]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/job.c
core,journald: use quoted commandlines
[thirdparty/systemd.git] / src / core / job.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4
5 #include "sd-id128.h"
6 #include "sd-messages.h"
7
8 #include "alloc-util.h"
9 #include "async.h"
10 #include "cgroup.h"
11 #include "dbus-job.h"
12 #include "dbus.h"
13 #include "escape.h"
14 #include "fileio.h"
15 #include "job.h"
16 #include "log.h"
17 #include "macro.h"
18 #include "parse-util.h"
19 #include "serialize.h"
20 #include "set.h"
21 #include "sort-util.h"
22 #include "special.h"
23 #include "stdio-util.h"
24 #include "string-table.h"
25 #include "string-util.h"
26 #include "strv.h"
27 #include "terminal-util.h"
28 #include "unit.h"
29 #include "virt.h"
30
31 Job* job_new_raw(Unit *unit) {
32 Job *j;
33
34 /* used for deserialization */
35
36 assert(unit);
37
38 j = new(Job, 1);
39 if (!j)
40 return NULL;
41
42 *j = (Job) {
43 .manager = unit->manager,
44 .unit = unit,
45 .type = _JOB_TYPE_INVALID,
46 };
47
48 return j;
49 }
50
51 Job* job_new(Unit *unit, JobType type) {
52 Job *j;
53
54 assert(type < _JOB_TYPE_MAX);
55
56 j = job_new_raw(unit);
57 if (!j)
58 return NULL;
59
60 j->id = j->manager->current_job_id++;
61 j->type = type;
62
63 /* We don't link it here, that's what job_dependency() is for */
64
65 return j;
66 }
67
68 void job_unlink(Job *j) {
69 assert(j);
70 assert(!j->installed);
71 assert(!j->transaction_prev);
72 assert(!j->transaction_next);
73 assert(!j->subject_list);
74 assert(!j->object_list);
75
76 if (j->in_run_queue) {
77 prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
78 j->in_run_queue = false;
79 }
80
81 if (j->in_dbus_queue) {
82 LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j);
83 j->in_dbus_queue = false;
84 }
85
86 if (j->in_gc_queue) {
87 LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j);
88 j->in_gc_queue = false;
89 }
90
91 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
92 }
93
94 Job* job_free(Job *j) {
95 assert(j);
96 assert(!j->installed);
97 assert(!j->transaction_prev);
98 assert(!j->transaction_next);
99 assert(!j->subject_list);
100 assert(!j->object_list);
101
102 job_unlink(j);
103
104 sd_bus_track_unref(j->bus_track);
105 strv_free(j->deserialized_clients);
106
107 return mfree(j);
108 }
109
110 static void job_set_state(Job *j, JobState state) {
111 assert(j);
112 assert(state >= 0);
113 assert(state < _JOB_STATE_MAX);
114
115 if (j->state == state)
116 return;
117
118 j->state = state;
119
120 if (!j->installed)
121 return;
122
123 if (j->state == JOB_RUNNING)
124 j->unit->manager->n_running_jobs++;
125 else {
126 assert(j->state == JOB_WAITING);
127 assert(j->unit->manager->n_running_jobs > 0);
128
129 j->unit->manager->n_running_jobs--;
130
131 if (j->unit->manager->n_running_jobs <= 0)
132 j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source);
133 }
134 }
135
136 void job_uninstall(Job *j) {
137 Job **pj;
138
139 assert(j->installed);
140
141 job_set_state(j, JOB_WAITING);
142
143 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
144 assert(*pj == j);
145
146 /* Detach from next 'bigger' objects */
147
148 /* daemon-reload should be transparent to job observers */
149 if (!MANAGER_IS_RELOADING(j->manager))
150 bus_job_send_removed_signal(j);
151
152 *pj = NULL;
153
154 unit_add_to_gc_queue(j->unit);
155
156 unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
157
158 hashmap_remove_value(j->manager->jobs, UINT32_TO_PTR(j->id), j);
159 j->installed = false;
160 }
161
162 static bool job_type_allows_late_merge(JobType t) {
163 /* Tells whether it is OK to merge a job of type 't' with an already
164 * running job.
165 * Reloads cannot be merged this way. Think of the sequence:
166 * 1. Reload of a daemon is in progress; the daemon has already loaded
167 * its config file, but hasn't completed the reload operation yet.
168 * 2. Edit foo's config file.
169 * 3. Trigger another reload to have the daemon use the new config.
170 * Should the second reload job be merged into the first one, the daemon
171 * would not know about the new config.
172 * JOB_RESTART jobs on the other hand can be merged, because they get
173 * patched into JOB_START after stopping the unit. So if we see a
174 * JOB_RESTART running, it means the unit hasn't stopped yet and at
175 * this time the merge is still allowed. */
176 return t != JOB_RELOAD;
177 }
178
179 static void job_merge_into_installed(Job *j, Job *other) {
180 assert(j->installed);
181 assert(j->unit == other->unit);
182
183 if (j->type != JOB_NOP)
184 assert_se(job_type_merge_and_collapse(&j->type, other->type, j->unit) == 0);
185 else
186 assert(other->type == JOB_NOP);
187
188 j->irreversible = j->irreversible || other->irreversible;
189 j->ignore_order = j->ignore_order || other->ignore_order;
190 }
191
192 Job* job_install(Job *j) {
193 Job **pj;
194 Job *uj;
195
196 assert(!j->installed);
197 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
198 assert(j->state == JOB_WAITING);
199
200 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
201 uj = *pj;
202
203 if (uj) {
204 if (job_type_is_conflicting(uj->type, j->type))
205 job_finish_and_invalidate(uj, JOB_CANCELED, false, false);
206 else {
207 /* not conflicting, i.e. mergeable */
208
209 if (uj->state == JOB_WAITING ||
210 (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) {
211 job_merge_into_installed(uj, j);
212 log_unit_debug(uj->unit,
213 "Merged %s/%s into installed job %s/%s as %"PRIu32,
214 j->unit->id, job_type_to_string(j->type), uj->unit->id,
215 job_type_to_string(uj->type), uj->id);
216 return uj;
217 } else {
218 /* already running and not safe to merge into */
219 /* Patch uj to become a merged job and re-run it. */
220 /* XXX It should be safer to queue j to run after uj finishes, but it is
221 * not currently possible to have more than one installed job per unit. */
222 job_merge_into_installed(uj, j);
223 log_unit_debug(uj->unit,
224 "Merged into running job, re-running: %s/%s as %"PRIu32,
225 uj->unit->id, job_type_to_string(uj->type), uj->id);
226
227 job_set_state(uj, JOB_WAITING);
228 return uj;
229 }
230 }
231 }
232
233 /* Install the job */
234 *pj = j;
235 j->installed = true;
236
237 j->manager->n_installed_jobs++;
238 log_unit_debug(j->unit,
239 "Installed new job %s/%s as %u",
240 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
241
242 job_add_to_gc_queue(j);
243
244 job_add_to_dbus_queue(j); /* announce this job to clients */
245 unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
246
247 return j;
248 }
249
250 int job_install_deserialized(Job *j) {
251 Job **pj;
252 int r;
253
254 assert(!j->installed);
255
256 if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION)
257 return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EINVAL),
258 "Invalid job type %s in deserialization.",
259 strna(job_type_to_string(j->type)));
260
261 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
262 if (*pj)
263 return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EEXIST),
264 "Unit already has a job installed. Not installing deserialized job.");
265
266 r = hashmap_ensure_put(&j->manager->jobs, NULL, UINT32_TO_PTR(j->id), j);
267 if (r == -EEXIST)
268 return log_unit_debug_errno(j->unit, r, "Job ID %" PRIu32 " already used, cannot deserialize job.", j->id);
269 if (r < 0)
270 return log_unit_debug_errno(j->unit, r, "Failed to insert job into jobs hash table: %m");
271
272 *pj = j;
273 j->installed = true;
274
275 if (j->state == JOB_RUNNING)
276 j->unit->manager->n_running_jobs++;
277
278 log_unit_debug(j->unit,
279 "Reinstalled deserialized job %s/%s as %u",
280 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
281 return 0;
282 }
283
284 JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) {
285 JobDependency *l;
286
287 assert(object);
288
289 /* Adds a new job link, which encodes that the 'subject' job
290 * needs the 'object' job in some way. If 'subject' is NULL
291 * this means the 'anchor' job (i.e. the one the user
292 * explicitly asked for) is the requester. */
293
294 l = new0(JobDependency, 1);
295 if (!l)
296 return NULL;
297
298 l->subject = subject;
299 l->object = object;
300 l->matters = matters;
301 l->conflicts = conflicts;
302
303 if (subject)
304 LIST_PREPEND(subject, subject->subject_list, l);
305
306 LIST_PREPEND(object, object->object_list, l);
307
308 return l;
309 }
310
311 void job_dependency_free(JobDependency *l) {
312 assert(l);
313
314 if (l->subject)
315 LIST_REMOVE(subject, l->subject->subject_list, l);
316
317 LIST_REMOVE(object, l->object->object_list, l);
318
319 free(l);
320 }
321
322 void job_dump(Job *j, FILE *f, const char *prefix) {
323 assert(j);
324 assert(f);
325
326 prefix = strempty(prefix);
327
328 fprintf(f,
329 "%s-> Job %u:\n"
330 "%s\tAction: %s -> %s\n"
331 "%s\tState: %s\n"
332 "%s\tIrreversible: %s\n"
333 "%s\tMay GC: %s\n",
334 prefix, j->id,
335 prefix, j->unit->id, job_type_to_string(j->type),
336 prefix, job_state_to_string(j->state),
337 prefix, yes_no(j->irreversible),
338 prefix, yes_no(job_may_gc(j)));
339 }
340
341 /*
342 * Merging is commutative, so imagine the matrix as symmetric. We store only
343 * its lower triangle to avoid duplication. We don't store the main diagonal,
344 * because A merged with A is simply A.
345 *
346 * If the resulting type is collapsed immediately afterwards (to get rid of
347 * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain),
348 * the following properties hold:
349 *
350 * Merging is associative! A merged with B, and then merged with C is the same
351 * as A merged with the result of B merged with C.
352 *
353 * Mergeability is transitive! If A can be merged with B and B with C then
354 * A also with C.
355 *
356 * Also, if A merged with B cannot be merged with C, then either A or B cannot
357 * be merged with C either.
358 */
359 static const JobType job_merging_table[] = {
360 /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */
361 /*********************************************************************************/
362 /*JOB_START */
363 /*JOB_VERIFY_ACTIVE */ JOB_START,
364 /*JOB_STOP */ -1, -1,
365 /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1,
366 /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART,
367 };
368
369 JobType job_type_lookup_merge(JobType a, JobType b) {
370 assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2);
371 assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING);
372 assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING);
373
374 if (a == b)
375 return a;
376
377 if (a < b) {
378 JobType tmp = a;
379 a = b;
380 b = tmp;
381 }
382
383 return job_merging_table[(a - 1) * a / 2 + b];
384 }
385
386 bool job_type_is_redundant(JobType a, UnitActiveState b) {
387 switch (a) {
388
389 case JOB_START:
390 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
391
392 case JOB_STOP:
393 return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED);
394
395 case JOB_VERIFY_ACTIVE:
396 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
397
398 case JOB_RELOAD:
399 return
400 b == UNIT_RELOADING;
401
402 case JOB_RESTART:
403 return
404 b == UNIT_ACTIVATING;
405
406 case JOB_NOP:
407 return true;
408
409 default:
410 assert_not_reached("Invalid job type");
411 }
412 }
413
414 JobType job_type_collapse(JobType t, Unit *u) {
415 UnitActiveState s;
416
417 switch (t) {
418
419 case JOB_TRY_RESTART:
420 s = unit_active_state(u);
421 if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
422 return JOB_NOP;
423
424 return JOB_RESTART;
425
426 case JOB_TRY_RELOAD:
427 s = unit_active_state(u);
428 if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
429 return JOB_NOP;
430
431 return JOB_RELOAD;
432
433 case JOB_RELOAD_OR_START:
434 s = unit_active_state(u);
435 if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
436 return JOB_START;
437
438 return JOB_RELOAD;
439
440 default:
441 return t;
442 }
443 }
444
445 int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) {
446 JobType t;
447
448 t = job_type_lookup_merge(*a, b);
449 if (t < 0)
450 return -EEXIST;
451
452 *a = job_type_collapse(t, u);
453 return 0;
454 }
455
456 static bool job_is_runnable(Job *j) {
457 Unit *other;
458 void *v;
459
460 assert(j);
461 assert(j->installed);
462
463 /* Checks whether there is any job running for the units this
464 * job needs to be running after (in the case of a 'positive'
465 * job type) or before (in the case of a 'negative' job
466 * type. */
467
468 /* Note that unit types have a say in what is runnable,
469 * too. For example, if they return -EAGAIN from
470 * unit_start() they can indicate they are not
471 * runnable yet. */
472
473 /* First check if there is an override */
474 if (j->ignore_order)
475 return true;
476
477 if (j->type == JOB_NOP)
478 return true;
479
480 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER])
481 if (other->job && job_compare(j, other->job, UNIT_AFTER) > 0) {
482 log_unit_debug(j->unit,
483 "starting held back, waiting for: %s",
484 other->id);
485 return false;
486 }
487
488 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE])
489 if (other->job && job_compare(j, other->job, UNIT_BEFORE) > 0) {
490 log_unit_debug(j->unit,
491 "stopping held back, waiting for: %s",
492 other->id);
493 return false;
494 }
495
496 return true;
497 }
498
499 static void job_change_type(Job *j, JobType newtype) {
500 assert(j);
501
502 log_unit_debug(j->unit,
503 "Converting job %s/%s -> %s/%s",
504 j->unit->id, job_type_to_string(j->type),
505 j->unit->id, job_type_to_string(newtype));
506
507 j->type = newtype;
508 }
509
510 _pure_ static const char* job_get_begin_status_message_format(Unit *u, JobType t) {
511 const char *format;
512
513 assert(u);
514
515 if (t == JOB_RELOAD)
516 return "Reloading %s.";
517
518 assert(IN_SET(t, JOB_START, JOB_STOP));
519
520 format = UNIT_VTABLE(u)->status_message_formats.starting_stopping[t == JOB_STOP];
521 if (format)
522 return format;
523
524 /* Return generic strings */
525 if (t == JOB_START)
526 return "Starting %s.";
527 else {
528 assert(t == JOB_STOP);
529 return "Stopping %s.";
530 }
531 }
532
533 static void job_print_begin_status_message(Unit *u, JobType t) {
534 const char *format;
535
536 assert(u);
537
538 /* Reload status messages have traditionally not been printed to console. */
539 if (!IN_SET(t, JOB_START, JOB_STOP))
540 return;
541
542 format = job_get_begin_status_message_format(u, t);
543
544 DISABLE_WARNING_FORMAT_NONLITERAL;
545 unit_status_printf(u, STATUS_TYPE_NORMAL, "", format);
546 REENABLE_WARNING;
547 }
548
549 static void job_log_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
550 const char *format, *mid;
551 char buf[LINE_MAX];
552
553 assert(u);
554 assert(t >= 0);
555 assert(t < _JOB_TYPE_MAX);
556
557 if (!IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD))
558 return;
559
560 if (log_on_console()) /* Skip this if it would only go on the console anyway */
561 return;
562
563 /* We log status messages for all units and all operations. */
564
565 format = job_get_begin_status_message_format(u, t);
566
567 DISABLE_WARNING_FORMAT_NONLITERAL;
568 (void) snprintf(buf, sizeof buf, format, unit_status_string(u));
569 REENABLE_WARNING;
570
571 mid = t == JOB_START ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTING_STR :
572 t == JOB_STOP ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPING_STR :
573 "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADING_STR;
574
575 /* Note that we deliberately use LOG_MESSAGE() instead of
576 * LOG_UNIT_MESSAGE() here, since this is supposed to mimic
577 * closely what is written to screen using the status output,
578 * which is supposed the highest level, friendliest output
579 * possible, which means we should avoid the low-level unit
580 * name. */
581 log_struct(LOG_INFO,
582 LOG_MESSAGE("%s", buf),
583 "JOB_ID=%" PRIu32, job_id,
584 "JOB_TYPE=%s", job_type_to_string(t),
585 LOG_UNIT_ID(u),
586 LOG_UNIT_INVOCATION_ID(u),
587 mid);
588 }
589
590 static void job_emit_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
591 assert(u);
592 assert(t >= 0);
593 assert(t < _JOB_TYPE_MAX);
594
595 job_log_begin_status_message(u, job_id, t);
596 job_print_begin_status_message(u, t);
597 }
598
599 static int job_perform_on_unit(Job **j) {
600 uint32_t id;
601 Manager *m;
602 JobType t;
603 Unit *u;
604 int r;
605
606 /* While we execute this operation the job might go away (for
607 * example: because it finishes immediately or is replaced by
608 * a new, conflicting job.) To make sure we don't access a
609 * freed job later on we store the id here, so that we can
610 * verify the job is still valid. */
611
612 assert(j);
613 assert(*j);
614
615 m = (*j)->manager;
616 u = (*j)->unit;
617 t = (*j)->type;
618 id = (*j)->id;
619
620 switch (t) {
621 case JOB_START:
622 r = unit_start(u);
623 break;
624
625 case JOB_RESTART:
626 t = JOB_STOP;
627 _fallthrough_;
628 case JOB_STOP:
629 r = unit_stop(u);
630 break;
631
632 case JOB_RELOAD:
633 r = unit_reload(u);
634 break;
635
636 default:
637 assert_not_reached("Invalid job type");
638 }
639
640 /* Log if the job still exists and the start/stop/reload function actually did something. Note that this means
641 * for units for which there's no 'activating' phase (i.e. because we transition directly from 'inactive' to
642 * 'active') we'll possibly skip the "Starting..." message. */
643 *j = manager_get_job(m, id);
644 if (*j && r > 0)
645 job_emit_begin_status_message(u, id, t);
646
647 return r;
648 }
649
650 int job_run_and_invalidate(Job *j) {
651 int r;
652
653 assert(j);
654 assert(j->installed);
655 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
656 assert(j->in_run_queue);
657
658 prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
659 j->in_run_queue = false;
660
661 if (j->state != JOB_WAITING)
662 return 0;
663
664 if (!job_is_runnable(j))
665 return -EAGAIN;
666
667 job_start_timer(j, true);
668 job_set_state(j, JOB_RUNNING);
669 job_add_to_dbus_queue(j);
670
671 switch (j->type) {
672
673 case JOB_VERIFY_ACTIVE: {
674 UnitActiveState t;
675
676 t = unit_active_state(j->unit);
677 if (UNIT_IS_ACTIVE_OR_RELOADING(t))
678 r = -EALREADY;
679 else if (t == UNIT_ACTIVATING)
680 r = -EAGAIN;
681 else
682 r = -EBADR;
683 break;
684 }
685
686 case JOB_START:
687 case JOB_STOP:
688 case JOB_RESTART:
689 r = job_perform_on_unit(&j);
690
691 /* If the unit type does not support starting/stopping, then simply wait. */
692 if (r == -EBADR)
693 r = 0;
694 break;
695
696 case JOB_RELOAD:
697 r = job_perform_on_unit(&j);
698 break;
699
700 case JOB_NOP:
701 r = -EALREADY;
702 break;
703
704 default:
705 assert_not_reached("Unknown job type");
706 }
707
708 if (j) {
709 if (r == -EAGAIN)
710 job_set_state(j, JOB_WAITING); /* Hmm, not ready after all, let's return to JOB_WAITING state */
711 else if (r == -EALREADY) /* already being executed */
712 r = job_finish_and_invalidate(j, JOB_DONE, true, true);
713 else if (r == -ECOMM) /* condition failed, but all is good */
714 r = job_finish_and_invalidate(j, JOB_DONE, true, false);
715 else if (r == -EBADR)
716 r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false);
717 else if (r == -ENOEXEC)
718 r = job_finish_and_invalidate(j, JOB_INVALID, true, false);
719 else if (r == -EPROTO)
720 r = job_finish_and_invalidate(j, JOB_ASSERT, true, false);
721 else if (r == -EOPNOTSUPP)
722 r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false);
723 else if (r == -ENOLINK)
724 r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
725 else if (r == -ESTALE)
726 r = job_finish_and_invalidate(j, JOB_ONCE, true, false);
727 else if (r < 0)
728 r = job_finish_and_invalidate(j, JOB_FAILED, true, false);
729 }
730
731 return r;
732 }
733
734 _pure_ static const char *job_get_done_status_message_format(Unit *u, JobType t, JobResult result) {
735
736 static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = {
737 [JOB_DONE] = "Started %s.",
738 [JOB_TIMEOUT] = "Timed out starting %s.",
739 [JOB_FAILED] = "Failed to start %s.",
740 [JOB_DEPENDENCY] = "Dependency failed for %s.",
741 [JOB_ASSERT] = "Assertion failed for %s.",
742 [JOB_UNSUPPORTED] = "Starting of %s not supported.",
743 [JOB_COLLECTED] = "Unnecessary job for %s was removed.",
744 [JOB_ONCE] = "Unit %s has been started before and cannot be started again."
745 };
746 static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = {
747 [JOB_DONE] = "Stopped %s.",
748 [JOB_FAILED] = "Stopped (with error) %s.",
749 [JOB_TIMEOUT] = "Timed out stopping %s.",
750 };
751 static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = {
752 [JOB_DONE] = "Reloaded %s.",
753 [JOB_FAILED] = "Reload failed for %s.",
754 [JOB_TIMEOUT] = "Timed out reloading %s.",
755 };
756 /* When verify-active detects the unit is inactive, report it.
757 * Most likely a DEPEND warning from a requisiting unit will
758 * occur next and it's nice to see what was requisited. */
759 static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = {
760 [JOB_SKIPPED] = "%s is not active.",
761 };
762
763 const char *format;
764
765 assert(u);
766 assert(t >= 0);
767 assert(t < _JOB_TYPE_MAX);
768
769 if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) {
770 const UnitStatusMessageFormats *formats = &UNIT_VTABLE(u)->status_message_formats;
771 if (formats->finished_job) {
772 format = formats->finished_job(u, t, result);
773 if (format)
774 return format;
775 }
776 format = t == JOB_START ?
777 formats->finished_start_job[result] :
778 formats->finished_stop_job[result];
779 if (format)
780 return format;
781 }
782
783 /* Return generic strings */
784 if (t == JOB_START)
785 return generic_finished_start_job[result];
786 else if (IN_SET(t, JOB_STOP, JOB_RESTART))
787 return generic_finished_stop_job[result];
788 else if (t == JOB_RELOAD)
789 return generic_finished_reload_job[result];
790 else if (t == JOB_VERIFY_ACTIVE)
791 return generic_finished_verify_active_job[result];
792
793 return NULL;
794 }
795
796 static const struct {
797 const char *color, *word;
798 } job_print_done_status_messages[_JOB_RESULT_MAX] = {
799 [JOB_DONE] = { ANSI_OK_COLOR, " OK " },
800 [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " },
801 [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" },
802 [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" },
803 [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " },
804 [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" },
805 [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" },
806 /* JOB_COLLECTED */
807 [JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " },
808 };
809
810 static void job_print_done_status_message(Unit *u, JobType t, JobResult result) {
811 const char *format;
812 const char *status;
813
814 assert(u);
815 assert(t >= 0);
816 assert(t < _JOB_TYPE_MAX);
817
818 /* Reload status messages have traditionally not been printed to console. */
819 if (t == JOB_RELOAD)
820 return;
821
822 /* No message if the job did not actually do anything due to failed condition. */
823 if (t == JOB_START && result == JOB_DONE && !u->condition_result)
824 return;
825
826 if (!job_print_done_status_messages[result].word)
827 return;
828
829 format = job_get_done_status_message_format(u, t, result);
830 if (!format)
831 return;
832
833 if (log_get_show_color())
834 status = strjoina(job_print_done_status_messages[result].color,
835 job_print_done_status_messages[result].word,
836 ANSI_NORMAL);
837 else
838 status = job_print_done_status_messages[result].word;
839
840 DISABLE_WARNING_FORMAT_NONLITERAL;
841 unit_status_printf(u,
842 result == JOB_DONE ? STATUS_TYPE_NORMAL : STATUS_TYPE_NOTICE,
843 status, format);
844 REENABLE_WARNING;
845
846 if (t == JOB_START && result == JOB_FAILED) {
847 _cleanup_free_ char *quoted;
848
849 quoted = shell_maybe_quote(u->id, 0);
850 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted));
851 }
852 }
853
854 static void job_log_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
855 const char *format, *mid;
856 char buf[LINE_MAX];
857 static const int job_result_log_level[_JOB_RESULT_MAX] = {
858 [JOB_DONE] = LOG_INFO,
859 [JOB_CANCELED] = LOG_INFO,
860 [JOB_TIMEOUT] = LOG_ERR,
861 [JOB_FAILED] = LOG_ERR,
862 [JOB_DEPENDENCY] = LOG_WARNING,
863 [JOB_SKIPPED] = LOG_NOTICE,
864 [JOB_INVALID] = LOG_INFO,
865 [JOB_ASSERT] = LOG_WARNING,
866 [JOB_UNSUPPORTED] = LOG_WARNING,
867 [JOB_COLLECTED] = LOG_INFO,
868 [JOB_ONCE] = LOG_ERR,
869 };
870
871 assert(u);
872 assert(t >= 0);
873 assert(t < _JOB_TYPE_MAX);
874
875 /* Skip printing if output goes to the console, and job_print_status_message()
876 will actually print something to the console. */
877 if (log_on_console() && job_print_done_status_messages[result].word)
878 return;
879
880 /* Show condition check message if the job did not actually do anything due to failed condition. */
881 if (t == JOB_START && result == JOB_DONE && !u->condition_result) {
882 log_struct(LOG_INFO,
883 "MESSAGE=Condition check resulted in %s being skipped.", unit_status_string(u),
884 "JOB_ID=%" PRIu32, job_id,
885 "JOB_TYPE=%s", job_type_to_string(t),
886 "JOB_RESULT=%s", job_result_to_string(result),
887 LOG_UNIT_ID(u),
888 LOG_UNIT_INVOCATION_ID(u),
889 "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR);
890
891 return;
892 }
893
894 format = job_get_done_status_message_format(u, t, result);
895 if (!format)
896 return;
897
898 /* The description might be longer than the buffer, but that's OK,
899 * we'll just truncate it here. Note that we use snprintf() rather than
900 * xsprintf() on purpose here: we are fine with truncation and don't
901 * consider that an error. */
902 DISABLE_WARNING_FORMAT_NONLITERAL;
903 (void) snprintf(buf, sizeof(buf), format, unit_status_string(u));
904 REENABLE_WARNING;
905
906 switch (t) {
907
908 case JOB_START:
909 if (result == JOB_DONE)
910 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR;
911 else
912 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR;
913 break;
914
915 case JOB_RELOAD:
916 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR;
917 break;
918
919 case JOB_STOP:
920 case JOB_RESTART:
921 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR;
922 break;
923
924 default:
925 log_struct(job_result_log_level[result],
926 LOG_MESSAGE("%s", buf),
927 "JOB_ID=%" PRIu32, job_id,
928 "JOB_TYPE=%s", job_type_to_string(t),
929 "JOB_RESULT=%s", job_result_to_string(result),
930 LOG_UNIT_ID(u),
931 LOG_UNIT_INVOCATION_ID(u));
932 return;
933 }
934
935 log_struct(job_result_log_level[result],
936 LOG_MESSAGE("%s", buf),
937 "JOB_ID=%" PRIu32, job_id,
938 "JOB_TYPE=%s", job_type_to_string(t),
939 "JOB_RESULT=%s", job_result_to_string(result),
940 LOG_UNIT_ID(u),
941 LOG_UNIT_INVOCATION_ID(u),
942 mid);
943 }
944
945 static void job_emit_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
946 assert(u);
947
948 job_log_done_status_message(u, job_id, t, result);
949 job_print_done_status_message(u, t, result);
950 }
951
952 static void job_fail_dependencies(Unit *u, UnitDependency d) {
953 Unit *other;
954 void *v;
955
956 assert(u);
957
958 HASHMAP_FOREACH_KEY(v, other, u->dependencies[d]) {
959 Job *j = other->job;
960
961 if (!j)
962 continue;
963 if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE))
964 continue;
965
966 job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
967 }
968 }
969
970 int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) {
971 Unit *u;
972 Unit *other;
973 JobType t;
974 void *v;
975
976 assert(j);
977 assert(j->installed);
978 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
979
980 u = j->unit;
981 t = j->type;
982
983 j->result = result;
984
985 log_unit_debug(u, "Job %" PRIu32 " %s/%s finished, result=%s",
986 j->id, u->id, job_type_to_string(t), job_result_to_string(result));
987
988 /* If this job did nothing to the respective unit we don't log the status message */
989 if (!already)
990 job_emit_done_status_message(u, j->id, t, result);
991
992 /* Patch restart jobs so that they become normal start jobs */
993 if (result == JOB_DONE && t == JOB_RESTART) {
994
995 job_change_type(j, JOB_START);
996 job_set_state(j, JOB_WAITING);
997
998 job_add_to_dbus_queue(j);
999 job_add_to_run_queue(j);
1000 job_add_to_gc_queue(j);
1001
1002 goto finish;
1003 }
1004
1005 if (IN_SET(result, JOB_FAILED, JOB_INVALID))
1006 j->manager->n_failed_jobs++;
1007
1008 job_uninstall(j);
1009 job_free(j);
1010
1011 /* Fail depending jobs on failure */
1012 if (result != JOB_DONE && recursive) {
1013 if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) {
1014 job_fail_dependencies(u, UNIT_REQUIRED_BY);
1015 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1016 job_fail_dependencies(u, UNIT_BOUND_BY);
1017 } else if (t == JOB_STOP)
1018 job_fail_dependencies(u, UNIT_CONFLICTED_BY);
1019 }
1020
1021 /* A special check to make sure we take down anything RequisiteOf if we
1022 * aren't active. This is when the verify-active job merges with a
1023 * satisfying job type, and then loses it's invalidation effect, as the
1024 * result there is JOB_DONE for the start job we merged into, while we
1025 * should be failing the depending job if the said unit isn't in fact
1026 * active. Oneshots are an example of this, where going directly from
1027 * activating to inactive is success.
1028 *
1029 * This happens when you use ConditionXYZ= in a unit too, since in that
1030 * case the job completes with the JOB_DONE result, but the unit never
1031 * really becomes active. Note that such a case still involves merging:
1032 *
1033 * A start job waits for something else, and a verify-active comes in
1034 * and merges in the installed job. Then, later, when it becomes
1035 * runnable, it finishes with JOB_DONE result as execution on conditions
1036 * not being met is skipped, breaking our dependency semantics.
1037 *
1038 * Also, depending on if start job waits or not, the merging may or may
1039 * not happen (the verify-active job may trigger after it finishes), so
1040 * you get undeterministic results without this check.
1041 */
1042 if (result == JOB_DONE && recursive && !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
1043 if (IN_SET(t, JOB_START, JOB_RELOAD))
1044 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1045 }
1046 /* Trigger OnFailure dependencies that are not generated by
1047 * the unit itself. We don't treat JOB_CANCELED as failure in
1048 * this context. And JOB_FAILURE is already handled by the
1049 * unit itself. */
1050 if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) {
1051 log_struct(LOG_NOTICE,
1052 "JOB_TYPE=%s", job_type_to_string(t),
1053 "JOB_RESULT=%s", job_result_to_string(result),
1054 LOG_UNIT_ID(u),
1055 LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.",
1056 u->id,
1057 job_type_to_string(t),
1058 job_result_to_string(result)));
1059
1060 unit_start_on_failure(u);
1061 }
1062
1063 unit_trigger_notify(u);
1064
1065 finish:
1066 /* Try to start the next jobs that can be started */
1067 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER])
1068 if (other->job) {
1069 job_add_to_run_queue(other->job);
1070 job_add_to_gc_queue(other->job);
1071 }
1072 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE])
1073 if (other->job) {
1074 job_add_to_run_queue(other->job);
1075 job_add_to_gc_queue(other->job);
1076 }
1077
1078 manager_check_finished(u->manager);
1079
1080 return 0;
1081 }
1082
1083 static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) {
1084 Job *j = userdata;
1085 Unit *u;
1086
1087 assert(j);
1088 assert(s == j->timer_event_source);
1089
1090 log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type));
1091
1092 u = j->unit;
1093 job_finish_and_invalidate(j, JOB_TIMEOUT, true, false);
1094
1095 emergency_action(u->manager, u->job_timeout_action,
1096 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1097 u->job_timeout_reboot_arg, -1, "job timed out");
1098
1099 return 0;
1100 }
1101
1102 int job_start_timer(Job *j, bool job_running) {
1103 int r;
1104 usec_t timeout_time, old_timeout_time;
1105
1106 if (job_running) {
1107 j->begin_running_usec = now(CLOCK_MONOTONIC);
1108
1109 if (j->unit->job_running_timeout == USEC_INFINITY)
1110 return 0;
1111
1112 timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout);
1113
1114 if (j->timer_event_source) {
1115 /* Update only if JobRunningTimeoutSec= results in earlier timeout */
1116 r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time);
1117 if (r < 0)
1118 return r;
1119
1120 if (old_timeout_time <= timeout_time)
1121 return 0;
1122
1123 return sd_event_source_set_time(j->timer_event_source, timeout_time);
1124 }
1125 } else {
1126 if (j->timer_event_source)
1127 return 0;
1128
1129 j->begin_usec = now(CLOCK_MONOTONIC);
1130
1131 if (j->unit->job_timeout == USEC_INFINITY)
1132 return 0;
1133
1134 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1135 }
1136
1137 r = sd_event_add_time(
1138 j->manager->event,
1139 &j->timer_event_source,
1140 CLOCK_MONOTONIC,
1141 timeout_time, 0,
1142 job_dispatch_timer, j);
1143 if (r < 0)
1144 return r;
1145
1146 (void) sd_event_source_set_description(j->timer_event_source, "job-start");
1147
1148 return 0;
1149 }
1150
1151 void job_add_to_run_queue(Job *j) {
1152 int r;
1153
1154 assert(j);
1155 assert(j->installed);
1156
1157 if (j->in_run_queue)
1158 return;
1159
1160 if (prioq_isempty(j->manager->run_queue)) {
1161 r = sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT);
1162 if (r < 0)
1163 log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
1164 }
1165
1166 r = prioq_put(j->manager->run_queue, j, &j->run_queue_idx);
1167 if (r < 0)
1168 log_warning_errno(r, "Failed put job in run queue, ignoring: %m");
1169 else
1170 j->in_run_queue = true;
1171 }
1172
1173 void job_add_to_dbus_queue(Job *j) {
1174 assert(j);
1175 assert(j->installed);
1176
1177 if (j->in_dbus_queue)
1178 return;
1179
1180 /* We don't check if anybody is subscribed here, since this
1181 * job might just have been created and not yet assigned to a
1182 * connection/client. */
1183
1184 LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j);
1185 j->in_dbus_queue = true;
1186 }
1187
1188 char *job_dbus_path(Job *j) {
1189 char *p;
1190
1191 assert(j);
1192
1193 if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0)
1194 return NULL;
1195
1196 return p;
1197 }
1198
1199 int job_serialize(Job *j, FILE *f) {
1200 assert(j);
1201 assert(f);
1202
1203 (void) serialize_item_format(f, "job-id", "%u", j->id);
1204 (void) serialize_item(f, "job-type", job_type_to_string(j->type));
1205 (void) serialize_item(f, "job-state", job_state_to_string(j->state));
1206 (void) serialize_bool(f, "job-irreversible", j->irreversible);
1207 (void) serialize_bool(f, "job-sent-dbus-new-signal", j->sent_dbus_new_signal);
1208 (void) serialize_bool(f, "job-ignore-order", j->ignore_order);
1209
1210 if (j->begin_usec > 0)
1211 (void) serialize_usec(f, "job-begin", j->begin_usec);
1212 if (j->begin_running_usec > 0)
1213 (void) serialize_usec(f, "job-begin-running", j->begin_running_usec);
1214
1215 bus_track_serialize(j->bus_track, f, "subscribed");
1216
1217 /* End marker */
1218 fputc('\n', f);
1219 return 0;
1220 }
1221
1222 int job_deserialize(Job *j, FILE *f) {
1223 int r;
1224
1225 assert(j);
1226 assert(f);
1227
1228 for (;;) {
1229 _cleanup_free_ char *line = NULL;
1230 char *l, *v;
1231 size_t k;
1232
1233 r = read_line(f, LONG_LINE_MAX, &line);
1234 if (r < 0)
1235 return log_error_errno(r, "Failed to read serialization line: %m");
1236 if (r == 0)
1237 return 0;
1238
1239 l = strstrip(line);
1240
1241 /* End marker */
1242 if (isempty(l))
1243 return 0;
1244
1245 k = strcspn(l, "=");
1246
1247 if (l[k] == '=') {
1248 l[k] = 0;
1249 v = l+k+1;
1250 } else
1251 v = l+k;
1252
1253 if (streq(l, "job-id")) {
1254
1255 if (safe_atou32(v, &j->id) < 0)
1256 log_debug("Failed to parse job id value: %s", v);
1257
1258 } else if (streq(l, "job-type")) {
1259 JobType t;
1260
1261 t = job_type_from_string(v);
1262 if (t < 0)
1263 log_debug("Failed to parse job type: %s", v);
1264 else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION)
1265 log_debug("Cannot deserialize job of type: %s", v);
1266 else
1267 j->type = t;
1268
1269 } else if (streq(l, "job-state")) {
1270 JobState s;
1271
1272 s = job_state_from_string(v);
1273 if (s < 0)
1274 log_debug("Failed to parse job state: %s", v);
1275 else
1276 job_set_state(j, s);
1277
1278 } else if (streq(l, "job-irreversible")) {
1279 int b;
1280
1281 b = parse_boolean(v);
1282 if (b < 0)
1283 log_debug("Failed to parse job irreversible flag: %s", v);
1284 else
1285 j->irreversible = j->irreversible || b;
1286
1287 } else if (streq(l, "job-sent-dbus-new-signal")) {
1288 int b;
1289
1290 b = parse_boolean(v);
1291 if (b < 0)
1292 log_debug("Failed to parse job sent_dbus_new_signal flag: %s", v);
1293 else
1294 j->sent_dbus_new_signal = j->sent_dbus_new_signal || b;
1295
1296 } else if (streq(l, "job-ignore-order")) {
1297 int b;
1298
1299 b = parse_boolean(v);
1300 if (b < 0)
1301 log_debug("Failed to parse job ignore_order flag: %s", v);
1302 else
1303 j->ignore_order = j->ignore_order || b;
1304
1305 } else if (streq(l, "job-begin"))
1306 (void) deserialize_usec(v, &j->begin_usec);
1307
1308 else if (streq(l, "job-begin-running"))
1309 (void) deserialize_usec(v, &j->begin_running_usec);
1310
1311 else if (streq(l, "subscribed")) {
1312 if (strv_extend(&j->deserialized_clients, v) < 0)
1313 return log_oom();
1314 } else
1315 log_debug("Unknown job serialization key: %s", l);
1316 }
1317 }
1318
1319 int job_coldplug(Job *j) {
1320 int r;
1321 usec_t timeout_time = USEC_INFINITY;
1322
1323 assert(j);
1324
1325 /* After deserialization is complete and the bus connection
1326 * set up again, let's start watching our subscribers again */
1327 (void) bus_job_coldplug_bus_track(j);
1328
1329 if (j->state == JOB_WAITING)
1330 job_add_to_run_queue(j);
1331
1332 /* Maybe due to new dependencies we don't actually need this job anymore? */
1333 job_add_to_gc_queue(j);
1334
1335 /* Create timer only when job began or began running and the respective timeout is finite.
1336 * Follow logic of job_start_timer() if both timeouts are finite */
1337 if (j->begin_usec == 0)
1338 return 0;
1339
1340 if (j->unit->job_timeout != USEC_INFINITY)
1341 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1342
1343 if (timestamp_is_set(j->begin_running_usec))
1344 timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout));
1345
1346 if (timeout_time == USEC_INFINITY)
1347 return 0;
1348
1349 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
1350
1351 r = sd_event_add_time(
1352 j->manager->event,
1353 &j->timer_event_source,
1354 CLOCK_MONOTONIC,
1355 timeout_time, 0,
1356 job_dispatch_timer, j);
1357 if (r < 0)
1358 log_debug_errno(r, "Failed to restart timeout for job: %m");
1359
1360 (void) sd_event_source_set_description(j->timer_event_source, "job-timeout");
1361
1362 return r;
1363 }
1364
1365 void job_shutdown_magic(Job *j) {
1366 assert(j);
1367
1368 /* The shutdown target gets some special treatment here: we
1369 * tell the kernel to begin with flushing its disk caches, to
1370 * optimize shutdown time a bit. Ideally we wouldn't hardcode
1371 * this magic into PID 1. However all other processes aren't
1372 * options either since they'd exit much sooner than PID 1 and
1373 * asynchronous sync() would cause their exit to be
1374 * delayed. */
1375
1376 if (j->type != JOB_START)
1377 return;
1378
1379 if (!MANAGER_IS_SYSTEM(j->unit->manager))
1380 return;
1381
1382 if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET))
1383 return;
1384
1385 /* In case messages on console has been disabled on boot */
1386 j->unit->manager->no_console_output = false;
1387
1388 if (detect_container() > 0)
1389 return;
1390
1391 (void) asynchronous_sync(NULL);
1392 }
1393
1394 int job_get_timeout(Job *j, usec_t *timeout) {
1395 usec_t x = USEC_INFINITY, y = USEC_INFINITY;
1396 Unit *u = j->unit;
1397 int r;
1398
1399 assert(u);
1400
1401 if (j->timer_event_source) {
1402 r = sd_event_source_get_time(j->timer_event_source, &x);
1403 if (r < 0)
1404 return r;
1405 }
1406
1407 if (UNIT_VTABLE(u)->get_timeout) {
1408 r = UNIT_VTABLE(u)->get_timeout(u, &y);
1409 if (r < 0)
1410 return r;
1411 }
1412
1413 if (x == USEC_INFINITY && y == USEC_INFINITY)
1414 return 0;
1415
1416 *timeout = MIN(x, y);
1417 return 1;
1418 }
1419
1420 bool job_may_gc(Job *j) {
1421 Unit *other;
1422 void *v;
1423
1424 assert(j);
1425
1426 /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their
1427 * own and just track external state. For now the only unit type that qualifies for this are .device units.
1428 * Returns true if the job can be collected. */
1429
1430 if (!UNIT_VTABLE(j->unit)->gc_jobs)
1431 return false;
1432
1433 if (sd_bus_track_count(j->bus_track) > 0)
1434 return false;
1435
1436 /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections
1437 * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once
1438 * referenced by one, and reset this whenever we notice that no private bus connections are around. This means
1439 * the GC is a bit too conservative when it comes to jobs created by private bus connections. */
1440 if (j->ref_by_private_bus) {
1441 if (set_isempty(j->unit->manager->private_buses))
1442 j->ref_by_private_bus = false;
1443 else
1444 return false;
1445 }
1446
1447 if (j->type == JOB_NOP)
1448 return false;
1449
1450 /* The logic is inverse to job_is_runnable, we cannot GC as long as we block any job. */
1451 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE])
1452 if (other->job && job_compare(j, other->job, UNIT_BEFORE) < 0)
1453 return false;
1454
1455 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER])
1456 if (other->job && job_compare(j, other->job, UNIT_AFTER) < 0)
1457 return false;
1458
1459 return true;
1460 }
1461
1462 void job_add_to_gc_queue(Job *j) {
1463 assert(j);
1464
1465 if (j->in_gc_queue)
1466 return;
1467
1468 if (!job_may_gc(j))
1469 return;
1470
1471 LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j);
1472 j->in_gc_queue = true;
1473 }
1474
1475 static int job_compare_id(Job * const *a, Job * const *b) {
1476 return CMP((*a)->id, (*b)->id);
1477 }
1478
1479 static size_t sort_job_list(Job **list, size_t n) {
1480 Job *previous = NULL;
1481 size_t a, b;
1482
1483 /* Order by numeric IDs */
1484 typesafe_qsort(list, n, job_compare_id);
1485
1486 /* Filter out duplicates */
1487 for (a = 0, b = 0; a < n; a++) {
1488
1489 if (previous == list[a])
1490 continue;
1491
1492 previous = list[b++] = list[a];
1493 }
1494
1495 return b;
1496 }
1497
1498 int job_get_before(Job *j, Job*** ret) {
1499 _cleanup_free_ Job** list = NULL;
1500 size_t n = 0, n_allocated = 0;
1501 Unit *other = NULL;
1502 void *v;
1503
1504 /* Returns a list of all pending jobs that need to finish before this job may be started. */
1505
1506 assert(j);
1507 assert(ret);
1508
1509 if (j->ignore_order) {
1510 *ret = NULL;
1511 return 0;
1512 }
1513
1514 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER]) {
1515 if (!other->job)
1516 continue;
1517 if (job_compare(j, other->job, UNIT_AFTER) <= 0)
1518 continue;
1519
1520 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1521 return -ENOMEM;
1522 list[n++] = other->job;
1523 }
1524
1525 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE]) {
1526 if (!other->job)
1527 continue;
1528 if (job_compare(j, other->job, UNIT_BEFORE) <= 0)
1529 continue;
1530
1531 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1532 return -ENOMEM;
1533 list[n++] = other->job;
1534 }
1535
1536 n = sort_job_list(list, n);
1537
1538 *ret = TAKE_PTR(list);
1539
1540 return (int) n;
1541 }
1542
1543 int job_get_after(Job *j, Job*** ret) {
1544 _cleanup_free_ Job** list = NULL;
1545 size_t n = 0, n_allocated = 0;
1546 Unit *other = NULL;
1547 void *v;
1548
1549 assert(j);
1550 assert(ret);
1551
1552 /* Returns a list of all pending jobs that are waiting for this job to finish. */
1553
1554 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE]) {
1555 if (!other->job)
1556 continue;
1557
1558 if (other->job->ignore_order)
1559 continue;
1560
1561 if (job_compare(j, other->job, UNIT_BEFORE) >= 0)
1562 continue;
1563
1564 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1565 return -ENOMEM;
1566 list[n++] = other->job;
1567 }
1568
1569 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER]) {
1570 if (!other->job)
1571 continue;
1572
1573 if (other->job->ignore_order)
1574 continue;
1575
1576 if (job_compare(j, other->job, UNIT_AFTER) >= 0)
1577 continue;
1578
1579 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1580 return -ENOMEM;
1581 list[n++] = other->job;
1582 }
1583
1584 n = sort_job_list(list, n);
1585
1586 *ret = TAKE_PTR(list);
1587
1588 return (int) n;
1589 }
1590
1591 static const char* const job_state_table[_JOB_STATE_MAX] = {
1592 [JOB_WAITING] = "waiting",
1593 [JOB_RUNNING] = "running",
1594 };
1595
1596 DEFINE_STRING_TABLE_LOOKUP(job_state, JobState);
1597
1598 static const char* const job_type_table[_JOB_TYPE_MAX] = {
1599 [JOB_START] = "start",
1600 [JOB_VERIFY_ACTIVE] = "verify-active",
1601 [JOB_STOP] = "stop",
1602 [JOB_RELOAD] = "reload",
1603 [JOB_RELOAD_OR_START] = "reload-or-start",
1604 [JOB_RESTART] = "restart",
1605 [JOB_TRY_RESTART] = "try-restart",
1606 [JOB_TRY_RELOAD] = "try-reload",
1607 [JOB_NOP] = "nop",
1608 };
1609
1610 DEFINE_STRING_TABLE_LOOKUP(job_type, JobType);
1611
1612 static const char* const job_mode_table[_JOB_MODE_MAX] = {
1613 [JOB_FAIL] = "fail",
1614 [JOB_REPLACE] = "replace",
1615 [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly",
1616 [JOB_ISOLATE] = "isolate",
1617 [JOB_FLUSH] = "flush",
1618 [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies",
1619 [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements",
1620 [JOB_TRIGGERING] = "triggering",
1621 };
1622
1623 DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode);
1624
1625 static const char* const job_result_table[_JOB_RESULT_MAX] = {
1626 [JOB_DONE] = "done",
1627 [JOB_CANCELED] = "canceled",
1628 [JOB_TIMEOUT] = "timeout",
1629 [JOB_FAILED] = "failed",
1630 [JOB_DEPENDENCY] = "dependency",
1631 [JOB_SKIPPED] = "skipped",
1632 [JOB_INVALID] = "invalid",
1633 [JOB_ASSERT] = "assert",
1634 [JOB_UNSUPPORTED] = "unsupported",
1635 [JOB_COLLECTED] = "collected",
1636 [JOB_ONCE] = "once",
1637 };
1638
1639 DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);
1640
1641 const char* job_type_to_access_method(JobType t) {
1642 assert(t >= 0);
1643 assert(t < _JOB_TYPE_MAX);
1644
1645 if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART))
1646 return "start";
1647 else if (t == JOB_STOP)
1648 return "stop";
1649 else
1650 return "reload";
1651 }
1652
1653 /*
1654 * assume_dep assumed dependency between units (a is before/after b)
1655 *
1656 * Returns
1657 * 0 jobs are independent,
1658 * >0 a should run after b,
1659 * <0 a should run before b,
1660 *
1661 * The logic means that for a service a and a service b where b.After=a:
1662 *
1663 * start a + start b → 1st step start a, 2nd step start b
1664 * start a + stop b → 1st step stop b, 2nd step start a
1665 * stop a + start b → 1st step stop a, 2nd step start b
1666 * stop a + stop b → 1st step stop b, 2nd step stop a
1667 *
1668 * This has the side effect that restarts are properly
1669 * synchronized too.
1670 */
1671 int job_compare(Job *a, Job *b, UnitDependency assume_dep) {
1672 assert(a->type < _JOB_TYPE_MAX_IN_TRANSACTION);
1673 assert(b->type < _JOB_TYPE_MAX_IN_TRANSACTION);
1674 assert(IN_SET(assume_dep, UNIT_AFTER, UNIT_BEFORE));
1675
1676 /* Trivial cases first */
1677 if (a->type == JOB_NOP || b->type == JOB_NOP)
1678 return 0;
1679
1680 if (a->ignore_order || b->ignore_order)
1681 return 0;
1682
1683 if (assume_dep == UNIT_AFTER)
1684 return -job_compare(b, a, UNIT_BEFORE);
1685
1686 /* Let's make it simple, JOB_STOP goes always first (in case both ua and ub stop,
1687 * then ub's stop goes first anyway).
1688 * JOB_RESTART is JOB_STOP in disguise (before it is patched to JOB_START). */
1689 if (IN_SET(b->type, JOB_STOP, JOB_RESTART))
1690 return 1;
1691 else
1692 return -1;
1693 }