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
2165 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
2166 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
2167 * write to this if we wanted to.) */
2168 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
2169
2170 if (cg_all_unified() > 0) {
2171 uint64_t max, swap_max = CGROUP_LIMIT_MAX, zswap_max = CGROUP_LIMIT_MAX, high = CGROUP_LIMIT_MAX;
2172
2173 if (unit_has_unified_memory_config(u)) {
2174 bool startup = IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
2175
2176 high = startup && c->startup_memory_high_set ? c->startup_memory_high : c->memory_high;
2177 max = startup && c->startup_memory_max_set ? c->startup_memory_max : c->memory_max;
2178 swap_max = startup && c->startup_memory_swap_max_set ? c->startup_memory_swap_max : c->memory_swap_max;
2179 zswap_max = startup && c->startup_memory_zswap_max_set ? c->startup_memory_zswap_max : c->memory_zswap_max;
2180 } else {
2181 max = c->memory_limit;
2182
2183 if (max != CGROUP_LIMIT_MAX)
2184 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
2185 }
2186
2187 cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
2188 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
2189 cgroup_apply_unified_memory_limit(u, "memory.high", high);
2190 cgroup_apply_unified_memory_limit(u, "memory.max", max);
2191 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
2192 cgroup_apply_unified_memory_limit(u, "memory.zswap.max", zswap_max);
2193
2194 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
2195
2196 } else {
2197 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
2198 uint64_t val;
2199
2200 if (unit_has_unified_memory_config(u)) {
2201 val = c->memory_max;
2202 if (val != CGROUP_LIMIT_MAX)
2203 log_cgroup_compat(u, "Applying MemoryMax=%" PRIu64 " as MemoryLimit=", val);
2204 } else
2205 val = c->memory_limit;
2206
2207 if (val == CGROUP_LIMIT_MAX)
2208 strncpy(buf, "-1\n", sizeof(buf));
2209 else
2210 xsprintf(buf, "%" PRIu64 "\n", val);
2211
2212 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
2213 }
2214 }
2215
2216 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
2217 * containers, where we leave this to the manager */
2218 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
2219 (is_host_root || cg_all_unified() > 0 || !is_local_root))
2220 (void) cgroup_apply_devices(u);
2221
2222 if (apply_mask & CGROUP_MASK_PIDS) {
2223
2224 if (is_host_root) {
2225 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
2226 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
2227 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
2228 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
2229 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
2230 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
2231 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
2232 * it also counts. But if the user never set a limit through us (i.e. we are the default of
2233 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
2234 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
2235 * which is desirable so that there's an official way to release control of the sysctl from
2236 * systemd: set the limit to unbounded and reload. */
2237
2238 if (cgroup_tasks_max_isset(&c->tasks_max)) {
2239 u->manager->sysctl_pid_max_changed = true;
2240 r = procfs_tasks_set_limit(cgroup_tasks_max_resolve(&c->tasks_max));
2241 } else if (u->manager->sysctl_pid_max_changed)
2242 r = procfs_tasks_set_limit(TASKS_MAX);
2243 else
2244 r = 0;
2245 if (r < 0)
2246 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
2247 "Failed to write to tasks limit sysctls: %m");
2248 }
2249
2250 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
2251 * leave it for the container manager. */
2252 if (!is_local_root) {
2253 if (cgroup_tasks_max_isset(&c->tasks_max)) {
2254 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
2255
2256 xsprintf(buf, "%" PRIu64 "\n", cgroup_tasks_max_resolve(&c->tasks_max));
2257 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
2258 } else
2259 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
2260 }
2261 }
2262
2263 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
2264 cgroup_apply_firewall(u);
2265
2266 if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
2267 cgroup_apply_bpf_foreign_program(u);
2268
2269 if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
2270 cgroup_apply_socket_bind(u);
2271
2272 if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
2273 cgroup_apply_restrict_network_interfaces(u);
2274
2275 unit_modify_nft_set(u, /* add = */ true);
2276 }
2277
2278 static bool unit_get_needs_bpf_firewall(Unit *u) {
2279 CGroupContext *c;
2280 assert(u);
2281
2282 c = unit_get_cgroup_context(u);
2283 if (!c)
2284 return false;
2285
2286 if (c->ip_accounting ||
2287 !set_isempty(c->ip_address_allow) ||
2288 !set_isempty(c->ip_address_deny) ||
2289 c->ip_filters_ingress ||
2290 c->ip_filters_egress)
2291 return true;
2292
2293 /* If any parent slice has an IP access list defined, it applies too */
2294 for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
2295 c = unit_get_cgroup_context(p);
2296 if (!c)
2297 return false;
2298
2299 if (!set_isempty(c->ip_address_allow) ||
2300 !set_isempty(c->ip_address_deny))
2301 return true;
2302 }
2303
2304 return false;
2305 }
2306
2307 static bool unit_get_needs_bpf_foreign_program(Unit *u) {
2308 CGroupContext *c;
2309 assert(u);
2310
2311 c = unit_get_cgroup_context(u);
2312 if (!c)
2313 return false;
2314
2315 return !!c->bpf_foreign_programs;
2316 }
2317
2318 static bool unit_get_needs_socket_bind(Unit *u) {
2319 CGroupContext *c;
2320 assert(u);
2321
2322 c = unit_get_cgroup_context(u);
2323 if (!c)
2324 return false;
2325
2326 return c->socket_bind_allow || c->socket_bind_deny;
2327 }
2328
2329 static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
2330 CGroupContext *c;
2331 assert(u);
2332
2333 c = unit_get_cgroup_context(u);
2334 if (!c)
2335 return false;
2336
2337 return !set_isempty(c->restrict_network_interfaces);
2338 }
2339
2340 static CGroupMask unit_get_cgroup_mask(Unit *u) {
2341 CGroupMask mask = 0;
2342 CGroupContext *c;
2343
2344 assert(u);
2345
2346 assert_se(c = unit_get_cgroup_context(u));
2347
2348 /* Figure out which controllers we need, based on the cgroup context object */
2349
2350 if (c->cpu_accounting)
2351 mask |= get_cpu_accounting_mask();
2352
2353 if (cgroup_context_has_cpu_weight(c) ||
2354 cgroup_context_has_cpu_shares(c) ||
2355 c->cpu_quota_per_sec_usec != USEC_INFINITY)
2356 mask |= CGROUP_MASK_CPU;
2357
2358 if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
2359 mask |= CGROUP_MASK_CPUSET;
2360
2361 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
2362 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
2363
2364 if (c->memory_accounting ||
2365 c->memory_limit != CGROUP_LIMIT_MAX ||
2366 unit_has_unified_memory_config(u))
2367 mask |= CGROUP_MASK_MEMORY;
2368
2369 if (c->device_allow ||
2370 c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
2371 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
2372
2373 if (c->tasks_accounting ||
2374 cgroup_tasks_max_isset(&c->tasks_max))
2375 mask |= CGROUP_MASK_PIDS;
2376
2377 return CGROUP_MASK_EXTEND_JOINED(mask);
2378 }
2379
2380 static CGroupMask unit_get_bpf_mask(Unit *u) {
2381 CGroupMask mask = 0;
2382
2383 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
2384 * too. */
2385
2386 if (unit_get_needs_bpf_firewall(u))
2387 mask |= CGROUP_MASK_BPF_FIREWALL;
2388
2389 if (unit_get_needs_bpf_foreign_program(u))
2390 mask |= CGROUP_MASK_BPF_FOREIGN;
2391
2392 if (unit_get_needs_socket_bind(u))
2393 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
2394
2395 if (unit_get_needs_restrict_network_interfaces(u))
2396 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
2397
2398 return mask;
2399 }
2400
2401 CGroupMask unit_get_own_mask(Unit *u) {
2402 CGroupContext *c;
2403
2404 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
2405 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
2406
2407 if (u->load_state != UNIT_LOADED)
2408 return 0;
2409
2410 c = unit_get_cgroup_context(u);
2411 if (!c)
2412 return 0;
2413
2414 return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
2415 }
2416
2417 CGroupMask unit_get_delegate_mask(Unit *u) {
2418 CGroupContext *c;
2419
2420 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
2421 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
2422 *
2423 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
2424
2425 if (!unit_cgroup_delegate(u))
2426 return 0;
2427
2428 if (cg_all_unified() <= 0) {
2429 ExecContext *e;
2430
2431 e = unit_get_exec_context(u);
2432 if (e && !exec_context_maintains_privileges(e))
2433 return 0;
2434 }
2435
2436 assert_se(c = unit_get_cgroup_context(u));
2437 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
2438 }
2439
2440 static CGroupMask unit_get_subtree_mask(Unit *u) {
2441
2442 /* Returns the mask of this subtree, meaning of the group
2443 * itself and its children. */
2444
2445 return unit_get_own_mask(u) | unit_get_members_mask(u);
2446 }
2447
2448 CGroupMask unit_get_members_mask(Unit *u) {
2449 assert(u);
2450
2451 /* Returns the mask of controllers all of the unit's children require, merged */
2452
2453 if (u->cgroup_members_mask_valid)
2454 return u->cgroup_members_mask; /* Use cached value if possible */
2455
2456 u->cgroup_members_mask = 0;
2457
2458 if (u->type == UNIT_SLICE) {
2459 Unit *member;
2460
2461 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
2462 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
2463 }
2464
2465 u->cgroup_members_mask_valid = true;
2466 return u->cgroup_members_mask;
2467 }
2468
2469 CGroupMask unit_get_siblings_mask(Unit *u) {
2470 Unit *slice;
2471 assert(u);
2472
2473 /* Returns the mask of controllers all of the unit's siblings
2474 * require, i.e. the members mask of the unit's parent slice
2475 * if there is one. */
2476
2477 slice = UNIT_GET_SLICE(u);
2478 if (slice)
2479 return unit_get_members_mask(slice);
2480
2481 return unit_get_subtree_mask(u); /* we are the top-level slice */
2482 }
2483
2484 static CGroupMask unit_get_disable_mask(Unit *u) {
2485 CGroupContext *c;
2486
2487 c = unit_get_cgroup_context(u);
2488 if (!c)
2489 return 0;
2490
2491 return c->disable_controllers;
2492 }
2493
2494 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
2495 CGroupMask mask;
2496 Unit *slice;
2497
2498 assert(u);
2499 mask = unit_get_disable_mask(u);
2500
2501 /* Returns the mask of controllers which are marked as forcibly
2502 * disabled in any ancestor unit or the unit in question. */
2503
2504 slice = UNIT_GET_SLICE(u);
2505 if (slice)
2506 mask |= unit_get_ancestor_disable_mask(slice);
2507
2508 return mask;
2509 }
2510
2511 CGroupMask unit_get_target_mask(Unit *u) {
2512 CGroupMask own_mask, mask;
2513
2514 /* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
2515 * it needs itself, plus all that its children need, plus all that its siblings need. This is
2516 * primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
2517 * hierarchy that shall be enabled for it. */
2518
2519 own_mask = unit_get_own_mask(u);
2520
2521 if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
2522 emit_bpf_firewall_warning(u);
2523
2524 mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
2525
2526 mask &= u->manager->cgroup_supported;
2527 mask &= ~unit_get_ancestor_disable_mask(u);
2528
2529 return mask;
2530 }
2531
2532 CGroupMask unit_get_enable_mask(Unit *u) {
2533 CGroupMask mask;
2534
2535 /* This returns the cgroup mask of all controllers to enable
2536 * for the children of a specific cgroup. This is primarily
2537 * useful for the unified cgroup hierarchy, where each cgroup
2538 * controls which controllers are enabled for its children. */
2539
2540 mask = unit_get_members_mask(u);
2541 mask &= u->manager->cgroup_supported;
2542 mask &= ~unit_get_ancestor_disable_mask(u);
2543
2544 return mask;
2545 }
2546
2547 void unit_invalidate_cgroup_members_masks(Unit *u) {
2548 Unit *slice;
2549
2550 assert(u);
2551
2552 /* Recurse invalidate the member masks cache all the way up the tree */
2553 u->cgroup_members_mask_valid = false;
2554
2555 slice = UNIT_GET_SLICE(u);
2556 if (slice)
2557 unit_invalidate_cgroup_members_masks(slice);
2558 }
2559
2560 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
2561
2562 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
2563
2564 while (u) {
2565
2566 if (u->cgroup_path &&
2567 u->cgroup_realized &&
2568 FLAGS_SET(u->cgroup_realized_mask, mask))
2569 return u->cgroup_path;
2570
2571 u = UNIT_GET_SLICE(u);
2572 }
2573
2574 return NULL;
2575 }
2576
2577 static const char *migrate_callback(CGroupMask mask, void *userdata) {
2578 /* If not realized at all, migrate to root ("").
2579 * It may happen if we're upgrading from older version that didn't clean up.
2580 */
2581 return strempty(unit_get_realized_cgroup_path(userdata, mask));
2582 }
2583
2584 int unit_default_cgroup_path(const Unit *u, char **ret) {
2585 _cleanup_free_ char *p = NULL;
2586 int r;
2587
2588 assert(u);
2589 assert(ret);
2590
2591 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2592 p = strdup(u->manager->cgroup_root);
2593 else {
2594 _cleanup_free_ char *escaped = NULL, *slice_path = NULL;
2595 Unit *slice;
2596
2597 slice = UNIT_GET_SLICE(u);
2598 if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
2599 r = cg_slice_to_path(slice->id, &slice_path);
2600 if (r < 0)
2601 return r;
2602 }
2603
2604 r = cg_escape(u->id, &escaped);
2605 if (r < 0)
2606 return r;
2607
2608 p = path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
2609 }
2610 if (!p)
2611 return -ENOMEM;
2612
2613 *ret = TAKE_PTR(p);
2614 return 0;
2615 }
2616
2617 int unit_set_cgroup_path(Unit *u, const char *path) {
2618 _cleanup_free_ char *p = NULL;
2619 int r;
2620
2621 assert(u);
2622
2623 if (streq_ptr(u->cgroup_path, path))
2624 return 0;
2625
2626 if (path) {
2627 p = strdup(path);
2628 if (!p)
2629 return -ENOMEM;
2630 }
2631
2632 if (p) {
2633 r = hashmap_put(u->manager->cgroup_unit, p, u);
2634 if (r < 0)
2635 return r;
2636 }
2637
2638 unit_release_cgroup(u);
2639 u->cgroup_path = TAKE_PTR(p);
2640
2641 return 1;
2642 }
2643
2644 int unit_watch_cgroup(Unit *u) {
2645 _cleanup_free_ char *events = NULL;
2646 int r;
2647
2648 assert(u);
2649
2650 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
2651 * cgroupv2 is available. */
2652
2653 if (!u->cgroup_path)
2654 return 0;
2655
2656 if (u->cgroup_control_inotify_wd >= 0)
2657 return 0;
2658
2659 /* Only applies to the unified hierarchy */
2660 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2661 if (r < 0)
2662 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
2663 if (r == 0)
2664 return 0;
2665
2666 /* No point in watch the top-level slice, it's never going to run empty. */
2667 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2668 return 0;
2669
2670 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
2671 if (r < 0)
2672 return log_oom();
2673
2674 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
2675 if (r < 0)
2676 return log_oom();
2677
2678 u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2679 if (u->cgroup_control_inotify_wd < 0) {
2680
2681 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2682 * is not an error */
2683 return 0;
2684
2685 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
2686 }
2687
2688 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
2689 if (r < 0)
2690 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
2691
2692 return 0;
2693 }
2694
2695 int unit_watch_cgroup_memory(Unit *u) {
2696 _cleanup_free_ char *events = NULL;
2697 CGroupContext *c;
2698 int r;
2699
2700 assert(u);
2701
2702 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
2703 * cgroupv2 is available. */
2704
2705 if (!u->cgroup_path)
2706 return 0;
2707
2708 c = unit_get_cgroup_context(u);
2709 if (!c)
2710 return 0;
2711
2712 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
2713 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
2714 * all. */
2715 if (!c->memory_accounting)
2716 return 0;
2717
2718 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
2719 * we also don't want to generate a log message for each parent cgroup of a process. */
2720 if (u->type == UNIT_SLICE)
2721 return 0;
2722
2723 if (u->cgroup_memory_inotify_wd >= 0)
2724 return 0;
2725
2726 /* Only applies to the unified hierarchy */
2727 r = cg_all_unified();
2728 if (r < 0)
2729 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
2730 if (r == 0)
2731 return 0;
2732
2733 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
2734 if (r < 0)
2735 return log_oom();
2736
2737 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
2738 if (r < 0)
2739 return log_oom();
2740
2741 u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2742 if (u->cgroup_memory_inotify_wd < 0) {
2743
2744 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2745 * is not an error */
2746 return 0;
2747
2748 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
2749 }
2750
2751 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
2752 if (r < 0)
2753 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
2754
2755 return 0;
2756 }
2757
2758 int unit_pick_cgroup_path(Unit *u) {
2759 _cleanup_free_ char *path = NULL;
2760 int r;
2761
2762 assert(u);
2763
2764 if (u->cgroup_path)
2765 return 0;
2766
2767 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2768 return -EINVAL;
2769
2770 r = unit_default_cgroup_path(u, &path);
2771 if (r < 0)
2772 return log_unit_error_errno(u, r, "Failed to generate default cgroup path: %m");
2773
2774 r = unit_set_cgroup_path(u, path);
2775 if (r == -EEXIST)
2776 return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
2777 if (r < 0)
2778 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
2779
2780 return 0;
2781 }
2782
2783 static int unit_update_cgroup(
2784 Unit *u,
2785 CGroupMask target_mask,
2786 CGroupMask enable_mask,
2787 ManagerState state) {
2788
2789 bool created, is_root_slice;
2790 CGroupMask migrate_mask = 0;
2791 _cleanup_free_ char *cgroup_full_path = NULL;
2792 int r;
2793
2794 assert(u);
2795
2796 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2797 return 0;
2798
2799 /* Figure out our cgroup path */
2800 r = unit_pick_cgroup_path(u);
2801 if (r < 0)
2802 return r;
2803
2804 /* First, create our own group */
2805 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
2806 if (r < 0)
2807 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(u->cgroup_path));
2808 created = r;
2809
2810 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2811 uint64_t cgroup_id = 0;
2812
2813 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, NULL, &cgroup_full_path);
2814 if (r == 0) {
2815 r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
2816 if (r < 0)
2817 log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
2818 "Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
2819 } else
2820 log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2821
2822 u->cgroup_id = cgroup_id;
2823 }
2824
2825 /* Start watching it */
2826 (void) unit_watch_cgroup(u);
2827 (void) unit_watch_cgroup_memory(u);
2828
2829 /* For v2 we preserve enabled controllers in delegated units, adjust others,
2830 * for v1 we figure out which controller hierarchies need migration. */
2831 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
2832 CGroupMask result_mask = 0;
2833
2834 /* Enable all controllers we need */
2835 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
2836 if (r < 0)
2837 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2838
2839 /* Remember what's actually enabled now */
2840 u->cgroup_enabled_mask = result_mask;
2841
2842 migrate_mask = u->cgroup_realized_mask ^ target_mask;
2843 }
2844
2845 /* Keep track that this is now realized */
2846 u->cgroup_realized = true;
2847 u->cgroup_realized_mask = target_mask;
2848
2849 /* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
2850 *
2851 * Unnecessary controller cgroups are trimmed (after emptied by upward migration).
2852 * We perform migration also with whole slices for cases when users don't care about leave
2853 * granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
2854 * delegated units.
2855 */
2856 if (cg_all_unified() == 0) {
2857 r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, u->cgroup_path, migrate_callback, u);
2858 if (r < 0)
2859 log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(u->cgroup_path));
2860
2861 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2862 r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, u->cgroup_path, !is_root_slice);
2863 if (r < 0)
2864 log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(u->cgroup_path));
2865 }
2866
2867 /* Set attributes */
2868 cgroup_context_apply(u, target_mask, state);
2869 cgroup_xattr_apply(u);
2870
2871 /* For most units we expect that memory monitoring is set up before the unit is started and we won't
2872 * touch it after. For PID 1 this is different though, because we couldn't possibly do that given
2873 * that PID 1 runs before init.scope is even set up. Hence, whenever init.scope is realized, let's
2874 * try to open the memory pressure interface anew. */
2875 if (unit_has_name(u, SPECIAL_INIT_SCOPE))
2876 (void) manager_setup_memory_pressure_event_source(u->manager);
2877
2878 return 0;
2879 }
2880
2881 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
2882 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2883 char *pp;
2884 int r;
2885
2886 assert(u);
2887
2888 if (MANAGER_IS_SYSTEM(u->manager))
2889 return -EINVAL;
2890
2891 if (!u->manager->system_bus)
2892 return -EIO;
2893
2894 if (!u->cgroup_path)
2895 return -EINVAL;
2896
2897 /* Determine this unit's cgroup path relative to our cgroup root */
2898 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
2899 if (!pp)
2900 return -EINVAL;
2901
2902 pp = strjoina("/", pp, suffix_path);
2903 path_simplify(pp);
2904
2905 r = bus_call_method(u->manager->system_bus,
2906 bus_systemd_mgr,
2907 "AttachProcessesToUnit",
2908 &error, NULL,
2909 "ssau",
2910 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
2911 if (r < 0)
2912 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
2913
2914 return 0;
2915 }
2916
2917 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
2918 _cleanup_free_ char *joined = NULL;
2919 CGroupMask delegated_mask;
2920 const char *p;
2921 PidRef *pid;
2922 int ret, r;
2923
2924 assert(u);
2925
2926 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2927 return -EINVAL;
2928
2929 if (set_isempty(pids))
2930 return 0;
2931
2932 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
2933 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
2934 r = bpf_firewall_load_custom(u);
2935 if (r < 0)
2936 return r;
2937
2938 r = unit_realize_cgroup(u);
2939 if (r < 0)
2940 return r;
2941
2942 if (isempty(suffix_path))
2943 p = u->cgroup_path;
2944 else {
2945 joined = path_join(u->cgroup_path, suffix_path);
2946 if (!joined)
2947 return -ENOMEM;
2948
2949 p = joined;
2950 }
2951
2952 delegated_mask = unit_get_delegate_mask(u);
2953
2954 ret = 0;
2955 SET_FOREACH(pid, pids) {
2956
2957 /* Unfortunately we cannot add pids by pidfd to a cgroup. Hence we have to use PIDs instead,
2958 * which of course is racy. Let's shorten the race a bit though, and re-validate the PID
2959 * before we use it */
2960 r = pidref_verify(pid);
2961 if (r < 0) {
2962 log_unit_info_errno(u, r, "PID " PID_FMT " vanished before we could move it to target cgroup '%s', skipping: %m", pid->pid, empty_to_root(p));
2963 continue;
2964 }
2965
2966 /* First, attach the PID to the main cgroup hierarchy */
2967 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid->pid);
2968 if (r < 0) {
2969 bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_PRIVILEGE(r);
2970
2971 log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO, r,
2972 "Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
2973 pid->pid, again ? " directly" : "", empty_to_root(p));
2974
2975 if (again) {
2976 int z;
2977
2978 /* If we are in a user instance, and we can't move the process ourselves due
2979 * to permission problems, let's ask the system instance about it instead.
2980 * Since it's more privileged it might be able to move the process across the
2981 * leaves of a subtree whose top node is not owned by us. */
2982
2983 z = unit_attach_pid_to_cgroup_via_bus(u, pid->pid, suffix_path);
2984 if (z < 0)
2985 log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid->pid, empty_to_root(p));
2986 else {
2987 if (ret >= 0)
2988 ret++; /* Count successful additions */
2989 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
2990 }
2991 }
2992
2993 if (ret >= 0)
2994 ret = r; /* Remember first error */
2995
2996 continue;
2997 } else if (ret >= 0)
2998 ret++; /* Count successful additions */
2999
3000 r = cg_all_unified();
3001 if (r < 0)
3002 return r;
3003 if (r > 0)
3004 continue;
3005
3006 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
3007 * innermost realized one */
3008
3009 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
3010 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
3011 const char *realized;
3012
3013 if (!(u->manager->cgroup_supported & bit))
3014 continue;
3015
3016 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
3017 if (delegated_mask & u->cgroup_realized_mask & bit) {
3018 r = cg_attach(cgroup_controller_to_string(c), p, pid->pid);
3019 if (r >= 0)
3020 continue; /* Success! */
3021
3022 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
3023 pid->pid, empty_to_root(p), cgroup_controller_to_string(c));
3024 }
3025
3026 /* So this controller is either not delegate or realized, or something else weird happened. In
3027 * that case let's attach the PID at least to the closest cgroup up the tree that is
3028 * realized. */
3029 realized = unit_get_realized_cgroup_path(u, bit);
3030 if (!realized)
3031 continue; /* Not even realized in the root slice? Then let's not bother */
3032
3033 r = cg_attach(cgroup_controller_to_string(c), realized, pid->pid);
3034 if (r < 0)
3035 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
3036 pid->pid, realized, cgroup_controller_to_string(c));
3037 }
3038 }
3039
3040 return ret;
3041 }
3042
3043 static bool unit_has_mask_realized(
3044 Unit *u,
3045 CGroupMask target_mask,
3046 CGroupMask enable_mask) {
3047
3048 assert(u);
3049
3050 /* Returns true if this unit is fully realized. We check four things:
3051 *
3052 * 1. Whether the cgroup was created at all
3053 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
3054 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
3055 * 4. Whether the invalidation mask is currently zero
3056 *
3057 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
3058 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
3059 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
3060 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
3061 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
3062 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
3063 * simply don't matter. */
3064
3065 return u->cgroup_realized &&
3066 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
3067 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
3068 u->cgroup_invalidated_mask == 0;
3069 }
3070
3071 static bool unit_has_mask_disables_realized(
3072 Unit *u,
3073 CGroupMask target_mask,
3074 CGroupMask enable_mask) {
3075
3076 assert(u);
3077
3078 /* Returns true if all controllers which should be disabled are indeed disabled.
3079 *
3080 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
3081 * already removed. */
3082
3083 return !u->cgroup_realized ||
3084 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
3085 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
3086 }
3087
3088 static bool unit_has_mask_enables_realized(
3089 Unit *u,
3090 CGroupMask target_mask,
3091 CGroupMask enable_mask) {
3092
3093 assert(u);
3094
3095 /* Returns true if all controllers which should be enabled are indeed enabled.
3096 *
3097 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
3098 * we want to add is already added. */
3099
3100 return u->cgroup_realized &&
3101 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
3102 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
3103 }
3104
3105 void unit_add_to_cgroup_realize_queue(Unit *u) {
3106 assert(u);
3107
3108 if (u->in_cgroup_realize_queue)
3109 return;
3110
3111 LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
3112 u->in_cgroup_realize_queue = true;
3113 }
3114
3115 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
3116 assert(u);
3117
3118 if (!u->in_cgroup_realize_queue)
3119 return;
3120
3121 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
3122 u->in_cgroup_realize_queue = false;
3123 }
3124
3125 /* Controllers can only be enabled breadth-first, from the root of the
3126 * hierarchy downwards to the unit in question. */
3127 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
3128 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
3129 Unit *slice;
3130 int r;
3131
3132 assert(u);
3133
3134 /* First go deal with this unit's parent, or we won't be able to enable
3135 * any new controllers at this layer. */
3136 slice = UNIT_GET_SLICE(u);
3137 if (slice) {
3138 r = unit_realize_cgroup_now_enable(slice, state);
3139 if (r < 0)
3140 return r;
3141 }
3142
3143 target_mask = unit_get_target_mask(u);
3144 enable_mask = unit_get_enable_mask(u);
3145
3146 /* We can only enable in this direction, don't try to disable anything.
3147 */
3148 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
3149 return 0;
3150
3151 new_target_mask = u->cgroup_realized_mask | target_mask;
3152 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
3153
3154 return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
3155 }
3156
3157 /* Controllers can only be disabled depth-first, from the leaves of the
3158 * hierarchy upwards to the unit in question. */
3159 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
3160 Unit *m;
3161
3162 assert(u);
3163
3164 if (u->type != UNIT_SLICE)
3165 return 0;
3166
3167 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
3168 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
3169 int r;
3170
3171 /* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
3172 * holding any controllers open anyway. */
3173 if (!m->cgroup_realized)
3174 continue;
3175
3176 /* We must disable those below us first in order to release the controller. */
3177 if (m->type == UNIT_SLICE)
3178 (void) unit_realize_cgroup_now_disable(m, state);
3179
3180 target_mask = unit_get_target_mask(m);
3181 enable_mask = unit_get_enable_mask(m);
3182
3183 /* We can only disable in this direction, don't try to enable anything. */
3184 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
3185 continue;
3186
3187 new_target_mask = m->cgroup_realized_mask & target_mask;
3188 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
3189
3190 r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
3191 if (r < 0)
3192 return r;
3193 }
3194
3195 return 0;
3196 }
3197
3198 /* Check if necessary controllers and attributes for a unit are in place.
3199 *
3200 * - If so, do nothing.
3201 * - If not, create paths, move processes over, and set attributes.
3202 *
3203 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
3204 * a depth-first way. As such the process looks like this:
3205 *
3206 * Suppose we have a cgroup hierarchy which looks like this:
3207 *
3208 * root
3209 * / \
3210 * / \
3211 * / \
3212 * a b
3213 * / \ / \
3214 * / \ / \
3215 * c d e f
3216 * / \ / \ / \ / \
3217 * h i j k l m n o
3218 *
3219 * 1. We want to realise cgroup "d" now.
3220 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
3221 * 3. cgroup "k" just started requesting the memory controller.
3222 *
3223 * To make this work we must do the following in order:
3224 *
3225 * 1. Disable CPU controller in k, j
3226 * 2. Disable CPU controller in d
3227 * 3. Enable memory controller in root
3228 * 4. Enable memory controller in a
3229 * 5. Enable memory controller in d
3230 * 6. Enable memory controller in k
3231 *
3232 * Notice that we need to touch j in one direction, but not the other. We also
3233 * don't go beyond d when disabling -- it's up to "a" to get realized if it
3234 * wants to disable further. The basic rules are therefore:
3235 *
3236 * - If you're disabling something, you need to realise all of the cgroups from
3237 * your recursive descendants to the root. This starts from the leaves.
3238 * - If you're enabling something, you need to realise from the root cgroup
3239 * downwards, but you don't need to iterate your recursive descendants.
3240 *
3241 * Returns 0 on success and < 0 on failure. */
3242 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
3243 CGroupMask target_mask, enable_mask;
3244 Unit *slice;
3245 int r;
3246
3247 assert(u);
3248
3249 unit_remove_from_cgroup_realize_queue(u);
3250
3251 target_mask = unit_get_target_mask(u);
3252 enable_mask = unit_get_enable_mask(u);
3253
3254 if (unit_has_mask_realized(u, target_mask, enable_mask))
3255 return 0;
3256
3257 /* Disable controllers below us, if there are any */
3258 r = unit_realize_cgroup_now_disable(u, state);
3259 if (r < 0)
3260 return r;
3261
3262 /* Enable controllers above us, if there are any */
3263 slice = UNIT_GET_SLICE(u);
3264 if (slice) {
3265 r = unit_realize_cgroup_now_enable(slice, state);
3266 if (r < 0)
3267 return r;
3268 }
3269
3270 /* Now actually deal with the cgroup we were trying to realise and set attributes */
3271 r = unit_update_cgroup(u, target_mask, enable_mask, state);
3272 if (r < 0)
3273 return r;
3274
3275 /* Now, reset the invalidation mask */
3276 u->cgroup_invalidated_mask = 0;
3277 return 0;
3278 }
3279
3280 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
3281 ManagerState state;
3282 unsigned n = 0;
3283 Unit *i;
3284 int r;
3285
3286 assert(m);
3287
3288 state = manager_state(m);
3289
3290 while ((i = m->cgroup_realize_queue)) {
3291 assert(i->in_cgroup_realize_queue);
3292
3293 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
3294 /* Maybe things changed, and the unit is not actually active anymore? */
3295 unit_remove_from_cgroup_realize_queue(i);
3296 continue;
3297 }
3298
3299 r = unit_realize_cgroup_now(i, state);
3300 if (r < 0)
3301 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
3302
3303 n++;
3304 }
3305
3306 return n;
3307 }
3308
3309 void unit_add_family_to_cgroup_realize_queue(Unit *u) {
3310 assert(u);
3311 assert(u->type == UNIT_SLICE);
3312
3313 /* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
3314 * its ancestors.
3315 *
3316 * Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
3317 * very weird if two units that own processes reside in the same slice, but one is realized in the
3318 * "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
3319 * not), because that means individual processes need to be scheduled against whole cgroups. Let's
3320 * avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
3321 * controller hierarchies too (if unit requires the controller to be realized).
3322 *
3323 * The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
3324 * masks. */
3325
3326 do {
3327 Unit *m;
3328
3329 /* Children of u likely changed when we're called */
3330 u->cgroup_members_mask_valid = false;
3331
3332 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
3333
3334 /* No point in doing cgroup application for units without active processes. */
3335 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
3336 continue;
3337
3338 /* We only enqueue siblings if they were realized once at least, in the main
3339 * hierarchy. */
3340 if (!m->cgroup_realized)
3341 continue;
3342
3343 /* If the unit doesn't need any new controllers and has current ones
3344 * realized, it doesn't need any changes. */
3345 if (unit_has_mask_realized(m,
3346 unit_get_target_mask(m),
3347 unit_get_enable_mask(m)))
3348 continue;
3349
3350 unit_add_to_cgroup_realize_queue(m);
3351 }
3352
3353 /* Parent comes after children */
3354 unit_add_to_cgroup_realize_queue(u);
3355
3356 u = UNIT_GET_SLICE(u);
3357 } while (u);
3358 }
3359
3360 int unit_realize_cgroup(Unit *u) {
3361 Unit *slice;
3362
3363 assert(u);
3364
3365 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3366 return 0;
3367
3368 /* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
3369 * parents, but there's more actually: for the weight-based controllers we also need to make sure
3370 * that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too. On the
3371 * other hand, when a controller is removed from realized set, it may become unnecessary in siblings
3372 * and ancestors and they should be (de)realized too.
3373 *
3374 * This call will defer work on the siblings and derealized ancestors to the next event loop
3375 * iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
3376
3377 slice = UNIT_GET_SLICE(u);
3378 if (slice)
3379 unit_add_family_to_cgroup_realize_queue(slice);
3380
3381 /* And realize this one now (and apply the values) */
3382 return unit_realize_cgroup_now(u, manager_state(u->manager));
3383 }
3384
3385 void unit_release_cgroup(Unit *u) {
3386 assert(u);
3387
3388 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
3389 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
3390
3391 if (u->cgroup_path) {
3392 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
3393 u->cgroup_path = mfree(u->cgroup_path);
3394 }
3395
3396 if (u->cgroup_control_inotify_wd >= 0) {
3397 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
3398 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
3399
3400 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
3401 u->cgroup_control_inotify_wd = -1;
3402 }
3403
3404 if (u->cgroup_memory_inotify_wd >= 0) {
3405 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
3406 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
3407
3408 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
3409 u->cgroup_memory_inotify_wd = -1;
3410 }
3411 }
3412
3413 bool unit_maybe_release_cgroup(Unit *u) {
3414 int r;
3415
3416 assert(u);
3417
3418 if (!u->cgroup_path)
3419 return true;
3420
3421 /* Don't release the cgroup if there are still processes under it. If we get notified later when all the
3422 * processes exit (e.g. the processes were in D-state and exited after the unit was marked as failed)
3423 * we need the cgroup paths to continue to be tracked by the manager so they can be looked up and cleaned
3424 * up later. */
3425 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
3426 if (r < 0)
3427 log_unit_debug_errno(u, r, "Error checking if the cgroup is recursively empty, ignoring: %m");
3428 else if (r == 1) {
3429 unit_release_cgroup(u);
3430 return true;
3431 }
3432
3433 return false;
3434 }
3435
3436 void unit_prune_cgroup(Unit *u) {
3437 int r;
3438 bool is_root_slice;
3439
3440 assert(u);
3441
3442 /* Removes the cgroup, if empty and possible, and stops watching it. */
3443
3444 if (!u->cgroup_path)
3445 return;
3446
3447 /* Cache the last CPU and memory usage values before we destroy the cgroup */
3448 (void) unit_get_cpu_usage(u, /* ret = */ NULL);
3449
3450 for (CGroupMemoryAccountingMetric metric = 0; metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST; metric++)
3451 (void) unit_get_memory_accounting(u, metric, /* ret = */ NULL);
3452
3453 #if BPF_FRAMEWORK
3454 (void) lsm_bpf_cleanup(u); /* Remove cgroup from the global LSM BPF map */
3455 #endif
3456
3457 unit_modify_nft_set(u, /* add = */ false);
3458
3459 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
3460
3461 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
3462 if (r < 0)
3463 /* One reason we could have failed here is, that the cgroup still contains a process.
3464 * However, if the cgroup becomes removable at a later time, it might be removed when
3465 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
3466 * that the cgroup is still realized the next time it is started. Do not return early
3467 * on error, continue cleanup. */
3468 log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
3469
3470 if (is_root_slice)
3471 return;
3472
3473 if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
3474 return;
3475
3476 u->cgroup_realized = false;
3477 u->cgroup_realized_mask = 0;
3478 u->cgroup_enabled_mask = 0;
3479
3480 u->bpf_device_control_installed = bpf_program_free(u->bpf_device_control_installed);
3481 }
3482
3483 int unit_search_main_pid(Unit *u, PidRef *ret) {
3484 _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
3485 _cleanup_fclose_ FILE *f = NULL;
3486 int r;
3487
3488 assert(u);
3489 assert(ret);
3490
3491 if (!u->cgroup_path)
3492 return -ENXIO;
3493
3494 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
3495 if (r < 0)
3496 return r;
3497
3498 for (;;) {
3499 _cleanup_(pidref_done) PidRef npidref = PIDREF_NULL;
3500
3501 r = cg_read_pidref(f, &npidref);
3502 if (r < 0)
3503 return r;
3504 if (r == 0)
3505 break;
3506
3507 if (pidref_equal(&pidref, &npidref)) /* seen already, cgroupfs reports duplicates! */
3508 continue;
3509
3510 if (pidref_is_my_child(&npidref) <= 0) /* ignore processes further down the tree */
3511 continue;
3512
3513 if (pidref_is_set(&pidref) != 0)
3514 /* Dang, there's more than one daemonized PID in this group, so we don't know what
3515 * process is the main process. */
3516 return -ENODATA;
3517
3518 pidref = TAKE_PIDREF(npidref);
3519 }
3520
3521 if (!pidref_is_set(&pidref))
3522 return -ENODATA;
3523
3524 *ret = TAKE_PIDREF(pidref);
3525 return 0;
3526 }
3527
3528 static int unit_watch_pids_in_path(Unit *u, const char *path) {
3529 _cleanup_closedir_ DIR *d = NULL;
3530 _cleanup_fclose_ FILE *f = NULL;
3531 int ret = 0, r;
3532
3533 assert(u);
3534 assert(path);
3535
3536 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
3537 if (r < 0)
3538 RET_GATHER(ret, r);
3539 else {
3540 for (;;) {
3541 _cleanup_(pidref_done) PidRef pid = PIDREF_NULL;
3542
3543 r = cg_read_pidref(f, &pid);
3544 if (r == 0)
3545 break;
3546 if (r < 0) {
3547 RET_GATHER(ret, r);
3548 break;
3549 }
3550
3551 RET_GATHER(ret, unit_watch_pidref(u, &pid, /* exclusive= */ false));
3552 }
3553 }
3554
3555 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
3556 if (r < 0)
3557 RET_GATHER(ret, r);
3558 else {
3559 for (;;) {
3560 _cleanup_free_ char *fn = NULL, *p = NULL;
3561
3562 r = cg_read_subgroup(d, &fn);
3563 if (r == 0)
3564 break;
3565 if (r < 0) {
3566 RET_GATHER(ret, r);
3567 break;
3568 }
3569
3570 p = path_join(empty_to_root(path), fn);
3571 if (!p)
3572 return -ENOMEM;
3573
3574 RET_GATHER(ret, unit_watch_pids_in_path(u, p));
3575 }
3576 }
3577
3578 return ret;
3579 }
3580
3581 int unit_synthesize_cgroup_empty_event(Unit *u) {
3582 int r;
3583
3584 assert(u);
3585
3586 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
3587 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
3588 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
3589
3590 if (!u->cgroup_path)
3591 return -ENOENT;
3592
3593 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3594 if (r < 0)
3595 return r;
3596 if (r > 0) /* On unified we have reliable notifications, and don't need this */
3597 return 0;
3598
3599 if (!set_isempty(u->pids))
3600 return 0;
3601
3602 unit_add_to_cgroup_empty_queue(u);
3603 return 0;
3604 }
3605
3606 int unit_watch_all_pids(Unit *u) {
3607 int r;
3608
3609 assert(u);
3610
3611 /* Adds all PIDs from our cgroup to the set of PIDs we
3612 * watch. This is a fallback logic for cases where we do not
3613 * get reliable cgroup empty notifications: we try to use
3614 * SIGCHLD as replacement. */
3615
3616 if (!u->cgroup_path)
3617 return -ENOENT;
3618
3619 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3620 if (r < 0)
3621 return r;
3622 if (r > 0) /* On unified we can use proper notifications */
3623 return 0;
3624
3625 return unit_watch_pids_in_path(u, u->cgroup_path);
3626 }
3627
3628 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
3629 Manager *m = ASSERT_PTR(userdata);
3630 Unit *u;
3631 int r;
3632
3633 assert(s);
3634
3635 u = m->cgroup_empty_queue;
3636 if (!u)
3637 return 0;
3638
3639 assert(u->in_cgroup_empty_queue);
3640 u->in_cgroup_empty_queue = false;
3641 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
3642
3643 if (m->cgroup_empty_queue) {
3644 /* More stuff queued, let's make sure we remain enabled */
3645 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3646 if (r < 0)
3647 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
3648 }
3649
3650 /* Update state based on OOM kills before we notify about cgroup empty event */
3651 (void) unit_check_oom(u);
3652 (void) unit_check_oomd_kill(u);
3653
3654 unit_add_to_gc_queue(u);
3655
3656 if (IN_SET(unit_active_state(u), UNIT_INACTIVE, UNIT_FAILED))
3657 unit_prune_cgroup(u);
3658 else if (UNIT_VTABLE(u)->notify_cgroup_empty)
3659 UNIT_VTABLE(u)->notify_cgroup_empty(u);
3660
3661 return 0;
3662 }
3663
3664 void unit_add_to_cgroup_empty_queue(Unit *u) {
3665 int r;
3666
3667 assert(u);
3668
3669 /* Note that there are four different ways how cgroup empty events reach us:
3670 *
3671 * 1. On the unified hierarchy we get an inotify event on the cgroup
3672 *
3673 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
3674 *
3675 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
3676 *
3677 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
3678 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
3679 *
3680 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
3681 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
3682 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
3683 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
3684 * case for scope units). */
3685
3686 if (u->in_cgroup_empty_queue)
3687 return;
3688
3689 /* Let's verify that the cgroup is really empty */
3690 if (!u->cgroup_path)
3691 return;
3692
3693 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
3694 if (r < 0) {
3695 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
3696 return;
3697 }
3698 if (r == 0)
3699 return;
3700
3701 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3702 u->in_cgroup_empty_queue = true;
3703
3704 /* Trigger the defer event */
3705 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
3706 if (r < 0)
3707 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
3708 }
3709
3710 static void unit_remove_from_cgroup_empty_queue(Unit *u) {
3711 assert(u);
3712
3713 if (!u->in_cgroup_empty_queue)
3714 return;
3715
3716 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3717 u->in_cgroup_empty_queue = false;
3718 }
3719
3720 int unit_check_oomd_kill(Unit *u) {
3721 _cleanup_free_ char *value = NULL;
3722 bool increased;
3723 uint64_t n = 0;
3724 int r;
3725
3726 if (!u->cgroup_path)
3727 return 0;
3728
3729 r = cg_all_unified();
3730 if (r < 0)
3731 return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
3732 else if (r == 0)
3733 return 0;
3734
3735 r = cg_get_xattr_malloc(u->cgroup_path, "user.oomd_ooms", &value);
3736 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3737 return r;
3738
3739 if (!isempty(value)) {
3740 r = safe_atou64(value, &n);
3741 if (r < 0)
3742 return r;
3743 }
3744
3745 increased = n > u->managed_oom_kill_last;
3746 u->managed_oom_kill_last = n;
3747
3748 if (!increased)
3749 return 0;
3750
3751 n = 0;
3752 value = mfree(value);
3753 r = cg_get_xattr_malloc(u->cgroup_path, "user.oomd_kill", &value);
3754 if (r >= 0 && !isempty(value))
3755 (void) safe_atou64(value, &n);
3756
3757 if (n > 0)
3758 log_unit_struct(u, LOG_NOTICE,
3759 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3760 LOG_UNIT_INVOCATION_ID(u),
3761 LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
3762 "N_PROCESSES=%" PRIu64, n);
3763 else
3764 log_unit_struct(u, LOG_NOTICE,
3765 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3766 LOG_UNIT_INVOCATION_ID(u),
3767 LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
3768
3769 unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
3770
3771 return 1;
3772 }
3773
3774 int unit_check_oom(Unit *u) {
3775 _cleanup_free_ char *oom_kill = NULL;
3776 bool increased;
3777 uint64_t c;
3778 int r;
3779
3780 if (!u->cgroup_path)
3781 return 0;
3782
3783 r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
3784 if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
3785 c = 0;
3786 else if (r < 0)
3787 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
3788 else {
3789 r = safe_atou64(oom_kill, &c);
3790 if (r < 0)
3791 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
3792 }
3793
3794 increased = c > u->oom_kill_last;
3795 u->oom_kill_last = c;
3796
3797 if (!increased)
3798 return 0;
3799
3800 log_unit_struct(u, LOG_NOTICE,
3801 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
3802 LOG_UNIT_INVOCATION_ID(u),
3803 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
3804
3805 unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
3806
3807 return 1;
3808 }
3809
3810 static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
3811 Manager *m = ASSERT_PTR(userdata);
3812 Unit *u;
3813 int r;
3814
3815 assert(s);
3816
3817 u = m->cgroup_oom_queue;
3818 if (!u)
3819 return 0;
3820
3821 assert(u->in_cgroup_oom_queue);
3822 u->in_cgroup_oom_queue = false;
3823 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
3824
3825 if (m->cgroup_oom_queue) {
3826 /* More stuff queued, let's make sure we remain enabled */
3827 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3828 if (r < 0)
3829 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
3830 }
3831
3832 (void) unit_check_oom(u);
3833 unit_add_to_gc_queue(u);
3834
3835 return 0;
3836 }
3837
3838 static void unit_add_to_cgroup_oom_queue(Unit *u) {
3839 int r;
3840
3841 assert(u);
3842
3843 if (u->in_cgroup_oom_queue)
3844 return;
3845 if (!u->cgroup_path)
3846 return;
3847
3848 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
3849 u->in_cgroup_oom_queue = true;
3850
3851 /* Trigger the defer event */
3852 if (!u->manager->cgroup_oom_event_source) {
3853 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3854
3855 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
3856 if (r < 0) {
3857 log_error_errno(r, "Failed to create cgroup oom event source: %m");
3858 return;
3859 }
3860
3861 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
3862 if (r < 0) {
3863 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
3864 return;
3865 }
3866
3867 (void) sd_event_source_set_description(s, "cgroup-oom");
3868 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
3869 }
3870
3871 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
3872 if (r < 0)
3873 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
3874 }
3875
3876 static int unit_check_cgroup_events(Unit *u) {
3877 char *values[2] = {};
3878 int r;
3879
3880 assert(u);
3881
3882 if (!u->cgroup_path)
3883 return 0;
3884
3885 r = cg_get_keyed_attribute_graceful(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
3886 STRV_MAKE("populated", "frozen"), values);
3887 if (r < 0)
3888 return r;
3889
3890 /* The cgroup.events notifications can be merged together so act as we saw the given state for the
3891 * first time. The functions we call to handle given state are idempotent, which makes them
3892 * effectively remember the previous state. */
3893 if (values[0]) {
3894 if (streq(values[0], "1"))
3895 unit_remove_from_cgroup_empty_queue(u);
3896 else
3897 unit_add_to_cgroup_empty_queue(u);
3898 }
3899
3900 /* Disregard freezer state changes due to operations not initiated by us */
3901 if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING)) {
3902 if (streq(values[1], "0"))
3903 unit_thawed(u);
3904 else
3905 unit_frozen(u);
3906 }
3907
3908 free(values[0]);
3909 free(values[1]);
3910
3911 return 0;
3912 }
3913
3914 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
3915 Manager *m = ASSERT_PTR(userdata);
3916
3917 assert(s);
3918 assert(fd >= 0);
3919
3920 for (;;) {
3921 union inotify_event_buffer buffer;
3922 ssize_t l;
3923
3924 l = read(fd, &buffer, sizeof(buffer));
3925 if (l < 0) {
3926 if (ERRNO_IS_TRANSIENT(errno))
3927 return 0;
3928
3929 return log_error_errno(errno, "Failed to read control group inotify events: %m");
3930 }
3931
3932 FOREACH_INOTIFY_EVENT_WARN(e, buffer, l) {
3933 Unit *u;
3934
3935 if (e->wd < 0)
3936 /* Queue overflow has no watch descriptor */
3937 continue;
3938
3939 if (e->mask & IN_IGNORED)
3940 /* The watch was just removed */
3941 continue;
3942
3943 /* Note that inotify might deliver events for a watch even after it was removed,
3944 * because it was queued before the removal. Let's ignore this here safely. */
3945
3946 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
3947 if (u)
3948 unit_check_cgroup_events(u);
3949
3950 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
3951 if (u)
3952 unit_add_to_cgroup_oom_queue(u);
3953 }
3954 }
3955 }
3956
3957 static int cg_bpf_mask_supported(CGroupMask *ret) {
3958 CGroupMask mask = 0;
3959 int r;
3960
3961 /* BPF-based firewall */
3962 r = bpf_firewall_supported();
3963 if (r < 0)
3964 return r;
3965 if (r > 0)
3966 mask |= CGROUP_MASK_BPF_FIREWALL;
3967
3968 /* BPF-based device access control */
3969 r = bpf_devices_supported();
3970 if (r < 0)
3971 return r;
3972 if (r > 0)
3973 mask |= CGROUP_MASK_BPF_DEVICES;
3974
3975 /* BPF pinned prog */
3976 r = bpf_foreign_supported();
3977 if (r < 0)
3978 return r;
3979 if (r > 0)
3980 mask |= CGROUP_MASK_BPF_FOREIGN;
3981
3982 /* BPF-based bind{4|6} hooks */
3983 r = bpf_socket_bind_supported();
3984 if (r < 0)
3985 return r;
3986 if (r > 0)
3987 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
3988
3989 /* BPF-based cgroup_skb/{egress|ingress} hooks */
3990 r = restrict_network_interfaces_supported();
3991 if (r < 0)
3992 return r;
3993 if (r > 0)
3994 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
3995
3996 *ret = mask;
3997 return 0;
3998 }
3999
4000 int manager_setup_cgroup(Manager *m) {
4001 _cleanup_free_ char *path = NULL;
4002 const char *scope_path;
4003 int r, all_unified;
4004 CGroupMask mask;
4005 char *e;
4006
4007 assert(m);
4008
4009 /* 1. Determine hierarchy */
4010 m->cgroup_root = mfree(m->cgroup_root);
4011 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
4012 if (r < 0)
4013 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
4014
4015 /* Chop off the init scope, if we are already located in it */
4016 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
4017
4018 /* LEGACY: Also chop off the system slice if we are in
4019 * it. This is to support live upgrades from older systemd
4020 * versions where PID 1 was moved there. Also see
4021 * cg_get_root_path(). */
4022 if (!e && MANAGER_IS_SYSTEM(m)) {
4023 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
4024 if (!e)
4025 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
4026 }
4027 if (e)
4028 *e = 0;
4029
4030 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
4031 * easily prepend it everywhere. */
4032 delete_trailing_chars(m->cgroup_root, "/");
4033
4034 /* 2. Show data */
4035 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
4036 if (r < 0)
4037 return log_error_errno(r, "Cannot find cgroup mount point: %m");
4038
4039 r = cg_unified();
4040 if (r < 0)
4041 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
4042
4043 all_unified = cg_all_unified();
4044 if (all_unified < 0)
4045 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
4046 if (all_unified > 0)
4047 log_debug("Unified cgroup hierarchy is located at %s.", path);
4048 else {
4049 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
4050 if (r < 0)
4051 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
4052 if (r > 0)
4053 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
4054 else
4055 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
4056 }
4057
4058 /* 3. Allocate cgroup empty defer event source */
4059 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
4060 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
4061 if (r < 0)
4062 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
4063
4064 /* Schedule cgroup empty checks early, but after having processed service notification messages or
4065 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
4066 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
4067 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
4068 if (r < 0)
4069 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
4070
4071 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
4072 if (r < 0)
4073 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
4074
4075 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
4076
4077 /* 4. Install notifier inotify object, or agent */
4078 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
4079
4080 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
4081
4082 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
4083 safe_close(m->cgroup_inotify_fd);
4084
4085 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
4086 if (m->cgroup_inotify_fd < 0)
4087 return log_error_errno(errno, "Failed to create control group inotify object: %m");
4088
4089 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
4090 if (r < 0)
4091 return log_error_errno(r, "Failed to watch control group inotify object: %m");
4092
4093 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
4094 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
4095 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
4096 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
4097 if (r < 0)
4098 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
4099
4100 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
4101
4102 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
4103
4104 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
4105 * since it does not generate events when control groups with children run empty. */
4106
4107 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUPS_AGENT_PATH);
4108 if (r < 0)
4109 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
4110 else if (r > 0)
4111 log_debug("Installed release agent.");
4112 else if (r == 0)
4113 log_debug("Release agent already installed.");
4114 }
4115
4116 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
4117 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
4118 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
4119 if (r >= 0) {
4120 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
4121 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
4122 if (r < 0)
4123 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
4124
4125 /* 6. And pin it, so that it cannot be unmounted */
4126 safe_close(m->pin_cgroupfs_fd);
4127 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
4128 if (m->pin_cgroupfs_fd < 0)
4129 return log_error_errno(errno, "Failed to open pin file: %m");
4130
4131 } else if (!MANAGER_IS_TEST_RUN(m))
4132 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
4133
4134 /* 7. Always enable hierarchical support if it exists... */
4135 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
4136 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
4137
4138 /* 8. Figure out which controllers are supported */
4139 r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
4140 if (r < 0)
4141 return log_error_errno(r, "Failed to determine supported controllers: %m");
4142
4143 /* 9. Figure out which bpf-based pseudo-controllers are supported */
4144 r = cg_bpf_mask_supported(&mask);
4145 if (r < 0)
4146 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
4147 m->cgroup_supported |= mask;
4148
4149 /* 10. Log which controllers are supported */
4150 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
4151 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
4152 yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
4153
4154 return 0;
4155 }
4156
4157 void manager_shutdown_cgroup(Manager *m, bool delete) {
4158 assert(m);
4159
4160 /* We can't really delete the group, since we are in it. But
4161 * let's trim it. */
4162 if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
4163 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
4164
4165 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
4166
4167 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
4168 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
4169
4170 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
4171 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
4172
4173 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
4174
4175 m->cgroup_root = mfree(m->cgroup_root);
4176 }
4177
4178 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
4179 char *p;
4180 Unit *u;
4181
4182 assert(m);
4183 assert(cgroup);
4184
4185 u = hashmap_get(m->cgroup_unit, cgroup);
4186 if (u)
4187 return u;
4188
4189 p = strdupa_safe(cgroup);
4190 for (;;) {
4191 char *e;
4192
4193 e = strrchr(p, '/');
4194 if (!e || e == p)
4195 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
4196
4197 *e = 0;
4198
4199 u = hashmap_get(m->cgroup_unit, p);
4200 if (u)
4201 return u;
4202 }
4203 }
4204
4205 Unit *manager_get_unit_by_pidref_cgroup(Manager *m, PidRef *pid) {
4206 _cleanup_free_ char *cgroup = NULL;
4207
4208 assert(m);
4209
4210 if (cg_pidref_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
4211 return NULL;
4212
4213 return manager_get_unit_by_cgroup(m, cgroup);
4214 }
4215
4216 Unit *manager_get_unit_by_pidref_watching(Manager *m, PidRef *pid) {
4217 Unit *u, **array;
4218
4219 assert(m);
4220
4221 if (!pidref_is_set(pid))
4222 return NULL;
4223
4224 u = hashmap_get(m->watch_pids, pid);
4225 if (u)
4226 return u;
4227
4228 array = hashmap_get(m->watch_pids_more, pid);
4229 if (array)
4230 return array[0];
4231
4232 return NULL;
4233 }
4234
4235 Unit *manager_get_unit_by_pidref(Manager *m, PidRef *pid) {
4236 Unit *u;
4237
4238 assert(m);
4239
4240 /* Note that a process might be owned by multiple units, we return only one here, which is good
4241 * enough for most cases, though not strictly correct. We prefer the one reported by cgroup
4242 * membership, as that's the most relevant one as children of the process will be assigned to that
4243 * one, too, before all else. */
4244
4245 if (!pidref_is_set(pid))
4246 return NULL;
4247
4248 if (pidref_is_self(pid))
4249 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
4250 if (pid->pid == 1)
4251 return NULL;
4252
4253 u = manager_get_unit_by_pidref_cgroup(m, pid);
4254 if (u)
4255 return u;
4256
4257 u = manager_get_unit_by_pidref_watching(m, pid);
4258 if (u)
4259 return u;
4260
4261 return NULL;
4262 }
4263
4264 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
4265 assert(m);
4266
4267 if (!pid_is_valid(pid))
4268 return NULL;
4269
4270 return manager_get_unit_by_pidref(m, &PIDREF_MAKE_FROM_PID(pid));
4271 }
4272
4273 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
4274 Unit *u;
4275
4276 assert(m);
4277 assert(cgroup);
4278
4279 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
4280 * or from the --system instance */
4281
4282 log_debug("Got cgroup empty notification for: %s", cgroup);
4283
4284 u = manager_get_unit_by_cgroup(m, cgroup);
4285 if (!u)
4286 return 0;
4287
4288 unit_add_to_cgroup_empty_queue(u);
4289 return 1;
4290 }
4291
4292 int unit_get_memory_available(Unit *u, uint64_t *ret) {
4293 uint64_t available = UINT64_MAX, current = 0;
4294
4295 assert(u);
4296 assert(ret);
4297
4298 /* If data from cgroups can be accessed, try to find out how much more memory a unit can
4299 * claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
4300 * and MemoryMax, and also any slice the unit might be nested below. */
4301
4302 do {
4303 uint64_t unit_available, unit_limit = UINT64_MAX;
4304 CGroupContext *unit_context;
4305
4306 /* No point in continuing if we can't go any lower */
4307 if (available == 0)
4308 break;
4309
4310 unit_context = unit_get_cgroup_context(u);
4311 if (!unit_context)
4312 return -ENODATA;
4313
4314 if (!u->cgroup_path)
4315 continue;
4316
4317 (void) unit_get_memory_current(u, &current);
4318 /* in case of error, previous current propagates as lower bound */
4319
4320 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
4321 unit_limit = physical_memory();
4322 else if (unit_context->memory_max == UINT64_MAX && unit_context->memory_high == UINT64_MAX)
4323 continue;
4324 unit_limit = MIN3(unit_limit, unit_context->memory_max, unit_context->memory_high);
4325
4326 unit_available = LESS_BY(unit_limit, current);
4327 available = MIN(unit_available, available);
4328 } while ((u = UNIT_GET_SLICE(u)));
4329
4330 *ret = available;
4331
4332 return 0;
4333 }
4334
4335 int unit_get_memory_current(Unit *u, uint64_t *ret) {
4336 int r;
4337
4338 // FIXME: Merge this into unit_get_memory_accounting after support for cgroup v1 is dropped
4339
4340 assert(u);
4341 assert(ret);
4342
4343 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
4344 return -ENODATA;
4345
4346 if (!u->cgroup_path)
4347 return -ENODATA;
4348
4349 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
4350 if (unit_has_host_root_cgroup(u))
4351 return procfs_memory_get_used(ret);
4352
4353 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
4354 return -ENODATA;
4355
4356 r = cg_all_unified();
4357 if (r < 0)
4358 return r;
4359
4360 return cg_get_attribute_as_uint64("memory", u->cgroup_path, r > 0 ? "memory.current" : "memory.usage_in_bytes", ret);
4361 }
4362
4363 int unit_get_memory_accounting(Unit *u, CGroupMemoryAccountingMetric metric, uint64_t *ret) {
4364
4365 static const char* const attributes_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
4366 [CGROUP_MEMORY_PEAK] = "memory.peak",
4367 [CGROUP_MEMORY_SWAP_CURRENT] = "memory.swap.current",
4368 [CGROUP_MEMORY_SWAP_PEAK] = "memory.swap.peak",
4369 [CGROUP_MEMORY_ZSWAP_CURRENT] = "memory.zswap.current",
4370 };
4371
4372 uint64_t bytes;
4373 bool updated = false;
4374 int r;
4375
4376 assert(u);
4377 assert(metric >= 0);
4378 assert(metric < _CGROUP_MEMORY_ACCOUNTING_METRIC_MAX);
4379
4380 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
4381 return -ENODATA;
4382
4383 if (!u->cgroup_path)
4384 /* If the cgroup is already gone, we try to find the last cached value. */
4385 goto finish;
4386
4387 /* The root cgroup doesn't expose this information. */
4388 if (unit_has_host_root_cgroup(u))
4389 return -ENODATA;
4390
4391 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_MEMORY))
4392 return -ENODATA;
4393
4394 r = cg_all_unified();
4395 if (r < 0)
4396 return r;
4397 if (r == 0)
4398 return -ENODATA;
4399
4400 r = cg_get_attribute_as_uint64("memory", u->cgroup_path, attributes_table[metric], &bytes);
4401 if (r < 0 && r != -ENODATA)
4402 return r;
4403 updated = r >= 0;
4404
4405 finish:
4406 if (metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST) {
4407 uint64_t *last = &u->memory_accounting_last[metric];
4408
4409 if (updated)
4410 *last = bytes;
4411 else if (*last != UINT64_MAX)
4412 bytes = *last;
4413 else
4414 return -ENODATA;
4415
4416 } else if (!updated)
4417 return -ENODATA;
4418
4419 if (ret)
4420 *ret = bytes;
4421
4422 return 0;
4423 }
4424
4425 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
4426 assert(u);
4427 assert(ret);
4428
4429 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
4430 return -ENODATA;
4431
4432 if (!u->cgroup_path)
4433 return -ENODATA;
4434
4435 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
4436 if (unit_has_host_root_cgroup(u))
4437 return procfs_tasks_get_current(ret);
4438
4439 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
4440 return -ENODATA;
4441
4442 return cg_get_attribute_as_uint64("pids", u->cgroup_path, "pids.current", ret);
4443 }
4444
4445 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
4446 uint64_t ns;
4447 int r;
4448
4449 assert(u);
4450 assert(ret);
4451
4452 if (!u->cgroup_path)
4453 return -ENODATA;
4454
4455 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
4456 if (unit_has_host_root_cgroup(u))
4457 return procfs_cpu_get_usage(ret);
4458
4459 /* Requisite controllers for CPU accounting are not enabled */
4460 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
4461 return -ENODATA;
4462
4463 r = cg_all_unified();
4464 if (r < 0)
4465 return r;
4466 if (r > 0) {
4467 _cleanup_free_ char *val = NULL;
4468 uint64_t us;
4469
4470 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
4471 if (IN_SET(r, -ENOENT, -ENXIO))
4472 return -ENODATA;
4473 if (r < 0)
4474 return r;
4475
4476 r = safe_atou64(val, &us);
4477 if (r < 0)
4478 return r;
4479
4480 ns = us * NSEC_PER_USEC;
4481 } else
4482 return cg_get_attribute_as_uint64("cpuacct", u->cgroup_path, "cpuacct.usage", ret);
4483
4484 *ret = ns;
4485 return 0;
4486 }
4487
4488 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
4489 nsec_t ns;
4490 int r;
4491
4492 assert(u);
4493
4494 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
4495 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
4496 * call this function with a NULL return value. */
4497
4498 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
4499 return -ENODATA;
4500
4501 r = unit_get_cpu_usage_raw(u, &ns);
4502 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
4503 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
4504 * cached value. */
4505
4506 if (ret)
4507 *ret = u->cpu_usage_last;
4508 return 0;
4509 }
4510 if (r < 0)
4511 return r;
4512
4513 if (ns > u->cpu_usage_base)
4514 ns -= u->cpu_usage_base;
4515 else
4516 ns = 0;
4517
4518 u->cpu_usage_last = ns;
4519 if (ret)
4520 *ret = ns;
4521
4522 return 0;
4523 }
4524
4525 int unit_get_ip_accounting(
4526 Unit *u,
4527 CGroupIPAccountingMetric metric,
4528 uint64_t *ret) {
4529
4530 uint64_t value;
4531 int fd, r;
4532
4533 assert(u);
4534 assert(metric >= 0);
4535 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
4536 assert(ret);
4537
4538 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
4539 return -ENODATA;
4540
4541 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
4542 u->ip_accounting_ingress_map_fd :
4543 u->ip_accounting_egress_map_fd;
4544 if (fd < 0)
4545 return -ENODATA;
4546
4547 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
4548 r = bpf_firewall_read_accounting(fd, &value, NULL);
4549 else
4550 r = bpf_firewall_read_accounting(fd, NULL, &value);
4551 if (r < 0)
4552 return r;
4553
4554 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
4555 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
4556 * ip_accounting_extra[] field, and add them in here transparently. */
4557
4558 *ret = value + u->ip_accounting_extra[metric];
4559
4560 return r;
4561 }
4562
4563 static uint64_t unit_get_effective_limit_one(Unit *u, CGroupLimitType type) {
4564 CGroupContext *cc;
4565
4566 assert(u);
4567 assert(UNIT_HAS_CGROUP_CONTEXT(u));
4568
4569 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
4570 switch (type) {
4571 case CGROUP_LIMIT_MEMORY_MAX:
4572 case CGROUP_LIMIT_MEMORY_HIGH:
4573 return physical_memory();
4574 case CGROUP_LIMIT_TASKS_MAX:
4575 return system_tasks_max();
4576 default:
4577 assert_not_reached();
4578 }
4579
4580 cc = ASSERT_PTR(unit_get_cgroup_context(u));
4581 switch (type) {
4582 /* Note: on legacy/hybrid hierarchies memory_max stays CGROUP_LIMIT_MAX unless configured
4583 * explicitly. Effective value of MemoryLimit= (cgroup v1) is not implemented. */
4584 case CGROUP_LIMIT_MEMORY_MAX:
4585 return cc->memory_max;
4586 case CGROUP_LIMIT_MEMORY_HIGH:
4587 return cc->memory_high;
4588 case CGROUP_LIMIT_TASKS_MAX:
4589 return cgroup_tasks_max_resolve(&cc->tasks_max);
4590 default:
4591 assert_not_reached();
4592 }
4593 }
4594
4595 int unit_get_effective_limit(Unit *u, CGroupLimitType type, uint64_t *ret) {
4596 uint64_t infimum;
4597
4598 assert(u);
4599 assert(ret);
4600 assert(type >= 0);
4601 assert(type < _CGROUP_LIMIT_TYPE_MAX);
4602
4603 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4604 return -EINVAL;
4605
4606 infimum = unit_get_effective_limit_one(u, type);
4607 for (Unit *slice = UNIT_GET_SLICE(u); slice; slice = UNIT_GET_SLICE(slice))
4608 infimum = MIN(infimum, unit_get_effective_limit_one(slice, type));
4609
4610 *ret = infimum;
4611 return 0;
4612 }
4613
4614 static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
4615 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
4616 [CGROUP_IO_READ_BYTES] = "rbytes=",
4617 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
4618 [CGROUP_IO_READ_OPERATIONS] = "rios=",
4619 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
4620 };
4621 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
4622 _cleanup_free_ char *path = NULL;
4623 _cleanup_fclose_ FILE *f = NULL;
4624 int r;
4625
4626 assert(u);
4627
4628 if (!u->cgroup_path)
4629 return -ENODATA;
4630
4631 if (unit_has_host_root_cgroup(u))
4632 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
4633
4634 r = cg_all_unified();
4635 if (r < 0)
4636 return r;
4637 if (r == 0) /* TODO: support cgroupv1 */
4638 return -ENODATA;
4639
4640 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
4641 return -ENODATA;
4642
4643 r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
4644 if (r < 0)
4645 return r;
4646
4647 f = fopen(path, "re");
4648 if (!f)
4649 return -errno;
4650
4651 for (;;) {
4652 _cleanup_free_ char *line = NULL;
4653 const char *p;
4654
4655 r = read_line(f, LONG_LINE_MAX, &line);
4656 if (r < 0)
4657 return r;
4658 if (r == 0)
4659 break;
4660
4661 p = line;
4662 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
4663 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
4664
4665 for (;;) {
4666 _cleanup_free_ char *word = NULL;
4667
4668 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
4669 if (r < 0)
4670 return r;
4671 if (r == 0)
4672 break;
4673
4674 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
4675 const char *x;
4676
4677 x = startswith(word, field_names[i]);
4678 if (x) {
4679 uint64_t w;
4680
4681 r = safe_atou64(x, &w);
4682 if (r < 0)
4683 return r;
4684
4685 /* Sum up the stats of all devices */
4686 acc[i] += w;
4687 break;
4688 }
4689 }
4690 }
4691 }
4692
4693 memcpy(ret, acc, sizeof(acc));
4694 return 0;
4695 }
4696
4697 int unit_get_io_accounting(
4698 Unit *u,
4699 CGroupIOAccountingMetric metric,
4700 bool allow_cache,
4701 uint64_t *ret) {
4702
4703 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
4704 int r;
4705
4706 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
4707
4708 if (!UNIT_CGROUP_BOOL(u, io_accounting))
4709 return -ENODATA;
4710
4711 if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
4712 goto done;
4713
4714 r = unit_get_io_accounting_raw(u, raw);
4715 if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
4716 goto done;
4717 if (r < 0)
4718 return r;
4719
4720 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
4721 /* Saturated subtraction */
4722 if (raw[i] > u->io_accounting_base[i])
4723 u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
4724 else
4725 u->io_accounting_last[i] = 0;
4726 }
4727
4728 done:
4729 if (ret)
4730 *ret = u->io_accounting_last[metric];
4731
4732 return 0;
4733 }
4734
4735 int unit_reset_cpu_accounting(Unit *u) {
4736 int r;
4737
4738 assert(u);
4739
4740 u->cpu_usage_last = NSEC_INFINITY;
4741
4742 r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
4743 if (r < 0) {
4744 u->cpu_usage_base = 0;
4745 return r;
4746 }
4747
4748 return 0;
4749 }
4750
4751 void unit_reset_memory_accounting_last(Unit *u) {
4752 assert(u);
4753
4754 FOREACH_ARRAY(i, u->memory_accounting_last, ELEMENTSOF(u->memory_accounting_last))
4755 *i = UINT64_MAX;
4756 }
4757
4758 int unit_reset_ip_accounting(Unit *u) {
4759 int r = 0;
4760
4761 assert(u);
4762
4763 if (u->ip_accounting_ingress_map_fd >= 0)
4764 RET_GATHER(r, bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd));
4765
4766 if (u->ip_accounting_egress_map_fd >= 0)
4767 RET_GATHER(r, bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd));
4768
4769 zero(u->ip_accounting_extra);
4770
4771 return r;
4772 }
4773
4774 void unit_reset_io_accounting_last(Unit *u) {
4775 assert(u);
4776
4777 FOREACH_ARRAY(i, u->io_accounting_last, _CGROUP_IO_ACCOUNTING_METRIC_MAX)
4778 *i = UINT64_MAX;
4779 }
4780
4781 int unit_reset_io_accounting(Unit *u) {
4782 int r;
4783
4784 assert(u);
4785
4786 unit_reset_io_accounting_last(u);
4787
4788 r = unit_get_io_accounting_raw(u, u->io_accounting_base);
4789 if (r < 0) {
4790 zero(u->io_accounting_base);
4791 return r;
4792 }
4793
4794 return 0;
4795 }
4796
4797 int unit_reset_accounting(Unit *u) {
4798 int r = 0;
4799
4800 assert(u);
4801
4802 RET_GATHER(r, unit_reset_cpu_accounting(u));
4803 RET_GATHER(r, unit_reset_io_accounting(u));
4804 RET_GATHER(r, unit_reset_ip_accounting(u));
4805 unit_reset_memory_accounting_last(u);
4806
4807 return r;
4808 }
4809
4810 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
4811 assert(u);
4812
4813 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4814 return;
4815
4816 if (m == 0)
4817 return;
4818
4819 /* always invalidate compat pairs together */
4820 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
4821 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
4822
4823 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
4824 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
4825
4826 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
4827 return;
4828
4829 u->cgroup_invalidated_mask |= m;
4830 unit_add_to_cgroup_realize_queue(u);
4831 }
4832
4833 void unit_invalidate_cgroup_bpf(Unit *u) {
4834 assert(u);
4835
4836 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4837 return;
4838
4839 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
4840 return;
4841
4842 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
4843 unit_add_to_cgroup_realize_queue(u);
4844
4845 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
4846 * list of our children includes our own. */
4847 if (u->type == UNIT_SLICE) {
4848 Unit *member;
4849
4850 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
4851 unit_invalidate_cgroup_bpf(member);
4852 }
4853 }
4854
4855 void unit_cgroup_catchup(Unit *u) {
4856 assert(u);
4857
4858 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4859 return;
4860
4861 /* We dropped the inotify watch during reexec/reload, so we need to
4862 * check these as they may have changed.
4863 * Note that (currently) the kernel doesn't actually update cgroup
4864 * file modification times, so we can't just serialize and then check
4865 * the mtime for file(s) we are interested in. */
4866 (void) unit_check_cgroup_events(u);
4867 unit_add_to_cgroup_oom_queue(u);
4868 }
4869
4870 bool unit_cgroup_delegate(Unit *u) {
4871 CGroupContext *c;
4872
4873 assert(u);
4874
4875 if (!UNIT_VTABLE(u)->can_delegate)
4876 return false;
4877
4878 c = unit_get_cgroup_context(u);
4879 if (!c)
4880 return false;
4881
4882 return c->delegate;
4883 }
4884
4885 void manager_invalidate_startup_units(Manager *m) {
4886 Unit *u;
4887
4888 assert(m);
4889
4890 SET_FOREACH(u, m->startup_units)
4891 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
4892 }
4893
4894 int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
4895 _cleanup_free_ char *path = NULL;
4896 FreezerState target, kernel = _FREEZER_STATE_INVALID;
4897 int r, ret;
4898
4899 assert(u);
4900 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
4901
4902 if (!cg_freezer_supported())
4903 return 0;
4904
4905 /* Ignore all requests to thaw init.scope or -.slice and reject all requests to freeze them */
4906 if (unit_has_name(u, SPECIAL_ROOT_SLICE) || unit_has_name(u, SPECIAL_INIT_SCOPE))
4907 return action == FREEZER_FREEZE ? -EPERM : 0;
4908
4909 if (!u->cgroup_realized)
4910 return -EBUSY;
4911
4912 if (action == FREEZER_THAW) {
4913 Unit *slice = UNIT_GET_SLICE(u);
4914
4915 if (slice) {
4916 r = unit_cgroup_freezer_action(slice, FREEZER_THAW);
4917 if (r < 0)
4918 return log_unit_error_errno(u, r, "Failed to thaw slice %s of unit: %m", slice->id);
4919 }
4920 }
4921
4922 target = action == FREEZER_FREEZE ? FREEZER_FROZEN : FREEZER_RUNNING;
4923
4924 r = unit_freezer_state_kernel(u, &kernel);
4925 if (r < 0)
4926 log_unit_debug_errno(u, r, "Failed to obtain cgroup freezer state: %m");
4927
4928 if (target == kernel) {
4929 u->freezer_state = target;
4930 if (action == FREEZER_FREEZE)
4931 return 0;
4932 ret = 0;
4933 } else
4934 ret = 1;
4935
4936 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.freeze", &path);
4937 if (r < 0)
4938 return r;
4939
4940 log_unit_debug(u, "%s unit.", action == FREEZER_FREEZE ? "Freezing" : "Thawing");
4941
4942 if (target != kernel) {
4943 if (action == FREEZER_FREEZE)
4944 u->freezer_state = FREEZER_FREEZING;
4945 else
4946 u->freezer_state = FREEZER_THAWING;
4947 }
4948
4949 r = write_string_file(path, one_zero(action == FREEZER_FREEZE), WRITE_STRING_FILE_DISABLE_BUFFER);
4950 if (r < 0)
4951 return r;
4952
4953 return ret;
4954 }
4955
4956 int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
4957 _cleanup_free_ char *v = NULL;
4958 int r;
4959
4960 assert(u);
4961 assert(cpus);
4962
4963 if (!u->cgroup_path)
4964 return -ENODATA;
4965
4966 if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
4967 return -ENODATA;
4968
4969 r = cg_all_unified();
4970 if (r < 0)
4971 return r;
4972 if (r == 0)
4973 return -ENODATA;
4974
4975 r = cg_get_attribute("cpuset", u->cgroup_path, name, &v);
4976 if (r == -ENOENT)
4977 return -ENODATA;
4978 if (r < 0)
4979 return r;
4980
4981 return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
4982 }
4983
4984 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
4985 [CGROUP_DEVICE_POLICY_AUTO] = "auto",
4986 [CGROUP_DEVICE_POLICY_CLOSED] = "closed",
4987 [CGROUP_DEVICE_POLICY_STRICT] = "strict",
4988 };
4989
4990 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
4991
4992 static const char* const freezer_action_table[_FREEZER_ACTION_MAX] = {
4993 [FREEZER_FREEZE] = "freeze",
4994 [FREEZER_THAW] = "thaw",
4995 };
4996
4997 DEFINE_STRING_TABLE_LOOKUP(freezer_action, FreezerAction);
4998
4999 static const char* const cgroup_pressure_watch_table[_CGROUP_PRESSURE_WATCH_MAX] = {
5000 [CGROUP_PRESSURE_WATCH_OFF] = "off",
5001 [CGROUP_PRESSURE_WATCH_AUTO] = "auto",
5002 [CGROUP_PRESSURE_WATCH_ON] = "on",
5003 [CGROUP_PRESSURE_WATCH_SKIP] = "skip",
5004 };
5005
5006 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(cgroup_pressure_watch, CGroupPressureWatch, CGROUP_PRESSURE_WATCH_ON);
5007
5008 static const char* const cgroup_ip_accounting_metric_table[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
5009 [CGROUP_IP_INGRESS_BYTES] = "IPIngressBytes",
5010 [CGROUP_IP_EGRESS_BYTES] = "IPEgressBytes",
5011 [CGROUP_IP_INGRESS_PACKETS] = "IPIngressPackets",
5012 [CGROUP_IP_EGRESS_PACKETS] = "IPEgressPackets",
5013 };
5014
5015 DEFINE_STRING_TABLE_LOOKUP(cgroup_ip_accounting_metric, CGroupIPAccountingMetric);
5016
5017 static const char* const cgroup_io_accounting_metric_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
5018 [CGROUP_IO_READ_BYTES] = "IOReadBytes",
5019 [CGROUP_IO_WRITE_BYTES] = "IOWriteBytes",
5020 [CGROUP_IO_READ_OPERATIONS] = "IOReadOperations",
5021 [CGROUP_IO_WRITE_OPERATIONS] = "IOWriteOperations",
5022 };
5023
5024 DEFINE_STRING_TABLE_LOOKUP(cgroup_io_accounting_metric, CGroupIOAccountingMetric);
5025
5026 static const char* const cgroup_memory_accounting_metric_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
5027 [CGROUP_MEMORY_PEAK] = "MemoryPeak",
5028 [CGROUP_MEMORY_SWAP_CURRENT] = "MemorySwapCurrent",
5029 [CGROUP_MEMORY_SWAP_PEAK] = "MemorySwapPeak",
5030 [CGROUP_MEMORY_ZSWAP_CURRENT] = "MemoryZSwapCurrent",
5031 };
5032
5033 DEFINE_STRING_TABLE_LOOKUP(cgroup_memory_accounting_metric, CGroupMemoryAccountingMetric);
5034
5035 static const char *const cgroup_limit_type_table[_CGROUP_LIMIT_TYPE_MAX] = {
5036 [CGROUP_LIMIT_MEMORY_MAX] = "EffectiveMemoryMax",
5037 [CGROUP_LIMIT_MEMORY_HIGH] = "EffectiveMemoryHigh",
5038 [CGROUP_LIMIT_TASKS_MAX] = "EffectiveTasksMax",
5039 };
5040
5041 DEFINE_STRING_TABLE_LOOKUP(cgroup_limit_type, CGroupLimitType);