]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
tree-wide: use -EBADF also in pipe initializers
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "argv-util.h"
43 #include "async.h"
44 #include "barrier.h"
45 #include "bpf-lsm.h"
46 #include "cap-list.h"
47 #include "capability-util.h"
48 #include "cgroup-setup.h"
49 #include "chase-symlinks.h"
50 #include "chown-recursive.h"
51 #include "constants.h"
52 #include "cpu-set-util.h"
53 #include "creds-util.h"
54 #include "data-fd-util.h"
55 #include "env-file.h"
56 #include "env-util.h"
57 #include "errno-list.h"
58 #include "escape.h"
59 #include "execute.h"
60 #include "exit-status.h"
61 #include "fd-util.h"
62 #include "fileio.h"
63 #include "format-util.h"
64 #include "glob-util.h"
65 #include "hexdecoct.h"
66 #include "io-util.h"
67 #include "ioprio-util.h"
68 #include "label.h"
69 #include "log.h"
70 #include "macro.h"
71 #include "manager.h"
72 #include "manager-dump.h"
73 #include "memory-util.h"
74 #include "missing_fs.h"
75 #include "missing_ioprio.h"
76 #include "mkdir-label.h"
77 #include "mount-util.h"
78 #include "mountpoint-util.h"
79 #include "namespace.h"
80 #include "parse-util.h"
81 #include "path-util.h"
82 #include "process-util.h"
83 #include "random-util.h"
84 #include "recurse-dir.h"
85 #include "rlimit-util.h"
86 #include "rm-rf.h"
87 #if HAVE_SECCOMP
88 #include "seccomp-util.h"
89 #endif
90 #include "securebits-util.h"
91 #include "selinux-util.h"
92 #include "signal-util.h"
93 #include "smack-util.h"
94 #include "socket-util.h"
95 #include "sort-util.h"
96 #include "special.h"
97 #include "stat-util.h"
98 #include "string-table.h"
99 #include "string-util.h"
100 #include "strv.h"
101 #include "syslog-util.h"
102 #include "terminal-util.h"
103 #include "tmpfile-util.h"
104 #include "umask-util.h"
105 #include "unit-serialize.h"
106 #include "user-util.h"
107 #include "utmp-wtmp.h"
108
109 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
110 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
111
112 #define SNDBUF_SIZE (8*1024*1024)
113
114 static int shift_fds(int fds[], size_t n_fds) {
115 if (n_fds <= 0)
116 return 0;
117
118 /* Modifies the fds array! (sorts it) */
119
120 assert(fds);
121
122 for (int start = 0;;) {
123 int restart_from = -1;
124
125 for (int i = start; i < (int) n_fds; i++) {
126 int nfd;
127
128 /* Already at right index? */
129 if (fds[i] == i+3)
130 continue;
131
132 nfd = fcntl(fds[i], F_DUPFD, i + 3);
133 if (nfd < 0)
134 return -errno;
135
136 safe_close(fds[i]);
137 fds[i] = nfd;
138
139 /* Hmm, the fd we wanted isn't free? Then
140 * let's remember that and try again from here */
141 if (nfd != i+3 && restart_from < 0)
142 restart_from = i;
143 }
144
145 if (restart_from < 0)
146 break;
147
148 start = restart_from;
149 }
150
151 return 0;
152 }
153
154 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
155 size_t n_fds;
156 int r;
157
158 n_fds = n_socket_fds + n_storage_fds;
159 if (n_fds <= 0)
160 return 0;
161
162 assert(fds);
163
164 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
165 * O_NONBLOCK only applies to socket activation though. */
166
167 for (size_t i = 0; i < n_fds; i++) {
168
169 if (i < n_socket_fds) {
170 r = fd_nonblock(fds[i], nonblock);
171 if (r < 0)
172 return r;
173 }
174
175 /* We unconditionally drop FD_CLOEXEC from the fds,
176 * since after all we want to pass these fds to our
177 * children */
178
179 r = fd_cloexec(fds[i], false);
180 if (r < 0)
181 return r;
182 }
183
184 return 0;
185 }
186
187 static const char *exec_context_tty_path(const ExecContext *context) {
188 assert(context);
189
190 if (context->stdio_as_fds)
191 return NULL;
192
193 if (context->tty_path)
194 return context->tty_path;
195
196 return "/dev/console";
197 }
198
199 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
200 const char *path;
201
202 assert(context);
203
204 path = exec_context_tty_path(context);
205
206 if (context->tty_vhangup) {
207 if (p && p->stdin_fd >= 0)
208 (void) terminal_vhangup_fd(p->stdin_fd);
209 else if (path)
210 (void) terminal_vhangup(path);
211 }
212
213 if (context->tty_reset) {
214 if (p && p->stdin_fd >= 0)
215 (void) reset_terminal_fd(p->stdin_fd, true);
216 else if (path)
217 (void) reset_terminal(path);
218 }
219
220 if (p && p->stdin_fd >= 0)
221 (void) terminal_set_size_fd(p->stdin_fd, path, context->tty_rows, context->tty_cols);
222
223 if (context->tty_vt_disallocate && path)
224 (void) vt_disallocate(path);
225 }
226
227 static bool is_terminal_input(ExecInput i) {
228 return IN_SET(i,
229 EXEC_INPUT_TTY,
230 EXEC_INPUT_TTY_FORCE,
231 EXEC_INPUT_TTY_FAIL);
232 }
233
234 static bool is_terminal_output(ExecOutput o) {
235 return IN_SET(o,
236 EXEC_OUTPUT_TTY,
237 EXEC_OUTPUT_KMSG_AND_CONSOLE,
238 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
239 }
240
241 static bool is_kmsg_output(ExecOutput o) {
242 return IN_SET(o,
243 EXEC_OUTPUT_KMSG,
244 EXEC_OUTPUT_KMSG_AND_CONSOLE);
245 }
246
247 static bool exec_context_needs_term(const ExecContext *c) {
248 assert(c);
249
250 /* Return true if the execution context suggests we should set $TERM to something useful. */
251
252 if (is_terminal_input(c->std_input))
253 return true;
254
255 if (is_terminal_output(c->std_output))
256 return true;
257
258 if (is_terminal_output(c->std_error))
259 return true;
260
261 return !!c->tty_path;
262 }
263
264 static int open_null_as(int flags, int nfd) {
265 int fd;
266
267 assert(nfd >= 0);
268
269 fd = open("/dev/null", flags|O_NOCTTY);
270 if (fd < 0)
271 return -errno;
272
273 return move_fd(fd, nfd, false);
274 }
275
276 static int connect_journal_socket(
277 int fd,
278 const char *log_namespace,
279 uid_t uid,
280 gid_t gid) {
281
282 uid_t olduid = UID_INVALID;
283 gid_t oldgid = GID_INVALID;
284 const char *j;
285 int r;
286
287 j = log_namespace ?
288 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
289 "/run/systemd/journal/stdout";
290
291 if (gid_is_valid(gid)) {
292 oldgid = getgid();
293
294 if (setegid(gid) < 0)
295 return -errno;
296 }
297
298 if (uid_is_valid(uid)) {
299 olduid = getuid();
300
301 if (seteuid(uid) < 0) {
302 r = -errno;
303 goto restore_gid;
304 }
305 }
306
307 r = connect_unix_path(fd, AT_FDCWD, j);
308
309 /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if
310 an LSM interferes. */
311
312 if (uid_is_valid(uid))
313 (void) seteuid(olduid);
314
315 restore_gid:
316 if (gid_is_valid(gid))
317 (void) setegid(oldgid);
318
319 return r;
320 }
321
322 static int connect_logger_as(
323 const Unit *unit,
324 const ExecContext *context,
325 const ExecParameters *params,
326 ExecOutput output,
327 const char *ident,
328 int nfd,
329 uid_t uid,
330 gid_t gid) {
331
332 _cleanup_close_ int fd = -EBADF;
333 int r;
334
335 assert(context);
336 assert(params);
337 assert(output < _EXEC_OUTPUT_MAX);
338 assert(ident);
339 assert(nfd >= 0);
340
341 fd = socket(AF_UNIX, SOCK_STREAM, 0);
342 if (fd < 0)
343 return -errno;
344
345 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
346 if (r < 0)
347 return r;
348
349 if (shutdown(fd, SHUT_RD) < 0)
350 return -errno;
351
352 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
353
354 if (dprintf(fd,
355 "%s\n"
356 "%s\n"
357 "%i\n"
358 "%i\n"
359 "%i\n"
360 "%i\n"
361 "%i\n",
362 context->syslog_identifier ?: ident,
363 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
364 context->syslog_priority,
365 !!context->syslog_level_prefix,
366 false,
367 is_kmsg_output(output),
368 is_terminal_output(output)) < 0)
369 return -errno;
370
371 return move_fd(TAKE_FD(fd), nfd, false);
372 }
373
374 static int open_terminal_as(const char *path, int flags, int nfd) {
375 int fd;
376
377 assert(path);
378 assert(nfd >= 0);
379
380 fd = open_terminal(path, flags | O_NOCTTY);
381 if (fd < 0)
382 return fd;
383
384 return move_fd(fd, nfd, false);
385 }
386
387 static int acquire_path(const char *path, int flags, mode_t mode) {
388 _cleanup_close_ int fd = -EBADF;
389 int r;
390
391 assert(path);
392
393 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
394 flags |= O_CREAT;
395
396 fd = open(path, flags|O_NOCTTY, mode);
397 if (fd >= 0)
398 return TAKE_FD(fd);
399
400 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
401 return -errno;
402
403 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
404
405 fd = socket(AF_UNIX, SOCK_STREAM, 0);
406 if (fd < 0)
407 return -errno;
408
409 r = connect_unix_path(fd, AT_FDCWD, path);
410 if (IN_SET(r, -ENOTSOCK, -EINVAL))
411 /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this
412 * wasn't an AF_UNIX socket after all */
413 return -ENXIO;
414 if (r < 0)
415 return r;
416
417 if ((flags & O_ACCMODE) == O_RDONLY)
418 r = shutdown(fd, SHUT_WR);
419 else if ((flags & O_ACCMODE) == O_WRONLY)
420 r = shutdown(fd, SHUT_RD);
421 else
422 r = 0;
423 if (r < 0)
424 return -errno;
425
426 return TAKE_FD(fd);
427 }
428
429 static int fixup_input(
430 const ExecContext *context,
431 int socket_fd,
432 bool apply_tty_stdin) {
433
434 ExecInput std_input;
435
436 assert(context);
437
438 std_input = context->std_input;
439
440 if (is_terminal_input(std_input) && !apply_tty_stdin)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
444 return EXEC_INPUT_NULL;
445
446 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
447 return EXEC_INPUT_NULL;
448
449 return std_input;
450 }
451
452 static int fixup_output(ExecOutput output, int socket_fd) {
453
454 if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
455 return EXEC_OUTPUT_INHERIT;
456
457 return output;
458 }
459
460 static int setup_input(
461 const ExecContext *context,
462 const ExecParameters *params,
463 int socket_fd,
464 const int named_iofds[static 3]) {
465
466 ExecInput i;
467 int r;
468
469 assert(context);
470 assert(params);
471 assert(named_iofds);
472
473 if (params->stdin_fd >= 0) {
474 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
475 return -errno;
476
477 /* Try to make this the controlling tty, if it is a tty, and reset it */
478 if (isatty(STDIN_FILENO)) {
479 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
480 (void) reset_terminal_fd(STDIN_FILENO, true);
481 (void) terminal_set_size_fd(STDIN_FILENO, NULL, context->tty_rows, context->tty_cols);
482 }
483
484 return STDIN_FILENO;
485 }
486
487 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
488
489 switch (i) {
490
491 case EXEC_INPUT_NULL:
492 return open_null_as(O_RDONLY, STDIN_FILENO);
493
494 case EXEC_INPUT_TTY:
495 case EXEC_INPUT_TTY_FORCE:
496 case EXEC_INPUT_TTY_FAIL: {
497 int fd;
498
499 fd = acquire_terminal(exec_context_tty_path(context),
500 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
501 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
502 ACQUIRE_TERMINAL_WAIT,
503 USEC_INFINITY);
504 if (fd < 0)
505 return fd;
506
507 r = terminal_set_size_fd(fd, exec_context_tty_path(context), context->tty_rows, context->tty_cols);
508 if (r < 0)
509 return r;
510
511 return move_fd(fd, STDIN_FILENO, false);
512 }
513
514 case EXEC_INPUT_SOCKET:
515 assert(socket_fd >= 0);
516
517 return RET_NERRNO(dup2(socket_fd, STDIN_FILENO));
518
519 case EXEC_INPUT_NAMED_FD:
520 assert(named_iofds[STDIN_FILENO] >= 0);
521
522 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
523 return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO));
524
525 case EXEC_INPUT_DATA: {
526 int fd;
527
528 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
529 if (fd < 0)
530 return fd;
531
532 return move_fd(fd, STDIN_FILENO, false);
533 }
534
535 case EXEC_INPUT_FILE: {
536 bool rw;
537 int fd;
538
539 assert(context->stdio_file[STDIN_FILENO]);
540
541 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
542 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
543
544 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
545 if (fd < 0)
546 return fd;
547
548 return move_fd(fd, STDIN_FILENO, false);
549 }
550
551 default:
552 assert_not_reached();
553 }
554 }
555
556 static bool can_inherit_stderr_from_stdout(
557 const ExecContext *context,
558 ExecOutput o,
559 ExecOutput e) {
560
561 assert(context);
562
563 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
564 * stderr fd */
565
566 if (e == EXEC_OUTPUT_INHERIT)
567 return true;
568 if (e != o)
569 return false;
570
571 if (e == EXEC_OUTPUT_NAMED_FD)
572 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
573
574 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
575 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
576
577 return true;
578 }
579
580 static int setup_output(
581 const Unit *unit,
582 const ExecContext *context,
583 const ExecParameters *params,
584 int fileno,
585 int socket_fd,
586 const int named_iofds[static 3],
587 const char *ident,
588 uid_t uid,
589 gid_t gid,
590 dev_t *journal_stream_dev,
591 ino_t *journal_stream_ino) {
592
593 ExecOutput o;
594 ExecInput i;
595 int r;
596
597 assert(unit);
598 assert(context);
599 assert(params);
600 assert(ident);
601 assert(journal_stream_dev);
602 assert(journal_stream_ino);
603
604 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
605
606 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
607 return -errno;
608
609 return STDOUT_FILENO;
610 }
611
612 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
613 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
614 return -errno;
615
616 return STDERR_FILENO;
617 }
618
619 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
620 o = fixup_output(context->std_output, socket_fd);
621
622 if (fileno == STDERR_FILENO) {
623 ExecOutput e;
624 e = fixup_output(context->std_error, socket_fd);
625
626 /* This expects the input and output are already set up */
627
628 /* Don't change the stderr file descriptor if we inherit all
629 * the way and are not on a tty */
630 if (e == EXEC_OUTPUT_INHERIT &&
631 o == EXEC_OUTPUT_INHERIT &&
632 i == EXEC_INPUT_NULL &&
633 !is_terminal_input(context->std_input) &&
634 getppid() != 1)
635 return fileno;
636
637 /* Duplicate from stdout if possible */
638 if (can_inherit_stderr_from_stdout(context, o, e))
639 return RET_NERRNO(dup2(STDOUT_FILENO, fileno));
640
641 o = e;
642
643 } else if (o == EXEC_OUTPUT_INHERIT) {
644 /* If input got downgraded, inherit the original value */
645 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
646 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
647
648 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
649 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
650 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
651
652 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
653 if (getppid() != 1)
654 return fileno;
655
656 /* We need to open /dev/null here anew, to get the right access mode. */
657 return open_null_as(O_WRONLY, fileno);
658 }
659
660 switch (o) {
661
662 case EXEC_OUTPUT_NULL:
663 return open_null_as(O_WRONLY, fileno);
664
665 case EXEC_OUTPUT_TTY:
666 if (is_terminal_input(i))
667 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
668
669 /* We don't reset the terminal if this is just about output */
670 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
671
672 case EXEC_OUTPUT_KMSG:
673 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
674 case EXEC_OUTPUT_JOURNAL:
675 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
676 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
677 if (r < 0) {
678 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m",
679 fileno == STDOUT_FILENO ? "stdout" : "stderr");
680 r = open_null_as(O_WRONLY, fileno);
681 } else {
682 struct stat st;
683
684 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
685 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
686 * services to detect whether they are connected to the journal or not.
687 *
688 * If both stdout and stderr are connected to a stream then let's make sure to store the data
689 * about STDERR as that's usually the best way to do logging. */
690
691 if (fstat(fileno, &st) >= 0 &&
692 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
693 *journal_stream_dev = st.st_dev;
694 *journal_stream_ino = st.st_ino;
695 }
696 }
697 return r;
698
699 case EXEC_OUTPUT_SOCKET:
700 assert(socket_fd >= 0);
701
702 return RET_NERRNO(dup2(socket_fd, fileno));
703
704 case EXEC_OUTPUT_NAMED_FD:
705 assert(named_iofds[fileno] >= 0);
706
707 (void) fd_nonblock(named_iofds[fileno], false);
708 return RET_NERRNO(dup2(named_iofds[fileno], fileno));
709
710 case EXEC_OUTPUT_FILE:
711 case EXEC_OUTPUT_FILE_APPEND:
712 case EXEC_OUTPUT_FILE_TRUNCATE: {
713 bool rw;
714 int fd, flags;
715
716 assert(context->stdio_file[fileno]);
717
718 rw = context->std_input == EXEC_INPUT_FILE &&
719 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
720
721 if (rw)
722 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
723
724 flags = O_WRONLY;
725 if (o == EXEC_OUTPUT_FILE_APPEND)
726 flags |= O_APPEND;
727 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
728 flags |= O_TRUNC;
729
730 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
731 if (fd < 0)
732 return fd;
733
734 return move_fd(fd, fileno, 0);
735 }
736
737 default:
738 assert_not_reached();
739 }
740 }
741
742 static int chown_terminal(int fd, uid_t uid) {
743 int r;
744
745 assert(fd >= 0);
746
747 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
748 if (isatty(fd) < 1) {
749 if (IN_SET(errno, EINVAL, ENOTTY))
750 return 0; /* not a tty */
751
752 return -errno;
753 }
754
755 /* This might fail. What matters are the results. */
756 r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID);
757 if (r < 0)
758 return r;
759
760 return 1;
761 }
762
763 static int setup_confirm_stdio(
764 const ExecContext *context,
765 const char *vc,
766 int *ret_saved_stdin,
767 int *ret_saved_stdout) {
768
769 _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF;
770 int r;
771
772 assert(ret_saved_stdin);
773 assert(ret_saved_stdout);
774
775 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
776 if (saved_stdin < 0)
777 return -errno;
778
779 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
780 if (saved_stdout < 0)
781 return -errno;
782
783 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
784 if (fd < 0)
785 return fd;
786
787 r = chown_terminal(fd, getuid());
788 if (r < 0)
789 return r;
790
791 r = reset_terminal_fd(fd, true);
792 if (r < 0)
793 return r;
794
795 r = terminal_set_size_fd(fd, vc, context->tty_rows, context->tty_cols);
796 if (r < 0)
797 return r;
798
799 r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */
800 TAKE_FD(fd);
801 if (r < 0)
802 return r;
803
804 *ret_saved_stdin = TAKE_FD(saved_stdin);
805 *ret_saved_stdout = TAKE_FD(saved_stdout);
806 return 0;
807 }
808
809 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
810 assert(err < 0);
811
812 if (err == -ETIMEDOUT)
813 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
814 else {
815 errno = -err;
816 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
817 }
818 }
819
820 static void write_confirm_error(int err, const char *vc, const Unit *u) {
821 _cleanup_close_ int fd = -EBADF;
822
823 assert(vc);
824
825 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
826 if (fd < 0)
827 return;
828
829 write_confirm_error_fd(err, fd, u);
830 }
831
832 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
833 int r = 0;
834
835 assert(saved_stdin);
836 assert(saved_stdout);
837
838 release_terminal();
839
840 if (*saved_stdin >= 0)
841 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
842 r = -errno;
843
844 if (*saved_stdout >= 0)
845 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
846 r = -errno;
847
848 *saved_stdin = safe_close(*saved_stdin);
849 *saved_stdout = safe_close(*saved_stdout);
850
851 return r;
852 }
853
854 enum {
855 CONFIRM_PRETEND_FAILURE = -1,
856 CONFIRM_PRETEND_SUCCESS = 0,
857 CONFIRM_EXECUTE = 1,
858 };
859
860 static int ask_for_confirmation(const ExecContext *context, const char *vc, Unit *u, const char *cmdline) {
861 int saved_stdout = -1, saved_stdin = -1, r;
862 _cleanup_free_ char *e = NULL;
863 char c;
864
865 /* For any internal errors, assume a positive response. */
866 r = setup_confirm_stdio(context, vc, &saved_stdin, &saved_stdout);
867 if (r < 0) {
868 write_confirm_error(r, vc, u);
869 return CONFIRM_EXECUTE;
870 }
871
872 /* confirm_spawn might have been disabled while we were sleeping. */
873 if (manager_is_confirm_spawn_disabled(u->manager)) {
874 r = 1;
875 goto restore_stdio;
876 }
877
878 e = ellipsize(cmdline, 60, 100);
879 if (!e) {
880 log_oom();
881 r = CONFIRM_EXECUTE;
882 goto restore_stdio;
883 }
884
885 for (;;) {
886 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
887 if (r < 0) {
888 write_confirm_error_fd(r, STDOUT_FILENO, u);
889 r = CONFIRM_EXECUTE;
890 goto restore_stdio;
891 }
892
893 switch (c) {
894 case 'c':
895 printf("Resuming normal execution.\n");
896 manager_disable_confirm_spawn();
897 r = 1;
898 break;
899 case 'D':
900 unit_dump(u, stdout, " ");
901 continue; /* ask again */
902 case 'f':
903 printf("Failing execution.\n");
904 r = CONFIRM_PRETEND_FAILURE;
905 break;
906 case 'h':
907 printf(" c - continue, proceed without asking anymore\n"
908 " D - dump, show the state of the unit\n"
909 " f - fail, don't execute the command and pretend it failed\n"
910 " h - help\n"
911 " i - info, show a short summary of the unit\n"
912 " j - jobs, show jobs that are in progress\n"
913 " s - skip, don't execute the command and pretend it succeeded\n"
914 " y - yes, execute the command\n");
915 continue; /* ask again */
916 case 'i':
917 printf(" Description: %s\n"
918 " Unit: %s\n"
919 " Command: %s\n",
920 u->id, u->description, cmdline);
921 continue; /* ask again */
922 case 'j':
923 manager_dump_jobs(u->manager, stdout, /* patterns= */ NULL, " ");
924 continue; /* ask again */
925 case 'n':
926 /* 'n' was removed in favor of 'f'. */
927 printf("Didn't understand 'n', did you mean 'f'?\n");
928 continue; /* ask again */
929 case 's':
930 printf("Skipping execution.\n");
931 r = CONFIRM_PRETEND_SUCCESS;
932 break;
933 case 'y':
934 r = CONFIRM_EXECUTE;
935 break;
936 default:
937 assert_not_reached();
938 }
939 break;
940 }
941
942 restore_stdio:
943 restore_confirm_stdio(&saved_stdin, &saved_stdout);
944 return r;
945 }
946
947 static int get_fixed_user(const ExecContext *c, const char **user,
948 uid_t *uid, gid_t *gid,
949 const char **home, const char **shell) {
950 int r;
951 const char *name;
952
953 assert(c);
954
955 if (!c->user)
956 return 0;
957
958 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
959 * (i.e. are "/" or "/bin/nologin"). */
960
961 name = c->user;
962 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
963 if (r < 0)
964 return r;
965
966 *user = name;
967 return 0;
968 }
969
970 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
971 int r;
972 const char *name;
973
974 assert(c);
975
976 if (!c->group)
977 return 0;
978
979 name = c->group;
980 r = get_group_creds(&name, gid, 0);
981 if (r < 0)
982 return r;
983
984 *group = name;
985 return 0;
986 }
987
988 static int get_supplementary_groups(const ExecContext *c, const char *user,
989 const char *group, gid_t gid,
990 gid_t **supplementary_gids, int *ngids) {
991 int r, k = 0;
992 int ngroups_max;
993 bool keep_groups = false;
994 gid_t *groups = NULL;
995 _cleanup_free_ gid_t *l_gids = NULL;
996
997 assert(c);
998
999 /*
1000 * If user is given, then lookup GID and supplementary groups list.
1001 * We avoid NSS lookups for gid=0. Also we have to initialize groups
1002 * here and as early as possible so we keep the list of supplementary
1003 * groups of the caller.
1004 */
1005 if (user && gid_is_valid(gid) && gid != 0) {
1006 /* First step, initialize groups from /etc/groups */
1007 if (initgroups(user, gid) < 0)
1008 return -errno;
1009
1010 keep_groups = true;
1011 }
1012
1013 if (strv_isempty(c->supplementary_groups))
1014 return 0;
1015
1016 /*
1017 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1018 * be positive, otherwise fail.
1019 */
1020 errno = 0;
1021 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1022 if (ngroups_max <= 0)
1023 return errno_or_else(EOPNOTSUPP);
1024
1025 l_gids = new(gid_t, ngroups_max);
1026 if (!l_gids)
1027 return -ENOMEM;
1028
1029 if (keep_groups) {
1030 /*
1031 * Lookup the list of groups that the user belongs to, we
1032 * avoid NSS lookups here too for gid=0.
1033 */
1034 k = ngroups_max;
1035 if (getgrouplist(user, gid, l_gids, &k) < 0)
1036 return -EINVAL;
1037 } else
1038 k = 0;
1039
1040 STRV_FOREACH(i, c->supplementary_groups) {
1041 const char *g;
1042
1043 if (k >= ngroups_max)
1044 return -E2BIG;
1045
1046 g = *i;
1047 r = get_group_creds(&g, l_gids+k, 0);
1048 if (r < 0)
1049 return r;
1050
1051 k++;
1052 }
1053
1054 /*
1055 * Sets ngids to zero to drop all supplementary groups, happens
1056 * when we are under root and SupplementaryGroups= is empty.
1057 */
1058 if (k == 0) {
1059 *ngids = 0;
1060 return 0;
1061 }
1062
1063 /* Otherwise get the final list of supplementary groups */
1064 groups = memdup(l_gids, sizeof(gid_t) * k);
1065 if (!groups)
1066 return -ENOMEM;
1067
1068 *supplementary_gids = groups;
1069 *ngids = k;
1070
1071 groups = NULL;
1072
1073 return 0;
1074 }
1075
1076 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1077 int r;
1078
1079 /* Handle SupplementaryGroups= if it is not empty */
1080 if (ngids > 0) {
1081 r = maybe_setgroups(ngids, supplementary_gids);
1082 if (r < 0)
1083 return r;
1084 }
1085
1086 if (gid_is_valid(gid)) {
1087 /* Then set our gids */
1088 if (setresgid(gid, gid, gid) < 0)
1089 return -errno;
1090 }
1091
1092 return 0;
1093 }
1094
1095 static int set_securebits(int bits, int mask) {
1096 int current, applied;
1097 current = prctl(PR_GET_SECUREBITS);
1098 if (current < 0)
1099 return -errno;
1100 /* Clear all securebits defined in mask and set bits */
1101 applied = (current & ~mask) | bits;
1102 if (current == applied)
1103 return 0;
1104 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1105 return -errno;
1106 return 1;
1107 }
1108
1109 static int enforce_user(const ExecContext *context, uid_t uid) {
1110 assert(context);
1111 int r;
1112
1113 if (!uid_is_valid(uid))
1114 return 0;
1115
1116 /* Sets (but doesn't look up) the uid and make sure we keep the
1117 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1118 * required, so we also need keep-caps in this case.
1119 */
1120
1121 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1122
1123 /* First step: If we need to keep capabilities but
1124 * drop privileges we need to make sure we keep our
1125 * caps, while we drop privileges. */
1126 if (uid != 0) {
1127 /* Add KEEP_CAPS to the securebits */
1128 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1129 if (r < 0)
1130 return r;
1131 }
1132 }
1133
1134 /* Second step: actually set the uids */
1135 if (setresuid(uid, uid, uid) < 0)
1136 return -errno;
1137
1138 /* At this point we should have all necessary capabilities but
1139 are otherwise a normal user. However, the caps might got
1140 corrupted due to the setresuid() so we need clean them up
1141 later. This is done outside of this call. */
1142
1143 return 0;
1144 }
1145
1146 #if HAVE_PAM
1147
1148 static int null_conv(
1149 int num_msg,
1150 const struct pam_message **msg,
1151 struct pam_response **resp,
1152 void *appdata_ptr) {
1153
1154 /* We don't support conversations */
1155
1156 return PAM_CONV_ERR;
1157 }
1158
1159 #endif
1160
1161 static int setup_pam(
1162 const char *name,
1163 const char *user,
1164 uid_t uid,
1165 gid_t gid,
1166 const char *tty,
1167 char ***env, /* updated on success */
1168 const int fds[], size_t n_fds) {
1169
1170 #if HAVE_PAM
1171
1172 static const struct pam_conv conv = {
1173 .conv = null_conv,
1174 .appdata_ptr = NULL
1175 };
1176
1177 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1178 _cleanup_strv_free_ char **e = NULL;
1179 pam_handle_t *handle = NULL;
1180 sigset_t old_ss;
1181 int pam_code = PAM_SUCCESS, r;
1182 bool close_session = false;
1183 pid_t pam_pid = 0, parent_pid;
1184 int flags = 0;
1185
1186 assert(name);
1187 assert(user);
1188 assert(env);
1189
1190 /* We set up PAM in the parent process, then fork. The child
1191 * will then stay around until killed via PR_GET_PDEATHSIG or
1192 * systemd via the cgroup logic. It will then remove the PAM
1193 * session again. The parent process will exec() the actual
1194 * daemon. We do things this way to ensure that the main PID
1195 * of the daemon is the one we initially fork()ed. */
1196
1197 r = barrier_create(&barrier);
1198 if (r < 0)
1199 goto fail;
1200
1201 if (log_get_max_level() < LOG_DEBUG)
1202 flags |= PAM_SILENT;
1203
1204 pam_code = pam_start(name, user, &conv, &handle);
1205 if (pam_code != PAM_SUCCESS) {
1206 handle = NULL;
1207 goto fail;
1208 }
1209
1210 if (!tty) {
1211 _cleanup_free_ char *q = NULL;
1212
1213 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1214 * out if that's the case, and read the TTY off it. */
1215
1216 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1217 tty = strjoina("/dev/", q);
1218 }
1219
1220 if (tty) {
1221 pam_code = pam_set_item(handle, PAM_TTY, tty);
1222 if (pam_code != PAM_SUCCESS)
1223 goto fail;
1224 }
1225
1226 STRV_FOREACH(nv, *env) {
1227 pam_code = pam_putenv(handle, *nv);
1228 if (pam_code != PAM_SUCCESS)
1229 goto fail;
1230 }
1231
1232 pam_code = pam_acct_mgmt(handle, flags);
1233 if (pam_code != PAM_SUCCESS)
1234 goto fail;
1235
1236 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1237 if (pam_code != PAM_SUCCESS)
1238 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1239
1240 pam_code = pam_open_session(handle, flags);
1241 if (pam_code != PAM_SUCCESS)
1242 goto fail;
1243
1244 close_session = true;
1245
1246 e = pam_getenvlist(handle);
1247 if (!e) {
1248 pam_code = PAM_BUF_ERR;
1249 goto fail;
1250 }
1251
1252 /* Block SIGTERM, so that we know that it won't get lost in the child */
1253
1254 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1255
1256 parent_pid = getpid_cached();
1257
1258 r = safe_fork("(sd-pam)", 0, &pam_pid);
1259 if (r < 0)
1260 goto fail;
1261 if (r == 0) {
1262 int sig, ret = EXIT_PAM;
1263
1264 /* The child's job is to reset the PAM session on termination */
1265 barrier_set_role(&barrier, BARRIER_CHILD);
1266
1267 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1268 * those fds are open here that have been opened by PAM. */
1269 (void) close_many(fds, n_fds);
1270
1271 /* Drop privileges - we don't need any to pam_close_session and this will make
1272 * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam
1273 * threads to fail to exit normally */
1274
1275 r = maybe_setgroups(0, NULL);
1276 if (r < 0)
1277 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1278 if (setresgid(gid, gid, gid) < 0)
1279 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1280 if (setresuid(uid, uid, uid) < 0)
1281 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1282
1283 (void) ignore_signals(SIGPIPE);
1284
1285 /* Wait until our parent died. This will only work if the above setresuid() succeeds,
1286 * otherwise the kernel will not allow unprivileged parents kill their privileged children
1287 * this way. We rely on the control groups kill logic to do the rest for us. */
1288 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1289 goto child_finish;
1290
1291 /* Tell the parent that our setup is done. This is especially important regarding dropping
1292 * privileges. Otherwise, unit setup might race against our setresuid(2) call.
1293 *
1294 * If the parent aborted, we'll detect this below, hence ignore return failure here. */
1295 (void) barrier_place(&barrier);
1296
1297 /* Check if our parent process might already have died? */
1298 if (getppid() == parent_pid) {
1299 sigset_t ss;
1300
1301 assert_se(sigemptyset(&ss) >= 0);
1302 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1303
1304 for (;;) {
1305 if (sigwait(&ss, &sig) < 0) {
1306 if (errno == EINTR)
1307 continue;
1308
1309 goto child_finish;
1310 }
1311
1312 assert(sig == SIGTERM);
1313 break;
1314 }
1315 }
1316
1317 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1318 if (pam_code != PAM_SUCCESS)
1319 goto child_finish;
1320
1321 /* If our parent died we'll end the session */
1322 if (getppid() != parent_pid) {
1323 pam_code = pam_close_session(handle, flags);
1324 if (pam_code != PAM_SUCCESS)
1325 goto child_finish;
1326 }
1327
1328 ret = 0;
1329
1330 child_finish:
1331 /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module
1332 * know about this. See pam_end(3) */
1333 (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT);
1334 _exit(ret);
1335 }
1336
1337 barrier_set_role(&barrier, BARRIER_PARENT);
1338
1339 /* If the child was forked off successfully it will do all the cleanups, so forget about the handle
1340 * here. */
1341 handle = NULL;
1342
1343 /* Unblock SIGTERM again in the parent */
1344 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1345
1346 /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want
1347 * this fd around. */
1348 closelog();
1349
1350 /* Synchronously wait for the child to initialize. We don't care for errors as we cannot
1351 * recover. However, warn loudly if it happens. */
1352 if (!barrier_place_and_sync(&barrier))
1353 log_error("PAM initialization failed");
1354
1355 return strv_free_and_replace(*env, e);
1356
1357 fail:
1358 if (pam_code != PAM_SUCCESS) {
1359 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1360 r = -EPERM; /* PAM errors do not map to errno */
1361 } else
1362 log_error_errno(r, "PAM failed: %m");
1363
1364 if (handle) {
1365 if (close_session)
1366 pam_code = pam_close_session(handle, flags);
1367
1368 (void) pam_end(handle, pam_code | flags);
1369 }
1370
1371 closelog();
1372 return r;
1373 #else
1374 return 0;
1375 #endif
1376 }
1377
1378 static void rename_process_from_path(const char *path) {
1379 char process_name[11];
1380 const char *p;
1381 size_t l;
1382
1383 /* This resulting string must fit in 10 chars (i.e. the length
1384 * of "/sbin/init") to look pretty in /bin/ps */
1385
1386 p = basename(path);
1387 if (isempty(p)) {
1388 rename_process("(...)");
1389 return;
1390 }
1391
1392 l = strlen(p);
1393 if (l > 8) {
1394 /* The end of the process name is usually more
1395 * interesting, since the first bit might just be
1396 * "systemd-" */
1397 p = p + l - 8;
1398 l = 8;
1399 }
1400
1401 process_name[0] = '(';
1402 memcpy(process_name+1, p, l);
1403 process_name[1+l] = ')';
1404 process_name[1+l+1] = 0;
1405
1406 rename_process(process_name);
1407 }
1408
1409 static bool context_has_address_families(const ExecContext *c) {
1410 assert(c);
1411
1412 return c->address_families_allow_list ||
1413 !set_isempty(c->address_families);
1414 }
1415
1416 static bool context_has_syscall_filters(const ExecContext *c) {
1417 assert(c);
1418
1419 return c->syscall_allow_list ||
1420 !hashmap_isempty(c->syscall_filter);
1421 }
1422
1423 static bool context_has_syscall_logs(const ExecContext *c) {
1424 assert(c);
1425
1426 return c->syscall_log_allow_list ||
1427 !hashmap_isempty(c->syscall_log);
1428 }
1429
1430 static bool context_has_no_new_privileges(const ExecContext *c) {
1431 assert(c);
1432
1433 if (c->no_new_privileges)
1434 return true;
1435
1436 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1437 return false;
1438
1439 /* We need NNP if we have any form of seccomp and are unprivileged */
1440 return c->lock_personality ||
1441 c->memory_deny_write_execute ||
1442 c->private_devices ||
1443 c->protect_clock ||
1444 c->protect_hostname ||
1445 c->protect_kernel_tunables ||
1446 c->protect_kernel_modules ||
1447 c->protect_kernel_logs ||
1448 context_has_address_families(c) ||
1449 exec_context_restrict_namespaces_set(c) ||
1450 c->restrict_realtime ||
1451 c->restrict_suid_sgid ||
1452 !set_isempty(c->syscall_archs) ||
1453 context_has_syscall_filters(c) ||
1454 context_has_syscall_logs(c);
1455 }
1456
1457 static bool exec_context_has_credentials(const ExecContext *context) {
1458
1459 assert(context);
1460
1461 return !hashmap_isempty(context->set_credentials) ||
1462 !hashmap_isempty(context->load_credentials);
1463 }
1464
1465 #if HAVE_SECCOMP
1466
1467 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1468
1469 if (is_seccomp_available())
1470 return false;
1471
1472 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1473 return true;
1474 }
1475
1476 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1477 uint32_t negative_action, default_action, action;
1478 int r;
1479
1480 assert(u);
1481 assert(c);
1482
1483 if (!context_has_syscall_filters(c))
1484 return 0;
1485
1486 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1487 return 0;
1488
1489 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1490
1491 if (c->syscall_allow_list) {
1492 default_action = negative_action;
1493 action = SCMP_ACT_ALLOW;
1494 } else {
1495 default_action = SCMP_ACT_ALLOW;
1496 action = negative_action;
1497 }
1498
1499 if (needs_ambient_hack) {
1500 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1501 if (r < 0)
1502 return r;
1503 }
1504
1505 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1506 }
1507
1508 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1509 #ifdef SCMP_ACT_LOG
1510 uint32_t default_action, action;
1511 #endif
1512
1513 assert(u);
1514 assert(c);
1515
1516 if (!context_has_syscall_logs(c))
1517 return 0;
1518
1519 #ifdef SCMP_ACT_LOG
1520 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1521 return 0;
1522
1523 if (c->syscall_log_allow_list) {
1524 /* Log nothing but the ones listed */
1525 default_action = SCMP_ACT_ALLOW;
1526 action = SCMP_ACT_LOG;
1527 } else {
1528 /* Log everything but the ones listed */
1529 default_action = SCMP_ACT_LOG;
1530 action = SCMP_ACT_ALLOW;
1531 }
1532
1533 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1534 #else
1535 /* old libseccomp */
1536 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1537 return 0;
1538 #endif
1539 }
1540
1541 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1542 assert(u);
1543 assert(c);
1544
1545 if (set_isempty(c->syscall_archs))
1546 return 0;
1547
1548 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1549 return 0;
1550
1551 return seccomp_restrict_archs(c->syscall_archs);
1552 }
1553
1554 static int apply_address_families(const Unit* u, const ExecContext *c) {
1555 assert(u);
1556 assert(c);
1557
1558 if (!context_has_address_families(c))
1559 return 0;
1560
1561 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1562 return 0;
1563
1564 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1565 }
1566
1567 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1568 assert(u);
1569 assert(c);
1570
1571 if (!c->memory_deny_write_execute)
1572 return 0;
1573
1574 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1575 return 0;
1576
1577 return seccomp_memory_deny_write_execute();
1578 }
1579
1580 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1581 assert(u);
1582 assert(c);
1583
1584 if (!c->restrict_realtime)
1585 return 0;
1586
1587 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1588 return 0;
1589
1590 return seccomp_restrict_realtime();
1591 }
1592
1593 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1594 assert(u);
1595 assert(c);
1596
1597 if (!c->restrict_suid_sgid)
1598 return 0;
1599
1600 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1601 return 0;
1602
1603 return seccomp_restrict_suid_sgid();
1604 }
1605
1606 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1607 assert(u);
1608 assert(c);
1609
1610 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1611 * let's protect even those systems where this is left on in the kernel. */
1612
1613 if (!c->protect_kernel_tunables)
1614 return 0;
1615
1616 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1617 return 0;
1618
1619 return seccomp_protect_sysctl();
1620 }
1621
1622 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1623 assert(u);
1624 assert(c);
1625
1626 /* Turn off module syscalls on ProtectKernelModules=yes */
1627
1628 if (!c->protect_kernel_modules)
1629 return 0;
1630
1631 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1632 return 0;
1633
1634 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1635 }
1636
1637 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1638 assert(u);
1639 assert(c);
1640
1641 if (!c->protect_kernel_logs)
1642 return 0;
1643
1644 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1645 return 0;
1646
1647 return seccomp_protect_syslog();
1648 }
1649
1650 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1651 assert(u);
1652 assert(c);
1653
1654 if (!c->protect_clock)
1655 return 0;
1656
1657 if (skip_seccomp_unavailable(u, "ProtectClock="))
1658 return 0;
1659
1660 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1661 }
1662
1663 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1664 assert(u);
1665 assert(c);
1666
1667 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1668
1669 if (!c->private_devices)
1670 return 0;
1671
1672 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1673 return 0;
1674
1675 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1676 }
1677
1678 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1679 assert(u);
1680 assert(c);
1681
1682 if (!exec_context_restrict_namespaces_set(c))
1683 return 0;
1684
1685 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1686 return 0;
1687
1688 return seccomp_restrict_namespaces(c->restrict_namespaces);
1689 }
1690
1691 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1692 unsigned long personality;
1693 int r;
1694
1695 assert(u);
1696 assert(c);
1697
1698 if (!c->lock_personality)
1699 return 0;
1700
1701 if (skip_seccomp_unavailable(u, "LockPersonality="))
1702 return 0;
1703
1704 personality = c->personality;
1705
1706 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1707 if (personality == PERSONALITY_INVALID) {
1708
1709 r = opinionated_personality(&personality);
1710 if (r < 0)
1711 return r;
1712 }
1713
1714 return seccomp_lock_personality(personality);
1715 }
1716
1717 #endif
1718
1719 #if HAVE_LIBBPF
1720 static int apply_restrict_filesystems(Unit *u, const ExecContext *c) {
1721 assert(u);
1722 assert(c);
1723
1724 if (!exec_context_restrict_filesystems_set(c))
1725 return 0;
1726
1727 if (!u->manager->restrict_fs) {
1728 /* LSM BPF is unsupported or lsm_bpf_setup failed */
1729 log_unit_debug(u, "LSM BPF not supported, skipping RestrictFileSystems=");
1730 return 0;
1731 }
1732
1733 return lsm_bpf_unit_restrict_filesystems(u, c->restrict_filesystems, c->restrict_filesystems_allow_list);
1734 }
1735 #endif
1736
1737 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1738 assert(u);
1739 assert(c);
1740
1741 if (!c->protect_hostname)
1742 return 0;
1743
1744 if (ns_type_supported(NAMESPACE_UTS)) {
1745 if (unshare(CLONE_NEWUTS) < 0) {
1746 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1747 *ret_exit_status = EXIT_NAMESPACE;
1748 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1749 }
1750
1751 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1752 }
1753 } else
1754 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1755
1756 #if HAVE_SECCOMP
1757 int r;
1758
1759 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1760 return 0;
1761
1762 r = seccomp_protect_hostname();
1763 if (r < 0) {
1764 *ret_exit_status = EXIT_SECCOMP;
1765 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1766 }
1767 #endif
1768
1769 return 0;
1770 }
1771
1772 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1773 assert(idle_pipe);
1774
1775 idle_pipe[1] = safe_close(idle_pipe[1]);
1776 idle_pipe[2] = safe_close(idle_pipe[2]);
1777
1778 if (idle_pipe[0] >= 0) {
1779 int r;
1780
1781 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1782
1783 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1784 ssize_t n;
1785
1786 /* Signal systemd that we are bored and want to continue. */
1787 n = write(idle_pipe[3], "x", 1);
1788 if (n > 0)
1789 /* Wait for systemd to react to the signal above. */
1790 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1791 }
1792
1793 idle_pipe[0] = safe_close(idle_pipe[0]);
1794
1795 }
1796
1797 idle_pipe[3] = safe_close(idle_pipe[3]);
1798 }
1799
1800 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1801
1802 static int build_environment(
1803 const Unit *u,
1804 const ExecContext *c,
1805 const ExecParameters *p,
1806 size_t n_fds,
1807 const char *home,
1808 const char *username,
1809 const char *shell,
1810 dev_t journal_stream_dev,
1811 ino_t journal_stream_ino,
1812 char ***ret) {
1813
1814 _cleanup_strv_free_ char **our_env = NULL;
1815 size_t n_env = 0;
1816 char *x;
1817
1818 assert(u);
1819 assert(c);
1820 assert(p);
1821 assert(ret);
1822
1823 #define N_ENV_VARS 17
1824 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1825 if (!our_env)
1826 return -ENOMEM;
1827
1828 if (n_fds > 0) {
1829 _cleanup_free_ char *joined = NULL;
1830
1831 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1832 return -ENOMEM;
1833 our_env[n_env++] = x;
1834
1835 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1836 return -ENOMEM;
1837 our_env[n_env++] = x;
1838
1839 joined = strv_join(p->fd_names, ":");
1840 if (!joined)
1841 return -ENOMEM;
1842
1843 x = strjoin("LISTEN_FDNAMES=", joined);
1844 if (!x)
1845 return -ENOMEM;
1846 our_env[n_env++] = x;
1847 }
1848
1849 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1850 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1851 return -ENOMEM;
1852 our_env[n_env++] = x;
1853
1854 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1855 return -ENOMEM;
1856 our_env[n_env++] = x;
1857 }
1858
1859 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking
1860 * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and
1861 * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */
1862 if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) {
1863 x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1");
1864 if (!x)
1865 return -ENOMEM;
1866 our_env[n_env++] = x;
1867 }
1868
1869 if (home) {
1870 x = strjoin("HOME=", home);
1871 if (!x)
1872 return -ENOMEM;
1873
1874 path_simplify(x + 5);
1875 our_env[n_env++] = x;
1876 }
1877
1878 if (username) {
1879 x = strjoin("LOGNAME=", username);
1880 if (!x)
1881 return -ENOMEM;
1882 our_env[n_env++] = x;
1883
1884 x = strjoin("USER=", username);
1885 if (!x)
1886 return -ENOMEM;
1887 our_env[n_env++] = x;
1888 }
1889
1890 if (shell) {
1891 x = strjoin("SHELL=", shell);
1892 if (!x)
1893 return -ENOMEM;
1894
1895 path_simplify(x + 6);
1896 our_env[n_env++] = x;
1897 }
1898
1899 if (!sd_id128_is_null(u->invocation_id)) {
1900 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1901 return -ENOMEM;
1902
1903 our_env[n_env++] = x;
1904 }
1905
1906 if (exec_context_needs_term(c)) {
1907 const char *tty_path, *term = NULL;
1908
1909 tty_path = exec_context_tty_path(c);
1910
1911 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1912 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1913 * container manager passes to PID 1 ends up all the way in the console login shown. */
1914
1915 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1916 term = getenv("TERM");
1917
1918 if (!term)
1919 term = default_term_for_tty(tty_path);
1920
1921 x = strjoin("TERM=", term);
1922 if (!x)
1923 return -ENOMEM;
1924 our_env[n_env++] = x;
1925 }
1926
1927 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1928 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1929 return -ENOMEM;
1930
1931 our_env[n_env++] = x;
1932 }
1933
1934 if (c->log_namespace) {
1935 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1936 if (!x)
1937 return -ENOMEM;
1938
1939 our_env[n_env++] = x;
1940 }
1941
1942 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1943 _cleanup_free_ char *joined = NULL;
1944 const char *n;
1945
1946 if (!p->prefix[t])
1947 continue;
1948
1949 if (c->directories[t].n_items == 0)
1950 continue;
1951
1952 n = exec_directory_env_name_to_string(t);
1953 if (!n)
1954 continue;
1955
1956 for (size_t i = 0; i < c->directories[t].n_items; i++) {
1957 _cleanup_free_ char *prefixed = NULL;
1958
1959 prefixed = path_join(p->prefix[t], c->directories[t].items[i].path);
1960 if (!prefixed)
1961 return -ENOMEM;
1962
1963 if (!strextend_with_separator(&joined, ":", prefixed))
1964 return -ENOMEM;
1965 }
1966
1967 x = strjoin(n, "=", joined);
1968 if (!x)
1969 return -ENOMEM;
1970
1971 our_env[n_env++] = x;
1972 }
1973
1974 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1975 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1976 if (!x)
1977 return -ENOMEM;
1978
1979 our_env[n_env++] = x;
1980 }
1981
1982 if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0)
1983 return -ENOMEM;
1984
1985 our_env[n_env++] = x;
1986
1987 our_env[n_env++] = NULL;
1988 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1989 #undef N_ENV_VARS
1990
1991 *ret = TAKE_PTR(our_env);
1992
1993 return 0;
1994 }
1995
1996 static int build_pass_environment(const ExecContext *c, char ***ret) {
1997 _cleanup_strv_free_ char **pass_env = NULL;
1998 size_t n_env = 0;
1999
2000 STRV_FOREACH(i, c->pass_environment) {
2001 _cleanup_free_ char *x = NULL;
2002 char *v;
2003
2004 v = getenv(*i);
2005 if (!v)
2006 continue;
2007 x = strjoin(*i, "=", v);
2008 if (!x)
2009 return -ENOMEM;
2010
2011 if (!GREEDY_REALLOC(pass_env, n_env + 2))
2012 return -ENOMEM;
2013
2014 pass_env[n_env++] = TAKE_PTR(x);
2015 pass_env[n_env] = NULL;
2016 }
2017
2018 *ret = TAKE_PTR(pass_env);
2019
2020 return 0;
2021 }
2022
2023 bool exec_needs_mount_namespace(
2024 const ExecContext *context,
2025 const ExecParameters *params,
2026 const ExecRuntime *runtime) {
2027
2028 assert(context);
2029
2030 if (context->root_image)
2031 return true;
2032
2033 if (!strv_isempty(context->read_write_paths) ||
2034 !strv_isempty(context->read_only_paths) ||
2035 !strv_isempty(context->inaccessible_paths) ||
2036 !strv_isempty(context->exec_paths) ||
2037 !strv_isempty(context->no_exec_paths))
2038 return true;
2039
2040 if (context->n_bind_mounts > 0)
2041 return true;
2042
2043 if (context->n_temporary_filesystems > 0)
2044 return true;
2045
2046 if (context->n_mount_images > 0)
2047 return true;
2048
2049 if (context->n_extension_images > 0)
2050 return true;
2051
2052 if (!strv_isempty(context->extension_directories))
2053 return true;
2054
2055 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2056 return true;
2057
2058 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2059 return true;
2060
2061 if (context->private_devices ||
2062 context->private_mounts ||
2063 context->protect_system != PROTECT_SYSTEM_NO ||
2064 context->protect_home != PROTECT_HOME_NO ||
2065 context->protect_kernel_tunables ||
2066 context->protect_kernel_modules ||
2067 context->protect_kernel_logs ||
2068 context->protect_control_groups ||
2069 context->protect_proc != PROTECT_PROC_DEFAULT ||
2070 context->proc_subset != PROC_SUBSET_ALL ||
2071 context->private_ipc ||
2072 context->ipc_namespace_path)
2073 return true;
2074
2075 if (context->root_directory) {
2076 if (exec_context_get_effective_mount_apivfs(context))
2077 return true;
2078
2079 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2080 if (params && !params->prefix[t])
2081 continue;
2082
2083 if (context->directories[t].n_items > 0)
2084 return true;
2085 }
2086 }
2087
2088 if (context->dynamic_user &&
2089 (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
2090 context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
2091 context->directories[EXEC_DIRECTORY_LOGS].n_items > 0))
2092 return true;
2093
2094 if (context->log_namespace)
2095 return true;
2096
2097 return false;
2098 }
2099
2100 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2101 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2102 _cleanup_close_pair_ int errno_pipe[2] = { -EBADF, -EBADF };
2103 _cleanup_close_ int unshare_ready_fd = -EBADF;
2104 _cleanup_(sigkill_waitp) pid_t pid = 0;
2105 uint64_t c = 1;
2106 ssize_t n;
2107 int r;
2108
2109 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2110 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2111 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2112 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2113 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2114 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2115 * continues execution normally.
2116 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2117 * does not need CAP_SETUID to write the single line mapping to itself. */
2118
2119 /* Can only set up multiple mappings with CAP_SETUID. */
2120 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2121 r = asprintf(&uid_map,
2122 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2123 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2124 ouid, ouid, uid, uid);
2125 else
2126 r = asprintf(&uid_map,
2127 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2128 ouid, ouid);
2129
2130 if (r < 0)
2131 return -ENOMEM;
2132
2133 /* Can only set up multiple mappings with CAP_SETGID. */
2134 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2135 r = asprintf(&gid_map,
2136 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2137 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2138 ogid, ogid, gid, gid);
2139 else
2140 r = asprintf(&gid_map,
2141 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2142 ogid, ogid);
2143
2144 if (r < 0)
2145 return -ENOMEM;
2146
2147 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2148 * namespace. */
2149 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2150 if (unshare_ready_fd < 0)
2151 return -errno;
2152
2153 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2154 * failed. */
2155 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2156 return -errno;
2157
2158 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2159 if (r < 0)
2160 return r;
2161 if (r == 0) {
2162 _cleanup_close_ int fd = -EBADF;
2163 const char *a;
2164 pid_t ppid;
2165
2166 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2167 * here, after the parent opened its own user namespace. */
2168
2169 ppid = getppid();
2170 errno_pipe[0] = safe_close(errno_pipe[0]);
2171
2172 /* Wait until the parent unshared the user namespace */
2173 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2174 r = -errno;
2175 goto child_fail;
2176 }
2177
2178 /* Disable the setgroups() system call in the child user namespace, for good. */
2179 a = procfs_file_alloca(ppid, "setgroups");
2180 fd = open(a, O_WRONLY|O_CLOEXEC);
2181 if (fd < 0) {
2182 if (errno != ENOENT) {
2183 r = -errno;
2184 goto child_fail;
2185 }
2186
2187 /* If the file is missing the kernel is too old, let's continue anyway. */
2188 } else {
2189 if (write(fd, "deny\n", 5) < 0) {
2190 r = -errno;
2191 goto child_fail;
2192 }
2193
2194 fd = safe_close(fd);
2195 }
2196
2197 /* First write the GID map */
2198 a = procfs_file_alloca(ppid, "gid_map");
2199 fd = open(a, O_WRONLY|O_CLOEXEC);
2200 if (fd < 0) {
2201 r = -errno;
2202 goto child_fail;
2203 }
2204 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2205 r = -errno;
2206 goto child_fail;
2207 }
2208 fd = safe_close(fd);
2209
2210 /* The write the UID map */
2211 a = procfs_file_alloca(ppid, "uid_map");
2212 fd = open(a, O_WRONLY|O_CLOEXEC);
2213 if (fd < 0) {
2214 r = -errno;
2215 goto child_fail;
2216 }
2217 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2218 r = -errno;
2219 goto child_fail;
2220 }
2221
2222 _exit(EXIT_SUCCESS);
2223
2224 child_fail:
2225 (void) write(errno_pipe[1], &r, sizeof(r));
2226 _exit(EXIT_FAILURE);
2227 }
2228
2229 errno_pipe[1] = safe_close(errno_pipe[1]);
2230
2231 if (unshare(CLONE_NEWUSER) < 0)
2232 return -errno;
2233
2234 /* Let the child know that the namespace is ready now */
2235 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2236 return -errno;
2237
2238 /* Try to read an error code from the child */
2239 n = read(errno_pipe[0], &r, sizeof(r));
2240 if (n < 0)
2241 return -errno;
2242 if (n == sizeof(r)) { /* an error code was sent to us */
2243 if (r < 0)
2244 return r;
2245 return -EIO;
2246 }
2247 if (n != 0) /* on success we should have read 0 bytes */
2248 return -EIO;
2249
2250 r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0);
2251 if (r < 0)
2252 return r;
2253 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2254 return -EIO;
2255
2256 return 0;
2257 }
2258
2259 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2260 if (!context->dynamic_user)
2261 return false;
2262
2263 if (type == EXEC_DIRECTORY_CONFIGURATION)
2264 return false;
2265
2266 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2267 return false;
2268
2269 return true;
2270 }
2271
2272 static int create_many_symlinks(const char *root, const char *source, char **symlinks) {
2273 _cleanup_free_ char *src_abs = NULL;
2274 int r;
2275
2276 assert(source);
2277
2278 src_abs = path_join(root, source);
2279 if (!src_abs)
2280 return -ENOMEM;
2281
2282 STRV_FOREACH(dst, symlinks) {
2283 _cleanup_free_ char *dst_abs = NULL;
2284
2285 dst_abs = path_join(root, *dst);
2286 if (!dst_abs)
2287 return -ENOMEM;
2288
2289 r = mkdir_parents_label(dst_abs, 0755);
2290 if (r < 0)
2291 return r;
2292
2293 r = symlink_idempotent(src_abs, dst_abs, true);
2294 if (r < 0)
2295 return r;
2296 }
2297
2298 return 0;
2299 }
2300
2301 static int setup_exec_directory(
2302 const ExecContext *context,
2303 const ExecParameters *params,
2304 uid_t uid,
2305 gid_t gid,
2306 ExecDirectoryType type,
2307 bool needs_mount_namespace,
2308 int *exit_status) {
2309
2310 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2311 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2312 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2313 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2314 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2315 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2316 };
2317 int r;
2318
2319 assert(context);
2320 assert(params);
2321 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2322 assert(exit_status);
2323
2324 if (!params->prefix[type])
2325 return 0;
2326
2327 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2328 if (!uid_is_valid(uid))
2329 uid = 0;
2330 if (!gid_is_valid(gid))
2331 gid = 0;
2332 }
2333
2334 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2335 _cleanup_free_ char *p = NULL, *pp = NULL;
2336
2337 p = path_join(params->prefix[type], context->directories[type].items[i].path);
2338 if (!p) {
2339 r = -ENOMEM;
2340 goto fail;
2341 }
2342
2343 r = mkdir_parents_label(p, 0755);
2344 if (r < 0)
2345 goto fail;
2346
2347 if (exec_directory_is_private(context, type)) {
2348 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2349 * case we want to avoid leaving a directory around fully accessible that is owned by
2350 * a dynamic user whose UID is later on reused. To lock this down we use the same
2351 * trick used by container managers to prohibit host users to get access to files of
2352 * the same UID in containers: we place everything inside a directory that has an
2353 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2354 * for unprivileged host code. We then use fs namespacing to make this directory
2355 * permeable for the service itself.
2356 *
2357 * Specifically: for a service which wants a special directory "foo/" we first create
2358 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2359 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2360 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2361 * unprivileged host users can't look into it. Inside of the namespace of the unit
2362 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2363 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2364 * for the service and making sure it only gets access to the dirs it needs but no
2365 * others. Tricky? Yes, absolutely, but it works!
2366 *
2367 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2368 * to be owned by the service itself.
2369 *
2370 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2371 * for sharing files or sockets with other services. */
2372
2373 pp = path_join(params->prefix[type], "private");
2374 if (!pp) {
2375 r = -ENOMEM;
2376 goto fail;
2377 }
2378
2379 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2380 r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE);
2381 if (r < 0)
2382 goto fail;
2383
2384 if (!path_extend(&pp, context->directories[type].items[i].path)) {
2385 r = -ENOMEM;
2386 goto fail;
2387 }
2388
2389 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2390 r = mkdir_parents_label(pp, 0755);
2391 if (r < 0)
2392 goto fail;
2393
2394 if (is_dir(p, false) > 0 &&
2395 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2396
2397 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2398 * it over. Most likely the service has been upgraded from one that didn't use
2399 * DynamicUser=1, to one that does. */
2400
2401 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2402 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2403 exec_directory_type_to_string(type), p, pp);
2404
2405 if (rename(p, pp) < 0) {
2406 r = -errno;
2407 goto fail;
2408 }
2409 } else {
2410 /* Otherwise, create the actual directory for the service */
2411
2412 r = mkdir_label(pp, context->directories[type].mode);
2413 if (r < 0 && r != -EEXIST)
2414 goto fail;
2415 }
2416
2417 if (!context->directories[type].items[i].only_create) {
2418 /* And link it up from the original place.
2419 * Notes
2420 * 1) If a mount namespace is going to be used, then this symlink remains on
2421 * the host, and a new one for the child namespace will be created later.
2422 * 2) It is not necessary to create this symlink when one of its parent
2423 * directories is specified and already created. E.g.
2424 * StateDirectory=foo foo/bar
2425 * In that case, the inode points to pp and p for "foo/bar" are the same:
2426 * pp = "/var/lib/private/foo/bar"
2427 * p = "/var/lib/foo/bar"
2428 * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only
2429 * we do not need to create the symlink, but we cannot create the symlink.
2430 * See issue #24783. */
2431 r = symlink_idempotent(pp, p, true);
2432 if (r < 0)
2433 goto fail;
2434 }
2435
2436 } else {
2437 _cleanup_free_ char *target = NULL;
2438
2439 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2440 readlink_and_make_absolute(p, &target) >= 0) {
2441 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2442
2443 /* This already exists and is a symlink? Interesting. Maybe it's one created
2444 * by DynamicUser=1 (see above)?
2445 *
2446 * We do this for all directory types except for ConfigurationDirectory=,
2447 * since they all support the private/ symlink logic at least in some
2448 * configurations, see above. */
2449
2450 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2451 if (r < 0)
2452 goto fail;
2453
2454 q = path_join(params->prefix[type], "private", context->directories[type].items[i].path);
2455 if (!q) {
2456 r = -ENOMEM;
2457 goto fail;
2458 }
2459
2460 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2461 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2462 if (r < 0)
2463 goto fail;
2464
2465 if (path_equal(q_resolved, target_resolved)) {
2466
2467 /* Hmm, apparently DynamicUser= was once turned on for this service,
2468 * but is no longer. Let's move the directory back up. */
2469
2470 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2471 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2472 exec_directory_type_to_string(type), q, p);
2473
2474 if (unlink(p) < 0) {
2475 r = -errno;
2476 goto fail;
2477 }
2478
2479 if (rename(q, p) < 0) {
2480 r = -errno;
2481 goto fail;
2482 }
2483 }
2484 }
2485
2486 r = mkdir_label(p, context->directories[type].mode);
2487 if (r < 0) {
2488 if (r != -EEXIST)
2489 goto fail;
2490
2491 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2492 struct stat st;
2493
2494 /* Don't change the owner/access mode of the configuration directory,
2495 * as in the common case it is not written to by a service, and shall
2496 * not be writable. */
2497
2498 if (stat(p, &st) < 0) {
2499 r = -errno;
2500 goto fail;
2501 }
2502
2503 /* Still complain if the access mode doesn't match */
2504 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2505 log_warning("%s \'%s\' already exists but the mode is different. "
2506 "(File system: %o %sMode: %o)",
2507 exec_directory_type_to_string(type), context->directories[type].items[i].path,
2508 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2509
2510 continue;
2511 }
2512 }
2513 }
2514
2515 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2516 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2517 * current UID/GID ownership.) */
2518 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2519 if (r < 0)
2520 goto fail;
2521
2522 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2523 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2524 * assignments to exist. */
2525 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2526 if (r < 0)
2527 goto fail;
2528 }
2529
2530 /* If we are not going to run in a namespace, set up the symlinks - otherwise
2531 * they are set up later, to allow configuring empty var/run/etc. */
2532 if (!needs_mount_namespace)
2533 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2534 r = create_many_symlinks(params->prefix[type],
2535 context->directories[type].items[i].path,
2536 context->directories[type].items[i].symlinks);
2537 if (r < 0)
2538 goto fail;
2539 }
2540
2541 return 0;
2542
2543 fail:
2544 *exit_status = exit_status_table[type];
2545 return r;
2546 }
2547
2548 static int write_credential(
2549 int dfd,
2550 const char *id,
2551 const void *data,
2552 size_t size,
2553 uid_t uid,
2554 bool ownership_ok) {
2555
2556 _cleanup_(unlink_and_freep) char *tmp = NULL;
2557 _cleanup_close_ int fd = -EBADF;
2558 int r;
2559
2560 r = tempfn_random_child("", "cred", &tmp);
2561 if (r < 0)
2562 return r;
2563
2564 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2565 if (fd < 0) {
2566 tmp = mfree(tmp);
2567 return -errno;
2568 }
2569
2570 r = loop_write(fd, data, size, /* do_poll = */ false);
2571 if (r < 0)
2572 return r;
2573
2574 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2575 return -errno;
2576
2577 if (uid_is_valid(uid) && uid != getuid()) {
2578 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2579 if (r < 0) {
2580 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2581 return r;
2582
2583 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2584 * to express: that the user gets read access and nothing
2585 * else. But if the backing fs can't support that (e.g. ramfs)
2586 * then we can use file ownership instead. But that's only safe if
2587 * we can then re-mount the whole thing read-only, so that the
2588 * user can no longer chmod() the file to gain write access. */
2589 return r;
2590
2591 if (fchown(fd, uid, GID_INVALID) < 0)
2592 return -errno;
2593 }
2594 }
2595
2596 if (renameat(dfd, tmp, dfd, id) < 0)
2597 return -errno;
2598
2599 tmp = mfree(tmp);
2600 return 0;
2601 }
2602
2603 static char **credential_search_path(
2604 const ExecParameters *params,
2605 bool encrypted) {
2606
2607 _cleanup_strv_free_ char **l = NULL;
2608
2609 assert(params);
2610
2611 /* Assemble a search path to find credentials in. We'll look in /etc/credstore/ (and similar
2612 * directories in /usr/lib/ + /run/) for all types of credentials. If we are looking for encrypted
2613 * credentials, also look in /etc/credstore.encrypted/ (and similar dirs). */
2614
2615 if (encrypted) {
2616 if (strv_extend(&l, params->received_encrypted_credentials_directory) < 0)
2617 return NULL;
2618
2619 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore.encrypted"), /* filter_duplicates= */ true) < 0)
2620 return NULL;
2621 }
2622
2623 if (params->received_credentials_directory)
2624 if (strv_extend(&l, params->received_credentials_directory) < 0)
2625 return NULL;
2626
2627 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore"), /* filter_duplicates= */ true) < 0)
2628 return NULL;
2629
2630 if (DEBUG_LOGGING) {
2631 _cleanup_free_ char *t = strv_join(l, ":");
2632
2633 log_debug("Credential search path is: %s", t);
2634 }
2635
2636 return TAKE_PTR(l);
2637 }
2638
2639 static int load_credential(
2640 const ExecContext *context,
2641 const ExecParameters *params,
2642 const char *id,
2643 const char *path,
2644 bool encrypted,
2645 const char *unit,
2646 int read_dfd,
2647 int write_dfd,
2648 uid_t uid,
2649 bool ownership_ok,
2650 uint64_t *left) {
2651
2652 ReadFullFileFlags flags = READ_FULL_FILE_SECURE|READ_FULL_FILE_FAIL_WHEN_LARGER;
2653 _cleanup_strv_free_ char **search_path = NULL;
2654 _cleanup_(erase_and_freep) char *data = NULL;
2655 _cleanup_free_ char *bindname = NULL;
2656 const char *source = NULL;
2657 bool missing_ok = true;
2658 size_t size, add, maxsz;
2659 int r;
2660
2661 assert(context);
2662 assert(params);
2663 assert(id);
2664 assert(path);
2665 assert(unit);
2666 assert(read_dfd >= 0 || read_dfd == AT_FDCWD);
2667 assert(write_dfd >= 0);
2668 assert(left);
2669
2670 if (read_dfd >= 0) {
2671 /* If a directory fd is specified, then read the file directly from that dir. In this case we
2672 * won't do AF_UNIX stuff (we simply don't want to recursively iterate down a tree of AF_UNIX
2673 * IPC sockets). It's OK if a file vanishes here in the time we enumerate it and intend to
2674 * open it. */
2675
2676 if (!filename_is_valid(path)) /* safety check */
2677 return -EINVAL;
2678
2679 missing_ok = true;
2680 source = path;
2681
2682 } else if (path_is_absolute(path)) {
2683 /* If this is an absolute path, read the data directly from it, and support AF_UNIX
2684 * sockets */
2685
2686 if (!path_is_valid(path)) /* safety check */
2687 return -EINVAL;
2688
2689 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2690
2691 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2692 * via the source socket address in case we read off an AF_UNIX socket. */
2693 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, id) < 0)
2694 return -ENOMEM;
2695
2696 missing_ok = false;
2697 source = path;
2698
2699 } else if (credential_name_valid(path)) {
2700 /* If this is a relative path, take it as credential name relative to the credentials
2701 * directory we received ourselves. We don't support the AF_UNIX stuff in this mode, since we
2702 * are operating on a credential store, i.e. this is guaranteed to be regular files. */
2703
2704 search_path = credential_search_path(params, encrypted);
2705 if (!search_path)
2706 return -ENOMEM;
2707
2708 missing_ok = true;
2709 } else
2710 source = NULL;
2711
2712 if (encrypted)
2713 flags |= READ_FULL_FILE_UNBASE64;
2714
2715 maxsz = encrypted ? CREDENTIAL_ENCRYPTED_SIZE_MAX : CREDENTIAL_SIZE_MAX;
2716
2717 if (search_path) {
2718 STRV_FOREACH(d, search_path) {
2719 _cleanup_free_ char *j = NULL;
2720
2721 j = path_join(*d, path);
2722 if (!j)
2723 return -ENOMEM;
2724
2725 r = read_full_file_full(
2726 AT_FDCWD, j, /* path is absolute, hence pass AT_FDCWD as nop dir fd here */
2727 UINT64_MAX,
2728 maxsz,
2729 flags,
2730 NULL,
2731 &data, &size);
2732 if (r != -ENOENT)
2733 break;
2734 }
2735 } else if (source)
2736 r = read_full_file_full(
2737 read_dfd, source,
2738 UINT64_MAX,
2739 maxsz,
2740 flags,
2741 bindname,
2742 &data, &size);
2743 else
2744 r = -ENOENT;
2745
2746 if (r == -ENOENT && (missing_ok || hashmap_contains(context->set_credentials, id))) {
2747 /* Make a missing inherited credential non-fatal, let's just continue. After all apps
2748 * will get clear errors if we don't pass such a missing credential on as they
2749 * themselves will get ENOENT when trying to read them, which should not be much
2750 * worse than when we handle the error here and make it fatal.
2751 *
2752 * Also, if the source file doesn't exist, but a fallback is set via SetCredentials=
2753 * we are fine, too. */
2754 log_debug_errno(r, "Couldn't read inherited credential '%s', skipping: %m", path);
2755 return 0;
2756 }
2757 if (r < 0)
2758 return log_debug_errno(r, "Failed to read credential '%s': %m", path);
2759
2760 if (encrypted) {
2761 _cleanup_free_ void *plaintext = NULL;
2762 size_t plaintext_size = 0;
2763
2764 r = decrypt_credential_and_warn(id, now(CLOCK_REALTIME), NULL, NULL, data, size, &plaintext, &plaintext_size);
2765 if (r < 0)
2766 return r;
2767
2768 free_and_replace(data, plaintext);
2769 size = plaintext_size;
2770 }
2771
2772 add = strlen(id) + size;
2773 if (add > *left)
2774 return -E2BIG;
2775
2776 r = write_credential(write_dfd, id, data, size, uid, ownership_ok);
2777 if (r < 0)
2778 return log_debug_errno(r, "Failed to write credential '%s': %m", id);
2779
2780 *left -= add;
2781 return 0;
2782 }
2783
2784 struct load_cred_args {
2785 const ExecContext *context;
2786 const ExecParameters *params;
2787 bool encrypted;
2788 const char *unit;
2789 int dfd;
2790 uid_t uid;
2791 bool ownership_ok;
2792 uint64_t *left;
2793 };
2794
2795 static int load_cred_recurse_dir_cb(
2796 RecurseDirEvent event,
2797 const char *path,
2798 int dir_fd,
2799 int inode_fd,
2800 const struct dirent *de,
2801 const struct statx *sx,
2802 void *userdata) {
2803
2804 struct load_cred_args *args = ASSERT_PTR(userdata);
2805 _cleanup_free_ char *sub_id = NULL;
2806 int r;
2807
2808 if (event != RECURSE_DIR_ENTRY)
2809 return RECURSE_DIR_CONTINUE;
2810
2811 if (!IN_SET(de->d_type, DT_REG, DT_SOCK))
2812 return RECURSE_DIR_CONTINUE;
2813
2814 sub_id = strreplace(path, "/", "_");
2815 if (!sub_id)
2816 return -ENOMEM;
2817
2818 if (!credential_name_valid(sub_id))
2819 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Credential would get ID %s, which is not valid, refusing", sub_id);
2820
2821 if (faccessat(args->dfd, sub_id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) {
2822 log_debug("Skipping credential with duplicated ID %s at %s", sub_id, path);
2823 return RECURSE_DIR_CONTINUE;
2824 }
2825 if (errno != ENOENT)
2826 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sub_id);
2827
2828 r = load_credential(
2829 args->context,
2830 args->params,
2831 sub_id,
2832 de->d_name,
2833 args->encrypted,
2834 args->unit,
2835 dir_fd,
2836 args->dfd,
2837 args->uid,
2838 args->ownership_ok,
2839 args->left);
2840 if (r < 0)
2841 return r;
2842
2843 return RECURSE_DIR_CONTINUE;
2844 }
2845
2846 static int acquire_credentials(
2847 const ExecContext *context,
2848 const ExecParameters *params,
2849 const char *unit,
2850 const char *p,
2851 uid_t uid,
2852 bool ownership_ok) {
2853
2854 uint64_t left = CREDENTIALS_TOTAL_SIZE_MAX;
2855 _cleanup_close_ int dfd = -EBADF;
2856 ExecLoadCredential *lc;
2857 ExecSetCredential *sc;
2858 int r;
2859
2860 assert(context);
2861 assert(p);
2862
2863 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2864 if (dfd < 0)
2865 return -errno;
2866
2867 /* First, load credentials off disk (or acquire via AF_UNIX socket) */
2868 HASHMAP_FOREACH(lc, context->load_credentials) {
2869 _cleanup_close_ int sub_fd = -EBADF;
2870
2871 /* If this is an absolute path, then try to open it as a directory. If that works, then we'll
2872 * recurse into it. If it is an absolute path but it isn't a directory, then we'll open it as
2873 * a regular file. Finally, if it's a relative path we will use it as a credential name to
2874 * propagate a credential passed to us from further up. */
2875
2876 if (path_is_absolute(lc->path)) {
2877 sub_fd = open(lc->path, O_DIRECTORY|O_CLOEXEC|O_RDONLY);
2878 if (sub_fd < 0 && !IN_SET(errno,
2879 ENOTDIR, /* Not a directory */
2880 ENOENT)) /* Doesn't exist? */
2881 return log_debug_errno(errno, "Failed to open '%s': %m", lc->path);
2882 }
2883
2884 if (sub_fd < 0)
2885 /* Regular file (incl. a credential passed in from higher up) */
2886 r = load_credential(
2887 context,
2888 params,
2889 lc->id,
2890 lc->path,
2891 lc->encrypted,
2892 unit,
2893 AT_FDCWD,
2894 dfd,
2895 uid,
2896 ownership_ok,
2897 &left);
2898 else
2899 /* Directory */
2900 r = recurse_dir(
2901 sub_fd,
2902 /* path= */ lc->id, /* recurse_dir() will suffix the subdir paths from here to the top-level id */
2903 /* statx_mask= */ 0,
2904 /* n_depth_max= */ UINT_MAX,
2905 RECURSE_DIR_SORT|RECURSE_DIR_IGNORE_DOT|RECURSE_DIR_ENSURE_TYPE,
2906 load_cred_recurse_dir_cb,
2907 &(struct load_cred_args) {
2908 .context = context,
2909 .params = params,
2910 .encrypted = lc->encrypted,
2911 .unit = unit,
2912 .dfd = dfd,
2913 .uid = uid,
2914 .ownership_ok = ownership_ok,
2915 .left = &left,
2916 });
2917 if (r < 0)
2918 return r;
2919 }
2920
2921 /* Second, we add in literally specified credentials. If the credentials already exist, we'll not add
2922 * them, so that they can act as a "default" if the same credential is specified multiple times. */
2923 HASHMAP_FOREACH(sc, context->set_credentials) {
2924 _cleanup_(erase_and_freep) void *plaintext = NULL;
2925 const char *data;
2926 size_t size, add;
2927
2928 /* Note that we check ahead of time here instead of relying on O_EXCL|O_CREAT later to return
2929 * EEXIST if the credential already exists. That's because the TPM2-based decryption is kinda
2930 * slow and involved, hence it's nice to be able to skip that if the credential already
2931 * exists anyway. */
2932 if (faccessat(dfd, sc->id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
2933 continue;
2934 if (errno != ENOENT)
2935 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sc->id);
2936
2937 if (sc->encrypted) {
2938 r = decrypt_credential_and_warn(sc->id, now(CLOCK_REALTIME), NULL, NULL, sc->data, sc->size, &plaintext, &size);
2939 if (r < 0)
2940 return r;
2941
2942 data = plaintext;
2943 } else {
2944 data = sc->data;
2945 size = sc->size;
2946 }
2947
2948 add = strlen(sc->id) + size;
2949 if (add > left)
2950 return -E2BIG;
2951
2952 r = write_credential(dfd, sc->id, data, size, uid, ownership_ok);
2953 if (r < 0)
2954 return r;
2955
2956 left -= add;
2957 }
2958
2959 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2960 return -errno;
2961
2962 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2963 * accessible */
2964
2965 if (uid_is_valid(uid) && uid != getuid()) {
2966 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2967 if (r < 0) {
2968 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2969 return r;
2970
2971 if (!ownership_ok)
2972 return r;
2973
2974 if (fchown(dfd, uid, GID_INVALID) < 0)
2975 return -errno;
2976 }
2977 }
2978
2979 return 0;
2980 }
2981
2982 static int setup_credentials_internal(
2983 const ExecContext *context,
2984 const ExecParameters *params,
2985 const char *unit,
2986 const char *final, /* This is where the credential store shall eventually end up at */
2987 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2988 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2989 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2990 uid_t uid) {
2991
2992 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2993 * if we mounted something; false if we definitely can't mount anything */
2994 bool final_mounted;
2995 const char *where;
2996
2997 assert(context);
2998 assert(final);
2999 assert(workspace);
3000
3001 if (reuse_workspace) {
3002 r = path_is_mount_point(workspace, NULL, 0);
3003 if (r < 0)
3004 return r;
3005 if (r > 0)
3006 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
3007 else
3008 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
3009 } else
3010 workspace_mounted = -1; /* ditto */
3011
3012 r = path_is_mount_point(final, NULL, 0);
3013 if (r < 0)
3014 return r;
3015 if (r > 0) {
3016 /* If the final place already has something mounted, we use that. If the workspace also has
3017 * something mounted we assume it's actually the same mount (but with MS_RDONLY
3018 * different). */
3019 final_mounted = true;
3020
3021 if (workspace_mounted < 0) {
3022 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
3023 * the final version to the workspace, and make it writable, so that we can make
3024 * changes */
3025
3026 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3027 if (r < 0)
3028 return r;
3029
3030 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3031 if (r < 0)
3032 return r;
3033
3034 workspace_mounted = true;
3035 }
3036 } else
3037 final_mounted = false;
3038
3039 if (workspace_mounted < 0) {
3040 /* Nothing is mounted on the workspace yet, let's try to mount something now */
3041 for (int try = 0;; try++) {
3042
3043 if (try == 0) {
3044 /* Try "ramfs" first, since it's not swap backed */
3045 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
3046 if (r >= 0) {
3047 workspace_mounted = true;
3048 break;
3049 }
3050
3051 } else if (try == 1) {
3052 _cleanup_free_ char *opts = NULL;
3053
3054 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%zu", (size_t) CREDENTIALS_TOTAL_SIZE_MAX) < 0)
3055 return -ENOMEM;
3056
3057 /* Fall back to "tmpfs" otherwise */
3058 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
3059 if (r >= 0) {
3060 workspace_mounted = true;
3061 break;
3062 }
3063
3064 } else {
3065 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
3066 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3067 if (r < 0) {
3068 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
3069 return r;
3070
3071 if (must_mount) /* If we it's not OK to use the plain directory
3072 * fallback, propagate all errors too */
3073 return r;
3074
3075 /* If we lack privileges to bind mount stuff, then let's gracefully
3076 * proceed for compat with container envs, and just use the final dir
3077 * as is. */
3078
3079 workspace_mounted = false;
3080 break;
3081 }
3082
3083 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
3084 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3085 if (r < 0)
3086 return r;
3087
3088 workspace_mounted = true;
3089 break;
3090 }
3091 }
3092 }
3093
3094 assert(!must_mount || workspace_mounted > 0);
3095 where = workspace_mounted ? workspace : final;
3096
3097 (void) label_fix_full(AT_FDCWD, where, final, 0);
3098
3099 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
3100 if (r < 0)
3101 return r;
3102
3103 if (workspace_mounted) {
3104 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
3105 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3106 if (r < 0)
3107 return r;
3108
3109 /* And mount it to the final place, read-only */
3110 if (final_mounted)
3111 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
3112 else
3113 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
3114 if (r < 0)
3115 return r;
3116 } else {
3117 _cleanup_free_ char *parent = NULL;
3118
3119 /* If we do not have our own mount put used the plain directory fallback, then we need to
3120 * open access to the top-level credential directory and the per-service directory now */
3121
3122 r = path_extract_directory(final, &parent);
3123 if (r < 0)
3124 return r;
3125 if (chmod(parent, 0755) < 0)
3126 return -errno;
3127 }
3128
3129 return 0;
3130 }
3131
3132 static int setup_credentials(
3133 const ExecContext *context,
3134 const ExecParameters *params,
3135 const char *unit,
3136 uid_t uid) {
3137
3138 _cleanup_free_ char *p = NULL, *q = NULL;
3139 int r;
3140
3141 assert(context);
3142 assert(params);
3143
3144 if (!exec_context_has_credentials(context))
3145 return 0;
3146
3147 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
3148 return -EINVAL;
3149
3150 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
3151 * and the subdir we mount over with a read-only file system readable by the service's user */
3152 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
3153 if (!q)
3154 return -ENOMEM;
3155
3156 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
3157 if (r < 0 && r != -EEXIST)
3158 return r;
3159
3160 p = path_join(q, unit);
3161 if (!p)
3162 return -ENOMEM;
3163
3164 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
3165 if (r < 0 && r != -EEXIST)
3166 return r;
3167
3168 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
3169 if (r < 0) {
3170 _cleanup_free_ char *t = NULL, *u = NULL;
3171
3172 /* If this is not a privilege or support issue then propagate the error */
3173 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3174 return r;
3175
3176 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
3177 * it into place, so that users can't access half-initialized credential stores. */
3178 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
3179 if (!t)
3180 return -ENOMEM;
3181
3182 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
3183 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
3184 * after it is fully set up */
3185 u = path_join(t, unit);
3186 if (!u)
3187 return -ENOMEM;
3188
3189 FOREACH_STRING(i, t, u) {
3190 r = mkdir_label(i, 0700);
3191 if (r < 0 && r != -EEXIST)
3192 return r;
3193 }
3194
3195 r = setup_credentials_internal(
3196 context,
3197 params,
3198 unit,
3199 p, /* final mount point */
3200 u, /* temporary workspace to overmount */
3201 true, /* reuse the workspace if it is already a mount */
3202 false, /* it's OK to fall back to a plain directory if we can't mount anything */
3203 uid);
3204
3205 (void) rmdir(u); /* remove the workspace again if we can. */
3206
3207 if (r < 0)
3208 return r;
3209
3210 } else if (r == 0) {
3211
3212 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
3213 * we can use the same directory for all cases, after turning off propagation. Question
3214 * though is: where do we turn off propagation exactly, and where do we place the workspace
3215 * directory? We need some place that is guaranteed to be a mount point in the host, and
3216 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
3217 * since we ultimately want to move the resulting file system there, i.e. we need propagation
3218 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
3219 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
3220 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
3221 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
3222 * propagation on the former, and then overmount the latter.
3223 *
3224 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
3225 * for this purpose, but there are few other candidates that work equally well for us, and
3226 * given that the we do this in a privately namespaced short-lived single-threaded process
3227 * that no one else sees this should be OK to do. */
3228
3229 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
3230 if (r < 0)
3231 goto child_fail;
3232
3233 r = setup_credentials_internal(
3234 context,
3235 params,
3236 unit,
3237 p, /* final mount point */
3238 "/dev/shm", /* temporary workspace to overmount */
3239 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
3240 true, /* insist that something is mounted, do not allow fallback to plain directory */
3241 uid);
3242 if (r < 0)
3243 goto child_fail;
3244
3245 _exit(EXIT_SUCCESS);
3246
3247 child_fail:
3248 _exit(EXIT_FAILURE);
3249 }
3250
3251 return 0;
3252 }
3253
3254 #if ENABLE_SMACK
3255 static int setup_smack(
3256 const Manager *manager,
3257 const ExecContext *context,
3258 int executable_fd) {
3259 int r;
3260
3261 assert(context);
3262 assert(executable_fd >= 0);
3263
3264 if (context->smack_process_label) {
3265 r = mac_smack_apply_pid(0, context->smack_process_label);
3266 if (r < 0)
3267 return r;
3268 } else if (manager->default_smack_process_label) {
3269 _cleanup_free_ char *exec_label = NULL;
3270
3271 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
3272 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3273 return r;
3274
3275 r = mac_smack_apply_pid(0, exec_label ? : manager->default_smack_process_label);
3276 if (r < 0)
3277 return r;
3278 }
3279
3280 return 0;
3281 }
3282 #endif
3283
3284 static int compile_bind_mounts(
3285 const ExecContext *context,
3286 const ExecParameters *params,
3287 BindMount **ret_bind_mounts,
3288 size_t *ret_n_bind_mounts,
3289 char ***ret_empty_directories) {
3290
3291 _cleanup_strv_free_ char **empty_directories = NULL;
3292 BindMount *bind_mounts;
3293 size_t n, h = 0;
3294 int r;
3295
3296 assert(context);
3297 assert(params);
3298 assert(ret_bind_mounts);
3299 assert(ret_n_bind_mounts);
3300 assert(ret_empty_directories);
3301
3302 n = context->n_bind_mounts;
3303 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3304 if (!params->prefix[t])
3305 continue;
3306
3307 for (size_t i = 0; i < context->directories[t].n_items; i++)
3308 n += !context->directories[t].items[i].only_create;
3309 }
3310
3311 if (n <= 0) {
3312 *ret_bind_mounts = NULL;
3313 *ret_n_bind_mounts = 0;
3314 *ret_empty_directories = NULL;
3315 return 0;
3316 }
3317
3318 bind_mounts = new(BindMount, n);
3319 if (!bind_mounts)
3320 return -ENOMEM;
3321
3322 for (size_t i = 0; i < context->n_bind_mounts; i++) {
3323 BindMount *item = context->bind_mounts + i;
3324 char *s, *d;
3325
3326 s = strdup(item->source);
3327 if (!s) {
3328 r = -ENOMEM;
3329 goto finish;
3330 }
3331
3332 d = strdup(item->destination);
3333 if (!d) {
3334 free(s);
3335 r = -ENOMEM;
3336 goto finish;
3337 }
3338
3339 bind_mounts[h++] = (BindMount) {
3340 .source = s,
3341 .destination = d,
3342 .read_only = item->read_only,
3343 .recursive = item->recursive,
3344 .ignore_enoent = item->ignore_enoent,
3345 };
3346 }
3347
3348 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3349 if (!params->prefix[t])
3350 continue;
3351
3352 if (context->directories[t].n_items == 0)
3353 continue;
3354
3355 if (exec_directory_is_private(context, t) &&
3356 !exec_context_with_rootfs(context)) {
3357 char *private_root;
3358
3359 /* So this is for a dynamic user, and we need to make sure the process can access its own
3360 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3361 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3362
3363 private_root = path_join(params->prefix[t], "private");
3364 if (!private_root) {
3365 r = -ENOMEM;
3366 goto finish;
3367 }
3368
3369 r = strv_consume(&empty_directories, private_root);
3370 if (r < 0)
3371 goto finish;
3372 }
3373
3374 for (size_t i = 0; i < context->directories[t].n_items; i++) {
3375 char *s, *d;
3376
3377 /* When one of the parent directories is in the list, we cannot create the symlink
3378 * for the child directory. See also the comments in setup_exec_directory(). */
3379 if (context->directories[t].items[i].only_create)
3380 continue;
3381
3382 if (exec_directory_is_private(context, t))
3383 s = path_join(params->prefix[t], "private", context->directories[t].items[i].path);
3384 else
3385 s = path_join(params->prefix[t], context->directories[t].items[i].path);
3386 if (!s) {
3387 r = -ENOMEM;
3388 goto finish;
3389 }
3390
3391 if (exec_directory_is_private(context, t) &&
3392 exec_context_with_rootfs(context))
3393 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3394 * directory is not created on the root directory. So, let's bind-mount the directory
3395 * on the 'non-private' place. */
3396 d = path_join(params->prefix[t], context->directories[t].items[i].path);
3397 else
3398 d = strdup(s);
3399 if (!d) {
3400 free(s);
3401 r = -ENOMEM;
3402 goto finish;
3403 }
3404
3405 bind_mounts[h++] = (BindMount) {
3406 .source = s,
3407 .destination = d,
3408 .read_only = false,
3409 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3410 .recursive = true,
3411 .ignore_enoent = false,
3412 };
3413 }
3414 }
3415
3416 assert(h == n);
3417
3418 *ret_bind_mounts = bind_mounts;
3419 *ret_n_bind_mounts = n;
3420 *ret_empty_directories = TAKE_PTR(empty_directories);
3421
3422 return (int) n;
3423
3424 finish:
3425 bind_mount_free_many(bind_mounts, h);
3426 return r;
3427 }
3428
3429 /* ret_symlinks will contain a list of pairs src:dest that describes
3430 * the symlinks to create later on. For example, the symlinks needed
3431 * to safely give private directories to DynamicUser=1 users. */
3432 static int compile_symlinks(
3433 const ExecContext *context,
3434 const ExecParameters *params,
3435 char ***ret_symlinks) {
3436
3437 _cleanup_strv_free_ char **symlinks = NULL;
3438 int r;
3439
3440 assert(context);
3441 assert(params);
3442 assert(ret_symlinks);
3443
3444 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3445 for (size_t i = 0; i < context->directories[dt].n_items; i++) {
3446 _cleanup_free_ char *private_path = NULL, *path = NULL;
3447
3448 STRV_FOREACH(symlink, context->directories[dt].items[i].symlinks) {
3449 _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL;
3450
3451 src_abs = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3452 dst_abs = path_join(params->prefix[dt], *symlink);
3453 if (!src_abs || !dst_abs)
3454 return -ENOMEM;
3455
3456 r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs));
3457 if (r < 0)
3458 return r;
3459 }
3460
3461 if (!exec_directory_is_private(context, dt) ||
3462 exec_context_with_rootfs(context) ||
3463 context->directories[dt].items[i].only_create)
3464 continue;
3465
3466 private_path = path_join(params->prefix[dt], "private", context->directories[dt].items[i].path);
3467 if (!private_path)
3468 return -ENOMEM;
3469
3470 path = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3471 if (!path)
3472 return -ENOMEM;
3473
3474 r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path));
3475 if (r < 0)
3476 return r;
3477 }
3478 }
3479
3480 *ret_symlinks = TAKE_PTR(symlinks);
3481
3482 return 0;
3483 }
3484
3485 static bool insist_on_sandboxing(
3486 const ExecContext *context,
3487 const char *root_dir,
3488 const char *root_image,
3489 const BindMount *bind_mounts,
3490 size_t n_bind_mounts) {
3491
3492 assert(context);
3493 assert(n_bind_mounts == 0 || bind_mounts);
3494
3495 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3496 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3497 * rearrange stuff in a way we cannot ignore gracefully. */
3498
3499 if (context->n_temporary_filesystems > 0)
3500 return true;
3501
3502 if (root_dir || root_image)
3503 return true;
3504
3505 if (context->n_mount_images > 0)
3506 return true;
3507
3508 if (context->dynamic_user)
3509 return true;
3510
3511 if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories))
3512 return true;
3513
3514 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3515 * essential. */
3516 for (size_t i = 0; i < n_bind_mounts; i++)
3517 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3518 return true;
3519
3520 if (context->log_namespace)
3521 return true;
3522
3523 return false;
3524 }
3525
3526 static int apply_mount_namespace(
3527 const Unit *u,
3528 ExecCommandFlags command_flags,
3529 const ExecContext *context,
3530 const ExecParameters *params,
3531 const ExecRuntime *runtime,
3532 char **error_path) {
3533
3534 _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL;
3535 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3536 const char *root_dir = NULL, *root_image = NULL;
3537 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL,
3538 *extension_dir = NULL;
3539 NamespaceInfo ns_info;
3540 bool needs_sandboxing;
3541 BindMount *bind_mounts = NULL;
3542 size_t n_bind_mounts = 0;
3543 int r;
3544
3545 assert(context);
3546
3547 if (params->flags & EXEC_APPLY_CHROOT) {
3548 root_image = context->root_image;
3549
3550 if (!root_image)
3551 root_dir = context->root_directory;
3552 }
3553
3554 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3555 if (r < 0)
3556 return r;
3557
3558 /* Symlinks for exec dirs are set up after other mounts, before they are made read-only. */
3559 r = compile_symlinks(context, params, &symlinks);
3560 if (r < 0)
3561 goto finalize;
3562
3563 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3564 if (needs_sandboxing) {
3565 /* The runtime struct only contains the parent of the private /tmp,
3566 * which is non-accessible to world users. Inside of it there's a /tmp
3567 * that is sticky, and that's the one we want to use here.
3568 * This does not apply when we are using /run/systemd/empty as fallback. */
3569
3570 if (context->private_tmp && runtime) {
3571 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3572 tmp_dir = runtime->tmp_dir;
3573 else if (runtime->tmp_dir)
3574 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3575
3576 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3577 var_tmp_dir = runtime->var_tmp_dir;
3578 else if (runtime->var_tmp_dir)
3579 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3580 }
3581
3582 ns_info = (NamespaceInfo) {
3583 .ignore_protect_paths = false,
3584 .private_dev = context->private_devices,
3585 .protect_control_groups = context->protect_control_groups,
3586 .protect_kernel_tunables = context->protect_kernel_tunables,
3587 .protect_kernel_modules = context->protect_kernel_modules,
3588 .protect_kernel_logs = context->protect_kernel_logs,
3589 .protect_hostname = context->protect_hostname,
3590 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3591 .private_mounts = context->private_mounts,
3592 .protect_home = context->protect_home,
3593 .protect_system = context->protect_system,
3594 .protect_proc = context->protect_proc,
3595 .proc_subset = context->proc_subset,
3596 .private_ipc = context->private_ipc || context->ipc_namespace_path,
3597 /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */
3598 .mount_nosuid = context->no_new_privileges && !mac_selinux_use(),
3599 };
3600 } else if (!context->dynamic_user && root_dir)
3601 /*
3602 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3603 * sandbox info, otherwise enforce it, don't ignore protected paths and
3604 * fail if we are enable to apply the sandbox inside the mount namespace.
3605 */
3606 ns_info = (NamespaceInfo) {
3607 .ignore_protect_paths = true,
3608 };
3609 else
3610 ns_info = (NamespaceInfo) {};
3611
3612 if (context->mount_flags == MS_SHARED)
3613 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3614
3615 if (exec_context_has_credentials(context) &&
3616 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3617 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3618 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3619 if (!creds_path) {
3620 r = -ENOMEM;
3621 goto finalize;
3622 }
3623 }
3624
3625 if (MANAGER_IS_SYSTEM(u->manager)) {
3626 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3627 if (!propagate_dir) {
3628 r = -ENOMEM;
3629 goto finalize;
3630 }
3631
3632 incoming_dir = strdup("/run/systemd/incoming");
3633 if (!incoming_dir) {
3634 r = -ENOMEM;
3635 goto finalize;
3636 }
3637
3638 extension_dir = strdup("/run/systemd/unit-extensions");
3639 if (!extension_dir) {
3640 r = -ENOMEM;
3641 goto finalize;
3642 }
3643 } else
3644 if (asprintf(&extension_dir, "/run/user/" UID_FMT "/systemd/unit-extensions", geteuid()) < 0) {
3645 r = -ENOMEM;
3646 goto finalize;
3647 }
3648
3649 r = setup_namespace(root_dir, root_image, context->root_image_options,
3650 &ns_info, context->read_write_paths,
3651 needs_sandboxing ? context->read_only_paths : NULL,
3652 needs_sandboxing ? context->inaccessible_paths : NULL,
3653 needs_sandboxing ? context->exec_paths : NULL,
3654 needs_sandboxing ? context->no_exec_paths : NULL,
3655 empty_directories,
3656 symlinks,
3657 bind_mounts,
3658 n_bind_mounts,
3659 context->temporary_filesystems,
3660 context->n_temporary_filesystems,
3661 context->mount_images,
3662 context->n_mount_images,
3663 tmp_dir,
3664 var_tmp_dir,
3665 creds_path,
3666 context->log_namespace,
3667 context->mount_flags,
3668 context->root_hash, context->root_hash_size, context->root_hash_path,
3669 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3670 context->root_verity,
3671 context->extension_images,
3672 context->n_extension_images,
3673 context->extension_directories,
3674 propagate_dir,
3675 incoming_dir,
3676 extension_dir,
3677 root_dir || root_image ? params->notify_socket : NULL,
3678 error_path);
3679
3680 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3681 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3682 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3683 * completely different execution environment. */
3684 if (r == -ENOANO) {
3685 if (insist_on_sandboxing(
3686 context,
3687 root_dir, root_image,
3688 bind_mounts,
3689 n_bind_mounts)) {
3690 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3691 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3692 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3693
3694 r = -EOPNOTSUPP;
3695 } else {
3696 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3697 r = 0;
3698 }
3699 }
3700
3701 finalize:
3702 bind_mount_free_many(bind_mounts, n_bind_mounts);
3703 return r;
3704 }
3705
3706 static int apply_working_directory(
3707 const ExecContext *context,
3708 const ExecParameters *params,
3709 const char *home,
3710 int *exit_status) {
3711
3712 const char *d, *wd;
3713
3714 assert(context);
3715 assert(exit_status);
3716
3717 if (context->working_directory_home) {
3718
3719 if (!home) {
3720 *exit_status = EXIT_CHDIR;
3721 return -ENXIO;
3722 }
3723
3724 wd = home;
3725
3726 } else
3727 wd = empty_to_root(context->working_directory);
3728
3729 if (params->flags & EXEC_APPLY_CHROOT)
3730 d = wd;
3731 else
3732 d = prefix_roota(context->root_directory, wd);
3733
3734 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3735 *exit_status = EXIT_CHDIR;
3736 return -errno;
3737 }
3738
3739 return 0;
3740 }
3741
3742 static int apply_root_directory(
3743 const ExecContext *context,
3744 const ExecParameters *params,
3745 const bool needs_mount_ns,
3746 int *exit_status) {
3747
3748 assert(context);
3749 assert(exit_status);
3750
3751 if (params->flags & EXEC_APPLY_CHROOT)
3752 if (!needs_mount_ns && context->root_directory)
3753 if (chroot(context->root_directory) < 0) {
3754 *exit_status = EXIT_CHROOT;
3755 return -errno;
3756 }
3757
3758 return 0;
3759 }
3760
3761 static int setup_keyring(
3762 const Unit *u,
3763 const ExecContext *context,
3764 const ExecParameters *p,
3765 uid_t uid, gid_t gid) {
3766
3767 key_serial_t keyring;
3768 int r = 0;
3769 uid_t saved_uid;
3770 gid_t saved_gid;
3771
3772 assert(u);
3773 assert(context);
3774 assert(p);
3775
3776 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3777 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3778 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3779 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3780 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3781 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3782
3783 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3784 return 0;
3785
3786 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3787 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3788 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3789 * & group is just as nasty as acquiring a reference to the user keyring. */
3790
3791 saved_uid = getuid();
3792 saved_gid = getgid();
3793
3794 if (gid_is_valid(gid) && gid != saved_gid) {
3795 if (setregid(gid, -1) < 0)
3796 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3797 }
3798
3799 if (uid_is_valid(uid) && uid != saved_uid) {
3800 if (setreuid(uid, -1) < 0) {
3801 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3802 goto out;
3803 }
3804 }
3805
3806 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3807 if (keyring == -1) {
3808 if (errno == ENOSYS)
3809 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3810 else if (ERRNO_IS_PRIVILEGE(errno))
3811 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3812 else if (errno == EDQUOT)
3813 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3814 else
3815 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3816
3817 goto out;
3818 }
3819
3820 /* When requested link the user keyring into the session keyring. */
3821 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3822
3823 if (keyctl(KEYCTL_LINK,
3824 KEY_SPEC_USER_KEYRING,
3825 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3826 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3827 goto out;
3828 }
3829 }
3830
3831 /* Restore uid/gid back */
3832 if (uid_is_valid(uid) && uid != saved_uid) {
3833 if (setreuid(saved_uid, -1) < 0) {
3834 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3835 goto out;
3836 }
3837 }
3838
3839 if (gid_is_valid(gid) && gid != saved_gid) {
3840 if (setregid(saved_gid, -1) < 0)
3841 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3842 }
3843
3844 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3845 if (!sd_id128_is_null(u->invocation_id)) {
3846 key_serial_t key;
3847
3848 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3849 if (key == -1)
3850 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3851 else {
3852 if (keyctl(KEYCTL_SETPERM, key,
3853 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3854 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3855 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3856 }
3857 }
3858
3859 out:
3860 /* Revert back uid & gid for the last time, and exit */
3861 /* no extra logging, as only the first already reported error matters */
3862 if (getuid() != saved_uid)
3863 (void) setreuid(saved_uid, -1);
3864
3865 if (getgid() != saved_gid)
3866 (void) setregid(saved_gid, -1);
3867
3868 return r;
3869 }
3870
3871 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3872 assert(array);
3873 assert(n);
3874 assert(pair);
3875
3876 if (pair[0] >= 0)
3877 array[(*n)++] = pair[0];
3878 if (pair[1] >= 0)
3879 array[(*n)++] = pair[1];
3880 }
3881
3882 static int close_remaining_fds(
3883 const ExecParameters *params,
3884 const ExecRuntime *runtime,
3885 const DynamicCreds *dcreds,
3886 int user_lookup_fd,
3887 int socket_fd,
3888 const int *fds, size_t n_fds) {
3889
3890 size_t n_dont_close = 0;
3891 int dont_close[n_fds + 12];
3892
3893 assert(params);
3894
3895 if (params->stdin_fd >= 0)
3896 dont_close[n_dont_close++] = params->stdin_fd;
3897 if (params->stdout_fd >= 0)
3898 dont_close[n_dont_close++] = params->stdout_fd;
3899 if (params->stderr_fd >= 0)
3900 dont_close[n_dont_close++] = params->stderr_fd;
3901
3902 if (socket_fd >= 0)
3903 dont_close[n_dont_close++] = socket_fd;
3904 if (n_fds > 0) {
3905 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3906 n_dont_close += n_fds;
3907 }
3908
3909 if (runtime) {
3910 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3911 append_socket_pair(dont_close, &n_dont_close, runtime->ipcns_storage_socket);
3912 }
3913
3914 if (dcreds) {
3915 if (dcreds->user)
3916 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3917 if (dcreds->group)
3918 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3919 }
3920
3921 if (user_lookup_fd >= 0)
3922 dont_close[n_dont_close++] = user_lookup_fd;
3923
3924 return close_all_fds(dont_close, n_dont_close);
3925 }
3926
3927 static int send_user_lookup(
3928 Unit *unit,
3929 int user_lookup_fd,
3930 uid_t uid,
3931 gid_t gid) {
3932
3933 assert(unit);
3934
3935 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3936 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3937 * specified. */
3938
3939 if (user_lookup_fd < 0)
3940 return 0;
3941
3942 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3943 return 0;
3944
3945 if (writev(user_lookup_fd,
3946 (struct iovec[]) {
3947 IOVEC_INIT(&uid, sizeof(uid)),
3948 IOVEC_INIT(&gid, sizeof(gid)),
3949 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3950 return -errno;
3951
3952 return 0;
3953 }
3954
3955 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3956 int r;
3957
3958 assert(c);
3959 assert(home);
3960 assert(buf);
3961
3962 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3963
3964 if (*home)
3965 return 0;
3966
3967 if (!c->working_directory_home)
3968 return 0;
3969
3970 r = get_home_dir(buf);
3971 if (r < 0)
3972 return r;
3973
3974 *home = *buf;
3975 return 1;
3976 }
3977
3978 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3979 _cleanup_strv_free_ char ** list = NULL;
3980 int r;
3981
3982 assert(c);
3983 assert(p);
3984 assert(ret);
3985
3986 assert(c->dynamic_user);
3987
3988 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3989 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3990 * directories. */
3991
3992 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3993 if (t == EXEC_DIRECTORY_CONFIGURATION)
3994 continue;
3995
3996 if (!p->prefix[t])
3997 continue;
3998
3999 for (size_t i = 0; i < c->directories[t].n_items; i++) {
4000 char *e;
4001
4002 if (exec_directory_is_private(c, t))
4003 e = path_join(p->prefix[t], "private", c->directories[t].items[i].path);
4004 else
4005 e = path_join(p->prefix[t], c->directories[t].items[i].path);
4006 if (!e)
4007 return -ENOMEM;
4008
4009 r = strv_consume(&list, e);
4010 if (r < 0)
4011 return r;
4012 }
4013 }
4014
4015 *ret = TAKE_PTR(list);
4016
4017 return 0;
4018 }
4019
4020 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
4021 bool using_subcgroup;
4022 char *p;
4023
4024 assert(params);
4025 assert(ret);
4026
4027 if (!params->cgroup_path)
4028 return -EINVAL;
4029
4030 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
4031 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
4032 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
4033 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
4034 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
4035 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
4036 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
4037 * flag, which is only passed for the former statements, not for the latter. */
4038
4039 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
4040 if (using_subcgroup)
4041 p = path_join(params->cgroup_path, ".control");
4042 else
4043 p = strdup(params->cgroup_path);
4044 if (!p)
4045 return -ENOMEM;
4046
4047 *ret = p;
4048 return using_subcgroup;
4049 }
4050
4051 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
4052 _cleanup_(cpu_set_reset) CPUSet s = {};
4053 int r;
4054
4055 assert(c);
4056 assert(ret);
4057
4058 if (!c->numa_policy.nodes.set) {
4059 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
4060 return 0;
4061 }
4062
4063 r = numa_to_cpu_set(&c->numa_policy, &s);
4064 if (r < 0)
4065 return r;
4066
4067 cpu_set_reset(ret);
4068
4069 return cpu_set_add_all(ret, &s);
4070 }
4071
4072 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
4073 assert(c);
4074
4075 return c->cpu_affinity_from_numa;
4076 }
4077
4078 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
4079 int r;
4080
4081 assert(fds);
4082 assert(n_fds);
4083 assert(*n_fds < fds_size);
4084 assert(ret_fd);
4085
4086 if (fd < 0) {
4087 *ret_fd = -EBADF;
4088 return 0;
4089 }
4090
4091 if (fd < 3 + (int) *n_fds) {
4092 /* Let's move the fd up, so that it's outside of the fd range we will use to store
4093 * the fds we pass to the process (or which are closed only during execve). */
4094
4095 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
4096 if (r < 0)
4097 return -errno;
4098
4099 close_and_replace(fd, r);
4100 }
4101
4102 *ret_fd = fds[*n_fds] = fd;
4103 (*n_fds) ++;
4104 return 1;
4105 }
4106
4107 static int exec_child(
4108 Unit *unit,
4109 const ExecCommand *command,
4110 const ExecContext *context,
4111 const ExecParameters *params,
4112 ExecRuntime *runtime,
4113 DynamicCreds *dcreds,
4114 int socket_fd,
4115 const int named_iofds[static 3],
4116 int *fds,
4117 size_t n_socket_fds,
4118 size_t n_storage_fds,
4119 char **files_env,
4120 int user_lookup_fd,
4121 int *exit_status) {
4122
4123 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL;
4124 int r, ngids = 0, exec_fd;
4125 _cleanup_free_ gid_t *supplementary_gids = NULL;
4126 const char *username = NULL, *groupname = NULL;
4127 _cleanup_free_ char *home_buffer = NULL;
4128 const char *home = NULL, *shell = NULL;
4129 char **final_argv = NULL;
4130 dev_t journal_stream_dev = 0;
4131 ino_t journal_stream_ino = 0;
4132 bool userns_set_up = false;
4133 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
4134 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
4135 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
4136 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
4137 #if HAVE_SELINUX
4138 _cleanup_free_ char *mac_selinux_context_net = NULL;
4139 bool use_selinux = false;
4140 #endif
4141 #if ENABLE_SMACK
4142 bool use_smack = false;
4143 #endif
4144 #if HAVE_APPARMOR
4145 bool use_apparmor = false;
4146 #endif
4147 uid_t saved_uid = getuid();
4148 gid_t saved_gid = getgid();
4149 uid_t uid = UID_INVALID;
4150 gid_t gid = GID_INVALID;
4151 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
4152 n_keep_fds; /* total number of fds not to close */
4153 int secure_bits;
4154 _cleanup_free_ gid_t *gids_after_pam = NULL;
4155 int ngids_after_pam = 0;
4156
4157 assert(unit);
4158 assert(command);
4159 assert(context);
4160 assert(params);
4161 assert(exit_status);
4162
4163 /* Explicitly test for CVE-2021-4034 inspired invocations */
4164 assert(command->path);
4165 assert(!strv_isempty(command->argv));
4166
4167 rename_process_from_path(command->path);
4168
4169 /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main
4170 * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially,
4171 * both of which will be demoted to SIG_DFL. */
4172 (void) default_signals(SIGNALS_CRASH_HANDLER,
4173 SIGNALS_IGNORE);
4174
4175 if (context->ignore_sigpipe)
4176 (void) ignore_signals(SIGPIPE);
4177
4178 r = reset_signal_mask();
4179 if (r < 0) {
4180 *exit_status = EXIT_SIGNAL_MASK;
4181 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
4182 }
4183
4184 if (params->idle_pipe)
4185 do_idle_pipe_dance(params->idle_pipe);
4186
4187 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
4188 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
4189 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
4190 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
4191
4192 log_forget_fds();
4193 log_set_open_when_needed(true);
4194
4195 /* In case anything used libc syslog(), close this here, too */
4196 closelog();
4197
4198 int keep_fds[n_fds + 3];
4199 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
4200 n_keep_fds = n_fds;
4201
4202 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
4203 if (r < 0) {
4204 *exit_status = EXIT_FDS;
4205 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4206 }
4207
4208 #if HAVE_LIBBPF
4209 if (unit->manager->restrict_fs) {
4210 int bpf_map_fd = lsm_bpf_map_restrict_fs_fd(unit);
4211 if (bpf_map_fd < 0) {
4212 *exit_status = EXIT_FDS;
4213 return log_unit_error_errno(unit, bpf_map_fd, "Failed to get restrict filesystems BPF map fd: %m");
4214 }
4215
4216 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, bpf_map_fd, &bpf_map_fd);
4217 if (r < 0) {
4218 *exit_status = EXIT_FDS;
4219 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4220 }
4221 }
4222 #endif
4223
4224 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
4225 if (r < 0) {
4226 *exit_status = EXIT_FDS;
4227 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
4228 }
4229
4230 if (!context->same_pgrp &&
4231 setsid() < 0) {
4232 *exit_status = EXIT_SETSID;
4233 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
4234 }
4235
4236 exec_context_tty_reset(context, params);
4237
4238 if (unit_shall_confirm_spawn(unit)) {
4239 _cleanup_free_ char *cmdline = NULL;
4240
4241 cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
4242 if (!cmdline) {
4243 *exit_status = EXIT_MEMORY;
4244 return log_oom();
4245 }
4246
4247 r = ask_for_confirmation(context, params->confirm_spawn, unit, cmdline);
4248 if (r != CONFIRM_EXECUTE) {
4249 if (r == CONFIRM_PRETEND_SUCCESS) {
4250 *exit_status = EXIT_SUCCESS;
4251 return 0;
4252 }
4253 *exit_status = EXIT_CONFIRM;
4254 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
4255 "Execution cancelled by the user");
4256 }
4257 }
4258
4259 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
4260 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
4261 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
4262 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
4263 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
4264 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
4265 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
4266 *exit_status = EXIT_MEMORY;
4267 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4268 }
4269
4270 if (context->dynamic_user && dcreds) {
4271 _cleanup_strv_free_ char **suggested_paths = NULL;
4272
4273 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
4274 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */
4275 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
4276 *exit_status = EXIT_USER;
4277 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4278 }
4279
4280 r = compile_suggested_paths(context, params, &suggested_paths);
4281 if (r < 0) {
4282 *exit_status = EXIT_MEMORY;
4283 return log_oom();
4284 }
4285
4286 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
4287 if (r < 0) {
4288 *exit_status = EXIT_USER;
4289 if (r == -EILSEQ)
4290 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4291 "Failed to update dynamic user credentials: User or group with specified name already exists.");
4292 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
4293 }
4294
4295 if (!uid_is_valid(uid)) {
4296 *exit_status = EXIT_USER;
4297 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
4298 }
4299
4300 if (!gid_is_valid(gid)) {
4301 *exit_status = EXIT_USER;
4302 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
4303 }
4304
4305 if (dcreds->user)
4306 username = dcreds->user->name;
4307
4308 } else {
4309 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
4310 if (r < 0) {
4311 *exit_status = EXIT_USER;
4312 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
4313 }
4314
4315 r = get_fixed_group(context, &groupname, &gid);
4316 if (r < 0) {
4317 *exit_status = EXIT_GROUP;
4318 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
4319 }
4320 }
4321
4322 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
4323 r = get_supplementary_groups(context, username, groupname, gid,
4324 &supplementary_gids, &ngids);
4325 if (r < 0) {
4326 *exit_status = EXIT_GROUP;
4327 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
4328 }
4329
4330 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
4331 if (r < 0) {
4332 *exit_status = EXIT_USER;
4333 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
4334 }
4335
4336 user_lookup_fd = safe_close(user_lookup_fd);
4337
4338 r = acquire_home(context, uid, &home, &home_buffer);
4339 if (r < 0) {
4340 *exit_status = EXIT_CHDIR;
4341 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
4342 }
4343
4344 /* If a socket is connected to STDIN/STDOUT/STDERR, we
4345 * must sure to drop O_NONBLOCK */
4346 if (socket_fd >= 0)
4347 (void) fd_nonblock(socket_fd, false);
4348
4349 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
4350 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
4351 if (params->cgroup_path) {
4352 _cleanup_free_ char *p = NULL;
4353
4354 r = exec_parameters_get_cgroup_path(params, &p);
4355 if (r < 0) {
4356 *exit_status = EXIT_CGROUP;
4357 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4358 }
4359
4360 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
4361 if (r == -EUCLEAN) {
4362 *exit_status = EXIT_CGROUP;
4363 return log_unit_error_errno(unit, r, "Failed to attach process to cgroup %s "
4364 "because the cgroup or one of its parents or "
4365 "siblings is in the threaded mode: %m", p);
4366 }
4367 if (r < 0) {
4368 *exit_status = EXIT_CGROUP;
4369 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
4370 }
4371 }
4372
4373 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
4374 r = open_shareable_ns_path(runtime->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET);
4375 if (r < 0) {
4376 *exit_status = EXIT_NETWORK;
4377 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
4378 }
4379 }
4380
4381 if (context->ipc_namespace_path && runtime && runtime->ipcns_storage_socket[0] >= 0) {
4382 r = open_shareable_ns_path(runtime->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC);
4383 if (r < 0) {
4384 *exit_status = EXIT_NAMESPACE;
4385 return log_unit_error_errno(unit, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path);
4386 }
4387 }
4388
4389 r = setup_input(context, params, socket_fd, named_iofds);
4390 if (r < 0) {
4391 *exit_status = EXIT_STDIN;
4392 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
4393 }
4394
4395 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4396 if (r < 0) {
4397 *exit_status = EXIT_STDOUT;
4398 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
4399 }
4400
4401 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4402 if (r < 0) {
4403 *exit_status = EXIT_STDERR;
4404 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
4405 }
4406
4407 if (context->oom_score_adjust_set) {
4408 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
4409 * prohibit write access to this file, and we shouldn't trip up over that. */
4410 r = set_oom_score_adjust(context->oom_score_adjust);
4411 if (ERRNO_IS_PRIVILEGE(r))
4412 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
4413 else if (r < 0) {
4414 *exit_status = EXIT_OOM_ADJUST;
4415 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
4416 }
4417 }
4418
4419 if (context->coredump_filter_set) {
4420 r = set_coredump_filter(context->coredump_filter);
4421 if (ERRNO_IS_PRIVILEGE(r))
4422 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
4423 else if (r < 0)
4424 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
4425 }
4426
4427 if (context->nice_set) {
4428 r = setpriority_closest(context->nice);
4429 if (r < 0)
4430 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
4431 }
4432
4433 if (context->cpu_sched_set) {
4434 struct sched_param param = {
4435 .sched_priority = context->cpu_sched_priority,
4436 };
4437
4438 r = sched_setscheduler(0,
4439 context->cpu_sched_policy |
4440 (context->cpu_sched_reset_on_fork ?
4441 SCHED_RESET_ON_FORK : 0),
4442 &param);
4443 if (r < 0) {
4444 *exit_status = EXIT_SETSCHEDULER;
4445 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
4446 }
4447 }
4448
4449 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
4450 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
4451 const CPUSet *cpu_set;
4452
4453 if (context->cpu_affinity_from_numa) {
4454 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
4455 if (r < 0) {
4456 *exit_status = EXIT_CPUAFFINITY;
4457 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
4458 }
4459
4460 cpu_set = &converted_cpu_set;
4461 } else
4462 cpu_set = &context->cpu_set;
4463
4464 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
4465 *exit_status = EXIT_CPUAFFINITY;
4466 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
4467 }
4468 }
4469
4470 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
4471 r = apply_numa_policy(&context->numa_policy);
4472 if (r == -EOPNOTSUPP)
4473 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
4474 else if (r < 0) {
4475 *exit_status = EXIT_NUMA_POLICY;
4476 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4477 }
4478 }
4479
4480 if (context->ioprio_set)
4481 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4482 *exit_status = EXIT_IOPRIO;
4483 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4484 }
4485
4486 if (context->timer_slack_nsec != NSEC_INFINITY)
4487 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4488 *exit_status = EXIT_TIMERSLACK;
4489 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4490 }
4491
4492 if (context->personality != PERSONALITY_INVALID) {
4493 r = safe_personality(context->personality);
4494 if (r < 0) {
4495 *exit_status = EXIT_PERSONALITY;
4496 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4497 }
4498 }
4499
4500 if (context->utmp_id) {
4501 const char *line = context->tty_path ?
4502 (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) :
4503 NULL;
4504 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4505 line,
4506 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4507 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4508 USER_PROCESS,
4509 username);
4510 }
4511
4512 if (uid_is_valid(uid)) {
4513 r = chown_terminal(STDIN_FILENO, uid);
4514 if (r < 0) {
4515 *exit_status = EXIT_STDIN;
4516 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4517 }
4518 }
4519
4520 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4521 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4522 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4523 * touch a single hierarchy too. */
4524 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
4525 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4526 if (r < 0) {
4527 *exit_status = EXIT_CGROUP;
4528 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4529 }
4530 }
4531
4532 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4533
4534 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4535 r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status);
4536 if (r < 0)
4537 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4538 }
4539
4540 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4541 r = setup_credentials(context, params, unit->id, uid);
4542 if (r < 0) {
4543 *exit_status = EXIT_CREDENTIALS;
4544 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4545 }
4546 }
4547
4548 r = build_environment(
4549 unit,
4550 context,
4551 params,
4552 n_fds,
4553 home,
4554 username,
4555 shell,
4556 journal_stream_dev,
4557 journal_stream_ino,
4558 &our_env);
4559 if (r < 0) {
4560 *exit_status = EXIT_MEMORY;
4561 return log_oom();
4562 }
4563
4564 r = build_pass_environment(context, &pass_env);
4565 if (r < 0) {
4566 *exit_status = EXIT_MEMORY;
4567 return log_oom();
4568 }
4569
4570 /* The $PATH variable is set to the default path in params->environment. However, this is overridden
4571 * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does
4572 * not specify PATH but the unit has ExecSearchPath. */
4573 if (!strv_isempty(context->exec_search_path)) {
4574 _cleanup_free_ char *joined = NULL;
4575
4576 joined = strv_join(context->exec_search_path, ":");
4577 if (!joined) {
4578 *exit_status = EXIT_MEMORY;
4579 return log_oom();
4580 }
4581
4582 r = strv_env_assign(&joined_exec_search_path, "PATH", joined);
4583 if (r < 0) {
4584 *exit_status = EXIT_MEMORY;
4585 return log_oom();
4586 }
4587 }
4588
4589 accum_env = strv_env_merge(params->environment,
4590 our_env,
4591 joined_exec_search_path,
4592 pass_env,
4593 context->environment,
4594 files_env);
4595 if (!accum_env) {
4596 *exit_status = EXIT_MEMORY;
4597 return log_oom();
4598 }
4599 accum_env = strv_env_clean(accum_env);
4600
4601 (void) umask(context->umask);
4602
4603 r = setup_keyring(unit, context, params, uid, gid);
4604 if (r < 0) {
4605 *exit_status = EXIT_KEYRING;
4606 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4607 }
4608
4609 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted
4610 * from it. */
4611 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4612
4613 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked
4614 * for it, and the kernel doesn't actually support ambient caps. */
4615 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4616
4617 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly
4618 * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not
4619 * desired. */
4620 if (needs_ambient_hack)
4621 needs_setuid = false;
4622 else
4623 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4624
4625 if (needs_sandboxing) {
4626 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on
4627 * /sys being present. The actual MAC context application will happen later, as late as
4628 * possible, to avoid impacting our own code paths. */
4629
4630 #if HAVE_SELINUX
4631 use_selinux = mac_selinux_use();
4632 #endif
4633 #if ENABLE_SMACK
4634 use_smack = mac_smack_use();
4635 #endif
4636 #if HAVE_APPARMOR
4637 use_apparmor = mac_apparmor_use();
4638 #endif
4639 }
4640
4641 if (needs_sandboxing) {
4642 int which_failed;
4643
4644 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4645 * is set here. (See below.) */
4646
4647 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4648 if (r < 0) {
4649 *exit_status = EXIT_LIMITS;
4650 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4651 }
4652 }
4653
4654 if (needs_setuid && context->pam_name && username) {
4655 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4656 * wins here. (See above.) */
4657
4658 /* All fds passed in the fds array will be closed in the pam child process. */
4659 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4660 if (r < 0) {
4661 *exit_status = EXIT_PAM;
4662 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4663 }
4664
4665 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4666 if (ngids_after_pam < 0) {
4667 *exit_status = EXIT_MEMORY;
4668 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4669 }
4670 }
4671
4672 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4673 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4674 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4675 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4676
4677 userns_set_up = true;
4678 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4679 if (r < 0) {
4680 *exit_status = EXIT_USER;
4681 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4682 }
4683 }
4684
4685 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4686
4687 if (ns_type_supported(NAMESPACE_NET)) {
4688 r = setup_shareable_ns(runtime->netns_storage_socket, CLONE_NEWNET);
4689 if (r == -EPERM)
4690 log_unit_warning_errno(unit, r,
4691 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4692 else if (r < 0) {
4693 *exit_status = EXIT_NETWORK;
4694 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4695 }
4696 } else if (context->network_namespace_path) {
4697 *exit_status = EXIT_NETWORK;
4698 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4699 "NetworkNamespacePath= is not supported, refusing.");
4700 } else
4701 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4702 }
4703
4704 if ((context->private_ipc || context->ipc_namespace_path) && runtime && runtime->ipcns_storage_socket[0] >= 0) {
4705
4706 if (ns_type_supported(NAMESPACE_IPC)) {
4707 r = setup_shareable_ns(runtime->ipcns_storage_socket, CLONE_NEWIPC);
4708 if (r == -EPERM)
4709 log_unit_warning_errno(unit, r,
4710 "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m");
4711 else if (r < 0) {
4712 *exit_status = EXIT_NAMESPACE;
4713 return log_unit_error_errno(unit, r, "Failed to set up IPC namespacing: %m");
4714 }
4715 } else if (context->ipc_namespace_path) {
4716 *exit_status = EXIT_NAMESPACE;
4717 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4718 "IPCNamespacePath= is not supported, refusing.");
4719 } else
4720 log_unit_warning(unit, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring.");
4721 }
4722
4723 if (needs_mount_namespace) {
4724 _cleanup_free_ char *error_path = NULL;
4725
4726 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4727 if (r < 0) {
4728 *exit_status = EXIT_NAMESPACE;
4729 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4730 error_path ? ": " : "", strempty(error_path));
4731 }
4732 }
4733
4734 if (needs_sandboxing) {
4735 r = apply_protect_hostname(unit, context, exit_status);
4736 if (r < 0)
4737 return r;
4738 }
4739
4740 /* Drop groups as early as possible.
4741 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4742 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4743 if (needs_setuid) {
4744 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4745 int ngids_to_enforce = 0;
4746
4747 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4748 ngids,
4749 gids_after_pam,
4750 ngids_after_pam,
4751 &gids_to_enforce);
4752 if (ngids_to_enforce < 0) {
4753 *exit_status = EXIT_MEMORY;
4754 return log_unit_error_errno(unit,
4755 ngids_to_enforce,
4756 "Failed to merge group lists. Group membership might be incorrect: %m");
4757 }
4758
4759 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4760 if (r < 0) {
4761 *exit_status = EXIT_GROUP;
4762 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4763 }
4764 }
4765
4766 /* If the user namespace was not set up above, try to do it now.
4767 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4768 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4769 * case of mount namespaces being less privileged when the mount point list is copied from a
4770 * different user namespace). */
4771
4772 if (needs_sandboxing && context->private_users && !userns_set_up) {
4773 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4774 if (r < 0) {
4775 *exit_status = EXIT_USER;
4776 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4777 }
4778 }
4779
4780 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4781 * shall execute. */
4782
4783 _cleanup_free_ char *executable = NULL;
4784 _cleanup_close_ int executable_fd = -EBADF;
4785 r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd);
4786 if (r < 0) {
4787 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4788 log_unit_struct_errno(unit, LOG_INFO, r,
4789 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4790 LOG_UNIT_INVOCATION_ID(unit),
4791 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4792 command->path),
4793 "EXECUTABLE=%s", command->path);
4794 return 0;
4795 }
4796
4797 *exit_status = EXIT_EXEC;
4798
4799 return log_unit_struct_errno(unit, LOG_INFO, r,
4800 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4801 LOG_UNIT_INVOCATION_ID(unit),
4802 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4803 command->path),
4804 "EXECUTABLE=%s", command->path);
4805 }
4806
4807 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
4808 if (r < 0) {
4809 *exit_status = EXIT_FDS;
4810 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4811 }
4812
4813 #if HAVE_SELINUX
4814 if (needs_sandboxing && use_selinux && params->selinux_context_net) {
4815 int fd = -EBADF;
4816
4817 if (socket_fd >= 0)
4818 fd = socket_fd;
4819 else if (params->n_socket_fds == 1)
4820 /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we
4821 * use context from that fd to compute the label. */
4822 fd = params->fds[0];
4823
4824 if (fd >= 0) {
4825 r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net);
4826 if (r < 0) {
4827 if (!context->selinux_context_ignore) {
4828 *exit_status = EXIT_SELINUX_CONTEXT;
4829 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4830 }
4831 log_unit_debug_errno(unit, r, "Failed to determine SELinux context, ignoring: %m");
4832 }
4833 }
4834 }
4835 #endif
4836
4837 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4838 * more aggressive this time since socket_fd and the netns and ipcns fds we don't need anymore. We do keep the exec_fd
4839 * however if we have it as we want to keep it open until the final execve(). */
4840
4841 r = close_all_fds(keep_fds, n_keep_fds);
4842 if (r >= 0)
4843 r = shift_fds(fds, n_fds);
4844 if (r >= 0)
4845 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4846 if (r < 0) {
4847 *exit_status = EXIT_FDS;
4848 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4849 }
4850
4851 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4852 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4853 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4854 * came this far. */
4855
4856 secure_bits = context->secure_bits;
4857
4858 if (needs_sandboxing) {
4859 uint64_t bset;
4860
4861 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4862 * requested. (Note this is placed after the general resource limit initialization, see
4863 * above, in order to take precedence.) */
4864 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4865 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4866 *exit_status = EXIT_LIMITS;
4867 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4868 }
4869 }
4870
4871 #if ENABLE_SMACK
4872 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4873 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4874 if (use_smack) {
4875 r = setup_smack(unit->manager, context, executable_fd);
4876 if (r < 0 && !context->smack_process_label_ignore) {
4877 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4878 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4879 }
4880 }
4881 #endif
4882
4883 bset = context->capability_bounding_set;
4884 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4885 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4886 * instead of us doing that */
4887 if (needs_ambient_hack)
4888 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4889 (UINT64_C(1) << CAP_SETUID) |
4890 (UINT64_C(1) << CAP_SETGID);
4891
4892 if (!cap_test_all(bset)) {
4893 r = capability_bounding_set_drop(bset, false);
4894 if (r < 0) {
4895 *exit_status = EXIT_CAPABILITIES;
4896 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4897 }
4898 }
4899
4900 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4901 * keep-caps set.
4902 * To be able to raise the ambient capabilities after setresuid() they have to be
4903 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4904 * After setresuid() the ambient capabilities can be raised as they are present in
4905 * the permitted and inhertiable set. However it is possible that someone wants to
4906 * set ambient capabilities without changing the user, so we also set the ambient
4907 * capabilities here.
4908 * The requested ambient capabilities are raised in the inheritable set if the
4909 * second argument is true. */
4910 if (!needs_ambient_hack) {
4911 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4912 if (r < 0) {
4913 *exit_status = EXIT_CAPABILITIES;
4914 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4915 }
4916 }
4917 }
4918
4919 /* chroot to root directory first, before we lose the ability to chroot */
4920 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4921 if (r < 0)
4922 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4923
4924 if (needs_setuid) {
4925 if (uid_is_valid(uid)) {
4926 r = enforce_user(context, uid);
4927 if (r < 0) {
4928 *exit_status = EXIT_USER;
4929 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4930 }
4931
4932 if (!needs_ambient_hack &&
4933 context->capability_ambient_set != 0) {
4934
4935 /* Raise the ambient capabilities after user change. */
4936 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4937 if (r < 0) {
4938 *exit_status = EXIT_CAPABILITIES;
4939 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4940 }
4941 }
4942 }
4943 }
4944
4945 /* Apply working directory here, because the working directory might be on NFS and only the user running
4946 * this service might have the correct privilege to change to the working directory */
4947 r = apply_working_directory(context, params, home, exit_status);
4948 if (r < 0)
4949 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4950
4951 if (needs_sandboxing) {
4952 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4953 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4954 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4955 * are restricted. */
4956
4957 #if HAVE_SELINUX
4958 if (use_selinux) {
4959 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4960
4961 if (exec_context) {
4962 r = setexeccon(exec_context);
4963 if (r < 0) {
4964 if (!context->selinux_context_ignore) {
4965 *exit_status = EXIT_SELINUX_CONTEXT;
4966 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4967 }
4968 log_unit_debug_errno(unit, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context);
4969 }
4970 }
4971 }
4972 #endif
4973
4974 #if HAVE_APPARMOR
4975 if (use_apparmor && context->apparmor_profile) {
4976 r = aa_change_onexec(context->apparmor_profile);
4977 if (r < 0 && !context->apparmor_profile_ignore) {
4978 *exit_status = EXIT_APPARMOR_PROFILE;
4979 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4980 }
4981 }
4982 #endif
4983
4984 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4985 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4986 * CAP_SETPCAP. */
4987 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4988 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4989 * effective set here.
4990 * The effective set is overwritten during execve with the following values:
4991 * - ambient set (for non-root processes)
4992 * - (inheritable | bounding) set for root processes)
4993 *
4994 * Hence there is no security impact to raise it in the effective set before execve
4995 */
4996 r = capability_gain_cap_setpcap(NULL);
4997 if (r < 0) {
4998 *exit_status = EXIT_CAPABILITIES;
4999 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
5000 }
5001 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
5002 *exit_status = EXIT_SECUREBITS;
5003 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
5004 }
5005 }
5006
5007 if (context_has_no_new_privileges(context))
5008 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
5009 *exit_status = EXIT_NO_NEW_PRIVILEGES;
5010 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
5011 }
5012
5013 #if HAVE_SECCOMP
5014 r = apply_address_families(unit, context);
5015 if (r < 0) {
5016 *exit_status = EXIT_ADDRESS_FAMILIES;
5017 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
5018 }
5019
5020 r = apply_memory_deny_write_execute(unit, context);
5021 if (r < 0) {
5022 *exit_status = EXIT_SECCOMP;
5023 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
5024 }
5025
5026 r = apply_restrict_realtime(unit, context);
5027 if (r < 0) {
5028 *exit_status = EXIT_SECCOMP;
5029 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
5030 }
5031
5032 r = apply_restrict_suid_sgid(unit, context);
5033 if (r < 0) {
5034 *exit_status = EXIT_SECCOMP;
5035 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
5036 }
5037
5038 r = apply_restrict_namespaces(unit, context);
5039 if (r < 0) {
5040 *exit_status = EXIT_SECCOMP;
5041 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
5042 }
5043
5044 r = apply_protect_sysctl(unit, context);
5045 if (r < 0) {
5046 *exit_status = EXIT_SECCOMP;
5047 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
5048 }
5049
5050 r = apply_protect_kernel_modules(unit, context);
5051 if (r < 0) {
5052 *exit_status = EXIT_SECCOMP;
5053 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
5054 }
5055
5056 r = apply_protect_kernel_logs(unit, context);
5057 if (r < 0) {
5058 *exit_status = EXIT_SECCOMP;
5059 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
5060 }
5061
5062 r = apply_protect_clock(unit, context);
5063 if (r < 0) {
5064 *exit_status = EXIT_SECCOMP;
5065 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
5066 }
5067
5068 r = apply_private_devices(unit, context);
5069 if (r < 0) {
5070 *exit_status = EXIT_SECCOMP;
5071 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
5072 }
5073
5074 r = apply_syscall_archs(unit, context);
5075 if (r < 0) {
5076 *exit_status = EXIT_SECCOMP;
5077 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
5078 }
5079
5080 r = apply_lock_personality(unit, context);
5081 if (r < 0) {
5082 *exit_status = EXIT_SECCOMP;
5083 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
5084 }
5085
5086 r = apply_syscall_log(unit, context);
5087 if (r < 0) {
5088 *exit_status = EXIT_SECCOMP;
5089 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
5090 }
5091
5092 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
5093 * by the filter as little as possible. */
5094 r = apply_syscall_filter(unit, context, needs_ambient_hack);
5095 if (r < 0) {
5096 *exit_status = EXIT_SECCOMP;
5097 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
5098 }
5099 #endif
5100
5101 #if HAVE_LIBBPF
5102 r = apply_restrict_filesystems(unit, context);
5103 if (r < 0) {
5104 *exit_status = EXIT_BPF;
5105 return log_unit_error_errno(unit, r, "Failed to restrict filesystems: %m");
5106 }
5107 #endif
5108
5109 }
5110
5111 if (!strv_isempty(context->unset_environment)) {
5112 char **ee = NULL;
5113
5114 ee = strv_env_delete(accum_env, 1, context->unset_environment);
5115 if (!ee) {
5116 *exit_status = EXIT_MEMORY;
5117 return log_oom();
5118 }
5119
5120 strv_free_and_replace(accum_env, ee);
5121 }
5122
5123 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
5124 replaced_argv = replace_env_argv(command->argv, accum_env);
5125 if (!replaced_argv) {
5126 *exit_status = EXIT_MEMORY;
5127 return log_oom();
5128 }
5129 final_argv = replaced_argv;
5130 } else
5131 final_argv = command->argv;
5132
5133 if (DEBUG_LOGGING) {
5134 _cleanup_free_ char *line = NULL;
5135
5136 line = quote_command_line(final_argv, SHELL_ESCAPE_EMPTY);
5137 if (!line) {
5138 *exit_status = EXIT_MEMORY;
5139 return log_oom();
5140 }
5141
5142 log_unit_struct(unit, LOG_DEBUG,
5143 "EXECUTABLE=%s", executable,
5144 LOG_UNIT_MESSAGE(unit, "Executing: %s", line));
5145 }
5146
5147 if (exec_fd >= 0) {
5148 uint8_t hot = 1;
5149
5150 /* We have finished with all our initializations. Let's now let the manager know that. From this point
5151 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
5152
5153 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5154 *exit_status = EXIT_EXEC;
5155 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
5156 }
5157 }
5158
5159 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
5160
5161 if (exec_fd >= 0) {
5162 uint8_t hot = 0;
5163
5164 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
5165 * that POLLHUP on it no longer means execve() succeeded. */
5166
5167 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5168 *exit_status = EXIT_EXEC;
5169 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
5170 }
5171 }
5172
5173 *exit_status = EXIT_EXEC;
5174 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
5175 }
5176
5177 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
5178 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
5179
5180 int exec_spawn(Unit *unit,
5181 ExecCommand *command,
5182 const ExecContext *context,
5183 const ExecParameters *params,
5184 ExecRuntime *runtime,
5185 DynamicCreds *dcreds,
5186 pid_t *ret) {
5187
5188 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
5189 _cleanup_free_ char *subcgroup_path = NULL;
5190 _cleanup_strv_free_ char **files_env = NULL;
5191 size_t n_storage_fds = 0, n_socket_fds = 0;
5192 _cleanup_free_ char *line = NULL;
5193 pid_t pid;
5194
5195 assert(unit);
5196 assert(command);
5197 assert(context);
5198 assert(ret);
5199 assert(params);
5200 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
5201
5202 if (context->std_input == EXEC_INPUT_SOCKET ||
5203 context->std_output == EXEC_OUTPUT_SOCKET ||
5204 context->std_error == EXEC_OUTPUT_SOCKET) {
5205
5206 if (params->n_socket_fds > 1)
5207 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
5208
5209 if (params->n_socket_fds == 0)
5210 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
5211
5212 socket_fd = params->fds[0];
5213 } else {
5214 socket_fd = -EBADF;
5215 fds = params->fds;
5216 n_socket_fds = params->n_socket_fds;
5217 n_storage_fds = params->n_storage_fds;
5218 }
5219
5220 r = exec_context_named_iofds(context, params, named_iofds);
5221 if (r < 0)
5222 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
5223
5224 r = exec_context_load_environment(unit, context, &files_env);
5225 if (r < 0)
5226 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
5227
5228 line = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
5229 if (!line)
5230 return log_oom();
5231
5232 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
5233 and, until the next SELinux policy changes, we save further reloads in future children. */
5234 mac_selinux_maybe_reload();
5235
5236 log_unit_struct(unit, LOG_DEBUG,
5237 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
5238 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
5239 the mount namespace in the child, but we want to log
5240 from the parent, so we need to use the (possibly
5241 inaccurate) path here. */
5242 LOG_UNIT_INVOCATION_ID(unit));
5243
5244 if (params->cgroup_path) {
5245 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
5246 if (r < 0)
5247 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
5248 if (r > 0) { /* We are using a child cgroup */
5249 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
5250 if (r < 0)
5251 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
5252
5253 /* Normally we would not propagate the xattrs to children but since we created this
5254 * sub-cgroup internally we should do it. */
5255 cgroup_oomd_xattr_apply(unit, subcgroup_path);
5256 cgroup_log_xattr_apply(unit, subcgroup_path);
5257 }
5258 }
5259
5260 pid = fork();
5261 if (pid < 0)
5262 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
5263
5264 if (pid == 0) {
5265 int exit_status = EXIT_SUCCESS;
5266
5267 r = exec_child(unit,
5268 command,
5269 context,
5270 params,
5271 runtime,
5272 dcreds,
5273 socket_fd,
5274 named_iofds,
5275 fds,
5276 n_socket_fds,
5277 n_storage_fds,
5278 files_env,
5279 unit->manager->user_lookup_fds[1],
5280 &exit_status);
5281
5282 if (r < 0) {
5283 const char *status =
5284 exit_status_to_string(exit_status,
5285 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
5286
5287 log_unit_struct_errno(unit, LOG_ERR, r,
5288 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5289 LOG_UNIT_INVOCATION_ID(unit),
5290 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
5291 status, command->path),
5292 "EXECUTABLE=%s", command->path);
5293 }
5294
5295 _exit(exit_status);
5296 }
5297
5298 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
5299
5300 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
5301 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
5302 * process will be killed too). */
5303 if (subcgroup_path)
5304 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
5305
5306 exec_status_start(&command->exec_status, pid);
5307
5308 *ret = pid;
5309 return 0;
5310 }
5311
5312 void exec_context_init(ExecContext *c) {
5313 assert(c);
5314
5315 c->umask = 0022;
5316 c->ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO;
5317 c->cpu_sched_policy = SCHED_OTHER;
5318 c->syslog_priority = LOG_DAEMON|LOG_INFO;
5319 c->syslog_level_prefix = true;
5320 c->ignore_sigpipe = true;
5321 c->timer_slack_nsec = NSEC_INFINITY;
5322 c->personality = PERSONALITY_INVALID;
5323 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5324 c->directories[t].mode = 0755;
5325 c->timeout_clean_usec = USEC_INFINITY;
5326 c->capability_bounding_set = CAP_ALL;
5327 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
5328 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
5329 c->log_level_max = -1;
5330 #if HAVE_SECCOMP
5331 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
5332 #endif
5333 c->tty_rows = UINT_MAX;
5334 c->tty_cols = UINT_MAX;
5335 numa_policy_reset(&c->numa_policy);
5336 }
5337
5338 void exec_context_done(ExecContext *c) {
5339 assert(c);
5340
5341 c->environment = strv_free(c->environment);
5342 c->environment_files = strv_free(c->environment_files);
5343 c->pass_environment = strv_free(c->pass_environment);
5344 c->unset_environment = strv_free(c->unset_environment);
5345
5346 rlimit_free_all(c->rlimit);
5347
5348 for (size_t l = 0; l < 3; l++) {
5349 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
5350 c->stdio_file[l] = mfree(c->stdio_file[l]);
5351 }
5352
5353 c->working_directory = mfree(c->working_directory);
5354 c->root_directory = mfree(c->root_directory);
5355 c->root_image = mfree(c->root_image);
5356 c->root_image_options = mount_options_free_all(c->root_image_options);
5357 c->root_hash = mfree(c->root_hash);
5358 c->root_hash_size = 0;
5359 c->root_hash_path = mfree(c->root_hash_path);
5360 c->root_hash_sig = mfree(c->root_hash_sig);
5361 c->root_hash_sig_size = 0;
5362 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
5363 c->root_verity = mfree(c->root_verity);
5364 c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images);
5365 c->extension_directories = strv_free(c->extension_directories);
5366 c->tty_path = mfree(c->tty_path);
5367 c->syslog_identifier = mfree(c->syslog_identifier);
5368 c->user = mfree(c->user);
5369 c->group = mfree(c->group);
5370
5371 c->supplementary_groups = strv_free(c->supplementary_groups);
5372
5373 c->pam_name = mfree(c->pam_name);
5374
5375 c->read_only_paths = strv_free(c->read_only_paths);
5376 c->read_write_paths = strv_free(c->read_write_paths);
5377 c->inaccessible_paths = strv_free(c->inaccessible_paths);
5378 c->exec_paths = strv_free(c->exec_paths);
5379 c->no_exec_paths = strv_free(c->no_exec_paths);
5380 c->exec_search_path = strv_free(c->exec_search_path);
5381
5382 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
5383 c->bind_mounts = NULL;
5384 c->n_bind_mounts = 0;
5385 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
5386 c->temporary_filesystems = NULL;
5387 c->n_temporary_filesystems = 0;
5388 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
5389
5390 cpu_set_reset(&c->cpu_set);
5391 numa_policy_reset(&c->numa_policy);
5392
5393 c->utmp_id = mfree(c->utmp_id);
5394 c->selinux_context = mfree(c->selinux_context);
5395 c->apparmor_profile = mfree(c->apparmor_profile);
5396 c->smack_process_label = mfree(c->smack_process_label);
5397
5398 c->restrict_filesystems = set_free(c->restrict_filesystems);
5399
5400 c->syscall_filter = hashmap_free(c->syscall_filter);
5401 c->syscall_archs = set_free(c->syscall_archs);
5402 c->address_families = set_free(c->address_families);
5403
5404 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5405 exec_directory_done(&c->directories[t]);
5406
5407 c->log_level_max = -1;
5408
5409 exec_context_free_log_extra_fields(c);
5410 c->log_filter_allowed_patterns = set_free(c->log_filter_allowed_patterns);
5411 c->log_filter_denied_patterns = set_free(c->log_filter_denied_patterns);
5412
5413 c->log_ratelimit_interval_usec = 0;
5414 c->log_ratelimit_burst = 0;
5415
5416 c->stdin_data = mfree(c->stdin_data);
5417 c->stdin_data_size = 0;
5418
5419 c->network_namespace_path = mfree(c->network_namespace_path);
5420 c->ipc_namespace_path = mfree(c->ipc_namespace_path);
5421
5422 c->log_namespace = mfree(c->log_namespace);
5423
5424 c->load_credentials = hashmap_free(c->load_credentials);
5425 c->set_credentials = hashmap_free(c->set_credentials);
5426 }
5427
5428 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
5429 assert(c);
5430
5431 if (!runtime_prefix)
5432 return 0;
5433
5434 for (size_t i = 0; i < c->directories[EXEC_DIRECTORY_RUNTIME].n_items; i++) {
5435 _cleanup_free_ char *p = NULL;
5436
5437 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5438 p = path_join(runtime_prefix, "private", c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5439 else
5440 p = path_join(runtime_prefix, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5441 if (!p)
5442 return -ENOMEM;
5443
5444 /* We execute this synchronously, since we need to be sure this is gone when we start the
5445 * service next. */
5446 (void) rm_rf(p, REMOVE_ROOT);
5447
5448 STRV_FOREACH(symlink, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].symlinks) {
5449 _cleanup_free_ char *symlink_abs = NULL;
5450
5451 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5452 symlink_abs = path_join(runtime_prefix, "private", *symlink);
5453 else
5454 symlink_abs = path_join(runtime_prefix, *symlink);
5455 if (!symlink_abs)
5456 return -ENOMEM;
5457
5458 (void) unlink(symlink_abs);
5459 }
5460
5461 }
5462
5463 return 0;
5464 }
5465
5466 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
5467 _cleanup_free_ char *p = NULL;
5468
5469 assert(c);
5470
5471 if (!runtime_prefix || !unit)
5472 return 0;
5473
5474 p = path_join(runtime_prefix, "credentials", unit);
5475 if (!p)
5476 return -ENOMEM;
5477
5478 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
5479 * unmount it, and afterwards remove the mount point */
5480 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
5481 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
5482
5483 return 0;
5484 }
5485
5486 static void exec_command_done(ExecCommand *c) {
5487 assert(c);
5488
5489 c->path = mfree(c->path);
5490 c->argv = strv_free(c->argv);
5491 }
5492
5493 void exec_command_done_array(ExecCommand *c, size_t n) {
5494 for (size_t i = 0; i < n; i++)
5495 exec_command_done(c+i);
5496 }
5497
5498 ExecCommand* exec_command_free_list(ExecCommand *c) {
5499 ExecCommand *i;
5500
5501 while ((i = c)) {
5502 LIST_REMOVE(command, c, i);
5503 exec_command_done(i);
5504 free(i);
5505 }
5506
5507 return NULL;
5508 }
5509
5510 void exec_command_free_array(ExecCommand **c, size_t n) {
5511 for (size_t i = 0; i < n; i++)
5512 c[i] = exec_command_free_list(c[i]);
5513 }
5514
5515 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
5516 for (size_t i = 0; i < n; i++)
5517 exec_status_reset(&c[i].exec_status);
5518 }
5519
5520 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
5521 for (size_t i = 0; i < n; i++)
5522 LIST_FOREACH(command, z, c[i])
5523 exec_status_reset(&z->exec_status);
5524 }
5525
5526 typedef struct InvalidEnvInfo {
5527 const Unit *unit;
5528 const char *path;
5529 } InvalidEnvInfo;
5530
5531 static void invalid_env(const char *p, void *userdata) {
5532 InvalidEnvInfo *info = userdata;
5533
5534 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
5535 }
5536
5537 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
5538 assert(c);
5539
5540 switch (fd_index) {
5541
5542 case STDIN_FILENO:
5543 if (c->std_input != EXEC_INPUT_NAMED_FD)
5544 return NULL;
5545
5546 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
5547
5548 case STDOUT_FILENO:
5549 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
5550 return NULL;
5551
5552 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
5553
5554 case STDERR_FILENO:
5555 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
5556 return NULL;
5557
5558 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
5559
5560 default:
5561 return NULL;
5562 }
5563 }
5564
5565 static int exec_context_named_iofds(
5566 const ExecContext *c,
5567 const ExecParameters *p,
5568 int named_iofds[static 3]) {
5569
5570 size_t targets;
5571 const char* stdio_fdname[3];
5572 size_t n_fds;
5573
5574 assert(c);
5575 assert(p);
5576 assert(named_iofds);
5577
5578 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
5579 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
5580 (c->std_error == EXEC_OUTPUT_NAMED_FD);
5581
5582 for (size_t i = 0; i < 3; i++)
5583 stdio_fdname[i] = exec_context_fdname(c, i);
5584
5585 n_fds = p->n_storage_fds + p->n_socket_fds;
5586
5587 for (size_t i = 0; i < n_fds && targets > 0; i++)
5588 if (named_iofds[STDIN_FILENO] < 0 &&
5589 c->std_input == EXEC_INPUT_NAMED_FD &&
5590 stdio_fdname[STDIN_FILENO] &&
5591 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
5592
5593 named_iofds[STDIN_FILENO] = p->fds[i];
5594 targets--;
5595
5596 } else if (named_iofds[STDOUT_FILENO] < 0 &&
5597 c->std_output == EXEC_OUTPUT_NAMED_FD &&
5598 stdio_fdname[STDOUT_FILENO] &&
5599 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5600
5601 named_iofds[STDOUT_FILENO] = p->fds[i];
5602 targets--;
5603
5604 } else if (named_iofds[STDERR_FILENO] < 0 &&
5605 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5606 stdio_fdname[STDERR_FILENO] &&
5607 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5608
5609 named_iofds[STDERR_FILENO] = p->fds[i];
5610 targets--;
5611 }
5612
5613 return targets == 0 ? 0 : -ENOENT;
5614 }
5615
5616 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) {
5617 _cleanup_strv_free_ char **v = NULL;
5618 int r;
5619
5620 assert(c);
5621 assert(ret);
5622
5623 STRV_FOREACH(i, c->environment_files) {
5624 _cleanup_globfree_ glob_t pglob = {};
5625 bool ignore = false;
5626 char *fn = *i;
5627
5628 if (fn[0] == '-') {
5629 ignore = true;
5630 fn++;
5631 }
5632
5633 if (!path_is_absolute(fn)) {
5634 if (ignore)
5635 continue;
5636 return -EINVAL;
5637 }
5638
5639 /* Filename supports globbing, take all matching files */
5640 r = safe_glob(fn, 0, &pglob);
5641 if (r < 0) {
5642 if (ignore)
5643 continue;
5644 return r;
5645 }
5646
5647 /* When we don't match anything, -ENOENT should be returned */
5648 assert(pglob.gl_pathc > 0);
5649
5650 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5651 _cleanup_strv_free_ char **p = NULL;
5652
5653 r = load_env_file(NULL, pglob.gl_pathv[n], &p);
5654 if (r < 0) {
5655 if (ignore)
5656 continue;
5657 return r;
5658 }
5659
5660 /* Log invalid environment variables with filename */
5661 if (p) {
5662 InvalidEnvInfo info = {
5663 .unit = unit,
5664 .path = pglob.gl_pathv[n]
5665 };
5666
5667 p = strv_env_clean_with_callback(p, invalid_env, &info);
5668 }
5669
5670 if (!v)
5671 v = TAKE_PTR(p);
5672 else {
5673 char **m = strv_env_merge(v, p);
5674 if (!m)
5675 return -ENOMEM;
5676
5677 strv_free_and_replace(v, m);
5678 }
5679 }
5680 }
5681
5682 *ret = TAKE_PTR(v);
5683
5684 return 0;
5685 }
5686
5687 static bool tty_may_match_dev_console(const char *tty) {
5688 _cleanup_free_ char *resolved = NULL;
5689
5690 if (!tty)
5691 return true;
5692
5693 tty = skip_dev_prefix(tty);
5694
5695 /* trivial identity? */
5696 if (streq(tty, "console"))
5697 return true;
5698
5699 if (resolve_dev_console(&resolved) < 0)
5700 return true; /* if we could not resolve, assume it may */
5701
5702 /* "tty0" means the active VC, so it may be the same sometimes */
5703 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5704 }
5705
5706 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5707 assert(ec);
5708
5709 return ec->tty_reset ||
5710 ec->tty_vhangup ||
5711 ec->tty_vt_disallocate ||
5712 is_terminal_input(ec->std_input) ||
5713 is_terminal_output(ec->std_output) ||
5714 is_terminal_output(ec->std_error);
5715 }
5716
5717 bool exec_context_may_touch_console(const ExecContext *ec) {
5718
5719 return exec_context_may_touch_tty(ec) &&
5720 tty_may_match_dev_console(exec_context_tty_path(ec));
5721 }
5722
5723 static void strv_fprintf(FILE *f, char **l) {
5724 assert(f);
5725
5726 STRV_FOREACH(g, l)
5727 fprintf(f, " %s", *g);
5728 }
5729
5730 static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
5731 assert(f);
5732 assert(prefix);
5733 assert(name);
5734
5735 if (!strv_isempty(strv)) {
5736 fprintf(f, "%s%s:", prefix, name);
5737 strv_fprintf(f, strv);
5738 fputs("\n", f);
5739 }
5740 }
5741
5742 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5743 int r;
5744
5745 assert(c);
5746 assert(f);
5747
5748 prefix = strempty(prefix);
5749
5750 fprintf(f,
5751 "%sUMask: %04o\n"
5752 "%sWorkingDirectory: %s\n"
5753 "%sRootDirectory: %s\n"
5754 "%sNonBlocking: %s\n"
5755 "%sPrivateTmp: %s\n"
5756 "%sPrivateDevices: %s\n"
5757 "%sProtectKernelTunables: %s\n"
5758 "%sProtectKernelModules: %s\n"
5759 "%sProtectKernelLogs: %s\n"
5760 "%sProtectClock: %s\n"
5761 "%sProtectControlGroups: %s\n"
5762 "%sPrivateNetwork: %s\n"
5763 "%sPrivateUsers: %s\n"
5764 "%sProtectHome: %s\n"
5765 "%sProtectSystem: %s\n"
5766 "%sMountAPIVFS: %s\n"
5767 "%sIgnoreSIGPIPE: %s\n"
5768 "%sMemoryDenyWriteExecute: %s\n"
5769 "%sRestrictRealtime: %s\n"
5770 "%sRestrictSUIDSGID: %s\n"
5771 "%sKeyringMode: %s\n"
5772 "%sProtectHostname: %s\n"
5773 "%sProtectProc: %s\n"
5774 "%sProcSubset: %s\n",
5775 prefix, c->umask,
5776 prefix, empty_to_root(c->working_directory),
5777 prefix, empty_to_root(c->root_directory),
5778 prefix, yes_no(c->non_blocking),
5779 prefix, yes_no(c->private_tmp),
5780 prefix, yes_no(c->private_devices),
5781 prefix, yes_no(c->protect_kernel_tunables),
5782 prefix, yes_no(c->protect_kernel_modules),
5783 prefix, yes_no(c->protect_kernel_logs),
5784 prefix, yes_no(c->protect_clock),
5785 prefix, yes_no(c->protect_control_groups),
5786 prefix, yes_no(c->private_network),
5787 prefix, yes_no(c->private_users),
5788 prefix, protect_home_to_string(c->protect_home),
5789 prefix, protect_system_to_string(c->protect_system),
5790 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5791 prefix, yes_no(c->ignore_sigpipe),
5792 prefix, yes_no(c->memory_deny_write_execute),
5793 prefix, yes_no(c->restrict_realtime),
5794 prefix, yes_no(c->restrict_suid_sgid),
5795 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5796 prefix, yes_no(c->protect_hostname),
5797 prefix, protect_proc_to_string(c->protect_proc),
5798 prefix, proc_subset_to_string(c->proc_subset));
5799
5800 if (c->root_image)
5801 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5802
5803 if (c->root_image_options) {
5804 fprintf(f, "%sRootImageOptions:", prefix);
5805 LIST_FOREACH(mount_options, o, c->root_image_options)
5806 if (!isempty(o->options))
5807 fprintf(f, " %s:%s",
5808 partition_designator_to_string(o->partition_designator),
5809 o->options);
5810 fprintf(f, "\n");
5811 }
5812
5813 if (c->root_hash) {
5814 _cleanup_free_ char *encoded = NULL;
5815 encoded = hexmem(c->root_hash, c->root_hash_size);
5816 if (encoded)
5817 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5818 }
5819
5820 if (c->root_hash_path)
5821 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5822
5823 if (c->root_hash_sig) {
5824 _cleanup_free_ char *encoded = NULL;
5825 ssize_t len;
5826 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5827 if (len)
5828 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5829 }
5830
5831 if (c->root_hash_sig_path)
5832 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5833
5834 if (c->root_verity)
5835 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5836
5837 STRV_FOREACH(e, c->environment)
5838 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5839
5840 STRV_FOREACH(e, c->environment_files)
5841 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5842
5843 STRV_FOREACH(e, c->pass_environment)
5844 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5845
5846 STRV_FOREACH(e, c->unset_environment)
5847 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5848
5849 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5850
5851 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5852 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5853
5854 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
5855 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path);
5856
5857 STRV_FOREACH(d, c->directories[dt].items[i].symlinks)
5858 fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d);
5859 }
5860 }
5861
5862 fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC));
5863
5864 if (c->nice_set)
5865 fprintf(f, "%sNice: %i\n", prefix, c->nice);
5866
5867 if (c->oom_score_adjust_set)
5868 fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust);
5869
5870 if (c->coredump_filter_set)
5871 fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter);
5872
5873 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5874 if (c->rlimit[i]) {
5875 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5876 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5877 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5878 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5879 }
5880
5881 if (c->ioprio_set) {
5882 _cleanup_free_ char *class_str = NULL;
5883
5884 r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str);
5885 if (r >= 0)
5886 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5887
5888 fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio));
5889 }
5890
5891 if (c->cpu_sched_set) {
5892 _cleanup_free_ char *policy_str = NULL;
5893
5894 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5895 if (r >= 0)
5896 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5897
5898 fprintf(f,
5899 "%sCPUSchedulingPriority: %i\n"
5900 "%sCPUSchedulingResetOnFork: %s\n",
5901 prefix, c->cpu_sched_priority,
5902 prefix, yes_no(c->cpu_sched_reset_on_fork));
5903 }
5904
5905 if (c->cpu_set.set) {
5906 _cleanup_free_ char *affinity = NULL;
5907
5908 affinity = cpu_set_to_range_string(&c->cpu_set);
5909 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5910 }
5911
5912 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5913 _cleanup_free_ char *nodes = NULL;
5914
5915 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5916 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5917 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5918 }
5919
5920 if (c->timer_slack_nsec != NSEC_INFINITY)
5921 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5922
5923 fprintf(f,
5924 "%sStandardInput: %s\n"
5925 "%sStandardOutput: %s\n"
5926 "%sStandardError: %s\n",
5927 prefix, exec_input_to_string(c->std_input),
5928 prefix, exec_output_to_string(c->std_output),
5929 prefix, exec_output_to_string(c->std_error));
5930
5931 if (c->std_input == EXEC_INPUT_NAMED_FD)
5932 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5933 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5934 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5935 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5936 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5937
5938 if (c->std_input == EXEC_INPUT_FILE)
5939 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5940 if (c->std_output == EXEC_OUTPUT_FILE)
5941 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5942 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5943 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5944 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
5945 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5946 if (c->std_error == EXEC_OUTPUT_FILE)
5947 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5948 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5949 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5950 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
5951 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5952
5953 if (c->tty_path)
5954 fprintf(f,
5955 "%sTTYPath: %s\n"
5956 "%sTTYReset: %s\n"
5957 "%sTTYVHangup: %s\n"
5958 "%sTTYVTDisallocate: %s\n"
5959 "%sTTYRows: %u\n"
5960 "%sTTYColumns: %u\n",
5961 prefix, c->tty_path,
5962 prefix, yes_no(c->tty_reset),
5963 prefix, yes_no(c->tty_vhangup),
5964 prefix, yes_no(c->tty_vt_disallocate),
5965 prefix, c->tty_rows,
5966 prefix, c->tty_cols);
5967
5968 if (IN_SET(c->std_output,
5969 EXEC_OUTPUT_KMSG,
5970 EXEC_OUTPUT_JOURNAL,
5971 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5972 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5973 IN_SET(c->std_error,
5974 EXEC_OUTPUT_KMSG,
5975 EXEC_OUTPUT_JOURNAL,
5976 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5977 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5978
5979 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5980
5981 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5982 if (r >= 0)
5983 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5984
5985 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5986 if (r >= 0)
5987 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5988 }
5989
5990 if (c->log_level_max >= 0) {
5991 _cleanup_free_ char *t = NULL;
5992
5993 (void) log_level_to_string_alloc(c->log_level_max, &t);
5994
5995 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5996 }
5997
5998 if (c->log_ratelimit_interval_usec > 0)
5999 fprintf(f,
6000 "%sLogRateLimitIntervalSec: %s\n",
6001 prefix, FORMAT_TIMESPAN(c->log_ratelimit_interval_usec, USEC_PER_SEC));
6002
6003 if (c->log_ratelimit_burst > 0)
6004 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
6005
6006 if (!set_isempty(c->log_filter_allowed_patterns) || !set_isempty(c->log_filter_denied_patterns)) {
6007 fprintf(f, "%sLogFilterPatterns:", prefix);
6008
6009 char *pattern;
6010 SET_FOREACH(pattern, c->log_filter_allowed_patterns)
6011 fprintf(f, " %s", pattern);
6012 SET_FOREACH(pattern, c->log_filter_denied_patterns)
6013 fprintf(f, " ~%s", pattern);
6014 fputc('\n', f);
6015 }
6016
6017 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
6018 fprintf(f, "%sLogExtraFields: ", prefix);
6019 fwrite(c->log_extra_fields[j].iov_base,
6020 1, c->log_extra_fields[j].iov_len,
6021 f);
6022 fputc('\n', f);
6023 }
6024
6025 if (c->log_namespace)
6026 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
6027
6028 if (c->secure_bits) {
6029 _cleanup_free_ char *str = NULL;
6030
6031 r = secure_bits_to_string_alloc(c->secure_bits, &str);
6032 if (r >= 0)
6033 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
6034 }
6035
6036 if (c->capability_bounding_set != CAP_ALL) {
6037 _cleanup_free_ char *str = NULL;
6038
6039 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
6040 if (r >= 0)
6041 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
6042 }
6043
6044 if (c->capability_ambient_set != 0) {
6045 _cleanup_free_ char *str = NULL;
6046
6047 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
6048 if (r >= 0)
6049 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
6050 }
6051
6052 if (c->user)
6053 fprintf(f, "%sUser: %s\n", prefix, c->user);
6054 if (c->group)
6055 fprintf(f, "%sGroup: %s\n", prefix, c->group);
6056
6057 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
6058
6059 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
6060
6061 if (c->pam_name)
6062 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
6063
6064 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
6065 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
6066 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
6067 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
6068 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
6069 strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path);
6070
6071 for (size_t i = 0; i < c->n_bind_mounts; i++)
6072 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
6073 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
6074 c->bind_mounts[i].ignore_enoent ? "-": "",
6075 c->bind_mounts[i].source,
6076 c->bind_mounts[i].destination,
6077 c->bind_mounts[i].recursive ? "rbind" : "norbind");
6078
6079 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
6080 const TemporaryFileSystem *t = c->temporary_filesystems + i;
6081
6082 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
6083 t->path,
6084 isempty(t->options) ? "" : ":",
6085 strempty(t->options));
6086 }
6087
6088 if (c->utmp_id)
6089 fprintf(f,
6090 "%sUtmpIdentifier: %s\n",
6091 prefix, c->utmp_id);
6092
6093 if (c->selinux_context)
6094 fprintf(f,
6095 "%sSELinuxContext: %s%s\n",
6096 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
6097
6098 if (c->apparmor_profile)
6099 fprintf(f,
6100 "%sAppArmorProfile: %s%s\n",
6101 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
6102
6103 if (c->smack_process_label)
6104 fprintf(f,
6105 "%sSmackProcessLabel: %s%s\n",
6106 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
6107
6108 if (c->personality != PERSONALITY_INVALID)
6109 fprintf(f,
6110 "%sPersonality: %s\n",
6111 prefix, strna(personality_to_string(c->personality)));
6112
6113 fprintf(f,
6114 "%sLockPersonality: %s\n",
6115 prefix, yes_no(c->lock_personality));
6116
6117 if (c->syscall_filter) {
6118 fprintf(f,
6119 "%sSystemCallFilter: ",
6120 prefix);
6121
6122 if (!c->syscall_allow_list)
6123 fputc('~', f);
6124
6125 #if HAVE_SECCOMP
6126 void *id, *val;
6127 bool first = true;
6128 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
6129 _cleanup_free_ char *name = NULL;
6130 const char *errno_name = NULL;
6131 int num = PTR_TO_INT(val);
6132
6133 if (first)
6134 first = false;
6135 else
6136 fputc(' ', f);
6137
6138 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
6139 fputs(strna(name), f);
6140
6141 if (num >= 0) {
6142 errno_name = seccomp_errno_or_action_to_string(num);
6143 if (errno_name)
6144 fprintf(f, ":%s", errno_name);
6145 else
6146 fprintf(f, ":%d", num);
6147 }
6148 }
6149 #endif
6150
6151 fputc('\n', f);
6152 }
6153
6154 if (c->syscall_archs) {
6155 fprintf(f,
6156 "%sSystemCallArchitectures:",
6157 prefix);
6158
6159 #if HAVE_SECCOMP
6160 void *id;
6161 SET_FOREACH(id, c->syscall_archs)
6162 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
6163 #endif
6164 fputc('\n', f);
6165 }
6166
6167 if (exec_context_restrict_namespaces_set(c)) {
6168 _cleanup_free_ char *s = NULL;
6169
6170 r = namespace_flags_to_string(c->restrict_namespaces, &s);
6171 if (r >= 0)
6172 fprintf(f, "%sRestrictNamespaces: %s\n",
6173 prefix, strna(s));
6174 }
6175
6176 #if HAVE_LIBBPF
6177 if (exec_context_restrict_filesystems_set(c)) {
6178 char *fs;
6179 SET_FOREACH(fs, c->restrict_filesystems)
6180 fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs);
6181 }
6182 #endif
6183
6184 if (c->network_namespace_path)
6185 fprintf(f,
6186 "%sNetworkNamespacePath: %s\n",
6187 prefix, c->network_namespace_path);
6188
6189 if (c->syscall_errno > 0) {
6190 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
6191
6192 #if HAVE_SECCOMP
6193 const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
6194 if (errno_name)
6195 fputs(errno_name, f);
6196 else
6197 fprintf(f, "%d", c->syscall_errno);
6198 #endif
6199 fputc('\n', f);
6200 }
6201
6202 for (size_t i = 0; i < c->n_mount_images; i++) {
6203 fprintf(f, "%sMountImages: %s%s:%s", prefix,
6204 c->mount_images[i].ignore_enoent ? "-": "",
6205 c->mount_images[i].source,
6206 c->mount_images[i].destination);
6207 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
6208 fprintf(f, ":%s:%s",
6209 partition_designator_to_string(o->partition_designator),
6210 strempty(o->options));
6211 fprintf(f, "\n");
6212 }
6213
6214 for (size_t i = 0; i < c->n_extension_images; i++) {
6215 fprintf(f, "%sExtensionImages: %s%s", prefix,
6216 c->extension_images[i].ignore_enoent ? "-": "",
6217 c->extension_images[i].source);
6218 LIST_FOREACH(mount_options, o, c->extension_images[i].mount_options)
6219 fprintf(f, ":%s:%s",
6220 partition_designator_to_string(o->partition_designator),
6221 strempty(o->options));
6222 fprintf(f, "\n");
6223 }
6224
6225 strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories);
6226 }
6227
6228 bool exec_context_maintains_privileges(const ExecContext *c) {
6229 assert(c);
6230
6231 /* Returns true if the process forked off would run under
6232 * an unchanged UID or as root. */
6233
6234 if (!c->user)
6235 return true;
6236
6237 if (streq(c->user, "root") || streq(c->user, "0"))
6238 return true;
6239
6240 return false;
6241 }
6242
6243 int exec_context_get_effective_ioprio(const ExecContext *c) {
6244 int p;
6245
6246 assert(c);
6247
6248 if (c->ioprio_set)
6249 return c->ioprio;
6250
6251 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
6252 if (p < 0)
6253 return IOPRIO_DEFAULT_CLASS_AND_PRIO;
6254
6255 return ioprio_normalize(p);
6256 }
6257
6258 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
6259 assert(c);
6260
6261 /* Explicit setting wins */
6262 if (c->mount_apivfs_set)
6263 return c->mount_apivfs;
6264
6265 /* Default to "yes" if root directory or image are specified */
6266 if (exec_context_with_rootfs(c))
6267 return true;
6268
6269 return false;
6270 }
6271
6272 void exec_context_free_log_extra_fields(ExecContext *c) {
6273 assert(c);
6274
6275 for (size_t l = 0; l < c->n_log_extra_fields; l++)
6276 free(c->log_extra_fields[l].iov_base);
6277 c->log_extra_fields = mfree(c->log_extra_fields);
6278 c->n_log_extra_fields = 0;
6279 }
6280
6281 void exec_context_revert_tty(ExecContext *c) {
6282 _cleanup_close_ int fd = -EBADF;
6283 const char *path;
6284 struct stat st;
6285 int r;
6286
6287 assert(c);
6288
6289 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
6290 exec_context_tty_reset(c, NULL);
6291
6292 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
6293 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
6294 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
6295 if (!exec_context_may_touch_tty(c))
6296 return;
6297
6298 path = exec_context_tty_path(c);
6299 if (!path)
6300 return;
6301
6302 fd = open(path, O_PATH|O_CLOEXEC);
6303 if (fd < 0)
6304 return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno,
6305 "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m",
6306 path);
6307
6308 if (fstat(fd, &st) < 0)
6309 return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path);
6310
6311 /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check
6312 * if things are a character device, since a proper check either means we'd have to open the TTY and
6313 * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects
6314 * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother
6315 * with this at all? → https://github.com/systemd/systemd/issues/19213 */
6316 if (!S_ISCHR(st.st_mode))
6317 return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path);
6318
6319 r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID);
6320 if (r < 0)
6321 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
6322 }
6323
6324 int exec_context_get_clean_directories(
6325 ExecContext *c,
6326 char **prefix,
6327 ExecCleanMask mask,
6328 char ***ret) {
6329
6330 _cleanup_strv_free_ char **l = NULL;
6331 int r;
6332
6333 assert(c);
6334 assert(prefix);
6335 assert(ret);
6336
6337 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
6338 if (!FLAGS_SET(mask, 1U << t))
6339 continue;
6340
6341 if (!prefix[t])
6342 continue;
6343
6344 for (size_t i = 0; i < c->directories[t].n_items; i++) {
6345 char *j;
6346
6347 j = path_join(prefix[t], c->directories[t].items[i].path);
6348 if (!j)
6349 return -ENOMEM;
6350
6351 r = strv_consume(&l, j);
6352 if (r < 0)
6353 return r;
6354
6355 /* Also remove private directories unconditionally. */
6356 if (t != EXEC_DIRECTORY_CONFIGURATION) {
6357 j = path_join(prefix[t], "private", c->directories[t].items[i].path);
6358 if (!j)
6359 return -ENOMEM;
6360
6361 r = strv_consume(&l, j);
6362 if (r < 0)
6363 return r;
6364 }
6365
6366 STRV_FOREACH(symlink, c->directories[t].items[i].symlinks) {
6367 j = path_join(prefix[t], *symlink);
6368 if (!j)
6369 return -ENOMEM;
6370
6371 r = strv_consume(&l, j);
6372 if (r < 0)
6373 return r;
6374 }
6375 }
6376 }
6377
6378 *ret = TAKE_PTR(l);
6379 return 0;
6380 }
6381
6382 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
6383 ExecCleanMask mask = 0;
6384
6385 assert(c);
6386 assert(ret);
6387
6388 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
6389 if (c->directories[t].n_items > 0)
6390 mask |= 1U << t;
6391
6392 *ret = mask;
6393 return 0;
6394 }
6395
6396 void exec_status_start(ExecStatus *s, pid_t pid) {
6397 assert(s);
6398
6399 *s = (ExecStatus) {
6400 .pid = pid,
6401 };
6402
6403 dual_timestamp_get(&s->start_timestamp);
6404 }
6405
6406 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
6407 assert(s);
6408
6409 if (s->pid != pid)
6410 *s = (ExecStatus) {
6411 .pid = pid,
6412 };
6413
6414 dual_timestamp_get(&s->exit_timestamp);
6415
6416 s->code = code;
6417 s->status = status;
6418
6419 if (context && context->utmp_id)
6420 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
6421 }
6422
6423 void exec_status_reset(ExecStatus *s) {
6424 assert(s);
6425
6426 *s = (ExecStatus) {};
6427 }
6428
6429 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
6430 assert(s);
6431 assert(f);
6432
6433 if (s->pid <= 0)
6434 return;
6435
6436 prefix = strempty(prefix);
6437
6438 fprintf(f,
6439 "%sPID: "PID_FMT"\n",
6440 prefix, s->pid);
6441
6442 if (dual_timestamp_is_set(&s->start_timestamp))
6443 fprintf(f,
6444 "%sStart Timestamp: %s\n",
6445 prefix, FORMAT_TIMESTAMP(s->start_timestamp.realtime));
6446
6447 if (dual_timestamp_is_set(&s->exit_timestamp))
6448 fprintf(f,
6449 "%sExit Timestamp: %s\n"
6450 "%sExit Code: %s\n"
6451 "%sExit Status: %i\n",
6452 prefix, FORMAT_TIMESTAMP(s->exit_timestamp.realtime),
6453 prefix, sigchld_code_to_string(s->code),
6454 prefix, s->status);
6455 }
6456
6457 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
6458 _cleanup_free_ char *cmd = NULL;
6459 const char *prefix2;
6460
6461 assert(c);
6462 assert(f);
6463
6464 prefix = strempty(prefix);
6465 prefix2 = strjoina(prefix, "\t");
6466
6467 cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY);
6468
6469 fprintf(f,
6470 "%sCommand Line: %s\n",
6471 prefix, strnull(cmd));
6472
6473 exec_status_dump(&c->exec_status, f, prefix2);
6474 }
6475
6476 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
6477 assert(f);
6478
6479 prefix = strempty(prefix);
6480
6481 LIST_FOREACH(command, i, c)
6482 exec_command_dump(i, f, prefix);
6483 }
6484
6485 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
6486 ExecCommand *end;
6487
6488 assert(l);
6489 assert(e);
6490
6491 if (*l) {
6492 /* It's kind of important, that we keep the order here */
6493 LIST_FIND_TAIL(command, *l, end);
6494 LIST_INSERT_AFTER(command, *l, end, e);
6495 } else
6496 *l = e;
6497 }
6498
6499 int exec_command_set(ExecCommand *c, const char *path, ...) {
6500 va_list ap;
6501 char **l, *p;
6502
6503 assert(c);
6504 assert(path);
6505
6506 va_start(ap, path);
6507 l = strv_new_ap(path, ap);
6508 va_end(ap);
6509
6510 if (!l)
6511 return -ENOMEM;
6512
6513 p = strdup(path);
6514 if (!p) {
6515 strv_free(l);
6516 return -ENOMEM;
6517 }
6518
6519 free_and_replace(c->path, p);
6520
6521 return strv_free_and_replace(c->argv, l);
6522 }
6523
6524 int exec_command_append(ExecCommand *c, const char *path, ...) {
6525 _cleanup_strv_free_ char **l = NULL;
6526 va_list ap;
6527 int r;
6528
6529 assert(c);
6530 assert(path);
6531
6532 va_start(ap, path);
6533 l = strv_new_ap(path, ap);
6534 va_end(ap);
6535
6536 if (!l)
6537 return -ENOMEM;
6538
6539 r = strv_extend_strv(&c->argv, l, false);
6540 if (r < 0)
6541 return r;
6542
6543 return 0;
6544 }
6545
6546 static void *remove_tmpdir_thread(void *p) {
6547 _cleanup_free_ char *path = p;
6548
6549 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
6550 return NULL;
6551 }
6552
6553 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
6554 int r;
6555
6556 if (!rt)
6557 return NULL;
6558
6559 if (rt->manager)
6560 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
6561
6562 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
6563
6564 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
6565 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
6566
6567 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
6568 if (r < 0)
6569 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
6570 else
6571 rt->tmp_dir = NULL;
6572 }
6573
6574 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
6575 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
6576
6577 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
6578 if (r < 0)
6579 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
6580 else
6581 rt->var_tmp_dir = NULL;
6582 }
6583
6584 rt->id = mfree(rt->id);
6585 rt->tmp_dir = mfree(rt->tmp_dir);
6586 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
6587 safe_close_pair(rt->netns_storage_socket);
6588 safe_close_pair(rt->ipcns_storage_socket);
6589 return mfree(rt);
6590 }
6591
6592 static void exec_runtime_freep(ExecRuntime **rt) {
6593 (void) exec_runtime_free(*rt, false);
6594 }
6595
6596 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6597 _cleanup_free_ char *id_copy = NULL;
6598 ExecRuntime *n;
6599
6600 assert(ret);
6601
6602 id_copy = strdup(id);
6603 if (!id_copy)
6604 return -ENOMEM;
6605
6606 n = new(ExecRuntime, 1);
6607 if (!n)
6608 return -ENOMEM;
6609
6610 *n = (ExecRuntime) {
6611 .id = TAKE_PTR(id_copy),
6612 .netns_storage_socket = { -EBADF, -EBADF },
6613 .ipcns_storage_socket = { -EBADF, -EBADF },
6614 };
6615
6616 *ret = n;
6617 return 0;
6618 }
6619
6620 static int exec_runtime_add(
6621 Manager *m,
6622 const char *id,
6623 char **tmp_dir,
6624 char **var_tmp_dir,
6625 int netns_storage_socket[2],
6626 int ipcns_storage_socket[2],
6627 ExecRuntime **ret) {
6628
6629 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6630 int r;
6631
6632 assert(m);
6633 assert(id);
6634
6635 /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */
6636
6637 r = exec_runtime_allocate(&rt, id);
6638 if (r < 0)
6639 return r;
6640
6641 r = hashmap_ensure_put(&m->exec_runtime_by_id, &string_hash_ops, rt->id, rt);
6642 if (r < 0)
6643 return r;
6644
6645 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6646 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6647 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6648
6649 if (netns_storage_socket) {
6650 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6651 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6652 }
6653
6654 if (ipcns_storage_socket) {
6655 rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]);
6656 rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]);
6657 }
6658
6659 rt->manager = m;
6660
6661 if (ret)
6662 *ret = rt;
6663 /* do not remove created ExecRuntime object when the operation succeeds. */
6664 TAKE_PTR(rt);
6665 return 0;
6666 }
6667
6668 static int exec_runtime_make(
6669 Manager *m,
6670 const ExecContext *c,
6671 const char *id,
6672 ExecRuntime **ret) {
6673
6674 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6675 _cleanup_close_pair_ int netns_storage_socket[2] = { -EBADF, -EBADF }, ipcns_storage_socket[2] = { -EBADF, -EBADF };
6676 int r;
6677
6678 assert(m);
6679 assert(c);
6680 assert(id);
6681
6682 /* It is not necessary to create ExecRuntime object. */
6683 if (!c->private_network && !c->private_ipc && !c->private_tmp && !c->network_namespace_path) {
6684 *ret = NULL;
6685 return 0;
6686 }
6687
6688 if (c->private_tmp &&
6689 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6690 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6691 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6692 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6693 if (r < 0)
6694 return r;
6695 }
6696
6697 if (c->private_network || c->network_namespace_path) {
6698 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6699 return -errno;
6700 }
6701
6702 if (c->private_ipc || c->ipc_namespace_path) {
6703 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0)
6704 return -errno;
6705 }
6706
6707 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret);
6708 if (r < 0)
6709 return r;
6710
6711 return 1;
6712 }
6713
6714 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6715 ExecRuntime *rt;
6716 int r;
6717
6718 assert(m);
6719 assert(id);
6720 assert(ret);
6721
6722 rt = hashmap_get(m->exec_runtime_by_id, id);
6723 if (rt)
6724 /* We already have an ExecRuntime object, let's increase the ref count and reuse it */
6725 goto ref;
6726
6727 if (!create) {
6728 *ret = NULL;
6729 return 0;
6730 }
6731
6732 /* If not found, then create a new object. */
6733 r = exec_runtime_make(m, c, id, &rt);
6734 if (r < 0)
6735 return r;
6736 if (r == 0) {
6737 /* When r == 0, it is not necessary to create ExecRuntime object. */
6738 *ret = NULL;
6739 return 0;
6740 }
6741
6742 ref:
6743 /* increment reference counter. */
6744 rt->n_ref++;
6745 *ret = rt;
6746 return 1;
6747 }
6748
6749 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6750 if (!rt)
6751 return NULL;
6752
6753 assert(rt->n_ref > 0);
6754
6755 rt->n_ref--;
6756 if (rt->n_ref > 0)
6757 return NULL;
6758
6759 return exec_runtime_free(rt, destroy);
6760 }
6761
6762 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6763 ExecRuntime *rt;
6764
6765 assert(m);
6766 assert(f);
6767 assert(fds);
6768
6769 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6770 fprintf(f, "exec-runtime=%s", rt->id);
6771
6772 if (rt->tmp_dir)
6773 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6774
6775 if (rt->var_tmp_dir)
6776 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6777
6778 if (rt->netns_storage_socket[0] >= 0) {
6779 int copy;
6780
6781 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6782 if (copy < 0)
6783 return copy;
6784
6785 fprintf(f, " netns-socket-0=%i", copy);
6786 }
6787
6788 if (rt->netns_storage_socket[1] >= 0) {
6789 int copy;
6790
6791 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6792 if (copy < 0)
6793 return copy;
6794
6795 fprintf(f, " netns-socket-1=%i", copy);
6796 }
6797
6798 if (rt->ipcns_storage_socket[0] >= 0) {
6799 int copy;
6800
6801 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]);
6802 if (copy < 0)
6803 return copy;
6804
6805 fprintf(f, " ipcns-socket-0=%i", copy);
6806 }
6807
6808 if (rt->ipcns_storage_socket[1] >= 0) {
6809 int copy;
6810
6811 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]);
6812 if (copy < 0)
6813 return copy;
6814
6815 fprintf(f, " ipcns-socket-1=%i", copy);
6816 }
6817
6818 fputc('\n', f);
6819 }
6820
6821 return 0;
6822 }
6823
6824 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6825 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6826 ExecRuntime *rt;
6827 int r;
6828
6829 /* This is for the migration from old (v237 or earlier) deserialization text.
6830 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6831 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6832 * so or not from the serialized text, then we always creates a new object owned by this. */
6833
6834 assert(u);
6835 assert(key);
6836 assert(value);
6837
6838 /* Manager manages ExecRuntime objects by the unit id.
6839 * So, we omit the serialized text when the unit does not have id (yet?)... */
6840 if (isempty(u->id)) {
6841 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6842 return 0;
6843 }
6844
6845 if (hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops) < 0)
6846 return log_oom();
6847
6848 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6849 if (!rt) {
6850 if (exec_runtime_allocate(&rt_create, u->id) < 0)
6851 return log_oom();
6852
6853 rt = rt_create;
6854 }
6855
6856 if (streq(key, "tmp-dir")) {
6857 if (free_and_strdup_warn(&rt->tmp_dir, value) < 0)
6858 return -ENOMEM;
6859
6860 } else if (streq(key, "var-tmp-dir")) {
6861 if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0)
6862 return -ENOMEM;
6863
6864 } else if (streq(key, "netns-socket-0")) {
6865 int fd;
6866
6867 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6868 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6869 return 0;
6870 }
6871
6872 safe_close(rt->netns_storage_socket[0]);
6873 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6874
6875 } else if (streq(key, "netns-socket-1")) {
6876 int fd;
6877
6878 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6879 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6880 return 0;
6881 }
6882
6883 safe_close(rt->netns_storage_socket[1]);
6884 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6885
6886 } else
6887 return 0;
6888
6889 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6890 if (rt_create) {
6891 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6892 if (r < 0) {
6893 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6894 return 0;
6895 }
6896
6897 rt_create->manager = u->manager;
6898
6899 /* Avoid cleanup */
6900 TAKE_PTR(rt_create);
6901 }
6902
6903 return 1;
6904 }
6905
6906 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6907 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6908 char *id = NULL;
6909 int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1};
6910 const char *p, *v = ASSERT_PTR(value);
6911 size_t n;
6912
6913 assert(m);
6914 assert(fds);
6915
6916 n = strcspn(v, " ");
6917 id = strndupa_safe(v, n);
6918 if (v[n] != ' ')
6919 goto finalize;
6920 p = v + n + 1;
6921
6922 v = startswith(p, "tmp-dir=");
6923 if (v) {
6924 n = strcspn(v, " ");
6925 tmp_dir = strndup(v, n);
6926 if (!tmp_dir)
6927 return log_oom();
6928 if (v[n] != ' ')
6929 goto finalize;
6930 p = v + n + 1;
6931 }
6932
6933 v = startswith(p, "var-tmp-dir=");
6934 if (v) {
6935 n = strcspn(v, " ");
6936 var_tmp_dir = strndup(v, n);
6937 if (!var_tmp_dir)
6938 return log_oom();
6939 if (v[n] != ' ')
6940 goto finalize;
6941 p = v + n + 1;
6942 }
6943
6944 v = startswith(p, "netns-socket-0=");
6945 if (v) {
6946 char *buf;
6947
6948 n = strcspn(v, " ");
6949 buf = strndupa_safe(v, n);
6950
6951 r = safe_atoi(buf, &netns_fdpair[0]);
6952 if (r < 0)
6953 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6954 if (!fdset_contains(fds, netns_fdpair[0]))
6955 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6956 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", netns_fdpair[0]);
6957 netns_fdpair[0] = fdset_remove(fds, netns_fdpair[0]);
6958 if (v[n] != ' ')
6959 goto finalize;
6960 p = v + n + 1;
6961 }
6962
6963 v = startswith(p, "netns-socket-1=");
6964 if (v) {
6965 char *buf;
6966
6967 n = strcspn(v, " ");
6968 buf = strndupa_safe(v, n);
6969
6970 r = safe_atoi(buf, &netns_fdpair[1]);
6971 if (r < 0)
6972 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6973 if (!fdset_contains(fds, netns_fdpair[1]))
6974 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6975 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", netns_fdpair[1]);
6976 netns_fdpair[1] = fdset_remove(fds, netns_fdpair[1]);
6977 if (v[n] != ' ')
6978 goto finalize;
6979 p = v + n + 1;
6980 }
6981
6982 v = startswith(p, "ipcns-socket-0=");
6983 if (v) {
6984 char *buf;
6985
6986 n = strcspn(v, " ");
6987 buf = strndupa_safe(v, n);
6988
6989 r = safe_atoi(buf, &ipcns_fdpair[0]);
6990 if (r < 0)
6991 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-0=%s: %m", buf);
6992 if (!fdset_contains(fds, ipcns_fdpair[0]))
6993 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6994 "exec-runtime specification ipcns-socket-0= refers to unknown fd %d: %m", ipcns_fdpair[0]);
6995 ipcns_fdpair[0] = fdset_remove(fds, ipcns_fdpair[0]);
6996 if (v[n] != ' ')
6997 goto finalize;
6998 p = v + n + 1;
6999 }
7000
7001 v = startswith(p, "ipcns-socket-1=");
7002 if (v) {
7003 char *buf;
7004
7005 n = strcspn(v, " ");
7006 buf = strndupa_safe(v, n);
7007
7008 r = safe_atoi(buf, &ipcns_fdpair[1]);
7009 if (r < 0)
7010 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-1=%s: %m", buf);
7011 if (!fdset_contains(fds, ipcns_fdpair[1]))
7012 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7013 "exec-runtime specification ipcns-socket-1= refers to unknown fd %d: %m", ipcns_fdpair[1]);
7014 ipcns_fdpair[1] = fdset_remove(fds, ipcns_fdpair[1]);
7015 }
7016
7017 finalize:
7018 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL);
7019 if (r < 0)
7020 return log_debug_errno(r, "Failed to add exec-runtime: %m");
7021 return 0;
7022 }
7023
7024 void exec_runtime_vacuum(Manager *m) {
7025 ExecRuntime *rt;
7026
7027 assert(m);
7028
7029 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
7030
7031 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
7032 if (rt->n_ref > 0)
7033 continue;
7034
7035 (void) exec_runtime_free(rt, false);
7036 }
7037 }
7038
7039 void exec_params_clear(ExecParameters *p) {
7040 if (!p)
7041 return;
7042
7043 p->environment = strv_free(p->environment);
7044 p->fd_names = strv_free(p->fd_names);
7045 p->fds = mfree(p->fds);
7046 p->exec_fd = safe_close(p->exec_fd);
7047 }
7048
7049 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
7050 if (!sc)
7051 return NULL;
7052
7053 free(sc->id);
7054 free(sc->data);
7055 return mfree(sc);
7056 }
7057
7058 ExecLoadCredential *exec_load_credential_free(ExecLoadCredential *lc) {
7059 if (!lc)
7060 return NULL;
7061
7062 free(lc->id);
7063 free(lc->path);
7064 return mfree(lc);
7065 }
7066
7067 void exec_directory_done(ExecDirectory *d) {
7068 if (!d)
7069 return;
7070
7071 for (size_t i = 0; i < d->n_items; i++) {
7072 free(d->items[i].path);
7073 strv_free(d->items[i].symlinks);
7074 }
7075
7076 d->items = mfree(d->items);
7077 d->n_items = 0;
7078 d->mode = 0755;
7079 }
7080
7081 static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) {
7082 assert(d);
7083 assert(path);
7084
7085 for (size_t i = 0; i < d->n_items; i++)
7086 if (path_equal(d->items[i].path, path))
7087 return &d->items[i];
7088
7089 return NULL;
7090 }
7091
7092 int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) {
7093 _cleanup_strv_free_ char **s = NULL;
7094 _cleanup_free_ char *p = NULL;
7095 ExecDirectoryItem *existing;
7096 int r;
7097
7098 assert(d);
7099 assert(path);
7100
7101 existing = exec_directory_find(d, path);
7102 if (existing) {
7103 r = strv_extend(&existing->symlinks, symlink);
7104 if (r < 0)
7105 return r;
7106
7107 return 0; /* existing item is updated */
7108 }
7109
7110 p = strdup(path);
7111 if (!p)
7112 return -ENOMEM;
7113
7114 if (symlink) {
7115 s = strv_new(symlink);
7116 if (!s)
7117 return -ENOMEM;
7118 }
7119
7120 if (!GREEDY_REALLOC(d->items, d->n_items + 1))
7121 return -ENOMEM;
7122
7123 d->items[d->n_items++] = (ExecDirectoryItem) {
7124 .path = TAKE_PTR(p),
7125 .symlinks = TAKE_PTR(s),
7126 };
7127
7128 return 1; /* new item is added */
7129 }
7130
7131 static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) {
7132 assert(a);
7133 assert(b);
7134
7135 return path_compare(a->path, b->path);
7136 }
7137
7138 void exec_directory_sort(ExecDirectory *d) {
7139 assert(d);
7140
7141 /* Sort the exec directories to make always parent directories processed at first in
7142 * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first,
7143 * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the
7144 * list. See also comments in setup_exec_directory() and issue #24783. */
7145
7146 if (d->n_items <= 1)
7147 return;
7148
7149 typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func);
7150
7151 for (size_t i = 1; i < d->n_items; i++)
7152 for (size_t j = 0; j < i; j++)
7153 if (path_startswith(d->items[i].path, d->items[j].path)) {
7154 d->items[i].only_create = true;
7155 break;
7156 }
7157 }
7158
7159 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
7160 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_load_credential_hash_ops, char, string_hash_func, string_compare_func, ExecLoadCredential, exec_load_credential_free);
7161
7162 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
7163 [EXEC_INPUT_NULL] = "null",
7164 [EXEC_INPUT_TTY] = "tty",
7165 [EXEC_INPUT_TTY_FORCE] = "tty-force",
7166 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
7167 [EXEC_INPUT_SOCKET] = "socket",
7168 [EXEC_INPUT_NAMED_FD] = "fd",
7169 [EXEC_INPUT_DATA] = "data",
7170 [EXEC_INPUT_FILE] = "file",
7171 };
7172
7173 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
7174
7175 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
7176 [EXEC_OUTPUT_INHERIT] = "inherit",
7177 [EXEC_OUTPUT_NULL] = "null",
7178 [EXEC_OUTPUT_TTY] = "tty",
7179 [EXEC_OUTPUT_KMSG] = "kmsg",
7180 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
7181 [EXEC_OUTPUT_JOURNAL] = "journal",
7182 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
7183 [EXEC_OUTPUT_SOCKET] = "socket",
7184 [EXEC_OUTPUT_NAMED_FD] = "fd",
7185 [EXEC_OUTPUT_FILE] = "file",
7186 [EXEC_OUTPUT_FILE_APPEND] = "append",
7187 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
7188 };
7189
7190 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
7191
7192 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
7193 [EXEC_UTMP_INIT] = "init",
7194 [EXEC_UTMP_LOGIN] = "login",
7195 [EXEC_UTMP_USER] = "user",
7196 };
7197
7198 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
7199
7200 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
7201 [EXEC_PRESERVE_NO] = "no",
7202 [EXEC_PRESERVE_YES] = "yes",
7203 [EXEC_PRESERVE_RESTART] = "restart",
7204 };
7205
7206 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
7207
7208 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
7209 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7210 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
7211 [EXEC_DIRECTORY_STATE] = "StateDirectory",
7212 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
7213 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
7214 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
7215 };
7216
7217 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
7218
7219 /* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */
7220 static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7221 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink",
7222 [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink",
7223 [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink",
7224 [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink",
7225 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink",
7226 };
7227
7228 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType);
7229
7230 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
7231 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
7232 * directories, specifically .timer units with their timestamp touch file. */
7233 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7234 [EXEC_DIRECTORY_RUNTIME] = "runtime",
7235 [EXEC_DIRECTORY_STATE] = "state",
7236 [EXEC_DIRECTORY_CACHE] = "cache",
7237 [EXEC_DIRECTORY_LOGS] = "logs",
7238 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
7239 };
7240
7241 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
7242
7243 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
7244 * the service payload in. */
7245 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7246 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
7247 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
7248 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
7249 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
7250 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
7251 };
7252
7253 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
7254
7255 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
7256 [EXEC_KEYRING_INHERIT] = "inherit",
7257 [EXEC_KEYRING_PRIVATE] = "private",
7258 [EXEC_KEYRING_SHARED] = "shared",
7259 };
7260
7261 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);