]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
basic: move a bunch of cmdline-related funcs to new argv-util.c+h
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "argv-util.h"
43 #include "async.h"
44 #include "barrier.h"
45 #include "bpf-lsm.h"
46 #include "cap-list.h"
47 #include "capability-util.h"
48 #include "cgroup-setup.h"
49 #include "chase-symlinks.h"
50 #include "chown-recursive.h"
51 #include "cpu-set-util.h"
52 #include "creds-util.h"
53 #include "data-fd-util.h"
54 #include "def.h"
55 #include "env-file.h"
56 #include "env-util.h"
57 #include "errno-list.h"
58 #include "escape.h"
59 #include "execute.h"
60 #include "exit-status.h"
61 #include "fd-util.h"
62 #include "fileio.h"
63 #include "format-util.h"
64 #include "glob-util.h"
65 #include "hexdecoct.h"
66 #include "io-util.h"
67 #include "ioprio-util.h"
68 #include "label.h"
69 #include "log.h"
70 #include "macro.h"
71 #include "manager.h"
72 #include "manager-dump.h"
73 #include "memory-util.h"
74 #include "missing_fs.h"
75 #include "missing_ioprio.h"
76 #include "mkdir-label.h"
77 #include "mount-util.h"
78 #include "mountpoint-util.h"
79 #include "namespace.h"
80 #include "parse-util.h"
81 #include "path-util.h"
82 #include "process-util.h"
83 #include "random-util.h"
84 #include "recurse-dir.h"
85 #include "rlimit-util.h"
86 #include "rm-rf.h"
87 #if HAVE_SECCOMP
88 #include "seccomp-util.h"
89 #endif
90 #include "securebits-util.h"
91 #include "selinux-util.h"
92 #include "signal-util.h"
93 #include "smack-util.h"
94 #include "socket-util.h"
95 #include "sort-util.h"
96 #include "special.h"
97 #include "stat-util.h"
98 #include "string-table.h"
99 #include "string-util.h"
100 #include "strv.h"
101 #include "syslog-util.h"
102 #include "terminal-util.h"
103 #include "tmpfile-util.h"
104 #include "umask-util.h"
105 #include "unit-serialize.h"
106 #include "user-util.h"
107 #include "utmp-wtmp.h"
108
109 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
110 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
111
112 #define SNDBUF_SIZE (8*1024*1024)
113
114 static int shift_fds(int fds[], size_t n_fds) {
115 if (n_fds <= 0)
116 return 0;
117
118 /* Modifies the fds array! (sorts it) */
119
120 assert(fds);
121
122 for (int start = 0;;) {
123 int restart_from = -1;
124
125 for (int i = start; i < (int) n_fds; i++) {
126 int nfd;
127
128 /* Already at right index? */
129 if (fds[i] == i+3)
130 continue;
131
132 nfd = fcntl(fds[i], F_DUPFD, i + 3);
133 if (nfd < 0)
134 return -errno;
135
136 safe_close(fds[i]);
137 fds[i] = nfd;
138
139 /* Hmm, the fd we wanted isn't free? Then
140 * let's remember that and try again from here */
141 if (nfd != i+3 && restart_from < 0)
142 restart_from = i;
143 }
144
145 if (restart_from < 0)
146 break;
147
148 start = restart_from;
149 }
150
151 return 0;
152 }
153
154 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
155 size_t n_fds;
156 int r;
157
158 n_fds = n_socket_fds + n_storage_fds;
159 if (n_fds <= 0)
160 return 0;
161
162 assert(fds);
163
164 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
165 * O_NONBLOCK only applies to socket activation though. */
166
167 for (size_t i = 0; i < n_fds; i++) {
168
169 if (i < n_socket_fds) {
170 r = fd_nonblock(fds[i], nonblock);
171 if (r < 0)
172 return r;
173 }
174
175 /* We unconditionally drop FD_CLOEXEC from the fds,
176 * since after all we want to pass these fds to our
177 * children */
178
179 r = fd_cloexec(fds[i], false);
180 if (r < 0)
181 return r;
182 }
183
184 return 0;
185 }
186
187 static const char *exec_context_tty_path(const ExecContext *context) {
188 assert(context);
189
190 if (context->stdio_as_fds)
191 return NULL;
192
193 if (context->tty_path)
194 return context->tty_path;
195
196 return "/dev/console";
197 }
198
199 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
200 const char *path;
201
202 assert(context);
203
204 path = exec_context_tty_path(context);
205
206 if (context->tty_vhangup) {
207 if (p && p->stdin_fd >= 0)
208 (void) terminal_vhangup_fd(p->stdin_fd);
209 else if (path)
210 (void) terminal_vhangup(path);
211 }
212
213 if (context->tty_reset) {
214 if (p && p->stdin_fd >= 0)
215 (void) reset_terminal_fd(p->stdin_fd, true);
216 else if (path)
217 (void) reset_terminal(path);
218 }
219
220 if (p && p->stdin_fd >= 0)
221 (void) terminal_set_size_fd(p->stdin_fd, path, context->tty_rows, context->tty_cols);
222
223 if (context->tty_vt_disallocate && path)
224 (void) vt_disallocate(path);
225 }
226
227 static bool is_terminal_input(ExecInput i) {
228 return IN_SET(i,
229 EXEC_INPUT_TTY,
230 EXEC_INPUT_TTY_FORCE,
231 EXEC_INPUT_TTY_FAIL);
232 }
233
234 static bool is_terminal_output(ExecOutput o) {
235 return IN_SET(o,
236 EXEC_OUTPUT_TTY,
237 EXEC_OUTPUT_KMSG_AND_CONSOLE,
238 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
239 }
240
241 static bool is_kmsg_output(ExecOutput o) {
242 return IN_SET(o,
243 EXEC_OUTPUT_KMSG,
244 EXEC_OUTPUT_KMSG_AND_CONSOLE);
245 }
246
247 static bool exec_context_needs_term(const ExecContext *c) {
248 assert(c);
249
250 /* Return true if the execution context suggests we should set $TERM to something useful. */
251
252 if (is_terminal_input(c->std_input))
253 return true;
254
255 if (is_terminal_output(c->std_output))
256 return true;
257
258 if (is_terminal_output(c->std_error))
259 return true;
260
261 return !!c->tty_path;
262 }
263
264 static int open_null_as(int flags, int nfd) {
265 int fd;
266
267 assert(nfd >= 0);
268
269 fd = open("/dev/null", flags|O_NOCTTY);
270 if (fd < 0)
271 return -errno;
272
273 return move_fd(fd, nfd, false);
274 }
275
276 static int connect_journal_socket(
277 int fd,
278 const char *log_namespace,
279 uid_t uid,
280 gid_t gid) {
281
282 uid_t olduid = UID_INVALID;
283 gid_t oldgid = GID_INVALID;
284 const char *j;
285 int r;
286
287 j = log_namespace ?
288 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
289 "/run/systemd/journal/stdout";
290
291 if (gid_is_valid(gid)) {
292 oldgid = getgid();
293
294 if (setegid(gid) < 0)
295 return -errno;
296 }
297
298 if (uid_is_valid(uid)) {
299 olduid = getuid();
300
301 if (seteuid(uid) < 0) {
302 r = -errno;
303 goto restore_gid;
304 }
305 }
306
307 r = connect_unix_path(fd, AT_FDCWD, j);
308
309 /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if
310 an LSM interferes. */
311
312 if (uid_is_valid(uid))
313 (void) seteuid(olduid);
314
315 restore_gid:
316 if (gid_is_valid(gid))
317 (void) setegid(oldgid);
318
319 return r;
320 }
321
322 static int connect_logger_as(
323 const Unit *unit,
324 const ExecContext *context,
325 const ExecParameters *params,
326 ExecOutput output,
327 const char *ident,
328 int nfd,
329 uid_t uid,
330 gid_t gid) {
331
332 _cleanup_close_ int fd = -1;
333 int r;
334
335 assert(context);
336 assert(params);
337 assert(output < _EXEC_OUTPUT_MAX);
338 assert(ident);
339 assert(nfd >= 0);
340
341 fd = socket(AF_UNIX, SOCK_STREAM, 0);
342 if (fd < 0)
343 return -errno;
344
345 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
346 if (r < 0)
347 return r;
348
349 if (shutdown(fd, SHUT_RD) < 0)
350 return -errno;
351
352 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
353
354 if (dprintf(fd,
355 "%s\n"
356 "%s\n"
357 "%i\n"
358 "%i\n"
359 "%i\n"
360 "%i\n"
361 "%i\n",
362 context->syslog_identifier ?: ident,
363 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
364 context->syslog_priority,
365 !!context->syslog_level_prefix,
366 false,
367 is_kmsg_output(output),
368 is_terminal_output(output)) < 0)
369 return -errno;
370
371 return move_fd(TAKE_FD(fd), nfd, false);
372 }
373
374 static int open_terminal_as(const char *path, int flags, int nfd) {
375 int fd;
376
377 assert(path);
378 assert(nfd >= 0);
379
380 fd = open_terminal(path, flags | O_NOCTTY);
381 if (fd < 0)
382 return fd;
383
384 return move_fd(fd, nfd, false);
385 }
386
387 static int acquire_path(const char *path, int flags, mode_t mode) {
388 _cleanup_close_ int fd = -1;
389 int r;
390
391 assert(path);
392
393 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
394 flags |= O_CREAT;
395
396 fd = open(path, flags|O_NOCTTY, mode);
397 if (fd >= 0)
398 return TAKE_FD(fd);
399
400 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
401 return -errno;
402
403 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
404
405 fd = socket(AF_UNIX, SOCK_STREAM, 0);
406 if (fd < 0)
407 return -errno;
408
409 r = connect_unix_path(fd, AT_FDCWD, path);
410 if (IN_SET(r, -ENOTSOCK, -EINVAL))
411 /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this
412 * wasn't an AF_UNIX socket after all */
413 return -ENXIO;
414 if (r < 0)
415 return r;
416
417 if ((flags & O_ACCMODE) == O_RDONLY)
418 r = shutdown(fd, SHUT_WR);
419 else if ((flags & O_ACCMODE) == O_WRONLY)
420 r = shutdown(fd, SHUT_RD);
421 else
422 r = 0;
423 if (r < 0)
424 return -errno;
425
426 return TAKE_FD(fd);
427 }
428
429 static int fixup_input(
430 const ExecContext *context,
431 int socket_fd,
432 bool apply_tty_stdin) {
433
434 ExecInput std_input;
435
436 assert(context);
437
438 std_input = context->std_input;
439
440 if (is_terminal_input(std_input) && !apply_tty_stdin)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
444 return EXEC_INPUT_NULL;
445
446 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
447 return EXEC_INPUT_NULL;
448
449 return std_input;
450 }
451
452 static int fixup_output(ExecOutput output, int socket_fd) {
453
454 if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
455 return EXEC_OUTPUT_INHERIT;
456
457 return output;
458 }
459
460 static int setup_input(
461 const ExecContext *context,
462 const ExecParameters *params,
463 int socket_fd,
464 const int named_iofds[static 3]) {
465
466 ExecInput i;
467 int r;
468
469 assert(context);
470 assert(params);
471 assert(named_iofds);
472
473 if (params->stdin_fd >= 0) {
474 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
475 return -errno;
476
477 /* Try to make this the controlling tty, if it is a tty, and reset it */
478 if (isatty(STDIN_FILENO)) {
479 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
480 (void) reset_terminal_fd(STDIN_FILENO, true);
481 (void) terminal_set_size_fd(STDIN_FILENO, NULL, context->tty_rows, context->tty_cols);
482 }
483
484 return STDIN_FILENO;
485 }
486
487 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
488
489 switch (i) {
490
491 case EXEC_INPUT_NULL:
492 return open_null_as(O_RDONLY, STDIN_FILENO);
493
494 case EXEC_INPUT_TTY:
495 case EXEC_INPUT_TTY_FORCE:
496 case EXEC_INPUT_TTY_FAIL: {
497 int fd;
498
499 fd = acquire_terminal(exec_context_tty_path(context),
500 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
501 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
502 ACQUIRE_TERMINAL_WAIT,
503 USEC_INFINITY);
504 if (fd < 0)
505 return fd;
506
507 r = terminal_set_size_fd(fd, exec_context_tty_path(context), context->tty_rows, context->tty_cols);
508 if (r < 0)
509 return r;
510
511 return move_fd(fd, STDIN_FILENO, false);
512 }
513
514 case EXEC_INPUT_SOCKET:
515 assert(socket_fd >= 0);
516
517 return RET_NERRNO(dup2(socket_fd, STDIN_FILENO));
518
519 case EXEC_INPUT_NAMED_FD:
520 assert(named_iofds[STDIN_FILENO] >= 0);
521
522 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
523 return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO));
524
525 case EXEC_INPUT_DATA: {
526 int fd;
527
528 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
529 if (fd < 0)
530 return fd;
531
532 return move_fd(fd, STDIN_FILENO, false);
533 }
534
535 case EXEC_INPUT_FILE: {
536 bool rw;
537 int fd;
538
539 assert(context->stdio_file[STDIN_FILENO]);
540
541 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
542 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
543
544 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
545 if (fd < 0)
546 return fd;
547
548 return move_fd(fd, STDIN_FILENO, false);
549 }
550
551 default:
552 assert_not_reached();
553 }
554 }
555
556 static bool can_inherit_stderr_from_stdout(
557 const ExecContext *context,
558 ExecOutput o,
559 ExecOutput e) {
560
561 assert(context);
562
563 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
564 * stderr fd */
565
566 if (e == EXEC_OUTPUT_INHERIT)
567 return true;
568 if (e != o)
569 return false;
570
571 if (e == EXEC_OUTPUT_NAMED_FD)
572 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
573
574 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
575 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
576
577 return true;
578 }
579
580 static int setup_output(
581 const Unit *unit,
582 const ExecContext *context,
583 const ExecParameters *params,
584 int fileno,
585 int socket_fd,
586 const int named_iofds[static 3],
587 const char *ident,
588 uid_t uid,
589 gid_t gid,
590 dev_t *journal_stream_dev,
591 ino_t *journal_stream_ino) {
592
593 ExecOutput o;
594 ExecInput i;
595 int r;
596
597 assert(unit);
598 assert(context);
599 assert(params);
600 assert(ident);
601 assert(journal_stream_dev);
602 assert(journal_stream_ino);
603
604 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
605
606 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
607 return -errno;
608
609 return STDOUT_FILENO;
610 }
611
612 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
613 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
614 return -errno;
615
616 return STDERR_FILENO;
617 }
618
619 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
620 o = fixup_output(context->std_output, socket_fd);
621
622 if (fileno == STDERR_FILENO) {
623 ExecOutput e;
624 e = fixup_output(context->std_error, socket_fd);
625
626 /* This expects the input and output are already set up */
627
628 /* Don't change the stderr file descriptor if we inherit all
629 * the way and are not on a tty */
630 if (e == EXEC_OUTPUT_INHERIT &&
631 o == EXEC_OUTPUT_INHERIT &&
632 i == EXEC_INPUT_NULL &&
633 !is_terminal_input(context->std_input) &&
634 getppid() != 1)
635 return fileno;
636
637 /* Duplicate from stdout if possible */
638 if (can_inherit_stderr_from_stdout(context, o, e))
639 return RET_NERRNO(dup2(STDOUT_FILENO, fileno));
640
641 o = e;
642
643 } else if (o == EXEC_OUTPUT_INHERIT) {
644 /* If input got downgraded, inherit the original value */
645 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
646 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
647
648 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
649 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
650 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
651
652 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
653 if (getppid() != 1)
654 return fileno;
655
656 /* We need to open /dev/null here anew, to get the right access mode. */
657 return open_null_as(O_WRONLY, fileno);
658 }
659
660 switch (o) {
661
662 case EXEC_OUTPUT_NULL:
663 return open_null_as(O_WRONLY, fileno);
664
665 case EXEC_OUTPUT_TTY:
666 if (is_terminal_input(i))
667 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
668
669 /* We don't reset the terminal if this is just about output */
670 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
671
672 case EXEC_OUTPUT_KMSG:
673 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
674 case EXEC_OUTPUT_JOURNAL:
675 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
676 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
677 if (r < 0) {
678 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m",
679 fileno == STDOUT_FILENO ? "stdout" : "stderr");
680 r = open_null_as(O_WRONLY, fileno);
681 } else {
682 struct stat st;
683
684 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
685 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
686 * services to detect whether they are connected to the journal or not.
687 *
688 * If both stdout and stderr are connected to a stream then let's make sure to store the data
689 * about STDERR as that's usually the best way to do logging. */
690
691 if (fstat(fileno, &st) >= 0 &&
692 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
693 *journal_stream_dev = st.st_dev;
694 *journal_stream_ino = st.st_ino;
695 }
696 }
697 return r;
698
699 case EXEC_OUTPUT_SOCKET:
700 assert(socket_fd >= 0);
701
702 return RET_NERRNO(dup2(socket_fd, fileno));
703
704 case EXEC_OUTPUT_NAMED_FD:
705 assert(named_iofds[fileno] >= 0);
706
707 (void) fd_nonblock(named_iofds[fileno], false);
708 return RET_NERRNO(dup2(named_iofds[fileno], fileno));
709
710 case EXEC_OUTPUT_FILE:
711 case EXEC_OUTPUT_FILE_APPEND:
712 case EXEC_OUTPUT_FILE_TRUNCATE: {
713 bool rw;
714 int fd, flags;
715
716 assert(context->stdio_file[fileno]);
717
718 rw = context->std_input == EXEC_INPUT_FILE &&
719 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
720
721 if (rw)
722 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
723
724 flags = O_WRONLY;
725 if (o == EXEC_OUTPUT_FILE_APPEND)
726 flags |= O_APPEND;
727 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
728 flags |= O_TRUNC;
729
730 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
731 if (fd < 0)
732 return fd;
733
734 return move_fd(fd, fileno, 0);
735 }
736
737 default:
738 assert_not_reached();
739 }
740 }
741
742 static int chown_terminal(int fd, uid_t uid) {
743 int r;
744
745 assert(fd >= 0);
746
747 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
748 if (isatty(fd) < 1) {
749 if (IN_SET(errno, EINVAL, ENOTTY))
750 return 0; /* not a tty */
751
752 return -errno;
753 }
754
755 /* This might fail. What matters are the results. */
756 r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID);
757 if (r < 0)
758 return r;
759
760 return 1;
761 }
762
763 static int setup_confirm_stdio(
764 const ExecContext *context,
765 const char *vc,
766 int *ret_saved_stdin,
767 int *ret_saved_stdout) {
768
769 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
770 int r;
771
772 assert(ret_saved_stdin);
773 assert(ret_saved_stdout);
774
775 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
776 if (saved_stdin < 0)
777 return -errno;
778
779 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
780 if (saved_stdout < 0)
781 return -errno;
782
783 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
784 if (fd < 0)
785 return fd;
786
787 r = chown_terminal(fd, getuid());
788 if (r < 0)
789 return r;
790
791 r = reset_terminal_fd(fd, true);
792 if (r < 0)
793 return r;
794
795 r = terminal_set_size_fd(fd, vc, context->tty_rows, context->tty_cols);
796 if (r < 0)
797 return r;
798
799 r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */
800 TAKE_FD(fd);
801 if (r < 0)
802 return r;
803
804 *ret_saved_stdin = TAKE_FD(saved_stdin);
805 *ret_saved_stdout = TAKE_FD(saved_stdout);
806 return 0;
807 }
808
809 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
810 assert(err < 0);
811
812 if (err == -ETIMEDOUT)
813 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
814 else {
815 errno = -err;
816 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
817 }
818 }
819
820 static void write_confirm_error(int err, const char *vc, const Unit *u) {
821 _cleanup_close_ int fd = -1;
822
823 assert(vc);
824
825 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
826 if (fd < 0)
827 return;
828
829 write_confirm_error_fd(err, fd, u);
830 }
831
832 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
833 int r = 0;
834
835 assert(saved_stdin);
836 assert(saved_stdout);
837
838 release_terminal();
839
840 if (*saved_stdin >= 0)
841 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
842 r = -errno;
843
844 if (*saved_stdout >= 0)
845 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
846 r = -errno;
847
848 *saved_stdin = safe_close(*saved_stdin);
849 *saved_stdout = safe_close(*saved_stdout);
850
851 return r;
852 }
853
854 enum {
855 CONFIRM_PRETEND_FAILURE = -1,
856 CONFIRM_PRETEND_SUCCESS = 0,
857 CONFIRM_EXECUTE = 1,
858 };
859
860 static int ask_for_confirmation(const ExecContext *context, const char *vc, Unit *u, const char *cmdline) {
861 int saved_stdout = -1, saved_stdin = -1, r;
862 _cleanup_free_ char *e = NULL;
863 char c;
864
865 /* For any internal errors, assume a positive response. */
866 r = setup_confirm_stdio(context, vc, &saved_stdin, &saved_stdout);
867 if (r < 0) {
868 write_confirm_error(r, vc, u);
869 return CONFIRM_EXECUTE;
870 }
871
872 /* confirm_spawn might have been disabled while we were sleeping. */
873 if (manager_is_confirm_spawn_disabled(u->manager)) {
874 r = 1;
875 goto restore_stdio;
876 }
877
878 e = ellipsize(cmdline, 60, 100);
879 if (!e) {
880 log_oom();
881 r = CONFIRM_EXECUTE;
882 goto restore_stdio;
883 }
884
885 for (;;) {
886 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
887 if (r < 0) {
888 write_confirm_error_fd(r, STDOUT_FILENO, u);
889 r = CONFIRM_EXECUTE;
890 goto restore_stdio;
891 }
892
893 switch (c) {
894 case 'c':
895 printf("Resuming normal execution.\n");
896 manager_disable_confirm_spawn();
897 r = 1;
898 break;
899 case 'D':
900 unit_dump(u, stdout, " ");
901 continue; /* ask again */
902 case 'f':
903 printf("Failing execution.\n");
904 r = CONFIRM_PRETEND_FAILURE;
905 break;
906 case 'h':
907 printf(" c - continue, proceed without asking anymore\n"
908 " D - dump, show the state of the unit\n"
909 " f - fail, don't execute the command and pretend it failed\n"
910 " h - help\n"
911 " i - info, show a short summary of the unit\n"
912 " j - jobs, show jobs that are in progress\n"
913 " s - skip, don't execute the command and pretend it succeeded\n"
914 " y - yes, execute the command\n");
915 continue; /* ask again */
916 case 'i':
917 printf(" Description: %s\n"
918 " Unit: %s\n"
919 " Command: %s\n",
920 u->id, u->description, cmdline);
921 continue; /* ask again */
922 case 'j':
923 manager_dump_jobs(u->manager, stdout, /* patterns= */ NULL, " ");
924 continue; /* ask again */
925 case 'n':
926 /* 'n' was removed in favor of 'f'. */
927 printf("Didn't understand 'n', did you mean 'f'?\n");
928 continue; /* ask again */
929 case 's':
930 printf("Skipping execution.\n");
931 r = CONFIRM_PRETEND_SUCCESS;
932 break;
933 case 'y':
934 r = CONFIRM_EXECUTE;
935 break;
936 default:
937 assert_not_reached();
938 }
939 break;
940 }
941
942 restore_stdio:
943 restore_confirm_stdio(&saved_stdin, &saved_stdout);
944 return r;
945 }
946
947 static int get_fixed_user(const ExecContext *c, const char **user,
948 uid_t *uid, gid_t *gid,
949 const char **home, const char **shell) {
950 int r;
951 const char *name;
952
953 assert(c);
954
955 if (!c->user)
956 return 0;
957
958 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
959 * (i.e. are "/" or "/bin/nologin"). */
960
961 name = c->user;
962 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
963 if (r < 0)
964 return r;
965
966 *user = name;
967 return 0;
968 }
969
970 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
971 int r;
972 const char *name;
973
974 assert(c);
975
976 if (!c->group)
977 return 0;
978
979 name = c->group;
980 r = get_group_creds(&name, gid, 0);
981 if (r < 0)
982 return r;
983
984 *group = name;
985 return 0;
986 }
987
988 static int get_supplementary_groups(const ExecContext *c, const char *user,
989 const char *group, gid_t gid,
990 gid_t **supplementary_gids, int *ngids) {
991 int r, k = 0;
992 int ngroups_max;
993 bool keep_groups = false;
994 gid_t *groups = NULL;
995 _cleanup_free_ gid_t *l_gids = NULL;
996
997 assert(c);
998
999 /*
1000 * If user is given, then lookup GID and supplementary groups list.
1001 * We avoid NSS lookups for gid=0. Also we have to initialize groups
1002 * here and as early as possible so we keep the list of supplementary
1003 * groups of the caller.
1004 */
1005 if (user && gid_is_valid(gid) && gid != 0) {
1006 /* First step, initialize groups from /etc/groups */
1007 if (initgroups(user, gid) < 0)
1008 return -errno;
1009
1010 keep_groups = true;
1011 }
1012
1013 if (strv_isempty(c->supplementary_groups))
1014 return 0;
1015
1016 /*
1017 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1018 * be positive, otherwise fail.
1019 */
1020 errno = 0;
1021 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1022 if (ngroups_max <= 0)
1023 return errno_or_else(EOPNOTSUPP);
1024
1025 l_gids = new(gid_t, ngroups_max);
1026 if (!l_gids)
1027 return -ENOMEM;
1028
1029 if (keep_groups) {
1030 /*
1031 * Lookup the list of groups that the user belongs to, we
1032 * avoid NSS lookups here too for gid=0.
1033 */
1034 k = ngroups_max;
1035 if (getgrouplist(user, gid, l_gids, &k) < 0)
1036 return -EINVAL;
1037 } else
1038 k = 0;
1039
1040 STRV_FOREACH(i, c->supplementary_groups) {
1041 const char *g;
1042
1043 if (k >= ngroups_max)
1044 return -E2BIG;
1045
1046 g = *i;
1047 r = get_group_creds(&g, l_gids+k, 0);
1048 if (r < 0)
1049 return r;
1050
1051 k++;
1052 }
1053
1054 /*
1055 * Sets ngids to zero to drop all supplementary groups, happens
1056 * when we are under root and SupplementaryGroups= is empty.
1057 */
1058 if (k == 0) {
1059 *ngids = 0;
1060 return 0;
1061 }
1062
1063 /* Otherwise get the final list of supplementary groups */
1064 groups = memdup(l_gids, sizeof(gid_t) * k);
1065 if (!groups)
1066 return -ENOMEM;
1067
1068 *supplementary_gids = groups;
1069 *ngids = k;
1070
1071 groups = NULL;
1072
1073 return 0;
1074 }
1075
1076 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1077 int r;
1078
1079 /* Handle SupplementaryGroups= if it is not empty */
1080 if (ngids > 0) {
1081 r = maybe_setgroups(ngids, supplementary_gids);
1082 if (r < 0)
1083 return r;
1084 }
1085
1086 if (gid_is_valid(gid)) {
1087 /* Then set our gids */
1088 if (setresgid(gid, gid, gid) < 0)
1089 return -errno;
1090 }
1091
1092 return 0;
1093 }
1094
1095 static int set_securebits(int bits, int mask) {
1096 int current, applied;
1097 current = prctl(PR_GET_SECUREBITS);
1098 if (current < 0)
1099 return -errno;
1100 /* Clear all securebits defined in mask and set bits */
1101 applied = (current & ~mask) | bits;
1102 if (current == applied)
1103 return 0;
1104 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1105 return -errno;
1106 return 1;
1107 }
1108
1109 static int enforce_user(const ExecContext *context, uid_t uid) {
1110 assert(context);
1111 int r;
1112
1113 if (!uid_is_valid(uid))
1114 return 0;
1115
1116 /* Sets (but doesn't look up) the uid and make sure we keep the
1117 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1118 * required, so we also need keep-caps in this case.
1119 */
1120
1121 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1122
1123 /* First step: If we need to keep capabilities but
1124 * drop privileges we need to make sure we keep our
1125 * caps, while we drop privileges. */
1126 if (uid != 0) {
1127 /* Add KEEP_CAPS to the securebits */
1128 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1129 if (r < 0)
1130 return r;
1131 }
1132 }
1133
1134 /* Second step: actually set the uids */
1135 if (setresuid(uid, uid, uid) < 0)
1136 return -errno;
1137
1138 /* At this point we should have all necessary capabilities but
1139 are otherwise a normal user. However, the caps might got
1140 corrupted due to the setresuid() so we need clean them up
1141 later. This is done outside of this call. */
1142
1143 return 0;
1144 }
1145
1146 #if HAVE_PAM
1147
1148 static int null_conv(
1149 int num_msg,
1150 const struct pam_message **msg,
1151 struct pam_response **resp,
1152 void *appdata_ptr) {
1153
1154 /* We don't support conversations */
1155
1156 return PAM_CONV_ERR;
1157 }
1158
1159 #endif
1160
1161 static int setup_pam(
1162 const char *name,
1163 const char *user,
1164 uid_t uid,
1165 gid_t gid,
1166 const char *tty,
1167 char ***env, /* updated on success */
1168 const int fds[], size_t n_fds) {
1169
1170 #if HAVE_PAM
1171
1172 static const struct pam_conv conv = {
1173 .conv = null_conv,
1174 .appdata_ptr = NULL
1175 };
1176
1177 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1178 _cleanup_strv_free_ char **e = NULL;
1179 pam_handle_t *handle = NULL;
1180 sigset_t old_ss;
1181 int pam_code = PAM_SUCCESS, r;
1182 bool close_session = false;
1183 pid_t pam_pid = 0, parent_pid;
1184 int flags = 0;
1185
1186 assert(name);
1187 assert(user);
1188 assert(env);
1189
1190 /* We set up PAM in the parent process, then fork. The child
1191 * will then stay around until killed via PR_GET_PDEATHSIG or
1192 * systemd via the cgroup logic. It will then remove the PAM
1193 * session again. The parent process will exec() the actual
1194 * daemon. We do things this way to ensure that the main PID
1195 * of the daemon is the one we initially fork()ed. */
1196
1197 r = barrier_create(&barrier);
1198 if (r < 0)
1199 goto fail;
1200
1201 if (log_get_max_level() < LOG_DEBUG)
1202 flags |= PAM_SILENT;
1203
1204 pam_code = pam_start(name, user, &conv, &handle);
1205 if (pam_code != PAM_SUCCESS) {
1206 handle = NULL;
1207 goto fail;
1208 }
1209
1210 if (!tty) {
1211 _cleanup_free_ char *q = NULL;
1212
1213 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1214 * out if that's the case, and read the TTY off it. */
1215
1216 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1217 tty = strjoina("/dev/", q);
1218 }
1219
1220 if (tty) {
1221 pam_code = pam_set_item(handle, PAM_TTY, tty);
1222 if (pam_code != PAM_SUCCESS)
1223 goto fail;
1224 }
1225
1226 STRV_FOREACH(nv, *env) {
1227 pam_code = pam_putenv(handle, *nv);
1228 if (pam_code != PAM_SUCCESS)
1229 goto fail;
1230 }
1231
1232 pam_code = pam_acct_mgmt(handle, flags);
1233 if (pam_code != PAM_SUCCESS)
1234 goto fail;
1235
1236 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1237 if (pam_code != PAM_SUCCESS)
1238 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1239
1240 pam_code = pam_open_session(handle, flags);
1241 if (pam_code != PAM_SUCCESS)
1242 goto fail;
1243
1244 close_session = true;
1245
1246 e = pam_getenvlist(handle);
1247 if (!e) {
1248 pam_code = PAM_BUF_ERR;
1249 goto fail;
1250 }
1251
1252 /* Block SIGTERM, so that we know that it won't get lost in the child */
1253
1254 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1255
1256 parent_pid = getpid_cached();
1257
1258 r = safe_fork("(sd-pam)", 0, &pam_pid);
1259 if (r < 0)
1260 goto fail;
1261 if (r == 0) {
1262 int sig, ret = EXIT_PAM;
1263
1264 /* The child's job is to reset the PAM session on termination */
1265 barrier_set_role(&barrier, BARRIER_CHILD);
1266
1267 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1268 * those fds are open here that have been opened by PAM. */
1269 (void) close_many(fds, n_fds);
1270
1271 /* Drop privileges - we don't need any to pam_close_session and this will make
1272 * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam
1273 * threads to fail to exit normally */
1274
1275 r = maybe_setgroups(0, NULL);
1276 if (r < 0)
1277 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1278 if (setresgid(gid, gid, gid) < 0)
1279 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1280 if (setresuid(uid, uid, uid) < 0)
1281 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1282
1283 (void) ignore_signals(SIGPIPE);
1284
1285 /* Wait until our parent died. This will only work if the above setresuid() succeeds,
1286 * otherwise the kernel will not allow unprivileged parents kill their privileged children
1287 * this way. We rely on the control groups kill logic to do the rest for us. */
1288 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1289 goto child_finish;
1290
1291 /* Tell the parent that our setup is done. This is especially important regarding dropping
1292 * privileges. Otherwise, unit setup might race against our setresuid(2) call.
1293 *
1294 * If the parent aborted, we'll detect this below, hence ignore return failure here. */
1295 (void) barrier_place(&barrier);
1296
1297 /* Check if our parent process might already have died? */
1298 if (getppid() == parent_pid) {
1299 sigset_t ss;
1300
1301 assert_se(sigemptyset(&ss) >= 0);
1302 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1303
1304 for (;;) {
1305 if (sigwait(&ss, &sig) < 0) {
1306 if (errno == EINTR)
1307 continue;
1308
1309 goto child_finish;
1310 }
1311
1312 assert(sig == SIGTERM);
1313 break;
1314 }
1315 }
1316
1317 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1318 if (pam_code != PAM_SUCCESS)
1319 goto child_finish;
1320
1321 /* If our parent died we'll end the session */
1322 if (getppid() != parent_pid) {
1323 pam_code = pam_close_session(handle, flags);
1324 if (pam_code != PAM_SUCCESS)
1325 goto child_finish;
1326 }
1327
1328 ret = 0;
1329
1330 child_finish:
1331 /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module
1332 * know about this. See pam_end(3) */
1333 (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT);
1334 _exit(ret);
1335 }
1336
1337 barrier_set_role(&barrier, BARRIER_PARENT);
1338
1339 /* If the child was forked off successfully it will do all the cleanups, so forget about the handle
1340 * here. */
1341 handle = NULL;
1342
1343 /* Unblock SIGTERM again in the parent */
1344 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1345
1346 /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want
1347 * this fd around. */
1348 closelog();
1349
1350 /* Synchronously wait for the child to initialize. We don't care for errors as we cannot
1351 * recover. However, warn loudly if it happens. */
1352 if (!barrier_place_and_sync(&barrier))
1353 log_error("PAM initialization failed");
1354
1355 return strv_free_and_replace(*env, e);
1356
1357 fail:
1358 if (pam_code != PAM_SUCCESS) {
1359 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1360 r = -EPERM; /* PAM errors do not map to errno */
1361 } else
1362 log_error_errno(r, "PAM failed: %m");
1363
1364 if (handle) {
1365 if (close_session)
1366 pam_code = pam_close_session(handle, flags);
1367
1368 (void) pam_end(handle, pam_code | flags);
1369 }
1370
1371 closelog();
1372 return r;
1373 #else
1374 return 0;
1375 #endif
1376 }
1377
1378 static void rename_process_from_path(const char *path) {
1379 char process_name[11];
1380 const char *p;
1381 size_t l;
1382
1383 /* This resulting string must fit in 10 chars (i.e. the length
1384 * of "/sbin/init") to look pretty in /bin/ps */
1385
1386 p = basename(path);
1387 if (isempty(p)) {
1388 rename_process("(...)");
1389 return;
1390 }
1391
1392 l = strlen(p);
1393 if (l > 8) {
1394 /* The end of the process name is usually more
1395 * interesting, since the first bit might just be
1396 * "systemd-" */
1397 p = p + l - 8;
1398 l = 8;
1399 }
1400
1401 process_name[0] = '(';
1402 memcpy(process_name+1, p, l);
1403 process_name[1+l] = ')';
1404 process_name[1+l+1] = 0;
1405
1406 rename_process(process_name);
1407 }
1408
1409 static bool context_has_address_families(const ExecContext *c) {
1410 assert(c);
1411
1412 return c->address_families_allow_list ||
1413 !set_isempty(c->address_families);
1414 }
1415
1416 static bool context_has_syscall_filters(const ExecContext *c) {
1417 assert(c);
1418
1419 return c->syscall_allow_list ||
1420 !hashmap_isempty(c->syscall_filter);
1421 }
1422
1423 static bool context_has_syscall_logs(const ExecContext *c) {
1424 assert(c);
1425
1426 return c->syscall_log_allow_list ||
1427 !hashmap_isempty(c->syscall_log);
1428 }
1429
1430 static bool context_has_no_new_privileges(const ExecContext *c) {
1431 assert(c);
1432
1433 if (c->no_new_privileges)
1434 return true;
1435
1436 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1437 return false;
1438
1439 /* We need NNP if we have any form of seccomp and are unprivileged */
1440 return c->lock_personality ||
1441 c->memory_deny_write_execute ||
1442 c->private_devices ||
1443 c->protect_clock ||
1444 c->protect_hostname ||
1445 c->protect_kernel_tunables ||
1446 c->protect_kernel_modules ||
1447 c->protect_kernel_logs ||
1448 context_has_address_families(c) ||
1449 exec_context_restrict_namespaces_set(c) ||
1450 c->restrict_realtime ||
1451 c->restrict_suid_sgid ||
1452 !set_isempty(c->syscall_archs) ||
1453 context_has_syscall_filters(c) ||
1454 context_has_syscall_logs(c);
1455 }
1456
1457 static bool exec_context_has_credentials(const ExecContext *context) {
1458
1459 assert(context);
1460
1461 return !hashmap_isempty(context->set_credentials) ||
1462 !hashmap_isempty(context->load_credentials);
1463 }
1464
1465 #if HAVE_SECCOMP
1466
1467 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1468
1469 if (is_seccomp_available())
1470 return false;
1471
1472 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1473 return true;
1474 }
1475
1476 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1477 uint32_t negative_action, default_action, action;
1478 int r;
1479
1480 assert(u);
1481 assert(c);
1482
1483 if (!context_has_syscall_filters(c))
1484 return 0;
1485
1486 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1487 return 0;
1488
1489 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1490
1491 if (c->syscall_allow_list) {
1492 default_action = negative_action;
1493 action = SCMP_ACT_ALLOW;
1494 } else {
1495 default_action = SCMP_ACT_ALLOW;
1496 action = negative_action;
1497 }
1498
1499 if (needs_ambient_hack) {
1500 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1501 if (r < 0)
1502 return r;
1503 }
1504
1505 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1506 }
1507
1508 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1509 #ifdef SCMP_ACT_LOG
1510 uint32_t default_action, action;
1511 #endif
1512
1513 assert(u);
1514 assert(c);
1515
1516 if (!context_has_syscall_logs(c))
1517 return 0;
1518
1519 #ifdef SCMP_ACT_LOG
1520 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1521 return 0;
1522
1523 if (c->syscall_log_allow_list) {
1524 /* Log nothing but the ones listed */
1525 default_action = SCMP_ACT_ALLOW;
1526 action = SCMP_ACT_LOG;
1527 } else {
1528 /* Log everything but the ones listed */
1529 default_action = SCMP_ACT_LOG;
1530 action = SCMP_ACT_ALLOW;
1531 }
1532
1533 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1534 #else
1535 /* old libseccomp */
1536 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1537 return 0;
1538 #endif
1539 }
1540
1541 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1542 assert(u);
1543 assert(c);
1544
1545 if (set_isempty(c->syscall_archs))
1546 return 0;
1547
1548 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1549 return 0;
1550
1551 return seccomp_restrict_archs(c->syscall_archs);
1552 }
1553
1554 static int apply_address_families(const Unit* u, const ExecContext *c) {
1555 assert(u);
1556 assert(c);
1557
1558 if (!context_has_address_families(c))
1559 return 0;
1560
1561 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1562 return 0;
1563
1564 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1565 }
1566
1567 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1568 assert(u);
1569 assert(c);
1570
1571 if (!c->memory_deny_write_execute)
1572 return 0;
1573
1574 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1575 return 0;
1576
1577 return seccomp_memory_deny_write_execute();
1578 }
1579
1580 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1581 assert(u);
1582 assert(c);
1583
1584 if (!c->restrict_realtime)
1585 return 0;
1586
1587 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1588 return 0;
1589
1590 return seccomp_restrict_realtime();
1591 }
1592
1593 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1594 assert(u);
1595 assert(c);
1596
1597 if (!c->restrict_suid_sgid)
1598 return 0;
1599
1600 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1601 return 0;
1602
1603 return seccomp_restrict_suid_sgid();
1604 }
1605
1606 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1607 assert(u);
1608 assert(c);
1609
1610 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1611 * let's protect even those systems where this is left on in the kernel. */
1612
1613 if (!c->protect_kernel_tunables)
1614 return 0;
1615
1616 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1617 return 0;
1618
1619 return seccomp_protect_sysctl();
1620 }
1621
1622 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1623 assert(u);
1624 assert(c);
1625
1626 /* Turn off module syscalls on ProtectKernelModules=yes */
1627
1628 if (!c->protect_kernel_modules)
1629 return 0;
1630
1631 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1632 return 0;
1633
1634 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1635 }
1636
1637 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1638 assert(u);
1639 assert(c);
1640
1641 if (!c->protect_kernel_logs)
1642 return 0;
1643
1644 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1645 return 0;
1646
1647 return seccomp_protect_syslog();
1648 }
1649
1650 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1651 assert(u);
1652 assert(c);
1653
1654 if (!c->protect_clock)
1655 return 0;
1656
1657 if (skip_seccomp_unavailable(u, "ProtectClock="))
1658 return 0;
1659
1660 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1661 }
1662
1663 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1664 assert(u);
1665 assert(c);
1666
1667 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1668
1669 if (!c->private_devices)
1670 return 0;
1671
1672 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1673 return 0;
1674
1675 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1676 }
1677
1678 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1679 assert(u);
1680 assert(c);
1681
1682 if (!exec_context_restrict_namespaces_set(c))
1683 return 0;
1684
1685 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1686 return 0;
1687
1688 return seccomp_restrict_namespaces(c->restrict_namespaces);
1689 }
1690
1691 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1692 unsigned long personality;
1693 int r;
1694
1695 assert(u);
1696 assert(c);
1697
1698 if (!c->lock_personality)
1699 return 0;
1700
1701 if (skip_seccomp_unavailable(u, "LockPersonality="))
1702 return 0;
1703
1704 personality = c->personality;
1705
1706 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1707 if (personality == PERSONALITY_INVALID) {
1708
1709 r = opinionated_personality(&personality);
1710 if (r < 0)
1711 return r;
1712 }
1713
1714 return seccomp_lock_personality(personality);
1715 }
1716
1717 #endif
1718
1719 #if HAVE_LIBBPF
1720 static int apply_restrict_filesystems(Unit *u, const ExecContext *c) {
1721 assert(u);
1722 assert(c);
1723
1724 if (!exec_context_restrict_filesystems_set(c))
1725 return 0;
1726
1727 if (!u->manager->restrict_fs) {
1728 /* LSM BPF is unsupported or lsm_bpf_setup failed */
1729 log_unit_debug(u, "LSM BPF not supported, skipping RestrictFileSystems=");
1730 return 0;
1731 }
1732
1733 return lsm_bpf_unit_restrict_filesystems(u, c->restrict_filesystems, c->restrict_filesystems_allow_list);
1734 }
1735 #endif
1736
1737 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1738 assert(u);
1739 assert(c);
1740
1741 if (!c->protect_hostname)
1742 return 0;
1743
1744 if (ns_type_supported(NAMESPACE_UTS)) {
1745 if (unshare(CLONE_NEWUTS) < 0) {
1746 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1747 *ret_exit_status = EXIT_NAMESPACE;
1748 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1749 }
1750
1751 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1752 }
1753 } else
1754 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1755
1756 #if HAVE_SECCOMP
1757 int r;
1758
1759 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1760 return 0;
1761
1762 r = seccomp_protect_hostname();
1763 if (r < 0) {
1764 *ret_exit_status = EXIT_SECCOMP;
1765 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1766 }
1767 #endif
1768
1769 return 0;
1770 }
1771
1772 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1773 assert(idle_pipe);
1774
1775 idle_pipe[1] = safe_close(idle_pipe[1]);
1776 idle_pipe[2] = safe_close(idle_pipe[2]);
1777
1778 if (idle_pipe[0] >= 0) {
1779 int r;
1780
1781 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1782
1783 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1784 ssize_t n;
1785
1786 /* Signal systemd that we are bored and want to continue. */
1787 n = write(idle_pipe[3], "x", 1);
1788 if (n > 0)
1789 /* Wait for systemd to react to the signal above. */
1790 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1791 }
1792
1793 idle_pipe[0] = safe_close(idle_pipe[0]);
1794
1795 }
1796
1797 idle_pipe[3] = safe_close(idle_pipe[3]);
1798 }
1799
1800 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1801
1802 static int build_environment(
1803 const Unit *u,
1804 const ExecContext *c,
1805 const ExecParameters *p,
1806 size_t n_fds,
1807 const char *home,
1808 const char *username,
1809 const char *shell,
1810 dev_t journal_stream_dev,
1811 ino_t journal_stream_ino,
1812 char ***ret) {
1813
1814 _cleanup_strv_free_ char **our_env = NULL;
1815 size_t n_env = 0;
1816 char *x;
1817
1818 assert(u);
1819 assert(c);
1820 assert(p);
1821 assert(ret);
1822
1823 #define N_ENV_VARS 17
1824 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1825 if (!our_env)
1826 return -ENOMEM;
1827
1828 if (n_fds > 0) {
1829 _cleanup_free_ char *joined = NULL;
1830
1831 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1832 return -ENOMEM;
1833 our_env[n_env++] = x;
1834
1835 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1836 return -ENOMEM;
1837 our_env[n_env++] = x;
1838
1839 joined = strv_join(p->fd_names, ":");
1840 if (!joined)
1841 return -ENOMEM;
1842
1843 x = strjoin("LISTEN_FDNAMES=", joined);
1844 if (!x)
1845 return -ENOMEM;
1846 our_env[n_env++] = x;
1847 }
1848
1849 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1850 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1851 return -ENOMEM;
1852 our_env[n_env++] = x;
1853
1854 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1855 return -ENOMEM;
1856 our_env[n_env++] = x;
1857 }
1858
1859 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking
1860 * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and
1861 * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */
1862 if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) {
1863 x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1");
1864 if (!x)
1865 return -ENOMEM;
1866 our_env[n_env++] = x;
1867 }
1868
1869 if (home) {
1870 x = strjoin("HOME=", home);
1871 if (!x)
1872 return -ENOMEM;
1873
1874 path_simplify(x + 5);
1875 our_env[n_env++] = x;
1876 }
1877
1878 if (username) {
1879 x = strjoin("LOGNAME=", username);
1880 if (!x)
1881 return -ENOMEM;
1882 our_env[n_env++] = x;
1883
1884 x = strjoin("USER=", username);
1885 if (!x)
1886 return -ENOMEM;
1887 our_env[n_env++] = x;
1888 }
1889
1890 if (shell) {
1891 x = strjoin("SHELL=", shell);
1892 if (!x)
1893 return -ENOMEM;
1894
1895 path_simplify(x + 6);
1896 our_env[n_env++] = x;
1897 }
1898
1899 if (!sd_id128_is_null(u->invocation_id)) {
1900 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1901 return -ENOMEM;
1902
1903 our_env[n_env++] = x;
1904 }
1905
1906 if (exec_context_needs_term(c)) {
1907 const char *tty_path, *term = NULL;
1908
1909 tty_path = exec_context_tty_path(c);
1910
1911 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1912 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1913 * container manager passes to PID 1 ends up all the way in the console login shown. */
1914
1915 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1916 term = getenv("TERM");
1917
1918 if (!term)
1919 term = default_term_for_tty(tty_path);
1920
1921 x = strjoin("TERM=", term);
1922 if (!x)
1923 return -ENOMEM;
1924 our_env[n_env++] = x;
1925 }
1926
1927 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1928 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1929 return -ENOMEM;
1930
1931 our_env[n_env++] = x;
1932 }
1933
1934 if (c->log_namespace) {
1935 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1936 if (!x)
1937 return -ENOMEM;
1938
1939 our_env[n_env++] = x;
1940 }
1941
1942 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1943 _cleanup_free_ char *joined = NULL;
1944 const char *n;
1945
1946 if (!p->prefix[t])
1947 continue;
1948
1949 if (c->directories[t].n_items == 0)
1950 continue;
1951
1952 n = exec_directory_env_name_to_string(t);
1953 if (!n)
1954 continue;
1955
1956 for (size_t i = 0; i < c->directories[t].n_items; i++) {
1957 _cleanup_free_ char *prefixed = NULL;
1958
1959 prefixed = path_join(p->prefix[t], c->directories[t].items[i].path);
1960 if (!prefixed)
1961 return -ENOMEM;
1962
1963 if (!strextend_with_separator(&joined, ":", prefixed))
1964 return -ENOMEM;
1965 }
1966
1967 x = strjoin(n, "=", joined);
1968 if (!x)
1969 return -ENOMEM;
1970
1971 our_env[n_env++] = x;
1972 }
1973
1974 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1975 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1976 if (!x)
1977 return -ENOMEM;
1978
1979 our_env[n_env++] = x;
1980 }
1981
1982 if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0)
1983 return -ENOMEM;
1984
1985 our_env[n_env++] = x;
1986
1987 our_env[n_env++] = NULL;
1988 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1989 #undef N_ENV_VARS
1990
1991 *ret = TAKE_PTR(our_env);
1992
1993 return 0;
1994 }
1995
1996 static int build_pass_environment(const ExecContext *c, char ***ret) {
1997 _cleanup_strv_free_ char **pass_env = NULL;
1998 size_t n_env = 0;
1999
2000 STRV_FOREACH(i, c->pass_environment) {
2001 _cleanup_free_ char *x = NULL;
2002 char *v;
2003
2004 v = getenv(*i);
2005 if (!v)
2006 continue;
2007 x = strjoin(*i, "=", v);
2008 if (!x)
2009 return -ENOMEM;
2010
2011 if (!GREEDY_REALLOC(pass_env, n_env + 2))
2012 return -ENOMEM;
2013
2014 pass_env[n_env++] = TAKE_PTR(x);
2015 pass_env[n_env] = NULL;
2016 }
2017
2018 *ret = TAKE_PTR(pass_env);
2019
2020 return 0;
2021 }
2022
2023 bool exec_needs_mount_namespace(
2024 const ExecContext *context,
2025 const ExecParameters *params,
2026 const ExecRuntime *runtime) {
2027
2028 assert(context);
2029
2030 if (context->root_image)
2031 return true;
2032
2033 if (!strv_isempty(context->read_write_paths) ||
2034 !strv_isempty(context->read_only_paths) ||
2035 !strv_isempty(context->inaccessible_paths) ||
2036 !strv_isempty(context->exec_paths) ||
2037 !strv_isempty(context->no_exec_paths))
2038 return true;
2039
2040 if (context->n_bind_mounts > 0)
2041 return true;
2042
2043 if (context->n_temporary_filesystems > 0)
2044 return true;
2045
2046 if (context->n_mount_images > 0)
2047 return true;
2048
2049 if (context->n_extension_images > 0)
2050 return true;
2051
2052 if (!strv_isempty(context->extension_directories))
2053 return true;
2054
2055 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2056 return true;
2057
2058 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2059 return true;
2060
2061 if (context->private_devices ||
2062 context->private_mounts ||
2063 context->protect_system != PROTECT_SYSTEM_NO ||
2064 context->protect_home != PROTECT_HOME_NO ||
2065 context->protect_kernel_tunables ||
2066 context->protect_kernel_modules ||
2067 context->protect_kernel_logs ||
2068 context->protect_control_groups ||
2069 context->protect_proc != PROTECT_PROC_DEFAULT ||
2070 context->proc_subset != PROC_SUBSET_ALL ||
2071 context->private_ipc ||
2072 context->ipc_namespace_path)
2073 return true;
2074
2075 if (context->root_directory) {
2076 if (exec_context_get_effective_mount_apivfs(context))
2077 return true;
2078
2079 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2080 if (params && !params->prefix[t])
2081 continue;
2082
2083 if (context->directories[t].n_items > 0)
2084 return true;
2085 }
2086 }
2087
2088 if (context->dynamic_user &&
2089 (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
2090 context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
2091 context->directories[EXEC_DIRECTORY_LOGS].n_items > 0))
2092 return true;
2093
2094 if (context->log_namespace)
2095 return true;
2096
2097 return false;
2098 }
2099
2100 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2101 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2102 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
2103 _cleanup_close_ int unshare_ready_fd = -1;
2104 _cleanup_(sigkill_waitp) pid_t pid = 0;
2105 uint64_t c = 1;
2106 ssize_t n;
2107 int r;
2108
2109 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2110 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2111 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2112 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2113 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2114 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2115 * continues execution normally.
2116 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2117 * does not need CAP_SETUID to write the single line mapping to itself. */
2118
2119 /* Can only set up multiple mappings with CAP_SETUID. */
2120 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2121 r = asprintf(&uid_map,
2122 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2123 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2124 ouid, ouid, uid, uid);
2125 else
2126 r = asprintf(&uid_map,
2127 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2128 ouid, ouid);
2129
2130 if (r < 0)
2131 return -ENOMEM;
2132
2133 /* Can only set up multiple mappings with CAP_SETGID. */
2134 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2135 r = asprintf(&gid_map,
2136 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2137 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2138 ogid, ogid, gid, gid);
2139 else
2140 r = asprintf(&gid_map,
2141 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2142 ogid, ogid);
2143
2144 if (r < 0)
2145 return -ENOMEM;
2146
2147 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2148 * namespace. */
2149 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2150 if (unshare_ready_fd < 0)
2151 return -errno;
2152
2153 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2154 * failed. */
2155 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2156 return -errno;
2157
2158 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2159 if (r < 0)
2160 return r;
2161 if (r == 0) {
2162 _cleanup_close_ int fd = -1;
2163 const char *a;
2164 pid_t ppid;
2165
2166 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2167 * here, after the parent opened its own user namespace. */
2168
2169 ppid = getppid();
2170 errno_pipe[0] = safe_close(errno_pipe[0]);
2171
2172 /* Wait until the parent unshared the user namespace */
2173 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2174 r = -errno;
2175 goto child_fail;
2176 }
2177
2178 /* Disable the setgroups() system call in the child user namespace, for good. */
2179 a = procfs_file_alloca(ppid, "setgroups");
2180 fd = open(a, O_WRONLY|O_CLOEXEC);
2181 if (fd < 0) {
2182 if (errno != ENOENT) {
2183 r = -errno;
2184 goto child_fail;
2185 }
2186
2187 /* If the file is missing the kernel is too old, let's continue anyway. */
2188 } else {
2189 if (write(fd, "deny\n", 5) < 0) {
2190 r = -errno;
2191 goto child_fail;
2192 }
2193
2194 fd = safe_close(fd);
2195 }
2196
2197 /* First write the GID map */
2198 a = procfs_file_alloca(ppid, "gid_map");
2199 fd = open(a, O_WRONLY|O_CLOEXEC);
2200 if (fd < 0) {
2201 r = -errno;
2202 goto child_fail;
2203 }
2204 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2205 r = -errno;
2206 goto child_fail;
2207 }
2208 fd = safe_close(fd);
2209
2210 /* The write the UID map */
2211 a = procfs_file_alloca(ppid, "uid_map");
2212 fd = open(a, O_WRONLY|O_CLOEXEC);
2213 if (fd < 0) {
2214 r = -errno;
2215 goto child_fail;
2216 }
2217 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2218 r = -errno;
2219 goto child_fail;
2220 }
2221
2222 _exit(EXIT_SUCCESS);
2223
2224 child_fail:
2225 (void) write(errno_pipe[1], &r, sizeof(r));
2226 _exit(EXIT_FAILURE);
2227 }
2228
2229 errno_pipe[1] = safe_close(errno_pipe[1]);
2230
2231 if (unshare(CLONE_NEWUSER) < 0)
2232 return -errno;
2233
2234 /* Let the child know that the namespace is ready now */
2235 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2236 return -errno;
2237
2238 /* Try to read an error code from the child */
2239 n = read(errno_pipe[0], &r, sizeof(r));
2240 if (n < 0)
2241 return -errno;
2242 if (n == sizeof(r)) { /* an error code was sent to us */
2243 if (r < 0)
2244 return r;
2245 return -EIO;
2246 }
2247 if (n != 0) /* on success we should have read 0 bytes */
2248 return -EIO;
2249
2250 r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0);
2251 if (r < 0)
2252 return r;
2253 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2254 return -EIO;
2255
2256 return 0;
2257 }
2258
2259 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2260 if (!context->dynamic_user)
2261 return false;
2262
2263 if (type == EXEC_DIRECTORY_CONFIGURATION)
2264 return false;
2265
2266 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2267 return false;
2268
2269 return true;
2270 }
2271
2272 static int create_many_symlinks(const char *root, const char *source, char **symlinks) {
2273 _cleanup_free_ char *src_abs = NULL;
2274 int r;
2275
2276 assert(source);
2277
2278 src_abs = path_join(root, source);
2279 if (!src_abs)
2280 return -ENOMEM;
2281
2282 STRV_FOREACH(dst, symlinks) {
2283 _cleanup_free_ char *dst_abs = NULL;
2284
2285 dst_abs = path_join(root, *dst);
2286 if (!dst_abs)
2287 return -ENOMEM;
2288
2289 r = mkdir_parents_label(dst_abs, 0755);
2290 if (r < 0)
2291 return r;
2292
2293 r = symlink_idempotent(src_abs, dst_abs, true);
2294 if (r < 0)
2295 return r;
2296 }
2297
2298 return 0;
2299 }
2300
2301 static int setup_exec_directory(
2302 const ExecContext *context,
2303 const ExecParameters *params,
2304 uid_t uid,
2305 gid_t gid,
2306 ExecDirectoryType type,
2307 bool needs_mount_namespace,
2308 int *exit_status) {
2309
2310 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2311 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2312 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2313 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2314 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2315 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2316 };
2317 int r;
2318
2319 assert(context);
2320 assert(params);
2321 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2322 assert(exit_status);
2323
2324 if (!params->prefix[type])
2325 return 0;
2326
2327 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2328 if (!uid_is_valid(uid))
2329 uid = 0;
2330 if (!gid_is_valid(gid))
2331 gid = 0;
2332 }
2333
2334 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2335 _cleanup_free_ char *p = NULL, *pp = NULL;
2336
2337 p = path_join(params->prefix[type], context->directories[type].items[i].path);
2338 if (!p) {
2339 r = -ENOMEM;
2340 goto fail;
2341 }
2342
2343 r = mkdir_parents_label(p, 0755);
2344 if (r < 0)
2345 goto fail;
2346
2347 if (exec_directory_is_private(context, type)) {
2348 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2349 * case we want to avoid leaving a directory around fully accessible that is owned by
2350 * a dynamic user whose UID is later on reused. To lock this down we use the same
2351 * trick used by container managers to prohibit host users to get access to files of
2352 * the same UID in containers: we place everything inside a directory that has an
2353 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2354 * for unprivileged host code. We then use fs namespacing to make this directory
2355 * permeable for the service itself.
2356 *
2357 * Specifically: for a service which wants a special directory "foo/" we first create
2358 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2359 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2360 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2361 * unprivileged host users can't look into it. Inside of the namespace of the unit
2362 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2363 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2364 * for the service and making sure it only gets access to the dirs it needs but no
2365 * others. Tricky? Yes, absolutely, but it works!
2366 *
2367 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2368 * to be owned by the service itself.
2369 *
2370 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2371 * for sharing files or sockets with other services. */
2372
2373 pp = path_join(params->prefix[type], "private");
2374 if (!pp) {
2375 r = -ENOMEM;
2376 goto fail;
2377 }
2378
2379 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2380 r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE);
2381 if (r < 0)
2382 goto fail;
2383
2384 if (!path_extend(&pp, context->directories[type].items[i].path)) {
2385 r = -ENOMEM;
2386 goto fail;
2387 }
2388
2389 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2390 r = mkdir_parents_label(pp, 0755);
2391 if (r < 0)
2392 goto fail;
2393
2394 if (is_dir(p, false) > 0 &&
2395 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2396
2397 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2398 * it over. Most likely the service has been upgraded from one that didn't use
2399 * DynamicUser=1, to one that does. */
2400
2401 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2402 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2403 exec_directory_type_to_string(type), p, pp);
2404
2405 if (rename(p, pp) < 0) {
2406 r = -errno;
2407 goto fail;
2408 }
2409 } else {
2410 /* Otherwise, create the actual directory for the service */
2411
2412 r = mkdir_label(pp, context->directories[type].mode);
2413 if (r < 0 && r != -EEXIST)
2414 goto fail;
2415 }
2416
2417 if (!context->directories[type].items[i].only_create) {
2418 /* And link it up from the original place.
2419 * Notes
2420 * 1) If a mount namespace is going to be used, then this symlink remains on
2421 * the host, and a new one for the child namespace will be created later.
2422 * 2) It is not necessary to create this symlink when one of its parent
2423 * directories is specified and already created. E.g.
2424 * StateDirectory=foo foo/bar
2425 * In that case, the inode points to pp and p for "foo/bar" are the same:
2426 * pp = "/var/lib/private/foo/bar"
2427 * p = "/var/lib/foo/bar"
2428 * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only
2429 * we do not need to create the symlink, but we cannot create the symlink.
2430 * See issue #24783. */
2431 r = symlink_idempotent(pp, p, true);
2432 if (r < 0)
2433 goto fail;
2434 }
2435
2436 } else {
2437 _cleanup_free_ char *target = NULL;
2438
2439 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2440 readlink_and_make_absolute(p, &target) >= 0) {
2441 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2442
2443 /* This already exists and is a symlink? Interesting. Maybe it's one created
2444 * by DynamicUser=1 (see above)?
2445 *
2446 * We do this for all directory types except for ConfigurationDirectory=,
2447 * since they all support the private/ symlink logic at least in some
2448 * configurations, see above. */
2449
2450 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2451 if (r < 0)
2452 goto fail;
2453
2454 q = path_join(params->prefix[type], "private", context->directories[type].items[i].path);
2455 if (!q) {
2456 r = -ENOMEM;
2457 goto fail;
2458 }
2459
2460 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2461 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2462 if (r < 0)
2463 goto fail;
2464
2465 if (path_equal(q_resolved, target_resolved)) {
2466
2467 /* Hmm, apparently DynamicUser= was once turned on for this service,
2468 * but is no longer. Let's move the directory back up. */
2469
2470 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2471 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2472 exec_directory_type_to_string(type), q, p);
2473
2474 if (unlink(p) < 0) {
2475 r = -errno;
2476 goto fail;
2477 }
2478
2479 if (rename(q, p) < 0) {
2480 r = -errno;
2481 goto fail;
2482 }
2483 }
2484 }
2485
2486 r = mkdir_label(p, context->directories[type].mode);
2487 if (r < 0) {
2488 if (r != -EEXIST)
2489 goto fail;
2490
2491 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2492 struct stat st;
2493
2494 /* Don't change the owner/access mode of the configuration directory,
2495 * as in the common case it is not written to by a service, and shall
2496 * not be writable. */
2497
2498 if (stat(p, &st) < 0) {
2499 r = -errno;
2500 goto fail;
2501 }
2502
2503 /* Still complain if the access mode doesn't match */
2504 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2505 log_warning("%s \'%s\' already exists but the mode is different. "
2506 "(File system: %o %sMode: %o)",
2507 exec_directory_type_to_string(type), context->directories[type].items[i].path,
2508 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2509
2510 continue;
2511 }
2512 }
2513 }
2514
2515 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2516 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2517 * current UID/GID ownership.) */
2518 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2519 if (r < 0)
2520 goto fail;
2521
2522 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2523 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2524 * assignments to exist. */
2525 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2526 if (r < 0)
2527 goto fail;
2528 }
2529
2530 /* If we are not going to run in a namespace, set up the symlinks - otherwise
2531 * they are set up later, to allow configuring empty var/run/etc. */
2532 if (!needs_mount_namespace)
2533 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2534 r = create_many_symlinks(params->prefix[type],
2535 context->directories[type].items[i].path,
2536 context->directories[type].items[i].symlinks);
2537 if (r < 0)
2538 goto fail;
2539 }
2540
2541 return 0;
2542
2543 fail:
2544 *exit_status = exit_status_table[type];
2545 return r;
2546 }
2547
2548 static int write_credential(
2549 int dfd,
2550 const char *id,
2551 const void *data,
2552 size_t size,
2553 uid_t uid,
2554 bool ownership_ok) {
2555
2556 _cleanup_(unlink_and_freep) char *tmp = NULL;
2557 _cleanup_close_ int fd = -1;
2558 int r;
2559
2560 r = tempfn_random_child("", "cred", &tmp);
2561 if (r < 0)
2562 return r;
2563
2564 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2565 if (fd < 0) {
2566 tmp = mfree(tmp);
2567 return -errno;
2568 }
2569
2570 r = loop_write(fd, data, size, /* do_poll = */ false);
2571 if (r < 0)
2572 return r;
2573
2574 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2575 return -errno;
2576
2577 if (uid_is_valid(uid) && uid != getuid()) {
2578 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2579 if (r < 0) {
2580 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2581 return r;
2582
2583 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2584 * to express: that the user gets read access and nothing
2585 * else. But if the backing fs can't support that (e.g. ramfs)
2586 * then we can use file ownership instead. But that's only safe if
2587 * we can then re-mount the whole thing read-only, so that the
2588 * user can no longer chmod() the file to gain write access. */
2589 return r;
2590
2591 if (fchown(fd, uid, GID_INVALID) < 0)
2592 return -errno;
2593 }
2594 }
2595
2596 if (renameat(dfd, tmp, dfd, id) < 0)
2597 return -errno;
2598
2599 tmp = mfree(tmp);
2600 return 0;
2601 }
2602
2603 static char **credential_search_path(
2604 const ExecParameters *params,
2605 bool encrypted) {
2606
2607 _cleanup_strv_free_ char **l = NULL;
2608
2609 assert(params);
2610
2611 /* Assemble a search path to find credentials in. We'll look in /etc/credstore/ (and similar
2612 * directories in /usr/lib/ + /run/) for all types of credentials. If we are looking for encrypted
2613 * credentials, also look in /etc/credstore.encrypted/ (and similar dirs). */
2614
2615 if (encrypted) {
2616 if (strv_extend(&l, params->received_encrypted_credentials_directory) < 0)
2617 return NULL;
2618
2619 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore.encrypted"), /* filter_duplicates= */ true) < 0)
2620 return NULL;
2621 }
2622
2623 if (params->received_credentials_directory)
2624 if (strv_extend(&l, params->received_credentials_directory) < 0)
2625 return NULL;
2626
2627 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore"), /* filter_duplicates= */ true) < 0)
2628 return NULL;
2629
2630 if (DEBUG_LOGGING) {
2631 _cleanup_free_ char *t = strv_join(l, ":");
2632
2633 log_debug("Credential search path is: %s", t);
2634 }
2635
2636 return TAKE_PTR(l);
2637 }
2638
2639 static int load_credential(
2640 const ExecContext *context,
2641 const ExecParameters *params,
2642 const char *id,
2643 const char *path,
2644 bool encrypted,
2645 const char *unit,
2646 int read_dfd,
2647 int write_dfd,
2648 uid_t uid,
2649 bool ownership_ok,
2650 uint64_t *left) {
2651
2652 ReadFullFileFlags flags = READ_FULL_FILE_SECURE|READ_FULL_FILE_FAIL_WHEN_LARGER;
2653 _cleanup_strv_free_ char **search_path = NULL;
2654 _cleanup_(erase_and_freep) char *data = NULL;
2655 _cleanup_free_ char *bindname = NULL;
2656 const char *source = NULL;
2657 bool missing_ok = true;
2658 size_t size, add, maxsz;
2659 int r;
2660
2661 assert(context);
2662 assert(params);
2663 assert(id);
2664 assert(path);
2665 assert(unit);
2666 assert(write_dfd >= 0);
2667 assert(left);
2668
2669 if (read_dfd >= 0) {
2670 /* If a directory fd is specified, then read the file directly from that dir. In this case we
2671 * won't do AF_UNIX stuff (we simply don't want to recursively iterate down a tree of AF_UNIX
2672 * IPC sockets). It's OK if a file vanishes here in the time we enumerate it and intend to
2673 * open it. */
2674
2675 if (!filename_is_valid(path)) /* safety check */
2676 return -EINVAL;
2677
2678 missing_ok = true;
2679 source = path;
2680
2681 } else if (path_is_absolute(path)) {
2682 /* If this is an absolute path, read the data directly from it, and support AF_UNIX
2683 * sockets */
2684
2685 if (!path_is_valid(path)) /* safety check */
2686 return -EINVAL;
2687
2688 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2689
2690 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2691 * via the source socket address in case we read off an AF_UNIX socket. */
2692 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, id) < 0)
2693 return -ENOMEM;
2694
2695 missing_ok = false;
2696 source = path;
2697
2698 } else if (credential_name_valid(path)) {
2699 /* If this is a relative path, take it as credential name relative to the credentials
2700 * directory we received ourselves. We don't support the AF_UNIX stuff in this mode, since we
2701 * are operating on a credential store, i.e. this is guaranteed to be regular files. */
2702
2703 search_path = credential_search_path(params, encrypted);
2704 if (!search_path)
2705 return -ENOMEM;
2706
2707 missing_ok = true;
2708 } else
2709 source = NULL;
2710
2711 if (encrypted)
2712 flags |= READ_FULL_FILE_UNBASE64;
2713
2714 maxsz = encrypted ? CREDENTIAL_ENCRYPTED_SIZE_MAX : CREDENTIAL_SIZE_MAX;
2715
2716 if (search_path) {
2717 STRV_FOREACH(d, search_path) {
2718 _cleanup_free_ char *j = NULL;
2719
2720 j = path_join(*d, path);
2721 if (!j)
2722 return -ENOMEM;
2723
2724 r = read_full_file_full(
2725 AT_FDCWD, j, /* path is absolute, hence pass AT_FDCWD as nop dir fd here */
2726 UINT64_MAX,
2727 maxsz,
2728 flags,
2729 NULL,
2730 &data, &size);
2731 if (r != -ENOENT)
2732 break;
2733 }
2734 } else if (source)
2735 r = read_full_file_full(
2736 read_dfd, source,
2737 UINT64_MAX,
2738 maxsz,
2739 flags,
2740 bindname,
2741 &data, &size);
2742 else
2743 r = -ENOENT;
2744
2745 if (r == -ENOENT && (missing_ok || hashmap_contains(context->set_credentials, id))) {
2746 /* Make a missing inherited credential non-fatal, let's just continue. After all apps
2747 * will get clear errors if we don't pass such a missing credential on as they
2748 * themselves will get ENOENT when trying to read them, which should not be much
2749 * worse than when we handle the error here and make it fatal.
2750 *
2751 * Also, if the source file doesn't exist, but a fallback is set via SetCredentials=
2752 * we are fine, too. */
2753 log_debug_errno(r, "Couldn't read inherited credential '%s', skipping: %m", path);
2754 return 0;
2755 }
2756 if (r < 0)
2757 return log_debug_errno(r, "Failed to read credential '%s': %m", path);
2758
2759 if (encrypted) {
2760 _cleanup_free_ void *plaintext = NULL;
2761 size_t plaintext_size = 0;
2762
2763 r = decrypt_credential_and_warn(id, now(CLOCK_REALTIME), NULL, NULL, data, size, &plaintext, &plaintext_size);
2764 if (r < 0)
2765 return r;
2766
2767 free_and_replace(data, plaintext);
2768 size = plaintext_size;
2769 }
2770
2771 add = strlen(id) + size;
2772 if (add > *left)
2773 return -E2BIG;
2774
2775 r = write_credential(write_dfd, id, data, size, uid, ownership_ok);
2776 if (r < 0)
2777 return log_debug_errno(r, "Failed to write credential '%s': %m", id);
2778
2779 *left -= add;
2780 return 0;
2781 }
2782
2783 struct load_cred_args {
2784 const ExecContext *context;
2785 const ExecParameters *params;
2786 bool encrypted;
2787 const char *unit;
2788 int dfd;
2789 uid_t uid;
2790 bool ownership_ok;
2791 uint64_t *left;
2792 };
2793
2794 static int load_cred_recurse_dir_cb(
2795 RecurseDirEvent event,
2796 const char *path,
2797 int dir_fd,
2798 int inode_fd,
2799 const struct dirent *de,
2800 const struct statx *sx,
2801 void *userdata) {
2802
2803 struct load_cred_args *args = ASSERT_PTR(userdata);
2804 _cleanup_free_ char *sub_id = NULL;
2805 int r;
2806
2807 if (event != RECURSE_DIR_ENTRY)
2808 return RECURSE_DIR_CONTINUE;
2809
2810 if (!IN_SET(de->d_type, DT_REG, DT_SOCK))
2811 return RECURSE_DIR_CONTINUE;
2812
2813 sub_id = strreplace(path, "/", "_");
2814 if (!sub_id)
2815 return -ENOMEM;
2816
2817 if (!credential_name_valid(sub_id))
2818 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Credential would get ID %s, which is not valid, refusing", sub_id);
2819
2820 if (faccessat(args->dfd, sub_id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) {
2821 log_debug("Skipping credential with duplicated ID %s at %s", sub_id, path);
2822 return RECURSE_DIR_CONTINUE;
2823 }
2824 if (errno != ENOENT)
2825 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sub_id);
2826
2827 r = load_credential(
2828 args->context,
2829 args->params,
2830 sub_id,
2831 de->d_name,
2832 args->encrypted,
2833 args->unit,
2834 dir_fd,
2835 args->dfd,
2836 args->uid,
2837 args->ownership_ok,
2838 args->left);
2839 if (r < 0)
2840 return r;
2841
2842 return RECURSE_DIR_CONTINUE;
2843 }
2844
2845 static int acquire_credentials(
2846 const ExecContext *context,
2847 const ExecParameters *params,
2848 const char *unit,
2849 const char *p,
2850 uid_t uid,
2851 bool ownership_ok) {
2852
2853 uint64_t left = CREDENTIALS_TOTAL_SIZE_MAX;
2854 _cleanup_close_ int dfd = -1;
2855 ExecLoadCredential *lc;
2856 ExecSetCredential *sc;
2857 int r;
2858
2859 assert(context);
2860 assert(p);
2861
2862 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2863 if (dfd < 0)
2864 return -errno;
2865
2866 /* First, load credentials off disk (or acquire via AF_UNIX socket) */
2867 HASHMAP_FOREACH(lc, context->load_credentials) {
2868 _cleanup_close_ int sub_fd = -1;
2869
2870 /* If this is an absolute path, then try to open it as a directory. If that works, then we'll
2871 * recurse into it. If it is an absolute path but it isn't a directory, then we'll open it as
2872 * a regular file. Finally, if it's a relative path we will use it as a credential name to
2873 * propagate a credential passed to us from further up. */
2874
2875 if (path_is_absolute(lc->path)) {
2876 sub_fd = open(lc->path, O_DIRECTORY|O_CLOEXEC|O_RDONLY);
2877 if (sub_fd < 0 && !IN_SET(errno,
2878 ENOTDIR, /* Not a directory */
2879 ENOENT)) /* Doesn't exist? */
2880 return log_debug_errno(errno, "Failed to open '%s': %m", lc->path);
2881 }
2882
2883 if (sub_fd < 0)
2884 /* Regular file (incl. a credential passed in from higher up) */
2885 r = load_credential(
2886 context,
2887 params,
2888 lc->id,
2889 lc->path,
2890 lc->encrypted,
2891 unit,
2892 -1,
2893 dfd,
2894 uid,
2895 ownership_ok,
2896 &left);
2897 else
2898 /* Directory */
2899 r = recurse_dir(
2900 sub_fd,
2901 /* path= */ lc->id, /* recurse_dir() will suffix the subdir paths from here to the top-level id */
2902 /* statx_mask= */ 0,
2903 /* n_depth_max= */ UINT_MAX,
2904 RECURSE_DIR_SORT|RECURSE_DIR_IGNORE_DOT|RECURSE_DIR_ENSURE_TYPE,
2905 load_cred_recurse_dir_cb,
2906 &(struct load_cred_args) {
2907 .context = context,
2908 .params = params,
2909 .encrypted = lc->encrypted,
2910 .unit = unit,
2911 .dfd = dfd,
2912 .uid = uid,
2913 .ownership_ok = ownership_ok,
2914 .left = &left,
2915 });
2916 if (r < 0)
2917 return r;
2918 }
2919
2920 /* Second, we add in literally specified credentials. If the credentials already exist, we'll not add
2921 * them, so that they can act as a "default" if the same credential is specified multiple times. */
2922 HASHMAP_FOREACH(sc, context->set_credentials) {
2923 _cleanup_(erase_and_freep) void *plaintext = NULL;
2924 const char *data;
2925 size_t size, add;
2926
2927 /* Note that we check ahead of time here instead of relying on O_EXCL|O_CREAT later to return
2928 * EEXIST if the credential already exists. That's because the TPM2-based decryption is kinda
2929 * slow and involved, hence it's nice to be able to skip that if the credential already
2930 * exists anyway. */
2931 if (faccessat(dfd, sc->id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
2932 continue;
2933 if (errno != ENOENT)
2934 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sc->id);
2935
2936 if (sc->encrypted) {
2937 r = decrypt_credential_and_warn(sc->id, now(CLOCK_REALTIME), NULL, NULL, sc->data, sc->size, &plaintext, &size);
2938 if (r < 0)
2939 return r;
2940
2941 data = plaintext;
2942 } else {
2943 data = sc->data;
2944 size = sc->size;
2945 }
2946
2947 add = strlen(sc->id) + size;
2948 if (add > left)
2949 return -E2BIG;
2950
2951 r = write_credential(dfd, sc->id, data, size, uid, ownership_ok);
2952 if (r < 0)
2953 return r;
2954
2955 left -= add;
2956 }
2957
2958 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2959 return -errno;
2960
2961 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2962 * accessible */
2963
2964 if (uid_is_valid(uid) && uid != getuid()) {
2965 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2966 if (r < 0) {
2967 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2968 return r;
2969
2970 if (!ownership_ok)
2971 return r;
2972
2973 if (fchown(dfd, uid, GID_INVALID) < 0)
2974 return -errno;
2975 }
2976 }
2977
2978 return 0;
2979 }
2980
2981 static int setup_credentials_internal(
2982 const ExecContext *context,
2983 const ExecParameters *params,
2984 const char *unit,
2985 const char *final, /* This is where the credential store shall eventually end up at */
2986 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2987 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2988 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2989 uid_t uid) {
2990
2991 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2992 * if we mounted something; false if we definitely can't mount anything */
2993 bool final_mounted;
2994 const char *where;
2995
2996 assert(context);
2997 assert(final);
2998 assert(workspace);
2999
3000 if (reuse_workspace) {
3001 r = path_is_mount_point(workspace, NULL, 0);
3002 if (r < 0)
3003 return r;
3004 if (r > 0)
3005 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
3006 else
3007 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
3008 } else
3009 workspace_mounted = -1; /* ditto */
3010
3011 r = path_is_mount_point(final, NULL, 0);
3012 if (r < 0)
3013 return r;
3014 if (r > 0) {
3015 /* If the final place already has something mounted, we use that. If the workspace also has
3016 * something mounted we assume it's actually the same mount (but with MS_RDONLY
3017 * different). */
3018 final_mounted = true;
3019
3020 if (workspace_mounted < 0) {
3021 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
3022 * the final version to the workspace, and make it writable, so that we can make
3023 * changes */
3024
3025 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3026 if (r < 0)
3027 return r;
3028
3029 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3030 if (r < 0)
3031 return r;
3032
3033 workspace_mounted = true;
3034 }
3035 } else
3036 final_mounted = false;
3037
3038 if (workspace_mounted < 0) {
3039 /* Nothing is mounted on the workspace yet, let's try to mount something now */
3040 for (int try = 0;; try++) {
3041
3042 if (try == 0) {
3043 /* Try "ramfs" first, since it's not swap backed */
3044 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
3045 if (r >= 0) {
3046 workspace_mounted = true;
3047 break;
3048 }
3049
3050 } else if (try == 1) {
3051 _cleanup_free_ char *opts = NULL;
3052
3053 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%zu", (size_t) CREDENTIALS_TOTAL_SIZE_MAX) < 0)
3054 return -ENOMEM;
3055
3056 /* Fall back to "tmpfs" otherwise */
3057 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
3058 if (r >= 0) {
3059 workspace_mounted = true;
3060 break;
3061 }
3062
3063 } else {
3064 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
3065 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3066 if (r < 0) {
3067 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
3068 return r;
3069
3070 if (must_mount) /* If we it's not OK to use the plain directory
3071 * fallback, propagate all errors too */
3072 return r;
3073
3074 /* If we lack privileges to bind mount stuff, then let's gracefully
3075 * proceed for compat with container envs, and just use the final dir
3076 * as is. */
3077
3078 workspace_mounted = false;
3079 break;
3080 }
3081
3082 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
3083 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3084 if (r < 0)
3085 return r;
3086
3087 workspace_mounted = true;
3088 break;
3089 }
3090 }
3091 }
3092
3093 assert(!must_mount || workspace_mounted > 0);
3094 where = workspace_mounted ? workspace : final;
3095
3096 (void) label_fix_full(AT_FDCWD, where, final, 0);
3097
3098 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
3099 if (r < 0)
3100 return r;
3101
3102 if (workspace_mounted) {
3103 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
3104 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3105 if (r < 0)
3106 return r;
3107
3108 /* And mount it to the final place, read-only */
3109 if (final_mounted)
3110 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
3111 else
3112 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
3113 if (r < 0)
3114 return r;
3115 } else {
3116 _cleanup_free_ char *parent = NULL;
3117
3118 /* If we do not have our own mount put used the plain directory fallback, then we need to
3119 * open access to the top-level credential directory and the per-service directory now */
3120
3121 r = path_extract_directory(final, &parent);
3122 if (r < 0)
3123 return r;
3124 if (chmod(parent, 0755) < 0)
3125 return -errno;
3126 }
3127
3128 return 0;
3129 }
3130
3131 static int setup_credentials(
3132 const ExecContext *context,
3133 const ExecParameters *params,
3134 const char *unit,
3135 uid_t uid) {
3136
3137 _cleanup_free_ char *p = NULL, *q = NULL;
3138 int r;
3139
3140 assert(context);
3141 assert(params);
3142
3143 if (!exec_context_has_credentials(context))
3144 return 0;
3145
3146 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
3147 return -EINVAL;
3148
3149 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
3150 * and the subdir we mount over with a read-only file system readable by the service's user */
3151 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
3152 if (!q)
3153 return -ENOMEM;
3154
3155 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
3156 if (r < 0 && r != -EEXIST)
3157 return r;
3158
3159 p = path_join(q, unit);
3160 if (!p)
3161 return -ENOMEM;
3162
3163 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
3164 if (r < 0 && r != -EEXIST)
3165 return r;
3166
3167 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
3168 if (r < 0) {
3169 _cleanup_free_ char *t = NULL, *u = NULL;
3170
3171 /* If this is not a privilege or support issue then propagate the error */
3172 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3173 return r;
3174
3175 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
3176 * it into place, so that users can't access half-initialized credential stores. */
3177 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
3178 if (!t)
3179 return -ENOMEM;
3180
3181 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
3182 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
3183 * after it is fully set up */
3184 u = path_join(t, unit);
3185 if (!u)
3186 return -ENOMEM;
3187
3188 FOREACH_STRING(i, t, u) {
3189 r = mkdir_label(i, 0700);
3190 if (r < 0 && r != -EEXIST)
3191 return r;
3192 }
3193
3194 r = setup_credentials_internal(
3195 context,
3196 params,
3197 unit,
3198 p, /* final mount point */
3199 u, /* temporary workspace to overmount */
3200 true, /* reuse the workspace if it is already a mount */
3201 false, /* it's OK to fall back to a plain directory if we can't mount anything */
3202 uid);
3203
3204 (void) rmdir(u); /* remove the workspace again if we can. */
3205
3206 if (r < 0)
3207 return r;
3208
3209 } else if (r == 0) {
3210
3211 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
3212 * we can use the same directory for all cases, after turning off propagation. Question
3213 * though is: where do we turn off propagation exactly, and where do we place the workspace
3214 * directory? We need some place that is guaranteed to be a mount point in the host, and
3215 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
3216 * since we ultimately want to move the resulting file system there, i.e. we need propagation
3217 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
3218 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
3219 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
3220 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
3221 * propagation on the former, and then overmount the latter.
3222 *
3223 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
3224 * for this purpose, but there are few other candidates that work equally well for us, and
3225 * given that the we do this in a privately namespaced short-lived single-threaded process
3226 * that no one else sees this should be OK to do. */
3227
3228 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
3229 if (r < 0)
3230 goto child_fail;
3231
3232 r = setup_credentials_internal(
3233 context,
3234 params,
3235 unit,
3236 p, /* final mount point */
3237 "/dev/shm", /* temporary workspace to overmount */
3238 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
3239 true, /* insist that something is mounted, do not allow fallback to plain directory */
3240 uid);
3241 if (r < 0)
3242 goto child_fail;
3243
3244 _exit(EXIT_SUCCESS);
3245
3246 child_fail:
3247 _exit(EXIT_FAILURE);
3248 }
3249
3250 return 0;
3251 }
3252
3253 #if ENABLE_SMACK
3254 static int setup_smack(
3255 const Manager *manager,
3256 const ExecContext *context,
3257 int executable_fd) {
3258 int r;
3259
3260 assert(context);
3261 assert(executable_fd >= 0);
3262
3263 if (context->smack_process_label) {
3264 r = mac_smack_apply_pid(0, context->smack_process_label);
3265 if (r < 0)
3266 return r;
3267 } else if (manager->default_smack_process_label) {
3268 _cleanup_free_ char *exec_label = NULL;
3269
3270 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
3271 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3272 return r;
3273
3274 r = mac_smack_apply_pid(0, exec_label ? : manager->default_smack_process_label);
3275 if (r < 0)
3276 return r;
3277 }
3278
3279 return 0;
3280 }
3281 #endif
3282
3283 static int compile_bind_mounts(
3284 const ExecContext *context,
3285 const ExecParameters *params,
3286 BindMount **ret_bind_mounts,
3287 size_t *ret_n_bind_mounts,
3288 char ***ret_empty_directories) {
3289
3290 _cleanup_strv_free_ char **empty_directories = NULL;
3291 BindMount *bind_mounts;
3292 size_t n, h = 0;
3293 int r;
3294
3295 assert(context);
3296 assert(params);
3297 assert(ret_bind_mounts);
3298 assert(ret_n_bind_mounts);
3299 assert(ret_empty_directories);
3300
3301 n = context->n_bind_mounts;
3302 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3303 if (!params->prefix[t])
3304 continue;
3305
3306 for (size_t i = 0; i < context->directories[t].n_items; i++)
3307 n += !context->directories[t].items[i].only_create;
3308 }
3309
3310 if (n <= 0) {
3311 *ret_bind_mounts = NULL;
3312 *ret_n_bind_mounts = 0;
3313 *ret_empty_directories = NULL;
3314 return 0;
3315 }
3316
3317 bind_mounts = new(BindMount, n);
3318 if (!bind_mounts)
3319 return -ENOMEM;
3320
3321 for (size_t i = 0; i < context->n_bind_mounts; i++) {
3322 BindMount *item = context->bind_mounts + i;
3323 char *s, *d;
3324
3325 s = strdup(item->source);
3326 if (!s) {
3327 r = -ENOMEM;
3328 goto finish;
3329 }
3330
3331 d = strdup(item->destination);
3332 if (!d) {
3333 free(s);
3334 r = -ENOMEM;
3335 goto finish;
3336 }
3337
3338 bind_mounts[h++] = (BindMount) {
3339 .source = s,
3340 .destination = d,
3341 .read_only = item->read_only,
3342 .recursive = item->recursive,
3343 .ignore_enoent = item->ignore_enoent,
3344 };
3345 }
3346
3347 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3348 if (!params->prefix[t])
3349 continue;
3350
3351 if (context->directories[t].n_items == 0)
3352 continue;
3353
3354 if (exec_directory_is_private(context, t) &&
3355 !exec_context_with_rootfs(context)) {
3356 char *private_root;
3357
3358 /* So this is for a dynamic user, and we need to make sure the process can access its own
3359 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3360 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3361
3362 private_root = path_join(params->prefix[t], "private");
3363 if (!private_root) {
3364 r = -ENOMEM;
3365 goto finish;
3366 }
3367
3368 r = strv_consume(&empty_directories, private_root);
3369 if (r < 0)
3370 goto finish;
3371 }
3372
3373 for (size_t i = 0; i < context->directories[t].n_items; i++) {
3374 char *s, *d;
3375
3376 /* When one of the parent directories is in the list, we cannot create the symlink
3377 * for the child directory. See also the comments in setup_exec_directory(). */
3378 if (context->directories[t].items[i].only_create)
3379 continue;
3380
3381 if (exec_directory_is_private(context, t))
3382 s = path_join(params->prefix[t], "private", context->directories[t].items[i].path);
3383 else
3384 s = path_join(params->prefix[t], context->directories[t].items[i].path);
3385 if (!s) {
3386 r = -ENOMEM;
3387 goto finish;
3388 }
3389
3390 if (exec_directory_is_private(context, t) &&
3391 exec_context_with_rootfs(context))
3392 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3393 * directory is not created on the root directory. So, let's bind-mount the directory
3394 * on the 'non-private' place. */
3395 d = path_join(params->prefix[t], context->directories[t].items[i].path);
3396 else
3397 d = strdup(s);
3398 if (!d) {
3399 free(s);
3400 r = -ENOMEM;
3401 goto finish;
3402 }
3403
3404 bind_mounts[h++] = (BindMount) {
3405 .source = s,
3406 .destination = d,
3407 .read_only = false,
3408 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3409 .recursive = true,
3410 .ignore_enoent = false,
3411 };
3412 }
3413 }
3414
3415 assert(h == n);
3416
3417 *ret_bind_mounts = bind_mounts;
3418 *ret_n_bind_mounts = n;
3419 *ret_empty_directories = TAKE_PTR(empty_directories);
3420
3421 return (int) n;
3422
3423 finish:
3424 bind_mount_free_many(bind_mounts, h);
3425 return r;
3426 }
3427
3428 /* ret_symlinks will contain a list of pairs src:dest that describes
3429 * the symlinks to create later on. For example, the symlinks needed
3430 * to safely give private directories to DynamicUser=1 users. */
3431 static int compile_symlinks(
3432 const ExecContext *context,
3433 const ExecParameters *params,
3434 char ***ret_symlinks) {
3435
3436 _cleanup_strv_free_ char **symlinks = NULL;
3437 int r;
3438
3439 assert(context);
3440 assert(params);
3441 assert(ret_symlinks);
3442
3443 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3444 for (size_t i = 0; i < context->directories[dt].n_items; i++) {
3445 _cleanup_free_ char *private_path = NULL, *path = NULL;
3446
3447 STRV_FOREACH(symlink, context->directories[dt].items[i].symlinks) {
3448 _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL;
3449
3450 src_abs = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3451 dst_abs = path_join(params->prefix[dt], *symlink);
3452 if (!src_abs || !dst_abs)
3453 return -ENOMEM;
3454
3455 r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs));
3456 if (r < 0)
3457 return r;
3458 }
3459
3460 if (!exec_directory_is_private(context, dt) ||
3461 exec_context_with_rootfs(context) ||
3462 context->directories[dt].items[i].only_create)
3463 continue;
3464
3465 private_path = path_join(params->prefix[dt], "private", context->directories[dt].items[i].path);
3466 if (!private_path)
3467 return -ENOMEM;
3468
3469 path = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3470 if (!path)
3471 return -ENOMEM;
3472
3473 r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path));
3474 if (r < 0)
3475 return r;
3476 }
3477 }
3478
3479 *ret_symlinks = TAKE_PTR(symlinks);
3480
3481 return 0;
3482 }
3483
3484 static bool insist_on_sandboxing(
3485 const ExecContext *context,
3486 const char *root_dir,
3487 const char *root_image,
3488 const BindMount *bind_mounts,
3489 size_t n_bind_mounts) {
3490
3491 assert(context);
3492 assert(n_bind_mounts == 0 || bind_mounts);
3493
3494 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3495 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3496 * rearrange stuff in a way we cannot ignore gracefully. */
3497
3498 if (context->n_temporary_filesystems > 0)
3499 return true;
3500
3501 if (root_dir || root_image)
3502 return true;
3503
3504 if (context->n_mount_images > 0)
3505 return true;
3506
3507 if (context->dynamic_user)
3508 return true;
3509
3510 if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories))
3511 return true;
3512
3513 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3514 * essential. */
3515 for (size_t i = 0; i < n_bind_mounts; i++)
3516 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3517 return true;
3518
3519 if (context->log_namespace)
3520 return true;
3521
3522 return false;
3523 }
3524
3525 static int apply_mount_namespace(
3526 const Unit *u,
3527 ExecCommandFlags command_flags,
3528 const ExecContext *context,
3529 const ExecParameters *params,
3530 const ExecRuntime *runtime,
3531 char **error_path) {
3532
3533 _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL;
3534 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3535 const char *root_dir = NULL, *root_image = NULL;
3536 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL,
3537 *extension_dir = NULL;
3538 NamespaceInfo ns_info;
3539 bool needs_sandboxing;
3540 BindMount *bind_mounts = NULL;
3541 size_t n_bind_mounts = 0;
3542 int r;
3543
3544 assert(context);
3545
3546 if (params->flags & EXEC_APPLY_CHROOT) {
3547 root_image = context->root_image;
3548
3549 if (!root_image)
3550 root_dir = context->root_directory;
3551 }
3552
3553 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3554 if (r < 0)
3555 return r;
3556
3557 /* Symlinks for exec dirs are set up after other mounts, before they are made read-only. */
3558 r = compile_symlinks(context, params, &symlinks);
3559 if (r < 0)
3560 goto finalize;
3561
3562 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3563 if (needs_sandboxing) {
3564 /* The runtime struct only contains the parent of the private /tmp,
3565 * which is non-accessible to world users. Inside of it there's a /tmp
3566 * that is sticky, and that's the one we want to use here.
3567 * This does not apply when we are using /run/systemd/empty as fallback. */
3568
3569 if (context->private_tmp && runtime) {
3570 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3571 tmp_dir = runtime->tmp_dir;
3572 else if (runtime->tmp_dir)
3573 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3574
3575 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3576 var_tmp_dir = runtime->var_tmp_dir;
3577 else if (runtime->var_tmp_dir)
3578 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3579 }
3580
3581 ns_info = (NamespaceInfo) {
3582 .ignore_protect_paths = false,
3583 .private_dev = context->private_devices,
3584 .protect_control_groups = context->protect_control_groups,
3585 .protect_kernel_tunables = context->protect_kernel_tunables,
3586 .protect_kernel_modules = context->protect_kernel_modules,
3587 .protect_kernel_logs = context->protect_kernel_logs,
3588 .protect_hostname = context->protect_hostname,
3589 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3590 .private_mounts = context->private_mounts,
3591 .protect_home = context->protect_home,
3592 .protect_system = context->protect_system,
3593 .protect_proc = context->protect_proc,
3594 .proc_subset = context->proc_subset,
3595 .private_ipc = context->private_ipc || context->ipc_namespace_path,
3596 /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */
3597 .mount_nosuid = context->no_new_privileges && !mac_selinux_use(),
3598 };
3599 } else if (!context->dynamic_user && root_dir)
3600 /*
3601 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3602 * sandbox info, otherwise enforce it, don't ignore protected paths and
3603 * fail if we are enable to apply the sandbox inside the mount namespace.
3604 */
3605 ns_info = (NamespaceInfo) {
3606 .ignore_protect_paths = true,
3607 };
3608 else
3609 ns_info = (NamespaceInfo) {};
3610
3611 if (context->mount_flags == MS_SHARED)
3612 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3613
3614 if (exec_context_has_credentials(context) &&
3615 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3616 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3617 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3618 if (!creds_path) {
3619 r = -ENOMEM;
3620 goto finalize;
3621 }
3622 }
3623
3624 if (MANAGER_IS_SYSTEM(u->manager)) {
3625 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3626 if (!propagate_dir) {
3627 r = -ENOMEM;
3628 goto finalize;
3629 }
3630
3631 incoming_dir = strdup("/run/systemd/incoming");
3632 if (!incoming_dir) {
3633 r = -ENOMEM;
3634 goto finalize;
3635 }
3636
3637 extension_dir = strdup("/run/systemd/unit-extensions");
3638 if (!extension_dir) {
3639 r = -ENOMEM;
3640 goto finalize;
3641 }
3642 } else
3643 if (asprintf(&extension_dir, "/run/user/" UID_FMT "/systemd/unit-extensions", geteuid()) < 0) {
3644 r = -ENOMEM;
3645 goto finalize;
3646 }
3647
3648 r = setup_namespace(root_dir, root_image, context->root_image_options,
3649 &ns_info, context->read_write_paths,
3650 needs_sandboxing ? context->read_only_paths : NULL,
3651 needs_sandboxing ? context->inaccessible_paths : NULL,
3652 needs_sandboxing ? context->exec_paths : NULL,
3653 needs_sandboxing ? context->no_exec_paths : NULL,
3654 empty_directories,
3655 symlinks,
3656 bind_mounts,
3657 n_bind_mounts,
3658 context->temporary_filesystems,
3659 context->n_temporary_filesystems,
3660 context->mount_images,
3661 context->n_mount_images,
3662 tmp_dir,
3663 var_tmp_dir,
3664 creds_path,
3665 context->log_namespace,
3666 context->mount_flags,
3667 context->root_hash, context->root_hash_size, context->root_hash_path,
3668 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3669 context->root_verity,
3670 context->extension_images,
3671 context->n_extension_images,
3672 context->extension_directories,
3673 propagate_dir,
3674 incoming_dir,
3675 extension_dir,
3676 root_dir || root_image ? params->notify_socket : NULL,
3677 error_path);
3678
3679 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3680 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3681 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3682 * completely different execution environment. */
3683 if (r == -ENOANO) {
3684 if (insist_on_sandboxing(
3685 context,
3686 root_dir, root_image,
3687 bind_mounts,
3688 n_bind_mounts)) {
3689 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3690 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3691 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3692
3693 r = -EOPNOTSUPP;
3694 } else {
3695 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3696 r = 0;
3697 }
3698 }
3699
3700 finalize:
3701 bind_mount_free_many(bind_mounts, n_bind_mounts);
3702 return r;
3703 }
3704
3705 static int apply_working_directory(
3706 const ExecContext *context,
3707 const ExecParameters *params,
3708 const char *home,
3709 int *exit_status) {
3710
3711 const char *d, *wd;
3712
3713 assert(context);
3714 assert(exit_status);
3715
3716 if (context->working_directory_home) {
3717
3718 if (!home) {
3719 *exit_status = EXIT_CHDIR;
3720 return -ENXIO;
3721 }
3722
3723 wd = home;
3724
3725 } else
3726 wd = empty_to_root(context->working_directory);
3727
3728 if (params->flags & EXEC_APPLY_CHROOT)
3729 d = wd;
3730 else
3731 d = prefix_roota(context->root_directory, wd);
3732
3733 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3734 *exit_status = EXIT_CHDIR;
3735 return -errno;
3736 }
3737
3738 return 0;
3739 }
3740
3741 static int apply_root_directory(
3742 const ExecContext *context,
3743 const ExecParameters *params,
3744 const bool needs_mount_ns,
3745 int *exit_status) {
3746
3747 assert(context);
3748 assert(exit_status);
3749
3750 if (params->flags & EXEC_APPLY_CHROOT)
3751 if (!needs_mount_ns && context->root_directory)
3752 if (chroot(context->root_directory) < 0) {
3753 *exit_status = EXIT_CHROOT;
3754 return -errno;
3755 }
3756
3757 return 0;
3758 }
3759
3760 static int setup_keyring(
3761 const Unit *u,
3762 const ExecContext *context,
3763 const ExecParameters *p,
3764 uid_t uid, gid_t gid) {
3765
3766 key_serial_t keyring;
3767 int r = 0;
3768 uid_t saved_uid;
3769 gid_t saved_gid;
3770
3771 assert(u);
3772 assert(context);
3773 assert(p);
3774
3775 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3776 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3777 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3778 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3779 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3780 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3781
3782 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3783 return 0;
3784
3785 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3786 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3787 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3788 * & group is just as nasty as acquiring a reference to the user keyring. */
3789
3790 saved_uid = getuid();
3791 saved_gid = getgid();
3792
3793 if (gid_is_valid(gid) && gid != saved_gid) {
3794 if (setregid(gid, -1) < 0)
3795 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3796 }
3797
3798 if (uid_is_valid(uid) && uid != saved_uid) {
3799 if (setreuid(uid, -1) < 0) {
3800 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3801 goto out;
3802 }
3803 }
3804
3805 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3806 if (keyring == -1) {
3807 if (errno == ENOSYS)
3808 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3809 else if (ERRNO_IS_PRIVILEGE(errno))
3810 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3811 else if (errno == EDQUOT)
3812 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3813 else
3814 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3815
3816 goto out;
3817 }
3818
3819 /* When requested link the user keyring into the session keyring. */
3820 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3821
3822 if (keyctl(KEYCTL_LINK,
3823 KEY_SPEC_USER_KEYRING,
3824 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3825 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3826 goto out;
3827 }
3828 }
3829
3830 /* Restore uid/gid back */
3831 if (uid_is_valid(uid) && uid != saved_uid) {
3832 if (setreuid(saved_uid, -1) < 0) {
3833 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3834 goto out;
3835 }
3836 }
3837
3838 if (gid_is_valid(gid) && gid != saved_gid) {
3839 if (setregid(saved_gid, -1) < 0)
3840 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3841 }
3842
3843 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3844 if (!sd_id128_is_null(u->invocation_id)) {
3845 key_serial_t key;
3846
3847 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3848 if (key == -1)
3849 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3850 else {
3851 if (keyctl(KEYCTL_SETPERM, key,
3852 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3853 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3854 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3855 }
3856 }
3857
3858 out:
3859 /* Revert back uid & gid for the last time, and exit */
3860 /* no extra logging, as only the first already reported error matters */
3861 if (getuid() != saved_uid)
3862 (void) setreuid(saved_uid, -1);
3863
3864 if (getgid() != saved_gid)
3865 (void) setregid(saved_gid, -1);
3866
3867 return r;
3868 }
3869
3870 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3871 assert(array);
3872 assert(n);
3873 assert(pair);
3874
3875 if (pair[0] >= 0)
3876 array[(*n)++] = pair[0];
3877 if (pair[1] >= 0)
3878 array[(*n)++] = pair[1];
3879 }
3880
3881 static int close_remaining_fds(
3882 const ExecParameters *params,
3883 const ExecRuntime *runtime,
3884 const DynamicCreds *dcreds,
3885 int user_lookup_fd,
3886 int socket_fd,
3887 const int *fds, size_t n_fds) {
3888
3889 size_t n_dont_close = 0;
3890 int dont_close[n_fds + 12];
3891
3892 assert(params);
3893
3894 if (params->stdin_fd >= 0)
3895 dont_close[n_dont_close++] = params->stdin_fd;
3896 if (params->stdout_fd >= 0)
3897 dont_close[n_dont_close++] = params->stdout_fd;
3898 if (params->stderr_fd >= 0)
3899 dont_close[n_dont_close++] = params->stderr_fd;
3900
3901 if (socket_fd >= 0)
3902 dont_close[n_dont_close++] = socket_fd;
3903 if (n_fds > 0) {
3904 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3905 n_dont_close += n_fds;
3906 }
3907
3908 if (runtime) {
3909 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3910 append_socket_pair(dont_close, &n_dont_close, runtime->ipcns_storage_socket);
3911 }
3912
3913 if (dcreds) {
3914 if (dcreds->user)
3915 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3916 if (dcreds->group)
3917 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3918 }
3919
3920 if (user_lookup_fd >= 0)
3921 dont_close[n_dont_close++] = user_lookup_fd;
3922
3923 return close_all_fds(dont_close, n_dont_close);
3924 }
3925
3926 static int send_user_lookup(
3927 Unit *unit,
3928 int user_lookup_fd,
3929 uid_t uid,
3930 gid_t gid) {
3931
3932 assert(unit);
3933
3934 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3935 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3936 * specified. */
3937
3938 if (user_lookup_fd < 0)
3939 return 0;
3940
3941 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3942 return 0;
3943
3944 if (writev(user_lookup_fd,
3945 (struct iovec[]) {
3946 IOVEC_INIT(&uid, sizeof(uid)),
3947 IOVEC_INIT(&gid, sizeof(gid)),
3948 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3949 return -errno;
3950
3951 return 0;
3952 }
3953
3954 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3955 int r;
3956
3957 assert(c);
3958 assert(home);
3959 assert(buf);
3960
3961 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3962
3963 if (*home)
3964 return 0;
3965
3966 if (!c->working_directory_home)
3967 return 0;
3968
3969 r = get_home_dir(buf);
3970 if (r < 0)
3971 return r;
3972
3973 *home = *buf;
3974 return 1;
3975 }
3976
3977 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3978 _cleanup_strv_free_ char ** list = NULL;
3979 int r;
3980
3981 assert(c);
3982 assert(p);
3983 assert(ret);
3984
3985 assert(c->dynamic_user);
3986
3987 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3988 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3989 * directories. */
3990
3991 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3992 if (t == EXEC_DIRECTORY_CONFIGURATION)
3993 continue;
3994
3995 if (!p->prefix[t])
3996 continue;
3997
3998 for (size_t i = 0; i < c->directories[t].n_items; i++) {
3999 char *e;
4000
4001 if (exec_directory_is_private(c, t))
4002 e = path_join(p->prefix[t], "private", c->directories[t].items[i].path);
4003 else
4004 e = path_join(p->prefix[t], c->directories[t].items[i].path);
4005 if (!e)
4006 return -ENOMEM;
4007
4008 r = strv_consume(&list, e);
4009 if (r < 0)
4010 return r;
4011 }
4012 }
4013
4014 *ret = TAKE_PTR(list);
4015
4016 return 0;
4017 }
4018
4019 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
4020 bool using_subcgroup;
4021 char *p;
4022
4023 assert(params);
4024 assert(ret);
4025
4026 if (!params->cgroup_path)
4027 return -EINVAL;
4028
4029 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
4030 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
4031 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
4032 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
4033 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
4034 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
4035 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
4036 * flag, which is only passed for the former statements, not for the latter. */
4037
4038 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
4039 if (using_subcgroup)
4040 p = path_join(params->cgroup_path, ".control");
4041 else
4042 p = strdup(params->cgroup_path);
4043 if (!p)
4044 return -ENOMEM;
4045
4046 *ret = p;
4047 return using_subcgroup;
4048 }
4049
4050 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
4051 _cleanup_(cpu_set_reset) CPUSet s = {};
4052 int r;
4053
4054 assert(c);
4055 assert(ret);
4056
4057 if (!c->numa_policy.nodes.set) {
4058 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
4059 return 0;
4060 }
4061
4062 r = numa_to_cpu_set(&c->numa_policy, &s);
4063 if (r < 0)
4064 return r;
4065
4066 cpu_set_reset(ret);
4067
4068 return cpu_set_add_all(ret, &s);
4069 }
4070
4071 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
4072 assert(c);
4073
4074 return c->cpu_affinity_from_numa;
4075 }
4076
4077 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
4078 int r;
4079
4080 assert(fds);
4081 assert(n_fds);
4082 assert(*n_fds < fds_size);
4083 assert(ret_fd);
4084
4085 if (fd < 0) {
4086 *ret_fd = -1;
4087 return 0;
4088 }
4089
4090 if (fd < 3 + (int) *n_fds) {
4091 /* Let's move the fd up, so that it's outside of the fd range we will use to store
4092 * the fds we pass to the process (or which are closed only during execve). */
4093
4094 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
4095 if (r < 0)
4096 return -errno;
4097
4098 close_and_replace(fd, r);
4099 }
4100
4101 *ret_fd = fds[*n_fds] = fd;
4102 (*n_fds) ++;
4103 return 1;
4104 }
4105
4106 static int exec_child(
4107 Unit *unit,
4108 const ExecCommand *command,
4109 const ExecContext *context,
4110 const ExecParameters *params,
4111 ExecRuntime *runtime,
4112 DynamicCreds *dcreds,
4113 int socket_fd,
4114 const int named_iofds[static 3],
4115 int *fds,
4116 size_t n_socket_fds,
4117 size_t n_storage_fds,
4118 char **files_env,
4119 int user_lookup_fd,
4120 int *exit_status) {
4121
4122 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL;
4123 int r, ngids = 0, exec_fd;
4124 _cleanup_free_ gid_t *supplementary_gids = NULL;
4125 const char *username = NULL, *groupname = NULL;
4126 _cleanup_free_ char *home_buffer = NULL;
4127 const char *home = NULL, *shell = NULL;
4128 char **final_argv = NULL;
4129 dev_t journal_stream_dev = 0;
4130 ino_t journal_stream_ino = 0;
4131 bool userns_set_up = false;
4132 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
4133 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
4134 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
4135 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
4136 #if HAVE_SELINUX
4137 _cleanup_free_ char *mac_selinux_context_net = NULL;
4138 bool use_selinux = false;
4139 #endif
4140 #if ENABLE_SMACK
4141 bool use_smack = false;
4142 #endif
4143 #if HAVE_APPARMOR
4144 bool use_apparmor = false;
4145 #endif
4146 uid_t saved_uid = getuid();
4147 gid_t saved_gid = getgid();
4148 uid_t uid = UID_INVALID;
4149 gid_t gid = GID_INVALID;
4150 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
4151 n_keep_fds; /* total number of fds not to close */
4152 int secure_bits;
4153 _cleanup_free_ gid_t *gids_after_pam = NULL;
4154 int ngids_after_pam = 0;
4155
4156 assert(unit);
4157 assert(command);
4158 assert(context);
4159 assert(params);
4160 assert(exit_status);
4161
4162 /* Explicitly test for CVE-2021-4034 inspired invocations */
4163 assert(command->path);
4164 assert(!strv_isempty(command->argv));
4165
4166 rename_process_from_path(command->path);
4167
4168 /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main
4169 * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially,
4170 * both of which will be demoted to SIG_DFL. */
4171 (void) default_signals(SIGNALS_CRASH_HANDLER,
4172 SIGNALS_IGNORE);
4173
4174 if (context->ignore_sigpipe)
4175 (void) ignore_signals(SIGPIPE);
4176
4177 r = reset_signal_mask();
4178 if (r < 0) {
4179 *exit_status = EXIT_SIGNAL_MASK;
4180 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
4181 }
4182
4183 if (params->idle_pipe)
4184 do_idle_pipe_dance(params->idle_pipe);
4185
4186 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
4187 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
4188 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
4189 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
4190
4191 log_forget_fds();
4192 log_set_open_when_needed(true);
4193
4194 /* In case anything used libc syslog(), close this here, too */
4195 closelog();
4196
4197 int keep_fds[n_fds + 3];
4198 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
4199 n_keep_fds = n_fds;
4200
4201 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
4202 if (r < 0) {
4203 *exit_status = EXIT_FDS;
4204 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4205 }
4206
4207 #if HAVE_LIBBPF
4208 if (unit->manager->restrict_fs) {
4209 int bpf_map_fd = lsm_bpf_map_restrict_fs_fd(unit);
4210 if (bpf_map_fd < 0) {
4211 *exit_status = EXIT_FDS;
4212 return log_unit_error_errno(unit, bpf_map_fd, "Failed to get restrict filesystems BPF map fd: %m");
4213 }
4214
4215 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, bpf_map_fd, &bpf_map_fd);
4216 if (r < 0) {
4217 *exit_status = EXIT_FDS;
4218 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4219 }
4220 }
4221 #endif
4222
4223 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
4224 if (r < 0) {
4225 *exit_status = EXIT_FDS;
4226 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
4227 }
4228
4229 if (!context->same_pgrp &&
4230 setsid() < 0) {
4231 *exit_status = EXIT_SETSID;
4232 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
4233 }
4234
4235 exec_context_tty_reset(context, params);
4236
4237 if (unit_shall_confirm_spawn(unit)) {
4238 _cleanup_free_ char *cmdline = NULL;
4239
4240 cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
4241 if (!cmdline) {
4242 *exit_status = EXIT_MEMORY;
4243 return log_oom();
4244 }
4245
4246 r = ask_for_confirmation(context, params->confirm_spawn, unit, cmdline);
4247 if (r != CONFIRM_EXECUTE) {
4248 if (r == CONFIRM_PRETEND_SUCCESS) {
4249 *exit_status = EXIT_SUCCESS;
4250 return 0;
4251 }
4252 *exit_status = EXIT_CONFIRM;
4253 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
4254 "Execution cancelled by the user");
4255 }
4256 }
4257
4258 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
4259 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
4260 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
4261 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
4262 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
4263 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
4264 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
4265 *exit_status = EXIT_MEMORY;
4266 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4267 }
4268
4269 if (context->dynamic_user && dcreds) {
4270 _cleanup_strv_free_ char **suggested_paths = NULL;
4271
4272 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
4273 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */
4274 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
4275 *exit_status = EXIT_USER;
4276 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4277 }
4278
4279 r = compile_suggested_paths(context, params, &suggested_paths);
4280 if (r < 0) {
4281 *exit_status = EXIT_MEMORY;
4282 return log_oom();
4283 }
4284
4285 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
4286 if (r < 0) {
4287 *exit_status = EXIT_USER;
4288 if (r == -EILSEQ)
4289 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4290 "Failed to update dynamic user credentials: User or group with specified name already exists.");
4291 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
4292 }
4293
4294 if (!uid_is_valid(uid)) {
4295 *exit_status = EXIT_USER;
4296 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
4297 }
4298
4299 if (!gid_is_valid(gid)) {
4300 *exit_status = EXIT_USER;
4301 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
4302 }
4303
4304 if (dcreds->user)
4305 username = dcreds->user->name;
4306
4307 } else {
4308 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
4309 if (r < 0) {
4310 *exit_status = EXIT_USER;
4311 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
4312 }
4313
4314 r = get_fixed_group(context, &groupname, &gid);
4315 if (r < 0) {
4316 *exit_status = EXIT_GROUP;
4317 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
4318 }
4319 }
4320
4321 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
4322 r = get_supplementary_groups(context, username, groupname, gid,
4323 &supplementary_gids, &ngids);
4324 if (r < 0) {
4325 *exit_status = EXIT_GROUP;
4326 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
4327 }
4328
4329 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
4330 if (r < 0) {
4331 *exit_status = EXIT_USER;
4332 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
4333 }
4334
4335 user_lookup_fd = safe_close(user_lookup_fd);
4336
4337 r = acquire_home(context, uid, &home, &home_buffer);
4338 if (r < 0) {
4339 *exit_status = EXIT_CHDIR;
4340 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
4341 }
4342
4343 /* If a socket is connected to STDIN/STDOUT/STDERR, we
4344 * must sure to drop O_NONBLOCK */
4345 if (socket_fd >= 0)
4346 (void) fd_nonblock(socket_fd, false);
4347
4348 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
4349 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
4350 if (params->cgroup_path) {
4351 _cleanup_free_ char *p = NULL;
4352
4353 r = exec_parameters_get_cgroup_path(params, &p);
4354 if (r < 0) {
4355 *exit_status = EXIT_CGROUP;
4356 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4357 }
4358
4359 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
4360 if (r == -EUCLEAN) {
4361 *exit_status = EXIT_CGROUP;
4362 return log_unit_error_errno(unit, r, "Failed to attach process to cgroup %s "
4363 "because the cgroup or one of its parents or "
4364 "siblings is in the threaded mode: %m", p);
4365 }
4366 if (r < 0) {
4367 *exit_status = EXIT_CGROUP;
4368 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
4369 }
4370 }
4371
4372 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
4373 r = open_shareable_ns_path(runtime->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET);
4374 if (r < 0) {
4375 *exit_status = EXIT_NETWORK;
4376 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
4377 }
4378 }
4379
4380 if (context->ipc_namespace_path && runtime && runtime->ipcns_storage_socket[0] >= 0) {
4381 r = open_shareable_ns_path(runtime->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC);
4382 if (r < 0) {
4383 *exit_status = EXIT_NAMESPACE;
4384 return log_unit_error_errno(unit, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path);
4385 }
4386 }
4387
4388 r = setup_input(context, params, socket_fd, named_iofds);
4389 if (r < 0) {
4390 *exit_status = EXIT_STDIN;
4391 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
4392 }
4393
4394 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4395 if (r < 0) {
4396 *exit_status = EXIT_STDOUT;
4397 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
4398 }
4399
4400 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4401 if (r < 0) {
4402 *exit_status = EXIT_STDERR;
4403 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
4404 }
4405
4406 if (context->oom_score_adjust_set) {
4407 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
4408 * prohibit write access to this file, and we shouldn't trip up over that. */
4409 r = set_oom_score_adjust(context->oom_score_adjust);
4410 if (ERRNO_IS_PRIVILEGE(r))
4411 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
4412 else if (r < 0) {
4413 *exit_status = EXIT_OOM_ADJUST;
4414 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
4415 }
4416 }
4417
4418 if (context->coredump_filter_set) {
4419 r = set_coredump_filter(context->coredump_filter);
4420 if (ERRNO_IS_PRIVILEGE(r))
4421 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
4422 else if (r < 0)
4423 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
4424 }
4425
4426 if (context->nice_set) {
4427 r = setpriority_closest(context->nice);
4428 if (r < 0)
4429 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
4430 }
4431
4432 if (context->cpu_sched_set) {
4433 struct sched_param param = {
4434 .sched_priority = context->cpu_sched_priority,
4435 };
4436
4437 r = sched_setscheduler(0,
4438 context->cpu_sched_policy |
4439 (context->cpu_sched_reset_on_fork ?
4440 SCHED_RESET_ON_FORK : 0),
4441 &param);
4442 if (r < 0) {
4443 *exit_status = EXIT_SETSCHEDULER;
4444 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
4445 }
4446 }
4447
4448 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
4449 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
4450 const CPUSet *cpu_set;
4451
4452 if (context->cpu_affinity_from_numa) {
4453 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
4454 if (r < 0) {
4455 *exit_status = EXIT_CPUAFFINITY;
4456 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
4457 }
4458
4459 cpu_set = &converted_cpu_set;
4460 } else
4461 cpu_set = &context->cpu_set;
4462
4463 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
4464 *exit_status = EXIT_CPUAFFINITY;
4465 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
4466 }
4467 }
4468
4469 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
4470 r = apply_numa_policy(&context->numa_policy);
4471 if (r == -EOPNOTSUPP)
4472 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
4473 else if (r < 0) {
4474 *exit_status = EXIT_NUMA_POLICY;
4475 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4476 }
4477 }
4478
4479 if (context->ioprio_set)
4480 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4481 *exit_status = EXIT_IOPRIO;
4482 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4483 }
4484
4485 if (context->timer_slack_nsec != NSEC_INFINITY)
4486 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4487 *exit_status = EXIT_TIMERSLACK;
4488 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4489 }
4490
4491 if (context->personality != PERSONALITY_INVALID) {
4492 r = safe_personality(context->personality);
4493 if (r < 0) {
4494 *exit_status = EXIT_PERSONALITY;
4495 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4496 }
4497 }
4498
4499 if (context->utmp_id) {
4500 const char *line = context->tty_path ?
4501 (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) :
4502 NULL;
4503 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4504 line,
4505 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4506 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4507 USER_PROCESS,
4508 username);
4509 }
4510
4511 if (uid_is_valid(uid)) {
4512 r = chown_terminal(STDIN_FILENO, uid);
4513 if (r < 0) {
4514 *exit_status = EXIT_STDIN;
4515 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4516 }
4517 }
4518
4519 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4520 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4521 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4522 * touch a single hierarchy too. */
4523 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
4524 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4525 if (r < 0) {
4526 *exit_status = EXIT_CGROUP;
4527 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4528 }
4529 }
4530
4531 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4532
4533 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4534 r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status);
4535 if (r < 0)
4536 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4537 }
4538
4539 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4540 r = setup_credentials(context, params, unit->id, uid);
4541 if (r < 0) {
4542 *exit_status = EXIT_CREDENTIALS;
4543 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4544 }
4545 }
4546
4547 r = build_environment(
4548 unit,
4549 context,
4550 params,
4551 n_fds,
4552 home,
4553 username,
4554 shell,
4555 journal_stream_dev,
4556 journal_stream_ino,
4557 &our_env);
4558 if (r < 0) {
4559 *exit_status = EXIT_MEMORY;
4560 return log_oom();
4561 }
4562
4563 r = build_pass_environment(context, &pass_env);
4564 if (r < 0) {
4565 *exit_status = EXIT_MEMORY;
4566 return log_oom();
4567 }
4568
4569 /* The $PATH variable is set to the default path in params->environment. However, this is overridden
4570 * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does
4571 * not specify PATH but the unit has ExecSearchPath. */
4572 if (!strv_isempty(context->exec_search_path)) {
4573 _cleanup_free_ char *joined = NULL;
4574
4575 joined = strv_join(context->exec_search_path, ":");
4576 if (!joined) {
4577 *exit_status = EXIT_MEMORY;
4578 return log_oom();
4579 }
4580
4581 r = strv_env_assign(&joined_exec_search_path, "PATH", joined);
4582 if (r < 0) {
4583 *exit_status = EXIT_MEMORY;
4584 return log_oom();
4585 }
4586 }
4587
4588 accum_env = strv_env_merge(params->environment,
4589 our_env,
4590 joined_exec_search_path,
4591 pass_env,
4592 context->environment,
4593 files_env);
4594 if (!accum_env) {
4595 *exit_status = EXIT_MEMORY;
4596 return log_oom();
4597 }
4598 accum_env = strv_env_clean(accum_env);
4599
4600 (void) umask(context->umask);
4601
4602 r = setup_keyring(unit, context, params, uid, gid);
4603 if (r < 0) {
4604 *exit_status = EXIT_KEYRING;
4605 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4606 }
4607
4608 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted
4609 * from it. */
4610 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4611
4612 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked
4613 * for it, and the kernel doesn't actually support ambient caps. */
4614 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4615
4616 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly
4617 * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not
4618 * desired. */
4619 if (needs_ambient_hack)
4620 needs_setuid = false;
4621 else
4622 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4623
4624 if (needs_sandboxing) {
4625 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on
4626 * /sys being present. The actual MAC context application will happen later, as late as
4627 * possible, to avoid impacting our own code paths. */
4628
4629 #if HAVE_SELINUX
4630 use_selinux = mac_selinux_use();
4631 #endif
4632 #if ENABLE_SMACK
4633 use_smack = mac_smack_use();
4634 #endif
4635 #if HAVE_APPARMOR
4636 use_apparmor = mac_apparmor_use();
4637 #endif
4638 }
4639
4640 if (needs_sandboxing) {
4641 int which_failed;
4642
4643 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4644 * is set here. (See below.) */
4645
4646 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4647 if (r < 0) {
4648 *exit_status = EXIT_LIMITS;
4649 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4650 }
4651 }
4652
4653 if (needs_setuid && context->pam_name && username) {
4654 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4655 * wins here. (See above.) */
4656
4657 /* All fds passed in the fds array will be closed in the pam child process. */
4658 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4659 if (r < 0) {
4660 *exit_status = EXIT_PAM;
4661 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4662 }
4663
4664 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4665 if (ngids_after_pam < 0) {
4666 *exit_status = EXIT_MEMORY;
4667 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4668 }
4669 }
4670
4671 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4672 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4673 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4674 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4675
4676 userns_set_up = true;
4677 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4678 if (r < 0) {
4679 *exit_status = EXIT_USER;
4680 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4681 }
4682 }
4683
4684 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4685
4686 if (ns_type_supported(NAMESPACE_NET)) {
4687 r = setup_shareable_ns(runtime->netns_storage_socket, CLONE_NEWNET);
4688 if (r == -EPERM)
4689 log_unit_warning_errno(unit, r,
4690 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4691 else if (r < 0) {
4692 *exit_status = EXIT_NETWORK;
4693 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4694 }
4695 } else if (context->network_namespace_path) {
4696 *exit_status = EXIT_NETWORK;
4697 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4698 "NetworkNamespacePath= is not supported, refusing.");
4699 } else
4700 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4701 }
4702
4703 if ((context->private_ipc || context->ipc_namespace_path) && runtime && runtime->ipcns_storage_socket[0] >= 0) {
4704
4705 if (ns_type_supported(NAMESPACE_IPC)) {
4706 r = setup_shareable_ns(runtime->ipcns_storage_socket, CLONE_NEWIPC);
4707 if (r == -EPERM)
4708 log_unit_warning_errno(unit, r,
4709 "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m");
4710 else if (r < 0) {
4711 *exit_status = EXIT_NAMESPACE;
4712 return log_unit_error_errno(unit, r, "Failed to set up IPC namespacing: %m");
4713 }
4714 } else if (context->ipc_namespace_path) {
4715 *exit_status = EXIT_NAMESPACE;
4716 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4717 "IPCNamespacePath= is not supported, refusing.");
4718 } else
4719 log_unit_warning(unit, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring.");
4720 }
4721
4722 if (needs_mount_namespace) {
4723 _cleanup_free_ char *error_path = NULL;
4724
4725 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4726 if (r < 0) {
4727 *exit_status = EXIT_NAMESPACE;
4728 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4729 error_path ? ": " : "", strempty(error_path));
4730 }
4731 }
4732
4733 if (needs_sandboxing) {
4734 r = apply_protect_hostname(unit, context, exit_status);
4735 if (r < 0)
4736 return r;
4737 }
4738
4739 /* Drop groups as early as possible.
4740 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4741 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4742 if (needs_setuid) {
4743 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4744 int ngids_to_enforce = 0;
4745
4746 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4747 ngids,
4748 gids_after_pam,
4749 ngids_after_pam,
4750 &gids_to_enforce);
4751 if (ngids_to_enforce < 0) {
4752 *exit_status = EXIT_MEMORY;
4753 return log_unit_error_errno(unit,
4754 ngids_to_enforce,
4755 "Failed to merge group lists. Group membership might be incorrect: %m");
4756 }
4757
4758 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4759 if (r < 0) {
4760 *exit_status = EXIT_GROUP;
4761 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4762 }
4763 }
4764
4765 /* If the user namespace was not set up above, try to do it now.
4766 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4767 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4768 * case of mount namespaces being less privileged when the mount point list is copied from a
4769 * different user namespace). */
4770
4771 if (needs_sandboxing && context->private_users && !userns_set_up) {
4772 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4773 if (r < 0) {
4774 *exit_status = EXIT_USER;
4775 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4776 }
4777 }
4778
4779 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4780 * shall execute. */
4781
4782 _cleanup_free_ char *executable = NULL;
4783 _cleanup_close_ int executable_fd = -1;
4784 r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd);
4785 if (r < 0) {
4786 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4787 log_unit_struct_errno(unit, LOG_INFO, r,
4788 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4789 LOG_UNIT_INVOCATION_ID(unit),
4790 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4791 command->path),
4792 "EXECUTABLE=%s", command->path);
4793 return 0;
4794 }
4795
4796 *exit_status = EXIT_EXEC;
4797
4798 return log_unit_struct_errno(unit, LOG_INFO, r,
4799 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4800 LOG_UNIT_INVOCATION_ID(unit),
4801 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4802 command->path),
4803 "EXECUTABLE=%s", command->path);
4804 }
4805
4806 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
4807 if (r < 0) {
4808 *exit_status = EXIT_FDS;
4809 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4810 }
4811
4812 #if HAVE_SELINUX
4813 if (needs_sandboxing && use_selinux && params->selinux_context_net) {
4814 int fd = -1;
4815
4816 if (socket_fd >= 0)
4817 fd = socket_fd;
4818 else if (params->n_socket_fds == 1)
4819 /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we
4820 * use context from that fd to compute the label. */
4821 fd = params->fds[0];
4822
4823 if (fd >= 0) {
4824 r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net);
4825 if (r < 0) {
4826 if (!context->selinux_context_ignore) {
4827 *exit_status = EXIT_SELINUX_CONTEXT;
4828 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4829 }
4830 log_unit_debug_errno(unit, r, "Failed to determine SELinux context, ignoring: %m");
4831 }
4832 }
4833 }
4834 #endif
4835
4836 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4837 * more aggressive this time since socket_fd and the netns and ipcns fds we don't need anymore. We do keep the exec_fd
4838 * however if we have it as we want to keep it open until the final execve(). */
4839
4840 r = close_all_fds(keep_fds, n_keep_fds);
4841 if (r >= 0)
4842 r = shift_fds(fds, n_fds);
4843 if (r >= 0)
4844 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4845 if (r < 0) {
4846 *exit_status = EXIT_FDS;
4847 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4848 }
4849
4850 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4851 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4852 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4853 * came this far. */
4854
4855 secure_bits = context->secure_bits;
4856
4857 if (needs_sandboxing) {
4858 uint64_t bset;
4859
4860 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4861 * requested. (Note this is placed after the general resource limit initialization, see
4862 * above, in order to take precedence.) */
4863 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4864 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4865 *exit_status = EXIT_LIMITS;
4866 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4867 }
4868 }
4869
4870 #if ENABLE_SMACK
4871 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4872 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4873 if (use_smack) {
4874 r = setup_smack(unit->manager, context, executable_fd);
4875 if (r < 0 && !context->smack_process_label_ignore) {
4876 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4877 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4878 }
4879 }
4880 #endif
4881
4882 bset = context->capability_bounding_set;
4883 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4884 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4885 * instead of us doing that */
4886 if (needs_ambient_hack)
4887 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4888 (UINT64_C(1) << CAP_SETUID) |
4889 (UINT64_C(1) << CAP_SETGID);
4890
4891 if (!cap_test_all(bset)) {
4892 r = capability_bounding_set_drop(bset, false);
4893 if (r < 0) {
4894 *exit_status = EXIT_CAPABILITIES;
4895 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4896 }
4897 }
4898
4899 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4900 * keep-caps set.
4901 * To be able to raise the ambient capabilities after setresuid() they have to be
4902 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4903 * After setresuid() the ambient capabilities can be raised as they are present in
4904 * the permitted and inhertiable set. However it is possible that someone wants to
4905 * set ambient capabilities without changing the user, so we also set the ambient
4906 * capabilities here.
4907 * The requested ambient capabilities are raised in the inheritable set if the
4908 * second argument is true. */
4909 if (!needs_ambient_hack) {
4910 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4911 if (r < 0) {
4912 *exit_status = EXIT_CAPABILITIES;
4913 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4914 }
4915 }
4916 }
4917
4918 /* chroot to root directory first, before we lose the ability to chroot */
4919 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4920 if (r < 0)
4921 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4922
4923 if (needs_setuid) {
4924 if (uid_is_valid(uid)) {
4925 r = enforce_user(context, uid);
4926 if (r < 0) {
4927 *exit_status = EXIT_USER;
4928 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4929 }
4930
4931 if (!needs_ambient_hack &&
4932 context->capability_ambient_set != 0) {
4933
4934 /* Raise the ambient capabilities after user change. */
4935 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4936 if (r < 0) {
4937 *exit_status = EXIT_CAPABILITIES;
4938 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4939 }
4940 }
4941 }
4942 }
4943
4944 /* Apply working directory here, because the working directory might be on NFS and only the user running
4945 * this service might have the correct privilege to change to the working directory */
4946 r = apply_working_directory(context, params, home, exit_status);
4947 if (r < 0)
4948 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4949
4950 if (needs_sandboxing) {
4951 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4952 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4953 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4954 * are restricted. */
4955
4956 #if HAVE_SELINUX
4957 if (use_selinux) {
4958 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4959
4960 if (exec_context) {
4961 r = setexeccon(exec_context);
4962 if (r < 0) {
4963 if (!context->selinux_context_ignore) {
4964 *exit_status = EXIT_SELINUX_CONTEXT;
4965 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4966 }
4967 log_unit_debug_errno(unit, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context);
4968 }
4969 }
4970 }
4971 #endif
4972
4973 #if HAVE_APPARMOR
4974 if (use_apparmor && context->apparmor_profile) {
4975 r = aa_change_onexec(context->apparmor_profile);
4976 if (r < 0 && !context->apparmor_profile_ignore) {
4977 *exit_status = EXIT_APPARMOR_PROFILE;
4978 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4979 }
4980 }
4981 #endif
4982
4983 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4984 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4985 * CAP_SETPCAP. */
4986 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4987 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4988 * effective set here.
4989 * The effective set is overwritten during execve with the following values:
4990 * - ambient set (for non-root processes)
4991 * - (inheritable | bounding) set for root processes)
4992 *
4993 * Hence there is no security impact to raise it in the effective set before execve
4994 */
4995 r = capability_gain_cap_setpcap(NULL);
4996 if (r < 0) {
4997 *exit_status = EXIT_CAPABILITIES;
4998 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
4999 }
5000 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
5001 *exit_status = EXIT_SECUREBITS;
5002 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
5003 }
5004 }
5005
5006 if (context_has_no_new_privileges(context))
5007 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
5008 *exit_status = EXIT_NO_NEW_PRIVILEGES;
5009 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
5010 }
5011
5012 #if HAVE_SECCOMP
5013 r = apply_address_families(unit, context);
5014 if (r < 0) {
5015 *exit_status = EXIT_ADDRESS_FAMILIES;
5016 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
5017 }
5018
5019 r = apply_memory_deny_write_execute(unit, context);
5020 if (r < 0) {
5021 *exit_status = EXIT_SECCOMP;
5022 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
5023 }
5024
5025 r = apply_restrict_realtime(unit, context);
5026 if (r < 0) {
5027 *exit_status = EXIT_SECCOMP;
5028 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
5029 }
5030
5031 r = apply_restrict_suid_sgid(unit, context);
5032 if (r < 0) {
5033 *exit_status = EXIT_SECCOMP;
5034 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
5035 }
5036
5037 r = apply_restrict_namespaces(unit, context);
5038 if (r < 0) {
5039 *exit_status = EXIT_SECCOMP;
5040 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
5041 }
5042
5043 r = apply_protect_sysctl(unit, context);
5044 if (r < 0) {
5045 *exit_status = EXIT_SECCOMP;
5046 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
5047 }
5048
5049 r = apply_protect_kernel_modules(unit, context);
5050 if (r < 0) {
5051 *exit_status = EXIT_SECCOMP;
5052 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
5053 }
5054
5055 r = apply_protect_kernel_logs(unit, context);
5056 if (r < 0) {
5057 *exit_status = EXIT_SECCOMP;
5058 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
5059 }
5060
5061 r = apply_protect_clock(unit, context);
5062 if (r < 0) {
5063 *exit_status = EXIT_SECCOMP;
5064 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
5065 }
5066
5067 r = apply_private_devices(unit, context);
5068 if (r < 0) {
5069 *exit_status = EXIT_SECCOMP;
5070 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
5071 }
5072
5073 r = apply_syscall_archs(unit, context);
5074 if (r < 0) {
5075 *exit_status = EXIT_SECCOMP;
5076 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
5077 }
5078
5079 r = apply_lock_personality(unit, context);
5080 if (r < 0) {
5081 *exit_status = EXIT_SECCOMP;
5082 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
5083 }
5084
5085 r = apply_syscall_log(unit, context);
5086 if (r < 0) {
5087 *exit_status = EXIT_SECCOMP;
5088 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
5089 }
5090
5091 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
5092 * by the filter as little as possible. */
5093 r = apply_syscall_filter(unit, context, needs_ambient_hack);
5094 if (r < 0) {
5095 *exit_status = EXIT_SECCOMP;
5096 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
5097 }
5098 #endif
5099
5100 #if HAVE_LIBBPF
5101 r = apply_restrict_filesystems(unit, context);
5102 if (r < 0) {
5103 *exit_status = EXIT_BPF;
5104 return log_unit_error_errno(unit, r, "Failed to restrict filesystems: %m");
5105 }
5106 #endif
5107
5108 }
5109
5110 if (!strv_isempty(context->unset_environment)) {
5111 char **ee = NULL;
5112
5113 ee = strv_env_delete(accum_env, 1, context->unset_environment);
5114 if (!ee) {
5115 *exit_status = EXIT_MEMORY;
5116 return log_oom();
5117 }
5118
5119 strv_free_and_replace(accum_env, ee);
5120 }
5121
5122 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
5123 replaced_argv = replace_env_argv(command->argv, accum_env);
5124 if (!replaced_argv) {
5125 *exit_status = EXIT_MEMORY;
5126 return log_oom();
5127 }
5128 final_argv = replaced_argv;
5129 } else
5130 final_argv = command->argv;
5131
5132 if (DEBUG_LOGGING) {
5133 _cleanup_free_ char *line = NULL;
5134
5135 line = quote_command_line(final_argv, SHELL_ESCAPE_EMPTY);
5136 if (!line) {
5137 *exit_status = EXIT_MEMORY;
5138 return log_oom();
5139 }
5140
5141 log_unit_struct(unit, LOG_DEBUG,
5142 "EXECUTABLE=%s", executable,
5143 LOG_UNIT_MESSAGE(unit, "Executing: %s", line));
5144 }
5145
5146 if (exec_fd >= 0) {
5147 uint8_t hot = 1;
5148
5149 /* We have finished with all our initializations. Let's now let the manager know that. From this point
5150 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
5151
5152 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5153 *exit_status = EXIT_EXEC;
5154 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
5155 }
5156 }
5157
5158 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
5159
5160 if (exec_fd >= 0) {
5161 uint8_t hot = 0;
5162
5163 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
5164 * that POLLHUP on it no longer means execve() succeeded. */
5165
5166 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5167 *exit_status = EXIT_EXEC;
5168 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
5169 }
5170 }
5171
5172 *exit_status = EXIT_EXEC;
5173 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
5174 }
5175
5176 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
5177 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
5178
5179 int exec_spawn(Unit *unit,
5180 ExecCommand *command,
5181 const ExecContext *context,
5182 const ExecParameters *params,
5183 ExecRuntime *runtime,
5184 DynamicCreds *dcreds,
5185 pid_t *ret) {
5186
5187 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
5188 _cleanup_free_ char *subcgroup_path = NULL;
5189 _cleanup_strv_free_ char **files_env = NULL;
5190 size_t n_storage_fds = 0, n_socket_fds = 0;
5191 _cleanup_free_ char *line = NULL;
5192 pid_t pid;
5193
5194 assert(unit);
5195 assert(command);
5196 assert(context);
5197 assert(ret);
5198 assert(params);
5199 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
5200
5201 if (context->std_input == EXEC_INPUT_SOCKET ||
5202 context->std_output == EXEC_OUTPUT_SOCKET ||
5203 context->std_error == EXEC_OUTPUT_SOCKET) {
5204
5205 if (params->n_socket_fds > 1)
5206 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
5207
5208 if (params->n_socket_fds == 0)
5209 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
5210
5211 socket_fd = params->fds[0];
5212 } else {
5213 socket_fd = -1;
5214 fds = params->fds;
5215 n_socket_fds = params->n_socket_fds;
5216 n_storage_fds = params->n_storage_fds;
5217 }
5218
5219 r = exec_context_named_iofds(context, params, named_iofds);
5220 if (r < 0)
5221 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
5222
5223 r = exec_context_load_environment(unit, context, &files_env);
5224 if (r < 0)
5225 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
5226
5227 line = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
5228 if (!line)
5229 return log_oom();
5230
5231 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
5232 and, until the next SELinux policy changes, we save further reloads in future children. */
5233 mac_selinux_maybe_reload();
5234
5235 log_unit_struct(unit, LOG_DEBUG,
5236 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
5237 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
5238 the mount namespace in the child, but we want to log
5239 from the parent, so we need to use the (possibly
5240 inaccurate) path here. */
5241 LOG_UNIT_INVOCATION_ID(unit));
5242
5243 if (params->cgroup_path) {
5244 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
5245 if (r < 0)
5246 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
5247 if (r > 0) { /* We are using a child cgroup */
5248 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
5249 if (r < 0)
5250 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
5251
5252 /* Normally we would not propagate the oomd xattrs to children but since we created this
5253 * sub-cgroup internally we should do it. */
5254 cgroup_oomd_xattr_apply(unit, subcgroup_path);
5255 }
5256 }
5257
5258 pid = fork();
5259 if (pid < 0)
5260 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
5261
5262 if (pid == 0) {
5263 int exit_status = EXIT_SUCCESS;
5264
5265 r = exec_child(unit,
5266 command,
5267 context,
5268 params,
5269 runtime,
5270 dcreds,
5271 socket_fd,
5272 named_iofds,
5273 fds,
5274 n_socket_fds,
5275 n_storage_fds,
5276 files_env,
5277 unit->manager->user_lookup_fds[1],
5278 &exit_status);
5279
5280 if (r < 0) {
5281 const char *status =
5282 exit_status_to_string(exit_status,
5283 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
5284
5285 log_unit_struct_errno(unit, LOG_ERR, r,
5286 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5287 LOG_UNIT_INVOCATION_ID(unit),
5288 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
5289 status, command->path),
5290 "EXECUTABLE=%s", command->path);
5291 }
5292
5293 _exit(exit_status);
5294 }
5295
5296 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
5297
5298 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
5299 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
5300 * process will be killed too). */
5301 if (subcgroup_path)
5302 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
5303
5304 exec_status_start(&command->exec_status, pid);
5305
5306 *ret = pid;
5307 return 0;
5308 }
5309
5310 void exec_context_init(ExecContext *c) {
5311 assert(c);
5312
5313 c->umask = 0022;
5314 c->ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO;
5315 c->cpu_sched_policy = SCHED_OTHER;
5316 c->syslog_priority = LOG_DAEMON|LOG_INFO;
5317 c->syslog_level_prefix = true;
5318 c->ignore_sigpipe = true;
5319 c->timer_slack_nsec = NSEC_INFINITY;
5320 c->personality = PERSONALITY_INVALID;
5321 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5322 c->directories[t].mode = 0755;
5323 c->timeout_clean_usec = USEC_INFINITY;
5324 c->capability_bounding_set = CAP_ALL;
5325 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
5326 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
5327 c->log_level_max = -1;
5328 #if HAVE_SECCOMP
5329 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
5330 #endif
5331 c->tty_rows = UINT_MAX;
5332 c->tty_cols = UINT_MAX;
5333 numa_policy_reset(&c->numa_policy);
5334 }
5335
5336 void exec_context_done(ExecContext *c) {
5337 assert(c);
5338
5339 c->environment = strv_free(c->environment);
5340 c->environment_files = strv_free(c->environment_files);
5341 c->pass_environment = strv_free(c->pass_environment);
5342 c->unset_environment = strv_free(c->unset_environment);
5343
5344 rlimit_free_all(c->rlimit);
5345
5346 for (size_t l = 0; l < 3; l++) {
5347 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
5348 c->stdio_file[l] = mfree(c->stdio_file[l]);
5349 }
5350
5351 c->working_directory = mfree(c->working_directory);
5352 c->root_directory = mfree(c->root_directory);
5353 c->root_image = mfree(c->root_image);
5354 c->root_image_options = mount_options_free_all(c->root_image_options);
5355 c->root_hash = mfree(c->root_hash);
5356 c->root_hash_size = 0;
5357 c->root_hash_path = mfree(c->root_hash_path);
5358 c->root_hash_sig = mfree(c->root_hash_sig);
5359 c->root_hash_sig_size = 0;
5360 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
5361 c->root_verity = mfree(c->root_verity);
5362 c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images);
5363 c->extension_directories = strv_free(c->extension_directories);
5364 c->tty_path = mfree(c->tty_path);
5365 c->syslog_identifier = mfree(c->syslog_identifier);
5366 c->user = mfree(c->user);
5367 c->group = mfree(c->group);
5368
5369 c->supplementary_groups = strv_free(c->supplementary_groups);
5370
5371 c->pam_name = mfree(c->pam_name);
5372
5373 c->read_only_paths = strv_free(c->read_only_paths);
5374 c->read_write_paths = strv_free(c->read_write_paths);
5375 c->inaccessible_paths = strv_free(c->inaccessible_paths);
5376 c->exec_paths = strv_free(c->exec_paths);
5377 c->no_exec_paths = strv_free(c->no_exec_paths);
5378 c->exec_search_path = strv_free(c->exec_search_path);
5379
5380 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
5381 c->bind_mounts = NULL;
5382 c->n_bind_mounts = 0;
5383 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
5384 c->temporary_filesystems = NULL;
5385 c->n_temporary_filesystems = 0;
5386 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
5387
5388 cpu_set_reset(&c->cpu_set);
5389 numa_policy_reset(&c->numa_policy);
5390
5391 c->utmp_id = mfree(c->utmp_id);
5392 c->selinux_context = mfree(c->selinux_context);
5393 c->apparmor_profile = mfree(c->apparmor_profile);
5394 c->smack_process_label = mfree(c->smack_process_label);
5395
5396 c->restrict_filesystems = set_free(c->restrict_filesystems);
5397
5398 c->syscall_filter = hashmap_free(c->syscall_filter);
5399 c->syscall_archs = set_free(c->syscall_archs);
5400 c->address_families = set_free(c->address_families);
5401
5402 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5403 exec_directory_done(&c->directories[t]);
5404
5405 c->log_level_max = -1;
5406
5407 exec_context_free_log_extra_fields(c);
5408
5409 c->log_ratelimit_interval_usec = 0;
5410 c->log_ratelimit_burst = 0;
5411
5412 c->stdin_data = mfree(c->stdin_data);
5413 c->stdin_data_size = 0;
5414
5415 c->network_namespace_path = mfree(c->network_namespace_path);
5416 c->ipc_namespace_path = mfree(c->ipc_namespace_path);
5417
5418 c->log_namespace = mfree(c->log_namespace);
5419
5420 c->load_credentials = hashmap_free(c->load_credentials);
5421 c->set_credentials = hashmap_free(c->set_credentials);
5422 }
5423
5424 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
5425 assert(c);
5426
5427 if (!runtime_prefix)
5428 return 0;
5429
5430 for (size_t i = 0; i < c->directories[EXEC_DIRECTORY_RUNTIME].n_items; i++) {
5431 _cleanup_free_ char *p = NULL;
5432
5433 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5434 p = path_join(runtime_prefix, "private", c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5435 else
5436 p = path_join(runtime_prefix, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5437 if (!p)
5438 return -ENOMEM;
5439
5440 /* We execute this synchronously, since we need to be sure this is gone when we start the
5441 * service next. */
5442 (void) rm_rf(p, REMOVE_ROOT);
5443
5444 STRV_FOREACH(symlink, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].symlinks) {
5445 _cleanup_free_ char *symlink_abs = NULL;
5446
5447 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5448 symlink_abs = path_join(runtime_prefix, "private", *symlink);
5449 else
5450 symlink_abs = path_join(runtime_prefix, *symlink);
5451 if (!symlink_abs)
5452 return -ENOMEM;
5453
5454 (void) unlink(symlink_abs);
5455 }
5456
5457 }
5458
5459 return 0;
5460 }
5461
5462 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
5463 _cleanup_free_ char *p = NULL;
5464
5465 assert(c);
5466
5467 if (!runtime_prefix || !unit)
5468 return 0;
5469
5470 p = path_join(runtime_prefix, "credentials", unit);
5471 if (!p)
5472 return -ENOMEM;
5473
5474 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
5475 * unmount it, and afterwards remove the mount point */
5476 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
5477 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
5478
5479 return 0;
5480 }
5481
5482 static void exec_command_done(ExecCommand *c) {
5483 assert(c);
5484
5485 c->path = mfree(c->path);
5486 c->argv = strv_free(c->argv);
5487 }
5488
5489 void exec_command_done_array(ExecCommand *c, size_t n) {
5490 for (size_t i = 0; i < n; i++)
5491 exec_command_done(c+i);
5492 }
5493
5494 ExecCommand* exec_command_free_list(ExecCommand *c) {
5495 ExecCommand *i;
5496
5497 while ((i = c)) {
5498 LIST_REMOVE(command, c, i);
5499 exec_command_done(i);
5500 free(i);
5501 }
5502
5503 return NULL;
5504 }
5505
5506 void exec_command_free_array(ExecCommand **c, size_t n) {
5507 for (size_t i = 0; i < n; i++)
5508 c[i] = exec_command_free_list(c[i]);
5509 }
5510
5511 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
5512 for (size_t i = 0; i < n; i++)
5513 exec_status_reset(&c[i].exec_status);
5514 }
5515
5516 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
5517 for (size_t i = 0; i < n; i++)
5518 LIST_FOREACH(command, z, c[i])
5519 exec_status_reset(&z->exec_status);
5520 }
5521
5522 typedef struct InvalidEnvInfo {
5523 const Unit *unit;
5524 const char *path;
5525 } InvalidEnvInfo;
5526
5527 static void invalid_env(const char *p, void *userdata) {
5528 InvalidEnvInfo *info = userdata;
5529
5530 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
5531 }
5532
5533 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
5534 assert(c);
5535
5536 switch (fd_index) {
5537
5538 case STDIN_FILENO:
5539 if (c->std_input != EXEC_INPUT_NAMED_FD)
5540 return NULL;
5541
5542 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
5543
5544 case STDOUT_FILENO:
5545 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
5546 return NULL;
5547
5548 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
5549
5550 case STDERR_FILENO:
5551 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
5552 return NULL;
5553
5554 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
5555
5556 default:
5557 return NULL;
5558 }
5559 }
5560
5561 static int exec_context_named_iofds(
5562 const ExecContext *c,
5563 const ExecParameters *p,
5564 int named_iofds[static 3]) {
5565
5566 size_t targets;
5567 const char* stdio_fdname[3];
5568 size_t n_fds;
5569
5570 assert(c);
5571 assert(p);
5572 assert(named_iofds);
5573
5574 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
5575 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
5576 (c->std_error == EXEC_OUTPUT_NAMED_FD);
5577
5578 for (size_t i = 0; i < 3; i++)
5579 stdio_fdname[i] = exec_context_fdname(c, i);
5580
5581 n_fds = p->n_storage_fds + p->n_socket_fds;
5582
5583 for (size_t i = 0; i < n_fds && targets > 0; i++)
5584 if (named_iofds[STDIN_FILENO] < 0 &&
5585 c->std_input == EXEC_INPUT_NAMED_FD &&
5586 stdio_fdname[STDIN_FILENO] &&
5587 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
5588
5589 named_iofds[STDIN_FILENO] = p->fds[i];
5590 targets--;
5591
5592 } else if (named_iofds[STDOUT_FILENO] < 0 &&
5593 c->std_output == EXEC_OUTPUT_NAMED_FD &&
5594 stdio_fdname[STDOUT_FILENO] &&
5595 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5596
5597 named_iofds[STDOUT_FILENO] = p->fds[i];
5598 targets--;
5599
5600 } else if (named_iofds[STDERR_FILENO] < 0 &&
5601 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5602 stdio_fdname[STDERR_FILENO] &&
5603 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5604
5605 named_iofds[STDERR_FILENO] = p->fds[i];
5606 targets--;
5607 }
5608
5609 return targets == 0 ? 0 : -ENOENT;
5610 }
5611
5612 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) {
5613 _cleanup_strv_free_ char **v = NULL;
5614 int r;
5615
5616 assert(c);
5617 assert(ret);
5618
5619 STRV_FOREACH(i, c->environment_files) {
5620 _cleanup_globfree_ glob_t pglob = {};
5621 bool ignore = false;
5622 char *fn = *i;
5623
5624 if (fn[0] == '-') {
5625 ignore = true;
5626 fn++;
5627 }
5628
5629 if (!path_is_absolute(fn)) {
5630 if (ignore)
5631 continue;
5632 return -EINVAL;
5633 }
5634
5635 /* Filename supports globbing, take all matching files */
5636 r = safe_glob(fn, 0, &pglob);
5637 if (r < 0) {
5638 if (ignore)
5639 continue;
5640 return r;
5641 }
5642
5643 /* When we don't match anything, -ENOENT should be returned */
5644 assert(pglob.gl_pathc > 0);
5645
5646 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5647 _cleanup_strv_free_ char **p = NULL;
5648
5649 r = load_env_file(NULL, pglob.gl_pathv[n], &p);
5650 if (r < 0) {
5651 if (ignore)
5652 continue;
5653 return r;
5654 }
5655
5656 /* Log invalid environment variables with filename */
5657 if (p) {
5658 InvalidEnvInfo info = {
5659 .unit = unit,
5660 .path = pglob.gl_pathv[n]
5661 };
5662
5663 p = strv_env_clean_with_callback(p, invalid_env, &info);
5664 }
5665
5666 if (!v)
5667 v = TAKE_PTR(p);
5668 else {
5669 char **m = strv_env_merge(v, p);
5670 if (!m)
5671 return -ENOMEM;
5672
5673 strv_free_and_replace(v, m);
5674 }
5675 }
5676 }
5677
5678 *ret = TAKE_PTR(v);
5679
5680 return 0;
5681 }
5682
5683 static bool tty_may_match_dev_console(const char *tty) {
5684 _cleanup_free_ char *resolved = NULL;
5685
5686 if (!tty)
5687 return true;
5688
5689 tty = skip_dev_prefix(tty);
5690
5691 /* trivial identity? */
5692 if (streq(tty, "console"))
5693 return true;
5694
5695 if (resolve_dev_console(&resolved) < 0)
5696 return true; /* if we could not resolve, assume it may */
5697
5698 /* "tty0" means the active VC, so it may be the same sometimes */
5699 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5700 }
5701
5702 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5703 assert(ec);
5704
5705 return ec->tty_reset ||
5706 ec->tty_vhangup ||
5707 ec->tty_vt_disallocate ||
5708 is_terminal_input(ec->std_input) ||
5709 is_terminal_output(ec->std_output) ||
5710 is_terminal_output(ec->std_error);
5711 }
5712
5713 bool exec_context_may_touch_console(const ExecContext *ec) {
5714
5715 return exec_context_may_touch_tty(ec) &&
5716 tty_may_match_dev_console(exec_context_tty_path(ec));
5717 }
5718
5719 static void strv_fprintf(FILE *f, char **l) {
5720 assert(f);
5721
5722 STRV_FOREACH(g, l)
5723 fprintf(f, " %s", *g);
5724 }
5725
5726 static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
5727 assert(f);
5728 assert(prefix);
5729 assert(name);
5730
5731 if (!strv_isempty(strv)) {
5732 fprintf(f, "%s%s:", prefix, name);
5733 strv_fprintf(f, strv);
5734 fputs("\n", f);
5735 }
5736 }
5737
5738 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5739 int r;
5740
5741 assert(c);
5742 assert(f);
5743
5744 prefix = strempty(prefix);
5745
5746 fprintf(f,
5747 "%sUMask: %04o\n"
5748 "%sWorkingDirectory: %s\n"
5749 "%sRootDirectory: %s\n"
5750 "%sNonBlocking: %s\n"
5751 "%sPrivateTmp: %s\n"
5752 "%sPrivateDevices: %s\n"
5753 "%sProtectKernelTunables: %s\n"
5754 "%sProtectKernelModules: %s\n"
5755 "%sProtectKernelLogs: %s\n"
5756 "%sProtectClock: %s\n"
5757 "%sProtectControlGroups: %s\n"
5758 "%sPrivateNetwork: %s\n"
5759 "%sPrivateUsers: %s\n"
5760 "%sProtectHome: %s\n"
5761 "%sProtectSystem: %s\n"
5762 "%sMountAPIVFS: %s\n"
5763 "%sIgnoreSIGPIPE: %s\n"
5764 "%sMemoryDenyWriteExecute: %s\n"
5765 "%sRestrictRealtime: %s\n"
5766 "%sRestrictSUIDSGID: %s\n"
5767 "%sKeyringMode: %s\n"
5768 "%sProtectHostname: %s\n"
5769 "%sProtectProc: %s\n"
5770 "%sProcSubset: %s\n",
5771 prefix, c->umask,
5772 prefix, empty_to_root(c->working_directory),
5773 prefix, empty_to_root(c->root_directory),
5774 prefix, yes_no(c->non_blocking),
5775 prefix, yes_no(c->private_tmp),
5776 prefix, yes_no(c->private_devices),
5777 prefix, yes_no(c->protect_kernel_tunables),
5778 prefix, yes_no(c->protect_kernel_modules),
5779 prefix, yes_no(c->protect_kernel_logs),
5780 prefix, yes_no(c->protect_clock),
5781 prefix, yes_no(c->protect_control_groups),
5782 prefix, yes_no(c->private_network),
5783 prefix, yes_no(c->private_users),
5784 prefix, protect_home_to_string(c->protect_home),
5785 prefix, protect_system_to_string(c->protect_system),
5786 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5787 prefix, yes_no(c->ignore_sigpipe),
5788 prefix, yes_no(c->memory_deny_write_execute),
5789 prefix, yes_no(c->restrict_realtime),
5790 prefix, yes_no(c->restrict_suid_sgid),
5791 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5792 prefix, yes_no(c->protect_hostname),
5793 prefix, protect_proc_to_string(c->protect_proc),
5794 prefix, proc_subset_to_string(c->proc_subset));
5795
5796 if (c->root_image)
5797 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5798
5799 if (c->root_image_options) {
5800 fprintf(f, "%sRootImageOptions:", prefix);
5801 LIST_FOREACH(mount_options, o, c->root_image_options)
5802 if (!isempty(o->options))
5803 fprintf(f, " %s:%s",
5804 partition_designator_to_string(o->partition_designator),
5805 o->options);
5806 fprintf(f, "\n");
5807 }
5808
5809 if (c->root_hash) {
5810 _cleanup_free_ char *encoded = NULL;
5811 encoded = hexmem(c->root_hash, c->root_hash_size);
5812 if (encoded)
5813 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5814 }
5815
5816 if (c->root_hash_path)
5817 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5818
5819 if (c->root_hash_sig) {
5820 _cleanup_free_ char *encoded = NULL;
5821 ssize_t len;
5822 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5823 if (len)
5824 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5825 }
5826
5827 if (c->root_hash_sig_path)
5828 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5829
5830 if (c->root_verity)
5831 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5832
5833 STRV_FOREACH(e, c->environment)
5834 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5835
5836 STRV_FOREACH(e, c->environment_files)
5837 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5838
5839 STRV_FOREACH(e, c->pass_environment)
5840 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5841
5842 STRV_FOREACH(e, c->unset_environment)
5843 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5844
5845 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5846
5847 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5848 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5849
5850 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
5851 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path);
5852
5853 STRV_FOREACH(d, c->directories[dt].items[i].symlinks)
5854 fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d);
5855 }
5856 }
5857
5858 fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC));
5859
5860 if (c->nice_set)
5861 fprintf(f, "%sNice: %i\n", prefix, c->nice);
5862
5863 if (c->oom_score_adjust_set)
5864 fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust);
5865
5866 if (c->coredump_filter_set)
5867 fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter);
5868
5869 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5870 if (c->rlimit[i]) {
5871 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5872 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5873 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5874 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5875 }
5876
5877 if (c->ioprio_set) {
5878 _cleanup_free_ char *class_str = NULL;
5879
5880 r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str);
5881 if (r >= 0)
5882 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5883
5884 fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio));
5885 }
5886
5887 if (c->cpu_sched_set) {
5888 _cleanup_free_ char *policy_str = NULL;
5889
5890 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5891 if (r >= 0)
5892 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5893
5894 fprintf(f,
5895 "%sCPUSchedulingPriority: %i\n"
5896 "%sCPUSchedulingResetOnFork: %s\n",
5897 prefix, c->cpu_sched_priority,
5898 prefix, yes_no(c->cpu_sched_reset_on_fork));
5899 }
5900
5901 if (c->cpu_set.set) {
5902 _cleanup_free_ char *affinity = NULL;
5903
5904 affinity = cpu_set_to_range_string(&c->cpu_set);
5905 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5906 }
5907
5908 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5909 _cleanup_free_ char *nodes = NULL;
5910
5911 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5912 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5913 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5914 }
5915
5916 if (c->timer_slack_nsec != NSEC_INFINITY)
5917 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5918
5919 fprintf(f,
5920 "%sStandardInput: %s\n"
5921 "%sStandardOutput: %s\n"
5922 "%sStandardError: %s\n",
5923 prefix, exec_input_to_string(c->std_input),
5924 prefix, exec_output_to_string(c->std_output),
5925 prefix, exec_output_to_string(c->std_error));
5926
5927 if (c->std_input == EXEC_INPUT_NAMED_FD)
5928 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5929 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5930 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5931 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5932 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5933
5934 if (c->std_input == EXEC_INPUT_FILE)
5935 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5936 if (c->std_output == EXEC_OUTPUT_FILE)
5937 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5938 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5939 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5940 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
5941 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5942 if (c->std_error == EXEC_OUTPUT_FILE)
5943 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5944 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5945 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5946 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
5947 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5948
5949 if (c->tty_path)
5950 fprintf(f,
5951 "%sTTYPath: %s\n"
5952 "%sTTYReset: %s\n"
5953 "%sTTYVHangup: %s\n"
5954 "%sTTYVTDisallocate: %s\n"
5955 "%sTTYRows: %u\n"
5956 "%sTTYColumns: %u\n",
5957 prefix, c->tty_path,
5958 prefix, yes_no(c->tty_reset),
5959 prefix, yes_no(c->tty_vhangup),
5960 prefix, yes_no(c->tty_vt_disallocate),
5961 prefix, c->tty_rows,
5962 prefix, c->tty_cols);
5963
5964 if (IN_SET(c->std_output,
5965 EXEC_OUTPUT_KMSG,
5966 EXEC_OUTPUT_JOURNAL,
5967 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5968 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5969 IN_SET(c->std_error,
5970 EXEC_OUTPUT_KMSG,
5971 EXEC_OUTPUT_JOURNAL,
5972 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5973 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5974
5975 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5976
5977 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5978 if (r >= 0)
5979 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5980
5981 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5982 if (r >= 0)
5983 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5984 }
5985
5986 if (c->log_level_max >= 0) {
5987 _cleanup_free_ char *t = NULL;
5988
5989 (void) log_level_to_string_alloc(c->log_level_max, &t);
5990
5991 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5992 }
5993
5994 if (c->log_ratelimit_interval_usec > 0)
5995 fprintf(f,
5996 "%sLogRateLimitIntervalSec: %s\n",
5997 prefix, FORMAT_TIMESPAN(c->log_ratelimit_interval_usec, USEC_PER_SEC));
5998
5999 if (c->log_ratelimit_burst > 0)
6000 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
6001
6002 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
6003 fprintf(f, "%sLogExtraFields: ", prefix);
6004 fwrite(c->log_extra_fields[j].iov_base,
6005 1, c->log_extra_fields[j].iov_len,
6006 f);
6007 fputc('\n', f);
6008 }
6009
6010 if (c->log_namespace)
6011 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
6012
6013 if (c->secure_bits) {
6014 _cleanup_free_ char *str = NULL;
6015
6016 r = secure_bits_to_string_alloc(c->secure_bits, &str);
6017 if (r >= 0)
6018 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
6019 }
6020
6021 if (c->capability_bounding_set != CAP_ALL) {
6022 _cleanup_free_ char *str = NULL;
6023
6024 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
6025 if (r >= 0)
6026 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
6027 }
6028
6029 if (c->capability_ambient_set != 0) {
6030 _cleanup_free_ char *str = NULL;
6031
6032 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
6033 if (r >= 0)
6034 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
6035 }
6036
6037 if (c->user)
6038 fprintf(f, "%sUser: %s\n", prefix, c->user);
6039 if (c->group)
6040 fprintf(f, "%sGroup: %s\n", prefix, c->group);
6041
6042 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
6043
6044 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
6045
6046 if (c->pam_name)
6047 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
6048
6049 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
6050 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
6051 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
6052 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
6053 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
6054 strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path);
6055
6056 for (size_t i = 0; i < c->n_bind_mounts; i++)
6057 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
6058 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
6059 c->bind_mounts[i].ignore_enoent ? "-": "",
6060 c->bind_mounts[i].source,
6061 c->bind_mounts[i].destination,
6062 c->bind_mounts[i].recursive ? "rbind" : "norbind");
6063
6064 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
6065 const TemporaryFileSystem *t = c->temporary_filesystems + i;
6066
6067 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
6068 t->path,
6069 isempty(t->options) ? "" : ":",
6070 strempty(t->options));
6071 }
6072
6073 if (c->utmp_id)
6074 fprintf(f,
6075 "%sUtmpIdentifier: %s\n",
6076 prefix, c->utmp_id);
6077
6078 if (c->selinux_context)
6079 fprintf(f,
6080 "%sSELinuxContext: %s%s\n",
6081 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
6082
6083 if (c->apparmor_profile)
6084 fprintf(f,
6085 "%sAppArmorProfile: %s%s\n",
6086 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
6087
6088 if (c->smack_process_label)
6089 fprintf(f,
6090 "%sSmackProcessLabel: %s%s\n",
6091 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
6092
6093 if (c->personality != PERSONALITY_INVALID)
6094 fprintf(f,
6095 "%sPersonality: %s\n",
6096 prefix, strna(personality_to_string(c->personality)));
6097
6098 fprintf(f,
6099 "%sLockPersonality: %s\n",
6100 prefix, yes_no(c->lock_personality));
6101
6102 if (c->syscall_filter) {
6103 fprintf(f,
6104 "%sSystemCallFilter: ",
6105 prefix);
6106
6107 if (!c->syscall_allow_list)
6108 fputc('~', f);
6109
6110 #if HAVE_SECCOMP
6111 void *id, *val;
6112 bool first = true;
6113 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
6114 _cleanup_free_ char *name = NULL;
6115 const char *errno_name = NULL;
6116 int num = PTR_TO_INT(val);
6117
6118 if (first)
6119 first = false;
6120 else
6121 fputc(' ', f);
6122
6123 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
6124 fputs(strna(name), f);
6125
6126 if (num >= 0) {
6127 errno_name = seccomp_errno_or_action_to_string(num);
6128 if (errno_name)
6129 fprintf(f, ":%s", errno_name);
6130 else
6131 fprintf(f, ":%d", num);
6132 }
6133 }
6134 #endif
6135
6136 fputc('\n', f);
6137 }
6138
6139 if (c->syscall_archs) {
6140 fprintf(f,
6141 "%sSystemCallArchitectures:",
6142 prefix);
6143
6144 #if HAVE_SECCOMP
6145 void *id;
6146 SET_FOREACH(id, c->syscall_archs)
6147 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
6148 #endif
6149 fputc('\n', f);
6150 }
6151
6152 if (exec_context_restrict_namespaces_set(c)) {
6153 _cleanup_free_ char *s = NULL;
6154
6155 r = namespace_flags_to_string(c->restrict_namespaces, &s);
6156 if (r >= 0)
6157 fprintf(f, "%sRestrictNamespaces: %s\n",
6158 prefix, strna(s));
6159 }
6160
6161 #if HAVE_LIBBPF
6162 if (exec_context_restrict_filesystems_set(c)) {
6163 char *fs;
6164 SET_FOREACH(fs, c->restrict_filesystems)
6165 fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs);
6166 }
6167 #endif
6168
6169 if (c->network_namespace_path)
6170 fprintf(f,
6171 "%sNetworkNamespacePath: %s\n",
6172 prefix, c->network_namespace_path);
6173
6174 if (c->syscall_errno > 0) {
6175 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
6176
6177 #if HAVE_SECCOMP
6178 const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
6179 if (errno_name)
6180 fputs(errno_name, f);
6181 else
6182 fprintf(f, "%d", c->syscall_errno);
6183 #endif
6184 fputc('\n', f);
6185 }
6186
6187 for (size_t i = 0; i < c->n_mount_images; i++) {
6188 fprintf(f, "%sMountImages: %s%s:%s", prefix,
6189 c->mount_images[i].ignore_enoent ? "-": "",
6190 c->mount_images[i].source,
6191 c->mount_images[i].destination);
6192 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
6193 fprintf(f, ":%s:%s",
6194 partition_designator_to_string(o->partition_designator),
6195 strempty(o->options));
6196 fprintf(f, "\n");
6197 }
6198
6199 for (size_t i = 0; i < c->n_extension_images; i++) {
6200 fprintf(f, "%sExtensionImages: %s%s", prefix,
6201 c->extension_images[i].ignore_enoent ? "-": "",
6202 c->extension_images[i].source);
6203 LIST_FOREACH(mount_options, o, c->extension_images[i].mount_options)
6204 fprintf(f, ":%s:%s",
6205 partition_designator_to_string(o->partition_designator),
6206 strempty(o->options));
6207 fprintf(f, "\n");
6208 }
6209
6210 strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories);
6211 }
6212
6213 bool exec_context_maintains_privileges(const ExecContext *c) {
6214 assert(c);
6215
6216 /* Returns true if the process forked off would run under
6217 * an unchanged UID or as root. */
6218
6219 if (!c->user)
6220 return true;
6221
6222 if (streq(c->user, "root") || streq(c->user, "0"))
6223 return true;
6224
6225 return false;
6226 }
6227
6228 int exec_context_get_effective_ioprio(const ExecContext *c) {
6229 int p;
6230
6231 assert(c);
6232
6233 if (c->ioprio_set)
6234 return c->ioprio;
6235
6236 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
6237 if (p < 0)
6238 return IOPRIO_DEFAULT_CLASS_AND_PRIO;
6239
6240 return ioprio_normalize(p);
6241 }
6242
6243 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
6244 assert(c);
6245
6246 /* Explicit setting wins */
6247 if (c->mount_apivfs_set)
6248 return c->mount_apivfs;
6249
6250 /* Default to "yes" if root directory or image are specified */
6251 if (exec_context_with_rootfs(c))
6252 return true;
6253
6254 return false;
6255 }
6256
6257 void exec_context_free_log_extra_fields(ExecContext *c) {
6258 assert(c);
6259
6260 for (size_t l = 0; l < c->n_log_extra_fields; l++)
6261 free(c->log_extra_fields[l].iov_base);
6262 c->log_extra_fields = mfree(c->log_extra_fields);
6263 c->n_log_extra_fields = 0;
6264 }
6265
6266 void exec_context_revert_tty(ExecContext *c) {
6267 _cleanup_close_ int fd = -1;
6268 const char *path;
6269 struct stat st;
6270 int r;
6271
6272 assert(c);
6273
6274 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
6275 exec_context_tty_reset(c, NULL);
6276
6277 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
6278 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
6279 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
6280 if (!exec_context_may_touch_tty(c))
6281 return;
6282
6283 path = exec_context_tty_path(c);
6284 if (!path)
6285 return;
6286
6287 fd = open(path, O_PATH|O_CLOEXEC);
6288 if (fd < 0)
6289 return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno,
6290 "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m",
6291 path);
6292
6293 if (fstat(fd, &st) < 0)
6294 return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path);
6295
6296 /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check
6297 * if things are a character device, since a proper check either means we'd have to open the TTY and
6298 * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects
6299 * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother
6300 * with this at all? → https://github.com/systemd/systemd/issues/19213 */
6301 if (!S_ISCHR(st.st_mode))
6302 return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path);
6303
6304 r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID);
6305 if (r < 0)
6306 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
6307 }
6308
6309 int exec_context_get_clean_directories(
6310 ExecContext *c,
6311 char **prefix,
6312 ExecCleanMask mask,
6313 char ***ret) {
6314
6315 _cleanup_strv_free_ char **l = NULL;
6316 int r;
6317
6318 assert(c);
6319 assert(prefix);
6320 assert(ret);
6321
6322 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
6323 if (!FLAGS_SET(mask, 1U << t))
6324 continue;
6325
6326 if (!prefix[t])
6327 continue;
6328
6329 for (size_t i = 0; i < c->directories[t].n_items; i++) {
6330 char *j;
6331
6332 j = path_join(prefix[t], c->directories[t].items[i].path);
6333 if (!j)
6334 return -ENOMEM;
6335
6336 r = strv_consume(&l, j);
6337 if (r < 0)
6338 return r;
6339
6340 /* Also remove private directories unconditionally. */
6341 if (t != EXEC_DIRECTORY_CONFIGURATION) {
6342 j = path_join(prefix[t], "private", c->directories[t].items[i].path);
6343 if (!j)
6344 return -ENOMEM;
6345
6346 r = strv_consume(&l, j);
6347 if (r < 0)
6348 return r;
6349 }
6350
6351 STRV_FOREACH(symlink, c->directories[t].items[i].symlinks) {
6352 j = path_join(prefix[t], *symlink);
6353 if (!j)
6354 return -ENOMEM;
6355
6356 r = strv_consume(&l, j);
6357 if (r < 0)
6358 return r;
6359 }
6360 }
6361 }
6362
6363 *ret = TAKE_PTR(l);
6364 return 0;
6365 }
6366
6367 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
6368 ExecCleanMask mask = 0;
6369
6370 assert(c);
6371 assert(ret);
6372
6373 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
6374 if (c->directories[t].n_items > 0)
6375 mask |= 1U << t;
6376
6377 *ret = mask;
6378 return 0;
6379 }
6380
6381 void exec_status_start(ExecStatus *s, pid_t pid) {
6382 assert(s);
6383
6384 *s = (ExecStatus) {
6385 .pid = pid,
6386 };
6387
6388 dual_timestamp_get(&s->start_timestamp);
6389 }
6390
6391 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
6392 assert(s);
6393
6394 if (s->pid != pid)
6395 *s = (ExecStatus) {
6396 .pid = pid,
6397 };
6398
6399 dual_timestamp_get(&s->exit_timestamp);
6400
6401 s->code = code;
6402 s->status = status;
6403
6404 if (context && context->utmp_id)
6405 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
6406 }
6407
6408 void exec_status_reset(ExecStatus *s) {
6409 assert(s);
6410
6411 *s = (ExecStatus) {};
6412 }
6413
6414 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
6415 assert(s);
6416 assert(f);
6417
6418 if (s->pid <= 0)
6419 return;
6420
6421 prefix = strempty(prefix);
6422
6423 fprintf(f,
6424 "%sPID: "PID_FMT"\n",
6425 prefix, s->pid);
6426
6427 if (dual_timestamp_is_set(&s->start_timestamp))
6428 fprintf(f,
6429 "%sStart Timestamp: %s\n",
6430 prefix, FORMAT_TIMESTAMP(s->start_timestamp.realtime));
6431
6432 if (dual_timestamp_is_set(&s->exit_timestamp))
6433 fprintf(f,
6434 "%sExit Timestamp: %s\n"
6435 "%sExit Code: %s\n"
6436 "%sExit Status: %i\n",
6437 prefix, FORMAT_TIMESTAMP(s->exit_timestamp.realtime),
6438 prefix, sigchld_code_to_string(s->code),
6439 prefix, s->status);
6440 }
6441
6442 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
6443 _cleanup_free_ char *cmd = NULL;
6444 const char *prefix2;
6445
6446 assert(c);
6447 assert(f);
6448
6449 prefix = strempty(prefix);
6450 prefix2 = strjoina(prefix, "\t");
6451
6452 cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY);
6453
6454 fprintf(f,
6455 "%sCommand Line: %s\n",
6456 prefix, strnull(cmd));
6457
6458 exec_status_dump(&c->exec_status, f, prefix2);
6459 }
6460
6461 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
6462 assert(f);
6463
6464 prefix = strempty(prefix);
6465
6466 LIST_FOREACH(command, i, c)
6467 exec_command_dump(i, f, prefix);
6468 }
6469
6470 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
6471 ExecCommand *end;
6472
6473 assert(l);
6474 assert(e);
6475
6476 if (*l) {
6477 /* It's kind of important, that we keep the order here */
6478 LIST_FIND_TAIL(command, *l, end);
6479 LIST_INSERT_AFTER(command, *l, end, e);
6480 } else
6481 *l = e;
6482 }
6483
6484 int exec_command_set(ExecCommand *c, const char *path, ...) {
6485 va_list ap;
6486 char **l, *p;
6487
6488 assert(c);
6489 assert(path);
6490
6491 va_start(ap, path);
6492 l = strv_new_ap(path, ap);
6493 va_end(ap);
6494
6495 if (!l)
6496 return -ENOMEM;
6497
6498 p = strdup(path);
6499 if (!p) {
6500 strv_free(l);
6501 return -ENOMEM;
6502 }
6503
6504 free_and_replace(c->path, p);
6505
6506 return strv_free_and_replace(c->argv, l);
6507 }
6508
6509 int exec_command_append(ExecCommand *c, const char *path, ...) {
6510 _cleanup_strv_free_ char **l = NULL;
6511 va_list ap;
6512 int r;
6513
6514 assert(c);
6515 assert(path);
6516
6517 va_start(ap, path);
6518 l = strv_new_ap(path, ap);
6519 va_end(ap);
6520
6521 if (!l)
6522 return -ENOMEM;
6523
6524 r = strv_extend_strv(&c->argv, l, false);
6525 if (r < 0)
6526 return r;
6527
6528 return 0;
6529 }
6530
6531 static void *remove_tmpdir_thread(void *p) {
6532 _cleanup_free_ char *path = p;
6533
6534 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
6535 return NULL;
6536 }
6537
6538 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
6539 int r;
6540
6541 if (!rt)
6542 return NULL;
6543
6544 if (rt->manager)
6545 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
6546
6547 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
6548
6549 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
6550 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
6551
6552 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
6553 if (r < 0)
6554 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
6555 else
6556 rt->tmp_dir = NULL;
6557 }
6558
6559 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
6560 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
6561
6562 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
6563 if (r < 0)
6564 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
6565 else
6566 rt->var_tmp_dir = NULL;
6567 }
6568
6569 rt->id = mfree(rt->id);
6570 rt->tmp_dir = mfree(rt->tmp_dir);
6571 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
6572 safe_close_pair(rt->netns_storage_socket);
6573 safe_close_pair(rt->ipcns_storage_socket);
6574 return mfree(rt);
6575 }
6576
6577 static void exec_runtime_freep(ExecRuntime **rt) {
6578 (void) exec_runtime_free(*rt, false);
6579 }
6580
6581 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6582 _cleanup_free_ char *id_copy = NULL;
6583 ExecRuntime *n;
6584
6585 assert(ret);
6586
6587 id_copy = strdup(id);
6588 if (!id_copy)
6589 return -ENOMEM;
6590
6591 n = new(ExecRuntime, 1);
6592 if (!n)
6593 return -ENOMEM;
6594
6595 *n = (ExecRuntime) {
6596 .id = TAKE_PTR(id_copy),
6597 .netns_storage_socket = { -1, -1 },
6598 .ipcns_storage_socket = { -1, -1 },
6599 };
6600
6601 *ret = n;
6602 return 0;
6603 }
6604
6605 static int exec_runtime_add(
6606 Manager *m,
6607 const char *id,
6608 char **tmp_dir,
6609 char **var_tmp_dir,
6610 int netns_storage_socket[2],
6611 int ipcns_storage_socket[2],
6612 ExecRuntime **ret) {
6613
6614 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6615 int r;
6616
6617 assert(m);
6618 assert(id);
6619
6620 /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */
6621
6622 r = exec_runtime_allocate(&rt, id);
6623 if (r < 0)
6624 return r;
6625
6626 r = hashmap_ensure_put(&m->exec_runtime_by_id, &string_hash_ops, rt->id, rt);
6627 if (r < 0)
6628 return r;
6629
6630 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6631 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6632 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6633
6634 if (netns_storage_socket) {
6635 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6636 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6637 }
6638
6639 if (ipcns_storage_socket) {
6640 rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]);
6641 rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]);
6642 }
6643
6644 rt->manager = m;
6645
6646 if (ret)
6647 *ret = rt;
6648 /* do not remove created ExecRuntime object when the operation succeeds. */
6649 TAKE_PTR(rt);
6650 return 0;
6651 }
6652
6653 static int exec_runtime_make(
6654 Manager *m,
6655 const ExecContext *c,
6656 const char *id,
6657 ExecRuntime **ret) {
6658
6659 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6660 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 }, ipcns_storage_socket[2] = { -1, -1 };
6661 int r;
6662
6663 assert(m);
6664 assert(c);
6665 assert(id);
6666
6667 /* It is not necessary to create ExecRuntime object. */
6668 if (!c->private_network && !c->private_ipc && !c->private_tmp && !c->network_namespace_path) {
6669 *ret = NULL;
6670 return 0;
6671 }
6672
6673 if (c->private_tmp &&
6674 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6675 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6676 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6677 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6678 if (r < 0)
6679 return r;
6680 }
6681
6682 if (c->private_network || c->network_namespace_path) {
6683 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6684 return -errno;
6685 }
6686
6687 if (c->private_ipc || c->ipc_namespace_path) {
6688 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0)
6689 return -errno;
6690 }
6691
6692 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret);
6693 if (r < 0)
6694 return r;
6695
6696 return 1;
6697 }
6698
6699 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6700 ExecRuntime *rt;
6701 int r;
6702
6703 assert(m);
6704 assert(id);
6705 assert(ret);
6706
6707 rt = hashmap_get(m->exec_runtime_by_id, id);
6708 if (rt)
6709 /* We already have an ExecRuntime object, let's increase the ref count and reuse it */
6710 goto ref;
6711
6712 if (!create) {
6713 *ret = NULL;
6714 return 0;
6715 }
6716
6717 /* If not found, then create a new object. */
6718 r = exec_runtime_make(m, c, id, &rt);
6719 if (r < 0)
6720 return r;
6721 if (r == 0) {
6722 /* When r == 0, it is not necessary to create ExecRuntime object. */
6723 *ret = NULL;
6724 return 0;
6725 }
6726
6727 ref:
6728 /* increment reference counter. */
6729 rt->n_ref++;
6730 *ret = rt;
6731 return 1;
6732 }
6733
6734 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6735 if (!rt)
6736 return NULL;
6737
6738 assert(rt->n_ref > 0);
6739
6740 rt->n_ref--;
6741 if (rt->n_ref > 0)
6742 return NULL;
6743
6744 return exec_runtime_free(rt, destroy);
6745 }
6746
6747 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6748 ExecRuntime *rt;
6749
6750 assert(m);
6751 assert(f);
6752 assert(fds);
6753
6754 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6755 fprintf(f, "exec-runtime=%s", rt->id);
6756
6757 if (rt->tmp_dir)
6758 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6759
6760 if (rt->var_tmp_dir)
6761 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6762
6763 if (rt->netns_storage_socket[0] >= 0) {
6764 int copy;
6765
6766 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6767 if (copy < 0)
6768 return copy;
6769
6770 fprintf(f, " netns-socket-0=%i", copy);
6771 }
6772
6773 if (rt->netns_storage_socket[1] >= 0) {
6774 int copy;
6775
6776 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6777 if (copy < 0)
6778 return copy;
6779
6780 fprintf(f, " netns-socket-1=%i", copy);
6781 }
6782
6783 if (rt->ipcns_storage_socket[0] >= 0) {
6784 int copy;
6785
6786 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]);
6787 if (copy < 0)
6788 return copy;
6789
6790 fprintf(f, " ipcns-socket-0=%i", copy);
6791 }
6792
6793 if (rt->ipcns_storage_socket[1] >= 0) {
6794 int copy;
6795
6796 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]);
6797 if (copy < 0)
6798 return copy;
6799
6800 fprintf(f, " ipcns-socket-1=%i", copy);
6801 }
6802
6803 fputc('\n', f);
6804 }
6805
6806 return 0;
6807 }
6808
6809 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6810 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6811 ExecRuntime *rt;
6812 int r;
6813
6814 /* This is for the migration from old (v237 or earlier) deserialization text.
6815 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6816 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6817 * so or not from the serialized text, then we always creates a new object owned by this. */
6818
6819 assert(u);
6820 assert(key);
6821 assert(value);
6822
6823 /* Manager manages ExecRuntime objects by the unit id.
6824 * So, we omit the serialized text when the unit does not have id (yet?)... */
6825 if (isempty(u->id)) {
6826 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6827 return 0;
6828 }
6829
6830 if (hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops) < 0)
6831 return log_oom();
6832
6833 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6834 if (!rt) {
6835 if (exec_runtime_allocate(&rt_create, u->id) < 0)
6836 return log_oom();
6837
6838 rt = rt_create;
6839 }
6840
6841 if (streq(key, "tmp-dir")) {
6842 if (free_and_strdup_warn(&rt->tmp_dir, value) < 0)
6843 return -ENOMEM;
6844
6845 } else if (streq(key, "var-tmp-dir")) {
6846 if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0)
6847 return -ENOMEM;
6848
6849 } else if (streq(key, "netns-socket-0")) {
6850 int fd;
6851
6852 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6853 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6854 return 0;
6855 }
6856
6857 safe_close(rt->netns_storage_socket[0]);
6858 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6859
6860 } else if (streq(key, "netns-socket-1")) {
6861 int fd;
6862
6863 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6864 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6865 return 0;
6866 }
6867
6868 safe_close(rt->netns_storage_socket[1]);
6869 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6870
6871 } else
6872 return 0;
6873
6874 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6875 if (rt_create) {
6876 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6877 if (r < 0) {
6878 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6879 return 0;
6880 }
6881
6882 rt_create->manager = u->manager;
6883
6884 /* Avoid cleanup */
6885 TAKE_PTR(rt_create);
6886 }
6887
6888 return 1;
6889 }
6890
6891 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6892 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6893 char *id = NULL;
6894 int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1};
6895 const char *p, *v = ASSERT_PTR(value);
6896 size_t n;
6897
6898 assert(m);
6899 assert(fds);
6900
6901 n = strcspn(v, " ");
6902 id = strndupa_safe(v, n);
6903 if (v[n] != ' ')
6904 goto finalize;
6905 p = v + n + 1;
6906
6907 v = startswith(p, "tmp-dir=");
6908 if (v) {
6909 n = strcspn(v, " ");
6910 tmp_dir = strndup(v, n);
6911 if (!tmp_dir)
6912 return log_oom();
6913 if (v[n] != ' ')
6914 goto finalize;
6915 p = v + n + 1;
6916 }
6917
6918 v = startswith(p, "var-tmp-dir=");
6919 if (v) {
6920 n = strcspn(v, " ");
6921 var_tmp_dir = strndup(v, n);
6922 if (!var_tmp_dir)
6923 return log_oom();
6924 if (v[n] != ' ')
6925 goto finalize;
6926 p = v + n + 1;
6927 }
6928
6929 v = startswith(p, "netns-socket-0=");
6930 if (v) {
6931 char *buf;
6932
6933 n = strcspn(v, " ");
6934 buf = strndupa_safe(v, n);
6935
6936 r = safe_atoi(buf, &netns_fdpair[0]);
6937 if (r < 0)
6938 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6939 if (!fdset_contains(fds, netns_fdpair[0]))
6940 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6941 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", netns_fdpair[0]);
6942 netns_fdpair[0] = fdset_remove(fds, netns_fdpair[0]);
6943 if (v[n] != ' ')
6944 goto finalize;
6945 p = v + n + 1;
6946 }
6947
6948 v = startswith(p, "netns-socket-1=");
6949 if (v) {
6950 char *buf;
6951
6952 n = strcspn(v, " ");
6953 buf = strndupa_safe(v, n);
6954
6955 r = safe_atoi(buf, &netns_fdpair[1]);
6956 if (r < 0)
6957 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6958 if (!fdset_contains(fds, netns_fdpair[1]))
6959 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6960 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", netns_fdpair[1]);
6961 netns_fdpair[1] = fdset_remove(fds, netns_fdpair[1]);
6962 if (v[n] != ' ')
6963 goto finalize;
6964 p = v + n + 1;
6965 }
6966
6967 v = startswith(p, "ipcns-socket-0=");
6968 if (v) {
6969 char *buf;
6970
6971 n = strcspn(v, " ");
6972 buf = strndupa_safe(v, n);
6973
6974 r = safe_atoi(buf, &ipcns_fdpair[0]);
6975 if (r < 0)
6976 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-0=%s: %m", buf);
6977 if (!fdset_contains(fds, ipcns_fdpair[0]))
6978 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6979 "exec-runtime specification ipcns-socket-0= refers to unknown fd %d: %m", ipcns_fdpair[0]);
6980 ipcns_fdpair[0] = fdset_remove(fds, ipcns_fdpair[0]);
6981 if (v[n] != ' ')
6982 goto finalize;
6983 p = v + n + 1;
6984 }
6985
6986 v = startswith(p, "ipcns-socket-1=");
6987 if (v) {
6988 char *buf;
6989
6990 n = strcspn(v, " ");
6991 buf = strndupa_safe(v, n);
6992
6993 r = safe_atoi(buf, &ipcns_fdpair[1]);
6994 if (r < 0)
6995 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-1=%s: %m", buf);
6996 if (!fdset_contains(fds, ipcns_fdpair[1]))
6997 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6998 "exec-runtime specification ipcns-socket-1= refers to unknown fd %d: %m", ipcns_fdpair[1]);
6999 ipcns_fdpair[1] = fdset_remove(fds, ipcns_fdpair[1]);
7000 }
7001
7002 finalize:
7003 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL);
7004 if (r < 0)
7005 return log_debug_errno(r, "Failed to add exec-runtime: %m");
7006 return 0;
7007 }
7008
7009 void exec_runtime_vacuum(Manager *m) {
7010 ExecRuntime *rt;
7011
7012 assert(m);
7013
7014 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
7015
7016 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
7017 if (rt->n_ref > 0)
7018 continue;
7019
7020 (void) exec_runtime_free(rt, false);
7021 }
7022 }
7023
7024 void exec_params_clear(ExecParameters *p) {
7025 if (!p)
7026 return;
7027
7028 p->environment = strv_free(p->environment);
7029 p->fd_names = strv_free(p->fd_names);
7030 p->fds = mfree(p->fds);
7031 p->exec_fd = safe_close(p->exec_fd);
7032 }
7033
7034 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
7035 if (!sc)
7036 return NULL;
7037
7038 free(sc->id);
7039 free(sc->data);
7040 return mfree(sc);
7041 }
7042
7043 ExecLoadCredential *exec_load_credential_free(ExecLoadCredential *lc) {
7044 if (!lc)
7045 return NULL;
7046
7047 free(lc->id);
7048 free(lc->path);
7049 return mfree(lc);
7050 }
7051
7052 void exec_directory_done(ExecDirectory *d) {
7053 if (!d)
7054 return;
7055
7056 for (size_t i = 0; i < d->n_items; i++) {
7057 free(d->items[i].path);
7058 strv_free(d->items[i].symlinks);
7059 }
7060
7061 d->items = mfree(d->items);
7062 d->n_items = 0;
7063 d->mode = 0755;
7064 }
7065
7066 static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) {
7067 assert(d);
7068 assert(path);
7069
7070 for (size_t i = 0; i < d->n_items; i++)
7071 if (path_equal(d->items[i].path, path))
7072 return &d->items[i];
7073
7074 return NULL;
7075 }
7076
7077 int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) {
7078 _cleanup_strv_free_ char **s = NULL;
7079 _cleanup_free_ char *p = NULL;
7080 ExecDirectoryItem *existing;
7081 int r;
7082
7083 assert(d);
7084 assert(path);
7085
7086 existing = exec_directory_find(d, path);
7087 if (existing) {
7088 r = strv_extend(&existing->symlinks, symlink);
7089 if (r < 0)
7090 return r;
7091
7092 return 0; /* existing item is updated */
7093 }
7094
7095 p = strdup(path);
7096 if (!p)
7097 return -ENOMEM;
7098
7099 if (symlink) {
7100 s = strv_new(symlink);
7101 if (!s)
7102 return -ENOMEM;
7103 }
7104
7105 if (!GREEDY_REALLOC(d->items, d->n_items + 1))
7106 return -ENOMEM;
7107
7108 d->items[d->n_items++] = (ExecDirectoryItem) {
7109 .path = TAKE_PTR(p),
7110 .symlinks = TAKE_PTR(s),
7111 };
7112
7113 return 1; /* new item is added */
7114 }
7115
7116 static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) {
7117 assert(a);
7118 assert(b);
7119
7120 return path_compare(a->path, b->path);
7121 }
7122
7123 void exec_directory_sort(ExecDirectory *d) {
7124 assert(d);
7125
7126 /* Sort the exec directories to make always parent directories processed at first in
7127 * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first,
7128 * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the
7129 * list. See also comments in setup_exec_directory() and issue #24783. */
7130
7131 if (d->n_items <= 1)
7132 return;
7133
7134 typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func);
7135
7136 for (size_t i = 1; i < d->n_items; i++)
7137 for (size_t j = 0; j < i; j++)
7138 if (path_startswith(d->items[i].path, d->items[j].path)) {
7139 d->items[i].only_create = true;
7140 break;
7141 }
7142 }
7143
7144 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
7145 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_load_credential_hash_ops, char, string_hash_func, string_compare_func, ExecLoadCredential, exec_load_credential_free);
7146
7147 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
7148 [EXEC_INPUT_NULL] = "null",
7149 [EXEC_INPUT_TTY] = "tty",
7150 [EXEC_INPUT_TTY_FORCE] = "tty-force",
7151 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
7152 [EXEC_INPUT_SOCKET] = "socket",
7153 [EXEC_INPUT_NAMED_FD] = "fd",
7154 [EXEC_INPUT_DATA] = "data",
7155 [EXEC_INPUT_FILE] = "file",
7156 };
7157
7158 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
7159
7160 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
7161 [EXEC_OUTPUT_INHERIT] = "inherit",
7162 [EXEC_OUTPUT_NULL] = "null",
7163 [EXEC_OUTPUT_TTY] = "tty",
7164 [EXEC_OUTPUT_KMSG] = "kmsg",
7165 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
7166 [EXEC_OUTPUT_JOURNAL] = "journal",
7167 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
7168 [EXEC_OUTPUT_SOCKET] = "socket",
7169 [EXEC_OUTPUT_NAMED_FD] = "fd",
7170 [EXEC_OUTPUT_FILE] = "file",
7171 [EXEC_OUTPUT_FILE_APPEND] = "append",
7172 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
7173 };
7174
7175 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
7176
7177 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
7178 [EXEC_UTMP_INIT] = "init",
7179 [EXEC_UTMP_LOGIN] = "login",
7180 [EXEC_UTMP_USER] = "user",
7181 };
7182
7183 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
7184
7185 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
7186 [EXEC_PRESERVE_NO] = "no",
7187 [EXEC_PRESERVE_YES] = "yes",
7188 [EXEC_PRESERVE_RESTART] = "restart",
7189 };
7190
7191 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
7192
7193 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
7194 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7195 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
7196 [EXEC_DIRECTORY_STATE] = "StateDirectory",
7197 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
7198 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
7199 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
7200 };
7201
7202 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
7203
7204 /* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */
7205 static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7206 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink",
7207 [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink",
7208 [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink",
7209 [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink",
7210 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink",
7211 };
7212
7213 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType);
7214
7215 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
7216 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
7217 * directories, specifically .timer units with their timestamp touch file. */
7218 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7219 [EXEC_DIRECTORY_RUNTIME] = "runtime",
7220 [EXEC_DIRECTORY_STATE] = "state",
7221 [EXEC_DIRECTORY_CACHE] = "cache",
7222 [EXEC_DIRECTORY_LOGS] = "logs",
7223 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
7224 };
7225
7226 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
7227
7228 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
7229 * the service payload in. */
7230 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7231 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
7232 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
7233 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
7234 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
7235 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
7236 };
7237
7238 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
7239
7240 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
7241 [EXEC_KEYRING_INHERIT] = "inherit",
7242 [EXEC_KEYRING_PRIVATE] = "private",
7243 [EXEC_KEYRING_SHARED] = "shared",
7244 };
7245
7246 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);