]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
c17e0990184a1c7345a319512faf6b21f2a72a4d
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bpf-foreign.h"
15 #include "bpf-socket-bind.h"
16 #include "bus-common-errors.h"
17 #include "bus-internal.h"
18 #include "bus-util.h"
19 #include "cgroup-setup.h"
20 #include "cgroup-util.h"
21 #include "chase.h"
22 #include "core-varlink.h"
23 #include "dbus-unit.h"
24 #include "dbus.h"
25 #include "dropin.h"
26 #include "env-util.h"
27 #include "escape.h"
28 #include "exec-credential.h"
29 #include "execute.h"
30 #include "fd-util.h"
31 #include "fileio-label.h"
32 #include "fileio.h"
33 #include "format-util.h"
34 #include "id128-util.h"
35 #include "install.h"
36 #include "io-util.h"
37 #include "label-util.h"
38 #include "load-dropin.h"
39 #include "load-fragment.h"
40 #include "log.h"
41 #include "logarithm.h"
42 #include "macro.h"
43 #include "mkdir-label.h"
44 #include "path-util.h"
45 #include "process-util.h"
46 #include "rm-rf.h"
47 #include "serialize.h"
48 #include "set.h"
49 #include "signal-util.h"
50 #include "sparse-endian.h"
51 #include "special.h"
52 #include "specifier.h"
53 #include "stat-util.h"
54 #include "stdio-util.h"
55 #include "string-table.h"
56 #include "string-util.h"
57 #include "strv.h"
58 #include "terminal-util.h"
59 #include "tmpfile-util.h"
60 #include "umask-util.h"
61 #include "unit-name.h"
62 #include "unit.h"
63 #include "user-util.h"
64 #include "virt.h"
65 #if BPF_FRAMEWORK
66 #include "bpf-link.h"
67 #endif
68
69 /* Thresholds for logging at INFO level about resource consumption */
70 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
71 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
72 #define MENTIONWORTHY_IP_BYTES (0ULL)
73
74 /* Thresholds for logging at INFO level about resource consumption */
75 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
76 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
77 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
78
79 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
80 [UNIT_SERVICE] = &service_vtable,
81 [UNIT_SOCKET] = &socket_vtable,
82 [UNIT_TARGET] = &target_vtable,
83 [UNIT_DEVICE] = &device_vtable,
84 [UNIT_MOUNT] = &mount_vtable,
85 [UNIT_AUTOMOUNT] = &automount_vtable,
86 [UNIT_SWAP] = &swap_vtable,
87 [UNIT_TIMER] = &timer_vtable,
88 [UNIT_PATH] = &path_vtable,
89 [UNIT_SLICE] = &slice_vtable,
90 [UNIT_SCOPE] = &scope_vtable,
91 };
92
93 Unit* unit_new(Manager *m, size_t size) {
94 Unit *u;
95
96 assert(m);
97 assert(size >= sizeof(Unit));
98
99 u = malloc0(size);
100 if (!u)
101 return NULL;
102
103 u->manager = m;
104 u->type = _UNIT_TYPE_INVALID;
105 u->default_dependencies = true;
106 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
107 u->unit_file_preset = -1;
108 u->on_failure_job_mode = JOB_REPLACE;
109 u->on_success_job_mode = JOB_FAIL;
110 u->cgroup_control_inotify_wd = -1;
111 u->cgroup_memory_inotify_wd = -1;
112 u->job_timeout = USEC_INFINITY;
113 u->job_running_timeout = USEC_INFINITY;
114 u->ref_uid = UID_INVALID;
115 u->ref_gid = GID_INVALID;
116 u->cpu_usage_last = NSEC_INFINITY;
117 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
118 u->failure_action_exit_status = u->success_action_exit_status = -1;
119
120 u->ip_accounting_ingress_map_fd = -EBADF;
121 u->ip_accounting_egress_map_fd = -EBADF;
122 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
123 u->io_accounting_last[i] = UINT64_MAX;
124
125 u->ipv4_allow_map_fd = -EBADF;
126 u->ipv6_allow_map_fd = -EBADF;
127 u->ipv4_deny_map_fd = -EBADF;
128 u->ipv6_deny_map_fd = -EBADF;
129
130 u->last_section_private = -1;
131
132 u->start_ratelimit = (RateLimit) {
133 m->defaults.start_limit_interval,
134 m->defaults.start_limit_burst
135 };
136
137 u->auto_start_stop_ratelimit = (const RateLimit) {
138 10 * USEC_PER_SEC,
139 16
140 };
141
142 return u;
143 }
144
145 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
146 _cleanup_(unit_freep) Unit *u = NULL;
147 int r;
148
149 u = unit_new(m, size);
150 if (!u)
151 return -ENOMEM;
152
153 r = unit_add_name(u, name);
154 if (r < 0)
155 return r;
156
157 *ret = TAKE_PTR(u);
158
159 return r;
160 }
161
162 bool unit_has_name(const Unit *u, const char *name) {
163 assert(u);
164 assert(name);
165
166 return streq_ptr(name, u->id) ||
167 set_contains(u->aliases, name);
168 }
169
170 static void unit_init(Unit *u) {
171 CGroupContext *cc;
172 ExecContext *ec;
173 KillContext *kc;
174
175 assert(u);
176 assert(u->manager);
177 assert(u->type >= 0);
178
179 cc = unit_get_cgroup_context(u);
180 if (cc) {
181 cgroup_context_init(cc);
182
183 /* Copy in the manager defaults into the cgroup
184 * context, _before_ the rest of the settings have
185 * been initialized */
186
187 cc->cpu_accounting = u->manager->defaults.cpu_accounting;
188 cc->io_accounting = u->manager->defaults.io_accounting;
189 cc->blockio_accounting = u->manager->defaults.blockio_accounting;
190 cc->memory_accounting = u->manager->defaults.memory_accounting;
191 cc->tasks_accounting = u->manager->defaults.tasks_accounting;
192 cc->ip_accounting = u->manager->defaults.ip_accounting;
193
194 if (u->type != UNIT_SLICE)
195 cc->tasks_max = u->manager->defaults.tasks_max;
196
197 cc->memory_pressure_watch = u->manager->defaults.memory_pressure_watch;
198 cc->memory_pressure_threshold_usec = u->manager->defaults.memory_pressure_threshold_usec;
199 }
200
201 ec = unit_get_exec_context(u);
202 if (ec) {
203 exec_context_init(ec);
204
205 if (u->manager->defaults.oom_score_adjust_set) {
206 ec->oom_score_adjust = u->manager->defaults.oom_score_adjust;
207 ec->oom_score_adjust_set = true;
208 }
209
210 if (MANAGER_IS_SYSTEM(u->manager))
211 ec->keyring_mode = EXEC_KEYRING_SHARED;
212 else {
213 ec->keyring_mode = EXEC_KEYRING_INHERIT;
214
215 /* User manager might have its umask redefined by PAM or UMask=. In this
216 * case let the units it manages inherit this value by default. They can
217 * still tune this value through their own unit file */
218 (void) get_process_umask(0, &ec->umask);
219 }
220 }
221
222 kc = unit_get_kill_context(u);
223 if (kc)
224 kill_context_init(kc);
225
226 if (UNIT_VTABLE(u)->init)
227 UNIT_VTABLE(u)->init(u);
228 }
229
230 static int unit_add_alias(Unit *u, char *donated_name) {
231 int r;
232
233 /* Make sure that u->names is allocated. We may leave u->names
234 * empty if we fail later, but this is not a problem. */
235 r = set_ensure_put(&u->aliases, &string_hash_ops, donated_name);
236 if (r < 0)
237 return r;
238 assert(r > 0);
239
240 return 0;
241 }
242
243 int unit_add_name(Unit *u, const char *text) {
244 _cleanup_free_ char *name = NULL, *instance = NULL;
245 UnitType t;
246 int r;
247
248 assert(u);
249 assert(text);
250
251 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
252 if (!u->instance)
253 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
254 "instance is not set when adding name '%s': %m", text);
255
256 r = unit_name_replace_instance(text, u->instance, &name);
257 if (r < 0)
258 return log_unit_debug_errno(u, r,
259 "failed to build instance name from '%s': %m", text);
260 } else {
261 name = strdup(text);
262 if (!name)
263 return -ENOMEM;
264 }
265
266 if (unit_has_name(u, name))
267 return 0;
268
269 if (hashmap_contains(u->manager->units, name))
270 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
271 "unit already exist when adding name '%s': %m", name);
272
273 if (!unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
274 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
275 "name '%s' is invalid: %m", name);
276
277 t = unit_name_to_type(name);
278 if (t < 0)
279 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
280 "failed to derive unit type from name '%s': %m", name);
281
282 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
283 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
284 "unit type is illegal: u->type(%d) and t(%d) for name '%s': %m",
285 u->type, t, name);
286
287 r = unit_name_to_instance(name, &instance);
288 if (r < 0)
289 return log_unit_debug_errno(u, r, "failed to extract instance from name '%s': %m", name);
290
291 if (instance && !unit_type_may_template(t))
292 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL), "templates are not allowed for name '%s': %m", name);
293
294 /* Ensure that this unit either has no instance, or that the instance matches. */
295 if (u->type != _UNIT_TYPE_INVALID && !streq_ptr(u->instance, instance))
296 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EINVAL),
297 "cannot add name %s, the instances don't match (\"%s\" != \"%s\").",
298 name, instance, u->instance);
299
300 if (u->id && !unit_type_may_alias(t))
301 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(EEXIST),
302 "cannot add name %s, aliases are not allowed for %s units.",
303 name, unit_type_to_string(t));
304
305 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
306 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(E2BIG), "cannot add name, manager has too many units: %m");
307
308 /* Add name to the global hashmap first, because that's easier to undo */
309 r = hashmap_put(u->manager->units, name, u);
310 if (r < 0)
311 return log_unit_debug_errno(u, r, "add unit to hashmap failed for name '%s': %m", text);
312
313 if (u->id) {
314 r = unit_add_alias(u, name); /* unit_add_alias() takes ownership of the name on success */
315 if (r < 0) {
316 hashmap_remove(u->manager->units, name);
317 return r;
318 }
319 TAKE_PTR(name);
320
321 } else {
322 /* A new name, we don't need the set yet. */
323 assert(u->type == _UNIT_TYPE_INVALID);
324 assert(!u->instance);
325
326 u->type = t;
327 u->id = TAKE_PTR(name);
328 u->instance = TAKE_PTR(instance);
329
330 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
331 unit_init(u);
332 }
333
334 unit_add_to_dbus_queue(u);
335 return 0;
336 }
337
338 int unit_choose_id(Unit *u, const char *name) {
339 _cleanup_free_ char *t = NULL;
340 char *s;
341 int r;
342
343 assert(u);
344 assert(name);
345
346 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
347 if (!u->instance)
348 return -EINVAL;
349
350 r = unit_name_replace_instance(name, u->instance, &t);
351 if (r < 0)
352 return r;
353
354 name = t;
355 }
356
357 if (streq_ptr(u->id, name))
358 return 0; /* Nothing to do. */
359
360 /* Selects one of the aliases of this unit as the id */
361 s = set_get(u->aliases, (char*) name);
362 if (!s)
363 return -ENOENT;
364
365 if (u->id) {
366 r = set_remove_and_put(u->aliases, name, u->id);
367 if (r < 0)
368 return r;
369 } else
370 assert_se(set_remove(u->aliases, name)); /* see set_get() above… */
371
372 u->id = s; /* Old u->id is now stored in the set, and s is not stored anywhere */
373 unit_add_to_dbus_queue(u);
374
375 return 0;
376 }
377
378 int unit_set_description(Unit *u, const char *description) {
379 int r;
380
381 assert(u);
382
383 r = free_and_strdup(&u->description, empty_to_null(description));
384 if (r < 0)
385 return r;
386 if (r > 0)
387 unit_add_to_dbus_queue(u);
388
389 return 0;
390 }
391
392 static bool unit_success_failure_handler_has_jobs(Unit *unit) {
393 Unit *other;
394
395 UNIT_FOREACH_DEPENDENCY(other, unit, UNIT_ATOM_ON_SUCCESS)
396 if (other->job || other->nop_job)
397 return true;
398
399 UNIT_FOREACH_DEPENDENCY(other, unit, UNIT_ATOM_ON_FAILURE)
400 if (other->job || other->nop_job)
401 return true;
402
403 return false;
404 }
405
406 void unit_release_resources(Unit *u) {
407 UnitActiveState state;
408 ExecContext *ec;
409
410 assert(u);
411
412 if (u->job || u->nop_job)
413 return;
414
415 if (u->perpetual)
416 return;
417
418 state = unit_active_state(u);
419 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
420 return;
421
422 if (unit_will_restart(u))
423 return;
424
425 ec = unit_get_exec_context(u);
426 if (ec && ec->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART)
427 exec_context_destroy_runtime_directory(ec, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
428
429 if (UNIT_VTABLE(u)->release_resources)
430 UNIT_VTABLE(u)->release_resources(u);
431 }
432
433 bool unit_may_gc(Unit *u) {
434 UnitActiveState state;
435 int r;
436
437 assert(u);
438
439 /* Checks whether the unit is ready to be unloaded for garbage collection. Returns true when the
440 * unit may be collected, and false if there's some reason to keep it loaded.
441 *
442 * References from other units are *not* checked here. Instead, this is done in unit_gc_sweep(), but
443 * using markers to properly collect dependency loops.
444 */
445
446 if (u->job || u->nop_job)
447 return false;
448
449 if (u->perpetual)
450 return false;
451
452 /* if we saw a cgroup empty event for this unit, stay around until we processed it so that we remove
453 * the empty cgroup if possible. Similar, process any pending OOM events if they are already queued
454 * before we release the unit. */
455 if (u->in_cgroup_empty_queue || u->in_cgroup_oom_queue)
456 return false;
457
458 /* Make sure to send out D-Bus events before we unload the unit */
459 if (u->in_dbus_queue)
460 return false;
461
462 if (sd_bus_track_count(u->bus_track) > 0)
463 return false;
464
465 state = unit_active_state(u);
466
467 /* But we keep the unit object around for longer when it is referenced or configured to not be
468 * gc'ed */
469 switch (u->collect_mode) {
470
471 case COLLECT_INACTIVE:
472 if (state != UNIT_INACTIVE)
473 return false;
474
475 break;
476
477 case COLLECT_INACTIVE_OR_FAILED:
478 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
479 return false;
480
481 break;
482
483 default:
484 assert_not_reached();
485 }
486
487 /* Check if any OnFailure= or on Success= jobs may be pending */
488 if (unit_success_failure_handler_has_jobs(u))
489 return false;
490
491 if (u->cgroup_path) {
492 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
493 * around. Units with active processes should never be collected. */
494
495 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
496 if (r < 0)
497 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
498 if (r <= 0)
499 return false;
500 }
501
502 if (!UNIT_VTABLE(u)->may_gc)
503 return true;
504
505 return UNIT_VTABLE(u)->may_gc(u);
506 }
507
508 void unit_add_to_load_queue(Unit *u) {
509 assert(u);
510 assert(u->type != _UNIT_TYPE_INVALID);
511
512 if (u->load_state != UNIT_STUB || u->in_load_queue)
513 return;
514
515 LIST_PREPEND(load_queue, u->manager->load_queue, u);
516 u->in_load_queue = true;
517 }
518
519 void unit_add_to_cleanup_queue(Unit *u) {
520 assert(u);
521
522 if (u->in_cleanup_queue)
523 return;
524
525 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
526 u->in_cleanup_queue = true;
527 }
528
529 void unit_add_to_gc_queue(Unit *u) {
530 assert(u);
531
532 if (u->in_gc_queue || u->in_cleanup_queue)
533 return;
534
535 if (!unit_may_gc(u))
536 return;
537
538 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
539 u->in_gc_queue = true;
540 }
541
542 void unit_add_to_dbus_queue(Unit *u) {
543 assert(u);
544 assert(u->type != _UNIT_TYPE_INVALID);
545
546 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
547 return;
548
549 /* Shortcut things if nobody cares */
550 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
551 sd_bus_track_count(u->bus_track) <= 0 &&
552 set_isempty(u->manager->private_buses)) {
553 u->sent_dbus_new_signal = true;
554 return;
555 }
556
557 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
558 u->in_dbus_queue = true;
559 }
560
561 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
562 assert(u);
563
564 if (u->in_stop_when_unneeded_queue)
565 return;
566
567 if (!u->stop_when_unneeded)
568 return;
569
570 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
571 return;
572
573 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
574 u->in_stop_when_unneeded_queue = true;
575 }
576
577 void unit_submit_to_start_when_upheld_queue(Unit *u) {
578 assert(u);
579
580 if (u->in_start_when_upheld_queue)
581 return;
582
583 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)))
584 return;
585
586 if (!unit_has_dependency(u, UNIT_ATOM_START_STEADILY, NULL))
587 return;
588
589 LIST_PREPEND(start_when_upheld_queue, u->manager->start_when_upheld_queue, u);
590 u->in_start_when_upheld_queue = true;
591 }
592
593 void unit_submit_to_stop_when_bound_queue(Unit *u) {
594 assert(u);
595
596 if (u->in_stop_when_bound_queue)
597 return;
598
599 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
600 return;
601
602 if (!unit_has_dependency(u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT, NULL))
603 return;
604
605 LIST_PREPEND(stop_when_bound_queue, u->manager->stop_when_bound_queue, u);
606 u->in_stop_when_bound_queue = true;
607 }
608
609 static bool unit_can_release_resources(Unit *u) {
610 ExecContext *ec;
611
612 assert(u);
613
614 if (UNIT_VTABLE(u)->release_resources)
615 return true;
616
617 ec = unit_get_exec_context(u);
618 if (ec && ec->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART)
619 return true;
620
621 return false;
622 }
623
624 void unit_submit_to_release_resources_queue(Unit *u) {
625 assert(u);
626
627 if (u->in_release_resources_queue)
628 return;
629
630 if (u->job || u->nop_job)
631 return;
632
633 if (u->perpetual)
634 return;
635
636 if (!unit_can_release_resources(u))
637 return;
638
639 LIST_PREPEND(release_resources_queue, u->manager->release_resources_queue, u);
640 u->in_release_resources_queue = true;
641 }
642
643 static void unit_clear_dependencies(Unit *u) {
644 assert(u);
645
646 /* Removes all dependencies configured on u and their reverse dependencies. */
647
648 for (Hashmap *deps; (deps = hashmap_steal_first(u->dependencies));) {
649
650 for (Unit *other; (other = hashmap_steal_first_key(deps));) {
651 Hashmap *other_deps;
652
653 HASHMAP_FOREACH(other_deps, other->dependencies)
654 hashmap_remove(other_deps, u);
655
656 unit_add_to_gc_queue(other);
657 }
658
659 hashmap_free(deps);
660 }
661
662 u->dependencies = hashmap_free(u->dependencies);
663 }
664
665 static void unit_remove_transient(Unit *u) {
666 assert(u);
667
668 if (!u->transient)
669 return;
670
671 if (u->fragment_path)
672 (void) unlink(u->fragment_path);
673
674 STRV_FOREACH(i, u->dropin_paths) {
675 _cleanup_free_ char *p = NULL, *pp = NULL;
676
677 if (path_extract_directory(*i, &p) < 0) /* Get the drop-in directory from the drop-in file */
678 continue;
679
680 if (path_extract_directory(p, &pp) < 0) /* Get the config directory from the drop-in directory */
681 continue;
682
683 /* Only drop transient drop-ins */
684 if (!path_equal(u->manager->lookup_paths.transient, pp))
685 continue;
686
687 (void) unlink(*i);
688 (void) rmdir(p);
689 }
690 }
691
692 static void unit_free_requires_mounts_for(Unit *u) {
693 assert(u);
694
695 for (;;) {
696 _cleanup_free_ char *path = NULL;
697
698 path = hashmap_steal_first_key(u->requires_mounts_for);
699 if (!path)
700 break;
701 else {
702 char s[strlen(path) + 1];
703
704 PATH_FOREACH_PREFIX_MORE(s, path) {
705 char *y;
706 Set *x;
707
708 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
709 if (!x)
710 continue;
711
712 (void) set_remove(x, u);
713
714 if (set_isempty(x)) {
715 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
716 free(y);
717 set_free(x);
718 }
719 }
720 }
721 }
722
723 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
724 }
725
726 static void unit_done(Unit *u) {
727 ExecContext *ec;
728 CGroupContext *cc;
729
730 assert(u);
731
732 if (u->type < 0)
733 return;
734
735 if (UNIT_VTABLE(u)->done)
736 UNIT_VTABLE(u)->done(u);
737
738 ec = unit_get_exec_context(u);
739 if (ec)
740 exec_context_done(ec);
741
742 cc = unit_get_cgroup_context(u);
743 if (cc)
744 cgroup_context_done(cc);
745 }
746
747 Unit* unit_free(Unit *u) {
748 Unit *slice;
749 char *t;
750
751 if (!u)
752 return NULL;
753
754 sd_event_source_disable_unref(u->auto_start_stop_event_source);
755
756 u->transient_file = safe_fclose(u->transient_file);
757
758 if (!MANAGER_IS_RELOADING(u->manager))
759 unit_remove_transient(u);
760
761 bus_unit_send_removed_signal(u);
762
763 unit_done(u);
764
765 unit_dequeue_rewatch_pids(u);
766
767 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
768 u->bus_track = sd_bus_track_unref(u->bus_track);
769 u->deserialized_refs = strv_free(u->deserialized_refs);
770 u->pending_freezer_invocation = sd_bus_message_unref(u->pending_freezer_invocation);
771
772 unit_free_requires_mounts_for(u);
773
774 SET_FOREACH(t, u->aliases)
775 hashmap_remove_value(u->manager->units, t, u);
776 if (u->id)
777 hashmap_remove_value(u->manager->units, u->id, u);
778
779 if (!sd_id128_is_null(u->invocation_id))
780 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
781
782 if (u->job) {
783 Job *j = u->job;
784 job_uninstall(j);
785 job_free(j);
786 }
787
788 if (u->nop_job) {
789 Job *j = u->nop_job;
790 job_uninstall(j);
791 job_free(j);
792 }
793
794 /* A unit is being dropped from the tree, make sure our family is realized properly. Do this after we
795 * detach the unit from slice tree in order to eliminate its effect on controller masks. */
796 slice = UNIT_GET_SLICE(u);
797 unit_clear_dependencies(u);
798 if (slice)
799 unit_add_family_to_cgroup_realize_queue(slice);
800
801 if (u->on_console)
802 manager_unref_console(u->manager);
803
804 fdset_free(u->initial_socket_bind_link_fds);
805 #if BPF_FRAMEWORK
806 bpf_link_free(u->ipv4_socket_bind_link);
807 bpf_link_free(u->ipv6_socket_bind_link);
808 #endif
809
810 unit_release_cgroup(u);
811
812 if (!MANAGER_IS_RELOADING(u->manager))
813 unit_unlink_state_files(u);
814
815 unit_unref_uid_gid(u, false);
816
817 (void) manager_update_failed_units(u->manager, u, false);
818 set_remove(u->manager->startup_units, u);
819
820 unit_unwatch_all_pids(u);
821
822 while (u->refs_by_target)
823 unit_ref_unset(u->refs_by_target);
824
825 if (u->type != _UNIT_TYPE_INVALID)
826 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
827
828 if (u->in_load_queue)
829 LIST_REMOVE(load_queue, u->manager->load_queue, u);
830
831 if (u->in_dbus_queue)
832 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
833
834 if (u->in_cleanup_queue)
835 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
836
837 if (u->in_gc_queue)
838 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
839
840 if (u->in_cgroup_realize_queue)
841 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
842
843 if (u->in_cgroup_empty_queue)
844 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
845
846 if (u->in_cgroup_oom_queue)
847 LIST_REMOVE(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
848
849 if (u->in_target_deps_queue)
850 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
851
852 if (u->in_stop_when_unneeded_queue)
853 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
854
855 if (u->in_start_when_upheld_queue)
856 LIST_REMOVE(start_when_upheld_queue, u->manager->start_when_upheld_queue, u);
857
858 if (u->in_stop_when_bound_queue)
859 LIST_REMOVE(stop_when_bound_queue, u->manager->stop_when_bound_queue, u);
860
861 if (u->in_release_resources_queue)
862 LIST_REMOVE(release_resources_queue, u->manager->release_resources_queue, u);
863
864 bpf_firewall_close(u);
865
866 hashmap_free(u->bpf_foreign_by_key);
867
868 bpf_program_free(u->bpf_device_control_installed);
869
870 #if BPF_FRAMEWORK
871 bpf_link_free(u->restrict_ifaces_ingress_bpf_link);
872 bpf_link_free(u->restrict_ifaces_egress_bpf_link);
873 #endif
874 fdset_free(u->initial_restric_ifaces_link_fds);
875
876 condition_free_list(u->conditions);
877 condition_free_list(u->asserts);
878
879 free(u->description);
880 strv_free(u->documentation);
881 free(u->fragment_path);
882 free(u->source_path);
883 strv_free(u->dropin_paths);
884 free(u->instance);
885
886 free(u->job_timeout_reboot_arg);
887 free(u->reboot_arg);
888
889 free(u->access_selinux_context);
890
891 set_free_free(u->aliases);
892 free(u->id);
893
894 activation_details_unref(u->activation_details);
895
896 return mfree(u);
897 }
898
899 FreezerState unit_freezer_state(Unit *u) {
900 assert(u);
901
902 return u->freezer_state;
903 }
904
905 int unit_freezer_state_kernel(Unit *u, FreezerState *ret) {
906 char *values[1] = {};
907 int r;
908
909 assert(u);
910
911 r = cg_get_keyed_attribute(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
912 STRV_MAKE("frozen"), values);
913 if (r < 0)
914 return r;
915
916 r = _FREEZER_STATE_INVALID;
917
918 if (values[0]) {
919 if (streq(values[0], "0"))
920 r = FREEZER_RUNNING;
921 else if (streq(values[0], "1"))
922 r = FREEZER_FROZEN;
923 }
924
925 free(values[0]);
926 *ret = r;
927
928 return 0;
929 }
930
931 UnitActiveState unit_active_state(Unit *u) {
932 assert(u);
933
934 if (u->load_state == UNIT_MERGED)
935 return unit_active_state(unit_follow_merge(u));
936
937 /* After a reload it might happen that a unit is not correctly
938 * loaded but still has a process around. That's why we won't
939 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
940
941 return UNIT_VTABLE(u)->active_state(u);
942 }
943
944 const char* unit_sub_state_to_string(Unit *u) {
945 assert(u);
946
947 return UNIT_VTABLE(u)->sub_state_to_string(u);
948 }
949
950 static int unit_merge_names(Unit *u, Unit *other) {
951 char *name;
952 int r;
953
954 assert(u);
955 assert(other);
956
957 r = unit_add_alias(u, other->id);
958 if (r < 0)
959 return r;
960
961 r = set_move(u->aliases, other->aliases);
962 if (r < 0) {
963 set_remove(u->aliases, other->id);
964 return r;
965 }
966
967 TAKE_PTR(other->id);
968 other->aliases = set_free_free(other->aliases);
969
970 SET_FOREACH(name, u->aliases)
971 assert_se(hashmap_replace(u->manager->units, name, u) == 0);
972
973 return 0;
974 }
975
976 static int unit_reserve_dependencies(Unit *u, Unit *other) {
977 size_t n_reserve;
978 Hashmap* deps;
979 void *d;
980 int r;
981
982 assert(u);
983 assert(other);
984
985 /* Let's reserve some space in the dependency hashmaps so that later on merging the units cannot
986 * fail.
987 *
988 * First make some room in the per dependency type hashmaps. Using the summed size of both units'
989 * hashmaps is an estimate that is likely too high since they probably use some of the same
990 * types. But it's never too low, and that's all we need. */
991
992 n_reserve = MIN(hashmap_size(other->dependencies), LESS_BY((size_t) _UNIT_DEPENDENCY_MAX, hashmap_size(u->dependencies)));
993 if (n_reserve > 0) {
994 r = hashmap_ensure_allocated(&u->dependencies, NULL);
995 if (r < 0)
996 return r;
997
998 r = hashmap_reserve(u->dependencies, n_reserve);
999 if (r < 0)
1000 return r;
1001 }
1002
1003 /* Now, enlarge our per dependency type hashmaps by the number of entries in the same hashmap of the
1004 * other unit's dependencies.
1005 *
1006 * NB: If u does not have a dependency set allocated for some dependency type, there is no need to
1007 * reserve anything for. In that case other's set will be transferred as a whole to u by
1008 * complete_move(). */
1009
1010 HASHMAP_FOREACH_KEY(deps, d, u->dependencies) {
1011 Hashmap *other_deps;
1012
1013 other_deps = hashmap_get(other->dependencies, d);
1014
1015 r = hashmap_reserve(deps, hashmap_size(other_deps));
1016 if (r < 0)
1017 return r;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static bool unit_should_warn_about_dependency(UnitDependency dependency) {
1024 /* Only warn about some unit types */
1025 return IN_SET(dependency,
1026 UNIT_CONFLICTS,
1027 UNIT_CONFLICTED_BY,
1028 UNIT_BEFORE,
1029 UNIT_AFTER,
1030 UNIT_ON_SUCCESS,
1031 UNIT_ON_FAILURE,
1032 UNIT_TRIGGERS,
1033 UNIT_TRIGGERED_BY);
1034 }
1035
1036 static int unit_per_dependency_type_hashmap_update(
1037 Hashmap *per_type,
1038 Unit *other,
1039 UnitDependencyMask origin_mask,
1040 UnitDependencyMask destination_mask) {
1041
1042 UnitDependencyInfo info;
1043 int r;
1044
1045 assert(other);
1046 assert_cc(sizeof(void*) == sizeof(info));
1047
1048 /* Acquire the UnitDependencyInfo entry for the Unit* we are interested in, and update it if it
1049 * exists, or insert it anew if not. */
1050
1051 info.data = hashmap_get(per_type, other);
1052 if (info.data) {
1053 /* Entry already exists. Add in our mask. */
1054
1055 if (FLAGS_SET(origin_mask, info.origin_mask) &&
1056 FLAGS_SET(destination_mask, info.destination_mask))
1057 return 0; /* NOP */
1058
1059 info.origin_mask |= origin_mask;
1060 info.destination_mask |= destination_mask;
1061
1062 r = hashmap_update(per_type, other, info.data);
1063 } else {
1064 info = (UnitDependencyInfo) {
1065 .origin_mask = origin_mask,
1066 .destination_mask = destination_mask,
1067 };
1068
1069 r = hashmap_put(per_type, other, info.data);
1070 }
1071 if (r < 0)
1072 return r;
1073
1074 return 1;
1075 }
1076
1077 static void unit_merge_dependencies(Unit *u, Unit *other) {
1078 Hashmap *deps;
1079 void *dt; /* Actually of type UnitDependency, except that we don't bother casting it here,
1080 * since the hashmaps all want it as void pointer. */
1081
1082 assert(u);
1083 assert(other);
1084
1085 if (u == other)
1086 return;
1087
1088 /* First, remove dependency to other. */
1089 HASHMAP_FOREACH_KEY(deps, dt, u->dependencies) {
1090 if (hashmap_remove(deps, other) && unit_should_warn_about_dependency(UNIT_DEPENDENCY_FROM_PTR(dt)))
1091 log_unit_warning(u, "Dependency %s=%s is dropped, as %s is merged into %s.",
1092 unit_dependency_to_string(UNIT_DEPENDENCY_FROM_PTR(dt)),
1093 other->id, other->id, u->id);
1094
1095 if (hashmap_isempty(deps))
1096 hashmap_free(hashmap_remove(u->dependencies, dt));
1097 }
1098
1099 for (;;) {
1100 _cleanup_hashmap_free_ Hashmap *other_deps = NULL;
1101 UnitDependencyInfo di_back;
1102 Unit *back;
1103
1104 /* Let's focus on one dependency type at a time, that 'other' has defined. */
1105 other_deps = hashmap_steal_first_key_and_value(other->dependencies, &dt);
1106 if (!other_deps)
1107 break; /* done! */
1108
1109 deps = hashmap_get(u->dependencies, dt);
1110
1111 /* Now iterate through all dependencies of this dependency type, of 'other'. We refer to the
1112 * referenced units as 'back'. */
1113 HASHMAP_FOREACH_KEY(di_back.data, back, other_deps) {
1114 Hashmap *back_deps;
1115 void *back_dt;
1116
1117 if (back == u) {
1118 /* This is a dependency pointing back to the unit we want to merge with?
1119 * Suppress it (but warn) */
1120 if (unit_should_warn_about_dependency(UNIT_DEPENDENCY_FROM_PTR(dt)))
1121 log_unit_warning(u, "Dependency %s=%s in %s is dropped, as %s is merged into %s.",
1122 unit_dependency_to_string(UNIT_DEPENDENCY_FROM_PTR(dt)),
1123 u->id, other->id, other->id, u->id);
1124
1125 hashmap_remove(other_deps, back);
1126 continue;
1127 }
1128
1129 /* Now iterate through all deps of 'back', and fix the ones pointing to 'other' to
1130 * point to 'u' instead. */
1131 HASHMAP_FOREACH_KEY(back_deps, back_dt, back->dependencies) {
1132 UnitDependencyInfo di_move;
1133
1134 di_move.data = hashmap_remove(back_deps, other);
1135 if (!di_move.data)
1136 continue;
1137
1138 assert_se(unit_per_dependency_type_hashmap_update(
1139 back_deps,
1140 u,
1141 di_move.origin_mask,
1142 di_move.destination_mask) >= 0);
1143 }
1144
1145 /* The target unit already has dependencies of this type, let's then merge this individually. */
1146 if (deps)
1147 assert_se(unit_per_dependency_type_hashmap_update(
1148 deps,
1149 back,
1150 di_back.origin_mask,
1151 di_back.destination_mask) >= 0);
1152 }
1153
1154 /* Now all references towards 'other' of the current type 'dt' are corrected to point to 'u'.
1155 * Lets's now move the deps of type 'dt' from 'other' to 'u'. If the unit does not have
1156 * dependencies of this type, let's move them per type wholesale. */
1157 if (!deps)
1158 assert_se(hashmap_put(u->dependencies, dt, TAKE_PTR(other_deps)) >= 0);
1159 }
1160
1161 other->dependencies = hashmap_free(other->dependencies);
1162 }
1163
1164 int unit_merge(Unit *u, Unit *other) {
1165 int r;
1166
1167 assert(u);
1168 assert(other);
1169 assert(u->manager == other->manager);
1170 assert(u->type != _UNIT_TYPE_INVALID);
1171
1172 other = unit_follow_merge(other);
1173
1174 if (other == u)
1175 return 0;
1176
1177 if (u->type != other->type)
1178 return -EINVAL;
1179
1180 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
1181 return -EEXIST;
1182
1183 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
1184 return -EEXIST;
1185
1186 if (!streq_ptr(u->instance, other->instance))
1187 return -EINVAL;
1188
1189 if (other->job)
1190 return -EEXIST;
1191
1192 if (other->nop_job)
1193 return -EEXIST;
1194
1195 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
1196 return -EEXIST;
1197
1198 /* Make reservations to ensure merge_dependencies() won't fail. We don't rollback reservations if we
1199 * fail. We don't have a way to undo reservations. A reservation is not a leak. */
1200 r = unit_reserve_dependencies(u, other);
1201 if (r < 0)
1202 return r;
1203
1204 /* Redirect all references */
1205 while (other->refs_by_target)
1206 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
1207
1208 /* Merge dependencies */
1209 unit_merge_dependencies(u, other);
1210
1211 /* Merge names. It is better to do that after merging deps, otherwise the log message contains n/a. */
1212 r = unit_merge_names(u, other);
1213 if (r < 0)
1214 return r;
1215
1216 other->load_state = UNIT_MERGED;
1217 other->merged_into = u;
1218
1219 if (!u->activation_details)
1220 u->activation_details = activation_details_ref(other->activation_details);
1221
1222 /* If there is still some data attached to the other node, we
1223 * don't need it anymore, and can free it. */
1224 if (other->load_state != UNIT_STUB)
1225 if (UNIT_VTABLE(other)->done)
1226 UNIT_VTABLE(other)->done(other);
1227
1228 unit_add_to_dbus_queue(u);
1229 unit_add_to_cleanup_queue(other);
1230
1231 return 0;
1232 }
1233
1234 int unit_merge_by_name(Unit *u, const char *name) {
1235 _cleanup_free_ char *s = NULL;
1236 Unit *other;
1237 int r;
1238
1239 /* Either add name to u, or if a unit with name already exists, merge it with u.
1240 * If name is a template, do the same for name@instance, where instance is u's instance. */
1241
1242 assert(u);
1243 assert(name);
1244
1245 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
1246 if (!u->instance)
1247 return -EINVAL;
1248
1249 r = unit_name_replace_instance(name, u->instance, &s);
1250 if (r < 0)
1251 return r;
1252
1253 name = s;
1254 }
1255
1256 other = manager_get_unit(u->manager, name);
1257 if (other)
1258 return unit_merge(u, other);
1259
1260 return unit_add_name(u, name);
1261 }
1262
1263 Unit* unit_follow_merge(Unit *u) {
1264 assert(u);
1265
1266 while (u->load_state == UNIT_MERGED)
1267 assert_se(u = u->merged_into);
1268
1269 return u;
1270 }
1271
1272 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
1273 int r;
1274
1275 assert(u);
1276 assert(c);
1277
1278 /* Unlike unit_add_dependency() or friends, this always returns 0 on success. */
1279
1280 if (c->working_directory && !c->working_directory_missing_ok) {
1281 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1282 if (r < 0)
1283 return r;
1284 }
1285
1286 if (c->root_directory) {
1287 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1288 if (r < 0)
1289 return r;
1290 }
1291
1292 if (c->root_image) {
1293 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1294 if (r < 0)
1295 return r;
1296 }
1297
1298 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1299 if (!u->manager->prefix[dt])
1300 continue;
1301
1302 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
1303 _cleanup_free_ char *p = NULL;
1304
1305 p = path_join(u->manager->prefix[dt], c->directories[dt].items[i].path);
1306 if (!p)
1307 return -ENOMEM;
1308
1309 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1310 if (r < 0)
1311 return r;
1312 }
1313 }
1314
1315 if (!MANAGER_IS_SYSTEM(u->manager))
1316 return 0;
1317
1318 /* For the following three directory types we need write access, and /var/ is possibly on the root
1319 * fs. Hence order after systemd-remount-fs.service, to ensure things are writable. */
1320 if (c->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
1321 c->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
1322 c->directories[EXEC_DIRECTORY_LOGS].n_items > 0) {
1323 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_REMOUNT_FS_SERVICE, true, UNIT_DEPENDENCY_FILE);
1324 if (r < 0)
1325 return r;
1326 }
1327
1328 if (c->private_tmp) {
1329
1330 /* FIXME: for now we make a special case for /tmp and add a weak dependency on
1331 * tmp.mount so /tmp being masked is supported. However there's no reason to treat
1332 * /tmp specifically and masking other mount units should be handled more
1333 * gracefully too, see PR#16894. */
1334 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "tmp.mount", true, UNIT_DEPENDENCY_FILE);
1335 if (r < 0)
1336 return r;
1337
1338 r = unit_require_mounts_for(u, "/var/tmp", UNIT_DEPENDENCY_FILE);
1339 if (r < 0)
1340 return r;
1341
1342 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1343 if (r < 0)
1344 return r;
1345 }
1346
1347 if (c->root_image) {
1348 /* We need to wait for /dev/loopX to appear when doing RootImage=, hence let's add an
1349 * implicit dependency on udev */
1350
1351 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_UDEVD_SERVICE, true, UNIT_DEPENDENCY_FILE);
1352 if (r < 0)
1353 return r;
1354 }
1355
1356 if (!IN_SET(c->std_output,
1357 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1358 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1359 !IN_SET(c->std_error,
1360 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1361 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE) &&
1362 !c->log_namespace)
1363 return 0;
1364
1365 /* If syslog or kernel logging is requested (or log namespacing is), make sure our own logging daemon
1366 * is run first. */
1367
1368 if (c->log_namespace) {
1369 _cleanup_free_ char *socket_unit = NULL, *varlink_socket_unit = NULL;
1370
1371 r = unit_name_build_from_type("systemd-journald", c->log_namespace, UNIT_SOCKET, &socket_unit);
1372 if (r < 0)
1373 return r;
1374
1375 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, socket_unit, true, UNIT_DEPENDENCY_FILE);
1376 if (r < 0)
1377 return r;
1378
1379 r = unit_name_build_from_type("systemd-journald-varlink", c->log_namespace, UNIT_SOCKET, &varlink_socket_unit);
1380 if (r < 0)
1381 return r;
1382
1383 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, varlink_socket_unit, true, UNIT_DEPENDENCY_FILE);
1384 if (r < 0)
1385 return r;
1386 } else {
1387 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1388 if (r < 0)
1389 return r;
1390 }
1391
1392 r = unit_add_default_credential_dependencies(u, c);
1393 if (r < 0)
1394 return r;
1395
1396 return 0;
1397 }
1398
1399 const char* unit_description(Unit *u) {
1400 assert(u);
1401
1402 if (u->description)
1403 return u->description;
1404
1405 return strna(u->id);
1406 }
1407
1408 const char* unit_status_string(Unit *u, char **ret_combined_buffer) {
1409 assert(u);
1410 assert(u->id);
1411
1412 /* Return u->id, u->description, or "{u->id} - {u->description}".
1413 * Versions with u->description are only used if it is set.
1414 * The last option is used if configured and the caller provided the 'ret_combined_buffer'
1415 * pointer.
1416 *
1417 * Note that *ret_combined_buffer may be set to NULL. */
1418
1419 if (!u->description ||
1420 u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME ||
1421 (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && !ret_combined_buffer) ||
1422 streq(u->description, u->id)) {
1423
1424 if (ret_combined_buffer)
1425 *ret_combined_buffer = NULL;
1426 return u->id;
1427 }
1428
1429 if (ret_combined_buffer) {
1430 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED) {
1431 *ret_combined_buffer = strjoin(u->id, " - ", u->description);
1432 if (*ret_combined_buffer)
1433 return *ret_combined_buffer;
1434 log_oom(); /* Fall back to ->description */
1435 } else
1436 *ret_combined_buffer = NULL;
1437 }
1438
1439 return u->description;
1440 }
1441
1442 /* Common implementation for multiple backends */
1443 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1444 int r;
1445
1446 assert(u);
1447
1448 /* Load a .{service,socket,...} file */
1449 r = unit_load_fragment(u);
1450 if (r < 0)
1451 return r;
1452
1453 if (u->load_state == UNIT_STUB) {
1454 if (fragment_required)
1455 return -ENOENT;
1456
1457 u->load_state = UNIT_LOADED;
1458 }
1459
1460 /* Load drop-in directory data. If u is an alias, we might be reloading the
1461 * target unit needlessly. But we cannot be sure which drops-ins have already
1462 * been loaded and which not, at least without doing complicated book-keeping,
1463 * so let's always reread all drop-ins. */
1464 r = unit_load_dropin(unit_follow_merge(u));
1465 if (r < 0)
1466 return r;
1467
1468 if (u->source_path) {
1469 struct stat st;
1470
1471 if (stat(u->source_path, &st) >= 0)
1472 u->source_mtime = timespec_load(&st.st_mtim);
1473 else
1474 u->source_mtime = 0;
1475 }
1476
1477 return 0;
1478 }
1479
1480 void unit_add_to_target_deps_queue(Unit *u) {
1481 Manager *m = ASSERT_PTR(ASSERT_PTR(u)->manager);
1482
1483 if (u->in_target_deps_queue)
1484 return;
1485
1486 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1487 u->in_target_deps_queue = true;
1488 }
1489
1490 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1491 assert(u);
1492 assert(target);
1493
1494 if (target->type != UNIT_TARGET)
1495 return 0;
1496
1497 /* Only add the dependency if both units are loaded, so that
1498 * that loop check below is reliable */
1499 if (u->load_state != UNIT_LOADED ||
1500 target->load_state != UNIT_LOADED)
1501 return 0;
1502
1503 /* If either side wants no automatic dependencies, then let's
1504 * skip this */
1505 if (!u->default_dependencies ||
1506 !target->default_dependencies)
1507 return 0;
1508
1509 /* Don't create loops */
1510 if (unit_has_dependency(target, UNIT_ATOM_BEFORE, u))
1511 return 0;
1512
1513 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1514 }
1515
1516 static int unit_add_slice_dependencies(Unit *u) {
1517 Unit *slice;
1518 assert(u);
1519
1520 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1521 return 0;
1522
1523 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1524 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1525 relationship). */
1526 UnitDependencyMask mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1527
1528 slice = UNIT_GET_SLICE(u);
1529 if (slice)
1530 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, slice, true, mask);
1531
1532 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1533 return 0;
1534
1535 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1536 }
1537
1538 static int unit_add_mount_dependencies(Unit *u) {
1539 UnitDependencyInfo di;
1540 const char *path;
1541 bool changed = false;
1542 int r;
1543
1544 assert(u);
1545
1546 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for) {
1547 char prefix[strlen(path) + 1];
1548
1549 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1550 _cleanup_free_ char *p = NULL;
1551 Unit *m;
1552
1553 r = unit_name_from_path(prefix, ".mount", &p);
1554 if (r == -EINVAL)
1555 continue; /* If the path cannot be converted to a mount unit name, then it's
1556 * not manageable as a unit by systemd, and hence we don't need a
1557 * dependency on it. Let's thus silently ignore the issue. */
1558 if (r < 0)
1559 return r;
1560
1561 m = manager_get_unit(u->manager, p);
1562 if (!m) {
1563 /* Make sure to load the mount unit if it exists. If so the dependencies on
1564 * this unit will be added later during the loading of the mount unit. */
1565 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1566 continue;
1567 }
1568 if (m == u)
1569 continue;
1570
1571 if (m->load_state != UNIT_LOADED)
1572 continue;
1573
1574 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1575 if (r < 0)
1576 return r;
1577 changed = changed || r > 0;
1578
1579 if (m->fragment_path) {
1580 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1581 if (r < 0)
1582 return r;
1583 changed = changed || r > 0;
1584 }
1585 }
1586 }
1587
1588 return changed;
1589 }
1590
1591 static int unit_add_oomd_dependencies(Unit *u) {
1592 CGroupContext *c;
1593 CGroupMask mask;
1594 int r;
1595
1596 assert(u);
1597
1598 if (!u->default_dependencies)
1599 return 0;
1600
1601 c = unit_get_cgroup_context(u);
1602 if (!c)
1603 return 0;
1604
1605 bool wants_oomd = c->moom_swap == MANAGED_OOM_KILL || c->moom_mem_pressure == MANAGED_OOM_KILL;
1606 if (!wants_oomd)
1607 return 0;
1608
1609 if (!cg_all_unified())
1610 return 0;
1611
1612 r = cg_mask_supported(&mask);
1613 if (r < 0)
1614 return log_debug_errno(r, "Failed to determine supported controllers: %m");
1615
1616 if (!FLAGS_SET(mask, CGROUP_MASK_MEMORY))
1617 return 0;
1618
1619 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, "systemd-oomd.service", true, UNIT_DEPENDENCY_FILE);
1620 }
1621
1622 static int unit_add_startup_units(Unit *u) {
1623 if (!unit_has_startup_cgroup_constraints(u))
1624 return 0;
1625
1626 return set_ensure_put(&u->manager->startup_units, NULL, u);
1627 }
1628
1629 static int unit_validate_on_failure_job_mode(
1630 Unit *u,
1631 const char *job_mode_setting,
1632 JobMode job_mode,
1633 const char *dependency_name,
1634 UnitDependencyAtom atom) {
1635
1636 Unit *other, *found = NULL;
1637
1638 if (job_mode != JOB_ISOLATE)
1639 return 0;
1640
1641 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
1642 if (!found)
1643 found = other;
1644 else if (found != other)
1645 return log_unit_error_errno(
1646 u, SYNTHETIC_ERRNO(ENOEXEC),
1647 "More than one %s dependencies specified but %sisolate set. Refusing.",
1648 dependency_name, job_mode_setting);
1649 }
1650
1651 return 0;
1652 }
1653
1654 int unit_load(Unit *u) {
1655 int r;
1656
1657 assert(u);
1658
1659 if (u->in_load_queue) {
1660 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1661 u->in_load_queue = false;
1662 }
1663
1664 if (u->type == _UNIT_TYPE_INVALID)
1665 return -EINVAL;
1666
1667 if (u->load_state != UNIT_STUB)
1668 return 0;
1669
1670 if (u->transient_file) {
1671 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1672 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1673
1674 r = fflush_and_check(u->transient_file);
1675 if (r < 0)
1676 goto fail;
1677
1678 u->transient_file = safe_fclose(u->transient_file);
1679 u->fragment_mtime = now(CLOCK_REALTIME);
1680 }
1681
1682 r = UNIT_VTABLE(u)->load(u);
1683 if (r < 0)
1684 goto fail;
1685
1686 assert(u->load_state != UNIT_STUB);
1687
1688 if (u->load_state == UNIT_LOADED) {
1689 unit_add_to_target_deps_queue(u);
1690
1691 r = unit_add_slice_dependencies(u);
1692 if (r < 0)
1693 goto fail;
1694
1695 r = unit_add_mount_dependencies(u);
1696 if (r < 0)
1697 goto fail;
1698
1699 r = unit_add_oomd_dependencies(u);
1700 if (r < 0)
1701 goto fail;
1702
1703 r = unit_add_startup_units(u);
1704 if (r < 0)
1705 goto fail;
1706
1707 r = unit_validate_on_failure_job_mode(u, "OnSuccessJobMode=", u->on_success_job_mode, "OnSuccess=", UNIT_ATOM_ON_SUCCESS);
1708 if (r < 0)
1709 goto fail;
1710
1711 r = unit_validate_on_failure_job_mode(u, "OnFailureJobMode=", u->on_failure_job_mode, "OnFailure=", UNIT_ATOM_ON_FAILURE);
1712 if (r < 0)
1713 goto fail;
1714
1715 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1716 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1717
1718 /* We finished loading, let's ensure our parents recalculate the members mask */
1719 unit_invalidate_cgroup_members_masks(u);
1720 }
1721
1722 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1723
1724 unit_add_to_dbus_queue(unit_follow_merge(u));
1725 unit_add_to_gc_queue(u);
1726 (void) manager_varlink_send_managed_oom_update(u);
1727
1728 return 0;
1729
1730 fail:
1731 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code
1732 * should hence return ENOEXEC to ensure units are placed in this state after loading. */
1733
1734 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1735 r == -ENOEXEC ? UNIT_BAD_SETTING :
1736 UNIT_ERROR;
1737 u->load_error = r;
1738
1739 /* Record the timestamp on the cache, so that if the cache gets updated between now and the next time
1740 * an attempt is made to load this unit, we know we need to check again. */
1741 if (u->load_state == UNIT_NOT_FOUND)
1742 u->fragment_not_found_timestamp_hash = u->manager->unit_cache_timestamp_hash;
1743
1744 unit_add_to_dbus_queue(u);
1745 unit_add_to_gc_queue(u);
1746
1747 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1748 }
1749
1750 _printf_(7, 8)
1751 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1752 Unit *u = userdata;
1753 va_list ap;
1754 int r;
1755
1756 if (u && !unit_log_level_test(u, level))
1757 return -ERRNO_VALUE(error);
1758
1759 va_start(ap, format);
1760 if (u)
1761 r = log_object_internalv(level, error, file, line, func,
1762 u->manager->unit_log_field,
1763 u->id,
1764 u->manager->invocation_log_field,
1765 u->invocation_id_string,
1766 format, ap);
1767 else
1768 r = log_internalv(level, error, file, line, func, format, ap);
1769 va_end(ap);
1770
1771 return r;
1772 }
1773
1774 static bool unit_test_condition(Unit *u) {
1775 _cleanup_strv_free_ char **env = NULL;
1776 int r;
1777
1778 assert(u);
1779
1780 dual_timestamp_get(&u->condition_timestamp);
1781
1782 r = manager_get_effective_environment(u->manager, &env);
1783 if (r < 0) {
1784 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1785 u->condition_result = true;
1786 } else
1787 u->condition_result = condition_test_list(
1788 u->conditions,
1789 env,
1790 condition_type_to_string,
1791 log_unit_internal,
1792 u);
1793
1794 unit_add_to_dbus_queue(u);
1795 return u->condition_result;
1796 }
1797
1798 static bool unit_test_assert(Unit *u) {
1799 _cleanup_strv_free_ char **env = NULL;
1800 int r;
1801
1802 assert(u);
1803
1804 dual_timestamp_get(&u->assert_timestamp);
1805
1806 r = manager_get_effective_environment(u->manager, &env);
1807 if (r < 0) {
1808 log_unit_error_errno(u, r, "Failed to determine effective environment: %m");
1809 u->assert_result = CONDITION_ERROR;
1810 } else
1811 u->assert_result = condition_test_list(
1812 u->asserts,
1813 env,
1814 assert_type_to_string,
1815 log_unit_internal,
1816 u);
1817
1818 unit_add_to_dbus_queue(u);
1819 return u->assert_result;
1820 }
1821
1822 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *format, const char *ident) {
1823 if (log_get_show_color()) {
1824 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_COMBINED && strchr(ident, ' '))
1825 ident = strjoina(ANSI_HIGHLIGHT, u->id, ANSI_NORMAL, " - ", u->description);
1826 else
1827 ident = strjoina(ANSI_HIGHLIGHT, ident, ANSI_NORMAL);
1828 }
1829
1830 DISABLE_WARNING_FORMAT_NONLITERAL;
1831 manager_status_printf(u->manager, status_type, status, format, ident);
1832 REENABLE_WARNING;
1833 }
1834
1835 int unit_test_start_limit(Unit *u) {
1836 const char *reason;
1837
1838 assert(u);
1839
1840 if (ratelimit_below(&u->start_ratelimit)) {
1841 u->start_limit_hit = false;
1842 return 0;
1843 }
1844
1845 log_unit_warning(u, "Start request repeated too quickly.");
1846 u->start_limit_hit = true;
1847
1848 reason = strjoina("unit ", u->id, " failed");
1849
1850 emergency_action(u->manager, u->start_limit_action,
1851 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1852 u->reboot_arg, -1, reason);
1853
1854 return -ECANCELED;
1855 }
1856
1857 bool unit_shall_confirm_spawn(Unit *u) {
1858 assert(u);
1859
1860 if (manager_is_confirm_spawn_disabled(u->manager))
1861 return false;
1862
1863 /* For some reasons units remaining in the same process group
1864 * as PID 1 fail to acquire the console even if it's not used
1865 * by any process. So skip the confirmation question for them. */
1866 return !unit_get_exec_context(u)->same_pgrp;
1867 }
1868
1869 static bool unit_verify_deps(Unit *u) {
1870 Unit *other;
1871
1872 assert(u);
1873
1874 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined
1875 * with After=. We do not check Requires= or Requisite= here as they only should have an effect on
1876 * the job processing, but do not have any effect afterwards. We don't check BindsTo= dependencies
1877 * that are not used in conjunction with After= as for them any such check would make things entirely
1878 * racy. */
1879
1880 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT) {
1881
1882 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other))
1883 continue;
1884
1885 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1886 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1887 return false;
1888 }
1889 }
1890
1891 return true;
1892 }
1893
1894 /* Errors that aren't really errors:
1895 * -EALREADY: Unit is already started.
1896 * -ECOMM: Condition failed
1897 * -EAGAIN: An operation is already in progress. Retry later.
1898 *
1899 * Errors that are real errors:
1900 * -EBADR: This unit type does not support starting.
1901 * -ECANCELED: Start limit hit, too many requests for now
1902 * -EPROTO: Assert failed
1903 * -EINVAL: Unit not loaded
1904 * -EOPNOTSUPP: Unit type not supported
1905 * -ENOLINK: The necessary dependencies are not fulfilled.
1906 * -ESTALE: This unit has been started before and can't be started a second time
1907 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1908 */
1909 int unit_start(Unit *u, ActivationDetails *details) {
1910 UnitActiveState state;
1911 Unit *following;
1912 int r;
1913
1914 assert(u);
1915
1916 /* Let's hold off running start jobs for mount units when /proc/self/mountinfo monitor is ratelimited. */
1917 if (UNIT_VTABLE(u)->subsystem_ratelimited) {
1918 r = UNIT_VTABLE(u)->subsystem_ratelimited(u->manager);
1919 if (r < 0)
1920 return r;
1921 if (r > 0)
1922 return -EAGAIN;
1923 }
1924
1925 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1926 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1927 * waiting is finished. */
1928 state = unit_active_state(u);
1929 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1930 return -EALREADY;
1931 if (state == UNIT_MAINTENANCE)
1932 return -EAGAIN;
1933
1934 /* Units that aren't loaded cannot be started */
1935 if (u->load_state != UNIT_LOADED)
1936 return -EINVAL;
1937
1938 /* Refuse starting scope units more than once */
1939 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1940 return -ESTALE;
1941
1942 /* If the conditions were unmet, don't do anything at all. If we already are activating this call might
1943 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1944 * recheck the condition in that case. */
1945 if (state != UNIT_ACTIVATING &&
1946 !unit_test_condition(u))
1947 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition not met. Not starting unit.");
1948
1949 /* If the asserts failed, fail the entire job */
1950 if (state != UNIT_ACTIVATING &&
1951 !unit_test_assert(u))
1952 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1953
1954 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1955 * condition checks, so that we rather return condition check errors (which are usually not
1956 * considered a true failure) than "not supported" errors (which are considered a failure).
1957 */
1958 if (!unit_type_supported(u->type))
1959 return -EOPNOTSUPP;
1960
1961 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1962 * should have taken care of this already, but let's check this here again. After all, our
1963 * dependencies might not be in effect anymore, due to a reload or due to an unmet condition. */
1964 if (!unit_verify_deps(u))
1965 return -ENOLINK;
1966
1967 /* Forward to the main object, if we aren't it. */
1968 following = unit_following(u);
1969 if (following) {
1970 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1971 return unit_start(following, details);
1972 }
1973
1974 /* Check our ability to start early so that failure conditions don't cause us to enter a busy loop. */
1975 if (UNIT_VTABLE(u)->can_start) {
1976 r = UNIT_VTABLE(u)->can_start(u);
1977 if (r < 0)
1978 return r;
1979 }
1980
1981 /* If it is stopped, but we cannot start it, then fail */
1982 if (!UNIT_VTABLE(u)->start)
1983 return -EBADR;
1984
1985 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1986 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1987 * waits for a holdoff timer to elapse before it will start again. */
1988
1989 unit_add_to_dbus_queue(u);
1990 unit_cgroup_freezer_action(u, FREEZER_THAW);
1991
1992 if (!u->activation_details) /* Older details object wins */
1993 u->activation_details = activation_details_ref(details);
1994
1995 return UNIT_VTABLE(u)->start(u);
1996 }
1997
1998 bool unit_can_start(Unit *u) {
1999 assert(u);
2000
2001 if (u->load_state != UNIT_LOADED)
2002 return false;
2003
2004 if (!unit_type_supported(u->type))
2005 return false;
2006
2007 /* Scope units may be started only once */
2008 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
2009 return false;
2010
2011 return !!UNIT_VTABLE(u)->start;
2012 }
2013
2014 bool unit_can_isolate(Unit *u) {
2015 assert(u);
2016
2017 return unit_can_start(u) &&
2018 u->allow_isolate;
2019 }
2020
2021 /* Errors:
2022 * -EBADR: This unit type does not support stopping.
2023 * -EALREADY: Unit is already stopped.
2024 * -EAGAIN: An operation is already in progress. Retry later.
2025 */
2026 int unit_stop(Unit *u) {
2027 UnitActiveState state;
2028 Unit *following;
2029
2030 assert(u);
2031
2032 state = unit_active_state(u);
2033 if (UNIT_IS_INACTIVE_OR_FAILED(state))
2034 return -EALREADY;
2035
2036 following = unit_following(u);
2037 if (following) {
2038 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
2039 return unit_stop(following);
2040 }
2041
2042 if (!UNIT_VTABLE(u)->stop)
2043 return -EBADR;
2044
2045 unit_add_to_dbus_queue(u);
2046 unit_cgroup_freezer_action(u, FREEZER_THAW);
2047
2048 return UNIT_VTABLE(u)->stop(u);
2049 }
2050
2051 bool unit_can_stop(Unit *u) {
2052 assert(u);
2053
2054 /* Note: if we return true here, it does not mean that the unit may be successfully stopped.
2055 * Extrinsic units follow external state and they may stop following external state changes
2056 * (hence we return true here), but an attempt to do this through the manager will fail. */
2057
2058 if (!unit_type_supported(u->type))
2059 return false;
2060
2061 if (u->perpetual)
2062 return false;
2063
2064 return !!UNIT_VTABLE(u)->stop;
2065 }
2066
2067 /* Errors:
2068 * -EBADR: This unit type does not support reloading.
2069 * -ENOEXEC: Unit is not started.
2070 * -EAGAIN: An operation is already in progress. Retry later.
2071 */
2072 int unit_reload(Unit *u) {
2073 UnitActiveState state;
2074 Unit *following;
2075
2076 assert(u);
2077
2078 if (u->load_state != UNIT_LOADED)
2079 return -EINVAL;
2080
2081 if (!unit_can_reload(u))
2082 return -EBADR;
2083
2084 state = unit_active_state(u);
2085 if (state == UNIT_RELOADING)
2086 return -EAGAIN;
2087
2088 if (state != UNIT_ACTIVE)
2089 return log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENOEXEC), "Unit cannot be reloaded because it is inactive.");
2090
2091 following = unit_following(u);
2092 if (following) {
2093 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
2094 return unit_reload(following);
2095 }
2096
2097 unit_add_to_dbus_queue(u);
2098
2099 if (!UNIT_VTABLE(u)->reload) {
2100 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
2101 unit_notify(u, unit_active_state(u), unit_active_state(u), /* reload_success = */ true);
2102 return 0;
2103 }
2104
2105 unit_cgroup_freezer_action(u, FREEZER_THAW);
2106
2107 return UNIT_VTABLE(u)->reload(u);
2108 }
2109
2110 bool unit_can_reload(Unit *u) {
2111 assert(u);
2112
2113 if (UNIT_VTABLE(u)->can_reload)
2114 return UNIT_VTABLE(u)->can_reload(u);
2115
2116 if (unit_has_dependency(u, UNIT_ATOM_PROPAGATES_RELOAD_TO, NULL))
2117 return true;
2118
2119 return UNIT_VTABLE(u)->reload;
2120 }
2121
2122 bool unit_is_unneeded(Unit *u) {
2123 Unit *other;
2124 assert(u);
2125
2126 if (!u->stop_when_unneeded)
2127 return false;
2128
2129 /* Don't clean up while the unit is transitioning or is even inactive. */
2130 if (unit_active_state(u) != UNIT_ACTIVE)
2131 return false;
2132 if (u->job)
2133 return false;
2134
2135 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_PINS_STOP_WHEN_UNNEEDED) {
2136 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
2137 * restart, then don't clean this one up. */
2138
2139 if (other->job)
2140 return false;
2141
2142 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2143 return false;
2144
2145 if (unit_will_restart(other))
2146 return false;
2147 }
2148
2149 return true;
2150 }
2151
2152 bool unit_is_upheld_by_active(Unit *u, Unit **ret_culprit) {
2153 Unit *other;
2154
2155 assert(u);
2156
2157 /* Checks if the unit needs to be started because it currently is not running, but some other unit
2158 * that is active declared an Uphold= dependencies on it */
2159
2160 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(u)) || u->job) {
2161 if (ret_culprit)
2162 *ret_culprit = NULL;
2163 return false;
2164 }
2165
2166 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_START_STEADILY) {
2167 if (other->job)
2168 continue;
2169
2170 if (UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
2171 if (ret_culprit)
2172 *ret_culprit = other;
2173 return true;
2174 }
2175 }
2176
2177 if (ret_culprit)
2178 *ret_culprit = NULL;
2179 return false;
2180 }
2181
2182 bool unit_is_bound_by_inactive(Unit *u, Unit **ret_culprit) {
2183 Unit *other;
2184
2185 assert(u);
2186
2187 /* Checks whether this unit is bound to another unit that is inactive, i.e. whether we should stop
2188 * because the other unit is down. */
2189
2190 if (unit_active_state(u) != UNIT_ACTIVE || u->job) {
2191 /* Don't clean up while the unit is transitioning or is even inactive. */
2192 if (ret_culprit)
2193 *ret_culprit = NULL;
2194 return false;
2195 }
2196
2197 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_CANNOT_BE_ACTIVE_WITHOUT) {
2198 if (other->job)
2199 continue;
2200
2201 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) {
2202 if (ret_culprit)
2203 *ret_culprit = other;
2204
2205 return true;
2206 }
2207 }
2208
2209 if (ret_culprit)
2210 *ret_culprit = NULL;
2211 return false;
2212 }
2213
2214 static void check_unneeded_dependencies(Unit *u) {
2215 Unit *other;
2216 assert(u);
2217
2218 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2219
2220 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_STOP_WHEN_UNNEEDED_QUEUE)
2221 unit_submit_to_stop_when_unneeded_queue(other);
2222 }
2223
2224 static void check_uphold_dependencies(Unit *u) {
2225 Unit *other;
2226 assert(u);
2227
2228 /* Add all units this unit depends on to the queue that processes Uphold= behaviour. */
2229
2230 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_START_WHEN_UPHELD_QUEUE)
2231 unit_submit_to_start_when_upheld_queue(other);
2232 }
2233
2234 static void check_bound_by_dependencies(Unit *u) {
2235 Unit *other;
2236 assert(u);
2237
2238 /* Add all units this unit depends on to the queue that processes BindsTo= stop behaviour. */
2239
2240 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_ADD_CANNOT_BE_ACTIVE_WITHOUT_QUEUE)
2241 unit_submit_to_stop_when_bound_queue(other);
2242 }
2243
2244 static void retroactively_start_dependencies(Unit *u) {
2245 Unit *other;
2246
2247 assert(u);
2248 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2249
2250 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_START_REPLACE) /* Requires= + BindsTo= */
2251 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other) &&
2252 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2253 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2254
2255 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_START_FAIL) /* Wants= */
2256 if (!unit_has_dependency(u, UNIT_ATOM_AFTER, other) &&
2257 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2258 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2259
2260 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_STOP_ON_START) /* Conflicts= (and inverse) */
2261 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2262 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2263 }
2264
2265 static void retroactively_stop_dependencies(Unit *u) {
2266 Unit *other;
2267
2268 assert(u);
2269 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2270
2271 /* Pull down units which are bound to us recursively if enabled */
2272 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_RETROACTIVE_STOP_ON_STOP) /* BoundBy= */
2273 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2274 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2275 }
2276
2277 void unit_start_on_failure(
2278 Unit *u,
2279 const char *dependency_name,
2280 UnitDependencyAtom atom,
2281 JobMode job_mode) {
2282
2283 int n_jobs = -1;
2284 Unit *other;
2285 int r;
2286
2287 assert(u);
2288 assert(dependency_name);
2289 assert(IN_SET(atom, UNIT_ATOM_ON_SUCCESS, UNIT_ATOM_ON_FAILURE));
2290
2291 /* Act on OnFailure= and OnSuccess= dependencies */
2292
2293 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
2294 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2295
2296 if (n_jobs < 0) {
2297 log_unit_info(u, "Triggering %s dependencies.", dependency_name);
2298 n_jobs = 0;
2299 }
2300
2301 r = manager_add_job(u->manager, JOB_START, other, job_mode, NULL, &error, NULL);
2302 if (r < 0)
2303 log_unit_warning_errno(
2304 u, r, "Failed to enqueue %s job, ignoring: %s",
2305 dependency_name, bus_error_message(&error, r));
2306 n_jobs ++;
2307 }
2308
2309 if (n_jobs >= 0)
2310 log_unit_debug(u, "Triggering %s dependencies done (%i %s).",
2311 dependency_name, n_jobs, n_jobs == 1 ? "job" : "jobs");
2312 }
2313
2314 void unit_trigger_notify(Unit *u) {
2315 Unit *other;
2316
2317 assert(u);
2318
2319 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_TRIGGERED_BY)
2320 if (UNIT_VTABLE(other)->trigger_notify)
2321 UNIT_VTABLE(other)->trigger_notify(other, u);
2322 }
2323
2324 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2325 if (condition_notice && log_level > LOG_NOTICE)
2326 return LOG_NOTICE;
2327 if (condition_info && log_level > LOG_INFO)
2328 return LOG_INFO;
2329 return log_level;
2330 }
2331
2332 static int unit_log_resources(Unit *u) {
2333 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2334 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2335 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2336 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a threshold */
2337 size_t n_message_parts = 0, n_iovec = 0;
2338 char* message_parts[1 + 2 + 2 + 1], *t;
2339 nsec_t nsec = NSEC_INFINITY;
2340 int r;
2341 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2342 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2343 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2344 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2345 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2346 };
2347 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2348 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2349 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2350 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2351 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2352 };
2353
2354 assert(u);
2355
2356 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2357 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2358 * information and the complete data in structured fields. */
2359
2360 (void) unit_get_cpu_usage(u, &nsec);
2361 if (nsec != NSEC_INFINITY) {
2362 /* Format the CPU time for inclusion in the structured log message */
2363 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2364 r = log_oom();
2365 goto finish;
2366 }
2367 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2368
2369 /* Format the CPU time for inclusion in the human language message string */
2370 t = strjoin("consumed ", FORMAT_TIMESPAN(nsec / NSEC_PER_USEC, USEC_PER_MSEC), " CPU time");
2371 if (!t) {
2372 r = log_oom();
2373 goto finish;
2374 }
2375
2376 message_parts[n_message_parts++] = t;
2377
2378 log_level = raise_level(log_level,
2379 nsec > MENTIONWORTHY_CPU_NSEC,
2380 nsec > NOTICEWORTHY_CPU_NSEC);
2381 }
2382
2383 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2384 uint64_t value = UINT64_MAX;
2385
2386 assert(io_fields[k]);
2387
2388 (void) unit_get_io_accounting(u, k, k > 0, &value);
2389 if (value == UINT64_MAX)
2390 continue;
2391
2392 have_io_accounting = true;
2393 if (value > 0)
2394 any_io = true;
2395
2396 /* Format IO accounting data for inclusion in the structured log message */
2397 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2398 r = log_oom();
2399 goto finish;
2400 }
2401 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2402
2403 /* Format the IO accounting data for inclusion in the human language message string, but only
2404 * for the bytes counters (and not for the operations counters) */
2405 if (k == CGROUP_IO_READ_BYTES) {
2406 assert(!rr);
2407 rr = strjoin("read ", strna(FORMAT_BYTES(value)), " from disk");
2408 if (!rr) {
2409 r = log_oom();
2410 goto finish;
2411 }
2412 } else if (k == CGROUP_IO_WRITE_BYTES) {
2413 assert(!wr);
2414 wr = strjoin("written ", strna(FORMAT_BYTES(value)), " to disk");
2415 if (!wr) {
2416 r = log_oom();
2417 goto finish;
2418 }
2419 }
2420
2421 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2422 log_level = raise_level(log_level,
2423 value > MENTIONWORTHY_IO_BYTES,
2424 value > NOTICEWORTHY_IO_BYTES);
2425 }
2426
2427 if (have_io_accounting) {
2428 if (any_io) {
2429 if (rr)
2430 message_parts[n_message_parts++] = TAKE_PTR(rr);
2431 if (wr)
2432 message_parts[n_message_parts++] = TAKE_PTR(wr);
2433
2434 } else {
2435 char *k;
2436
2437 k = strdup("no IO");
2438 if (!k) {
2439 r = log_oom();
2440 goto finish;
2441 }
2442
2443 message_parts[n_message_parts++] = k;
2444 }
2445 }
2446
2447 for (CGroupIPAccountingMetric m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2448 uint64_t value = UINT64_MAX;
2449
2450 assert(ip_fields[m]);
2451
2452 (void) unit_get_ip_accounting(u, m, &value);
2453 if (value == UINT64_MAX)
2454 continue;
2455
2456 have_ip_accounting = true;
2457 if (value > 0)
2458 any_traffic = true;
2459
2460 /* Format IP accounting data for inclusion in the structured log message */
2461 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2462 r = log_oom();
2463 goto finish;
2464 }
2465 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2466
2467 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2468 * bytes counters (and not for the packets counters) */
2469 if (m == CGROUP_IP_INGRESS_BYTES) {
2470 assert(!igress);
2471 igress = strjoin("received ", strna(FORMAT_BYTES(value)), " IP traffic");
2472 if (!igress) {
2473 r = log_oom();
2474 goto finish;
2475 }
2476 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2477 assert(!egress);
2478 egress = strjoin("sent ", strna(FORMAT_BYTES(value)), " IP traffic");
2479 if (!egress) {
2480 r = log_oom();
2481 goto finish;
2482 }
2483 }
2484
2485 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2486 log_level = raise_level(log_level,
2487 value > MENTIONWORTHY_IP_BYTES,
2488 value > NOTICEWORTHY_IP_BYTES);
2489 }
2490
2491 /* This check is here because it is the earliest point following all possible log_level assignments. If
2492 * log_level is assigned anywhere after this point, move this check. */
2493 if (!unit_log_level_test(u, log_level)) {
2494 r = 0;
2495 goto finish;
2496 }
2497
2498 if (have_ip_accounting) {
2499 if (any_traffic) {
2500 if (igress)
2501 message_parts[n_message_parts++] = TAKE_PTR(igress);
2502 if (egress)
2503 message_parts[n_message_parts++] = TAKE_PTR(egress);
2504
2505 } else {
2506 char *k;
2507
2508 k = strdup("no IP traffic");
2509 if (!k) {
2510 r = log_oom();
2511 goto finish;
2512 }
2513
2514 message_parts[n_message_parts++] = k;
2515 }
2516 }
2517
2518 /* Is there any accounting data available at all? */
2519 if (n_iovec == 0) {
2520 r = 0;
2521 goto finish;
2522 }
2523
2524 if (n_message_parts == 0)
2525 t = strjoina("MESSAGE=", u->id, ": Completed.");
2526 else {
2527 _cleanup_free_ char *joined = NULL;
2528
2529 message_parts[n_message_parts] = NULL;
2530
2531 joined = strv_join(message_parts, ", ");
2532 if (!joined) {
2533 r = log_oom();
2534 goto finish;
2535 }
2536
2537 joined[0] = ascii_toupper(joined[0]);
2538 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2539 }
2540
2541 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2542 * and hence don't increase n_iovec for them */
2543 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2544 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2545
2546 t = strjoina(u->manager->unit_log_field, u->id);
2547 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2548
2549 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2550 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2551
2552 log_unit_struct_iovec(u, log_level, iovec, n_iovec + 4);
2553 r = 0;
2554
2555 finish:
2556 free_many_charp(message_parts, n_message_parts);
2557
2558 for (size_t i = 0; i < n_iovec; i++)
2559 free(iovec[i].iov_base);
2560
2561 return r;
2562
2563 }
2564
2565 static void unit_update_on_console(Unit *u) {
2566 bool b;
2567
2568 assert(u);
2569
2570 b = unit_needs_console(u);
2571 if (u->on_console == b)
2572 return;
2573
2574 u->on_console = b;
2575 if (b)
2576 manager_ref_console(u->manager);
2577 else
2578 manager_unref_console(u->manager);
2579 }
2580
2581 static void unit_emit_audit_start(Unit *u) {
2582 assert(u);
2583
2584 if (UNIT_VTABLE(u)->audit_start_message_type <= 0)
2585 return;
2586
2587 /* Write audit record if we have just finished starting up */
2588 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_start_message_type, /* success= */ true);
2589 u->in_audit = true;
2590 }
2591
2592 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2593 assert(u);
2594
2595 if (UNIT_VTABLE(u)->audit_start_message_type <= 0)
2596 return;
2597
2598 if (u->in_audit) {
2599 /* Write audit record if we have just finished shutting down */
2600 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_stop_message_type, /* success= */ state == UNIT_INACTIVE);
2601 u->in_audit = false;
2602 } else {
2603 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2604 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_start_message_type, /* success= */ state == UNIT_INACTIVE);
2605
2606 if (state == UNIT_INACTIVE)
2607 manager_send_unit_audit(u->manager, u, UNIT_VTABLE(u)->audit_stop_message_type, /* success= */ true);
2608 }
2609 }
2610
2611 static bool unit_process_job(Job *j, UnitActiveState ns, bool reload_success) {
2612 bool unexpected = false;
2613 JobResult result;
2614
2615 assert(j);
2616
2617 if (j->state == JOB_WAITING)
2618 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2619 * due to EAGAIN. */
2620 job_add_to_run_queue(j);
2621
2622 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2623 * hence needs to invalidate jobs. */
2624
2625 switch (j->type) {
2626
2627 case JOB_START:
2628 case JOB_VERIFY_ACTIVE:
2629
2630 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2631 job_finish_and_invalidate(j, JOB_DONE, true, false);
2632 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2633 unexpected = true;
2634
2635 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2636 if (ns == UNIT_FAILED)
2637 result = JOB_FAILED;
2638 else
2639 result = JOB_DONE;
2640
2641 job_finish_and_invalidate(j, result, true, false);
2642 }
2643 }
2644
2645 break;
2646
2647 case JOB_RELOAD:
2648 case JOB_RELOAD_OR_START:
2649 case JOB_TRY_RELOAD:
2650
2651 if (j->state == JOB_RUNNING) {
2652 if (ns == UNIT_ACTIVE)
2653 job_finish_and_invalidate(j, reload_success ? JOB_DONE : JOB_FAILED, true, false);
2654 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2655 unexpected = true;
2656
2657 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2658 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2659 }
2660 }
2661
2662 break;
2663
2664 case JOB_STOP:
2665 case JOB_RESTART:
2666 case JOB_TRY_RESTART:
2667
2668 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2669 job_finish_and_invalidate(j, JOB_DONE, true, false);
2670 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2671 unexpected = true;
2672 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2673 }
2674
2675 break;
2676
2677 default:
2678 assert_not_reached();
2679 }
2680
2681 return unexpected;
2682 }
2683
2684 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) {
2685 const char *reason;
2686 Manager *m;
2687
2688 assert(u);
2689 assert(os < _UNIT_ACTIVE_STATE_MAX);
2690 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2691
2692 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2693 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2694 * remounted this function will be called too! */
2695
2696 m = u->manager;
2697
2698 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2699 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2700 unit_add_to_dbus_queue(u);
2701
2702 /* Update systemd-oomd on the property/state change */
2703 if (os != ns) {
2704 /* Always send an update if the unit is going into an inactive state so systemd-oomd knows to stop
2705 * monitoring.
2706 * Also send an update whenever the unit goes active; this is to handle a case where an override file
2707 * sets one of the ManagedOOM*= properties to "kill", then later removes it. systemd-oomd needs to
2708 * know to stop monitoring when the unit changes from "kill" -> "auto" on daemon-reload, but we don't
2709 * have the information on the property. Thus, indiscriminately send an update. */
2710 if (UNIT_IS_INACTIVE_OR_FAILED(ns) || UNIT_IS_ACTIVE_OR_RELOADING(ns))
2711 (void) manager_varlink_send_managed_oom_update(u);
2712 }
2713
2714 /* Update timestamps for state changes */
2715 if (!MANAGER_IS_RELOADING(m)) {
2716 dual_timestamp_get(&u->state_change_timestamp);
2717
2718 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2719 u->inactive_exit_timestamp = u->state_change_timestamp;
2720 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2721 u->inactive_enter_timestamp = u->state_change_timestamp;
2722
2723 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2724 u->active_enter_timestamp = u->state_change_timestamp;
2725 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2726 u->active_exit_timestamp = u->state_change_timestamp;
2727 }
2728
2729 /* Keep track of failed units */
2730 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2731
2732 /* Make sure the cgroup and state files are always removed when we become inactive */
2733 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2734 SET_FLAG(u->markers,
2735 (1u << UNIT_MARKER_NEEDS_RELOAD)|(1u << UNIT_MARKER_NEEDS_RESTART),
2736 false);
2737 unit_prune_cgroup(u);
2738 unit_unlink_state_files(u);
2739 } else if (ns != os && ns == UNIT_RELOADING)
2740 SET_FLAG(u->markers, 1u << UNIT_MARKER_NEEDS_RELOAD, false);
2741
2742 unit_update_on_console(u);
2743
2744 if (!MANAGER_IS_RELOADING(m)) {
2745 bool unexpected;
2746
2747 /* Let's propagate state changes to the job */
2748 if (u->job)
2749 unexpected = unit_process_job(u->job, ns, reload_success);
2750 else
2751 unexpected = true;
2752
2753 /* If this state change happened without being requested by a job, then let's retroactively start or
2754 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2755 * additional jobs just because something is already activated. */
2756
2757 if (unexpected) {
2758 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2759 retroactively_start_dependencies(u);
2760 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2761 retroactively_stop_dependencies(u);
2762 }
2763
2764 if (ns != os && ns == UNIT_FAILED) {
2765 log_unit_debug(u, "Unit entered failed state.");
2766 unit_start_on_failure(u, "OnFailure=", UNIT_ATOM_ON_FAILURE, u->on_failure_job_mode);
2767 }
2768
2769 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2770 /* This unit just finished starting up */
2771
2772 unit_emit_audit_start(u);
2773 manager_send_unit_plymouth(m, u);
2774 }
2775
2776 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2777 /* This unit just stopped/failed. */
2778
2779 unit_emit_audit_stop(u, ns);
2780 unit_log_resources(u);
2781 }
2782
2783 if (ns == UNIT_INACTIVE && !IN_SET(os, UNIT_FAILED, UNIT_INACTIVE, UNIT_MAINTENANCE))
2784 unit_start_on_failure(u, "OnSuccess=", UNIT_ATOM_ON_SUCCESS, u->on_success_job_mode);
2785 }
2786
2787 manager_recheck_journal(m);
2788 manager_recheck_dbus(m);
2789
2790 unit_trigger_notify(u);
2791
2792 if (!MANAGER_IS_RELOADING(m)) {
2793 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2794 reason = strjoina("unit ", u->id, " failed");
2795 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2796 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2797 reason = strjoina("unit ", u->id, " succeeded");
2798 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2799 }
2800 }
2801
2802 /* And now, add the unit or depending units to various queues that will act on the new situation if
2803 * needed. These queues generally check for continuous state changes rather than events (like most of
2804 * the state propagation above), and do work deferred instead of instantly, since they typically
2805 * don't want to run during reloading, and usually involve checking combined state of multiple units
2806 * at once. */
2807
2808 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2809 /* Stop unneeded units and bound-by units regardless if going down was expected or not */
2810 check_unneeded_dependencies(u);
2811 check_bound_by_dependencies(u);
2812
2813 /* Maybe someone wants us to remain up? */
2814 unit_submit_to_start_when_upheld_queue(u);
2815
2816 /* Maybe the unit should be GC'ed now? */
2817 unit_add_to_gc_queue(u);
2818
2819 /* Maybe we can release some resources now? */
2820 unit_submit_to_release_resources_queue(u);
2821 }
2822
2823 if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
2824 /* Start uphold units regardless if going up was expected or not */
2825 check_uphold_dependencies(u);
2826
2827 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2828 unit_submit_to_stop_when_unneeded_queue(u);
2829
2830 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens
2831 * when something BindsTo= to a Type=oneshot unit, as these units go directly from starting to
2832 * inactive, without ever entering started.) */
2833 unit_submit_to_stop_when_bound_queue(u);
2834 }
2835 }
2836
2837 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2838 int r;
2839
2840 assert(u);
2841 assert(pid_is_valid(pid));
2842
2843 /* Watch a specific PID */
2844
2845 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2846 * opportunity to remove any stalled references to this PID as they can be created
2847 * easily (when watching a process which is not our direct child). */
2848 if (exclusive)
2849 manager_unwatch_pid(u->manager, pid);
2850
2851 r = set_ensure_allocated(&u->pids, NULL);
2852 if (r < 0)
2853 return r;
2854
2855 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2856 if (r < 0)
2857 return r;
2858
2859 /* First try, let's add the unit keyed by "pid". */
2860 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2861 if (r == -EEXIST) {
2862 Unit **array;
2863 bool found = false;
2864 size_t n = 0;
2865
2866 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2867 * to an array of Units rather than just a Unit), lists us already. */
2868
2869 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2870 if (array)
2871 for (; array[n]; n++)
2872 if (array[n] == u)
2873 found = true;
2874
2875 if (!found) {
2876 Unit **new_array;
2877
2878 /* Allocate a new array */
2879 new_array = new(Unit*, n + 2);
2880 if (!new_array)
2881 return -ENOMEM;
2882
2883 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2884 new_array[n] = u;
2885 new_array[n+1] = NULL;
2886
2887 /* Add or replace the old array */
2888 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2889 if (r < 0) {
2890 free(new_array);
2891 return r;
2892 }
2893
2894 free(array);
2895 }
2896 } else if (r < 0)
2897 return r;
2898
2899 r = set_put(u->pids, PID_TO_PTR(pid));
2900 if (r < 0)
2901 return r;
2902
2903 return 0;
2904 }
2905
2906 void unit_unwatch_pid(Unit *u, pid_t pid) {
2907 Unit **array;
2908
2909 assert(u);
2910 assert(pid_is_valid(pid));
2911
2912 /* First let's drop the unit in case it's keyed as "pid". */
2913 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2914
2915 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2916 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2917 if (array) {
2918 /* Let's iterate through the array, dropping our own entry */
2919
2920 size_t m = 0;
2921 for (size_t n = 0; array[n]; n++)
2922 if (array[n] != u)
2923 array[m++] = array[n];
2924 array[m] = NULL;
2925
2926 if (m == 0) {
2927 /* The array is now empty, remove the entire entry */
2928 assert_se(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2929 free(array);
2930 }
2931 }
2932
2933 (void) set_remove(u->pids, PID_TO_PTR(pid));
2934 }
2935
2936 void unit_unwatch_all_pids(Unit *u) {
2937 assert(u);
2938
2939 while (!set_isempty(u->pids))
2940 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2941
2942 u->pids = set_free(u->pids);
2943 }
2944
2945 static void unit_tidy_watch_pids(Unit *u) {
2946 PidRef *except1, *except2;
2947 void *e;
2948
2949 assert(u);
2950
2951 /* Cleans dead PIDs from our list */
2952
2953 except1 = unit_main_pid(u);
2954 except2 = unit_control_pid(u);
2955
2956 SET_FOREACH(e, u->pids) {
2957 pid_t pid = PTR_TO_PID(e);
2958
2959 if ((pidref_is_set(except1) && pid == except1->pid) ||
2960 (pidref_is_set(except2) && pid == except2->pid))
2961 continue;
2962
2963 if (!pid_is_unwaited(pid))
2964 unit_unwatch_pid(u, pid);
2965 }
2966 }
2967
2968 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2969 Unit *u = ASSERT_PTR(userdata);
2970
2971 assert(s);
2972
2973 unit_tidy_watch_pids(u);
2974 unit_watch_all_pids(u);
2975
2976 /* If the PID set is empty now, then let's finish this off. */
2977 unit_synthesize_cgroup_empty_event(u);
2978
2979 return 0;
2980 }
2981
2982 int unit_enqueue_rewatch_pids(Unit *u) {
2983 int r;
2984
2985 assert(u);
2986
2987 if (!u->cgroup_path)
2988 return -ENOENT;
2989
2990 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2991 if (r < 0)
2992 return r;
2993 if (r > 0) /* On unified we can use proper notifications */
2994 return 0;
2995
2996 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2997 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2998 * involves issuing kill(pid, 0) on all processes we watch. */
2999
3000 if (!u->rewatch_pids_event_source) {
3001 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3002
3003 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
3004 if (r < 0)
3005 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
3006
3007 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
3008 if (r < 0)
3009 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
3010
3011 (void) sd_event_source_set_description(s, "tidy-watch-pids");
3012
3013 u->rewatch_pids_event_source = TAKE_PTR(s);
3014 }
3015
3016 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
3017 if (r < 0)
3018 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
3019
3020 return 0;
3021 }
3022
3023 void unit_dequeue_rewatch_pids(Unit *u) {
3024 int r;
3025 assert(u);
3026
3027 if (!u->rewatch_pids_event_source)
3028 return;
3029
3030 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
3031 if (r < 0)
3032 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
3033
3034 u->rewatch_pids_event_source = sd_event_source_disable_unref(u->rewatch_pids_event_source);
3035 }
3036
3037 bool unit_job_is_applicable(Unit *u, JobType j) {
3038 assert(u);
3039 assert(j >= 0 && j < _JOB_TYPE_MAX);
3040
3041 switch (j) {
3042
3043 case JOB_VERIFY_ACTIVE:
3044 case JOB_START:
3045 case JOB_NOP:
3046 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
3047 * startable by us but may appear due to external events, and it thus makes sense to permit enqueuing
3048 * jobs for it. */
3049 return true;
3050
3051 case JOB_STOP:
3052 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
3053 * external events), hence it makes no sense to permit enqueuing such a request either. */
3054 return !u->perpetual;
3055
3056 case JOB_RESTART:
3057 case JOB_TRY_RESTART:
3058 return unit_can_stop(u) && unit_can_start(u);
3059
3060 case JOB_RELOAD:
3061 case JOB_TRY_RELOAD:
3062 return unit_can_reload(u);
3063
3064 case JOB_RELOAD_OR_START:
3065 return unit_can_reload(u) && unit_can_start(u);
3066
3067 default:
3068 assert_not_reached();
3069 }
3070 }
3071
3072 static Hashmap *unit_get_dependency_hashmap_per_type(Unit *u, UnitDependency d) {
3073 Hashmap *deps;
3074
3075 assert(u);
3076 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3077
3078 deps = hashmap_get(u->dependencies, UNIT_DEPENDENCY_TO_PTR(d));
3079 if (!deps) {
3080 _cleanup_hashmap_free_ Hashmap *h = NULL;
3081
3082 h = hashmap_new(NULL);
3083 if (!h)
3084 return NULL;
3085
3086 if (hashmap_ensure_put(&u->dependencies, NULL, UNIT_DEPENDENCY_TO_PTR(d), h) < 0)
3087 return NULL;
3088
3089 deps = TAKE_PTR(h);
3090 }
3091
3092 return deps;
3093 }
3094
3095 typedef enum NotifyDependencyFlags {
3096 NOTIFY_DEPENDENCY_UPDATE_FROM = 1 << 0,
3097 NOTIFY_DEPENDENCY_UPDATE_TO = 1 << 1,
3098 } NotifyDependencyFlags;
3099
3100 static int unit_add_dependency_impl(
3101 Unit *u,
3102 UnitDependency d,
3103 Unit *other,
3104 UnitDependencyMask mask) {
3105
3106 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
3107 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
3108 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
3109 [UNIT_WANTS] = UNIT_WANTED_BY,
3110 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
3111 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
3112 [UNIT_UPHOLDS] = UNIT_UPHELD_BY,
3113 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
3114 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
3115 [UNIT_WANTED_BY] = UNIT_WANTS,
3116 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
3117 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
3118 [UNIT_UPHELD_BY] = UNIT_UPHOLDS,
3119 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
3120 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
3121 [UNIT_BEFORE] = UNIT_AFTER,
3122 [UNIT_AFTER] = UNIT_BEFORE,
3123 [UNIT_ON_SUCCESS] = UNIT_ON_SUCCESS_OF,
3124 [UNIT_ON_SUCCESS_OF] = UNIT_ON_SUCCESS,
3125 [UNIT_ON_FAILURE] = UNIT_ON_FAILURE_OF,
3126 [UNIT_ON_FAILURE_OF] = UNIT_ON_FAILURE,
3127 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
3128 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
3129 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
3130 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
3131 [UNIT_PROPAGATES_STOP_TO] = UNIT_STOP_PROPAGATED_FROM,
3132 [UNIT_STOP_PROPAGATED_FROM] = UNIT_PROPAGATES_STOP_TO,
3133 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF, /* symmetric! 👓 */
3134 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
3135 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
3136 [UNIT_IN_SLICE] = UNIT_SLICE_OF,
3137 [UNIT_SLICE_OF] = UNIT_IN_SLICE,
3138 };
3139
3140 Hashmap *u_deps, *other_deps;
3141 UnitDependencyInfo u_info, u_info_old, other_info, other_info_old;
3142 NotifyDependencyFlags flags = 0;
3143 int r;
3144
3145 assert(u);
3146 assert(other);
3147 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3148 assert(inverse_table[d] >= 0 && inverse_table[d] < _UNIT_DEPENDENCY_MAX);
3149 assert(mask > 0 && mask < _UNIT_DEPENDENCY_MASK_FULL);
3150
3151 /* Ensure the following two hashmaps for each unit exist:
3152 * - the top-level dependency hashmap that maps UnitDependency → Hashmap(Unit* → UnitDependencyInfo),
3153 * - the inner hashmap, that maps Unit* → UnitDependencyInfo, for the specified dependency type. */
3154 u_deps = unit_get_dependency_hashmap_per_type(u, d);
3155 if (!u_deps)
3156 return -ENOMEM;
3157
3158 other_deps = unit_get_dependency_hashmap_per_type(other, inverse_table[d]);
3159 if (!other_deps)
3160 return -ENOMEM;
3161
3162 /* Save the original dependency info. */
3163 u_info.data = u_info_old.data = hashmap_get(u_deps, other);
3164 other_info.data = other_info_old.data = hashmap_get(other_deps, u);
3165
3166 /* Update dependency info. */
3167 u_info.origin_mask |= mask;
3168 other_info.destination_mask |= mask;
3169
3170 /* Save updated dependency info. */
3171 if (u_info.data != u_info_old.data) {
3172 r = hashmap_replace(u_deps, other, u_info.data);
3173 if (r < 0)
3174 return r;
3175
3176 flags = NOTIFY_DEPENDENCY_UPDATE_FROM;
3177 }
3178
3179 if (other_info.data != other_info_old.data) {
3180 r = hashmap_replace(other_deps, u, other_info.data);
3181 if (r < 0) {
3182 if (u_info.data != u_info_old.data) {
3183 /* Restore the old dependency. */
3184 if (u_info_old.data)
3185 (void) hashmap_update(u_deps, other, u_info_old.data);
3186 else
3187 hashmap_remove(u_deps, other);
3188 }
3189 return r;
3190 }
3191
3192 flags |= NOTIFY_DEPENDENCY_UPDATE_TO;
3193 }
3194
3195 return flags;
3196 }
3197
3198 int unit_add_dependency(
3199 Unit *u,
3200 UnitDependency d,
3201 Unit *other,
3202 bool add_reference,
3203 UnitDependencyMask mask) {
3204
3205 UnitDependencyAtom a;
3206 int r;
3207
3208 /* Helper to know whether sending a notification is necessary or not: if the dependency is already
3209 * there, no need to notify! */
3210 NotifyDependencyFlags notify_flags;
3211
3212 assert(u);
3213 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
3214 assert(other);
3215
3216 u = unit_follow_merge(u);
3217 other = unit_follow_merge(other);
3218 a = unit_dependency_to_atom(d);
3219 assert(a >= 0);
3220
3221 /* We won't allow dependencies on ourselves. We will not consider them an error however. */
3222 if (u == other) {
3223 if (unit_should_warn_about_dependency(d))
3224 log_unit_warning(u, "Dependency %s=%s is dropped.",
3225 unit_dependency_to_string(d), u->id);
3226 return 0;
3227 }
3228
3229 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3230 return 0;
3231
3232 /* Note that ordering a device unit after a unit is permitted since it allows to start its job
3233 * running timeout at a specific time. */
3234 if (FLAGS_SET(a, UNIT_ATOM_BEFORE) && other->type == UNIT_DEVICE) {
3235 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
3236 return 0;
3237 }
3238
3239 if (FLAGS_SET(a, UNIT_ATOM_ON_FAILURE) && !UNIT_VTABLE(u)->can_fail) {
3240 log_unit_warning(u, "Requested dependency OnFailure=%s ignored (%s units cannot fail).", other->id, unit_type_to_string(u->type));
3241 return 0;
3242 }
3243
3244 if (FLAGS_SET(a, UNIT_ATOM_TRIGGERS) && !UNIT_VTABLE(u)->can_trigger)
3245 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3246 "Requested dependency Triggers=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(u->type));
3247 if (FLAGS_SET(a, UNIT_ATOM_TRIGGERED_BY) && !UNIT_VTABLE(other)->can_trigger)
3248 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3249 "Requested dependency TriggeredBy=%s refused (%s units cannot trigger other units).", other->id, unit_type_to_string(other->type));
3250
3251 if (FLAGS_SET(a, UNIT_ATOM_IN_SLICE) && other->type != UNIT_SLICE)
3252 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3253 "Requested dependency Slice=%s refused (%s is not a slice unit).", other->id, other->id);
3254 if (FLAGS_SET(a, UNIT_ATOM_SLICE_OF) && u->type != UNIT_SLICE)
3255 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3256 "Requested dependency SliceOf=%s refused (%s is not a slice unit).", other->id, u->id);
3257
3258 if (FLAGS_SET(a, UNIT_ATOM_IN_SLICE) && !UNIT_HAS_CGROUP_CONTEXT(u))
3259 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3260 "Requested dependency Slice=%s refused (%s is not a cgroup unit).", other->id, u->id);
3261
3262 if (FLAGS_SET(a, UNIT_ATOM_SLICE_OF) && !UNIT_HAS_CGROUP_CONTEXT(other))
3263 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EINVAL),
3264 "Requested dependency SliceOf=%s refused (%s is not a cgroup unit).", other->id, other->id);
3265
3266 r = unit_add_dependency_impl(u, d, other, mask);
3267 if (r < 0)
3268 return r;
3269 notify_flags = r;
3270
3271 if (add_reference) {
3272 r = unit_add_dependency_impl(u, UNIT_REFERENCES, other, mask);
3273 if (r < 0)
3274 return r;
3275 notify_flags |= r;
3276 }
3277
3278 if (FLAGS_SET(notify_flags, NOTIFY_DEPENDENCY_UPDATE_FROM))
3279 unit_add_to_dbus_queue(u);
3280 if (FLAGS_SET(notify_flags, NOTIFY_DEPENDENCY_UPDATE_TO))
3281 unit_add_to_dbus_queue(other);
3282
3283 return notify_flags != 0;
3284 }
3285
3286 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
3287 int r = 0, s = 0;
3288
3289 assert(u);
3290 assert(d >= 0 || e >= 0);
3291
3292 if (d >= 0) {
3293 r = unit_add_dependency(u, d, other, add_reference, mask);
3294 if (r < 0)
3295 return r;
3296 }
3297
3298 if (e >= 0) {
3299 s = unit_add_dependency(u, e, other, add_reference, mask);
3300 if (s < 0)
3301 return s;
3302 }
3303
3304 return r > 0 || s > 0;
3305 }
3306
3307 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
3308 int r;
3309
3310 assert(u);
3311 assert(name);
3312 assert(buf);
3313 assert(ret);
3314
3315 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
3316 *buf = NULL;
3317 *ret = name;
3318 return 0;
3319 }
3320
3321 if (u->instance)
3322 r = unit_name_replace_instance(name, u->instance, buf);
3323 else {
3324 _cleanup_free_ char *i = NULL;
3325
3326 r = unit_name_to_prefix(u->id, &i);
3327 if (r < 0)
3328 return r;
3329
3330 r = unit_name_replace_instance(name, i, buf);
3331 }
3332 if (r < 0)
3333 return r;
3334
3335 *ret = *buf;
3336 return 0;
3337 }
3338
3339 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3340 _cleanup_free_ char *buf = NULL;
3341 Unit *other;
3342 int r;
3343
3344 assert(u);
3345 assert(name);
3346
3347 r = resolve_template(u, name, &buf, &name);
3348 if (r < 0)
3349 return r;
3350
3351 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3352 return 0;
3353
3354 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3355 if (r < 0)
3356 return r;
3357
3358 return unit_add_dependency(u, d, other, add_reference, mask);
3359 }
3360
3361 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3362 _cleanup_free_ char *buf = NULL;
3363 Unit *other;
3364 int r;
3365
3366 assert(u);
3367 assert(name);
3368
3369 r = resolve_template(u, name, &buf, &name);
3370 if (r < 0)
3371 return r;
3372
3373 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3374 return 0;
3375
3376 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3377 if (r < 0)
3378 return r;
3379
3380 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3381 }
3382
3383 int set_unit_path(const char *p) {
3384 /* This is mostly for debug purposes */
3385 return RET_NERRNO(setenv("SYSTEMD_UNIT_PATH", p, 1));
3386 }
3387
3388 char *unit_dbus_path(Unit *u) {
3389 assert(u);
3390
3391 if (!u->id)
3392 return NULL;
3393
3394 return unit_dbus_path_from_name(u->id);
3395 }
3396
3397 char *unit_dbus_path_invocation_id(Unit *u) {
3398 assert(u);
3399
3400 if (sd_id128_is_null(u->invocation_id))
3401 return NULL;
3402
3403 return unit_dbus_path_from_name(u->invocation_id_string);
3404 }
3405
3406 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
3407 int r;
3408
3409 assert(u);
3410
3411 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
3412
3413 if (sd_id128_equal(u->invocation_id, id))
3414 return 0;
3415
3416 if (!sd_id128_is_null(u->invocation_id))
3417 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
3418
3419 if (sd_id128_is_null(id)) {
3420 r = 0;
3421 goto reset;
3422 }
3423
3424 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
3425 if (r < 0)
3426 goto reset;
3427
3428 u->invocation_id = id;
3429 sd_id128_to_string(id, u->invocation_id_string);
3430
3431 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
3432 if (r < 0)
3433 goto reset;
3434
3435 return 0;
3436
3437 reset:
3438 u->invocation_id = SD_ID128_NULL;
3439 u->invocation_id_string[0] = 0;
3440 return r;
3441 }
3442
3443 int unit_set_slice(Unit *u, Unit *slice) {
3444 int r;
3445
3446 assert(u);
3447 assert(slice);
3448
3449 /* Sets the unit slice if it has not been set before. Is extra careful, to only allow this for units
3450 * that actually have a cgroup context. Also, we don't allow to set this for slices (since the parent
3451 * slice is derived from the name). Make sure the unit we set is actually a slice. */
3452
3453 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3454 return -EOPNOTSUPP;
3455
3456 if (u->type == UNIT_SLICE)
3457 return -EINVAL;
3458
3459 if (unit_active_state(u) != UNIT_INACTIVE)
3460 return -EBUSY;
3461
3462 if (slice->type != UNIT_SLICE)
3463 return -EINVAL;
3464
3465 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3466 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3467 return -EPERM;
3468
3469 if (UNIT_GET_SLICE(u) == slice)
3470 return 0;
3471
3472 /* Disallow slice changes if @u is already bound to cgroups */
3473 if (UNIT_GET_SLICE(u) && u->cgroup_realized)
3474 return -EBUSY;
3475
3476 /* Remove any slices assigned prior; we should only have one UNIT_IN_SLICE dependency */
3477 if (UNIT_GET_SLICE(u))
3478 unit_remove_dependencies(u, UNIT_DEPENDENCY_SLICE_PROPERTY);
3479
3480 r = unit_add_dependency(u, UNIT_IN_SLICE, slice, true, UNIT_DEPENDENCY_SLICE_PROPERTY);
3481 if (r < 0)
3482 return r;
3483
3484 return 1;
3485 }
3486
3487 int unit_set_default_slice(Unit *u) {
3488 const char *slice_name;
3489 Unit *slice;
3490 int r;
3491
3492 assert(u);
3493
3494 if (u->manager && FLAGS_SET(u->manager->test_run_flags, MANAGER_TEST_RUN_IGNORE_DEPENDENCIES))
3495 return 0;
3496
3497 if (UNIT_GET_SLICE(u))
3498 return 0;
3499
3500 if (u->instance) {
3501 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3502
3503 /* Implicitly place all instantiated units in their
3504 * own per-template slice */
3505
3506 r = unit_name_to_prefix(u->id, &prefix);
3507 if (r < 0)
3508 return r;
3509
3510 /* The prefix is already escaped, but it might include
3511 * "-" which has a special meaning for slice units,
3512 * hence escape it here extra. */
3513 escaped = unit_name_escape(prefix);
3514 if (!escaped)
3515 return -ENOMEM;
3516
3517 if (MANAGER_IS_SYSTEM(u->manager))
3518 slice_name = strjoina("system-", escaped, ".slice");
3519 else
3520 slice_name = strjoina("app-", escaped, ".slice");
3521
3522 } else if (unit_is_extrinsic(u))
3523 /* Keep all extrinsic units (e.g. perpetual units and swap and mount units in user mode) in
3524 * the root slice. They don't really belong in one of the subslices. */
3525 slice_name = SPECIAL_ROOT_SLICE;
3526
3527 else if (MANAGER_IS_SYSTEM(u->manager))
3528 slice_name = SPECIAL_SYSTEM_SLICE;
3529 else
3530 slice_name = SPECIAL_APP_SLICE;
3531
3532 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3533 if (r < 0)
3534 return r;
3535
3536 return unit_set_slice(u, slice);
3537 }
3538
3539 const char *unit_slice_name(Unit *u) {
3540 Unit *slice;
3541 assert(u);
3542
3543 slice = UNIT_GET_SLICE(u);
3544 if (!slice)
3545 return NULL;
3546
3547 return slice->id;
3548 }
3549
3550 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3551 _cleanup_free_ char *t = NULL;
3552 int r;
3553
3554 assert(u);
3555 assert(type);
3556 assert(_found);
3557
3558 r = unit_name_change_suffix(u->id, type, &t);
3559 if (r < 0)
3560 return r;
3561 if (unit_has_name(u, t))
3562 return -EINVAL;
3563
3564 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3565 assert(r < 0 || *_found != u);
3566 return r;
3567 }
3568
3569 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3570 const char *new_owner;
3571 Unit *u = ASSERT_PTR(userdata);
3572 int r;
3573
3574 assert(message);
3575
3576 r = sd_bus_message_read(message, "sss", NULL, NULL, &new_owner);
3577 if (r < 0) {
3578 bus_log_parse_error(r);
3579 return 0;
3580 }
3581
3582 if (UNIT_VTABLE(u)->bus_name_owner_change)
3583 UNIT_VTABLE(u)->bus_name_owner_change(u, empty_to_null(new_owner));
3584
3585 return 0;
3586 }
3587
3588 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3589 const sd_bus_error *e;
3590 const char *new_owner;
3591 Unit *u = ASSERT_PTR(userdata);
3592 int r;
3593
3594 assert(message);
3595
3596 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3597
3598 e = sd_bus_message_get_error(message);
3599 if (e) {
3600 if (!sd_bus_error_has_name(e, SD_BUS_ERROR_NAME_HAS_NO_OWNER)) {
3601 r = sd_bus_error_get_errno(e);
3602 log_unit_error_errno(u, r,
3603 "Unexpected error response from GetNameOwner(): %s",
3604 bus_error_message(e, r));
3605 }
3606
3607 new_owner = NULL;
3608 } else {
3609 r = sd_bus_message_read(message, "s", &new_owner);
3610 if (r < 0)
3611 return bus_log_parse_error(r);
3612
3613 assert(!isempty(new_owner));
3614 }
3615
3616 if (UNIT_VTABLE(u)->bus_name_owner_change)
3617 UNIT_VTABLE(u)->bus_name_owner_change(u, new_owner);
3618
3619 return 0;
3620 }
3621
3622 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3623 _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
3624 const char *match;
3625 usec_t timeout_usec = 0;
3626 int r;
3627
3628 assert(u);
3629 assert(bus);
3630 assert(name);
3631
3632 if (u->match_bus_slot || u->get_name_owner_slot)
3633 return -EBUSY;
3634
3635 /* NameOwnerChanged and GetNameOwner is used to detect when a service finished starting up. The dbus
3636 * call timeout shouldn't be earlier than that. If we couldn't get the start timeout, use the default
3637 * value defined above. */
3638 if (UNIT_VTABLE(u)->get_timeout_start_usec)
3639 timeout_usec = UNIT_VTABLE(u)->get_timeout_start_usec(u);
3640
3641 match = strjoina("type='signal',"
3642 "sender='org.freedesktop.DBus',"
3643 "path='/org/freedesktop/DBus',"
3644 "interface='org.freedesktop.DBus',"
3645 "member='NameOwnerChanged',"
3646 "arg0='", name, "'");
3647
3648 r = bus_add_match_full(
3649 bus,
3650 &u->match_bus_slot,
3651 true,
3652 match,
3653 signal_name_owner_changed,
3654 NULL,
3655 u,
3656 timeout_usec);
3657 if (r < 0)
3658 return r;
3659
3660 r = sd_bus_message_new_method_call(
3661 bus,
3662 &m,
3663 "org.freedesktop.DBus",
3664 "/org/freedesktop/DBus",
3665 "org.freedesktop.DBus",
3666 "GetNameOwner");
3667 if (r < 0)
3668 return r;
3669
3670 r = sd_bus_message_append(m, "s", name);
3671 if (r < 0)
3672 return r;
3673
3674 r = sd_bus_call_async(
3675 bus,
3676 &u->get_name_owner_slot,
3677 m,
3678 get_name_owner_handler,
3679 u,
3680 timeout_usec);
3681
3682 if (r < 0) {
3683 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3684 return r;
3685 }
3686
3687 log_unit_debug(u, "Watching D-Bus name '%s'.", name);
3688 return 0;
3689 }
3690
3691 int unit_watch_bus_name(Unit *u, const char *name) {
3692 int r;
3693
3694 assert(u);
3695 assert(name);
3696
3697 /* Watch a specific name on the bus. We only support one unit
3698 * watching each name for now. */
3699
3700 if (u->manager->api_bus) {
3701 /* If the bus is already available, install the match directly.
3702 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3703 r = unit_install_bus_match(u, u->manager->api_bus, name);
3704 if (r < 0)
3705 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3706 }
3707
3708 r = hashmap_put(u->manager->watch_bus, name, u);
3709 if (r < 0) {
3710 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3711 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3712 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3713 }
3714
3715 return 0;
3716 }
3717
3718 void unit_unwatch_bus_name(Unit *u, const char *name) {
3719 assert(u);
3720 assert(name);
3721
3722 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3723 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3724 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3725 }
3726
3727 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
3728 _cleanup_free_ char *e = NULL;
3729 Unit *device;
3730 int r;
3731
3732 assert(u);
3733
3734 /* Adds in links to the device node that this unit is based on */
3735 if (isempty(what))
3736 return 0;
3737
3738 if (!is_device_path(what))
3739 return 0;
3740
3741 /* When device units aren't supported (such as in a container), don't create dependencies on them. */
3742 if (!unit_type_supported(UNIT_DEVICE))
3743 return 0;
3744
3745 r = unit_name_from_path(what, ".device", &e);
3746 if (r < 0)
3747 return r;
3748
3749 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3750 if (r < 0)
3751 return r;
3752
3753 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3754 dep = UNIT_BINDS_TO;
3755
3756 return unit_add_two_dependencies(u, UNIT_AFTER,
3757 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3758 device, true, mask);
3759 }
3760
3761 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask) {
3762 _cleanup_free_ char *escaped = NULL, *target = NULL;
3763 int r;
3764
3765 assert(u);
3766
3767 if (isempty(what))
3768 return 0;
3769
3770 if (!path_startswith(what, "/dev/"))
3771 return 0;
3772
3773 /* If we don't support devices, then also don't bother with blockdev@.target */
3774 if (!unit_type_supported(UNIT_DEVICE))
3775 return 0;
3776
3777 r = unit_name_path_escape(what, &escaped);
3778 if (r < 0)
3779 return r;
3780
3781 r = unit_name_build("blockdev", escaped, ".target", &target);
3782 if (r < 0)
3783 return r;
3784
3785 return unit_add_dependency_by_name(u, UNIT_AFTER, target, true, mask);
3786 }
3787
3788 int unit_coldplug(Unit *u) {
3789 int r = 0, q;
3790
3791 assert(u);
3792
3793 /* Make sure we don't enter a loop, when coldplugging recursively. */
3794 if (u->coldplugged)
3795 return 0;
3796
3797 u->coldplugged = true;
3798
3799 STRV_FOREACH(i, u->deserialized_refs) {
3800 q = bus_unit_track_add_name(u, *i);
3801 if (q < 0 && r >= 0)
3802 r = q;
3803 }
3804 u->deserialized_refs = strv_free(u->deserialized_refs);
3805
3806 if (UNIT_VTABLE(u)->coldplug) {
3807 q = UNIT_VTABLE(u)->coldplug(u);
3808 if (q < 0 && r >= 0)
3809 r = q;
3810 }
3811
3812 if (u->job) {
3813 q = job_coldplug(u->job);
3814 if (q < 0 && r >= 0)
3815 r = q;
3816 }
3817 if (u->nop_job) {
3818 q = job_coldplug(u->nop_job);
3819 if (q < 0 && r >= 0)
3820 r = q;
3821 }
3822
3823 return r;
3824 }
3825
3826 void unit_catchup(Unit *u) {
3827 assert(u);
3828
3829 if (UNIT_VTABLE(u)->catchup)
3830 UNIT_VTABLE(u)->catchup(u);
3831
3832 unit_cgroup_catchup(u);
3833 }
3834
3835 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
3836 struct stat st;
3837
3838 if (!path)
3839 return false;
3840
3841 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
3842 * are never out-of-date. */
3843 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
3844 return false;
3845
3846 if (stat(path, &st) < 0)
3847 /* What, cannot access this anymore? */
3848 return true;
3849
3850 if (path_masked)
3851 /* For masked files check if they are still so */
3852 return !null_or_empty(&st);
3853 else
3854 /* For non-empty files check the mtime */
3855 return timespec_load(&st.st_mtim) > mtime;
3856
3857 return false;
3858 }
3859
3860 bool unit_need_daemon_reload(Unit *u) {
3861 _cleanup_strv_free_ char **t = NULL;
3862
3863 assert(u);
3864
3865 /* For unit files, we allow masking… */
3866 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
3867 u->load_state == UNIT_MASKED))
3868 return true;
3869
3870 /* Source paths should not be masked… */
3871 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
3872 return true;
3873
3874 if (u->load_state == UNIT_LOADED)
3875 (void) unit_find_dropin_paths(u, &t);
3876 if (!strv_equal(u->dropin_paths, t))
3877 return true;
3878
3879 /* … any drop-ins that are masked are simply omitted from the list. */
3880 STRV_FOREACH(path, u->dropin_paths)
3881 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
3882 return true;
3883
3884 return false;
3885 }
3886
3887 void unit_reset_failed(Unit *u) {
3888 assert(u);
3889
3890 if (UNIT_VTABLE(u)->reset_failed)
3891 UNIT_VTABLE(u)->reset_failed(u);
3892
3893 ratelimit_reset(&u->start_ratelimit);
3894 u->start_limit_hit = false;
3895 }
3896
3897 Unit *unit_following(Unit *u) {
3898 assert(u);
3899
3900 if (UNIT_VTABLE(u)->following)
3901 return UNIT_VTABLE(u)->following(u);
3902
3903 return NULL;
3904 }
3905
3906 bool unit_stop_pending(Unit *u) {
3907 assert(u);
3908
3909 /* This call does check the current state of the unit. It's
3910 * hence useful to be called from state change calls of the
3911 * unit itself, where the state isn't updated yet. This is
3912 * different from unit_inactive_or_pending() which checks both
3913 * the current state and for a queued job. */
3914
3915 return unit_has_job_type(u, JOB_STOP);
3916 }
3917
3918 bool unit_inactive_or_pending(Unit *u) {
3919 assert(u);
3920
3921 /* Returns true if the unit is inactive or going down */
3922
3923 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
3924 return true;
3925
3926 if (unit_stop_pending(u))
3927 return true;
3928
3929 return false;
3930 }
3931
3932 bool unit_active_or_pending(Unit *u) {
3933 assert(u);
3934
3935 /* Returns true if the unit is active or going up */
3936
3937 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
3938 return true;
3939
3940 if (u->job &&
3941 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
3942 return true;
3943
3944 return false;
3945 }
3946
3947 bool unit_will_restart_default(Unit *u) {
3948 assert(u);
3949
3950 return unit_has_job_type(u, JOB_START);
3951 }
3952
3953 bool unit_will_restart(Unit *u) {
3954 assert(u);
3955
3956 if (!UNIT_VTABLE(u)->will_restart)
3957 return false;
3958
3959 return UNIT_VTABLE(u)->will_restart(u);
3960 }
3961
3962 void unit_notify_cgroup_oom(Unit *u, bool managed_oom) {
3963 assert(u);
3964
3965 if (UNIT_VTABLE(u)->notify_cgroup_oom)
3966 UNIT_VTABLE(u)->notify_cgroup_oom(u, managed_oom);
3967 }
3968
3969 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
3970 _cleanup_set_free_ Set *pid_set = NULL;
3971 int r;
3972
3973 pid_set = set_new(NULL);
3974 if (!pid_set)
3975 return NULL;
3976
3977 /* Exclude the main/control pids from being killed via the cgroup */
3978 if (main_pid > 0) {
3979 r = set_put(pid_set, PID_TO_PTR(main_pid));
3980 if (r < 0)
3981 return NULL;
3982 }
3983
3984 if (control_pid > 0) {
3985 r = set_put(pid_set, PID_TO_PTR(control_pid));
3986 if (r < 0)
3987 return NULL;
3988 }
3989
3990 return TAKE_PTR(pid_set);
3991 }
3992
3993 static int kill_common_log(pid_t pid, int signo, void *userdata) {
3994 _cleanup_free_ char *comm = NULL;
3995 Unit *u = ASSERT_PTR(userdata);
3996
3997 (void) get_process_comm(pid, &comm);
3998 log_unit_info(u, "Sending signal SIG%s to process " PID_FMT " (%s) on client request.",
3999 signal_to_string(signo), pid, strna(comm));
4000
4001 return 1;
4002 }
4003
4004 static int kill_or_sigqueue(PidRef* pidref, int signo, int code, int value) {
4005 assert(pidref_is_set(pidref));
4006 assert(SIGNAL_VALID(signo));
4007
4008 switch (code) {
4009
4010 case SI_USER:
4011 log_debug("Killing " PID_FMT " with signal SIG%s.", pidref->pid, signal_to_string(signo));
4012 return pidref_kill(pidref, signo);
4013
4014 case SI_QUEUE:
4015 log_debug("Enqueuing value %i to " PID_FMT " on signal SIG%s.", value, pidref->pid, signal_to_string(signo));
4016 return pidref_sigqueue(pidref, signo, value);
4017
4018 default:
4019 assert_not_reached();
4020 }
4021 }
4022
4023 int unit_kill(
4024 Unit *u,
4025 KillWho who,
4026 int signo,
4027 int code,
4028 int value,
4029 sd_bus_error *error) {
4030
4031 PidRef *main_pid, *control_pid;
4032 bool killed = false;
4033 int ret = 0, r;
4034
4035 /* This is the common implementation for explicit user-requested killing of unit processes, shared by
4036 * various unit types. Do not confuse with unit_kill_context(), which is what we use when we want to
4037 * stop a service ourselves. */
4038
4039 assert(u);
4040 assert(who >= 0);
4041 assert(who < _KILL_WHO_MAX);
4042 assert(SIGNAL_VALID(signo));
4043 assert(IN_SET(code, SI_USER, SI_QUEUE));
4044
4045 main_pid = unit_main_pid(u);
4046 control_pid = unit_control_pid(u);
4047
4048 if (!UNIT_HAS_CGROUP_CONTEXT(u) && !main_pid && !control_pid)
4049 return sd_bus_error_setf(error, SD_BUS_ERROR_NOT_SUPPORTED, "Unit type does not support process killing.");
4050
4051 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4052 if (!main_pid)
4053 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4054 if (!pidref_is_set(main_pid))
4055 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4056 }
4057
4058 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4059 if (!control_pid)
4060 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4061 if (!pidref_is_set(control_pid))
4062 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4063 }
4064
4065 if (pidref_is_set(control_pid) &&
4066 IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL)) {
4067 _cleanup_free_ char *comm = NULL;
4068 (void) get_process_comm(control_pid->pid, &comm);
4069
4070 r = kill_or_sigqueue(control_pid, signo, code, value);
4071 if (r < 0) {
4072 ret = r;
4073
4074 /* Report this failure both to the logs and to the client */
4075 sd_bus_error_set_errnof(
4076 error, r,
4077 "Failed to send signal SIG%s to control process " PID_FMT " (%s): %m",
4078 signal_to_string(signo), control_pid->pid, strna(comm));
4079 log_unit_warning_errno(
4080 u, r,
4081 "Failed to send signal SIG%s to control process " PID_FMT " (%s) on client request: %m",
4082 signal_to_string(signo), control_pid->pid, strna(comm));
4083 } else {
4084 log_unit_info(u, "Sent signal SIG%s to control process " PID_FMT " (%s) on client request.",
4085 signal_to_string(signo), control_pid->pid, strna(comm));
4086 killed = true;
4087 }
4088 }
4089
4090 if (pidref_is_set(main_pid) &&
4091 IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL)) {
4092
4093 _cleanup_free_ char *comm = NULL;
4094 (void) get_process_comm(main_pid->pid, &comm);
4095
4096 r = kill_or_sigqueue(main_pid, signo, code, value);
4097 if (r < 0) {
4098 if (ret == 0) {
4099 ret = r;
4100
4101 sd_bus_error_set_errnof(
4102 error, r,
4103 "Failed to send signal SIG%s to main process " PID_FMT " (%s): %m",
4104 signal_to_string(signo), main_pid->pid, strna(comm));
4105 }
4106
4107 log_unit_warning_errno(
4108 u, r,
4109 "Failed to send signal SIG%s to main process " PID_FMT " (%s) on client request: %m",
4110 signal_to_string(signo), main_pid->pid, strna(comm));
4111
4112 } else {
4113 log_unit_info(u, "Sent signal SIG%s to main process " PID_FMT " (%s) on client request.",
4114 signal_to_string(signo), main_pid->pid, strna(comm));
4115 killed = true;
4116 }
4117 }
4118
4119 /* Note: if we shall enqueue rather than kill we won't do this via the cgroup mechanism, since it
4120 * doesn't really make much sense (and given that enqueued values are a relatively expensive
4121 * resource, and we shouldn't allow us to be subjects for such allocation sprees) */
4122 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path && code == SI_USER) {
4123 _cleanup_set_free_ Set *pid_set = NULL;
4124
4125 /* Exclude the main/control pids from being killed via the cgroup */
4126 pid_set = unit_pid_set(main_pid ? main_pid->pid : 0, control_pid ? control_pid->pid : 0);
4127 if (!pid_set)
4128 return log_oom();
4129
4130 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, kill_common_log, u);
4131 if (r < 0) {
4132 if (!IN_SET(r, -ESRCH, -ENOENT)) {
4133 if (ret == 0) {
4134 ret = r;
4135
4136 sd_bus_error_set_errnof(
4137 error, r,
4138 "Failed to send signal SIG%s to auxiliary processes: %m",
4139 signal_to_string(signo));
4140 }
4141
4142 log_unit_warning_errno(
4143 u, r,
4144 "Failed to send signal SIG%s to auxiliary processes on client request: %m",
4145 signal_to_string(signo));
4146 }
4147 } else
4148 killed = true;
4149 }
4150
4151 /* If the "fail" versions of the operation are requested, then complain if the set of processes we killed is empty */
4152 if (ret == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL, KILL_MAIN_FAIL))
4153 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No matching processes to kill");
4154
4155 return ret;
4156 }
4157
4158 int unit_following_set(Unit *u, Set **s) {
4159 assert(u);
4160 assert(s);
4161
4162 if (UNIT_VTABLE(u)->following_set)
4163 return UNIT_VTABLE(u)->following_set(u, s);
4164
4165 *s = NULL;
4166 return 0;
4167 }
4168
4169 UnitFileState unit_get_unit_file_state(Unit *u) {
4170 int r;
4171
4172 assert(u);
4173
4174 if (u->unit_file_state < 0 && u->fragment_path) {
4175 r = unit_file_get_state(
4176 u->manager->runtime_scope,
4177 NULL,
4178 u->id,
4179 &u->unit_file_state);
4180 if (r < 0)
4181 u->unit_file_state = UNIT_FILE_BAD;
4182 }
4183
4184 return u->unit_file_state;
4185 }
4186
4187 PresetAction unit_get_unit_file_preset(Unit *u) {
4188 int r;
4189
4190 assert(u);
4191
4192 if (u->unit_file_preset < 0 && u->fragment_path) {
4193 _cleanup_free_ char *bn = NULL;
4194
4195 r = path_extract_filename(u->fragment_path, &bn);
4196 if (r < 0)
4197 return (u->unit_file_preset = r);
4198
4199 if (r == O_DIRECTORY)
4200 return (u->unit_file_preset = -EISDIR);
4201
4202 u->unit_file_preset = unit_file_query_preset(
4203 u->manager->runtime_scope,
4204 NULL,
4205 bn,
4206 NULL);
4207 }
4208
4209 return u->unit_file_preset;
4210 }
4211
4212 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4213 assert(ref);
4214 assert(source);
4215 assert(target);
4216
4217 if (ref->target)
4218 unit_ref_unset(ref);
4219
4220 ref->source = source;
4221 ref->target = target;
4222 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4223 return target;
4224 }
4225
4226 void unit_ref_unset(UnitRef *ref) {
4227 assert(ref);
4228
4229 if (!ref->target)
4230 return;
4231
4232 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4233 * be unreferenced now. */
4234 unit_add_to_gc_queue(ref->target);
4235
4236 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4237 ref->source = ref->target = NULL;
4238 }
4239
4240 static int user_from_unit_name(Unit *u, char **ret) {
4241
4242 static const uint8_t hash_key[] = {
4243 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4244 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4245 };
4246
4247 _cleanup_free_ char *n = NULL;
4248 int r;
4249
4250 r = unit_name_to_prefix(u->id, &n);
4251 if (r < 0)
4252 return r;
4253
4254 if (valid_user_group_name(n, 0)) {
4255 *ret = TAKE_PTR(n);
4256 return 0;
4257 }
4258
4259 /* If we can't use the unit name as a user name, then let's hash it and use that */
4260 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4261 return -ENOMEM;
4262
4263 return 0;
4264 }
4265
4266 int unit_patch_contexts(Unit *u) {
4267 CGroupContext *cc;
4268 ExecContext *ec;
4269 int r;
4270
4271 assert(u);
4272
4273 /* Patch in the manager defaults into the exec and cgroup
4274 * contexts, _after_ the rest of the settings have been
4275 * initialized */
4276
4277 ec = unit_get_exec_context(u);
4278 if (ec) {
4279 /* This only copies in the ones that need memory */
4280 for (unsigned i = 0; i < _RLIMIT_MAX; i++)
4281 if (u->manager->defaults.rlimit[i] && !ec->rlimit[i]) {
4282 ec->rlimit[i] = newdup(struct rlimit, u->manager->defaults.rlimit[i], 1);
4283 if (!ec->rlimit[i])
4284 return -ENOMEM;
4285 }
4286
4287 if (MANAGER_IS_USER(u->manager) &&
4288 !ec->working_directory) {
4289
4290 r = get_home_dir(&ec->working_directory);
4291 if (r < 0)
4292 return r;
4293
4294 /* Allow user services to run, even if the
4295 * home directory is missing */
4296 ec->working_directory_missing_ok = true;
4297 }
4298
4299 if (ec->private_devices)
4300 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4301
4302 if (ec->protect_kernel_modules)
4303 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4304
4305 if (ec->protect_kernel_logs)
4306 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4307
4308 if (ec->protect_clock)
4309 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_SYS_TIME) | (UINT64_C(1) << CAP_WAKE_ALARM));
4310
4311 if (ec->dynamic_user) {
4312 if (!ec->user) {
4313 r = user_from_unit_name(u, &ec->user);
4314 if (r < 0)
4315 return r;
4316 }
4317
4318 if (!ec->group) {
4319 ec->group = strdup(ec->user);
4320 if (!ec->group)
4321 return -ENOMEM;
4322 }
4323
4324 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4325 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4326 * sandbox. */
4327
4328 ec->private_tmp = true;
4329 ec->remove_ipc = true;
4330 ec->protect_system = PROTECT_SYSTEM_STRICT;
4331 if (ec->protect_home == PROTECT_HOME_NO)
4332 ec->protect_home = PROTECT_HOME_READ_ONLY;
4333
4334 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4335 * them. */
4336 ec->no_new_privileges = true;
4337 ec->restrict_suid_sgid = true;
4338 }
4339
4340 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++)
4341 exec_directory_sort(ec->directories + dt);
4342 }
4343
4344 cc = unit_get_cgroup_context(u);
4345 if (cc && ec) {
4346
4347 if (ec->private_devices &&
4348 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4349 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4350
4351 /* Only add these if needed, as they imply that everything else is blocked. */
4352 if (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow) {
4353 if (ec->root_image || ec->mount_images) {
4354
4355 /* When RootImage= or MountImages= is specified, the following devices are touched. */
4356 FOREACH_STRING(p, "/dev/loop-control", "/dev/mapper/control") {
4357 r = cgroup_add_device_allow(cc, p, "rw");
4358 if (r < 0)
4359 return r;
4360 }
4361 FOREACH_STRING(p, "block-loop", "block-blkext", "block-device-mapper") {
4362 r = cgroup_add_device_allow(cc, p, "rwm");
4363 if (r < 0)
4364 return r;
4365 }
4366
4367 /* Make sure "block-loop" can be resolved, i.e. make sure "loop" shows up in /proc/devices.
4368 * Same for mapper and verity. */
4369 FOREACH_STRING(p, "modprobe@loop.service", "modprobe@dm_mod.service", "modprobe@dm_verity.service") {
4370 r = unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, p, true, UNIT_DEPENDENCY_FILE);
4371 if (r < 0)
4372 return r;
4373 }
4374 }
4375
4376 if (ec->protect_clock) {
4377 r = cgroup_add_device_allow(cc, "char-rtc", "r");
4378 if (r < 0)
4379 return r;
4380 }
4381
4382 /* If there are encrypted credentials we might need to access the TPM. */
4383 if (exec_context_has_encrypted_credentials(ec)) {
4384 r = cgroup_add_device_allow(cc, "char-tpm", "rw");
4385 if (r < 0)
4386 return r;
4387 }
4388 }
4389 }
4390
4391 return 0;
4392 }
4393
4394 ExecContext *unit_get_exec_context(const Unit *u) {
4395 size_t offset;
4396 assert(u);
4397
4398 if (u->type < 0)
4399 return NULL;
4400
4401 offset = UNIT_VTABLE(u)->exec_context_offset;
4402 if (offset <= 0)
4403 return NULL;
4404
4405 return (ExecContext*) ((uint8_t*) u + offset);
4406 }
4407
4408 KillContext *unit_get_kill_context(Unit *u) {
4409 size_t offset;
4410 assert(u);
4411
4412 if (u->type < 0)
4413 return NULL;
4414
4415 offset = UNIT_VTABLE(u)->kill_context_offset;
4416 if (offset <= 0)
4417 return NULL;
4418
4419 return (KillContext*) ((uint8_t*) u + offset);
4420 }
4421
4422 CGroupContext *unit_get_cgroup_context(Unit *u) {
4423 size_t offset;
4424
4425 if (u->type < 0)
4426 return NULL;
4427
4428 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4429 if (offset <= 0)
4430 return NULL;
4431
4432 return (CGroupContext*) ((uint8_t*) u + offset);
4433 }
4434
4435 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4436 size_t offset;
4437
4438 if (u->type < 0)
4439 return NULL;
4440
4441 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4442 if (offset <= 0)
4443 return NULL;
4444
4445 return *(ExecRuntime**) ((uint8_t*) u + offset);
4446 }
4447
4448 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4449 assert(u);
4450
4451 if (UNIT_WRITE_FLAGS_NOOP(flags))
4452 return NULL;
4453
4454 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4455 return u->manager->lookup_paths.transient;
4456
4457 if (flags & UNIT_PERSISTENT)
4458 return u->manager->lookup_paths.persistent_control;
4459
4460 if (flags & UNIT_RUNTIME)
4461 return u->manager->lookup_paths.runtime_control;
4462
4463 return NULL;
4464 }
4465
4466 const char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4467 assert(s);
4468 assert(popcount(flags & (UNIT_ESCAPE_EXEC_SYNTAX_ENV | UNIT_ESCAPE_EXEC_SYNTAX | UNIT_ESCAPE_C)) <= 1);
4469 assert(buf);
4470
4471 _cleanup_free_ char *t = NULL;
4472
4473 /* Returns a string with any escaping done. If no escaping was necessary, *buf is set to NULL, and
4474 * the input pointer is returned as-is. If an allocation was needed, the return buffer pointer is
4475 * written to *buf. This means the return value always contains a properly escaped version, but *buf
4476 * only contains a pointer if an allocation was made. Callers can use this to optimize memory
4477 * allocations. */
4478
4479 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4480 t = specifier_escape(s);
4481 if (!t)
4482 return NULL;
4483
4484 s = t;
4485 }
4486
4487 /* We either do C-escaping or shell-escaping, to additionally escape characters that we parse for
4488 * ExecStart= and friends, i.e. '$' and quotes. */
4489
4490 if (flags & (UNIT_ESCAPE_EXEC_SYNTAX_ENV | UNIT_ESCAPE_EXEC_SYNTAX)) {
4491 char *t2;
4492
4493 if (flags & UNIT_ESCAPE_EXEC_SYNTAX_ENV) {
4494 t2 = strreplace(s, "$", "$$");
4495 if (!t2)
4496 return NULL;
4497 free_and_replace(t, t2);
4498 }
4499
4500 t2 = shell_escape(t ?: s, "\"");
4501 if (!t2)
4502 return NULL;
4503 free_and_replace(t, t2);
4504
4505 s = t;
4506
4507 } else if (flags & UNIT_ESCAPE_C) {
4508 char *t2;
4509
4510 t2 = cescape(s);
4511 if (!t2)
4512 return NULL;
4513 free_and_replace(t, t2);
4514
4515 s = t;
4516 }
4517
4518 *buf = TAKE_PTR(t);
4519 return s;
4520 }
4521
4522 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4523 _cleanup_free_ char *result = NULL;
4524 size_t n = 0;
4525
4526 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command
4527 * lines in a way suitable for ExecStart= stanzas. */
4528
4529 STRV_FOREACH(i, l) {
4530 _cleanup_free_ char *buf = NULL;
4531 const char *p;
4532 size_t a;
4533 char *q;
4534
4535 p = unit_escape_setting(*i, flags, &buf);
4536 if (!p)
4537 return NULL;
4538
4539 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4540 if (!GREEDY_REALLOC(result, n + a + 1))
4541 return NULL;
4542
4543 q = result + n;
4544 if (n > 0)
4545 *(q++) = ' ';
4546
4547 *(q++) = '"';
4548 q = stpcpy(q, p);
4549 *(q++) = '"';
4550
4551 n += a;
4552 }
4553
4554 if (!GREEDY_REALLOC(result, n + 1))
4555 return NULL;
4556
4557 result[n] = 0;
4558
4559 return TAKE_PTR(result);
4560 }
4561
4562 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4563 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4564 const char *dir, *wrapped;
4565 int r;
4566
4567 assert(u);
4568 assert(name);
4569 assert(data);
4570
4571 if (UNIT_WRITE_FLAGS_NOOP(flags))
4572 return 0;
4573
4574 data = unit_escape_setting(data, flags, &escaped);
4575 if (!data)
4576 return -ENOMEM;
4577
4578 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4579 * previous section header is the same */
4580
4581 if (flags & UNIT_PRIVATE) {
4582 if (!UNIT_VTABLE(u)->private_section)
4583 return -EINVAL;
4584
4585 if (!u->transient_file || u->last_section_private < 0)
4586 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4587 else if (u->last_section_private == 0)
4588 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4589 } else {
4590 if (!u->transient_file || u->last_section_private < 0)
4591 data = strjoina("[Unit]\n", data);
4592 else if (u->last_section_private > 0)
4593 data = strjoina("\n[Unit]\n", data);
4594 }
4595
4596 if (u->transient_file) {
4597 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4598 * write to the transient unit file. */
4599 fputs(data, u->transient_file);
4600
4601 if (!endswith(data, "\n"))
4602 fputc('\n', u->transient_file);
4603
4604 /* Remember which section we wrote this entry to */
4605 u->last_section_private = !!(flags & UNIT_PRIVATE);
4606 return 0;
4607 }
4608
4609 dir = unit_drop_in_dir(u, flags);
4610 if (!dir)
4611 return -EINVAL;
4612
4613 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4614 "# or an equivalent operation. Do not edit.\n",
4615 data,
4616 "\n");
4617
4618 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4619 if (r < 0)
4620 return r;
4621
4622 (void) mkdir_p_label(p, 0755);
4623
4624 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4625 * recreate the cache after every drop-in we write. */
4626 if (u->manager->unit_path_cache) {
4627 r = set_put_strdup(&u->manager->unit_path_cache, p);
4628 if (r < 0)
4629 return r;
4630 }
4631
4632 r = write_string_file_atomic_label(q, wrapped);
4633 if (r < 0)
4634 return r;
4635
4636 r = strv_push(&u->dropin_paths, q);
4637 if (r < 0)
4638 return r;
4639 q = NULL;
4640
4641 strv_uniq(u->dropin_paths);
4642
4643 u->dropin_mtime = now(CLOCK_REALTIME);
4644
4645 return 0;
4646 }
4647
4648 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4649 _cleanup_free_ char *p = NULL;
4650 va_list ap;
4651 int r;
4652
4653 assert(u);
4654 assert(name);
4655 assert(format);
4656
4657 if (UNIT_WRITE_FLAGS_NOOP(flags))
4658 return 0;
4659
4660 va_start(ap, format);
4661 r = vasprintf(&p, format, ap);
4662 va_end(ap);
4663
4664 if (r < 0)
4665 return -ENOMEM;
4666
4667 return unit_write_setting(u, flags, name, p);
4668 }
4669
4670 int unit_make_transient(Unit *u) {
4671 _cleanup_free_ char *path = NULL;
4672 FILE *f;
4673
4674 assert(u);
4675
4676 if (!UNIT_VTABLE(u)->can_transient)
4677 return -EOPNOTSUPP;
4678
4679 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4680
4681 path = path_join(u->manager->lookup_paths.transient, u->id);
4682 if (!path)
4683 return -ENOMEM;
4684
4685 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4686 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4687
4688 WITH_UMASK(0022) {
4689 f = fopen(path, "we");
4690 if (!f)
4691 return -errno;
4692 }
4693
4694 safe_fclose(u->transient_file);
4695 u->transient_file = f;
4696
4697 free_and_replace(u->fragment_path, path);
4698
4699 u->source_path = mfree(u->source_path);
4700 u->dropin_paths = strv_free(u->dropin_paths);
4701 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4702
4703 u->load_state = UNIT_STUB;
4704 u->load_error = 0;
4705 u->transient = true;
4706
4707 unit_add_to_dbus_queue(u);
4708 unit_add_to_gc_queue(u);
4709
4710 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4711 u->transient_file);
4712
4713 return 0;
4714 }
4715
4716 static int log_kill(pid_t pid, int sig, void *userdata) {
4717 _cleanup_free_ char *comm = NULL;
4718
4719 (void) get_process_comm(pid, &comm);
4720
4721 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4722 only, like for example systemd's own PAM stub process. */
4723 if (comm && comm[0] == '(')
4724 /* Although we didn't log anything, as this callback is used in unit_kill_context we must return 1
4725 * here to let the manager know that a process was killed. */
4726 return 1;
4727
4728 log_unit_notice(userdata,
4729 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4730 pid,
4731 strna(comm),
4732 signal_to_string(sig));
4733
4734 return 1;
4735 }
4736
4737 static int operation_to_signal(
4738 const KillContext *c,
4739 KillOperation k,
4740 bool *ret_noteworthy) {
4741
4742 assert(c);
4743
4744 switch (k) {
4745
4746 case KILL_TERMINATE:
4747 case KILL_TERMINATE_AND_LOG:
4748 *ret_noteworthy = false;
4749 return c->kill_signal;
4750
4751 case KILL_RESTART:
4752 *ret_noteworthy = false;
4753 return restart_kill_signal(c);
4754
4755 case KILL_KILL:
4756 *ret_noteworthy = true;
4757 return c->final_kill_signal;
4758
4759 case KILL_WATCHDOG:
4760 *ret_noteworthy = true;
4761 return c->watchdog_signal;
4762
4763 default:
4764 assert_not_reached();
4765 }
4766 }
4767
4768 int unit_kill_context(
4769 Unit *u,
4770 KillContext *c,
4771 KillOperation k,
4772 PidRef* main_pid,
4773 PidRef* control_pid,
4774 bool main_pid_alien) {
4775
4776 bool wait_for_exit = false, send_sighup;
4777 cg_kill_log_func_t log_func = NULL;
4778 int sig, r;
4779
4780 assert(u);
4781 assert(c);
4782
4783 /* Kill the processes belonging to this unit, in preparation for shutting the unit down. Returns > 0
4784 * if we killed something worth waiting for, 0 otherwise. Do not confuse with unit_kill_common()
4785 * which is used for user-requested killing of unit processes. */
4786
4787 if (c->kill_mode == KILL_NONE)
4788 return 0;
4789
4790 bool noteworthy;
4791 sig = operation_to_signal(c, k, &noteworthy);
4792 if (noteworthy)
4793 log_func = log_kill;
4794
4795 send_sighup =
4796 c->send_sighup &&
4797 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4798 sig != SIGHUP;
4799
4800 if (pidref_is_set(main_pid)) {
4801 if (log_func)
4802 log_func(main_pid->pid, sig, u);
4803
4804 r = pidref_kill_and_sigcont(main_pid, sig);
4805 if (r < 0 && r != -ESRCH) {
4806 _cleanup_free_ char *comm = NULL;
4807 (void) get_process_comm(main_pid->pid, &comm);
4808
4809 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid->pid, strna(comm));
4810 } else {
4811 if (!main_pid_alien)
4812 wait_for_exit = true;
4813
4814 if (r != -ESRCH && send_sighup)
4815 (void) pidref_kill(main_pid, SIGHUP);
4816 }
4817 }
4818
4819 if (pidref_is_set(control_pid)) {
4820 if (log_func)
4821 log_func(control_pid->pid, sig, u);
4822
4823 r = pidref_kill_and_sigcont(control_pid, sig);
4824 if (r < 0 && r != -ESRCH) {
4825 _cleanup_free_ char *comm = NULL;
4826 (void) get_process_comm(control_pid->pid, &comm);
4827
4828 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid->pid, strna(comm));
4829 } else {
4830 wait_for_exit = true;
4831
4832 if (r != -ESRCH && send_sighup)
4833 (void) pidref_kill(control_pid, SIGHUP);
4834 }
4835 }
4836
4837 if (u->cgroup_path &&
4838 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4839 _cleanup_set_free_ Set *pid_set = NULL;
4840
4841 /* Exclude the main/control pids from being killed via the cgroup */
4842 pid_set = unit_pid_set(main_pid ? main_pid->pid : 0, control_pid ? control_pid->pid : 0);
4843 if (!pid_set)
4844 return -ENOMEM;
4845
4846 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4847 sig,
4848 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4849 pid_set,
4850 log_func, u);
4851 if (r < 0) {
4852 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4853 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", empty_to_root(u->cgroup_path));
4854
4855 } else if (r > 0) {
4856
4857 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4858 * we are running in a container or if this is a delegation unit, simply because cgroup
4859 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4860 * of containers it can be confused easily by left-over directories in the cgroup — which
4861 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4862 * there we get proper events. Hence rely on them. */
4863
4864 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4865 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4866 wait_for_exit = true;
4867
4868 if (send_sighup) {
4869 set_free(pid_set);
4870
4871 pid_set = unit_pid_set(main_pid ? main_pid->pid : 0, control_pid ? control_pid->pid : 0);
4872 if (!pid_set)
4873 return -ENOMEM;
4874
4875 (void) cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4876 SIGHUP,
4877 CGROUP_IGNORE_SELF,
4878 pid_set,
4879 NULL, NULL);
4880 }
4881 }
4882 }
4883
4884 return wait_for_exit;
4885 }
4886
4887 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4888 int r;
4889
4890 assert(u);
4891 assert(path);
4892
4893 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these
4894 * paths in the unit (from the path to the UnitDependencyInfo structure indicating how to the
4895 * dependency came to be). However, we build a prefix table for all possible prefixes so that new
4896 * appearing mount units can easily determine which units to make themselves a dependency of. */
4897
4898 if (!path_is_absolute(path))
4899 return -EINVAL;
4900
4901 if (hashmap_contains(u->requires_mounts_for, path)) /* Exit quickly if the path is already covered. */
4902 return 0;
4903
4904 _cleanup_free_ char *p = strdup(path);
4905 if (!p)
4906 return -ENOMEM;
4907
4908 /* Use the canonical form of the path as the stored key. We call path_is_normalized()
4909 * only after simplification, since path_is_normalized() rejects paths with '.'.
4910 * path_is_normalized() also verifies that the path fits in PATH_MAX. */
4911 path = path_simplify(p);
4912
4913 if (!path_is_normalized(path))
4914 return -EPERM;
4915
4916 UnitDependencyInfo di = {
4917 .origin_mask = mask
4918 };
4919
4920 r = hashmap_ensure_put(&u->requires_mounts_for, &path_hash_ops, p, di.data);
4921 if (r < 0)
4922 return r;
4923 assert(r > 0);
4924 TAKE_PTR(p); /* path remains a valid pointer to the string stored in the hashmap */
4925
4926 char prefix[strlen(path) + 1];
4927 PATH_FOREACH_PREFIX_MORE(prefix, path) {
4928 Set *x;
4929
4930 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
4931 if (!x) {
4932 _cleanup_free_ char *q = NULL;
4933
4934 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
4935 if (r < 0)
4936 return r;
4937
4938 q = strdup(prefix);
4939 if (!q)
4940 return -ENOMEM;
4941
4942 x = set_new(NULL);
4943 if (!x)
4944 return -ENOMEM;
4945
4946 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
4947 if (r < 0) {
4948 set_free(x);
4949 return r;
4950 }
4951 q = NULL;
4952 }
4953
4954 r = set_put(x, u);
4955 if (r < 0)
4956 return r;
4957 }
4958
4959 return 0;
4960 }
4961
4962 int unit_setup_exec_runtime(Unit *u) {
4963 _cleanup_(exec_shared_runtime_unrefp) ExecSharedRuntime *esr = NULL;
4964 _cleanup_(dynamic_creds_unrefp) DynamicCreds *dcreds = NULL;
4965 _cleanup_set_free_ Set *units = NULL;
4966 ExecRuntime **rt;
4967 ExecContext *ec;
4968 size_t offset;
4969 Unit *other;
4970 int r;
4971
4972 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4973 assert(offset > 0);
4974
4975 /* Check if there already is an ExecRuntime for this unit? */
4976 rt = (ExecRuntime**) ((uint8_t*) u + offset);
4977 if (*rt)
4978 return 0;
4979
4980 ec = unit_get_exec_context(u);
4981 assert(ec);
4982
4983 r = unit_get_transitive_dependency_set(u, UNIT_ATOM_JOINS_NAMESPACE_OF, &units);
4984 if (r < 0)
4985 return r;
4986
4987 /* Try to get it from somebody else */
4988 SET_FOREACH(other, units) {
4989 r = exec_shared_runtime_acquire(u->manager, NULL, other->id, false, &esr);
4990 if (r < 0)
4991 return r;
4992 if (r > 0)
4993 break;
4994 }
4995
4996 if (!esr) {
4997 r = exec_shared_runtime_acquire(u->manager, ec, u->id, true, &esr);
4998 if (r < 0)
4999 return r;
5000 }
5001
5002 if (ec->dynamic_user) {
5003 r = dynamic_creds_make(u->manager, ec->user, ec->group, &dcreds);
5004 if (r < 0)
5005 return r;
5006 }
5007
5008 r = exec_runtime_make(u, ec, esr, dcreds, rt);
5009 if (r < 0)
5010 return r;
5011
5012 TAKE_PTR(esr);
5013 TAKE_PTR(dcreds);
5014
5015 return r;
5016 }
5017
5018 bool unit_type_supported(UnitType t) {
5019 static int8_t cache[_UNIT_TYPE_MAX] = {}; /* -1: disabled, 1: enabled: 0: don't know */
5020 int r;
5021
5022 if (_unlikely_(t < 0))
5023 return false;
5024 if (_unlikely_(t >= _UNIT_TYPE_MAX))
5025 return false;
5026
5027 if (cache[t] == 0) {
5028 char *e;
5029
5030 e = strjoina("SYSTEMD_SUPPORT_", unit_type_to_string(t));
5031
5032 r = getenv_bool(ascii_strupper(e));
5033 if (r < 0 && r != -ENXIO)
5034 log_debug_errno(r, "Failed to parse $%s, ignoring: %m", e);
5035
5036 cache[t] = r == 0 ? -1 : 1;
5037 }
5038 if (cache[t] < 0)
5039 return false;
5040
5041 if (!unit_vtable[t]->supported)
5042 return true;
5043
5044 return unit_vtable[t]->supported();
5045 }
5046
5047 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
5048 int r;
5049
5050 assert(u);
5051 assert(where);
5052
5053 if (!unit_log_level_test(u, LOG_NOTICE))
5054 return;
5055
5056 r = dir_is_empty(where, /* ignore_hidden_or_backup= */ false);
5057 if (r > 0 || r == -ENOTDIR)
5058 return;
5059 if (r < 0) {
5060 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
5061 return;
5062 }
5063
5064 log_unit_struct(u, LOG_NOTICE,
5065 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5066 LOG_UNIT_INVOCATION_ID(u),
5067 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
5068 "WHERE=%s", where);
5069 }
5070
5071 int unit_fail_if_noncanonical(Unit *u, const char* where) {
5072 _cleanup_free_ char *canonical_where = NULL;
5073 int r;
5074
5075 assert(u);
5076 assert(where);
5077
5078 r = chase(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
5079 if (r < 0) {
5080 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
5081 return 0;
5082 }
5083
5084 /* We will happily ignore a trailing slash (or any redundant slashes) */
5085 if (path_equal(where, canonical_where))
5086 return 0;
5087
5088 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
5089 log_unit_struct(u, LOG_ERR,
5090 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
5091 LOG_UNIT_INVOCATION_ID(u),
5092 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
5093 "WHERE=%s", where);
5094
5095 return -ELOOP;
5096 }
5097
5098 bool unit_is_pristine(Unit *u) {
5099 assert(u);
5100
5101 /* Check if the unit already exists or is already around, in a number of different ways. Note that to
5102 * cater for unit types such as slice, we are generally fine with units that are marked UNIT_LOADED
5103 * even though nothing was actually loaded, as those unit types don't require a file on disk.
5104 *
5105 * Note that we don't check for drop-ins here, because we allow drop-ins for transient units
5106 * identically to non-transient units, both unit-specific and hierarchical. E.g. for a-b-c.service:
5107 * service.d/….conf, a-.service.d/….conf, a-b-.service.d/….conf, a-b-c.service.d/….conf.
5108 */
5109
5110 return IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) &&
5111 !u->fragment_path &&
5112 !u->source_path &&
5113 !u->job &&
5114 !u->merged_into;
5115 }
5116
5117 PidRef* unit_control_pid(Unit *u) {
5118 assert(u);
5119
5120 if (UNIT_VTABLE(u)->control_pid)
5121 return UNIT_VTABLE(u)->control_pid(u);
5122
5123 return NULL;
5124 }
5125
5126 PidRef* unit_main_pid(Unit *u) {
5127 assert(u);
5128
5129 if (UNIT_VTABLE(u)->main_pid)
5130 return UNIT_VTABLE(u)->main_pid(u);
5131
5132 return NULL;
5133 }
5134
5135 static void unit_unref_uid_internal(
5136 Unit *u,
5137 uid_t *ref_uid,
5138 bool destroy_now,
5139 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
5140
5141 assert(u);
5142 assert(ref_uid);
5143 assert(_manager_unref_uid);
5144
5145 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
5146 * gid_t are actually the same time, with the same validity rules.
5147 *
5148 * Drops a reference to UID/GID from a unit. */
5149
5150 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5151 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5152
5153 if (!uid_is_valid(*ref_uid))
5154 return;
5155
5156 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
5157 *ref_uid = UID_INVALID;
5158 }
5159
5160 static void unit_unref_uid(Unit *u, bool destroy_now) {
5161 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
5162 }
5163
5164 static void unit_unref_gid(Unit *u, bool destroy_now) {
5165 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
5166 }
5167
5168 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5169 assert(u);
5170
5171 unit_unref_uid(u, destroy_now);
5172 unit_unref_gid(u, destroy_now);
5173 }
5174
5175 static int unit_ref_uid_internal(
5176 Unit *u,
5177 uid_t *ref_uid,
5178 uid_t uid,
5179 bool clean_ipc,
5180 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
5181
5182 int r;
5183
5184 assert(u);
5185 assert(ref_uid);
5186 assert(uid_is_valid(uid));
5187 assert(_manager_ref_uid);
5188
5189 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
5190 * are actually the same type, and have the same validity rules.
5191 *
5192 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5193 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5194 * drops to zero. */
5195
5196 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5197 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5198
5199 if (*ref_uid == uid)
5200 return 0;
5201
5202 if (uid_is_valid(*ref_uid)) /* Already set? */
5203 return -EBUSY;
5204
5205 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5206 if (r < 0)
5207 return r;
5208
5209 *ref_uid = uid;
5210 return 1;
5211 }
5212
5213 static int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5214 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5215 }
5216
5217 static int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5218 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5219 }
5220
5221 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5222 int r = 0, q = 0;
5223
5224 assert(u);
5225
5226 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5227
5228 if (uid_is_valid(uid)) {
5229 r = unit_ref_uid(u, uid, clean_ipc);
5230 if (r < 0)
5231 return r;
5232 }
5233
5234 if (gid_is_valid(gid)) {
5235 q = unit_ref_gid(u, gid, clean_ipc);
5236 if (q < 0) {
5237 if (r > 0)
5238 unit_unref_uid(u, false);
5239
5240 return q;
5241 }
5242 }
5243
5244 return r > 0 || q > 0;
5245 }
5246
5247 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5248 ExecContext *c;
5249 int r;
5250
5251 assert(u);
5252
5253 c = unit_get_exec_context(u);
5254
5255 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5256 if (r < 0)
5257 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5258
5259 return r;
5260 }
5261
5262 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5263 int r;
5264
5265 assert(u);
5266
5267 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5268 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5269 * objects when no service references the UID/GID anymore. */
5270
5271 r = unit_ref_uid_gid(u, uid, gid);
5272 if (r > 0)
5273 unit_add_to_dbus_queue(u);
5274 }
5275
5276 int unit_acquire_invocation_id(Unit *u) {
5277 sd_id128_t id;
5278 int r;
5279
5280 assert(u);
5281
5282 r = sd_id128_randomize(&id);
5283 if (r < 0)
5284 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5285
5286 r = unit_set_invocation_id(u, id);
5287 if (r < 0)
5288 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5289
5290 unit_add_to_dbus_queue(u);
5291 return 0;
5292 }
5293
5294 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5295 int r;
5296
5297 assert(u);
5298 assert(p);
5299
5300 /* Copy parameters from manager */
5301 r = manager_get_effective_environment(u->manager, &p->environment);
5302 if (r < 0)
5303 return r;
5304
5305 p->runtime_scope = u->manager->runtime_scope;
5306
5307 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5308 p->cgroup_supported = u->manager->cgroup_supported;
5309 p->prefix = u->manager->prefix;
5310 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5311
5312 /* Copy parameters from unit */
5313 p->cgroup_path = u->cgroup_path;
5314 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5315
5316 p->received_credentials_directory = u->manager->received_credentials_directory;
5317 p->received_encrypted_credentials_directory = u->manager->received_encrypted_credentials_directory;
5318
5319 return 0;
5320 }
5321
5322 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5323 int r;
5324
5325 assert(u);
5326 assert(ret);
5327
5328 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5329 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5330
5331 (void) unit_realize_cgroup(u);
5332
5333 r = safe_fork(name, FORK_REOPEN_LOG|FORK_DEATHSIG, ret);
5334 if (r != 0)
5335 return r;
5336
5337 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE);
5338 (void) ignore_signals(SIGPIPE);
5339
5340 if (u->cgroup_path) {
5341 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5342 if (r < 0) {
5343 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", empty_to_root(u->cgroup_path));
5344 _exit(EXIT_CGROUP);
5345 }
5346 }
5347
5348 return 0;
5349 }
5350
5351 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid) {
5352 pid_t pid;
5353 int r;
5354
5355 assert(u);
5356 assert(ret_pid);
5357
5358 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5359 if (r < 0)
5360 return r;
5361 if (r == 0) {
5362 int ret = EXIT_SUCCESS;
5363
5364 STRV_FOREACH(i, paths) {
5365 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5366 if (r < 0) {
5367 log_error_errno(r, "Failed to remove '%s': %m", *i);
5368 ret = EXIT_FAILURE;
5369 }
5370 }
5371
5372 _exit(ret);
5373 }
5374
5375 r = unit_watch_pid(u, pid, true);
5376 if (r < 0)
5377 return r;
5378
5379 *ret_pid = pid;
5380 return 0;
5381 }
5382
5383 static void unit_update_dependency_mask(Hashmap *deps, Unit *other, UnitDependencyInfo di) {
5384 assert(deps);
5385 assert(other);
5386
5387 if (di.origin_mask == 0 && di.destination_mask == 0)
5388 /* No bit set anymore, let's drop the whole entry */
5389 assert_se(hashmap_remove(deps, other));
5390 else
5391 /* Mask was reduced, let's update the entry */
5392 assert_se(hashmap_update(deps, other, di.data) == 0);
5393 }
5394
5395 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5396 Hashmap *deps;
5397 assert(u);
5398
5399 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5400
5401 if (mask == 0)
5402 return;
5403
5404 HASHMAP_FOREACH(deps, u->dependencies) {
5405 bool done;
5406
5407 do {
5408 UnitDependencyInfo di;
5409 Unit *other;
5410
5411 done = true;
5412
5413 HASHMAP_FOREACH_KEY(di.data, other, deps) {
5414 Hashmap *other_deps;
5415
5416 if (FLAGS_SET(~mask, di.origin_mask))
5417 continue;
5418
5419 di.origin_mask &= ~mask;
5420 unit_update_dependency_mask(deps, other, di);
5421
5422 /* We updated the dependency from our unit to the other unit now. But most
5423 * dependencies imply a reverse dependency. Hence, let's delete that one
5424 * too. For that we go through all dependency types on the other unit and
5425 * delete all those which point to us and have the right mask set. */
5426
5427 HASHMAP_FOREACH(other_deps, other->dependencies) {
5428 UnitDependencyInfo dj;
5429
5430 dj.data = hashmap_get(other_deps, u);
5431 if (FLAGS_SET(~mask, dj.destination_mask))
5432 continue;
5433
5434 dj.destination_mask &= ~mask;
5435 unit_update_dependency_mask(other_deps, u, dj);
5436 }
5437
5438 unit_add_to_gc_queue(other);
5439
5440 /* The unit 'other' may not be wanted by the unit 'u'. */
5441 unit_submit_to_stop_when_unneeded_queue(other);
5442
5443 done = false;
5444 break;
5445 }
5446
5447 } while (!done);
5448 }
5449 }
5450
5451 static int unit_get_invocation_path(Unit *u, char **ret) {
5452 char *p;
5453 int r;
5454
5455 assert(u);
5456 assert(ret);
5457
5458 if (MANAGER_IS_SYSTEM(u->manager))
5459 p = strjoin("/run/systemd/units/invocation:", u->id);
5460 else {
5461 _cleanup_free_ char *user_path = NULL;
5462 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5463 if (r < 0)
5464 return r;
5465 p = strjoin(user_path, u->id);
5466 }
5467
5468 if (!p)
5469 return -ENOMEM;
5470
5471 *ret = p;
5472 return 0;
5473 }
5474
5475 static int unit_export_invocation_id(Unit *u) {
5476 _cleanup_free_ char *p = NULL;
5477 int r;
5478
5479 assert(u);
5480
5481 if (u->exported_invocation_id)
5482 return 0;
5483
5484 if (sd_id128_is_null(u->invocation_id))
5485 return 0;
5486
5487 r = unit_get_invocation_path(u, &p);
5488 if (r < 0)
5489 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5490
5491 r = symlink_atomic_label(u->invocation_id_string, p);
5492 if (r < 0)
5493 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5494
5495 u->exported_invocation_id = true;
5496 return 0;
5497 }
5498
5499 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5500 const char *p;
5501 char buf[2];
5502 int r;
5503
5504 assert(u);
5505 assert(c);
5506
5507 if (u->exported_log_level_max)
5508 return 0;
5509
5510 if (c->log_level_max < 0)
5511 return 0;
5512
5513 assert(c->log_level_max <= 7);
5514
5515 buf[0] = '0' + c->log_level_max;
5516 buf[1] = 0;
5517
5518 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5519 r = symlink_atomic(buf, p);
5520 if (r < 0)
5521 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5522
5523 u->exported_log_level_max = true;
5524 return 0;
5525 }
5526
5527 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5528 _cleanup_close_ int fd = -EBADF;
5529 struct iovec *iovec;
5530 const char *p;
5531 char *pattern;
5532 le64_t *sizes;
5533 ssize_t n;
5534 int r;
5535
5536 if (u->exported_log_extra_fields)
5537 return 0;
5538
5539 if (c->n_log_extra_fields <= 0)
5540 return 0;
5541
5542 sizes = newa(le64_t, c->n_log_extra_fields);
5543 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5544
5545 for (size_t i = 0; i < c->n_log_extra_fields; i++) {
5546 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5547
5548 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5549 iovec[i*2+1] = c->log_extra_fields[i];
5550 }
5551
5552 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5553 pattern = strjoina(p, ".XXXXXX");
5554
5555 fd = mkostemp_safe(pattern);
5556 if (fd < 0)
5557 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5558
5559 n = writev(fd, iovec, c->n_log_extra_fields*2);
5560 if (n < 0) {
5561 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5562 goto fail;
5563 }
5564
5565 (void) fchmod(fd, 0644);
5566
5567 if (rename(pattern, p) < 0) {
5568 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5569 goto fail;
5570 }
5571
5572 u->exported_log_extra_fields = true;
5573 return 0;
5574
5575 fail:
5576 (void) unlink(pattern);
5577 return r;
5578 }
5579
5580 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5581 _cleanup_free_ char *buf = NULL;
5582 const char *p;
5583 int r;
5584
5585 assert(u);
5586 assert(c);
5587
5588 if (u->exported_log_ratelimit_interval)
5589 return 0;
5590
5591 if (c->log_ratelimit_interval_usec == 0)
5592 return 0;
5593
5594 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5595
5596 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5597 return log_oom();
5598
5599 r = symlink_atomic(buf, p);
5600 if (r < 0)
5601 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5602
5603 u->exported_log_ratelimit_interval = true;
5604 return 0;
5605 }
5606
5607 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5608 _cleanup_free_ char *buf = NULL;
5609 const char *p;
5610 int r;
5611
5612 assert(u);
5613 assert(c);
5614
5615 if (u->exported_log_ratelimit_burst)
5616 return 0;
5617
5618 if (c->log_ratelimit_burst == 0)
5619 return 0;
5620
5621 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5622
5623 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5624 return log_oom();
5625
5626 r = symlink_atomic(buf, p);
5627 if (r < 0)
5628 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5629
5630 u->exported_log_ratelimit_burst = true;
5631 return 0;
5632 }
5633
5634 void unit_export_state_files(Unit *u) {
5635 const ExecContext *c;
5636
5637 assert(u);
5638
5639 if (!u->id)
5640 return;
5641
5642 if (MANAGER_IS_TEST_RUN(u->manager))
5643 return;
5644
5645 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5646 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5647 * the IPC system itself and PID 1 also log to the journal.
5648 *
5649 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5650 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5651 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5652 * namespace at least.
5653 *
5654 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5655 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5656 * them with one. */
5657
5658 (void) unit_export_invocation_id(u);
5659
5660 if (!MANAGER_IS_SYSTEM(u->manager))
5661 return;
5662
5663 c = unit_get_exec_context(u);
5664 if (c) {
5665 (void) unit_export_log_level_max(u, c);
5666 (void) unit_export_log_extra_fields(u, c);
5667 (void) unit_export_log_ratelimit_interval(u, c);
5668 (void) unit_export_log_ratelimit_burst(u, c);
5669 }
5670 }
5671
5672 void unit_unlink_state_files(Unit *u) {
5673 const char *p;
5674
5675 assert(u);
5676
5677 if (!u->id)
5678 return;
5679
5680 /* Undoes the effect of unit_export_state() */
5681
5682 if (u->exported_invocation_id) {
5683 _cleanup_free_ char *invocation_path = NULL;
5684 int r = unit_get_invocation_path(u, &invocation_path);
5685 if (r >= 0) {
5686 (void) unlink(invocation_path);
5687 u->exported_invocation_id = false;
5688 }
5689 }
5690
5691 if (!MANAGER_IS_SYSTEM(u->manager))
5692 return;
5693
5694 if (u->exported_log_level_max) {
5695 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5696 (void) unlink(p);
5697
5698 u->exported_log_level_max = false;
5699 }
5700
5701 if (u->exported_log_extra_fields) {
5702 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5703 (void) unlink(p);
5704
5705 u->exported_log_extra_fields = false;
5706 }
5707
5708 if (u->exported_log_ratelimit_interval) {
5709 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5710 (void) unlink(p);
5711
5712 u->exported_log_ratelimit_interval = false;
5713 }
5714
5715 if (u->exported_log_ratelimit_burst) {
5716 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5717 (void) unlink(p);
5718
5719 u->exported_log_ratelimit_burst = false;
5720 }
5721 }
5722
5723 int unit_prepare_exec(Unit *u) {
5724 int r;
5725
5726 assert(u);
5727
5728 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5729 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5730 r = bpf_firewall_load_custom(u);
5731 if (r < 0)
5732 return r;
5733
5734 /* Prepares everything so that we can fork of a process for this unit */
5735
5736 (void) unit_realize_cgroup(u);
5737
5738 if (u->reset_accounting) {
5739 (void) unit_reset_accounting(u);
5740 u->reset_accounting = false;
5741 }
5742
5743 unit_export_state_files(u);
5744
5745 r = unit_setup_exec_runtime(u);
5746 if (r < 0)
5747 return r;
5748
5749 return 0;
5750 }
5751
5752 static bool ignore_leftover_process(const char *comm) {
5753 return comm && comm[0] == '('; /* Most likely our own helper process (PAM?), ignore */
5754 }
5755
5756 int unit_log_leftover_process_start(pid_t pid, int sig, void *userdata) {
5757 _cleanup_free_ char *comm = NULL;
5758
5759 (void) get_process_comm(pid, &comm);
5760
5761 if (ignore_leftover_process(comm))
5762 return 0;
5763
5764 /* During start we print a warning */
5765
5766 log_unit_warning(userdata,
5767 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5768 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5769 pid, strna(comm));
5770
5771 return 1;
5772 }
5773
5774 int unit_log_leftover_process_stop(pid_t pid, int sig, void *userdata) {
5775 _cleanup_free_ char *comm = NULL;
5776
5777 (void) get_process_comm(pid, &comm);
5778
5779 if (ignore_leftover_process(comm))
5780 return 0;
5781
5782 /* During stop we only print an informational message */
5783
5784 log_unit_info(userdata,
5785 "Unit process " PID_FMT " (%s) remains running after unit stopped.",
5786 pid, strna(comm));
5787
5788 return 1;
5789 }
5790
5791 int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func) {
5792 assert(u);
5793
5794 (void) unit_pick_cgroup_path(u);
5795
5796 if (!u->cgroup_path)
5797 return 0;
5798
5799 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_func, u);
5800 }
5801
5802 bool unit_needs_console(Unit *u) {
5803 ExecContext *ec;
5804 UnitActiveState state;
5805
5806 assert(u);
5807
5808 state = unit_active_state(u);
5809
5810 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5811 return false;
5812
5813 if (UNIT_VTABLE(u)->needs_console)
5814 return UNIT_VTABLE(u)->needs_console(u);
5815
5816 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5817 ec = unit_get_exec_context(u);
5818 if (!ec)
5819 return false;
5820
5821 return exec_context_may_touch_console(ec);
5822 }
5823
5824 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
5825 int r;
5826
5827 assert(u);
5828
5829 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5830 * and not a kernel thread either */
5831
5832 /* First, a simple range check */
5833 if (!pid_is_valid(pid))
5834 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
5835
5836 /* Some extra safety check */
5837 if (pid == 1 || pid == getpid_cached())
5838 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
5839
5840 /* Don't even begin to bother with kernel threads */
5841 r = is_kernel_thread(pid);
5842 if (r == -ESRCH)
5843 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
5844 if (r < 0)
5845 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
5846 if (r > 0)
5847 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
5848
5849 return 0;
5850 }
5851
5852 void unit_log_success(Unit *u) {
5853 assert(u);
5854
5855 /* Let's show message "Deactivated successfully" in debug mode (when manager is user) rather than in info mode.
5856 * This message has low information value for regular users and it might be a bit overwhelming on a system with
5857 * a lot of devices. */
5858 log_unit_struct(u,
5859 MANAGER_IS_USER(u->manager) ? LOG_DEBUG : LOG_INFO,
5860 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5861 LOG_UNIT_INVOCATION_ID(u),
5862 LOG_UNIT_MESSAGE(u, "Deactivated successfully."));
5863 }
5864
5865 void unit_log_failure(Unit *u, const char *result) {
5866 assert(u);
5867 assert(result);
5868
5869 log_unit_struct(u, LOG_WARNING,
5870 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5871 LOG_UNIT_INVOCATION_ID(u),
5872 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5873 "UNIT_RESULT=%s", result);
5874 }
5875
5876 void unit_log_skip(Unit *u, const char *result) {
5877 assert(u);
5878 assert(result);
5879
5880 log_unit_struct(u, LOG_INFO,
5881 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
5882 LOG_UNIT_INVOCATION_ID(u),
5883 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
5884 "UNIT_RESULT=%s", result);
5885 }
5886
5887 void unit_log_process_exit(
5888 Unit *u,
5889 const char *kind,
5890 const char *command,
5891 bool success,
5892 int code,
5893 int status) {
5894
5895 int level;
5896
5897 assert(u);
5898 assert(kind);
5899
5900 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
5901 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
5902 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
5903 * WARNING. */
5904 if (success)
5905 level = LOG_DEBUG;
5906 else if (code == CLD_EXITED)
5907 level = LOG_NOTICE;
5908 else
5909 level = LOG_WARNING;
5910
5911 log_unit_struct(u, level,
5912 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
5913 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s%s",
5914 kind,
5915 sigchld_code_to_string(code), status,
5916 strna(code == CLD_EXITED
5917 ? exit_status_to_string(status, EXIT_STATUS_FULL)
5918 : signal_to_string(status)),
5919 success ? " (success)" : ""),
5920 "EXIT_CODE=%s", sigchld_code_to_string(code),
5921 "EXIT_STATUS=%i", status,
5922 "COMMAND=%s", strna(command),
5923 LOG_UNIT_INVOCATION_ID(u));
5924 }
5925
5926 int unit_exit_status(Unit *u) {
5927 assert(u);
5928
5929 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
5930 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
5931 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
5932 * service process has exited abnormally (signal/coredump). */
5933
5934 if (!UNIT_VTABLE(u)->exit_status)
5935 return -EOPNOTSUPP;
5936
5937 return UNIT_VTABLE(u)->exit_status(u);
5938 }
5939
5940 int unit_failure_action_exit_status(Unit *u) {
5941 int r;
5942
5943 assert(u);
5944
5945 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
5946
5947 if (u->failure_action_exit_status >= 0)
5948 return u->failure_action_exit_status;
5949
5950 r = unit_exit_status(u);
5951 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5952 return 255;
5953
5954 return r;
5955 }
5956
5957 int unit_success_action_exit_status(Unit *u) {
5958 int r;
5959
5960 assert(u);
5961
5962 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
5963
5964 if (u->success_action_exit_status >= 0)
5965 return u->success_action_exit_status;
5966
5967 r = unit_exit_status(u);
5968 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5969 return 255;
5970
5971 return r;
5972 }
5973
5974 int unit_test_trigger_loaded(Unit *u) {
5975 Unit *trigger;
5976
5977 /* Tests whether the unit to trigger is loaded */
5978
5979 trigger = UNIT_TRIGGER(u);
5980 if (!trigger)
5981 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
5982 "Refusing to start, no unit to trigger.");
5983 if (trigger->load_state != UNIT_LOADED)
5984 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
5985 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
5986
5987 return 0;
5988 }
5989
5990 void unit_destroy_runtime_data(Unit *u, const ExecContext *context) {
5991 assert(u);
5992 assert(context);
5993
5994 /* EXEC_PRESERVE_RESTART is handled via unit_release_resources()! */
5995 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
5996 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
5997
5998 exec_context_destroy_credentials(u);
5999 exec_context_destroy_mount_ns_dir(u);
6000 }
6001
6002 int unit_clean(Unit *u, ExecCleanMask mask) {
6003 UnitActiveState state;
6004
6005 assert(u);
6006
6007 /* Special return values:
6008 *
6009 * -EOPNOTSUPP → cleaning not supported for this unit type
6010 * -EUNATCH → cleaning not defined for this resource type
6011 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
6012 * a job queued or similar
6013 */
6014
6015 if (!UNIT_VTABLE(u)->clean)
6016 return -EOPNOTSUPP;
6017
6018 if (mask == 0)
6019 return -EUNATCH;
6020
6021 if (u->load_state != UNIT_LOADED)
6022 return -EBUSY;
6023
6024 if (u->job)
6025 return -EBUSY;
6026
6027 state = unit_active_state(u);
6028 if (state != UNIT_INACTIVE)
6029 return -EBUSY;
6030
6031 return UNIT_VTABLE(u)->clean(u, mask);
6032 }
6033
6034 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
6035 assert(u);
6036
6037 if (!UNIT_VTABLE(u)->clean ||
6038 u->load_state != UNIT_LOADED) {
6039 *ret = 0;
6040 return 0;
6041 }
6042
6043 /* When the clean() method is set, can_clean() really should be set too */
6044 assert(UNIT_VTABLE(u)->can_clean);
6045
6046 return UNIT_VTABLE(u)->can_clean(u, ret);
6047 }
6048
6049 bool unit_can_freeze(Unit *u) {
6050 assert(u);
6051
6052 if (UNIT_VTABLE(u)->can_freeze)
6053 return UNIT_VTABLE(u)->can_freeze(u);
6054
6055 return UNIT_VTABLE(u)->freeze;
6056 }
6057
6058 void unit_frozen(Unit *u) {
6059 assert(u);
6060
6061 u->freezer_state = FREEZER_FROZEN;
6062
6063 bus_unit_send_pending_freezer_message(u, false);
6064 }
6065
6066 void unit_thawed(Unit *u) {
6067 assert(u);
6068
6069 u->freezer_state = FREEZER_RUNNING;
6070
6071 bus_unit_send_pending_freezer_message(u, false);
6072 }
6073
6074 static int unit_freezer_action(Unit *u, FreezerAction action) {
6075 UnitActiveState s;
6076 int (*method)(Unit*);
6077 int r;
6078
6079 assert(u);
6080 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
6081
6082 method = action == FREEZER_FREEZE ? UNIT_VTABLE(u)->freeze : UNIT_VTABLE(u)->thaw;
6083 if (!method || !cg_freezer_supported())
6084 return -EOPNOTSUPP;
6085
6086 if (u->job)
6087 return -EBUSY;
6088
6089 if (u->load_state != UNIT_LOADED)
6090 return -EHOSTDOWN;
6091
6092 s = unit_active_state(u);
6093 if (s != UNIT_ACTIVE)
6094 return -EHOSTDOWN;
6095
6096 if ((IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING) && action == FREEZER_FREEZE) ||
6097 (u->freezer_state == FREEZER_THAWING && action == FREEZER_THAW))
6098 return -EALREADY;
6099
6100 r = method(u);
6101 if (r <= 0)
6102 return r;
6103
6104 assert(IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING));
6105
6106 return 1;
6107 }
6108
6109 int unit_freeze(Unit *u) {
6110 return unit_freezer_action(u, FREEZER_FREEZE);
6111 }
6112
6113 int unit_thaw(Unit *u) {
6114 return unit_freezer_action(u, FREEZER_THAW);
6115 }
6116
6117 /* Wrappers around low-level cgroup freezer operations common for service and scope units */
6118 int unit_freeze_vtable_common(Unit *u) {
6119 return unit_cgroup_freezer_action(u, FREEZER_FREEZE);
6120 }
6121
6122 int unit_thaw_vtable_common(Unit *u) {
6123 return unit_cgroup_freezer_action(u, FREEZER_THAW);
6124 }
6125
6126 Condition *unit_find_failed_condition(Unit *u) {
6127 Condition *failed_trigger = NULL;
6128 bool has_succeeded_trigger = false;
6129
6130 if (u->condition_result)
6131 return NULL;
6132
6133 LIST_FOREACH(conditions, c, u->conditions)
6134 if (c->trigger) {
6135 if (c->result == CONDITION_SUCCEEDED)
6136 has_succeeded_trigger = true;
6137 else if (!failed_trigger)
6138 failed_trigger = c;
6139 } else if (c->result != CONDITION_SUCCEEDED)
6140 return c;
6141
6142 return failed_trigger && !has_succeeded_trigger ? failed_trigger : NULL;
6143 }
6144
6145 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
6146 [COLLECT_INACTIVE] = "inactive",
6147 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
6148 };
6149
6150 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);
6151
6152 Unit* unit_has_dependency(const Unit *u, UnitDependencyAtom atom, Unit *other) {
6153 Unit *i;
6154
6155 assert(u);
6156
6157 /* Checks if the unit has a dependency on 'other' with the specified dependency atom. If 'other' is
6158 * NULL checks if the unit has *any* dependency of that atom. Returns 'other' if found (or if 'other'
6159 * is NULL the first entry found), or NULL if not found. */
6160
6161 UNIT_FOREACH_DEPENDENCY(i, u, atom)
6162 if (!other || other == i)
6163 return i;
6164
6165 return NULL;
6166 }
6167
6168 int unit_get_dependency_array(const Unit *u, UnitDependencyAtom atom, Unit ***ret_array) {
6169 _cleanup_free_ Unit **array = NULL;
6170 size_t n = 0;
6171 Unit *other;
6172
6173 assert(u);
6174 assert(ret_array);
6175
6176 /* Gets a list of units matching a specific atom as array. This is useful when iterating through
6177 * dependencies while modifying them: the array is an "atomic snapshot" of sorts, that can be read
6178 * while the dependency table is continuously updated. */
6179
6180 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
6181 if (!GREEDY_REALLOC(array, n + 1))
6182 return -ENOMEM;
6183
6184 array[n++] = other;
6185 }
6186
6187 *ret_array = TAKE_PTR(array);
6188
6189 assert(n <= INT_MAX);
6190 return (int) n;
6191 }
6192
6193 int unit_get_transitive_dependency_set(Unit *u, UnitDependencyAtom atom, Set **ret) {
6194 _cleanup_set_free_ Set *units = NULL, *queue = NULL;
6195 Unit *other;
6196 int r;
6197
6198 assert(u);
6199 assert(ret);
6200
6201 /* Similar to unit_get_dependency_array(), but also search the same dependency in other units. */
6202
6203 do {
6204 UNIT_FOREACH_DEPENDENCY(other, u, atom) {
6205 r = set_ensure_put(&units, NULL, other);
6206 if (r < 0)
6207 return r;
6208 if (r == 0)
6209 continue;
6210 r = set_ensure_put(&queue, NULL, other);
6211 if (r < 0)
6212 return r;
6213 }
6214 } while ((u = set_steal_first(queue)));
6215
6216 *ret = TAKE_PTR(units);
6217 return 0;
6218 }
6219
6220 const ActivationDetailsVTable * const activation_details_vtable[_UNIT_TYPE_MAX] = {
6221 [UNIT_PATH] = &activation_details_path_vtable,
6222 [UNIT_TIMER] = &activation_details_timer_vtable,
6223 };
6224
6225 ActivationDetails *activation_details_new(Unit *trigger_unit) {
6226 _cleanup_free_ ActivationDetails *details = NULL;
6227
6228 assert(trigger_unit);
6229 assert(trigger_unit->type != _UNIT_TYPE_INVALID);
6230 assert(trigger_unit->id);
6231
6232 details = malloc0(activation_details_vtable[trigger_unit->type]->object_size);
6233 if (!details)
6234 return NULL;
6235
6236 *details = (ActivationDetails) {
6237 .n_ref = 1,
6238 .trigger_unit_type = trigger_unit->type,
6239 };
6240
6241 details->trigger_unit_name = strdup(trigger_unit->id);
6242 if (!details->trigger_unit_name)
6243 return NULL;
6244
6245 if (ACTIVATION_DETAILS_VTABLE(details)->init)
6246 ACTIVATION_DETAILS_VTABLE(details)->init(details, trigger_unit);
6247
6248 return TAKE_PTR(details);
6249 }
6250
6251 static ActivationDetails *activation_details_free(ActivationDetails *details) {
6252 if (!details)
6253 return NULL;
6254
6255 if (ACTIVATION_DETAILS_VTABLE(details)->done)
6256 ACTIVATION_DETAILS_VTABLE(details)->done(details);
6257
6258 free(details->trigger_unit_name);
6259
6260 return mfree(details);
6261 }
6262
6263 void activation_details_serialize(ActivationDetails *details, FILE *f) {
6264 if (!details || details->trigger_unit_type == _UNIT_TYPE_INVALID)
6265 return;
6266
6267 (void) serialize_item(f, "activation-details-unit-type", unit_type_to_string(details->trigger_unit_type));
6268 if (details->trigger_unit_name)
6269 (void) serialize_item(f, "activation-details-unit-name", details->trigger_unit_name);
6270 if (ACTIVATION_DETAILS_VTABLE(details)->serialize)
6271 ACTIVATION_DETAILS_VTABLE(details)->serialize(details, f);
6272 }
6273
6274 int activation_details_deserialize(const char *key, const char *value, ActivationDetails **details) {
6275 int r;
6276
6277 assert(key);
6278 assert(value);
6279 assert(details);
6280
6281 if (!*details) {
6282 UnitType t;
6283
6284 if (!streq(key, "activation-details-unit-type"))
6285 return -EINVAL;
6286
6287 t = unit_type_from_string(value);
6288 if (t < 0)
6289 return t;
6290
6291 /* The activation details vtable has defined ops only for path and timer units */
6292 if (!activation_details_vtable[t])
6293 return -EINVAL;
6294
6295 *details = malloc0(activation_details_vtable[t]->object_size);
6296 if (!*details)
6297 return -ENOMEM;
6298
6299 **details = (ActivationDetails) {
6300 .n_ref = 1,
6301 .trigger_unit_type = t,
6302 };
6303
6304 return 0;
6305 }
6306
6307 if (streq(key, "activation-details-unit-name")) {
6308 r = free_and_strdup(&(*details)->trigger_unit_name, value);
6309 if (r < 0)
6310 return r;
6311
6312 return 0;
6313 }
6314
6315 if (ACTIVATION_DETAILS_VTABLE(*details)->deserialize)
6316 return ACTIVATION_DETAILS_VTABLE(*details)->deserialize(key, value, details);
6317
6318 return -EINVAL;
6319 }
6320
6321 int activation_details_append_env(ActivationDetails *details, char ***strv) {
6322 int r = 0;
6323
6324 assert(strv);
6325
6326 if (!details)
6327 return 0;
6328
6329 if (!isempty(details->trigger_unit_name)) {
6330 char *s = strjoin("TRIGGER_UNIT=", details->trigger_unit_name);
6331 if (!s)
6332 return -ENOMEM;
6333
6334 r = strv_consume(strv, TAKE_PTR(s));
6335 if (r < 0)
6336 return r;
6337 }
6338
6339 if (ACTIVATION_DETAILS_VTABLE(details)->append_env) {
6340 r = ACTIVATION_DETAILS_VTABLE(details)->append_env(details, strv);
6341 if (r < 0)
6342 return r;
6343 }
6344
6345 return r + !isempty(details->trigger_unit_name); /* Return the number of variables added to the env block */
6346 }
6347
6348 int activation_details_append_pair(ActivationDetails *details, char ***strv) {
6349 int r = 0;
6350
6351 assert(strv);
6352
6353 if (!details)
6354 return 0;
6355
6356 if (!isempty(details->trigger_unit_name)) {
6357 r = strv_extend(strv, "trigger_unit");
6358 if (r < 0)
6359 return r;
6360
6361 r = strv_extend(strv, details->trigger_unit_name);
6362 if (r < 0)
6363 return r;
6364 }
6365
6366 if (ACTIVATION_DETAILS_VTABLE(details)->append_env) {
6367 r = ACTIVATION_DETAILS_VTABLE(details)->append_pair(details, strv);
6368 if (r < 0)
6369 return r;
6370 }
6371
6372 return r + !isempty(details->trigger_unit_name); /* Return the number of pairs added to the strv */
6373 }
6374
6375 DEFINE_TRIVIAL_REF_UNREF_FUNC(ActivationDetails, activation_details, activation_details_free);