]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
tree-wide: hook up image dissection policy logic everywhere
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "argv-util.h"
43 #include "async.h"
44 #include "barrier.h"
45 #include "bpf-lsm.h"
46 #include "cap-list.h"
47 #include "capability-util.h"
48 #include "cgroup-setup.h"
49 #include "chase.h"
50 #include "chown-recursive.h"
51 #include "constants.h"
52 #include "cpu-set-util.h"
53 #include "creds-util.h"
54 #include "data-fd-util.h"
55 #include "env-file.h"
56 #include "env-util.h"
57 #include "errno-list.h"
58 #include "escape.h"
59 #include "execute.h"
60 #include "exit-status.h"
61 #include "fd-util.h"
62 #include "fileio.h"
63 #include "format-util.h"
64 #include "glob-util.h"
65 #include "hexdecoct.h"
66 #include "io-util.h"
67 #include "ioprio-util.h"
68 #include "label.h"
69 #include "log.h"
70 #include "macro.h"
71 #include "manager.h"
72 #include "manager-dump.h"
73 #include "memory-util.h"
74 #include "missing_fs.h"
75 #include "missing_ioprio.h"
76 #include "missing_prctl.h"
77 #include "mkdir-label.h"
78 #include "mount-util.h"
79 #include "mountpoint-util.h"
80 #include "namespace.h"
81 #include "parse-util.h"
82 #include "path-util.h"
83 #include "proc-cmdline.h"
84 #include "process-util.h"
85 #include "psi-util.h"
86 #include "random-util.h"
87 #include "recurse-dir.h"
88 #include "rlimit-util.h"
89 #include "rm-rf.h"
90 #if HAVE_SECCOMP
91 #include "seccomp-util.h"
92 #endif
93 #include "securebits-util.h"
94 #include "selinux-util.h"
95 #include "signal-util.h"
96 #include "smack-util.h"
97 #include "socket-util.h"
98 #include "sort-util.h"
99 #include "special.h"
100 #include "stat-util.h"
101 #include "string-table.h"
102 #include "string-util.h"
103 #include "strv.h"
104 #include "syslog-util.h"
105 #include "terminal-util.h"
106 #include "tmpfile-util.h"
107 #include "umask-util.h"
108 #include "unit-serialize.h"
109 #include "user-util.h"
110 #include "utmp-wtmp.h"
111
112 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
113 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
114
115 #define SNDBUF_SIZE (8*1024*1024)
116
117 static int shift_fds(int fds[], size_t n_fds) {
118 if (n_fds <= 0)
119 return 0;
120
121 /* Modifies the fds array! (sorts it) */
122
123 assert(fds);
124
125 for (int start = 0;;) {
126 int restart_from = -1;
127
128 for (int i = start; i < (int) n_fds; i++) {
129 int nfd;
130
131 /* Already at right index? */
132 if (fds[i] == i+3)
133 continue;
134
135 nfd = fcntl(fds[i], F_DUPFD, i + 3);
136 if (nfd < 0)
137 return -errno;
138
139 safe_close(fds[i]);
140 fds[i] = nfd;
141
142 /* Hmm, the fd we wanted isn't free? Then
143 * let's remember that and try again from here */
144 if (nfd != i+3 && restart_from < 0)
145 restart_from = i;
146 }
147
148 if (restart_from < 0)
149 break;
150
151 start = restart_from;
152 }
153
154 return 0;
155 }
156
157 static int flags_fds(
158 const int fds[],
159 size_t n_socket_fds,
160 size_t n_fds,
161 bool nonblock) {
162
163 int r;
164
165 if (n_fds <= 0)
166 return 0;
167
168 assert(fds);
169
170 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
171 * O_NONBLOCK only applies to socket activation though. */
172
173 for (size_t i = 0; i < n_fds; i++) {
174
175 if (i < n_socket_fds) {
176 r = fd_nonblock(fds[i], nonblock);
177 if (r < 0)
178 return r;
179 }
180
181 /* We unconditionally drop FD_CLOEXEC from the fds,
182 * since after all we want to pass these fds to our
183 * children */
184
185 r = fd_cloexec(fds[i], false);
186 if (r < 0)
187 return r;
188 }
189
190 return 0;
191 }
192
193 static const char *exec_context_tty_path(const ExecContext *context) {
194 assert(context);
195
196 if (context->stdio_as_fds)
197 return NULL;
198
199 if (context->tty_path)
200 return context->tty_path;
201
202 return "/dev/console";
203 }
204
205 static int exec_context_tty_size(const ExecContext *context, unsigned *ret_rows, unsigned *ret_cols) {
206 _cleanup_free_ char *rowskey = NULL, *rowsvalue = NULL, *colskey = NULL, *colsvalue = NULL;
207 unsigned rows, cols;
208 const char *tty;
209 int r;
210
211 assert(context);
212 assert(ret_rows);
213 assert(ret_cols);
214
215 rows = context->tty_rows;
216 cols = context->tty_cols;
217
218 tty = exec_context_tty_path(context);
219 if (!tty || (rows != UINT_MAX && cols != UINT_MAX)) {
220 *ret_rows = rows;
221 *ret_cols = cols;
222 return 0;
223 }
224
225 tty = skip_dev_prefix(tty);
226 if (!in_charset(tty, ALPHANUMERICAL)) {
227 log_debug("%s contains non-alphanumeric characters, ignoring", tty);
228 *ret_rows = rows;
229 *ret_cols = cols;
230 return 0;
231 }
232
233 rowskey = strjoin("systemd.tty.rows.", tty);
234 if (!rowskey)
235 return -ENOMEM;
236
237 colskey = strjoin("systemd.tty.columns.", tty);
238 if (!colskey)
239 return -ENOMEM;
240
241 r = proc_cmdline_get_key_many(/* flags = */ 0,
242 rowskey, &rowsvalue,
243 colskey, &colsvalue);
244 if (r < 0)
245 log_debug_errno(r, "Failed to read TTY size of %s from kernel cmdline, ignoring: %m", tty);
246
247 if (rows == UINT_MAX && rowsvalue) {
248 r = safe_atou(rowsvalue, &rows);
249 if (r < 0)
250 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", rowskey, rowsvalue);
251 }
252
253 if (cols == UINT_MAX && colsvalue) {
254 r = safe_atou(colsvalue, &cols);
255 if (r < 0)
256 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", colskey, colsvalue);
257 }
258
259 *ret_rows = rows;
260 *ret_cols = cols;
261
262 return 0;
263 }
264
265 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
266 const char *path;
267
268 assert(context);
269
270 path = exec_context_tty_path(context);
271
272 if (context->tty_vhangup) {
273 if (p && p->stdin_fd >= 0)
274 (void) terminal_vhangup_fd(p->stdin_fd);
275 else if (path)
276 (void) terminal_vhangup(path);
277 }
278
279 if (context->tty_reset) {
280 if (p && p->stdin_fd >= 0)
281 (void) reset_terminal_fd(p->stdin_fd, true);
282 else if (path)
283 (void) reset_terminal(path);
284 }
285
286 if (p && p->stdin_fd >= 0) {
287 unsigned rows = context->tty_rows, cols = context->tty_cols;
288
289 (void) exec_context_tty_size(context, &rows, &cols);
290 (void) terminal_set_size_fd(p->stdin_fd, path, rows, cols);
291 }
292
293 if (context->tty_vt_disallocate && path)
294 (void) vt_disallocate(path);
295 }
296
297 static bool is_terminal_input(ExecInput i) {
298 return IN_SET(i,
299 EXEC_INPUT_TTY,
300 EXEC_INPUT_TTY_FORCE,
301 EXEC_INPUT_TTY_FAIL);
302 }
303
304 static bool is_terminal_output(ExecOutput o) {
305 return IN_SET(o,
306 EXEC_OUTPUT_TTY,
307 EXEC_OUTPUT_KMSG_AND_CONSOLE,
308 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
309 }
310
311 static bool is_kmsg_output(ExecOutput o) {
312 return IN_SET(o,
313 EXEC_OUTPUT_KMSG,
314 EXEC_OUTPUT_KMSG_AND_CONSOLE);
315 }
316
317 static bool exec_context_needs_term(const ExecContext *c) {
318 assert(c);
319
320 /* Return true if the execution context suggests we should set $TERM to something useful. */
321
322 if (is_terminal_input(c->std_input))
323 return true;
324
325 if (is_terminal_output(c->std_output))
326 return true;
327
328 if (is_terminal_output(c->std_error))
329 return true;
330
331 return !!c->tty_path;
332 }
333
334 static int open_null_as(int flags, int nfd) {
335 int fd;
336
337 assert(nfd >= 0);
338
339 fd = open("/dev/null", flags|O_NOCTTY);
340 if (fd < 0)
341 return -errno;
342
343 return move_fd(fd, nfd, false);
344 }
345
346 static int connect_journal_socket(
347 int fd,
348 const char *log_namespace,
349 uid_t uid,
350 gid_t gid) {
351
352 uid_t olduid = UID_INVALID;
353 gid_t oldgid = GID_INVALID;
354 const char *j;
355 int r;
356
357 j = log_namespace ?
358 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
359 "/run/systemd/journal/stdout";
360
361 if (gid_is_valid(gid)) {
362 oldgid = getgid();
363
364 if (setegid(gid) < 0)
365 return -errno;
366 }
367
368 if (uid_is_valid(uid)) {
369 olduid = getuid();
370
371 if (seteuid(uid) < 0) {
372 r = -errno;
373 goto restore_gid;
374 }
375 }
376
377 r = connect_unix_path(fd, AT_FDCWD, j);
378
379 /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if
380 an LSM interferes. */
381
382 if (uid_is_valid(uid))
383 (void) seteuid(olduid);
384
385 restore_gid:
386 if (gid_is_valid(gid))
387 (void) setegid(oldgid);
388
389 return r;
390 }
391
392 static int connect_logger_as(
393 const Unit *unit,
394 const ExecContext *context,
395 const ExecParameters *params,
396 ExecOutput output,
397 const char *ident,
398 int nfd,
399 uid_t uid,
400 gid_t gid) {
401
402 _cleanup_close_ int fd = -EBADF;
403 int r;
404
405 assert(context);
406 assert(params);
407 assert(output < _EXEC_OUTPUT_MAX);
408 assert(ident);
409 assert(nfd >= 0);
410
411 fd = socket(AF_UNIX, SOCK_STREAM, 0);
412 if (fd < 0)
413 return -errno;
414
415 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
416 if (r < 0)
417 return r;
418
419 if (shutdown(fd, SHUT_RD) < 0)
420 return -errno;
421
422 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
423
424 if (dprintf(fd,
425 "%s\n"
426 "%s\n"
427 "%i\n"
428 "%i\n"
429 "%i\n"
430 "%i\n"
431 "%i\n",
432 context->syslog_identifier ?: ident,
433 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
434 context->syslog_priority,
435 !!context->syslog_level_prefix,
436 false,
437 is_kmsg_output(output),
438 is_terminal_output(output)) < 0)
439 return -errno;
440
441 return move_fd(TAKE_FD(fd), nfd, false);
442 }
443
444 static int open_terminal_as(const char *path, int flags, int nfd) {
445 int fd;
446
447 assert(path);
448 assert(nfd >= 0);
449
450 fd = open_terminal(path, flags | O_NOCTTY);
451 if (fd < 0)
452 return fd;
453
454 return move_fd(fd, nfd, false);
455 }
456
457 static int acquire_path(const char *path, int flags, mode_t mode) {
458 _cleanup_close_ int fd = -EBADF;
459 int r;
460
461 assert(path);
462
463 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
464 flags |= O_CREAT;
465
466 fd = open(path, flags|O_NOCTTY, mode);
467 if (fd >= 0)
468 return TAKE_FD(fd);
469
470 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
471 return -errno;
472
473 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
474
475 fd = socket(AF_UNIX, SOCK_STREAM, 0);
476 if (fd < 0)
477 return -errno;
478
479 r = connect_unix_path(fd, AT_FDCWD, path);
480 if (IN_SET(r, -ENOTSOCK, -EINVAL))
481 /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this
482 * wasn't an AF_UNIX socket after all */
483 return -ENXIO;
484 if (r < 0)
485 return r;
486
487 if ((flags & O_ACCMODE) == O_RDONLY)
488 r = shutdown(fd, SHUT_WR);
489 else if ((flags & O_ACCMODE) == O_WRONLY)
490 r = shutdown(fd, SHUT_RD);
491 else
492 r = 0;
493 if (r < 0)
494 return -errno;
495
496 return TAKE_FD(fd);
497 }
498
499 static int fixup_input(
500 const ExecContext *context,
501 int socket_fd,
502 bool apply_tty_stdin) {
503
504 ExecInput std_input;
505
506 assert(context);
507
508 std_input = context->std_input;
509
510 if (is_terminal_input(std_input) && !apply_tty_stdin)
511 return EXEC_INPUT_NULL;
512
513 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
514 return EXEC_INPUT_NULL;
515
516 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
517 return EXEC_INPUT_NULL;
518
519 return std_input;
520 }
521
522 static int fixup_output(ExecOutput output, int socket_fd) {
523
524 if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
525 return EXEC_OUTPUT_INHERIT;
526
527 return output;
528 }
529
530 static int setup_input(
531 const ExecContext *context,
532 const ExecParameters *params,
533 int socket_fd,
534 const int named_iofds[static 3]) {
535
536 ExecInput i;
537 int r;
538
539 assert(context);
540 assert(params);
541 assert(named_iofds);
542
543 if (params->stdin_fd >= 0) {
544 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
545 return -errno;
546
547 /* Try to make this the controlling tty, if it is a tty, and reset it */
548 if (isatty(STDIN_FILENO)) {
549 unsigned rows = context->tty_rows, cols = context->tty_cols;
550
551 (void) exec_context_tty_size(context, &rows, &cols);
552 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
553 (void) reset_terminal_fd(STDIN_FILENO, true);
554 (void) terminal_set_size_fd(STDIN_FILENO, NULL, rows, cols);
555 }
556
557 return STDIN_FILENO;
558 }
559
560 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
561
562 switch (i) {
563
564 case EXEC_INPUT_NULL:
565 return open_null_as(O_RDONLY, STDIN_FILENO);
566
567 case EXEC_INPUT_TTY:
568 case EXEC_INPUT_TTY_FORCE:
569 case EXEC_INPUT_TTY_FAIL: {
570 unsigned rows, cols;
571 int fd;
572
573 fd = acquire_terminal(exec_context_tty_path(context),
574 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
575 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
576 ACQUIRE_TERMINAL_WAIT,
577 USEC_INFINITY);
578 if (fd < 0)
579 return fd;
580
581 r = exec_context_tty_size(context, &rows, &cols);
582 if (r < 0)
583 return r;
584
585 r = terminal_set_size_fd(fd, exec_context_tty_path(context), rows, cols);
586 if (r < 0)
587 return r;
588
589 return move_fd(fd, STDIN_FILENO, false);
590 }
591
592 case EXEC_INPUT_SOCKET:
593 assert(socket_fd >= 0);
594
595 return RET_NERRNO(dup2(socket_fd, STDIN_FILENO));
596
597 case EXEC_INPUT_NAMED_FD:
598 assert(named_iofds[STDIN_FILENO] >= 0);
599
600 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
601 return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO));
602
603 case EXEC_INPUT_DATA: {
604 int fd;
605
606 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
607 if (fd < 0)
608 return fd;
609
610 return move_fd(fd, STDIN_FILENO, false);
611 }
612
613 case EXEC_INPUT_FILE: {
614 bool rw;
615 int fd;
616
617 assert(context->stdio_file[STDIN_FILENO]);
618
619 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
620 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
621
622 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
623 if (fd < 0)
624 return fd;
625
626 return move_fd(fd, STDIN_FILENO, false);
627 }
628
629 default:
630 assert_not_reached();
631 }
632 }
633
634 static bool can_inherit_stderr_from_stdout(
635 const ExecContext *context,
636 ExecOutput o,
637 ExecOutput e) {
638
639 assert(context);
640
641 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
642 * stderr fd */
643
644 if (e == EXEC_OUTPUT_INHERIT)
645 return true;
646 if (e != o)
647 return false;
648
649 if (e == EXEC_OUTPUT_NAMED_FD)
650 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
651
652 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
653 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
654
655 return true;
656 }
657
658 static int setup_output(
659 const Unit *unit,
660 const ExecContext *context,
661 const ExecParameters *params,
662 int fileno,
663 int socket_fd,
664 const int named_iofds[static 3],
665 const char *ident,
666 uid_t uid,
667 gid_t gid,
668 dev_t *journal_stream_dev,
669 ino_t *journal_stream_ino) {
670
671 ExecOutput o;
672 ExecInput i;
673 int r;
674
675 assert(unit);
676 assert(context);
677 assert(params);
678 assert(ident);
679 assert(journal_stream_dev);
680 assert(journal_stream_ino);
681
682 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
683
684 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
685 return -errno;
686
687 return STDOUT_FILENO;
688 }
689
690 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
691 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
692 return -errno;
693
694 return STDERR_FILENO;
695 }
696
697 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
698 o = fixup_output(context->std_output, socket_fd);
699
700 if (fileno == STDERR_FILENO) {
701 ExecOutput e;
702 e = fixup_output(context->std_error, socket_fd);
703
704 /* This expects the input and output are already set up */
705
706 /* Don't change the stderr file descriptor if we inherit all
707 * the way and are not on a tty */
708 if (e == EXEC_OUTPUT_INHERIT &&
709 o == EXEC_OUTPUT_INHERIT &&
710 i == EXEC_INPUT_NULL &&
711 !is_terminal_input(context->std_input) &&
712 getppid() != 1)
713 return fileno;
714
715 /* Duplicate from stdout if possible */
716 if (can_inherit_stderr_from_stdout(context, o, e))
717 return RET_NERRNO(dup2(STDOUT_FILENO, fileno));
718
719 o = e;
720
721 } else if (o == EXEC_OUTPUT_INHERIT) {
722 /* If input got downgraded, inherit the original value */
723 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
724 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
725
726 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
727 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
728 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
729
730 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
731 if (getppid() != 1)
732 return fileno;
733
734 /* We need to open /dev/null here anew, to get the right access mode. */
735 return open_null_as(O_WRONLY, fileno);
736 }
737
738 switch (o) {
739
740 case EXEC_OUTPUT_NULL:
741 return open_null_as(O_WRONLY, fileno);
742
743 case EXEC_OUTPUT_TTY:
744 if (is_terminal_input(i))
745 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
746
747 /* We don't reset the terminal if this is just about output */
748 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
749
750 case EXEC_OUTPUT_KMSG:
751 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
752 case EXEC_OUTPUT_JOURNAL:
753 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
754 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
755 if (r < 0) {
756 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m",
757 fileno == STDOUT_FILENO ? "stdout" : "stderr");
758 r = open_null_as(O_WRONLY, fileno);
759 } else {
760 struct stat st;
761
762 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
763 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
764 * services to detect whether they are connected to the journal or not.
765 *
766 * If both stdout and stderr are connected to a stream then let's make sure to store the data
767 * about STDERR as that's usually the best way to do logging. */
768
769 if (fstat(fileno, &st) >= 0 &&
770 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
771 *journal_stream_dev = st.st_dev;
772 *journal_stream_ino = st.st_ino;
773 }
774 }
775 return r;
776
777 case EXEC_OUTPUT_SOCKET:
778 assert(socket_fd >= 0);
779
780 return RET_NERRNO(dup2(socket_fd, fileno));
781
782 case EXEC_OUTPUT_NAMED_FD:
783 assert(named_iofds[fileno] >= 0);
784
785 (void) fd_nonblock(named_iofds[fileno], false);
786 return RET_NERRNO(dup2(named_iofds[fileno], fileno));
787
788 case EXEC_OUTPUT_FILE:
789 case EXEC_OUTPUT_FILE_APPEND:
790 case EXEC_OUTPUT_FILE_TRUNCATE: {
791 bool rw;
792 int fd, flags;
793
794 assert(context->stdio_file[fileno]);
795
796 rw = context->std_input == EXEC_INPUT_FILE &&
797 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
798
799 if (rw)
800 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
801
802 flags = O_WRONLY;
803 if (o == EXEC_OUTPUT_FILE_APPEND)
804 flags |= O_APPEND;
805 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
806 flags |= O_TRUNC;
807
808 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
809 if (fd < 0)
810 return fd;
811
812 return move_fd(fd, fileno, 0);
813 }
814
815 default:
816 assert_not_reached();
817 }
818 }
819
820 static int chown_terminal(int fd, uid_t uid) {
821 int r;
822
823 assert(fd >= 0);
824
825 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
826 if (isatty(fd) < 1) {
827 if (IN_SET(errno, EINVAL, ENOTTY))
828 return 0; /* not a tty */
829
830 return -errno;
831 }
832
833 /* This might fail. What matters are the results. */
834 r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID);
835 if (r < 0)
836 return r;
837
838 return 1;
839 }
840
841 static int setup_confirm_stdio(
842 const ExecContext *context,
843 const char *vc,
844 int *ret_saved_stdin,
845 int *ret_saved_stdout) {
846
847 _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF;
848 unsigned rows, cols;
849 int r;
850
851 assert(ret_saved_stdin);
852 assert(ret_saved_stdout);
853
854 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
855 if (saved_stdin < 0)
856 return -errno;
857
858 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
859 if (saved_stdout < 0)
860 return -errno;
861
862 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
863 if (fd < 0)
864 return fd;
865
866 r = chown_terminal(fd, getuid());
867 if (r < 0)
868 return r;
869
870 r = reset_terminal_fd(fd, true);
871 if (r < 0)
872 return r;
873
874 r = exec_context_tty_size(context, &rows, &cols);
875 if (r < 0)
876 return r;
877
878 r = terminal_set_size_fd(fd, vc, rows, cols);
879 if (r < 0)
880 return r;
881
882 r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */
883 TAKE_FD(fd);
884 if (r < 0)
885 return r;
886
887 *ret_saved_stdin = TAKE_FD(saved_stdin);
888 *ret_saved_stdout = TAKE_FD(saved_stdout);
889 return 0;
890 }
891
892 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
893 assert(err < 0);
894
895 if (err == -ETIMEDOUT)
896 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
897 else {
898 errno = -err;
899 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
900 }
901 }
902
903 static void write_confirm_error(int err, const char *vc, const Unit *u) {
904 _cleanup_close_ int fd = -EBADF;
905
906 assert(vc);
907
908 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
909 if (fd < 0)
910 return;
911
912 write_confirm_error_fd(err, fd, u);
913 }
914
915 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
916 int r = 0;
917
918 assert(saved_stdin);
919 assert(saved_stdout);
920
921 release_terminal();
922
923 if (*saved_stdin >= 0)
924 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
925 r = -errno;
926
927 if (*saved_stdout >= 0)
928 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
929 r = -errno;
930
931 *saved_stdin = safe_close(*saved_stdin);
932 *saved_stdout = safe_close(*saved_stdout);
933
934 return r;
935 }
936
937 enum {
938 CONFIRM_PRETEND_FAILURE = -1,
939 CONFIRM_PRETEND_SUCCESS = 0,
940 CONFIRM_EXECUTE = 1,
941 };
942
943 static int ask_for_confirmation(const ExecContext *context, const char *vc, Unit *u, const char *cmdline) {
944 int saved_stdout = -1, saved_stdin = -1, r;
945 _cleanup_free_ char *e = NULL;
946 char c;
947
948 /* For any internal errors, assume a positive response. */
949 r = setup_confirm_stdio(context, vc, &saved_stdin, &saved_stdout);
950 if (r < 0) {
951 write_confirm_error(r, vc, u);
952 return CONFIRM_EXECUTE;
953 }
954
955 /* confirm_spawn might have been disabled while we were sleeping. */
956 if (manager_is_confirm_spawn_disabled(u->manager)) {
957 r = 1;
958 goto restore_stdio;
959 }
960
961 e = ellipsize(cmdline, 60, 100);
962 if (!e) {
963 log_oom();
964 r = CONFIRM_EXECUTE;
965 goto restore_stdio;
966 }
967
968 for (;;) {
969 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
970 if (r < 0) {
971 write_confirm_error_fd(r, STDOUT_FILENO, u);
972 r = CONFIRM_EXECUTE;
973 goto restore_stdio;
974 }
975
976 switch (c) {
977 case 'c':
978 printf("Resuming normal execution.\n");
979 manager_disable_confirm_spawn();
980 r = 1;
981 break;
982 case 'D':
983 unit_dump(u, stdout, " ");
984 continue; /* ask again */
985 case 'f':
986 printf("Failing execution.\n");
987 r = CONFIRM_PRETEND_FAILURE;
988 break;
989 case 'h':
990 printf(" c - continue, proceed without asking anymore\n"
991 " D - dump, show the state of the unit\n"
992 " f - fail, don't execute the command and pretend it failed\n"
993 " h - help\n"
994 " i - info, show a short summary of the unit\n"
995 " j - jobs, show jobs that are in progress\n"
996 " s - skip, don't execute the command and pretend it succeeded\n"
997 " y - yes, execute the command\n");
998 continue; /* ask again */
999 case 'i':
1000 printf(" Description: %s\n"
1001 " Unit: %s\n"
1002 " Command: %s\n",
1003 u->id, u->description, cmdline);
1004 continue; /* ask again */
1005 case 'j':
1006 manager_dump_jobs(u->manager, stdout, /* patterns= */ NULL, " ");
1007 continue; /* ask again */
1008 case 'n':
1009 /* 'n' was removed in favor of 'f'. */
1010 printf("Didn't understand 'n', did you mean 'f'?\n");
1011 continue; /* ask again */
1012 case 's':
1013 printf("Skipping execution.\n");
1014 r = CONFIRM_PRETEND_SUCCESS;
1015 break;
1016 case 'y':
1017 r = CONFIRM_EXECUTE;
1018 break;
1019 default:
1020 assert_not_reached();
1021 }
1022 break;
1023 }
1024
1025 restore_stdio:
1026 restore_confirm_stdio(&saved_stdin, &saved_stdout);
1027 return r;
1028 }
1029
1030 static int get_fixed_user(const ExecContext *c, const char **user,
1031 uid_t *uid, gid_t *gid,
1032 const char **home, const char **shell) {
1033 int r;
1034 const char *name;
1035
1036 assert(c);
1037
1038 if (!c->user)
1039 return 0;
1040
1041 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
1042 * (i.e. are "/" or "/bin/nologin"). */
1043
1044 name = c->user;
1045 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
1046 if (r < 0)
1047 return r;
1048
1049 *user = name;
1050 return 0;
1051 }
1052
1053 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
1054 int r;
1055 const char *name;
1056
1057 assert(c);
1058
1059 if (!c->group)
1060 return 0;
1061
1062 name = c->group;
1063 r = get_group_creds(&name, gid, 0);
1064 if (r < 0)
1065 return r;
1066
1067 *group = name;
1068 return 0;
1069 }
1070
1071 static int get_supplementary_groups(const ExecContext *c, const char *user,
1072 const char *group, gid_t gid,
1073 gid_t **supplementary_gids, int *ngids) {
1074 int r, k = 0;
1075 int ngroups_max;
1076 bool keep_groups = false;
1077 gid_t *groups = NULL;
1078 _cleanup_free_ gid_t *l_gids = NULL;
1079
1080 assert(c);
1081
1082 /*
1083 * If user is given, then lookup GID and supplementary groups list.
1084 * We avoid NSS lookups for gid=0. Also we have to initialize groups
1085 * here and as early as possible so we keep the list of supplementary
1086 * groups of the caller.
1087 */
1088 if (user && gid_is_valid(gid) && gid != 0) {
1089 /* First step, initialize groups from /etc/groups */
1090 if (initgroups(user, gid) < 0)
1091 return -errno;
1092
1093 keep_groups = true;
1094 }
1095
1096 if (strv_isempty(c->supplementary_groups))
1097 return 0;
1098
1099 /*
1100 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1101 * be positive, otherwise fail.
1102 */
1103 errno = 0;
1104 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1105 if (ngroups_max <= 0)
1106 return errno_or_else(EOPNOTSUPP);
1107
1108 l_gids = new(gid_t, ngroups_max);
1109 if (!l_gids)
1110 return -ENOMEM;
1111
1112 if (keep_groups) {
1113 /*
1114 * Lookup the list of groups that the user belongs to, we
1115 * avoid NSS lookups here too for gid=0.
1116 */
1117 k = ngroups_max;
1118 if (getgrouplist(user, gid, l_gids, &k) < 0)
1119 return -EINVAL;
1120 } else
1121 k = 0;
1122
1123 STRV_FOREACH(i, c->supplementary_groups) {
1124 const char *g;
1125
1126 if (k >= ngroups_max)
1127 return -E2BIG;
1128
1129 g = *i;
1130 r = get_group_creds(&g, l_gids+k, 0);
1131 if (r < 0)
1132 return r;
1133
1134 k++;
1135 }
1136
1137 /*
1138 * Sets ngids to zero to drop all supplementary groups, happens
1139 * when we are under root and SupplementaryGroups= is empty.
1140 */
1141 if (k == 0) {
1142 *ngids = 0;
1143 return 0;
1144 }
1145
1146 /* Otherwise get the final list of supplementary groups */
1147 groups = memdup(l_gids, sizeof(gid_t) * k);
1148 if (!groups)
1149 return -ENOMEM;
1150
1151 *supplementary_gids = groups;
1152 *ngids = k;
1153
1154 groups = NULL;
1155
1156 return 0;
1157 }
1158
1159 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1160 int r;
1161
1162 /* Handle SupplementaryGroups= if it is not empty */
1163 if (ngids > 0) {
1164 r = maybe_setgroups(ngids, supplementary_gids);
1165 if (r < 0)
1166 return r;
1167 }
1168
1169 if (gid_is_valid(gid)) {
1170 /* Then set our gids */
1171 if (setresgid(gid, gid, gid) < 0)
1172 return -errno;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static int set_securebits(unsigned bits, unsigned mask) {
1179 unsigned applied;
1180 int current;
1181
1182 current = prctl(PR_GET_SECUREBITS);
1183 if (current < 0)
1184 return -errno;
1185
1186 /* Clear all securebits defined in mask and set bits */
1187 applied = ((unsigned) current & ~mask) | bits;
1188 if ((unsigned) current == applied)
1189 return 0;
1190
1191 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1192 return -errno;
1193
1194 return 1;
1195 }
1196
1197 static int enforce_user(
1198 const ExecContext *context,
1199 uid_t uid,
1200 uint64_t capability_ambient_set) {
1201 assert(context);
1202 int r;
1203
1204 if (!uid_is_valid(uid))
1205 return 0;
1206
1207 /* Sets (but doesn't look up) the UIS and makes sure we keep the capabilities while doing so. For
1208 * setting secure bits the capability CAP_SETPCAP is required, so we also need keep-caps in this
1209 * case. */
1210
1211 if ((capability_ambient_set != 0 || context->secure_bits != 0) && uid != 0) {
1212
1213 /* First step: If we need to keep capabilities but drop privileges we need to make sure we
1214 * keep our caps, while we drop privileges. Add KEEP_CAPS to the securebits */
1215 r = set_securebits(1U << SECURE_KEEP_CAPS, 0);
1216 if (r < 0)
1217 return r;
1218 }
1219
1220 /* Second step: actually set the uids */
1221 if (setresuid(uid, uid, uid) < 0)
1222 return -errno;
1223
1224 /* At this point we should have all necessary capabilities but are otherwise a normal user. However,
1225 * the caps might got corrupted due to the setresuid() so we need clean them up later. This is done
1226 * outside of this call. */
1227 return 0;
1228 }
1229
1230 #if HAVE_PAM
1231
1232 static int null_conv(
1233 int num_msg,
1234 const struct pam_message **msg,
1235 struct pam_response **resp,
1236 void *appdata_ptr) {
1237
1238 /* We don't support conversations */
1239
1240 return PAM_CONV_ERR;
1241 }
1242
1243 #endif
1244
1245 static int setup_pam(
1246 const char *name,
1247 const char *user,
1248 uid_t uid,
1249 gid_t gid,
1250 const char *tty,
1251 char ***env, /* updated on success */
1252 const int fds[], size_t n_fds) {
1253
1254 #if HAVE_PAM
1255
1256 static const struct pam_conv conv = {
1257 .conv = null_conv,
1258 .appdata_ptr = NULL
1259 };
1260
1261 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1262 _cleanup_strv_free_ char **e = NULL;
1263 pam_handle_t *handle = NULL;
1264 sigset_t old_ss;
1265 int pam_code = PAM_SUCCESS, r;
1266 bool close_session = false;
1267 pid_t pam_pid = 0, parent_pid;
1268 int flags = 0;
1269
1270 assert(name);
1271 assert(user);
1272 assert(env);
1273
1274 /* We set up PAM in the parent process, then fork. The child
1275 * will then stay around until killed via PR_GET_PDEATHSIG or
1276 * systemd via the cgroup logic. It will then remove the PAM
1277 * session again. The parent process will exec() the actual
1278 * daemon. We do things this way to ensure that the main PID
1279 * of the daemon is the one we initially fork()ed. */
1280
1281 r = barrier_create(&barrier);
1282 if (r < 0)
1283 goto fail;
1284
1285 if (log_get_max_level() < LOG_DEBUG)
1286 flags |= PAM_SILENT;
1287
1288 pam_code = pam_start(name, user, &conv, &handle);
1289 if (pam_code != PAM_SUCCESS) {
1290 handle = NULL;
1291 goto fail;
1292 }
1293
1294 if (!tty) {
1295 _cleanup_free_ char *q = NULL;
1296
1297 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1298 * out if that's the case, and read the TTY off it. */
1299
1300 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1301 tty = strjoina("/dev/", q);
1302 }
1303
1304 if (tty) {
1305 pam_code = pam_set_item(handle, PAM_TTY, tty);
1306 if (pam_code != PAM_SUCCESS)
1307 goto fail;
1308 }
1309
1310 STRV_FOREACH(nv, *env) {
1311 pam_code = pam_putenv(handle, *nv);
1312 if (pam_code != PAM_SUCCESS)
1313 goto fail;
1314 }
1315
1316 pam_code = pam_acct_mgmt(handle, flags);
1317 if (pam_code != PAM_SUCCESS)
1318 goto fail;
1319
1320 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1321 if (pam_code != PAM_SUCCESS)
1322 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1323
1324 pam_code = pam_open_session(handle, flags);
1325 if (pam_code != PAM_SUCCESS)
1326 goto fail;
1327
1328 close_session = true;
1329
1330 e = pam_getenvlist(handle);
1331 if (!e) {
1332 pam_code = PAM_BUF_ERR;
1333 goto fail;
1334 }
1335
1336 /* Block SIGTERM, so that we know that it won't get lost in the child */
1337
1338 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1339
1340 parent_pid = getpid_cached();
1341
1342 r = safe_fork("(sd-pam)", 0, &pam_pid);
1343 if (r < 0)
1344 goto fail;
1345 if (r == 0) {
1346 int sig, ret = EXIT_PAM;
1347
1348 /* The child's job is to reset the PAM session on termination */
1349 barrier_set_role(&barrier, BARRIER_CHILD);
1350
1351 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1352 * those fds are open here that have been opened by PAM. */
1353 (void) close_many(fds, n_fds);
1354
1355 /* Drop privileges - we don't need any to pam_close_session and this will make
1356 * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam
1357 * threads to fail to exit normally */
1358
1359 r = maybe_setgroups(0, NULL);
1360 if (r < 0)
1361 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1362 if (setresgid(gid, gid, gid) < 0)
1363 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1364 if (setresuid(uid, uid, uid) < 0)
1365 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1366
1367 (void) ignore_signals(SIGPIPE);
1368
1369 /* Wait until our parent died. This will only work if the above setresuid() succeeds,
1370 * otherwise the kernel will not allow unprivileged parents kill their privileged children
1371 * this way. We rely on the control groups kill logic to do the rest for us. */
1372 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1373 goto child_finish;
1374
1375 /* Tell the parent that our setup is done. This is especially important regarding dropping
1376 * privileges. Otherwise, unit setup might race against our setresuid(2) call.
1377 *
1378 * If the parent aborted, we'll detect this below, hence ignore return failure here. */
1379 (void) barrier_place(&barrier);
1380
1381 /* Check if our parent process might already have died? */
1382 if (getppid() == parent_pid) {
1383 sigset_t ss;
1384
1385 assert_se(sigemptyset(&ss) >= 0);
1386 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1387
1388 for (;;) {
1389 if (sigwait(&ss, &sig) < 0) {
1390 if (errno == EINTR)
1391 continue;
1392
1393 goto child_finish;
1394 }
1395
1396 assert(sig == SIGTERM);
1397 break;
1398 }
1399 }
1400
1401 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1402 if (pam_code != PAM_SUCCESS)
1403 goto child_finish;
1404
1405 /* If our parent died we'll end the session */
1406 if (getppid() != parent_pid) {
1407 pam_code = pam_close_session(handle, flags);
1408 if (pam_code != PAM_SUCCESS)
1409 goto child_finish;
1410 }
1411
1412 ret = 0;
1413
1414 child_finish:
1415 /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module
1416 * know about this. See pam_end(3) */
1417 (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT);
1418 _exit(ret);
1419 }
1420
1421 barrier_set_role(&barrier, BARRIER_PARENT);
1422
1423 /* If the child was forked off successfully it will do all the cleanups, so forget about the handle
1424 * here. */
1425 handle = NULL;
1426
1427 /* Unblock SIGTERM again in the parent */
1428 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1429
1430 /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want
1431 * this fd around. */
1432 closelog();
1433
1434 /* Synchronously wait for the child to initialize. We don't care for errors as we cannot
1435 * recover. However, warn loudly if it happens. */
1436 if (!barrier_place_and_sync(&barrier))
1437 log_error("PAM initialization failed");
1438
1439 return strv_free_and_replace(*env, e);
1440
1441 fail:
1442 if (pam_code != PAM_SUCCESS) {
1443 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1444 r = -EPERM; /* PAM errors do not map to errno */
1445 } else
1446 log_error_errno(r, "PAM failed: %m");
1447
1448 if (handle) {
1449 if (close_session)
1450 pam_code = pam_close_session(handle, flags);
1451
1452 (void) pam_end(handle, pam_code | flags);
1453 }
1454
1455 closelog();
1456 return r;
1457 #else
1458 return 0;
1459 #endif
1460 }
1461
1462 static void rename_process_from_path(const char *path) {
1463 _cleanup_free_ char *buf = NULL;
1464 const char *p;
1465
1466 assert(path);
1467
1468 /* This resulting string must fit in 10 chars (i.e. the length of "/sbin/init") to look pretty in
1469 * /bin/ps */
1470
1471 if (path_extract_filename(path, &buf) < 0) {
1472 rename_process("(...)");
1473 return;
1474 }
1475
1476 size_t l = strlen(buf);
1477 if (l > 8) {
1478 /* The end of the process name is usually more interesting, since the first bit might just be
1479 * "systemd-" */
1480 p = buf + l - 8;
1481 l = 8;
1482 } else
1483 p = buf;
1484
1485 char process_name[11];
1486 process_name[0] = '(';
1487 memcpy(process_name+1, p, l);
1488 process_name[1+l] = ')';
1489 process_name[1+l+1] = 0;
1490
1491 rename_process(process_name);
1492 }
1493
1494 static bool context_has_address_families(const ExecContext *c) {
1495 assert(c);
1496
1497 return c->address_families_allow_list ||
1498 !set_isempty(c->address_families);
1499 }
1500
1501 static bool context_has_syscall_filters(const ExecContext *c) {
1502 assert(c);
1503
1504 return c->syscall_allow_list ||
1505 !hashmap_isempty(c->syscall_filter);
1506 }
1507
1508 static bool context_has_syscall_logs(const ExecContext *c) {
1509 assert(c);
1510
1511 return c->syscall_log_allow_list ||
1512 !hashmap_isempty(c->syscall_log);
1513 }
1514
1515 static bool context_has_no_new_privileges(const ExecContext *c) {
1516 assert(c);
1517
1518 if (c->no_new_privileges)
1519 return true;
1520
1521 if (have_effective_cap(CAP_SYS_ADMIN) > 0) /* if we are privileged, we don't need NNP */
1522 return false;
1523
1524 /* We need NNP if we have any form of seccomp and are unprivileged */
1525 return c->lock_personality ||
1526 c->memory_deny_write_execute ||
1527 c->private_devices ||
1528 c->protect_clock ||
1529 c->protect_hostname ||
1530 c->protect_kernel_tunables ||
1531 c->protect_kernel_modules ||
1532 c->protect_kernel_logs ||
1533 context_has_address_families(c) ||
1534 exec_context_restrict_namespaces_set(c) ||
1535 c->restrict_realtime ||
1536 c->restrict_suid_sgid ||
1537 !set_isempty(c->syscall_archs) ||
1538 context_has_syscall_filters(c) ||
1539 context_has_syscall_logs(c);
1540 }
1541
1542 static bool exec_context_has_credentials(const ExecContext *context) {
1543
1544 assert(context);
1545
1546 return !hashmap_isempty(context->set_credentials) ||
1547 !hashmap_isempty(context->load_credentials);
1548 }
1549
1550 #if HAVE_SECCOMP
1551
1552 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1553
1554 if (is_seccomp_available())
1555 return false;
1556
1557 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1558 return true;
1559 }
1560
1561 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1562 uint32_t negative_action, default_action, action;
1563 int r;
1564
1565 assert(u);
1566 assert(c);
1567
1568 if (!context_has_syscall_filters(c))
1569 return 0;
1570
1571 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1572 return 0;
1573
1574 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1575
1576 if (c->syscall_allow_list) {
1577 default_action = negative_action;
1578 action = SCMP_ACT_ALLOW;
1579 } else {
1580 default_action = SCMP_ACT_ALLOW;
1581 action = negative_action;
1582 }
1583
1584 if (needs_ambient_hack) {
1585 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1586 if (r < 0)
1587 return r;
1588 }
1589
1590 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1591 }
1592
1593 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1594 #ifdef SCMP_ACT_LOG
1595 uint32_t default_action, action;
1596 #endif
1597
1598 assert(u);
1599 assert(c);
1600
1601 if (!context_has_syscall_logs(c))
1602 return 0;
1603
1604 #ifdef SCMP_ACT_LOG
1605 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1606 return 0;
1607
1608 if (c->syscall_log_allow_list) {
1609 /* Log nothing but the ones listed */
1610 default_action = SCMP_ACT_ALLOW;
1611 action = SCMP_ACT_LOG;
1612 } else {
1613 /* Log everything but the ones listed */
1614 default_action = SCMP_ACT_LOG;
1615 action = SCMP_ACT_ALLOW;
1616 }
1617
1618 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1619 #else
1620 /* old libseccomp */
1621 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1622 return 0;
1623 #endif
1624 }
1625
1626 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1627 assert(u);
1628 assert(c);
1629
1630 if (set_isempty(c->syscall_archs))
1631 return 0;
1632
1633 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1634 return 0;
1635
1636 return seccomp_restrict_archs(c->syscall_archs);
1637 }
1638
1639 static int apply_address_families(const Unit* u, const ExecContext *c) {
1640 assert(u);
1641 assert(c);
1642
1643 if (!context_has_address_families(c))
1644 return 0;
1645
1646 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1647 return 0;
1648
1649 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1650 }
1651
1652 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1653 int r;
1654
1655 assert(u);
1656 assert(c);
1657
1658 if (!c->memory_deny_write_execute)
1659 return 0;
1660
1661 /* use prctl() if kernel supports it (6.3) */
1662 r = prctl(PR_SET_MDWE, PR_MDWE_REFUSE_EXEC_GAIN, 0, 0, 0);
1663 if (r == 0) {
1664 log_unit_debug(u, "Enabled MemoryDenyWriteExecute= with PR_SET_MDWE");
1665 return 0;
1666 }
1667 if (r < 0 && errno != EINVAL)
1668 return log_unit_debug_errno(u, errno, "Failed to enable MemoryDenyWriteExecute= with PR_SET_MDWE: %m");
1669 /* else use seccomp */
1670 log_unit_debug(u, "Kernel doesn't support PR_SET_MDWE: falling back to seccomp");
1671
1672 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1673 return 0;
1674
1675 return seccomp_memory_deny_write_execute();
1676 }
1677
1678 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1679 assert(u);
1680 assert(c);
1681
1682 if (!c->restrict_realtime)
1683 return 0;
1684
1685 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1686 return 0;
1687
1688 return seccomp_restrict_realtime();
1689 }
1690
1691 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1692 assert(u);
1693 assert(c);
1694
1695 if (!c->restrict_suid_sgid)
1696 return 0;
1697
1698 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1699 return 0;
1700
1701 return seccomp_restrict_suid_sgid();
1702 }
1703
1704 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1705 assert(u);
1706 assert(c);
1707
1708 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1709 * let's protect even those systems where this is left on in the kernel. */
1710
1711 if (!c->protect_kernel_tunables)
1712 return 0;
1713
1714 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1715 return 0;
1716
1717 return seccomp_protect_sysctl();
1718 }
1719
1720 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1721 assert(u);
1722 assert(c);
1723
1724 /* Turn off module syscalls on ProtectKernelModules=yes */
1725
1726 if (!c->protect_kernel_modules)
1727 return 0;
1728
1729 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1730 return 0;
1731
1732 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1733 }
1734
1735 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1736 assert(u);
1737 assert(c);
1738
1739 if (!c->protect_kernel_logs)
1740 return 0;
1741
1742 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1743 return 0;
1744
1745 return seccomp_protect_syslog();
1746 }
1747
1748 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1749 assert(u);
1750 assert(c);
1751
1752 if (!c->protect_clock)
1753 return 0;
1754
1755 if (skip_seccomp_unavailable(u, "ProtectClock="))
1756 return 0;
1757
1758 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1759 }
1760
1761 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1762 assert(u);
1763 assert(c);
1764
1765 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1766
1767 if (!c->private_devices)
1768 return 0;
1769
1770 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1771 return 0;
1772
1773 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1774 }
1775
1776 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1777 assert(u);
1778 assert(c);
1779
1780 if (!exec_context_restrict_namespaces_set(c))
1781 return 0;
1782
1783 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1784 return 0;
1785
1786 return seccomp_restrict_namespaces(c->restrict_namespaces);
1787 }
1788
1789 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1790 unsigned long personality;
1791 int r;
1792
1793 assert(u);
1794 assert(c);
1795
1796 if (!c->lock_personality)
1797 return 0;
1798
1799 if (skip_seccomp_unavailable(u, "LockPersonality="))
1800 return 0;
1801
1802 personality = c->personality;
1803
1804 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1805 if (personality == PERSONALITY_INVALID) {
1806
1807 r = opinionated_personality(&personality);
1808 if (r < 0)
1809 return r;
1810 }
1811
1812 return seccomp_lock_personality(personality);
1813 }
1814
1815 #endif
1816
1817 #if HAVE_LIBBPF
1818 static int apply_restrict_filesystems(Unit *u, const ExecContext *c) {
1819 assert(u);
1820 assert(c);
1821
1822 if (!exec_context_restrict_filesystems_set(c))
1823 return 0;
1824
1825 if (!u->manager->restrict_fs) {
1826 /* LSM BPF is unsupported or lsm_bpf_setup failed */
1827 log_unit_debug(u, "LSM BPF not supported, skipping RestrictFileSystems=");
1828 return 0;
1829 }
1830
1831 return lsm_bpf_unit_restrict_filesystems(u, c->restrict_filesystems, c->restrict_filesystems_allow_list);
1832 }
1833 #endif
1834
1835 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1836 assert(u);
1837 assert(c);
1838
1839 if (!c->protect_hostname)
1840 return 0;
1841
1842 if (ns_type_supported(NAMESPACE_UTS)) {
1843 if (unshare(CLONE_NEWUTS) < 0) {
1844 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1845 *ret_exit_status = EXIT_NAMESPACE;
1846 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1847 }
1848
1849 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1850 }
1851 } else
1852 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1853
1854 #if HAVE_SECCOMP
1855 int r;
1856
1857 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1858 return 0;
1859
1860 r = seccomp_protect_hostname();
1861 if (r < 0) {
1862 *ret_exit_status = EXIT_SECCOMP;
1863 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1864 }
1865 #endif
1866
1867 return 0;
1868 }
1869
1870 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1871 assert(idle_pipe);
1872
1873 idle_pipe[1] = safe_close(idle_pipe[1]);
1874 idle_pipe[2] = safe_close(idle_pipe[2]);
1875
1876 if (idle_pipe[0] >= 0) {
1877 int r;
1878
1879 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1880
1881 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1882 ssize_t n;
1883
1884 /* Signal systemd that we are bored and want to continue. */
1885 n = write(idle_pipe[3], "x", 1);
1886 if (n > 0)
1887 /* Wait for systemd to react to the signal above. */
1888 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1889 }
1890
1891 idle_pipe[0] = safe_close(idle_pipe[0]);
1892
1893 }
1894
1895 idle_pipe[3] = safe_close(idle_pipe[3]);
1896 }
1897
1898 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1899
1900 static int build_environment(
1901 const Unit *u,
1902 const ExecContext *c,
1903 const ExecParameters *p,
1904 const CGroupContext *cgroup_context,
1905 size_t n_fds,
1906 char **fdnames,
1907 const char *home,
1908 const char *username,
1909 const char *shell,
1910 dev_t journal_stream_dev,
1911 ino_t journal_stream_ino,
1912 const char *memory_pressure_path,
1913 char ***ret) {
1914
1915 _cleanup_strv_free_ char **our_env = NULL;
1916 size_t n_env = 0;
1917 char *x;
1918 int r;
1919
1920 assert(u);
1921 assert(c);
1922 assert(p);
1923 assert(ret);
1924
1925 #define N_ENV_VARS 19
1926 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1927 if (!our_env)
1928 return -ENOMEM;
1929
1930 if (n_fds > 0) {
1931 _cleanup_free_ char *joined = NULL;
1932
1933 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1934 return -ENOMEM;
1935 our_env[n_env++] = x;
1936
1937 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1938 return -ENOMEM;
1939 our_env[n_env++] = x;
1940
1941 joined = strv_join(fdnames, ":");
1942 if (!joined)
1943 return -ENOMEM;
1944
1945 x = strjoin("LISTEN_FDNAMES=", joined);
1946 if (!x)
1947 return -ENOMEM;
1948 our_env[n_env++] = x;
1949 }
1950
1951 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1952 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1953 return -ENOMEM;
1954 our_env[n_env++] = x;
1955
1956 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1957 return -ENOMEM;
1958 our_env[n_env++] = x;
1959 }
1960
1961 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking
1962 * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and
1963 * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */
1964 if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) {
1965 x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1");
1966 if (!x)
1967 return -ENOMEM;
1968 our_env[n_env++] = x;
1969 }
1970
1971 if (home) {
1972 x = strjoin("HOME=", home);
1973 if (!x)
1974 return -ENOMEM;
1975
1976 path_simplify(x + 5);
1977 our_env[n_env++] = x;
1978 }
1979
1980 if (username) {
1981 x = strjoin("LOGNAME=", username);
1982 if (!x)
1983 return -ENOMEM;
1984 our_env[n_env++] = x;
1985
1986 x = strjoin("USER=", username);
1987 if (!x)
1988 return -ENOMEM;
1989 our_env[n_env++] = x;
1990 }
1991
1992 if (shell) {
1993 x = strjoin("SHELL=", shell);
1994 if (!x)
1995 return -ENOMEM;
1996
1997 path_simplify(x + 6);
1998 our_env[n_env++] = x;
1999 }
2000
2001 if (!sd_id128_is_null(u->invocation_id)) {
2002 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
2003 return -ENOMEM;
2004
2005 our_env[n_env++] = x;
2006 }
2007
2008 if (exec_context_needs_term(c)) {
2009 _cleanup_free_ char *cmdline = NULL;
2010 const char *tty_path, *term = NULL;
2011
2012 tty_path = exec_context_tty_path(c);
2013
2014 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
2015 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
2016 * container manager passes to PID 1 ends up all the way in the console login shown. */
2017
2018 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
2019 term = getenv("TERM");
2020 else if (tty_path && in_charset(skip_dev_prefix(tty_path), ALPHANUMERICAL)) {
2021 _cleanup_free_ char *key = NULL;
2022
2023 key = strjoin("systemd.tty.term.", skip_dev_prefix(tty_path));
2024 if (!key)
2025 return -ENOMEM;
2026
2027 r = proc_cmdline_get_key(key, 0, &cmdline);
2028 if (r < 0)
2029 log_debug_errno(r, "Failed to read %s from kernel cmdline, ignoring: %m", key);
2030 else if (r > 0)
2031 term = cmdline;
2032 }
2033
2034 if (!term)
2035 term = default_term_for_tty(tty_path);
2036
2037 x = strjoin("TERM=", term);
2038 if (!x)
2039 return -ENOMEM;
2040 our_env[n_env++] = x;
2041 }
2042
2043 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
2044 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
2045 return -ENOMEM;
2046
2047 our_env[n_env++] = x;
2048 }
2049
2050 if (c->log_namespace) {
2051 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
2052 if (!x)
2053 return -ENOMEM;
2054
2055 our_env[n_env++] = x;
2056 }
2057
2058 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2059 _cleanup_free_ char *joined = NULL;
2060 const char *n;
2061
2062 if (!p->prefix[t])
2063 continue;
2064
2065 if (c->directories[t].n_items == 0)
2066 continue;
2067
2068 n = exec_directory_env_name_to_string(t);
2069 if (!n)
2070 continue;
2071
2072 for (size_t i = 0; i < c->directories[t].n_items; i++) {
2073 _cleanup_free_ char *prefixed = NULL;
2074
2075 prefixed = path_join(p->prefix[t], c->directories[t].items[i].path);
2076 if (!prefixed)
2077 return -ENOMEM;
2078
2079 if (!strextend_with_separator(&joined, ":", prefixed))
2080 return -ENOMEM;
2081 }
2082
2083 x = strjoin(n, "=", joined);
2084 if (!x)
2085 return -ENOMEM;
2086
2087 our_env[n_env++] = x;
2088 }
2089
2090 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
2091 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
2092 if (!x)
2093 return -ENOMEM;
2094
2095 our_env[n_env++] = x;
2096 }
2097
2098 if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0)
2099 return -ENOMEM;
2100
2101 our_env[n_env++] = x;
2102
2103 if (memory_pressure_path) {
2104 x = strjoin("MEMORY_PRESSURE_WATCH=", memory_pressure_path);
2105 if (!x)
2106 return -ENOMEM;
2107
2108 our_env[n_env++] = x;
2109
2110 if (cgroup_context && !path_equal(memory_pressure_path, "/dev/null")) {
2111 _cleanup_free_ char *b = NULL, *e = NULL;
2112
2113 if (asprintf(&b, "%s " USEC_FMT " " USEC_FMT,
2114 MEMORY_PRESSURE_DEFAULT_TYPE,
2115 cgroup_context->memory_pressure_threshold_usec == USEC_INFINITY ? MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC :
2116 CLAMP(cgroup_context->memory_pressure_threshold_usec, 1U, MEMORY_PRESSURE_DEFAULT_WINDOW_USEC),
2117 MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0)
2118 return -ENOMEM;
2119
2120 if (base64mem(b, strlen(b) + 1, &e) < 0)
2121 return -ENOMEM;
2122
2123 x = strjoin("MEMORY_PRESSURE_WRITE=", e);
2124 if (!x)
2125 return -ENOMEM;
2126
2127 our_env[n_env++] = x;
2128 }
2129 }
2130
2131 assert(n_env < N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
2132 #undef N_ENV_VARS
2133
2134 *ret = TAKE_PTR(our_env);
2135
2136 return 0;
2137 }
2138
2139 static int build_pass_environment(const ExecContext *c, char ***ret) {
2140 _cleanup_strv_free_ char **pass_env = NULL;
2141 size_t n_env = 0;
2142
2143 STRV_FOREACH(i, c->pass_environment) {
2144 _cleanup_free_ char *x = NULL;
2145 char *v;
2146
2147 v = getenv(*i);
2148 if (!v)
2149 continue;
2150 x = strjoin(*i, "=", v);
2151 if (!x)
2152 return -ENOMEM;
2153
2154 if (!GREEDY_REALLOC(pass_env, n_env + 2))
2155 return -ENOMEM;
2156
2157 pass_env[n_env++] = TAKE_PTR(x);
2158 pass_env[n_env] = NULL;
2159 }
2160
2161 *ret = TAKE_PTR(pass_env);
2162
2163 return 0;
2164 }
2165
2166 bool exec_needs_network_namespace(const ExecContext *context) {
2167 assert(context);
2168
2169 return context->private_network || context->network_namespace_path;
2170 }
2171
2172 static bool exec_needs_ipc_namespace(const ExecContext *context) {
2173 assert(context);
2174
2175 return context->private_ipc || context->ipc_namespace_path;
2176 }
2177
2178 bool exec_needs_mount_namespace(
2179 const ExecContext *context,
2180 const ExecParameters *params,
2181 const ExecRuntime *runtime) {
2182
2183 assert(context);
2184
2185 if (context->root_image)
2186 return true;
2187
2188 if (!strv_isempty(context->read_write_paths) ||
2189 !strv_isempty(context->read_only_paths) ||
2190 !strv_isempty(context->inaccessible_paths) ||
2191 !strv_isempty(context->exec_paths) ||
2192 !strv_isempty(context->no_exec_paths))
2193 return true;
2194
2195 if (context->n_bind_mounts > 0)
2196 return true;
2197
2198 if (context->n_temporary_filesystems > 0)
2199 return true;
2200
2201 if (context->n_mount_images > 0)
2202 return true;
2203
2204 if (context->n_extension_images > 0)
2205 return true;
2206
2207 if (!strv_isempty(context->extension_directories))
2208 return true;
2209
2210 if (!IN_SET(context->mount_propagation_flag, 0, MS_SHARED))
2211 return true;
2212
2213 if (context->private_tmp && runtime && runtime->shared && (runtime->shared->tmp_dir || runtime->shared->var_tmp_dir))
2214 return true;
2215
2216 if (context->private_devices ||
2217 context->private_mounts > 0 ||
2218 (context->private_mounts < 0 && exec_needs_network_namespace(context)) ||
2219 context->protect_system != PROTECT_SYSTEM_NO ||
2220 context->protect_home != PROTECT_HOME_NO ||
2221 context->protect_kernel_tunables ||
2222 context->protect_kernel_modules ||
2223 context->protect_kernel_logs ||
2224 context->protect_control_groups ||
2225 context->protect_proc != PROTECT_PROC_DEFAULT ||
2226 context->proc_subset != PROC_SUBSET_ALL ||
2227 exec_needs_ipc_namespace(context))
2228 return true;
2229
2230 if (context->root_directory) {
2231 if (exec_context_get_effective_mount_apivfs(context))
2232 return true;
2233
2234 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2235 if (params && !params->prefix[t])
2236 continue;
2237
2238 if (context->directories[t].n_items > 0)
2239 return true;
2240 }
2241 }
2242
2243 if (context->dynamic_user &&
2244 (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
2245 context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
2246 context->directories[EXEC_DIRECTORY_LOGS].n_items > 0))
2247 return true;
2248
2249 if (context->log_namespace)
2250 return true;
2251
2252 return false;
2253 }
2254
2255 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2256 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2257 _cleanup_close_pair_ int errno_pipe[2] = PIPE_EBADF;
2258 _cleanup_close_ int unshare_ready_fd = -EBADF;
2259 _cleanup_(sigkill_waitp) pid_t pid = 0;
2260 uint64_t c = 1;
2261 ssize_t n;
2262 int r;
2263
2264 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2265 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2266 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2267 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2268 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2269 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2270 * continues execution normally.
2271 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2272 * does not need CAP_SETUID to write the single line mapping to itself. */
2273
2274 /* Can only set up multiple mappings with CAP_SETUID. */
2275 if (have_effective_cap(CAP_SETUID) > 0 && uid != ouid && uid_is_valid(uid))
2276 r = asprintf(&uid_map,
2277 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2278 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2279 ouid, ouid, uid, uid);
2280 else
2281 r = asprintf(&uid_map,
2282 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2283 ouid, ouid);
2284
2285 if (r < 0)
2286 return -ENOMEM;
2287
2288 /* Can only set up multiple mappings with CAP_SETGID. */
2289 if (have_effective_cap(CAP_SETGID) > 0 && gid != ogid && gid_is_valid(gid))
2290 r = asprintf(&gid_map,
2291 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2292 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2293 ogid, ogid, gid, gid);
2294 else
2295 r = asprintf(&gid_map,
2296 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2297 ogid, ogid);
2298
2299 if (r < 0)
2300 return -ENOMEM;
2301
2302 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2303 * namespace. */
2304 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2305 if (unshare_ready_fd < 0)
2306 return -errno;
2307
2308 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2309 * failed. */
2310 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2311 return -errno;
2312
2313 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2314 if (r < 0)
2315 return r;
2316 if (r == 0) {
2317 _cleanup_close_ int fd = -EBADF;
2318 const char *a;
2319 pid_t ppid;
2320
2321 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2322 * here, after the parent opened its own user namespace. */
2323
2324 ppid = getppid();
2325 errno_pipe[0] = safe_close(errno_pipe[0]);
2326
2327 /* Wait until the parent unshared the user namespace */
2328 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2329 r = -errno;
2330 goto child_fail;
2331 }
2332
2333 /* Disable the setgroups() system call in the child user namespace, for good. */
2334 a = procfs_file_alloca(ppid, "setgroups");
2335 fd = open(a, O_WRONLY|O_CLOEXEC);
2336 if (fd < 0) {
2337 if (errno != ENOENT) {
2338 r = -errno;
2339 goto child_fail;
2340 }
2341
2342 /* If the file is missing the kernel is too old, let's continue anyway. */
2343 } else {
2344 if (write(fd, "deny\n", 5) < 0) {
2345 r = -errno;
2346 goto child_fail;
2347 }
2348
2349 fd = safe_close(fd);
2350 }
2351
2352 /* First write the GID map */
2353 a = procfs_file_alloca(ppid, "gid_map");
2354 fd = open(a, O_WRONLY|O_CLOEXEC);
2355 if (fd < 0) {
2356 r = -errno;
2357 goto child_fail;
2358 }
2359 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2360 r = -errno;
2361 goto child_fail;
2362 }
2363 fd = safe_close(fd);
2364
2365 /* The write the UID map */
2366 a = procfs_file_alloca(ppid, "uid_map");
2367 fd = open(a, O_WRONLY|O_CLOEXEC);
2368 if (fd < 0) {
2369 r = -errno;
2370 goto child_fail;
2371 }
2372 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2373 r = -errno;
2374 goto child_fail;
2375 }
2376
2377 _exit(EXIT_SUCCESS);
2378
2379 child_fail:
2380 (void) write(errno_pipe[1], &r, sizeof(r));
2381 _exit(EXIT_FAILURE);
2382 }
2383
2384 errno_pipe[1] = safe_close(errno_pipe[1]);
2385
2386 if (unshare(CLONE_NEWUSER) < 0)
2387 return -errno;
2388
2389 /* Let the child know that the namespace is ready now */
2390 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2391 return -errno;
2392
2393 /* Try to read an error code from the child */
2394 n = read(errno_pipe[0], &r, sizeof(r));
2395 if (n < 0)
2396 return -errno;
2397 if (n == sizeof(r)) { /* an error code was sent to us */
2398 if (r < 0)
2399 return r;
2400 return -EIO;
2401 }
2402 if (n != 0) /* on success we should have read 0 bytes */
2403 return -EIO;
2404
2405 r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0);
2406 if (r < 0)
2407 return r;
2408 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2409 return -EIO;
2410
2411 return 0;
2412 }
2413
2414 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2415 assert(context);
2416
2417 if (!context->dynamic_user)
2418 return false;
2419
2420 if (type == EXEC_DIRECTORY_CONFIGURATION)
2421 return false;
2422
2423 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2424 return false;
2425
2426 return true;
2427 }
2428
2429 static int create_many_symlinks(const char *root, const char *source, char **symlinks) {
2430 _cleanup_free_ char *src_abs = NULL;
2431 int r;
2432
2433 assert(source);
2434
2435 src_abs = path_join(root, source);
2436 if (!src_abs)
2437 return -ENOMEM;
2438
2439 STRV_FOREACH(dst, symlinks) {
2440 _cleanup_free_ char *dst_abs = NULL;
2441
2442 dst_abs = path_join(root, *dst);
2443 if (!dst_abs)
2444 return -ENOMEM;
2445
2446 r = mkdir_parents_label(dst_abs, 0755);
2447 if (r < 0)
2448 return r;
2449
2450 r = symlink_idempotent(src_abs, dst_abs, true);
2451 if (r < 0)
2452 return r;
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int setup_exec_directory(
2459 const ExecContext *context,
2460 const ExecParameters *params,
2461 uid_t uid,
2462 gid_t gid,
2463 ExecDirectoryType type,
2464 bool needs_mount_namespace,
2465 int *exit_status) {
2466
2467 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2468 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2469 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2470 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2471 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2472 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2473 };
2474 int r;
2475
2476 assert(context);
2477 assert(params);
2478 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2479 assert(exit_status);
2480
2481 if (!params->prefix[type])
2482 return 0;
2483
2484 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2485 if (!uid_is_valid(uid))
2486 uid = 0;
2487 if (!gid_is_valid(gid))
2488 gid = 0;
2489 }
2490
2491 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2492 _cleanup_free_ char *p = NULL, *pp = NULL;
2493
2494 p = path_join(params->prefix[type], context->directories[type].items[i].path);
2495 if (!p) {
2496 r = -ENOMEM;
2497 goto fail;
2498 }
2499
2500 r = mkdir_parents_label(p, 0755);
2501 if (r < 0)
2502 goto fail;
2503
2504 if (exec_directory_is_private(context, type)) {
2505 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2506 * case we want to avoid leaving a directory around fully accessible that is owned by
2507 * a dynamic user whose UID is later on reused. To lock this down we use the same
2508 * trick used by container managers to prohibit host users to get access to files of
2509 * the same UID in containers: we place everything inside a directory that has an
2510 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2511 * for unprivileged host code. We then use fs namespacing to make this directory
2512 * permeable for the service itself.
2513 *
2514 * Specifically: for a service which wants a special directory "foo/" we first create
2515 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2516 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2517 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2518 * unprivileged host users can't look into it. Inside of the namespace of the unit
2519 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2520 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2521 * for the service and making sure it only gets access to the dirs it needs but no
2522 * others. Tricky? Yes, absolutely, but it works!
2523 *
2524 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2525 * to be owned by the service itself.
2526 *
2527 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2528 * for sharing files or sockets with other services. */
2529
2530 pp = path_join(params->prefix[type], "private");
2531 if (!pp) {
2532 r = -ENOMEM;
2533 goto fail;
2534 }
2535
2536 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2537 r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE);
2538 if (r < 0)
2539 goto fail;
2540
2541 if (!path_extend(&pp, context->directories[type].items[i].path)) {
2542 r = -ENOMEM;
2543 goto fail;
2544 }
2545
2546 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2547 r = mkdir_parents_label(pp, 0755);
2548 if (r < 0)
2549 goto fail;
2550
2551 if (is_dir(p, false) > 0 &&
2552 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2553
2554 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2555 * it over. Most likely the service has been upgraded from one that didn't use
2556 * DynamicUser=1, to one that does. */
2557
2558 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2559 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2560 exec_directory_type_to_string(type), p, pp);
2561
2562 if (rename(p, pp) < 0) {
2563 r = -errno;
2564 goto fail;
2565 }
2566 } else {
2567 /* Otherwise, create the actual directory for the service */
2568
2569 r = mkdir_label(pp, context->directories[type].mode);
2570 if (r < 0 && r != -EEXIST)
2571 goto fail;
2572 }
2573
2574 if (!context->directories[type].items[i].only_create) {
2575 /* And link it up from the original place.
2576 * Notes
2577 * 1) If a mount namespace is going to be used, then this symlink remains on
2578 * the host, and a new one for the child namespace will be created later.
2579 * 2) It is not necessary to create this symlink when one of its parent
2580 * directories is specified and already created. E.g.
2581 * StateDirectory=foo foo/bar
2582 * In that case, the inode points to pp and p for "foo/bar" are the same:
2583 * pp = "/var/lib/private/foo/bar"
2584 * p = "/var/lib/foo/bar"
2585 * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only
2586 * we do not need to create the symlink, but we cannot create the symlink.
2587 * See issue #24783. */
2588 r = symlink_idempotent(pp, p, true);
2589 if (r < 0)
2590 goto fail;
2591 }
2592
2593 } else {
2594 _cleanup_free_ char *target = NULL;
2595
2596 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2597 readlink_and_make_absolute(p, &target) >= 0) {
2598 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2599
2600 /* This already exists and is a symlink? Interesting. Maybe it's one created
2601 * by DynamicUser=1 (see above)?
2602 *
2603 * We do this for all directory types except for ConfigurationDirectory=,
2604 * since they all support the private/ symlink logic at least in some
2605 * configurations, see above. */
2606
2607 r = chase(target, NULL, 0, &target_resolved, NULL);
2608 if (r < 0)
2609 goto fail;
2610
2611 q = path_join(params->prefix[type], "private", context->directories[type].items[i].path);
2612 if (!q) {
2613 r = -ENOMEM;
2614 goto fail;
2615 }
2616
2617 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2618 r = chase(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2619 if (r < 0)
2620 goto fail;
2621
2622 if (path_equal(q_resolved, target_resolved)) {
2623
2624 /* Hmm, apparently DynamicUser= was once turned on for this service,
2625 * but is no longer. Let's move the directory back up. */
2626
2627 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2628 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2629 exec_directory_type_to_string(type), q, p);
2630
2631 if (unlink(p) < 0) {
2632 r = -errno;
2633 goto fail;
2634 }
2635
2636 if (rename(q, p) < 0) {
2637 r = -errno;
2638 goto fail;
2639 }
2640 }
2641 }
2642
2643 r = mkdir_label(p, context->directories[type].mode);
2644 if (r < 0) {
2645 if (r != -EEXIST)
2646 goto fail;
2647
2648 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2649 struct stat st;
2650
2651 /* Don't change the owner/access mode of the configuration directory,
2652 * as in the common case it is not written to by a service, and shall
2653 * not be writable. */
2654
2655 if (stat(p, &st) < 0) {
2656 r = -errno;
2657 goto fail;
2658 }
2659
2660 /* Still complain if the access mode doesn't match */
2661 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2662 log_warning("%s \'%s\' already exists but the mode is different. "
2663 "(File system: %o %sMode: %o)",
2664 exec_directory_type_to_string(type), context->directories[type].items[i].path,
2665 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2666
2667 continue;
2668 }
2669 }
2670 }
2671
2672 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2673 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2674 * current UID/GID ownership.) */
2675 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2676 if (r < 0)
2677 goto fail;
2678
2679 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2680 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2681 * assignments to exist. */
2682 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2683 if (r < 0)
2684 goto fail;
2685 }
2686
2687 /* If we are not going to run in a namespace, set up the symlinks - otherwise
2688 * they are set up later, to allow configuring empty var/run/etc. */
2689 if (!needs_mount_namespace)
2690 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2691 r = create_many_symlinks(params->prefix[type],
2692 context->directories[type].items[i].path,
2693 context->directories[type].items[i].symlinks);
2694 if (r < 0)
2695 goto fail;
2696 }
2697
2698 return 0;
2699
2700 fail:
2701 *exit_status = exit_status_table[type];
2702 return r;
2703 }
2704
2705 static int write_credential(
2706 int dfd,
2707 const char *id,
2708 const void *data,
2709 size_t size,
2710 uid_t uid,
2711 bool ownership_ok) {
2712
2713 _cleanup_(unlink_and_freep) char *tmp = NULL;
2714 _cleanup_close_ int fd = -EBADF;
2715 int r;
2716
2717 r = tempfn_random_child("", "cred", &tmp);
2718 if (r < 0)
2719 return r;
2720
2721 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2722 if (fd < 0) {
2723 tmp = mfree(tmp);
2724 return -errno;
2725 }
2726
2727 r = loop_write(fd, data, size, /* do_poll = */ false);
2728 if (r < 0)
2729 return r;
2730
2731 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2732 return -errno;
2733
2734 if (uid_is_valid(uid) && uid != getuid()) {
2735 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2736 if (r < 0) {
2737 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2738 return r;
2739
2740 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2741 * to express: that the user gets read access and nothing
2742 * else. But if the backing fs can't support that (e.g. ramfs)
2743 * then we can use file ownership instead. But that's only safe if
2744 * we can then re-mount the whole thing read-only, so that the
2745 * user can no longer chmod() the file to gain write access. */
2746 return r;
2747
2748 if (fchown(fd, uid, GID_INVALID) < 0)
2749 return -errno;
2750 }
2751 }
2752
2753 if (renameat(dfd, tmp, dfd, id) < 0)
2754 return -errno;
2755
2756 tmp = mfree(tmp);
2757 return 0;
2758 }
2759
2760 static char **credential_search_path(
2761 const ExecParameters *params,
2762 bool encrypted) {
2763
2764 _cleanup_strv_free_ char **l = NULL;
2765
2766 assert(params);
2767
2768 /* Assemble a search path to find credentials in. We'll look in /etc/credstore/ (and similar
2769 * directories in /usr/lib/ + /run/) for all types of credentials. If we are looking for encrypted
2770 * credentials, also look in /etc/credstore.encrypted/ (and similar dirs). */
2771
2772 if (encrypted) {
2773 if (strv_extend(&l, params->received_encrypted_credentials_directory) < 0)
2774 return NULL;
2775
2776 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore.encrypted"), /* filter_duplicates= */ true) < 0)
2777 return NULL;
2778 }
2779
2780 if (params->received_credentials_directory)
2781 if (strv_extend(&l, params->received_credentials_directory) < 0)
2782 return NULL;
2783
2784 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore"), /* filter_duplicates= */ true) < 0)
2785 return NULL;
2786
2787 if (DEBUG_LOGGING) {
2788 _cleanup_free_ char *t = strv_join(l, ":");
2789
2790 log_debug("Credential search path is: %s", t);
2791 }
2792
2793 return TAKE_PTR(l);
2794 }
2795
2796 static int load_credential(
2797 const ExecContext *context,
2798 const ExecParameters *params,
2799 const char *id,
2800 const char *path,
2801 bool encrypted,
2802 const char *unit,
2803 int read_dfd,
2804 int write_dfd,
2805 uid_t uid,
2806 bool ownership_ok,
2807 uint64_t *left) {
2808
2809 ReadFullFileFlags flags = READ_FULL_FILE_SECURE|READ_FULL_FILE_FAIL_WHEN_LARGER;
2810 _cleanup_strv_free_ char **search_path = NULL;
2811 _cleanup_(erase_and_freep) char *data = NULL;
2812 _cleanup_free_ char *bindname = NULL;
2813 const char *source = NULL;
2814 bool missing_ok = true;
2815 size_t size, add, maxsz;
2816 int r;
2817
2818 assert(context);
2819 assert(params);
2820 assert(id);
2821 assert(path);
2822 assert(unit);
2823 assert(read_dfd >= 0 || read_dfd == AT_FDCWD);
2824 assert(write_dfd >= 0);
2825 assert(left);
2826
2827 if (read_dfd >= 0) {
2828 /* If a directory fd is specified, then read the file directly from that dir. In this case we
2829 * won't do AF_UNIX stuff (we simply don't want to recursively iterate down a tree of AF_UNIX
2830 * IPC sockets). It's OK if a file vanishes here in the time we enumerate it and intend to
2831 * open it. */
2832
2833 if (!filename_is_valid(path)) /* safety check */
2834 return -EINVAL;
2835
2836 missing_ok = true;
2837 source = path;
2838
2839 } else if (path_is_absolute(path)) {
2840 /* If this is an absolute path, read the data directly from it, and support AF_UNIX
2841 * sockets */
2842
2843 if (!path_is_valid(path)) /* safety check */
2844 return -EINVAL;
2845
2846 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2847
2848 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2849 * via the source socket address in case we read off an AF_UNIX socket. */
2850 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, id) < 0)
2851 return -ENOMEM;
2852
2853 missing_ok = false;
2854 source = path;
2855
2856 } else if (credential_name_valid(path)) {
2857 /* If this is a relative path, take it as credential name relative to the credentials
2858 * directory we received ourselves. We don't support the AF_UNIX stuff in this mode, since we
2859 * are operating on a credential store, i.e. this is guaranteed to be regular files. */
2860
2861 search_path = credential_search_path(params, encrypted);
2862 if (!search_path)
2863 return -ENOMEM;
2864
2865 missing_ok = true;
2866 } else
2867 source = NULL;
2868
2869 if (encrypted)
2870 flags |= READ_FULL_FILE_UNBASE64;
2871
2872 maxsz = encrypted ? CREDENTIAL_ENCRYPTED_SIZE_MAX : CREDENTIAL_SIZE_MAX;
2873
2874 if (search_path) {
2875 STRV_FOREACH(d, search_path) {
2876 _cleanup_free_ char *j = NULL;
2877
2878 j = path_join(*d, path);
2879 if (!j)
2880 return -ENOMEM;
2881
2882 r = read_full_file_full(
2883 AT_FDCWD, j, /* path is absolute, hence pass AT_FDCWD as nop dir fd here */
2884 UINT64_MAX,
2885 maxsz,
2886 flags,
2887 NULL,
2888 &data, &size);
2889 if (r != -ENOENT)
2890 break;
2891 }
2892 } else if (source)
2893 r = read_full_file_full(
2894 read_dfd, source,
2895 UINT64_MAX,
2896 maxsz,
2897 flags,
2898 bindname,
2899 &data, &size);
2900 else
2901 r = -ENOENT;
2902
2903 if (r == -ENOENT && (missing_ok || hashmap_contains(context->set_credentials, id))) {
2904 /* Make a missing inherited credential non-fatal, let's just continue. After all apps
2905 * will get clear errors if we don't pass such a missing credential on as they
2906 * themselves will get ENOENT when trying to read them, which should not be much
2907 * worse than when we handle the error here and make it fatal.
2908 *
2909 * Also, if the source file doesn't exist, but a fallback is set via SetCredentials=
2910 * we are fine, too. */
2911 log_debug_errno(r, "Couldn't read inherited credential '%s', skipping: %m", path);
2912 return 0;
2913 }
2914 if (r < 0)
2915 return log_debug_errno(r, "Failed to read credential '%s': %m", path);
2916
2917 if (encrypted) {
2918 _cleanup_free_ void *plaintext = NULL;
2919 size_t plaintext_size = 0;
2920
2921 r = decrypt_credential_and_warn(id, now(CLOCK_REALTIME), NULL, NULL, data, size, &plaintext, &plaintext_size);
2922 if (r < 0)
2923 return r;
2924
2925 free_and_replace(data, plaintext);
2926 size = plaintext_size;
2927 }
2928
2929 add = strlen(id) + size;
2930 if (add > *left)
2931 return -E2BIG;
2932
2933 r = write_credential(write_dfd, id, data, size, uid, ownership_ok);
2934 if (r < 0)
2935 return log_debug_errno(r, "Failed to write credential '%s': %m", id);
2936
2937 *left -= add;
2938 return 0;
2939 }
2940
2941 struct load_cred_args {
2942 const ExecContext *context;
2943 const ExecParameters *params;
2944 bool encrypted;
2945 const char *unit;
2946 int dfd;
2947 uid_t uid;
2948 bool ownership_ok;
2949 uint64_t *left;
2950 };
2951
2952 static int load_cred_recurse_dir_cb(
2953 RecurseDirEvent event,
2954 const char *path,
2955 int dir_fd,
2956 int inode_fd,
2957 const struct dirent *de,
2958 const struct statx *sx,
2959 void *userdata) {
2960
2961 struct load_cred_args *args = ASSERT_PTR(userdata);
2962 _cleanup_free_ char *sub_id = NULL;
2963 int r;
2964
2965 if (event != RECURSE_DIR_ENTRY)
2966 return RECURSE_DIR_CONTINUE;
2967
2968 if (!IN_SET(de->d_type, DT_REG, DT_SOCK))
2969 return RECURSE_DIR_CONTINUE;
2970
2971 sub_id = strreplace(path, "/", "_");
2972 if (!sub_id)
2973 return -ENOMEM;
2974
2975 if (!credential_name_valid(sub_id))
2976 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Credential would get ID %s, which is not valid, refusing", sub_id);
2977
2978 if (faccessat(args->dfd, sub_id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) {
2979 log_debug("Skipping credential with duplicated ID %s at %s", sub_id, path);
2980 return RECURSE_DIR_CONTINUE;
2981 }
2982 if (errno != ENOENT)
2983 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sub_id);
2984
2985 r = load_credential(
2986 args->context,
2987 args->params,
2988 sub_id,
2989 de->d_name,
2990 args->encrypted,
2991 args->unit,
2992 dir_fd,
2993 args->dfd,
2994 args->uid,
2995 args->ownership_ok,
2996 args->left);
2997 if (r < 0)
2998 return r;
2999
3000 return RECURSE_DIR_CONTINUE;
3001 }
3002
3003 static int acquire_credentials(
3004 const ExecContext *context,
3005 const ExecParameters *params,
3006 const char *unit,
3007 const char *p,
3008 uid_t uid,
3009 bool ownership_ok) {
3010
3011 uint64_t left = CREDENTIALS_TOTAL_SIZE_MAX;
3012 _cleanup_close_ int dfd = -EBADF;
3013 ExecLoadCredential *lc;
3014 ExecSetCredential *sc;
3015 int r;
3016
3017 assert(context);
3018 assert(p);
3019
3020 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
3021 if (dfd < 0)
3022 return -errno;
3023
3024 /* First, load credentials off disk (or acquire via AF_UNIX socket) */
3025 HASHMAP_FOREACH(lc, context->load_credentials) {
3026 _cleanup_close_ int sub_fd = -EBADF;
3027
3028 /* If this is an absolute path, then try to open it as a directory. If that works, then we'll
3029 * recurse into it. If it is an absolute path but it isn't a directory, then we'll open it as
3030 * a regular file. Finally, if it's a relative path we will use it as a credential name to
3031 * propagate a credential passed to us from further up. */
3032
3033 if (path_is_absolute(lc->path)) {
3034 sub_fd = open(lc->path, O_DIRECTORY|O_CLOEXEC|O_RDONLY);
3035 if (sub_fd < 0 && !IN_SET(errno,
3036 ENOTDIR, /* Not a directory */
3037 ENOENT)) /* Doesn't exist? */
3038 return log_debug_errno(errno, "Failed to open '%s': %m", lc->path);
3039 }
3040
3041 if (sub_fd < 0)
3042 /* Regular file (incl. a credential passed in from higher up) */
3043 r = load_credential(
3044 context,
3045 params,
3046 lc->id,
3047 lc->path,
3048 lc->encrypted,
3049 unit,
3050 AT_FDCWD,
3051 dfd,
3052 uid,
3053 ownership_ok,
3054 &left);
3055 else
3056 /* Directory */
3057 r = recurse_dir(
3058 sub_fd,
3059 /* path= */ lc->id, /* recurse_dir() will suffix the subdir paths from here to the top-level id */
3060 /* statx_mask= */ 0,
3061 /* n_depth_max= */ UINT_MAX,
3062 RECURSE_DIR_SORT|RECURSE_DIR_IGNORE_DOT|RECURSE_DIR_ENSURE_TYPE,
3063 load_cred_recurse_dir_cb,
3064 &(struct load_cred_args) {
3065 .context = context,
3066 .params = params,
3067 .encrypted = lc->encrypted,
3068 .unit = unit,
3069 .dfd = dfd,
3070 .uid = uid,
3071 .ownership_ok = ownership_ok,
3072 .left = &left,
3073 });
3074 if (r < 0)
3075 return r;
3076 }
3077
3078 /* Second, we add in literally specified credentials. If the credentials already exist, we'll not add
3079 * them, so that they can act as a "default" if the same credential is specified multiple times. */
3080 HASHMAP_FOREACH(sc, context->set_credentials) {
3081 _cleanup_(erase_and_freep) void *plaintext = NULL;
3082 const char *data;
3083 size_t size, add;
3084
3085 /* Note that we check ahead of time here instead of relying on O_EXCL|O_CREAT later to return
3086 * EEXIST if the credential already exists. That's because the TPM2-based decryption is kinda
3087 * slow and involved, hence it's nice to be able to skip that if the credential already
3088 * exists anyway. */
3089 if (faccessat(dfd, sc->id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
3090 continue;
3091 if (errno != ENOENT)
3092 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sc->id);
3093
3094 if (sc->encrypted) {
3095 r = decrypt_credential_and_warn(sc->id, now(CLOCK_REALTIME), NULL, NULL, sc->data, sc->size, &plaintext, &size);
3096 if (r < 0)
3097 return r;
3098
3099 data = plaintext;
3100 } else {
3101 data = sc->data;
3102 size = sc->size;
3103 }
3104
3105 add = strlen(sc->id) + size;
3106 if (add > left)
3107 return -E2BIG;
3108
3109 r = write_credential(dfd, sc->id, data, size, uid, ownership_ok);
3110 if (r < 0)
3111 return r;
3112
3113 left -= add;
3114 }
3115
3116 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
3117 return -errno;
3118
3119 /* After we created all keys with the right perms, also make sure the credential store as a whole is
3120 * accessible */
3121
3122 if (uid_is_valid(uid) && uid != getuid()) {
3123 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
3124 if (r < 0) {
3125 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3126 return r;
3127
3128 if (!ownership_ok)
3129 return r;
3130
3131 if (fchown(dfd, uid, GID_INVALID) < 0)
3132 return -errno;
3133 }
3134 }
3135
3136 return 0;
3137 }
3138
3139 static int setup_credentials_internal(
3140 const ExecContext *context,
3141 const ExecParameters *params,
3142 const char *unit,
3143 const char *final, /* This is where the credential store shall eventually end up at */
3144 const char *workspace, /* This is where we can prepare it before moving it to the final place */
3145 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
3146 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
3147 uid_t uid) {
3148
3149 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
3150 * if we mounted something; false if we definitely can't mount anything */
3151 bool final_mounted;
3152 const char *where;
3153
3154 assert(context);
3155 assert(final);
3156 assert(workspace);
3157
3158 if (reuse_workspace) {
3159 r = path_is_mount_point(workspace, NULL, 0);
3160 if (r < 0)
3161 return r;
3162 if (r > 0)
3163 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
3164 else
3165 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
3166 } else
3167 workspace_mounted = -1; /* ditto */
3168
3169 r = path_is_mount_point(final, NULL, 0);
3170 if (r < 0)
3171 return r;
3172 if (r > 0) {
3173 /* If the final place already has something mounted, we use that. If the workspace also has
3174 * something mounted we assume it's actually the same mount (but with MS_RDONLY
3175 * different). */
3176 final_mounted = true;
3177
3178 if (workspace_mounted < 0) {
3179 /* If the final place is mounted, but the workspace isn't, then let's bind mount
3180 * the final version to the workspace, and make it writable, so that we can make
3181 * changes */
3182
3183 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3184 if (r < 0)
3185 return r;
3186
3187 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3188 if (r < 0)
3189 return r;
3190
3191 workspace_mounted = true;
3192 }
3193 } else
3194 final_mounted = false;
3195
3196 if (workspace_mounted < 0) {
3197 /* Nothing is mounted on the workspace yet, let's try to mount something now */
3198 for (int try = 0;; try++) {
3199
3200 if (try == 0) {
3201 /* Try "ramfs" first, since it's not swap backed */
3202 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
3203 if (r >= 0) {
3204 workspace_mounted = true;
3205 break;
3206 }
3207
3208 } else if (try == 1) {
3209 _cleanup_free_ char *opts = NULL;
3210
3211 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%zu", (size_t) CREDENTIALS_TOTAL_SIZE_MAX) < 0)
3212 return -ENOMEM;
3213
3214 /* Fall back to "tmpfs" otherwise */
3215 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
3216 if (r >= 0) {
3217 workspace_mounted = true;
3218 break;
3219 }
3220
3221 } else {
3222 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
3223 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3224 if (r < 0) {
3225 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
3226 return r;
3227
3228 if (must_mount) /* If we it's not OK to use the plain directory
3229 * fallback, propagate all errors too */
3230 return r;
3231
3232 /* If we lack privileges to bind mount stuff, then let's gracefully
3233 * proceed for compat with container envs, and just use the final dir
3234 * as is. */
3235
3236 workspace_mounted = false;
3237 break;
3238 }
3239
3240 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
3241 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3242 if (r < 0)
3243 return r;
3244
3245 workspace_mounted = true;
3246 break;
3247 }
3248 }
3249 }
3250
3251 assert(!must_mount || workspace_mounted > 0);
3252 where = workspace_mounted ? workspace : final;
3253
3254 (void) label_fix_full(AT_FDCWD, where, final, 0);
3255
3256 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
3257 if (r < 0)
3258 return r;
3259
3260 if (workspace_mounted) {
3261 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
3262 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3263 if (r < 0)
3264 return r;
3265
3266 /* And mount it to the final place, read-only */
3267 if (final_mounted)
3268 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
3269 else
3270 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
3271 if (r < 0)
3272 return r;
3273 } else {
3274 _cleanup_free_ char *parent = NULL;
3275
3276 /* If we do not have our own mount put used the plain directory fallback, then we need to
3277 * open access to the top-level credential directory and the per-service directory now */
3278
3279 r = path_extract_directory(final, &parent);
3280 if (r < 0)
3281 return r;
3282 if (chmod(parent, 0755) < 0)
3283 return -errno;
3284 }
3285
3286 return 0;
3287 }
3288
3289 static int setup_credentials(
3290 const ExecContext *context,
3291 const ExecParameters *params,
3292 const char *unit,
3293 uid_t uid) {
3294
3295 _cleanup_free_ char *p = NULL, *q = NULL;
3296 int r;
3297
3298 assert(context);
3299 assert(params);
3300
3301 if (!exec_context_has_credentials(context))
3302 return 0;
3303
3304 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
3305 return -EINVAL;
3306
3307 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
3308 * and the subdir we mount over with a read-only file system readable by the service's user */
3309 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
3310 if (!q)
3311 return -ENOMEM;
3312
3313 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
3314 if (r < 0 && r != -EEXIST)
3315 return r;
3316
3317 p = path_join(q, unit);
3318 if (!p)
3319 return -ENOMEM;
3320
3321 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
3322 if (r < 0 && r != -EEXIST)
3323 return r;
3324
3325 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
3326 if (r < 0) {
3327 _cleanup_free_ char *t = NULL, *u = NULL;
3328
3329 /* If this is not a privilege or support issue then propagate the error */
3330 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3331 return r;
3332
3333 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
3334 * it into place, so that users can't access half-initialized credential stores. */
3335 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
3336 if (!t)
3337 return -ENOMEM;
3338
3339 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
3340 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
3341 * after it is fully set up */
3342 u = path_join(t, unit);
3343 if (!u)
3344 return -ENOMEM;
3345
3346 FOREACH_STRING(i, t, u) {
3347 r = mkdir_label(i, 0700);
3348 if (r < 0 && r != -EEXIST)
3349 return r;
3350 }
3351
3352 r = setup_credentials_internal(
3353 context,
3354 params,
3355 unit,
3356 p, /* final mount point */
3357 u, /* temporary workspace to overmount */
3358 true, /* reuse the workspace if it is already a mount */
3359 false, /* it's OK to fall back to a plain directory if we can't mount anything */
3360 uid);
3361
3362 (void) rmdir(u); /* remove the workspace again if we can. */
3363
3364 if (r < 0)
3365 return r;
3366
3367 } else if (r == 0) {
3368
3369 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
3370 * we can use the same directory for all cases, after turning off propagation. Question
3371 * though is: where do we turn off propagation exactly, and where do we place the workspace
3372 * directory? We need some place that is guaranteed to be a mount point in the host, and
3373 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
3374 * since we ultimately want to move the resulting file system there, i.e. we need propagation
3375 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
3376 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
3377 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
3378 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
3379 * propagation on the former, and then overmount the latter.
3380 *
3381 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
3382 * for this purpose, but there are few other candidates that work equally well for us, and
3383 * given that the we do this in a privately namespaced short-lived single-threaded process
3384 * that no one else sees this should be OK to do. */
3385
3386 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
3387 if (r < 0)
3388 goto child_fail;
3389
3390 r = setup_credentials_internal(
3391 context,
3392 params,
3393 unit,
3394 p, /* final mount point */
3395 "/dev/shm", /* temporary workspace to overmount */
3396 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
3397 true, /* insist that something is mounted, do not allow fallback to plain directory */
3398 uid);
3399 if (r < 0)
3400 goto child_fail;
3401
3402 _exit(EXIT_SUCCESS);
3403
3404 child_fail:
3405 _exit(EXIT_FAILURE);
3406 }
3407
3408 return 0;
3409 }
3410
3411 #if ENABLE_SMACK
3412 static int setup_smack(
3413 const Manager *manager,
3414 const ExecContext *context,
3415 int executable_fd) {
3416 int r;
3417
3418 assert(context);
3419 assert(executable_fd >= 0);
3420
3421 if (context->smack_process_label) {
3422 r = mac_smack_apply_pid(0, context->smack_process_label);
3423 if (r < 0)
3424 return r;
3425 } else if (manager->default_smack_process_label) {
3426 _cleanup_free_ char *exec_label = NULL;
3427
3428 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
3429 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3430 return r;
3431
3432 r = mac_smack_apply_pid(0, exec_label ?: manager->default_smack_process_label);
3433 if (r < 0)
3434 return r;
3435 }
3436
3437 return 0;
3438 }
3439 #endif
3440
3441 static int compile_bind_mounts(
3442 const ExecContext *context,
3443 const ExecParameters *params,
3444 BindMount **ret_bind_mounts,
3445 size_t *ret_n_bind_mounts,
3446 char ***ret_empty_directories) {
3447
3448 _cleanup_strv_free_ char **empty_directories = NULL;
3449 BindMount *bind_mounts;
3450 size_t n, h = 0;
3451 int r;
3452
3453 assert(context);
3454 assert(params);
3455 assert(ret_bind_mounts);
3456 assert(ret_n_bind_mounts);
3457 assert(ret_empty_directories);
3458
3459 n = context->n_bind_mounts;
3460 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3461 if (!params->prefix[t])
3462 continue;
3463
3464 for (size_t i = 0; i < context->directories[t].n_items; i++)
3465 n += !context->directories[t].items[i].only_create;
3466 }
3467
3468 if (n <= 0) {
3469 *ret_bind_mounts = NULL;
3470 *ret_n_bind_mounts = 0;
3471 *ret_empty_directories = NULL;
3472 return 0;
3473 }
3474
3475 bind_mounts = new(BindMount, n);
3476 if (!bind_mounts)
3477 return -ENOMEM;
3478
3479 for (size_t i = 0; i < context->n_bind_mounts; i++) {
3480 BindMount *item = context->bind_mounts + i;
3481 char *s, *d;
3482
3483 s = strdup(item->source);
3484 if (!s) {
3485 r = -ENOMEM;
3486 goto finish;
3487 }
3488
3489 d = strdup(item->destination);
3490 if (!d) {
3491 free(s);
3492 r = -ENOMEM;
3493 goto finish;
3494 }
3495
3496 bind_mounts[h++] = (BindMount) {
3497 .source = s,
3498 .destination = d,
3499 .read_only = item->read_only,
3500 .recursive = item->recursive,
3501 .ignore_enoent = item->ignore_enoent,
3502 };
3503 }
3504
3505 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3506 if (!params->prefix[t])
3507 continue;
3508
3509 if (context->directories[t].n_items == 0)
3510 continue;
3511
3512 if (exec_directory_is_private(context, t) &&
3513 !exec_context_with_rootfs(context)) {
3514 char *private_root;
3515
3516 /* So this is for a dynamic user, and we need to make sure the process can access its own
3517 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3518 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3519
3520 private_root = path_join(params->prefix[t], "private");
3521 if (!private_root) {
3522 r = -ENOMEM;
3523 goto finish;
3524 }
3525
3526 r = strv_consume(&empty_directories, private_root);
3527 if (r < 0)
3528 goto finish;
3529 }
3530
3531 for (size_t i = 0; i < context->directories[t].n_items; i++) {
3532 char *s, *d;
3533
3534 /* When one of the parent directories is in the list, we cannot create the symlink
3535 * for the child directory. See also the comments in setup_exec_directory(). */
3536 if (context->directories[t].items[i].only_create)
3537 continue;
3538
3539 if (exec_directory_is_private(context, t))
3540 s = path_join(params->prefix[t], "private", context->directories[t].items[i].path);
3541 else
3542 s = path_join(params->prefix[t], context->directories[t].items[i].path);
3543 if (!s) {
3544 r = -ENOMEM;
3545 goto finish;
3546 }
3547
3548 if (exec_directory_is_private(context, t) &&
3549 exec_context_with_rootfs(context))
3550 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3551 * directory is not created on the root directory. So, let's bind-mount the directory
3552 * on the 'non-private' place. */
3553 d = path_join(params->prefix[t], context->directories[t].items[i].path);
3554 else
3555 d = strdup(s);
3556 if (!d) {
3557 free(s);
3558 r = -ENOMEM;
3559 goto finish;
3560 }
3561
3562 bind_mounts[h++] = (BindMount) {
3563 .source = s,
3564 .destination = d,
3565 .read_only = false,
3566 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3567 .recursive = true,
3568 .ignore_enoent = false,
3569 };
3570 }
3571 }
3572
3573 assert(h == n);
3574
3575 *ret_bind_mounts = bind_mounts;
3576 *ret_n_bind_mounts = n;
3577 *ret_empty_directories = TAKE_PTR(empty_directories);
3578
3579 return (int) n;
3580
3581 finish:
3582 bind_mount_free_many(bind_mounts, h);
3583 return r;
3584 }
3585
3586 /* ret_symlinks will contain a list of pairs src:dest that describes
3587 * the symlinks to create later on. For example, the symlinks needed
3588 * to safely give private directories to DynamicUser=1 users. */
3589 static int compile_symlinks(
3590 const ExecContext *context,
3591 const ExecParameters *params,
3592 char ***ret_symlinks) {
3593
3594 _cleanup_strv_free_ char **symlinks = NULL;
3595 int r;
3596
3597 assert(context);
3598 assert(params);
3599 assert(ret_symlinks);
3600
3601 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3602 for (size_t i = 0; i < context->directories[dt].n_items; i++) {
3603 _cleanup_free_ char *private_path = NULL, *path = NULL;
3604
3605 STRV_FOREACH(symlink, context->directories[dt].items[i].symlinks) {
3606 _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL;
3607
3608 src_abs = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3609 dst_abs = path_join(params->prefix[dt], *symlink);
3610 if (!src_abs || !dst_abs)
3611 return -ENOMEM;
3612
3613 r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs));
3614 if (r < 0)
3615 return r;
3616 }
3617
3618 if (!exec_directory_is_private(context, dt) ||
3619 exec_context_with_rootfs(context) ||
3620 context->directories[dt].items[i].only_create)
3621 continue;
3622
3623 private_path = path_join(params->prefix[dt], "private", context->directories[dt].items[i].path);
3624 if (!private_path)
3625 return -ENOMEM;
3626
3627 path = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3628 if (!path)
3629 return -ENOMEM;
3630
3631 r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path));
3632 if (r < 0)
3633 return r;
3634 }
3635 }
3636
3637 *ret_symlinks = TAKE_PTR(symlinks);
3638
3639 return 0;
3640 }
3641
3642 static bool insist_on_sandboxing(
3643 const ExecContext *context,
3644 const char *root_dir,
3645 const char *root_image,
3646 const BindMount *bind_mounts,
3647 size_t n_bind_mounts) {
3648
3649 assert(context);
3650 assert(n_bind_mounts == 0 || bind_mounts);
3651
3652 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3653 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3654 * rearrange stuff in a way we cannot ignore gracefully. */
3655
3656 if (context->n_temporary_filesystems > 0)
3657 return true;
3658
3659 if (root_dir || root_image)
3660 return true;
3661
3662 if (context->n_mount_images > 0)
3663 return true;
3664
3665 if (context->dynamic_user)
3666 return true;
3667
3668 if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories))
3669 return true;
3670
3671 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3672 * essential. */
3673 for (size_t i = 0; i < n_bind_mounts; i++)
3674 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3675 return true;
3676
3677 if (context->log_namespace)
3678 return true;
3679
3680 return false;
3681 }
3682
3683 static int apply_mount_namespace(
3684 const Unit *u,
3685 ExecCommandFlags command_flags,
3686 const ExecContext *context,
3687 const ExecParameters *params,
3688 const ExecRuntime *runtime,
3689 const char *memory_pressure_path,
3690 char **error_path) {
3691
3692 _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL,
3693 **read_write_paths_cleanup = NULL;
3694 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3695 const char *root_dir = NULL, *root_image = NULL;
3696 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL,
3697 *extension_dir = NULL;
3698 char **read_write_paths;
3699 NamespaceInfo ns_info;
3700 bool needs_sandboxing;
3701 BindMount *bind_mounts = NULL;
3702 size_t n_bind_mounts = 0;
3703 int r;
3704
3705 assert(context);
3706
3707 if (params->flags & EXEC_APPLY_CHROOT) {
3708 root_image = context->root_image;
3709
3710 if (!root_image)
3711 root_dir = context->root_directory;
3712 }
3713
3714 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3715 if (r < 0)
3716 return r;
3717
3718 /* Symlinks for exec dirs are set up after other mounts, before they are made read-only. */
3719 r = compile_symlinks(context, params, &symlinks);
3720 if (r < 0)
3721 goto finalize;
3722
3723 /* We need to make the pressure path writable even if /sys/fs/cgroups is made read-only, as the
3724 * service will need to write to it in order to start the notifications. */
3725 if (context->protect_control_groups && memory_pressure_path && !streq(memory_pressure_path, "/dev/null")) {
3726 read_write_paths_cleanup = strv_copy(context->read_write_paths);
3727 if (!read_write_paths_cleanup) {
3728 r = -ENOMEM;
3729 goto finalize;
3730 }
3731
3732 r = strv_extend(&read_write_paths_cleanup, memory_pressure_path);
3733 if (r < 0)
3734 goto finalize;
3735
3736 read_write_paths = read_write_paths_cleanup;
3737 } else
3738 read_write_paths = context->read_write_paths;
3739
3740 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3741 if (needs_sandboxing) {
3742 /* The runtime struct only contains the parent of the private /tmp,
3743 * which is non-accessible to world users. Inside of it there's a /tmp
3744 * that is sticky, and that's the one we want to use here.
3745 * This does not apply when we are using /run/systemd/empty as fallback. */
3746
3747 if (context->private_tmp && runtime && runtime->shared) {
3748 if (streq_ptr(runtime->shared->tmp_dir, RUN_SYSTEMD_EMPTY))
3749 tmp_dir = runtime->shared->tmp_dir;
3750 else if (runtime->shared->tmp_dir)
3751 tmp_dir = strjoina(runtime->shared->tmp_dir, "/tmp");
3752
3753 if (streq_ptr(runtime->shared->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3754 var_tmp_dir = runtime->shared->var_tmp_dir;
3755 else if (runtime->shared->var_tmp_dir)
3756 var_tmp_dir = strjoina(runtime->shared->var_tmp_dir, "/tmp");
3757 }
3758
3759 ns_info = (NamespaceInfo) {
3760 .ignore_protect_paths = false,
3761 .private_dev = context->private_devices,
3762 .protect_control_groups = context->protect_control_groups,
3763 .protect_kernel_tunables = context->protect_kernel_tunables,
3764 .protect_kernel_modules = context->protect_kernel_modules,
3765 .protect_kernel_logs = context->protect_kernel_logs,
3766 .protect_hostname = context->protect_hostname,
3767 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3768 .protect_home = context->protect_home,
3769 .protect_system = context->protect_system,
3770 .protect_proc = context->protect_proc,
3771 .proc_subset = context->proc_subset,
3772 .private_network = exec_needs_network_namespace(context),
3773 .private_ipc = exec_needs_ipc_namespace(context),
3774 /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */
3775 .mount_nosuid = context->no_new_privileges && !mac_selinux_use(),
3776 };
3777 } else if (!context->dynamic_user && root_dir)
3778 /*
3779 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3780 * sandbox info, otherwise enforce it, don't ignore protected paths and
3781 * fail if we are enable to apply the sandbox inside the mount namespace.
3782 */
3783 ns_info = (NamespaceInfo) {
3784 .ignore_protect_paths = true,
3785 };
3786 else
3787 ns_info = (NamespaceInfo) {};
3788
3789 if (context->mount_propagation_flag == MS_SHARED)
3790 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3791
3792 if (exec_context_has_credentials(context) &&
3793 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3794 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3795 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3796 if (!creds_path) {
3797 r = -ENOMEM;
3798 goto finalize;
3799 }
3800 }
3801
3802 if (MANAGER_IS_SYSTEM(u->manager)) {
3803 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3804 if (!propagate_dir) {
3805 r = -ENOMEM;
3806 goto finalize;
3807 }
3808
3809 incoming_dir = strdup("/run/systemd/incoming");
3810 if (!incoming_dir) {
3811 r = -ENOMEM;
3812 goto finalize;
3813 }
3814
3815 extension_dir = strdup("/run/systemd/unit-extensions");
3816 if (!extension_dir) {
3817 r = -ENOMEM;
3818 goto finalize;
3819 }
3820 } else
3821 if (asprintf(&extension_dir, "/run/user/" UID_FMT "/systemd/unit-extensions", geteuid()) < 0) {
3822 r = -ENOMEM;
3823 goto finalize;
3824 }
3825
3826 r = setup_namespace(
3827 root_dir,
3828 root_image,
3829 context->root_image_options,
3830 context->root_image_policy ?: &image_policy_service,
3831 &ns_info,
3832 read_write_paths,
3833 needs_sandboxing ? context->read_only_paths : NULL,
3834 needs_sandboxing ? context->inaccessible_paths : NULL,
3835 needs_sandboxing ? context->exec_paths : NULL,
3836 needs_sandboxing ? context->no_exec_paths : NULL,
3837 empty_directories,
3838 symlinks,
3839 bind_mounts,
3840 n_bind_mounts,
3841 context->temporary_filesystems,
3842 context->n_temporary_filesystems,
3843 context->mount_images,
3844 context->n_mount_images,
3845 context->mount_image_policy ?: &image_policy_service,
3846 tmp_dir,
3847 var_tmp_dir,
3848 creds_path,
3849 context->log_namespace,
3850 context->mount_propagation_flag,
3851 context->root_hash, context->root_hash_size, context->root_hash_path,
3852 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3853 context->root_verity,
3854 context->extension_images,
3855 context->n_extension_images,
3856 context->extension_image_policy ?: &image_policy_sysext,
3857 context->extension_directories,
3858 propagate_dir,
3859 incoming_dir,
3860 extension_dir,
3861 root_dir || root_image ? params->notify_socket : NULL,
3862 error_path);
3863
3864 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3865 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3866 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3867 * completely different execution environment. */
3868 if (r == -ENOANO) {
3869 if (insist_on_sandboxing(
3870 context,
3871 root_dir, root_image,
3872 bind_mounts,
3873 n_bind_mounts)) {
3874 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3875 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3876 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3877
3878 r = -EOPNOTSUPP;
3879 } else {
3880 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3881 r = 0;
3882 }
3883 }
3884
3885 finalize:
3886 bind_mount_free_many(bind_mounts, n_bind_mounts);
3887 return r;
3888 }
3889
3890 static int apply_working_directory(
3891 const ExecContext *context,
3892 const ExecParameters *params,
3893 const char *home,
3894 int *exit_status) {
3895
3896 const char *d, *wd;
3897
3898 assert(context);
3899 assert(exit_status);
3900
3901 if (context->working_directory_home) {
3902
3903 if (!home) {
3904 *exit_status = EXIT_CHDIR;
3905 return -ENXIO;
3906 }
3907
3908 wd = home;
3909
3910 } else
3911 wd = empty_to_root(context->working_directory);
3912
3913 if (params->flags & EXEC_APPLY_CHROOT)
3914 d = wd;
3915 else
3916 d = prefix_roota(context->root_directory, wd);
3917
3918 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3919 *exit_status = EXIT_CHDIR;
3920 return -errno;
3921 }
3922
3923 return 0;
3924 }
3925
3926 static int apply_root_directory(
3927 const ExecContext *context,
3928 const ExecParameters *params,
3929 const bool needs_mount_ns,
3930 int *exit_status) {
3931
3932 assert(context);
3933 assert(exit_status);
3934
3935 if (params->flags & EXEC_APPLY_CHROOT)
3936 if (!needs_mount_ns && context->root_directory)
3937 if (chroot(context->root_directory) < 0) {
3938 *exit_status = EXIT_CHROOT;
3939 return -errno;
3940 }
3941
3942 return 0;
3943 }
3944
3945 static int setup_keyring(
3946 const Unit *u,
3947 const ExecContext *context,
3948 const ExecParameters *p,
3949 uid_t uid, gid_t gid) {
3950
3951 key_serial_t keyring;
3952 int r = 0;
3953 uid_t saved_uid;
3954 gid_t saved_gid;
3955
3956 assert(u);
3957 assert(context);
3958 assert(p);
3959
3960 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3961 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3962 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3963 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3964 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3965 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3966
3967 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3968 return 0;
3969
3970 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3971 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3972 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3973 * & group is just as nasty as acquiring a reference to the user keyring. */
3974
3975 saved_uid = getuid();
3976 saved_gid = getgid();
3977
3978 if (gid_is_valid(gid) && gid != saved_gid) {
3979 if (setregid(gid, -1) < 0)
3980 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3981 }
3982
3983 if (uid_is_valid(uid) && uid != saved_uid) {
3984 if (setreuid(uid, -1) < 0) {
3985 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3986 goto out;
3987 }
3988 }
3989
3990 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3991 if (keyring == -1) {
3992 if (errno == ENOSYS)
3993 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3994 else if (ERRNO_IS_PRIVILEGE(errno))
3995 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3996 else if (errno == EDQUOT)
3997 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3998 else
3999 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
4000
4001 goto out;
4002 }
4003
4004 /* When requested link the user keyring into the session keyring. */
4005 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
4006
4007 if (keyctl(KEYCTL_LINK,
4008 KEY_SPEC_USER_KEYRING,
4009 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
4010 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
4011 goto out;
4012 }
4013 }
4014
4015 /* Restore uid/gid back */
4016 if (uid_is_valid(uid) && uid != saved_uid) {
4017 if (setreuid(saved_uid, -1) < 0) {
4018 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
4019 goto out;
4020 }
4021 }
4022
4023 if (gid_is_valid(gid) && gid != saved_gid) {
4024 if (setregid(saved_gid, -1) < 0)
4025 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
4026 }
4027
4028 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
4029 if (!sd_id128_is_null(u->invocation_id)) {
4030 key_serial_t key;
4031
4032 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
4033 if (key == -1)
4034 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
4035 else {
4036 if (keyctl(KEYCTL_SETPERM, key,
4037 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
4038 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
4039 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
4040 }
4041 }
4042
4043 out:
4044 /* Revert back uid & gid for the last time, and exit */
4045 /* no extra logging, as only the first already reported error matters */
4046 if (getuid() != saved_uid)
4047 (void) setreuid(saved_uid, -1);
4048
4049 if (getgid() != saved_gid)
4050 (void) setregid(saved_gid, -1);
4051
4052 return r;
4053 }
4054
4055 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
4056 assert(array);
4057 assert(n);
4058 assert(pair);
4059
4060 if (pair[0] >= 0)
4061 array[(*n)++] = pair[0];
4062 if (pair[1] >= 0)
4063 array[(*n)++] = pair[1];
4064 }
4065
4066 static int close_remaining_fds(
4067 const ExecParameters *params,
4068 const ExecRuntime *runtime,
4069 int user_lookup_fd,
4070 int socket_fd,
4071 const int *fds, size_t n_fds) {
4072
4073 size_t n_dont_close = 0;
4074 int dont_close[n_fds + 12];
4075
4076 assert(params);
4077
4078 if (params->stdin_fd >= 0)
4079 dont_close[n_dont_close++] = params->stdin_fd;
4080 if (params->stdout_fd >= 0)
4081 dont_close[n_dont_close++] = params->stdout_fd;
4082 if (params->stderr_fd >= 0)
4083 dont_close[n_dont_close++] = params->stderr_fd;
4084
4085 if (socket_fd >= 0)
4086 dont_close[n_dont_close++] = socket_fd;
4087 if (n_fds > 0) {
4088 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
4089 n_dont_close += n_fds;
4090 }
4091
4092 if (runtime && runtime->shared) {
4093 append_socket_pair(dont_close, &n_dont_close, runtime->shared->netns_storage_socket);
4094 append_socket_pair(dont_close, &n_dont_close, runtime->shared->ipcns_storage_socket);
4095 }
4096
4097 if (runtime && runtime->dynamic_creds) {
4098 if (runtime->dynamic_creds->user)
4099 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->user->storage_socket);
4100 if (runtime->dynamic_creds->group)
4101 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->group->storage_socket);
4102 }
4103
4104 if (user_lookup_fd >= 0)
4105 dont_close[n_dont_close++] = user_lookup_fd;
4106
4107 return close_all_fds(dont_close, n_dont_close);
4108 }
4109
4110 static int send_user_lookup(
4111 Unit *unit,
4112 int user_lookup_fd,
4113 uid_t uid,
4114 gid_t gid) {
4115
4116 assert(unit);
4117
4118 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
4119 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
4120 * specified. */
4121
4122 if (user_lookup_fd < 0)
4123 return 0;
4124
4125 if (!uid_is_valid(uid) && !gid_is_valid(gid))
4126 return 0;
4127
4128 if (writev(user_lookup_fd,
4129 (struct iovec[]) {
4130 IOVEC_MAKE(&uid, sizeof(uid)),
4131 IOVEC_MAKE(&gid, sizeof(gid)),
4132 IOVEC_MAKE_STRING(unit->id) }, 3) < 0)
4133 return -errno;
4134
4135 return 0;
4136 }
4137
4138 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
4139 int r;
4140
4141 assert(c);
4142 assert(home);
4143 assert(buf);
4144
4145 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
4146
4147 if (*home)
4148 return 0;
4149
4150 if (!c->working_directory_home)
4151 return 0;
4152
4153 r = get_home_dir(buf);
4154 if (r < 0)
4155 return r;
4156
4157 *home = *buf;
4158 return 1;
4159 }
4160
4161 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
4162 _cleanup_strv_free_ char ** list = NULL;
4163 int r;
4164
4165 assert(c);
4166 assert(p);
4167 assert(ret);
4168
4169 assert(c->dynamic_user);
4170
4171 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
4172 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
4173 * directories. */
4174
4175 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
4176 if (t == EXEC_DIRECTORY_CONFIGURATION)
4177 continue;
4178
4179 if (!p->prefix[t])
4180 continue;
4181
4182 for (size_t i = 0; i < c->directories[t].n_items; i++) {
4183 char *e;
4184
4185 if (exec_directory_is_private(c, t))
4186 e = path_join(p->prefix[t], "private", c->directories[t].items[i].path);
4187 else
4188 e = path_join(p->prefix[t], c->directories[t].items[i].path);
4189 if (!e)
4190 return -ENOMEM;
4191
4192 r = strv_consume(&list, e);
4193 if (r < 0)
4194 return r;
4195 }
4196 }
4197
4198 *ret = TAKE_PTR(list);
4199
4200 return 0;
4201 }
4202
4203 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
4204 bool using_subcgroup;
4205 char *p;
4206
4207 assert(params);
4208 assert(ret);
4209
4210 if (!params->cgroup_path)
4211 return -EINVAL;
4212
4213 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
4214 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
4215 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
4216 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
4217 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
4218 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
4219 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
4220 * flag, which is only passed for the former statements, not for the latter. */
4221
4222 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
4223 if (using_subcgroup)
4224 p = path_join(params->cgroup_path, ".control");
4225 else
4226 p = strdup(params->cgroup_path);
4227 if (!p)
4228 return -ENOMEM;
4229
4230 *ret = p;
4231 return using_subcgroup;
4232 }
4233
4234 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
4235 _cleanup_(cpu_set_reset) CPUSet s = {};
4236 int r;
4237
4238 assert(c);
4239 assert(ret);
4240
4241 if (!c->numa_policy.nodes.set) {
4242 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
4243 return 0;
4244 }
4245
4246 r = numa_to_cpu_set(&c->numa_policy, &s);
4247 if (r < 0)
4248 return r;
4249
4250 cpu_set_reset(ret);
4251
4252 return cpu_set_add_all(ret, &s);
4253 }
4254
4255 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
4256 assert(c);
4257
4258 return c->cpu_affinity_from_numa;
4259 }
4260
4261 static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
4262 int r;
4263
4264 assert(fds);
4265 assert(n_fds);
4266 assert(*n_fds < fds_size);
4267 assert(ret_fd);
4268
4269 if (fd < 0) {
4270 *ret_fd = -EBADF;
4271 return 0;
4272 }
4273
4274 if (fd < 3 + (int) *n_fds) {
4275 /* Let's move the fd up, so that it's outside of the fd range we will use to store
4276 * the fds we pass to the process (or which are closed only during execve). */
4277
4278 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
4279 if (r < 0)
4280 return -errno;
4281
4282 close_and_replace(fd, r);
4283 }
4284
4285 *ret_fd = fds[*n_fds] = fd;
4286 (*n_fds) ++;
4287 return 1;
4288 }
4289
4290 static int connect_unix_harder(Unit *u, const OpenFile *of, int ofd) {
4291 union sockaddr_union addr = {
4292 .un.sun_family = AF_UNIX,
4293 };
4294 socklen_t sa_len;
4295 static const int socket_types[] = { SOCK_DGRAM, SOCK_STREAM, SOCK_SEQPACKET };
4296 int r;
4297
4298 assert(u);
4299 assert(of);
4300 assert(ofd >= 0);
4301
4302 r = sockaddr_un_set_path(&addr.un, FORMAT_PROC_FD_PATH(ofd));
4303 if (r < 0)
4304 return log_unit_error_errno(u, r, "Failed to set sockaddr for %s: %m", of->path);
4305
4306 sa_len = r;
4307
4308 for (size_t i = 0; i < ELEMENTSOF(socket_types); i++) {
4309 _cleanup_close_ int fd = -EBADF;
4310
4311 fd = socket(AF_UNIX, socket_types[i] | SOCK_CLOEXEC, 0);
4312 if (fd < 0)
4313 return log_unit_error_errno(u, errno, "Failed to create socket for %s: %m", of->path);
4314
4315 r = RET_NERRNO(connect(fd, &addr.sa, sa_len));
4316 if (r == -EPROTOTYPE)
4317 continue;
4318 if (r < 0)
4319 return log_unit_error_errno(u, r, "Failed to connect socket for %s: %m", of->path);
4320
4321 return TAKE_FD(fd);
4322 }
4323
4324 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EPROTOTYPE), "Failed to connect socket for \"%s\".", of->path);
4325 }
4326
4327 static int get_open_file_fd(Unit *u, const OpenFile *of) {
4328 struct stat st;
4329 _cleanup_close_ int fd = -EBADF, ofd = -EBADF;
4330
4331 assert(u);
4332 assert(of);
4333
4334 ofd = open(of->path, O_PATH | O_CLOEXEC);
4335 if (ofd < 0)
4336 return log_unit_error_errno(u, errno, "Could not open \"%s\": %m", of->path);
4337
4338 if (fstat(ofd, &st) < 0)
4339 return log_unit_error_errno(u, errno, "Failed to stat %s: %m", of->path);
4340
4341 if (S_ISSOCK(st.st_mode)) {
4342 fd = connect_unix_harder(u, of, ofd);
4343 if (fd < 0)
4344 return fd;
4345
4346 if (FLAGS_SET(of->flags, OPENFILE_READ_ONLY) && shutdown(fd, SHUT_WR) < 0)
4347 return log_unit_error_errno(u, errno, "Failed to shutdown send for socket %s: %m",
4348 of->path);
4349
4350 log_unit_debug(u, "socket %s opened (fd=%d)", of->path, fd);
4351 } else {
4352 int flags = FLAGS_SET(of->flags, OPENFILE_READ_ONLY) ? O_RDONLY : O_RDWR;
4353 if (FLAGS_SET(of->flags, OPENFILE_APPEND))
4354 flags |= O_APPEND;
4355 else if (FLAGS_SET(of->flags, OPENFILE_TRUNCATE))
4356 flags |= O_TRUNC;
4357
4358 fd = fd_reopen(ofd, flags | O_CLOEXEC);
4359 if (fd < 0)
4360 return log_unit_error_errno(u, fd, "Failed to open file %s: %m", of->path);
4361
4362 log_unit_debug(u, "file %s opened (fd=%d)", of->path, fd);
4363 }
4364
4365 return TAKE_FD(fd);
4366 }
4367
4368 static int collect_open_file_fds(
4369 Unit *u,
4370 OpenFile* open_files,
4371 int **fds,
4372 char ***fdnames,
4373 size_t *n_fds) {
4374 int r;
4375
4376 assert(u);
4377 assert(fds);
4378 assert(fdnames);
4379 assert(n_fds);
4380
4381 LIST_FOREACH(open_files, of, open_files) {
4382 _cleanup_close_ int fd = -EBADF;
4383
4384 fd = get_open_file_fd(u, of);
4385 if (fd < 0) {
4386 if (FLAGS_SET(of->flags, OPENFILE_GRACEFUL)) {
4387 log_unit_debug_errno(u, fd, "Failed to get OpenFile= file descriptor for %s, ignoring: %m", of->path);
4388 continue;
4389 }
4390
4391 return fd;
4392 }
4393
4394 if (!GREEDY_REALLOC(*fds, *n_fds + 1))
4395 return -ENOMEM;
4396
4397 r = strv_extend(fdnames, of->fdname);
4398 if (r < 0)
4399 return r;
4400
4401 (*fds)[*n_fds] = TAKE_FD(fd);
4402
4403 (*n_fds)++;
4404 }
4405
4406 return 0;
4407 }
4408
4409 static void log_command_line(Unit *unit, const char *msg, const char *executable, char **argv) {
4410 assert(unit);
4411 assert(msg);
4412 assert(executable);
4413
4414 if (!DEBUG_LOGGING)
4415 return;
4416
4417 _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY);
4418
4419 log_unit_struct(unit, LOG_DEBUG,
4420 "EXECUTABLE=%s", executable,
4421 LOG_UNIT_MESSAGE(unit, "%s: %s", msg, strnull(cmdline)),
4422 LOG_UNIT_INVOCATION_ID(unit));
4423 }
4424
4425 static int exec_child(
4426 Unit *unit,
4427 const ExecCommand *command,
4428 const ExecContext *context,
4429 const ExecParameters *params,
4430 ExecRuntime *runtime,
4431 const CGroupContext *cgroup_context,
4432 int socket_fd,
4433 const int named_iofds[static 3],
4434 int *params_fds,
4435 size_t n_socket_fds,
4436 size_t n_storage_fds,
4437 char **files_env,
4438 int user_lookup_fd,
4439 int *exit_status) {
4440
4441 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL;
4442 int r, ngids = 0, exec_fd;
4443 _cleanup_free_ gid_t *supplementary_gids = NULL;
4444 const char *username = NULL, *groupname = NULL;
4445 _cleanup_free_ char *home_buffer = NULL, *memory_pressure_path = NULL;
4446 const char *home = NULL, *shell = NULL;
4447 char **final_argv = NULL;
4448 dev_t journal_stream_dev = 0;
4449 ino_t journal_stream_ino = 0;
4450 bool userns_set_up = false;
4451 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
4452 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
4453 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
4454 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
4455 #if HAVE_SELINUX
4456 _cleanup_free_ char *mac_selinux_context_net = NULL;
4457 bool use_selinux = false;
4458 #endif
4459 #if ENABLE_SMACK
4460 bool use_smack = false;
4461 #endif
4462 #if HAVE_APPARMOR
4463 bool use_apparmor = false;
4464 #endif
4465 uid_t saved_uid = getuid();
4466 gid_t saved_gid = getgid();
4467 uid_t uid = UID_INVALID;
4468 gid_t gid = GID_INVALID;
4469 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
4470 n_keep_fds; /* total number of fds not to close */
4471 int secure_bits;
4472 _cleanup_free_ gid_t *gids_after_pam = NULL;
4473 int ngids_after_pam = 0;
4474 _cleanup_free_ int *fds = NULL;
4475 _cleanup_strv_free_ char **fdnames = NULL;
4476
4477 assert(unit);
4478 assert(command);
4479 assert(context);
4480 assert(params);
4481 assert(exit_status);
4482
4483 /* Explicitly test for CVE-2021-4034 inspired invocations */
4484 assert(command->path);
4485 assert(!strv_isempty(command->argv));
4486
4487 rename_process_from_path(command->path);
4488
4489 /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main
4490 * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially,
4491 * both of which will be demoted to SIG_DFL. */
4492 (void) default_signals(SIGNALS_CRASH_HANDLER,
4493 SIGNALS_IGNORE);
4494
4495 if (context->ignore_sigpipe)
4496 (void) ignore_signals(SIGPIPE);
4497
4498 r = reset_signal_mask();
4499 if (r < 0) {
4500 *exit_status = EXIT_SIGNAL_MASK;
4501 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
4502 }
4503
4504 if (params->idle_pipe)
4505 do_idle_pipe_dance(params->idle_pipe);
4506
4507 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
4508 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
4509 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
4510 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
4511
4512 log_forget_fds();
4513 log_set_open_when_needed(true);
4514 log_settle_target();
4515
4516 /* In case anything used libc syslog(), close this here, too */
4517 closelog();
4518
4519 fds = newdup(int, params_fds, n_fds);
4520 if (!fds) {
4521 *exit_status = EXIT_MEMORY;
4522 return log_oom();
4523 }
4524
4525 fdnames = strv_copy((char**) params->fd_names);
4526 if (!fdnames) {
4527 *exit_status = EXIT_MEMORY;
4528 return log_oom();
4529 }
4530
4531 r = collect_open_file_fds(unit, params->open_files, &fds, &fdnames, &n_fds);
4532 if (r < 0) {
4533 *exit_status = EXIT_FDS;
4534 return log_unit_error_errno(unit, r, "Failed to get OpenFile= file descriptors: %m");
4535 }
4536
4537 int keep_fds[n_fds + 3];
4538 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
4539 n_keep_fds = n_fds;
4540
4541 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
4542 if (r < 0) {
4543 *exit_status = EXIT_FDS;
4544 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4545 }
4546
4547 #if HAVE_LIBBPF
4548 if (unit->manager->restrict_fs) {
4549 int bpf_map_fd = lsm_bpf_map_restrict_fs_fd(unit);
4550 if (bpf_map_fd < 0) {
4551 *exit_status = EXIT_FDS;
4552 return log_unit_error_errno(unit, bpf_map_fd, "Failed to get restrict filesystems BPF map fd: %m");
4553 }
4554
4555 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, bpf_map_fd, &bpf_map_fd);
4556 if (r < 0) {
4557 *exit_status = EXIT_FDS;
4558 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4559 }
4560 }
4561 #endif
4562
4563 r = close_remaining_fds(params, runtime, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
4564 if (r < 0) {
4565 *exit_status = EXIT_FDS;
4566 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
4567 }
4568
4569 if (!context->same_pgrp &&
4570 setsid() < 0) {
4571 *exit_status = EXIT_SETSID;
4572 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
4573 }
4574
4575 exec_context_tty_reset(context, params);
4576
4577 if (unit_shall_confirm_spawn(unit)) {
4578 _cleanup_free_ char *cmdline = NULL;
4579
4580 cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
4581 if (!cmdline) {
4582 *exit_status = EXIT_MEMORY;
4583 return log_oom();
4584 }
4585
4586 r = ask_for_confirmation(context, params->confirm_spawn, unit, cmdline);
4587 if (r != CONFIRM_EXECUTE) {
4588 if (r == CONFIRM_PRETEND_SUCCESS) {
4589 *exit_status = EXIT_SUCCESS;
4590 return 0;
4591 }
4592 *exit_status = EXIT_CONFIRM;
4593 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
4594 "Execution cancelled by the user");
4595 }
4596 }
4597
4598 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
4599 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
4600 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
4601 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
4602 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
4603 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
4604 setenv("SYSTEMD_ACTIVATION_SCOPE", runtime_scope_to_string(unit->manager->runtime_scope), true) != 0) {
4605 *exit_status = EXIT_MEMORY;
4606 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4607 }
4608
4609 if (context->dynamic_user && runtime && runtime->dynamic_creds) {
4610 _cleanup_strv_free_ char **suggested_paths = NULL;
4611
4612 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
4613 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */
4614 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
4615 *exit_status = EXIT_USER;
4616 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4617 }
4618
4619 r = compile_suggested_paths(context, params, &suggested_paths);
4620 if (r < 0) {
4621 *exit_status = EXIT_MEMORY;
4622 return log_oom();
4623 }
4624
4625 r = dynamic_creds_realize(runtime->dynamic_creds, suggested_paths, &uid, &gid);
4626 if (r < 0) {
4627 *exit_status = EXIT_USER;
4628 if (r == -EILSEQ)
4629 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4630 "Failed to update dynamic user credentials: User or group with specified name already exists.");
4631 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
4632 }
4633
4634 if (!uid_is_valid(uid)) {
4635 *exit_status = EXIT_USER;
4636 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
4637 }
4638
4639 if (!gid_is_valid(gid)) {
4640 *exit_status = EXIT_USER;
4641 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
4642 }
4643
4644 if (runtime->dynamic_creds->user)
4645 username = runtime->dynamic_creds->user->name;
4646
4647 } else {
4648 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
4649 if (r < 0) {
4650 *exit_status = EXIT_USER;
4651 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
4652 }
4653
4654 r = get_fixed_group(context, &groupname, &gid);
4655 if (r < 0) {
4656 *exit_status = EXIT_GROUP;
4657 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
4658 }
4659 }
4660
4661 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
4662 r = get_supplementary_groups(context, username, groupname, gid,
4663 &supplementary_gids, &ngids);
4664 if (r < 0) {
4665 *exit_status = EXIT_GROUP;
4666 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
4667 }
4668
4669 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
4670 if (r < 0) {
4671 *exit_status = EXIT_USER;
4672 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
4673 }
4674
4675 user_lookup_fd = safe_close(user_lookup_fd);
4676
4677 r = acquire_home(context, uid, &home, &home_buffer);
4678 if (r < 0) {
4679 *exit_status = EXIT_CHDIR;
4680 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
4681 }
4682
4683 /* If a socket is connected to STDIN/STDOUT/STDERR, we must drop O_NONBLOCK */
4684 if (socket_fd >= 0)
4685 (void) fd_nonblock(socket_fd, false);
4686
4687 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
4688 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
4689 if (params->cgroup_path) {
4690 _cleanup_free_ char *p = NULL;
4691
4692 r = exec_parameters_get_cgroup_path(params, &p);
4693 if (r < 0) {
4694 *exit_status = EXIT_CGROUP;
4695 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4696 }
4697
4698 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
4699 if (r == -EUCLEAN) {
4700 *exit_status = EXIT_CGROUP;
4701 return log_unit_error_errno(unit, r, "Failed to attach process to cgroup %s "
4702 "because the cgroup or one of its parents or "
4703 "siblings is in the threaded mode: %m", p);
4704 }
4705 if (r < 0) {
4706 *exit_status = EXIT_CGROUP;
4707 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
4708 }
4709 }
4710
4711 if (context->network_namespace_path && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
4712 r = open_shareable_ns_path(runtime->shared->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET);
4713 if (r < 0) {
4714 *exit_status = EXIT_NETWORK;
4715 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
4716 }
4717 }
4718
4719 if (context->ipc_namespace_path && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
4720 r = open_shareable_ns_path(runtime->shared->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC);
4721 if (r < 0) {
4722 *exit_status = EXIT_NAMESPACE;
4723 return log_unit_error_errno(unit, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path);
4724 }
4725 }
4726
4727 r = setup_input(context, params, socket_fd, named_iofds);
4728 if (r < 0) {
4729 *exit_status = EXIT_STDIN;
4730 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
4731 }
4732
4733 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4734 if (r < 0) {
4735 *exit_status = EXIT_STDOUT;
4736 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
4737 }
4738
4739 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4740 if (r < 0) {
4741 *exit_status = EXIT_STDERR;
4742 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
4743 }
4744
4745 if (context->oom_score_adjust_set) {
4746 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
4747 * prohibit write access to this file, and we shouldn't trip up over that. */
4748 r = set_oom_score_adjust(context->oom_score_adjust);
4749 if (ERRNO_IS_PRIVILEGE(r))
4750 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
4751 else if (r < 0) {
4752 *exit_status = EXIT_OOM_ADJUST;
4753 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
4754 }
4755 }
4756
4757 if (context->coredump_filter_set) {
4758 r = set_coredump_filter(context->coredump_filter);
4759 if (ERRNO_IS_PRIVILEGE(r))
4760 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
4761 else if (r < 0)
4762 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
4763 }
4764
4765 if (context->nice_set) {
4766 r = setpriority_closest(context->nice);
4767 if (r < 0)
4768 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
4769 }
4770
4771 if (context->cpu_sched_set) {
4772 struct sched_param param = {
4773 .sched_priority = context->cpu_sched_priority,
4774 };
4775
4776 r = sched_setscheduler(0,
4777 context->cpu_sched_policy |
4778 (context->cpu_sched_reset_on_fork ?
4779 SCHED_RESET_ON_FORK : 0),
4780 &param);
4781 if (r < 0) {
4782 *exit_status = EXIT_SETSCHEDULER;
4783 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
4784 }
4785 }
4786
4787 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
4788 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
4789 const CPUSet *cpu_set;
4790
4791 if (context->cpu_affinity_from_numa) {
4792 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
4793 if (r < 0) {
4794 *exit_status = EXIT_CPUAFFINITY;
4795 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
4796 }
4797
4798 cpu_set = &converted_cpu_set;
4799 } else
4800 cpu_set = &context->cpu_set;
4801
4802 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
4803 *exit_status = EXIT_CPUAFFINITY;
4804 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
4805 }
4806 }
4807
4808 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
4809 r = apply_numa_policy(&context->numa_policy);
4810 if (r < 0) {
4811 if (ERRNO_IS_NOT_SUPPORTED(r))
4812 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
4813 else {
4814 *exit_status = EXIT_NUMA_POLICY;
4815 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4816 }
4817 }
4818 }
4819
4820 if (context->ioprio_set)
4821 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4822 *exit_status = EXIT_IOPRIO;
4823 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4824 }
4825
4826 if (context->timer_slack_nsec != NSEC_INFINITY)
4827 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4828 *exit_status = EXIT_TIMERSLACK;
4829 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4830 }
4831
4832 if (context->personality != PERSONALITY_INVALID) {
4833 r = safe_personality(context->personality);
4834 if (r < 0) {
4835 *exit_status = EXIT_PERSONALITY;
4836 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4837 }
4838 }
4839
4840 if (context->utmp_id) {
4841 const char *line = context->tty_path ?
4842 (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) :
4843 NULL;
4844 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4845 line,
4846 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4847 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4848 USER_PROCESS,
4849 username);
4850 }
4851
4852 if (uid_is_valid(uid)) {
4853 r = chown_terminal(STDIN_FILENO, uid);
4854 if (r < 0) {
4855 *exit_status = EXIT_STDIN;
4856 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4857 }
4858 }
4859
4860 if (params->cgroup_path) {
4861 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4862 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4863 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4864 * touch a single hierarchy too. */
4865
4866 if (params->flags & EXEC_CGROUP_DELEGATE) {
4867 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4868 if (r < 0) {
4869 *exit_status = EXIT_CGROUP;
4870 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4871 }
4872 }
4873
4874 if (cgroup_context && cg_unified() > 0 && is_pressure_supported() > 0) {
4875 if (cgroup_context_want_memory_pressure(cgroup_context)) {
4876 r = cg_get_path("memory", params->cgroup_path, "memory.pressure", &memory_pressure_path);
4877 if (r < 0) {
4878 *exit_status = EXIT_MEMORY;
4879 return log_oom();
4880 }
4881
4882 r = chmod_and_chown(memory_pressure_path, 0644, uid, gid);
4883 if (r < 0) {
4884 log_unit_full_errno(unit, r == -ENOENT || ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r,
4885 "Failed to adjust ownership of '%s', ignoring: %m", memory_pressure_path);
4886 memory_pressure_path = mfree(memory_pressure_path);
4887 }
4888 } else if (cgroup_context->memory_pressure_watch == CGROUP_PRESSURE_WATCH_OFF) {
4889 memory_pressure_path = strdup("/dev/null"); /* /dev/null is explicit indicator for turning of memory pressure watch */
4890 if (!memory_pressure_path) {
4891 *exit_status = EXIT_MEMORY;
4892 return log_oom();
4893 }
4894 }
4895 }
4896 }
4897
4898 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4899
4900 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4901 r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status);
4902 if (r < 0)
4903 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4904 }
4905
4906 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4907 r = setup_credentials(context, params, unit->id, uid);
4908 if (r < 0) {
4909 *exit_status = EXIT_CREDENTIALS;
4910 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4911 }
4912 }
4913
4914 r = build_environment(
4915 unit,
4916 context,
4917 params,
4918 cgroup_context,
4919 n_fds,
4920 fdnames,
4921 home,
4922 username,
4923 shell,
4924 journal_stream_dev,
4925 journal_stream_ino,
4926 memory_pressure_path,
4927 &our_env);
4928 if (r < 0) {
4929 *exit_status = EXIT_MEMORY;
4930 return log_oom();
4931 }
4932
4933 r = build_pass_environment(context, &pass_env);
4934 if (r < 0) {
4935 *exit_status = EXIT_MEMORY;
4936 return log_oom();
4937 }
4938
4939 /* The $PATH variable is set to the default path in params->environment. However, this is overridden
4940 * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does
4941 * not specify PATH but the unit has ExecSearchPath. */
4942 if (!strv_isempty(context->exec_search_path)) {
4943 _cleanup_free_ char *joined = NULL;
4944
4945 joined = strv_join(context->exec_search_path, ":");
4946 if (!joined) {
4947 *exit_status = EXIT_MEMORY;
4948 return log_oom();
4949 }
4950
4951 r = strv_env_assign(&joined_exec_search_path, "PATH", joined);
4952 if (r < 0) {
4953 *exit_status = EXIT_MEMORY;
4954 return log_oom();
4955 }
4956 }
4957
4958 accum_env = strv_env_merge(params->environment,
4959 our_env,
4960 joined_exec_search_path,
4961 pass_env,
4962 context->environment,
4963 files_env);
4964 if (!accum_env) {
4965 *exit_status = EXIT_MEMORY;
4966 return log_oom();
4967 }
4968 accum_env = strv_env_clean(accum_env);
4969
4970 (void) umask(context->umask);
4971
4972 r = setup_keyring(unit, context, params, uid, gid);
4973 if (r < 0) {
4974 *exit_status = EXIT_KEYRING;
4975 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4976 }
4977
4978 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted
4979 * from it. */
4980 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4981
4982 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked
4983 * for it, and the kernel doesn't actually support ambient caps. */
4984 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4985
4986 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly
4987 * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not
4988 * desired. */
4989 if (needs_ambient_hack)
4990 needs_setuid = false;
4991 else
4992 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4993
4994 uint64_t capability_ambient_set = context->capability_ambient_set;
4995
4996 if (needs_sandboxing) {
4997 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on
4998 * /sys being present. The actual MAC context application will happen later, as late as
4999 * possible, to avoid impacting our own code paths. */
5000
5001 #if HAVE_SELINUX
5002 use_selinux = mac_selinux_use();
5003 #endif
5004 #if ENABLE_SMACK
5005 use_smack = mac_smack_use();
5006 #endif
5007 #if HAVE_APPARMOR
5008 use_apparmor = mac_apparmor_use();
5009 #endif
5010 }
5011
5012 if (needs_sandboxing) {
5013 int which_failed;
5014
5015 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
5016 * is set here. (See below.) */
5017
5018 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
5019 if (r < 0) {
5020 *exit_status = EXIT_LIMITS;
5021 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
5022 }
5023 }
5024
5025 if (needs_setuid && context->pam_name && username) {
5026 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
5027 * wins here. (See above.) */
5028
5029 /* All fds passed in the fds array will be closed in the pam child process. */
5030 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
5031 if (r < 0) {
5032 *exit_status = EXIT_PAM;
5033 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
5034 }
5035
5036 if (ambient_capabilities_supported()) {
5037 uint64_t ambient_after_pam;
5038
5039 /* PAM modules might have set some ambient caps. Query them here and merge them into
5040 * the caps we want to set in the end, so that we don't end up unsetting them. */
5041 r = capability_get_ambient(&ambient_after_pam);
5042 if (r < 0) {
5043 *exit_status = EXIT_CAPABILITIES;
5044 return log_unit_error_errno(unit, r, "Failed to query ambient caps: %m");
5045 }
5046
5047 capability_ambient_set |= ambient_after_pam;
5048 }
5049
5050 ngids_after_pam = getgroups_alloc(&gids_after_pam);
5051 if (ngids_after_pam < 0) {
5052 *exit_status = EXIT_MEMORY;
5053 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
5054 }
5055 }
5056
5057 if (needs_sandboxing && context->private_users && have_effective_cap(CAP_SYS_ADMIN) <= 0) {
5058 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
5059 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
5060 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
5061
5062 userns_set_up = true;
5063 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5064 if (r < 0) {
5065 *exit_status = EXIT_USER;
5066 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
5067 }
5068 }
5069
5070 if (exec_needs_network_namespace(context) && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
5071
5072 if (ns_type_supported(NAMESPACE_NET)) {
5073 r = setup_shareable_ns(runtime->shared->netns_storage_socket, CLONE_NEWNET);
5074 if (r < 0) {
5075 if (ERRNO_IS_PRIVILEGE(r))
5076 log_unit_warning_errno(unit, r,
5077 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
5078 else {
5079 *exit_status = EXIT_NETWORK;
5080 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
5081 }
5082 }
5083 } else if (context->network_namespace_path) {
5084 *exit_status = EXIT_NETWORK;
5085 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5086 "NetworkNamespacePath= is not supported, refusing.");
5087 } else
5088 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
5089 }
5090
5091 if (exec_needs_ipc_namespace(context) && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
5092
5093 if (ns_type_supported(NAMESPACE_IPC)) {
5094 r = setup_shareable_ns(runtime->shared->ipcns_storage_socket, CLONE_NEWIPC);
5095 if (r == -EPERM)
5096 log_unit_warning_errno(unit, r,
5097 "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m");
5098 else if (r < 0) {
5099 *exit_status = EXIT_NAMESPACE;
5100 return log_unit_error_errno(unit, r, "Failed to set up IPC namespacing: %m");
5101 }
5102 } else if (context->ipc_namespace_path) {
5103 *exit_status = EXIT_NAMESPACE;
5104 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5105 "IPCNamespacePath= is not supported, refusing.");
5106 } else
5107 log_unit_warning(unit, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring.");
5108 }
5109
5110 if (needs_mount_namespace) {
5111 _cleanup_free_ char *error_path = NULL;
5112
5113 r = apply_mount_namespace(unit, command->flags, context, params, runtime, memory_pressure_path, &error_path);
5114 if (r < 0) {
5115 *exit_status = EXIT_NAMESPACE;
5116 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
5117 error_path ? ": " : "", strempty(error_path));
5118 }
5119 }
5120
5121 if (needs_sandboxing) {
5122 r = apply_protect_hostname(unit, context, exit_status);
5123 if (r < 0)
5124 return r;
5125 }
5126
5127 /* Drop groups as early as possible.
5128 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
5129 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
5130 if (needs_setuid) {
5131 _cleanup_free_ gid_t *gids_to_enforce = NULL;
5132 int ngids_to_enforce = 0;
5133
5134 ngids_to_enforce = merge_gid_lists(supplementary_gids,
5135 ngids,
5136 gids_after_pam,
5137 ngids_after_pam,
5138 &gids_to_enforce);
5139 if (ngids_to_enforce < 0) {
5140 *exit_status = EXIT_MEMORY;
5141 return log_unit_error_errno(unit,
5142 ngids_to_enforce,
5143 "Failed to merge group lists. Group membership might be incorrect: %m");
5144 }
5145
5146 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
5147 if (r < 0) {
5148 *exit_status = EXIT_GROUP;
5149 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
5150 }
5151 }
5152
5153 /* If the user namespace was not set up above, try to do it now.
5154 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
5155 * restricted by rules pertaining to combining user namespaces with other namespaces (e.g. in the
5156 * case of mount namespaces being less privileged when the mount point list is copied from a
5157 * different user namespace). */
5158
5159 if (needs_sandboxing && context->private_users && !userns_set_up) {
5160 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5161 if (r < 0) {
5162 *exit_status = EXIT_USER;
5163 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
5164 }
5165 }
5166
5167 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
5168 * shall execute. */
5169
5170 _cleanup_free_ char *executable = NULL;
5171 _cleanup_close_ int executable_fd = -EBADF;
5172 r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd);
5173 if (r < 0) {
5174 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
5175 log_unit_struct_errno(unit, LOG_INFO, r,
5176 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5177 LOG_UNIT_INVOCATION_ID(unit),
5178 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
5179 command->path),
5180 "EXECUTABLE=%s", command->path);
5181 return 0;
5182 }
5183
5184 *exit_status = EXIT_EXEC;
5185
5186 return log_unit_struct_errno(unit, LOG_INFO, r,
5187 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5188 LOG_UNIT_INVOCATION_ID(unit),
5189 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
5190 command->path),
5191 "EXECUTABLE=%s", command->path);
5192 }
5193
5194 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
5195 if (r < 0) {
5196 *exit_status = EXIT_FDS;
5197 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
5198 }
5199
5200 #if HAVE_SELINUX
5201 if (needs_sandboxing && use_selinux && params->selinux_context_net) {
5202 int fd = -EBADF;
5203
5204 if (socket_fd >= 0)
5205 fd = socket_fd;
5206 else if (params->n_socket_fds == 1)
5207 /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we
5208 * use context from that fd to compute the label. */
5209 fd = params->fds[0];
5210
5211 if (fd >= 0) {
5212 r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net);
5213 if (r < 0) {
5214 if (!context->selinux_context_ignore) {
5215 *exit_status = EXIT_SELINUX_CONTEXT;
5216 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
5217 }
5218 log_unit_debug_errno(unit, r, "Failed to determine SELinux context, ignoring: %m");
5219 }
5220 }
5221 }
5222 #endif
5223
5224 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that
5225 * we are more aggressive this time, since we don't need socket_fd and the netns and ipcns fds any
5226 * more. We do keep exec_fd however, if we have it, since we need to keep it open until the final
5227 * execve(). */
5228
5229 r = close_all_fds(keep_fds, n_keep_fds);
5230 if (r >= 0)
5231 r = shift_fds(fds, n_fds);
5232 if (r >= 0)
5233 r = flags_fds(fds, n_socket_fds, n_fds, context->non_blocking);
5234 if (r < 0) {
5235 *exit_status = EXIT_FDS;
5236 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
5237 }
5238
5239 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
5240 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
5241 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
5242 * came this far. */
5243
5244 secure_bits = context->secure_bits;
5245
5246 if (needs_sandboxing) {
5247 uint64_t bset;
5248
5249 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested.
5250 * (Note this is placed after the general resource limit initialization, see above, in order
5251 * to take precedence.) */
5252 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
5253 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
5254 *exit_status = EXIT_LIMITS;
5255 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
5256 }
5257 }
5258
5259 #if ENABLE_SMACK
5260 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
5261 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
5262 if (use_smack) {
5263 r = setup_smack(unit->manager, context, executable_fd);
5264 if (r < 0 && !context->smack_process_label_ignore) {
5265 *exit_status = EXIT_SMACK_PROCESS_LABEL;
5266 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
5267 }
5268 }
5269 #endif
5270
5271 bset = context->capability_bounding_set;
5272 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
5273 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
5274 * instead of us doing that */
5275 if (needs_ambient_hack)
5276 bset |= (UINT64_C(1) << CAP_SETPCAP) |
5277 (UINT64_C(1) << CAP_SETUID) |
5278 (UINT64_C(1) << CAP_SETGID);
5279
5280 if (!cap_test_all(bset)) {
5281 r = capability_bounding_set_drop(bset, /* right_now= */ false);
5282 if (r < 0) {
5283 *exit_status = EXIT_CAPABILITIES;
5284 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
5285 }
5286 }
5287
5288 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
5289 * keep-caps set.
5290 *
5291 * To be able to raise the ambient capabilities after setresuid() they have to be added to
5292 * the inherited set and keep caps has to be set (done in enforce_user()). After setresuid()
5293 * the ambient capabilities can be raised as they are present in the permitted and
5294 * inhertiable set. However it is possible that someone wants to set ambient capabilities
5295 * without changing the user, so we also set the ambient capabilities here.
5296 *
5297 * The requested ambient capabilities are raised in the inheritable set if the second
5298 * argument is true. */
5299 if (!needs_ambient_hack) {
5300 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ true);
5301 if (r < 0) {
5302 *exit_status = EXIT_CAPABILITIES;
5303 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
5304 }
5305 }
5306 }
5307
5308 /* chroot to root directory first, before we lose the ability to chroot */
5309 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
5310 if (r < 0)
5311 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
5312
5313 if (needs_setuid) {
5314 if (uid_is_valid(uid)) {
5315 r = enforce_user(context, uid, capability_ambient_set);
5316 if (r < 0) {
5317 *exit_status = EXIT_USER;
5318 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
5319 }
5320
5321 if (!needs_ambient_hack && capability_ambient_set != 0) {
5322
5323 /* Raise the ambient capabilities after user change. */
5324 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ false);
5325 if (r < 0) {
5326 *exit_status = EXIT_CAPABILITIES;
5327 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
5328 }
5329 }
5330 }
5331 }
5332
5333 /* Apply working directory here, because the working directory might be on NFS and only the user running
5334 * this service might have the correct privilege to change to the working directory */
5335 r = apply_working_directory(context, params, home, exit_status);
5336 if (r < 0)
5337 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
5338
5339 if (needs_sandboxing) {
5340 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
5341 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
5342 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
5343 * are restricted. */
5344
5345 #if HAVE_SELINUX
5346 if (use_selinux) {
5347 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
5348
5349 if (exec_context) {
5350 r = setexeccon(exec_context);
5351 if (r < 0) {
5352 if (!context->selinux_context_ignore) {
5353 *exit_status = EXIT_SELINUX_CONTEXT;
5354 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
5355 }
5356 log_unit_debug_errno(unit, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context);
5357 }
5358 }
5359 }
5360 #endif
5361
5362 #if HAVE_APPARMOR
5363 if (use_apparmor && context->apparmor_profile) {
5364 r = aa_change_onexec(context->apparmor_profile);
5365 if (r < 0 && !context->apparmor_profile_ignore) {
5366 *exit_status = EXIT_APPARMOR_PROFILE;
5367 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
5368 }
5369 }
5370 #endif
5371
5372 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential
5373 * EPERMs we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits
5374 * requires CAP_SETPCAP. */
5375 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
5376 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
5377 * effective set here.
5378 *
5379 * The effective set is overwritten during execve() with the following values:
5380 *
5381 * - ambient set (for non-root processes)
5382 *
5383 * - (inheritable | bounding) set for root processes)
5384 *
5385 * Hence there is no security impact to raise it in the effective set before execve
5386 */
5387 r = capability_gain_cap_setpcap(/* return_caps= */ NULL);
5388 if (r < 0) {
5389 *exit_status = EXIT_CAPABILITIES;
5390 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
5391 }
5392 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
5393 *exit_status = EXIT_SECUREBITS;
5394 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
5395 }
5396 }
5397
5398 if (context_has_no_new_privileges(context))
5399 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
5400 *exit_status = EXIT_NO_NEW_PRIVILEGES;
5401 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
5402 }
5403
5404 #if HAVE_SECCOMP
5405 r = apply_address_families(unit, context);
5406 if (r < 0) {
5407 *exit_status = EXIT_ADDRESS_FAMILIES;
5408 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
5409 }
5410
5411 r = apply_memory_deny_write_execute(unit, context);
5412 if (r < 0) {
5413 *exit_status = EXIT_SECCOMP;
5414 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
5415 }
5416
5417 r = apply_restrict_realtime(unit, context);
5418 if (r < 0) {
5419 *exit_status = EXIT_SECCOMP;
5420 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
5421 }
5422
5423 r = apply_restrict_suid_sgid(unit, context);
5424 if (r < 0) {
5425 *exit_status = EXIT_SECCOMP;
5426 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
5427 }
5428
5429 r = apply_restrict_namespaces(unit, context);
5430 if (r < 0) {
5431 *exit_status = EXIT_SECCOMP;
5432 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
5433 }
5434
5435 r = apply_protect_sysctl(unit, context);
5436 if (r < 0) {
5437 *exit_status = EXIT_SECCOMP;
5438 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
5439 }
5440
5441 r = apply_protect_kernel_modules(unit, context);
5442 if (r < 0) {
5443 *exit_status = EXIT_SECCOMP;
5444 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
5445 }
5446
5447 r = apply_protect_kernel_logs(unit, context);
5448 if (r < 0) {
5449 *exit_status = EXIT_SECCOMP;
5450 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
5451 }
5452
5453 r = apply_protect_clock(unit, context);
5454 if (r < 0) {
5455 *exit_status = EXIT_SECCOMP;
5456 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
5457 }
5458
5459 r = apply_private_devices(unit, context);
5460 if (r < 0) {
5461 *exit_status = EXIT_SECCOMP;
5462 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
5463 }
5464
5465 r = apply_syscall_archs(unit, context);
5466 if (r < 0) {
5467 *exit_status = EXIT_SECCOMP;
5468 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
5469 }
5470
5471 r = apply_lock_personality(unit, context);
5472 if (r < 0) {
5473 *exit_status = EXIT_SECCOMP;
5474 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
5475 }
5476
5477 r = apply_syscall_log(unit, context);
5478 if (r < 0) {
5479 *exit_status = EXIT_SECCOMP;
5480 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
5481 }
5482
5483 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
5484 * by the filter as little as possible. */
5485 r = apply_syscall_filter(unit, context, needs_ambient_hack);
5486 if (r < 0) {
5487 *exit_status = EXIT_SECCOMP;
5488 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
5489 }
5490 #endif
5491
5492 #if HAVE_LIBBPF
5493 r = apply_restrict_filesystems(unit, context);
5494 if (r < 0) {
5495 *exit_status = EXIT_BPF;
5496 return log_unit_error_errno(unit, r, "Failed to restrict filesystems: %m");
5497 }
5498 #endif
5499
5500 }
5501
5502 if (!strv_isempty(context->unset_environment)) {
5503 char **ee = NULL;
5504
5505 ee = strv_env_delete(accum_env, 1, context->unset_environment);
5506 if (!ee) {
5507 *exit_status = EXIT_MEMORY;
5508 return log_oom();
5509 }
5510
5511 strv_free_and_replace(accum_env, ee);
5512 }
5513
5514 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
5515 replaced_argv = replace_env_argv(command->argv, accum_env);
5516 if (!replaced_argv) {
5517 *exit_status = EXIT_MEMORY;
5518 return log_oom();
5519 }
5520 final_argv = replaced_argv;
5521 } else
5522 final_argv = command->argv;
5523
5524 log_command_line(unit, "Executing", executable, final_argv);
5525
5526 if (exec_fd >= 0) {
5527 uint8_t hot = 1;
5528
5529 /* We have finished with all our initializations. Let's now let the manager know that. From this point
5530 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
5531
5532 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5533 *exit_status = EXIT_EXEC;
5534 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
5535 }
5536 }
5537
5538 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
5539
5540 if (exec_fd >= 0) {
5541 uint8_t hot = 0;
5542
5543 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
5544 * that POLLHUP on it no longer means execve() succeeded. */
5545
5546 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5547 *exit_status = EXIT_EXEC;
5548 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
5549 }
5550 }
5551
5552 *exit_status = EXIT_EXEC;
5553 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
5554 }
5555
5556 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
5557 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
5558
5559 int exec_spawn(Unit *unit,
5560 ExecCommand *command,
5561 const ExecContext *context,
5562 const ExecParameters *params,
5563 ExecRuntime *runtime,
5564 const CGroupContext *cgroup_context,
5565 pid_t *ret) {
5566
5567 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
5568 _cleanup_free_ char *subcgroup_path = NULL;
5569 _cleanup_strv_free_ char **files_env = NULL;
5570 size_t n_storage_fds = 0, n_socket_fds = 0;
5571 pid_t pid;
5572
5573 assert(unit);
5574 assert(command);
5575 assert(context);
5576 assert(ret);
5577 assert(params);
5578 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
5579
5580 LOG_CONTEXT_PUSH_UNIT(unit);
5581
5582 if (context->std_input == EXEC_INPUT_SOCKET ||
5583 context->std_output == EXEC_OUTPUT_SOCKET ||
5584 context->std_error == EXEC_OUTPUT_SOCKET) {
5585
5586 if (params->n_socket_fds > 1)
5587 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
5588
5589 if (params->n_socket_fds == 0)
5590 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
5591
5592 socket_fd = params->fds[0];
5593 } else {
5594 socket_fd = -EBADF;
5595 fds = params->fds;
5596 n_socket_fds = params->n_socket_fds;
5597 n_storage_fds = params->n_storage_fds;
5598 }
5599
5600 r = exec_context_named_iofds(context, params, named_iofds);
5601 if (r < 0)
5602 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
5603
5604 r = exec_context_load_environment(unit, context, &files_env);
5605 if (r < 0)
5606 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
5607
5608 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
5609 and, until the next SELinux policy changes, we save further reloads in future children. */
5610 mac_selinux_maybe_reload();
5611
5612 /* We won't know the real executable path until we create the mount namespace in the child, but we
5613 want to log from the parent, so we use the possibly inaccurate path here. */
5614 log_command_line(unit, "About to execute", command->path, command->argv);
5615
5616 if (params->cgroup_path) {
5617 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
5618 if (r < 0)
5619 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
5620 if (r > 0) { /* We are using a child cgroup */
5621 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
5622 if (r < 0)
5623 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
5624
5625 /* Normally we would not propagate the xattrs to children but since we created this
5626 * sub-cgroup internally we should do it. */
5627 cgroup_oomd_xattr_apply(unit, subcgroup_path);
5628 cgroup_log_xattr_apply(unit, subcgroup_path);
5629 }
5630 }
5631
5632 pid = fork();
5633 if (pid < 0)
5634 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
5635
5636 if (pid == 0) {
5637 int exit_status = EXIT_SUCCESS;
5638
5639 r = exec_child(unit,
5640 command,
5641 context,
5642 params,
5643 runtime,
5644 cgroup_context,
5645 socket_fd,
5646 named_iofds,
5647 fds,
5648 n_socket_fds,
5649 n_storage_fds,
5650 files_env,
5651 unit->manager->user_lookup_fds[1],
5652 &exit_status);
5653
5654 if (r < 0) {
5655 const char *status =
5656 exit_status_to_string(exit_status,
5657 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
5658
5659 log_unit_struct_errno(unit, LOG_ERR, r,
5660 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5661 LOG_UNIT_INVOCATION_ID(unit),
5662 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
5663 status, command->path),
5664 "EXECUTABLE=%s", command->path);
5665 }
5666
5667 _exit(exit_status);
5668 }
5669
5670 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
5671
5672 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
5673 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
5674 * process will be killed too). */
5675 if (subcgroup_path)
5676 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
5677
5678 exec_status_start(&command->exec_status, pid);
5679
5680 *ret = pid;
5681 return 0;
5682 }
5683
5684 void exec_context_init(ExecContext *c) {
5685 assert(c);
5686
5687 c->umask = 0022;
5688 c->ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO;
5689 c->cpu_sched_policy = SCHED_OTHER;
5690 c->syslog_priority = LOG_DAEMON|LOG_INFO;
5691 c->syslog_level_prefix = true;
5692 c->ignore_sigpipe = true;
5693 c->timer_slack_nsec = NSEC_INFINITY;
5694 c->personality = PERSONALITY_INVALID;
5695 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5696 c->directories[t].mode = 0755;
5697 c->timeout_clean_usec = USEC_INFINITY;
5698 c->capability_bounding_set = CAP_MASK_UNSET;
5699 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
5700 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
5701 c->log_level_max = -1;
5702 #if HAVE_SECCOMP
5703 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
5704 #endif
5705 c->tty_rows = UINT_MAX;
5706 c->tty_cols = UINT_MAX;
5707 numa_policy_reset(&c->numa_policy);
5708 c->private_mounts = -1;
5709 }
5710
5711 void exec_context_done(ExecContext *c) {
5712 assert(c);
5713
5714 c->environment = strv_free(c->environment);
5715 c->environment_files = strv_free(c->environment_files);
5716 c->pass_environment = strv_free(c->pass_environment);
5717 c->unset_environment = strv_free(c->unset_environment);
5718
5719 rlimit_free_all(c->rlimit);
5720
5721 for (size_t l = 0; l < 3; l++) {
5722 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
5723 c->stdio_file[l] = mfree(c->stdio_file[l]);
5724 }
5725
5726 c->working_directory = mfree(c->working_directory);
5727 c->root_directory = mfree(c->root_directory);
5728 c->root_image = mfree(c->root_image);
5729 c->root_image_options = mount_options_free_all(c->root_image_options);
5730 c->root_hash = mfree(c->root_hash);
5731 c->root_hash_size = 0;
5732 c->root_hash_path = mfree(c->root_hash_path);
5733 c->root_hash_sig = mfree(c->root_hash_sig);
5734 c->root_hash_sig_size = 0;
5735 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
5736 c->root_verity = mfree(c->root_verity);
5737 c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images);
5738 c->extension_directories = strv_free(c->extension_directories);
5739 c->tty_path = mfree(c->tty_path);
5740 c->syslog_identifier = mfree(c->syslog_identifier);
5741 c->user = mfree(c->user);
5742 c->group = mfree(c->group);
5743
5744 c->supplementary_groups = strv_free(c->supplementary_groups);
5745
5746 c->pam_name = mfree(c->pam_name);
5747
5748 c->read_only_paths = strv_free(c->read_only_paths);
5749 c->read_write_paths = strv_free(c->read_write_paths);
5750 c->inaccessible_paths = strv_free(c->inaccessible_paths);
5751 c->exec_paths = strv_free(c->exec_paths);
5752 c->no_exec_paths = strv_free(c->no_exec_paths);
5753 c->exec_search_path = strv_free(c->exec_search_path);
5754
5755 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
5756 c->bind_mounts = NULL;
5757 c->n_bind_mounts = 0;
5758 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
5759 c->temporary_filesystems = NULL;
5760 c->n_temporary_filesystems = 0;
5761 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
5762
5763 cpu_set_reset(&c->cpu_set);
5764 numa_policy_reset(&c->numa_policy);
5765
5766 c->utmp_id = mfree(c->utmp_id);
5767 c->selinux_context = mfree(c->selinux_context);
5768 c->apparmor_profile = mfree(c->apparmor_profile);
5769 c->smack_process_label = mfree(c->smack_process_label);
5770
5771 c->restrict_filesystems = set_free(c->restrict_filesystems);
5772
5773 c->syscall_filter = hashmap_free(c->syscall_filter);
5774 c->syscall_archs = set_free(c->syscall_archs);
5775 c->address_families = set_free(c->address_families);
5776
5777 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5778 exec_directory_done(&c->directories[t]);
5779
5780 c->log_level_max = -1;
5781
5782 exec_context_free_log_extra_fields(c);
5783 c->log_filter_allowed_patterns = set_free(c->log_filter_allowed_patterns);
5784 c->log_filter_denied_patterns = set_free(c->log_filter_denied_patterns);
5785
5786 c->log_ratelimit_interval_usec = 0;
5787 c->log_ratelimit_burst = 0;
5788
5789 c->stdin_data = mfree(c->stdin_data);
5790 c->stdin_data_size = 0;
5791
5792 c->network_namespace_path = mfree(c->network_namespace_path);
5793 c->ipc_namespace_path = mfree(c->ipc_namespace_path);
5794
5795 c->log_namespace = mfree(c->log_namespace);
5796
5797 c->load_credentials = hashmap_free(c->load_credentials);
5798 c->set_credentials = hashmap_free(c->set_credentials);
5799
5800 c->root_image_policy = image_policy_free(c->root_image_policy);
5801 c->mount_image_policy = image_policy_free(c->mount_image_policy);
5802 c->extension_image_policy = image_policy_free(c->extension_image_policy);
5803 }
5804
5805 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
5806 assert(c);
5807
5808 if (!runtime_prefix)
5809 return 0;
5810
5811 for (size_t i = 0; i < c->directories[EXEC_DIRECTORY_RUNTIME].n_items; i++) {
5812 _cleanup_free_ char *p = NULL;
5813
5814 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5815 p = path_join(runtime_prefix, "private", c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5816 else
5817 p = path_join(runtime_prefix, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5818 if (!p)
5819 return -ENOMEM;
5820
5821 /* We execute this synchronously, since we need to be sure this is gone when we start the
5822 * service next. */
5823 (void) rm_rf(p, REMOVE_ROOT);
5824
5825 STRV_FOREACH(symlink, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].symlinks) {
5826 _cleanup_free_ char *symlink_abs = NULL;
5827
5828 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5829 symlink_abs = path_join(runtime_prefix, "private", *symlink);
5830 else
5831 symlink_abs = path_join(runtime_prefix, *symlink);
5832 if (!symlink_abs)
5833 return -ENOMEM;
5834
5835 (void) unlink(symlink_abs);
5836 }
5837 }
5838
5839 return 0;
5840 }
5841
5842 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
5843 _cleanup_free_ char *p = NULL;
5844
5845 assert(c);
5846
5847 if (!runtime_prefix || !unit)
5848 return 0;
5849
5850 p = path_join(runtime_prefix, "credentials", unit);
5851 if (!p)
5852 return -ENOMEM;
5853
5854 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
5855 * unmount it, and afterwards remove the mount point */
5856 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
5857 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
5858
5859 return 0;
5860 }
5861
5862 int exec_context_destroy_mount_ns_dir(Unit *u) {
5863 _cleanup_free_ char *p = NULL;
5864
5865 if (!u || !MANAGER_IS_SYSTEM(u->manager))
5866 return 0;
5867
5868 p = path_join("/run/systemd/propagate/", u->id);
5869 if (!p)
5870 return -ENOMEM;
5871
5872 /* This is only filled transiently (see mount_in_namespace()), should be empty or even non-existent*/
5873 if (rmdir(p) < 0 && errno != ENOENT)
5874 log_unit_debug_errno(u, errno, "Unable to remove propagation dir '%s', ignoring: %m", p);
5875
5876 return 0;
5877 }
5878
5879 static void exec_command_done(ExecCommand *c) {
5880 assert(c);
5881
5882 c->path = mfree(c->path);
5883 c->argv = strv_free(c->argv);
5884 }
5885
5886 void exec_command_done_array(ExecCommand *c, size_t n) {
5887 for (size_t i = 0; i < n; i++)
5888 exec_command_done(c+i);
5889 }
5890
5891 ExecCommand* exec_command_free_list(ExecCommand *c) {
5892 ExecCommand *i;
5893
5894 while ((i = c)) {
5895 LIST_REMOVE(command, c, i);
5896 exec_command_done(i);
5897 free(i);
5898 }
5899
5900 return NULL;
5901 }
5902
5903 void exec_command_free_array(ExecCommand **c, size_t n) {
5904 for (size_t i = 0; i < n; i++)
5905 c[i] = exec_command_free_list(c[i]);
5906 }
5907
5908 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
5909 for (size_t i = 0; i < n; i++)
5910 exec_status_reset(&c[i].exec_status);
5911 }
5912
5913 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
5914 for (size_t i = 0; i < n; i++)
5915 LIST_FOREACH(command, z, c[i])
5916 exec_status_reset(&z->exec_status);
5917 }
5918
5919 typedef struct InvalidEnvInfo {
5920 const Unit *unit;
5921 const char *path;
5922 } InvalidEnvInfo;
5923
5924 static void invalid_env(const char *p, void *userdata) {
5925 InvalidEnvInfo *info = userdata;
5926
5927 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
5928 }
5929
5930 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
5931 assert(c);
5932
5933 switch (fd_index) {
5934
5935 case STDIN_FILENO:
5936 if (c->std_input != EXEC_INPUT_NAMED_FD)
5937 return NULL;
5938
5939 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
5940
5941 case STDOUT_FILENO:
5942 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
5943 return NULL;
5944
5945 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
5946
5947 case STDERR_FILENO:
5948 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
5949 return NULL;
5950
5951 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
5952
5953 default:
5954 return NULL;
5955 }
5956 }
5957
5958 static int exec_context_named_iofds(
5959 const ExecContext *c,
5960 const ExecParameters *p,
5961 int named_iofds[static 3]) {
5962
5963 size_t targets;
5964 const char* stdio_fdname[3];
5965 size_t n_fds;
5966
5967 assert(c);
5968 assert(p);
5969 assert(named_iofds);
5970
5971 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
5972 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
5973 (c->std_error == EXEC_OUTPUT_NAMED_FD);
5974
5975 for (size_t i = 0; i < 3; i++)
5976 stdio_fdname[i] = exec_context_fdname(c, i);
5977
5978 n_fds = p->n_storage_fds + p->n_socket_fds;
5979
5980 for (size_t i = 0; i < n_fds && targets > 0; i++)
5981 if (named_iofds[STDIN_FILENO] < 0 &&
5982 c->std_input == EXEC_INPUT_NAMED_FD &&
5983 stdio_fdname[STDIN_FILENO] &&
5984 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
5985
5986 named_iofds[STDIN_FILENO] = p->fds[i];
5987 targets--;
5988
5989 } else if (named_iofds[STDOUT_FILENO] < 0 &&
5990 c->std_output == EXEC_OUTPUT_NAMED_FD &&
5991 stdio_fdname[STDOUT_FILENO] &&
5992 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5993
5994 named_iofds[STDOUT_FILENO] = p->fds[i];
5995 targets--;
5996
5997 } else if (named_iofds[STDERR_FILENO] < 0 &&
5998 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5999 stdio_fdname[STDERR_FILENO] &&
6000 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
6001
6002 named_iofds[STDERR_FILENO] = p->fds[i];
6003 targets--;
6004 }
6005
6006 return targets == 0 ? 0 : -ENOENT;
6007 }
6008
6009 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) {
6010 _cleanup_strv_free_ char **v = NULL;
6011 int r;
6012
6013 assert(c);
6014 assert(ret);
6015
6016 STRV_FOREACH(i, c->environment_files) {
6017 _cleanup_globfree_ glob_t pglob = {};
6018 bool ignore = false;
6019 char *fn = *i;
6020
6021 if (fn[0] == '-') {
6022 ignore = true;
6023 fn++;
6024 }
6025
6026 if (!path_is_absolute(fn)) {
6027 if (ignore)
6028 continue;
6029 return -EINVAL;
6030 }
6031
6032 /* Filename supports globbing, take all matching files */
6033 r = safe_glob(fn, 0, &pglob);
6034 if (r < 0) {
6035 if (ignore)
6036 continue;
6037 return r;
6038 }
6039
6040 /* When we don't match anything, -ENOENT should be returned */
6041 assert(pglob.gl_pathc > 0);
6042
6043 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
6044 _cleanup_strv_free_ char **p = NULL;
6045
6046 r = load_env_file(NULL, pglob.gl_pathv[n], &p);
6047 if (r < 0) {
6048 if (ignore)
6049 continue;
6050 return r;
6051 }
6052
6053 /* Log invalid environment variables with filename */
6054 if (p) {
6055 InvalidEnvInfo info = {
6056 .unit = unit,
6057 .path = pglob.gl_pathv[n]
6058 };
6059
6060 p = strv_env_clean_with_callback(p, invalid_env, &info);
6061 }
6062
6063 if (!v)
6064 v = TAKE_PTR(p);
6065 else {
6066 char **m = strv_env_merge(v, p);
6067 if (!m)
6068 return -ENOMEM;
6069
6070 strv_free_and_replace(v, m);
6071 }
6072 }
6073 }
6074
6075 *ret = TAKE_PTR(v);
6076
6077 return 0;
6078 }
6079
6080 static bool tty_may_match_dev_console(const char *tty) {
6081 _cleanup_free_ char *resolved = NULL;
6082
6083 if (!tty)
6084 return true;
6085
6086 tty = skip_dev_prefix(tty);
6087
6088 /* trivial identity? */
6089 if (streq(tty, "console"))
6090 return true;
6091
6092 if (resolve_dev_console(&resolved) < 0)
6093 return true; /* if we could not resolve, assume it may */
6094
6095 /* "tty0" means the active VC, so it may be the same sometimes */
6096 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
6097 }
6098
6099 static bool exec_context_may_touch_tty(const ExecContext *ec) {
6100 assert(ec);
6101
6102 return ec->tty_reset ||
6103 ec->tty_vhangup ||
6104 ec->tty_vt_disallocate ||
6105 is_terminal_input(ec->std_input) ||
6106 is_terminal_output(ec->std_output) ||
6107 is_terminal_output(ec->std_error);
6108 }
6109
6110 bool exec_context_may_touch_console(const ExecContext *ec) {
6111
6112 return exec_context_may_touch_tty(ec) &&
6113 tty_may_match_dev_console(exec_context_tty_path(ec));
6114 }
6115
6116 static void strv_fprintf(FILE *f, char **l) {
6117 assert(f);
6118
6119 STRV_FOREACH(g, l)
6120 fprintf(f, " %s", *g);
6121 }
6122
6123 static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
6124 assert(f);
6125 assert(prefix);
6126 assert(name);
6127
6128 if (!strv_isempty(strv)) {
6129 fprintf(f, "%s%s:", prefix, name);
6130 strv_fprintf(f, strv);
6131 fputs("\n", f);
6132 }
6133 }
6134
6135 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
6136 int r;
6137
6138 assert(c);
6139 assert(f);
6140
6141 prefix = strempty(prefix);
6142
6143 fprintf(f,
6144 "%sUMask: %04o\n"
6145 "%sWorkingDirectory: %s\n"
6146 "%sRootDirectory: %s\n"
6147 "%sNonBlocking: %s\n"
6148 "%sPrivateTmp: %s\n"
6149 "%sPrivateDevices: %s\n"
6150 "%sProtectKernelTunables: %s\n"
6151 "%sProtectKernelModules: %s\n"
6152 "%sProtectKernelLogs: %s\n"
6153 "%sProtectClock: %s\n"
6154 "%sProtectControlGroups: %s\n"
6155 "%sPrivateNetwork: %s\n"
6156 "%sPrivateUsers: %s\n"
6157 "%sProtectHome: %s\n"
6158 "%sProtectSystem: %s\n"
6159 "%sMountAPIVFS: %s\n"
6160 "%sIgnoreSIGPIPE: %s\n"
6161 "%sMemoryDenyWriteExecute: %s\n"
6162 "%sRestrictRealtime: %s\n"
6163 "%sRestrictSUIDSGID: %s\n"
6164 "%sKeyringMode: %s\n"
6165 "%sProtectHostname: %s\n"
6166 "%sProtectProc: %s\n"
6167 "%sProcSubset: %s\n",
6168 prefix, c->umask,
6169 prefix, empty_to_root(c->working_directory),
6170 prefix, empty_to_root(c->root_directory),
6171 prefix, yes_no(c->non_blocking),
6172 prefix, yes_no(c->private_tmp),
6173 prefix, yes_no(c->private_devices),
6174 prefix, yes_no(c->protect_kernel_tunables),
6175 prefix, yes_no(c->protect_kernel_modules),
6176 prefix, yes_no(c->protect_kernel_logs),
6177 prefix, yes_no(c->protect_clock),
6178 prefix, yes_no(c->protect_control_groups),
6179 prefix, yes_no(c->private_network),
6180 prefix, yes_no(c->private_users),
6181 prefix, protect_home_to_string(c->protect_home),
6182 prefix, protect_system_to_string(c->protect_system),
6183 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
6184 prefix, yes_no(c->ignore_sigpipe),
6185 prefix, yes_no(c->memory_deny_write_execute),
6186 prefix, yes_no(c->restrict_realtime),
6187 prefix, yes_no(c->restrict_suid_sgid),
6188 prefix, exec_keyring_mode_to_string(c->keyring_mode),
6189 prefix, yes_no(c->protect_hostname),
6190 prefix, protect_proc_to_string(c->protect_proc),
6191 prefix, proc_subset_to_string(c->proc_subset));
6192
6193 if (c->root_image)
6194 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
6195
6196 if (c->root_image_options) {
6197 fprintf(f, "%sRootImageOptions:", prefix);
6198 LIST_FOREACH(mount_options, o, c->root_image_options)
6199 if (!isempty(o->options))
6200 fprintf(f, " %s:%s",
6201 partition_designator_to_string(o->partition_designator),
6202 o->options);
6203 fprintf(f, "\n");
6204 }
6205
6206 if (c->root_hash) {
6207 _cleanup_free_ char *encoded = NULL;
6208 encoded = hexmem(c->root_hash, c->root_hash_size);
6209 if (encoded)
6210 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
6211 }
6212
6213 if (c->root_hash_path)
6214 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
6215
6216 if (c->root_hash_sig) {
6217 _cleanup_free_ char *encoded = NULL;
6218 ssize_t len;
6219 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
6220 if (len)
6221 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
6222 }
6223
6224 if (c->root_hash_sig_path)
6225 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
6226
6227 if (c->root_verity)
6228 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
6229
6230 STRV_FOREACH(e, c->environment)
6231 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
6232
6233 STRV_FOREACH(e, c->environment_files)
6234 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
6235
6236 STRV_FOREACH(e, c->pass_environment)
6237 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
6238
6239 STRV_FOREACH(e, c->unset_environment)
6240 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
6241
6242 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
6243
6244 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
6245 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
6246
6247 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
6248 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path);
6249
6250 STRV_FOREACH(d, c->directories[dt].items[i].symlinks)
6251 fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d);
6252 }
6253 }
6254
6255 fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC));
6256
6257 if (c->nice_set)
6258 fprintf(f, "%sNice: %i\n", prefix, c->nice);
6259
6260 if (c->oom_score_adjust_set)
6261 fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust);
6262
6263 if (c->coredump_filter_set)
6264 fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter);
6265
6266 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
6267 if (c->rlimit[i]) {
6268 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
6269 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
6270 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
6271 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
6272 }
6273
6274 if (c->ioprio_set) {
6275 _cleanup_free_ char *class_str = NULL;
6276
6277 r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str);
6278 if (r >= 0)
6279 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
6280
6281 fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio));
6282 }
6283
6284 if (c->cpu_sched_set) {
6285 _cleanup_free_ char *policy_str = NULL;
6286
6287 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
6288 if (r >= 0)
6289 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
6290
6291 fprintf(f,
6292 "%sCPUSchedulingPriority: %i\n"
6293 "%sCPUSchedulingResetOnFork: %s\n",
6294 prefix, c->cpu_sched_priority,
6295 prefix, yes_no(c->cpu_sched_reset_on_fork));
6296 }
6297
6298 if (c->cpu_set.set) {
6299 _cleanup_free_ char *affinity = NULL;
6300
6301 affinity = cpu_set_to_range_string(&c->cpu_set);
6302 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
6303 }
6304
6305 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
6306 _cleanup_free_ char *nodes = NULL;
6307
6308 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
6309 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
6310 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
6311 }
6312
6313 if (c->timer_slack_nsec != NSEC_INFINITY)
6314 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
6315
6316 fprintf(f,
6317 "%sStandardInput: %s\n"
6318 "%sStandardOutput: %s\n"
6319 "%sStandardError: %s\n",
6320 prefix, exec_input_to_string(c->std_input),
6321 prefix, exec_output_to_string(c->std_output),
6322 prefix, exec_output_to_string(c->std_error));
6323
6324 if (c->std_input == EXEC_INPUT_NAMED_FD)
6325 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
6326 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
6327 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
6328 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
6329 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
6330
6331 if (c->std_input == EXEC_INPUT_FILE)
6332 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
6333 if (c->std_output == EXEC_OUTPUT_FILE)
6334 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6335 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
6336 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6337 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
6338 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6339 if (c->std_error == EXEC_OUTPUT_FILE)
6340 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6341 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
6342 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6343 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
6344 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6345
6346 if (c->tty_path)
6347 fprintf(f,
6348 "%sTTYPath: %s\n"
6349 "%sTTYReset: %s\n"
6350 "%sTTYVHangup: %s\n"
6351 "%sTTYVTDisallocate: %s\n"
6352 "%sTTYRows: %u\n"
6353 "%sTTYColumns: %u\n",
6354 prefix, c->tty_path,
6355 prefix, yes_no(c->tty_reset),
6356 prefix, yes_no(c->tty_vhangup),
6357 prefix, yes_no(c->tty_vt_disallocate),
6358 prefix, c->tty_rows,
6359 prefix, c->tty_cols);
6360
6361 if (IN_SET(c->std_output,
6362 EXEC_OUTPUT_KMSG,
6363 EXEC_OUTPUT_JOURNAL,
6364 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6365 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
6366 IN_SET(c->std_error,
6367 EXEC_OUTPUT_KMSG,
6368 EXEC_OUTPUT_JOURNAL,
6369 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6370 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
6371
6372 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
6373
6374 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
6375 if (r >= 0)
6376 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
6377
6378 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
6379 if (r >= 0)
6380 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
6381 }
6382
6383 if (c->log_level_max >= 0) {
6384 _cleanup_free_ char *t = NULL;
6385
6386 (void) log_level_to_string_alloc(c->log_level_max, &t);
6387
6388 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
6389 }
6390
6391 if (c->log_ratelimit_interval_usec > 0)
6392 fprintf(f,
6393 "%sLogRateLimitIntervalSec: %s\n",
6394 prefix, FORMAT_TIMESPAN(c->log_ratelimit_interval_usec, USEC_PER_SEC));
6395
6396 if (c->log_ratelimit_burst > 0)
6397 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
6398
6399 if (!set_isempty(c->log_filter_allowed_patterns) || !set_isempty(c->log_filter_denied_patterns)) {
6400 fprintf(f, "%sLogFilterPatterns:", prefix);
6401
6402 char *pattern;
6403 SET_FOREACH(pattern, c->log_filter_allowed_patterns)
6404 fprintf(f, " %s", pattern);
6405 SET_FOREACH(pattern, c->log_filter_denied_patterns)
6406 fprintf(f, " ~%s", pattern);
6407 fputc('\n', f);
6408 }
6409
6410 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
6411 fprintf(f, "%sLogExtraFields: ", prefix);
6412 fwrite(c->log_extra_fields[j].iov_base,
6413 1, c->log_extra_fields[j].iov_len,
6414 f);
6415 fputc('\n', f);
6416 }
6417
6418 if (c->log_namespace)
6419 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
6420
6421 if (c->secure_bits) {
6422 _cleanup_free_ char *str = NULL;
6423
6424 r = secure_bits_to_string_alloc(c->secure_bits, &str);
6425 if (r >= 0)
6426 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
6427 }
6428
6429 if (c->capability_bounding_set != CAP_MASK_UNSET) {
6430 _cleanup_free_ char *str = NULL;
6431
6432 r = capability_set_to_string(c->capability_bounding_set, &str);
6433 if (r >= 0)
6434 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
6435 }
6436
6437 if (c->capability_ambient_set != 0) {
6438 _cleanup_free_ char *str = NULL;
6439
6440 r = capability_set_to_string(c->capability_ambient_set, &str);
6441 if (r >= 0)
6442 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
6443 }
6444
6445 if (c->user)
6446 fprintf(f, "%sUser: %s\n", prefix, c->user);
6447 if (c->group)
6448 fprintf(f, "%sGroup: %s\n", prefix, c->group);
6449
6450 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
6451
6452 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
6453
6454 if (c->pam_name)
6455 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
6456
6457 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
6458 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
6459 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
6460 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
6461 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
6462 strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path);
6463
6464 for (size_t i = 0; i < c->n_bind_mounts; i++)
6465 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
6466 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
6467 c->bind_mounts[i].ignore_enoent ? "-": "",
6468 c->bind_mounts[i].source,
6469 c->bind_mounts[i].destination,
6470 c->bind_mounts[i].recursive ? "rbind" : "norbind");
6471
6472 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
6473 const TemporaryFileSystem *t = c->temporary_filesystems + i;
6474
6475 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
6476 t->path,
6477 isempty(t->options) ? "" : ":",
6478 strempty(t->options));
6479 }
6480
6481 if (c->utmp_id)
6482 fprintf(f,
6483 "%sUtmpIdentifier: %s\n",
6484 prefix, c->utmp_id);
6485
6486 if (c->selinux_context)
6487 fprintf(f,
6488 "%sSELinuxContext: %s%s\n",
6489 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
6490
6491 if (c->apparmor_profile)
6492 fprintf(f,
6493 "%sAppArmorProfile: %s%s\n",
6494 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
6495
6496 if (c->smack_process_label)
6497 fprintf(f,
6498 "%sSmackProcessLabel: %s%s\n",
6499 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
6500
6501 if (c->personality != PERSONALITY_INVALID)
6502 fprintf(f,
6503 "%sPersonality: %s\n",
6504 prefix, strna(personality_to_string(c->personality)));
6505
6506 fprintf(f,
6507 "%sLockPersonality: %s\n",
6508 prefix, yes_no(c->lock_personality));
6509
6510 if (c->syscall_filter) {
6511 fprintf(f,
6512 "%sSystemCallFilter: ",
6513 prefix);
6514
6515 if (!c->syscall_allow_list)
6516 fputc('~', f);
6517
6518 #if HAVE_SECCOMP
6519 void *id, *val;
6520 bool first = true;
6521 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
6522 _cleanup_free_ char *name = NULL;
6523 const char *errno_name = NULL;
6524 int num = PTR_TO_INT(val);
6525
6526 if (first)
6527 first = false;
6528 else
6529 fputc(' ', f);
6530
6531 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
6532 fputs(strna(name), f);
6533
6534 if (num >= 0) {
6535 errno_name = seccomp_errno_or_action_to_string(num);
6536 if (errno_name)
6537 fprintf(f, ":%s", errno_name);
6538 else
6539 fprintf(f, ":%d", num);
6540 }
6541 }
6542 #endif
6543
6544 fputc('\n', f);
6545 }
6546
6547 if (c->syscall_archs) {
6548 fprintf(f,
6549 "%sSystemCallArchitectures:",
6550 prefix);
6551
6552 #if HAVE_SECCOMP
6553 void *id;
6554 SET_FOREACH(id, c->syscall_archs)
6555 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
6556 #endif
6557 fputc('\n', f);
6558 }
6559
6560 if (exec_context_restrict_namespaces_set(c)) {
6561 _cleanup_free_ char *s = NULL;
6562
6563 r = namespace_flags_to_string(c->restrict_namespaces, &s);
6564 if (r >= 0)
6565 fprintf(f, "%sRestrictNamespaces: %s\n",
6566 prefix, strna(s));
6567 }
6568
6569 #if HAVE_LIBBPF
6570 if (exec_context_restrict_filesystems_set(c)) {
6571 char *fs;
6572 SET_FOREACH(fs, c->restrict_filesystems)
6573 fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs);
6574 }
6575 #endif
6576
6577 if (c->network_namespace_path)
6578 fprintf(f,
6579 "%sNetworkNamespacePath: %s\n",
6580 prefix, c->network_namespace_path);
6581
6582 if (c->syscall_errno > 0) {
6583 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
6584
6585 #if HAVE_SECCOMP
6586 const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
6587 if (errno_name)
6588 fputs(errno_name, f);
6589 else
6590 fprintf(f, "%d", c->syscall_errno);
6591 #endif
6592 fputc('\n', f);
6593 }
6594
6595 for (size_t i = 0; i < c->n_mount_images; i++) {
6596 fprintf(f, "%sMountImages: %s%s:%s", prefix,
6597 c->mount_images[i].ignore_enoent ? "-": "",
6598 c->mount_images[i].source,
6599 c->mount_images[i].destination);
6600 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
6601 fprintf(f, ":%s:%s",
6602 partition_designator_to_string(o->partition_designator),
6603 strempty(o->options));
6604 fprintf(f, "\n");
6605 }
6606
6607 for (size_t i = 0; i < c->n_extension_images; i++) {
6608 fprintf(f, "%sExtensionImages: %s%s", prefix,
6609 c->extension_images[i].ignore_enoent ? "-": "",
6610 c->extension_images[i].source);
6611 LIST_FOREACH(mount_options, o, c->extension_images[i].mount_options)
6612 fprintf(f, ":%s:%s",
6613 partition_designator_to_string(o->partition_designator),
6614 strempty(o->options));
6615 fprintf(f, "\n");
6616 }
6617
6618 strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories);
6619 }
6620
6621 bool exec_context_maintains_privileges(const ExecContext *c) {
6622 assert(c);
6623
6624 /* Returns true if the process forked off would run under
6625 * an unchanged UID or as root. */
6626
6627 if (!c->user)
6628 return true;
6629
6630 if (streq(c->user, "root") || streq(c->user, "0"))
6631 return true;
6632
6633 return false;
6634 }
6635
6636 int exec_context_get_effective_ioprio(const ExecContext *c) {
6637 int p;
6638
6639 assert(c);
6640
6641 if (c->ioprio_set)
6642 return c->ioprio;
6643
6644 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
6645 if (p < 0)
6646 return IOPRIO_DEFAULT_CLASS_AND_PRIO;
6647
6648 return ioprio_normalize(p);
6649 }
6650
6651 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
6652 assert(c);
6653
6654 /* Explicit setting wins */
6655 if (c->mount_apivfs_set)
6656 return c->mount_apivfs;
6657
6658 /* Default to "yes" if root directory or image are specified */
6659 if (exec_context_with_rootfs(c))
6660 return true;
6661
6662 return false;
6663 }
6664
6665 void exec_context_free_log_extra_fields(ExecContext *c) {
6666 assert(c);
6667
6668 for (size_t l = 0; l < c->n_log_extra_fields; l++)
6669 free(c->log_extra_fields[l].iov_base);
6670 c->log_extra_fields = mfree(c->log_extra_fields);
6671 c->n_log_extra_fields = 0;
6672 }
6673
6674 void exec_context_revert_tty(ExecContext *c) {
6675 _cleanup_close_ int fd = -EBADF;
6676 const char *path;
6677 struct stat st;
6678 int r;
6679
6680 assert(c);
6681
6682 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
6683 exec_context_tty_reset(c, NULL);
6684
6685 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
6686 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
6687 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
6688 if (!exec_context_may_touch_tty(c))
6689 return;
6690
6691 path = exec_context_tty_path(c);
6692 if (!path)
6693 return;
6694
6695 fd = open(path, O_PATH|O_CLOEXEC);
6696 if (fd < 0)
6697 return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno,
6698 "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m",
6699 path);
6700
6701 if (fstat(fd, &st) < 0)
6702 return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path);
6703
6704 /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check
6705 * if things are a character device, since a proper check either means we'd have to open the TTY and
6706 * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects
6707 * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother
6708 * with this at all? → https://github.com/systemd/systemd/issues/19213 */
6709 if (!S_ISCHR(st.st_mode))
6710 return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path);
6711
6712 r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID);
6713 if (r < 0)
6714 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
6715 }
6716
6717 int exec_context_get_clean_directories(
6718 ExecContext *c,
6719 char **prefix,
6720 ExecCleanMask mask,
6721 char ***ret) {
6722
6723 _cleanup_strv_free_ char **l = NULL;
6724 int r;
6725
6726 assert(c);
6727 assert(prefix);
6728 assert(ret);
6729
6730 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
6731 if (!FLAGS_SET(mask, 1U << t))
6732 continue;
6733
6734 if (!prefix[t])
6735 continue;
6736
6737 for (size_t i = 0; i < c->directories[t].n_items; i++) {
6738 char *j;
6739
6740 j = path_join(prefix[t], c->directories[t].items[i].path);
6741 if (!j)
6742 return -ENOMEM;
6743
6744 r = strv_consume(&l, j);
6745 if (r < 0)
6746 return r;
6747
6748 /* Also remove private directories unconditionally. */
6749 if (t != EXEC_DIRECTORY_CONFIGURATION) {
6750 j = path_join(prefix[t], "private", c->directories[t].items[i].path);
6751 if (!j)
6752 return -ENOMEM;
6753
6754 r = strv_consume(&l, j);
6755 if (r < 0)
6756 return r;
6757 }
6758
6759 STRV_FOREACH(symlink, c->directories[t].items[i].symlinks) {
6760 j = path_join(prefix[t], *symlink);
6761 if (!j)
6762 return -ENOMEM;
6763
6764 r = strv_consume(&l, j);
6765 if (r < 0)
6766 return r;
6767 }
6768 }
6769 }
6770
6771 *ret = TAKE_PTR(l);
6772 return 0;
6773 }
6774
6775 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
6776 ExecCleanMask mask = 0;
6777
6778 assert(c);
6779 assert(ret);
6780
6781 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
6782 if (c->directories[t].n_items > 0)
6783 mask |= 1U << t;
6784
6785 *ret = mask;
6786 return 0;
6787 }
6788
6789 bool exec_context_has_encrypted_credentials(ExecContext *c) {
6790 ExecLoadCredential *load_cred;
6791 ExecSetCredential *set_cred;
6792
6793 assert(c);
6794
6795 HASHMAP_FOREACH(load_cred, c->load_credentials)
6796 if (load_cred->encrypted)
6797 return true;
6798
6799 HASHMAP_FOREACH(set_cred, c->set_credentials)
6800 if (set_cred->encrypted)
6801 return true;
6802
6803 return false;
6804 }
6805
6806 void exec_status_start(ExecStatus *s, pid_t pid) {
6807 assert(s);
6808
6809 *s = (ExecStatus) {
6810 .pid = pid,
6811 };
6812
6813 dual_timestamp_get(&s->start_timestamp);
6814 }
6815
6816 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
6817 assert(s);
6818
6819 if (s->pid != pid)
6820 *s = (ExecStatus) {
6821 .pid = pid,
6822 };
6823
6824 dual_timestamp_get(&s->exit_timestamp);
6825
6826 s->code = code;
6827 s->status = status;
6828
6829 if (context && context->utmp_id)
6830 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
6831 }
6832
6833 void exec_status_reset(ExecStatus *s) {
6834 assert(s);
6835
6836 *s = (ExecStatus) {};
6837 }
6838
6839 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
6840 assert(s);
6841 assert(f);
6842
6843 if (s->pid <= 0)
6844 return;
6845
6846 prefix = strempty(prefix);
6847
6848 fprintf(f,
6849 "%sPID: "PID_FMT"\n",
6850 prefix, s->pid);
6851
6852 if (dual_timestamp_is_set(&s->start_timestamp))
6853 fprintf(f,
6854 "%sStart Timestamp: %s\n",
6855 prefix, FORMAT_TIMESTAMP(s->start_timestamp.realtime));
6856
6857 if (dual_timestamp_is_set(&s->exit_timestamp))
6858 fprintf(f,
6859 "%sExit Timestamp: %s\n"
6860 "%sExit Code: %s\n"
6861 "%sExit Status: %i\n",
6862 prefix, FORMAT_TIMESTAMP(s->exit_timestamp.realtime),
6863 prefix, sigchld_code_to_string(s->code),
6864 prefix, s->status);
6865 }
6866
6867 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
6868 _cleanup_free_ char *cmd = NULL;
6869 const char *prefix2;
6870
6871 assert(c);
6872 assert(f);
6873
6874 prefix = strempty(prefix);
6875 prefix2 = strjoina(prefix, "\t");
6876
6877 cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY);
6878
6879 fprintf(f,
6880 "%sCommand Line: %s\n",
6881 prefix, strnull(cmd));
6882
6883 exec_status_dump(&c->exec_status, f, prefix2);
6884 }
6885
6886 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
6887 assert(f);
6888
6889 prefix = strempty(prefix);
6890
6891 LIST_FOREACH(command, i, c)
6892 exec_command_dump(i, f, prefix);
6893 }
6894
6895 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
6896 ExecCommand *end;
6897
6898 assert(l);
6899 assert(e);
6900
6901 if (*l) {
6902 /* It's kind of important, that we keep the order here */
6903 end = LIST_FIND_TAIL(command, *l);
6904 LIST_INSERT_AFTER(command, *l, end, e);
6905 } else
6906 *l = e;
6907 }
6908
6909 int exec_command_set(ExecCommand *c, const char *path, ...) {
6910 va_list ap;
6911 char **l, *p;
6912
6913 assert(c);
6914 assert(path);
6915
6916 va_start(ap, path);
6917 l = strv_new_ap(path, ap);
6918 va_end(ap);
6919
6920 if (!l)
6921 return -ENOMEM;
6922
6923 p = strdup(path);
6924 if (!p) {
6925 strv_free(l);
6926 return -ENOMEM;
6927 }
6928
6929 free_and_replace(c->path, p);
6930
6931 return strv_free_and_replace(c->argv, l);
6932 }
6933
6934 int exec_command_append(ExecCommand *c, const char *path, ...) {
6935 _cleanup_strv_free_ char **l = NULL;
6936 va_list ap;
6937 int r;
6938
6939 assert(c);
6940 assert(path);
6941
6942 va_start(ap, path);
6943 l = strv_new_ap(path, ap);
6944 va_end(ap);
6945
6946 if (!l)
6947 return -ENOMEM;
6948
6949 r = strv_extend_strv(&c->argv, l, false);
6950 if (r < 0)
6951 return r;
6952
6953 return 0;
6954 }
6955
6956 static void *remove_tmpdir_thread(void *p) {
6957 _cleanup_free_ char *path = p;
6958
6959 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
6960 return NULL;
6961 }
6962
6963 static ExecSharedRuntime* exec_shared_runtime_free(ExecSharedRuntime *rt) {
6964 if (!rt)
6965 return NULL;
6966
6967 if (rt->manager)
6968 (void) hashmap_remove(rt->manager->exec_shared_runtime_by_id, rt->id);
6969
6970 rt->id = mfree(rt->id);
6971 rt->tmp_dir = mfree(rt->tmp_dir);
6972 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
6973 safe_close_pair(rt->netns_storage_socket);
6974 safe_close_pair(rt->ipcns_storage_socket);
6975 return mfree(rt);
6976 }
6977
6978 DEFINE_TRIVIAL_UNREF_FUNC(ExecSharedRuntime, exec_shared_runtime, exec_shared_runtime_free);
6979 DEFINE_TRIVIAL_CLEANUP_FUNC(ExecSharedRuntime*, exec_shared_runtime_free);
6980
6981 ExecSharedRuntime* exec_shared_runtime_destroy(ExecSharedRuntime *rt) {
6982 int r;
6983
6984 if (!rt)
6985 return NULL;
6986
6987 assert(rt->n_ref > 0);
6988 rt->n_ref--;
6989
6990 if (rt->n_ref > 0)
6991 return NULL;
6992
6993 if (rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
6994 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
6995
6996 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
6997 if (r < 0)
6998 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
6999 else
7000 rt->tmp_dir = NULL;
7001 }
7002
7003 if (rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
7004 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
7005
7006 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
7007 if (r < 0)
7008 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
7009 else
7010 rt->var_tmp_dir = NULL;
7011 }
7012
7013 return exec_shared_runtime_free(rt);
7014 }
7015
7016 static int exec_shared_runtime_allocate(ExecSharedRuntime **ret, const char *id) {
7017 _cleanup_free_ char *id_copy = NULL;
7018 ExecSharedRuntime *n;
7019
7020 assert(ret);
7021
7022 id_copy = strdup(id);
7023 if (!id_copy)
7024 return -ENOMEM;
7025
7026 n = new(ExecSharedRuntime, 1);
7027 if (!n)
7028 return -ENOMEM;
7029
7030 *n = (ExecSharedRuntime) {
7031 .id = TAKE_PTR(id_copy),
7032 .netns_storage_socket = PIPE_EBADF,
7033 .ipcns_storage_socket = PIPE_EBADF,
7034 };
7035
7036 *ret = n;
7037 return 0;
7038 }
7039
7040 static int exec_shared_runtime_add(
7041 Manager *m,
7042 const char *id,
7043 char **tmp_dir,
7044 char **var_tmp_dir,
7045 int netns_storage_socket[2],
7046 int ipcns_storage_socket[2],
7047 ExecSharedRuntime **ret) {
7048
7049 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt = NULL;
7050 int r;
7051
7052 assert(m);
7053 assert(id);
7054
7055 /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */
7056
7057 r = exec_shared_runtime_allocate(&rt, id);
7058 if (r < 0)
7059 return r;
7060
7061 r = hashmap_ensure_put(&m->exec_shared_runtime_by_id, &string_hash_ops, rt->id, rt);
7062 if (r < 0)
7063 return r;
7064
7065 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
7066 rt->tmp_dir = TAKE_PTR(*tmp_dir);
7067 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
7068
7069 if (netns_storage_socket) {
7070 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
7071 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
7072 }
7073
7074 if (ipcns_storage_socket) {
7075 rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]);
7076 rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]);
7077 }
7078
7079 rt->manager = m;
7080
7081 if (ret)
7082 *ret = rt;
7083 /* do not remove created ExecSharedRuntime object when the operation succeeds. */
7084 TAKE_PTR(rt);
7085 return 0;
7086 }
7087
7088 static int exec_shared_runtime_make(
7089 Manager *m,
7090 const ExecContext *c,
7091 const char *id,
7092 ExecSharedRuntime **ret) {
7093
7094 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
7095 _cleanup_close_pair_ int netns_storage_socket[2] = PIPE_EBADF, ipcns_storage_socket[2] = PIPE_EBADF;
7096 int r;
7097
7098 assert(m);
7099 assert(c);
7100 assert(id);
7101
7102 /* It is not necessary to create ExecSharedRuntime object. */
7103 if (!exec_needs_network_namespace(c) && !exec_needs_ipc_namespace(c) && !c->private_tmp) {
7104 *ret = NULL;
7105 return 0;
7106 }
7107
7108 if (c->private_tmp &&
7109 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
7110 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
7111 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
7112 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
7113 if (r < 0)
7114 return r;
7115 }
7116
7117 if (exec_needs_network_namespace(c)) {
7118 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
7119 return -errno;
7120 }
7121
7122 if (exec_needs_ipc_namespace(c)) {
7123 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0)
7124 return -errno;
7125 }
7126
7127 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret);
7128 if (r < 0)
7129 return r;
7130
7131 return 1;
7132 }
7133
7134 int exec_shared_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecSharedRuntime **ret) {
7135 ExecSharedRuntime *rt;
7136 int r;
7137
7138 assert(m);
7139 assert(id);
7140 assert(ret);
7141
7142 rt = hashmap_get(m->exec_shared_runtime_by_id, id);
7143 if (rt)
7144 /* We already have an ExecSharedRuntime object, let's increase the ref count and reuse it */
7145 goto ref;
7146
7147 if (!create) {
7148 *ret = NULL;
7149 return 0;
7150 }
7151
7152 /* If not found, then create a new object. */
7153 r = exec_shared_runtime_make(m, c, id, &rt);
7154 if (r < 0)
7155 return r;
7156 if (r == 0) {
7157 /* When r == 0, it is not necessary to create ExecSharedRuntime object. */
7158 *ret = NULL;
7159 return 0;
7160 }
7161
7162 ref:
7163 /* increment reference counter. */
7164 rt->n_ref++;
7165 *ret = rt;
7166 return 1;
7167 }
7168
7169 int exec_shared_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
7170 ExecSharedRuntime *rt;
7171
7172 assert(m);
7173 assert(f);
7174 assert(fds);
7175
7176 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7177 fprintf(f, "exec-runtime=%s", rt->id);
7178
7179 if (rt->tmp_dir)
7180 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
7181
7182 if (rt->var_tmp_dir)
7183 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
7184
7185 if (rt->netns_storage_socket[0] >= 0) {
7186 int copy;
7187
7188 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
7189 if (copy < 0)
7190 return copy;
7191
7192 fprintf(f, " netns-socket-0=%i", copy);
7193 }
7194
7195 if (rt->netns_storage_socket[1] >= 0) {
7196 int copy;
7197
7198 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
7199 if (copy < 0)
7200 return copy;
7201
7202 fprintf(f, " netns-socket-1=%i", copy);
7203 }
7204
7205 if (rt->ipcns_storage_socket[0] >= 0) {
7206 int copy;
7207
7208 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]);
7209 if (copy < 0)
7210 return copy;
7211
7212 fprintf(f, " ipcns-socket-0=%i", copy);
7213 }
7214
7215 if (rt->ipcns_storage_socket[1] >= 0) {
7216 int copy;
7217
7218 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]);
7219 if (copy < 0)
7220 return copy;
7221
7222 fprintf(f, " ipcns-socket-1=%i", copy);
7223 }
7224
7225 fputc('\n', f);
7226 }
7227
7228 return 0;
7229 }
7230
7231 int exec_shared_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
7232 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt_create = NULL;
7233 ExecSharedRuntime *rt;
7234 int r;
7235
7236 /* This is for the migration from old (v237 or earlier) deserialization text.
7237 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
7238 * Even if the ExecSharedRuntime object originally created by the other unit, we cannot judge
7239 * so or not from the serialized text, then we always creates a new object owned by this. */
7240
7241 assert(u);
7242 assert(key);
7243 assert(value);
7244
7245 /* Manager manages ExecSharedRuntime objects by the unit id.
7246 * So, we omit the serialized text when the unit does not have id (yet?)... */
7247 if (isempty(u->id)) {
7248 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
7249 return 0;
7250 }
7251
7252 if (hashmap_ensure_allocated(&u->manager->exec_shared_runtime_by_id, &string_hash_ops) < 0)
7253 return log_oom();
7254
7255 rt = hashmap_get(u->manager->exec_shared_runtime_by_id, u->id);
7256 if (!rt) {
7257 if (exec_shared_runtime_allocate(&rt_create, u->id) < 0)
7258 return log_oom();
7259
7260 rt = rt_create;
7261 }
7262
7263 if (streq(key, "tmp-dir")) {
7264 if (free_and_strdup_warn(&rt->tmp_dir, value) < 0)
7265 return -ENOMEM;
7266
7267 } else if (streq(key, "var-tmp-dir")) {
7268 if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0)
7269 return -ENOMEM;
7270
7271 } else if (streq(key, "netns-socket-0")) {
7272 int fd;
7273
7274 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
7275 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7276 return 0;
7277 }
7278
7279 safe_close(rt->netns_storage_socket[0]);
7280 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
7281
7282 } else if (streq(key, "netns-socket-1")) {
7283 int fd;
7284
7285 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
7286 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7287 return 0;
7288 }
7289
7290 safe_close(rt->netns_storage_socket[1]);
7291 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
7292
7293 } else
7294 return 0;
7295
7296 /* If the object is newly created, then put it to the hashmap which manages ExecSharedRuntime objects. */
7297 if (rt_create) {
7298 r = hashmap_put(u->manager->exec_shared_runtime_by_id, rt_create->id, rt_create);
7299 if (r < 0) {
7300 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
7301 return 0;
7302 }
7303
7304 rt_create->manager = u->manager;
7305
7306 /* Avoid cleanup */
7307 TAKE_PTR(rt_create);
7308 }
7309
7310 return 1;
7311 }
7312
7313 int exec_shared_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
7314 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
7315 char *id = NULL;
7316 int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1};
7317 const char *p, *v = ASSERT_PTR(value);
7318 size_t n;
7319
7320 assert(m);
7321 assert(fds);
7322
7323 n = strcspn(v, " ");
7324 id = strndupa_safe(v, n);
7325 if (v[n] != ' ')
7326 goto finalize;
7327 p = v + n + 1;
7328
7329 v = startswith(p, "tmp-dir=");
7330 if (v) {
7331 n = strcspn(v, " ");
7332 tmp_dir = strndup(v, n);
7333 if (!tmp_dir)
7334 return log_oom();
7335 if (v[n] != ' ')
7336 goto finalize;
7337 p = v + n + 1;
7338 }
7339
7340 v = startswith(p, "var-tmp-dir=");
7341 if (v) {
7342 n = strcspn(v, " ");
7343 var_tmp_dir = strndup(v, n);
7344 if (!var_tmp_dir)
7345 return log_oom();
7346 if (v[n] != ' ')
7347 goto finalize;
7348 p = v + n + 1;
7349 }
7350
7351 v = startswith(p, "netns-socket-0=");
7352 if (v) {
7353 char *buf;
7354
7355 n = strcspn(v, " ");
7356 buf = strndupa_safe(v, n);
7357
7358 r = safe_atoi(buf, &netns_fdpair[0]);
7359 if (r < 0)
7360 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
7361 if (!fdset_contains(fds, netns_fdpair[0]))
7362 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7363 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", netns_fdpair[0]);
7364 netns_fdpair[0] = fdset_remove(fds, netns_fdpair[0]);
7365 if (v[n] != ' ')
7366 goto finalize;
7367 p = v + n + 1;
7368 }
7369
7370 v = startswith(p, "netns-socket-1=");
7371 if (v) {
7372 char *buf;
7373
7374 n = strcspn(v, " ");
7375 buf = strndupa_safe(v, n);
7376
7377 r = safe_atoi(buf, &netns_fdpair[1]);
7378 if (r < 0)
7379 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
7380 if (!fdset_contains(fds, netns_fdpair[1]))
7381 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7382 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", netns_fdpair[1]);
7383 netns_fdpair[1] = fdset_remove(fds, netns_fdpair[1]);
7384 if (v[n] != ' ')
7385 goto finalize;
7386 p = v + n + 1;
7387 }
7388
7389 v = startswith(p, "ipcns-socket-0=");
7390 if (v) {
7391 char *buf;
7392
7393 n = strcspn(v, " ");
7394 buf = strndupa_safe(v, n);
7395
7396 r = safe_atoi(buf, &ipcns_fdpair[0]);
7397 if (r < 0)
7398 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-0=%s: %m", buf);
7399 if (!fdset_contains(fds, ipcns_fdpair[0]))
7400 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7401 "exec-runtime specification ipcns-socket-0= refers to unknown fd %d: %m", ipcns_fdpair[0]);
7402 ipcns_fdpair[0] = fdset_remove(fds, ipcns_fdpair[0]);
7403 if (v[n] != ' ')
7404 goto finalize;
7405 p = v + n + 1;
7406 }
7407
7408 v = startswith(p, "ipcns-socket-1=");
7409 if (v) {
7410 char *buf;
7411
7412 n = strcspn(v, " ");
7413 buf = strndupa_safe(v, n);
7414
7415 r = safe_atoi(buf, &ipcns_fdpair[1]);
7416 if (r < 0)
7417 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-1=%s: %m", buf);
7418 if (!fdset_contains(fds, ipcns_fdpair[1]))
7419 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7420 "exec-runtime specification ipcns-socket-1= refers to unknown fd %d: %m", ipcns_fdpair[1]);
7421 ipcns_fdpair[1] = fdset_remove(fds, ipcns_fdpair[1]);
7422 }
7423
7424 finalize:
7425 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL);
7426 if (r < 0)
7427 return log_debug_errno(r, "Failed to add exec-runtime: %m");
7428 return 0;
7429 }
7430
7431 void exec_shared_runtime_vacuum(Manager *m) {
7432 ExecSharedRuntime *rt;
7433
7434 assert(m);
7435
7436 /* Free unreferenced ExecSharedRuntime objects. This is used after manager deserialization process. */
7437
7438 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7439 if (rt->n_ref > 0)
7440 continue;
7441
7442 (void) exec_shared_runtime_free(rt);
7443 }
7444 }
7445
7446 int exec_runtime_make(ExecSharedRuntime *shared, DynamicCreds *creds, ExecRuntime **ret) {
7447 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
7448
7449 assert(ret);
7450
7451 if (!shared && !creds) {
7452 *ret = NULL;
7453 return 0;
7454 }
7455
7456 rt = new(ExecRuntime, 1);
7457 if (!rt)
7458 return -ENOMEM;
7459
7460 *rt = (ExecRuntime) {
7461 .shared = shared,
7462 .dynamic_creds = creds,
7463 };
7464
7465 *ret = TAKE_PTR(rt);
7466 return 1;
7467 }
7468
7469 ExecRuntime* exec_runtime_free(ExecRuntime *rt) {
7470 if (!rt)
7471 return NULL;
7472
7473 exec_shared_runtime_unref(rt->shared);
7474 dynamic_creds_unref(rt->dynamic_creds);
7475 return mfree(rt);
7476 }
7477
7478 ExecRuntime* exec_runtime_destroy(ExecRuntime *rt) {
7479 if (!rt)
7480 return NULL;
7481
7482 rt->shared = exec_shared_runtime_destroy(rt->shared);
7483 rt->dynamic_creds = dynamic_creds_destroy(rt->dynamic_creds);
7484 return exec_runtime_free(rt);
7485 }
7486
7487 void exec_params_clear(ExecParameters *p) {
7488 if (!p)
7489 return;
7490
7491 p->environment = strv_free(p->environment);
7492 p->fd_names = strv_free(p->fd_names);
7493 p->fds = mfree(p->fds);
7494 p->exec_fd = safe_close(p->exec_fd);
7495 }
7496
7497 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
7498 if (!sc)
7499 return NULL;
7500
7501 free(sc->id);
7502 free(sc->data);
7503 return mfree(sc);
7504 }
7505
7506 ExecLoadCredential *exec_load_credential_free(ExecLoadCredential *lc) {
7507 if (!lc)
7508 return NULL;
7509
7510 free(lc->id);
7511 free(lc->path);
7512 return mfree(lc);
7513 }
7514
7515 void exec_directory_done(ExecDirectory *d) {
7516 if (!d)
7517 return;
7518
7519 for (size_t i = 0; i < d->n_items; i++) {
7520 free(d->items[i].path);
7521 strv_free(d->items[i].symlinks);
7522 }
7523
7524 d->items = mfree(d->items);
7525 d->n_items = 0;
7526 d->mode = 0755;
7527 }
7528
7529 static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) {
7530 assert(d);
7531 assert(path);
7532
7533 for (size_t i = 0; i < d->n_items; i++)
7534 if (path_equal(d->items[i].path, path))
7535 return &d->items[i];
7536
7537 return NULL;
7538 }
7539
7540 int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) {
7541 _cleanup_strv_free_ char **s = NULL;
7542 _cleanup_free_ char *p = NULL;
7543 ExecDirectoryItem *existing;
7544 int r;
7545
7546 assert(d);
7547 assert(path);
7548
7549 existing = exec_directory_find(d, path);
7550 if (existing) {
7551 r = strv_extend(&existing->symlinks, symlink);
7552 if (r < 0)
7553 return r;
7554
7555 return 0; /* existing item is updated */
7556 }
7557
7558 p = strdup(path);
7559 if (!p)
7560 return -ENOMEM;
7561
7562 if (symlink) {
7563 s = strv_new(symlink);
7564 if (!s)
7565 return -ENOMEM;
7566 }
7567
7568 if (!GREEDY_REALLOC(d->items, d->n_items + 1))
7569 return -ENOMEM;
7570
7571 d->items[d->n_items++] = (ExecDirectoryItem) {
7572 .path = TAKE_PTR(p),
7573 .symlinks = TAKE_PTR(s),
7574 };
7575
7576 return 1; /* new item is added */
7577 }
7578
7579 static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) {
7580 assert(a);
7581 assert(b);
7582
7583 return path_compare(a->path, b->path);
7584 }
7585
7586 void exec_directory_sort(ExecDirectory *d) {
7587 assert(d);
7588
7589 /* Sort the exec directories to make always parent directories processed at first in
7590 * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first,
7591 * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the
7592 * list. See also comments in setup_exec_directory() and issue #24783. */
7593
7594 if (d->n_items <= 1)
7595 return;
7596
7597 typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func);
7598
7599 for (size_t i = 1; i < d->n_items; i++)
7600 for (size_t j = 0; j < i; j++)
7601 if (path_startswith(d->items[i].path, d->items[j].path)) {
7602 d->items[i].only_create = true;
7603 break;
7604 }
7605 }
7606
7607 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
7608 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_load_credential_hash_ops, char, string_hash_func, string_compare_func, ExecLoadCredential, exec_load_credential_free);
7609
7610 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
7611 [EXEC_INPUT_NULL] = "null",
7612 [EXEC_INPUT_TTY] = "tty",
7613 [EXEC_INPUT_TTY_FORCE] = "tty-force",
7614 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
7615 [EXEC_INPUT_SOCKET] = "socket",
7616 [EXEC_INPUT_NAMED_FD] = "fd",
7617 [EXEC_INPUT_DATA] = "data",
7618 [EXEC_INPUT_FILE] = "file",
7619 };
7620
7621 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
7622
7623 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
7624 [EXEC_OUTPUT_INHERIT] = "inherit",
7625 [EXEC_OUTPUT_NULL] = "null",
7626 [EXEC_OUTPUT_TTY] = "tty",
7627 [EXEC_OUTPUT_KMSG] = "kmsg",
7628 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
7629 [EXEC_OUTPUT_JOURNAL] = "journal",
7630 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
7631 [EXEC_OUTPUT_SOCKET] = "socket",
7632 [EXEC_OUTPUT_NAMED_FD] = "fd",
7633 [EXEC_OUTPUT_FILE] = "file",
7634 [EXEC_OUTPUT_FILE_APPEND] = "append",
7635 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
7636 };
7637
7638 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
7639
7640 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
7641 [EXEC_UTMP_INIT] = "init",
7642 [EXEC_UTMP_LOGIN] = "login",
7643 [EXEC_UTMP_USER] = "user",
7644 };
7645
7646 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
7647
7648 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
7649 [EXEC_PRESERVE_NO] = "no",
7650 [EXEC_PRESERVE_YES] = "yes",
7651 [EXEC_PRESERVE_RESTART] = "restart",
7652 };
7653
7654 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
7655
7656 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
7657 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7658 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
7659 [EXEC_DIRECTORY_STATE] = "StateDirectory",
7660 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
7661 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
7662 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
7663 };
7664
7665 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
7666
7667 /* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */
7668 static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7669 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink",
7670 [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink",
7671 [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink",
7672 [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink",
7673 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink",
7674 };
7675
7676 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType);
7677
7678 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
7679 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
7680 * directories, specifically .timer units with their timestamp touch file. */
7681 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7682 [EXEC_DIRECTORY_RUNTIME] = "runtime",
7683 [EXEC_DIRECTORY_STATE] = "state",
7684 [EXEC_DIRECTORY_CACHE] = "cache",
7685 [EXEC_DIRECTORY_LOGS] = "logs",
7686 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
7687 };
7688
7689 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
7690
7691 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
7692 * the service payload in. */
7693 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7694 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
7695 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
7696 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
7697 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
7698 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
7699 };
7700
7701 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
7702
7703 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
7704 [EXEC_KEYRING_INHERIT] = "inherit",
7705 [EXEC_KEYRING_PRIVATE] = "private",
7706 [EXEC_KEYRING_SHARED] = "shared",
7707 };
7708
7709 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);