]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-packet.c
tree-wide: use UINT64_MAX or friends
[thirdparty/systemd.git] / src / resolve / resolved-dns-packet.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_GCRYPT
4 #include <gcrypt.h>
5 #endif
6
7 #include "alloc-util.h"
8 #include "dns-domain.h"
9 #include "memory-util.h"
10 #include "resolved-dns-packet.h"
11 #include "set.h"
12 #include "string-table.h"
13 #include "strv.h"
14 #include "unaligned.h"
15 #include "utf8.h"
16 #include "util.h"
17
18 #define EDNS0_OPT_DO (1<<15)
19
20 assert_cc(DNS_PACKET_SIZE_START > DNS_PACKET_HEADER_SIZE);
21
22 typedef struct DnsPacketRewinder {
23 DnsPacket *packet;
24 size_t saved_rindex;
25 } DnsPacketRewinder;
26
27 static void rewind_dns_packet(DnsPacketRewinder *rewinder) {
28 if (rewinder->packet)
29 dns_packet_rewind(rewinder->packet, rewinder->saved_rindex);
30 }
31
32 #define INIT_REWINDER(rewinder, p) do { rewinder.packet = p; rewinder.saved_rindex = p->rindex; } while (0)
33 #define CANCEL_REWINDER(rewinder) do { rewinder.packet = NULL; } while (0)
34
35 int dns_packet_new(
36 DnsPacket **ret,
37 DnsProtocol protocol,
38 size_t min_alloc_dsize,
39 size_t max_size) {
40
41 DnsPacket *p;
42 size_t a;
43
44 assert(ret);
45 assert(max_size >= DNS_PACKET_HEADER_SIZE);
46
47 if (max_size > DNS_PACKET_SIZE_MAX)
48 max_size = DNS_PACKET_SIZE_MAX;
49
50 /* The caller may not check what is going to be truly allocated, so do not allow to
51 * allocate a DNS packet bigger than DNS_PACKET_SIZE_MAX.
52 */
53 if (min_alloc_dsize > DNS_PACKET_SIZE_MAX)
54 return log_error_errno(SYNTHETIC_ERRNO(EFBIG),
55 "Requested packet data size too big: %zu",
56 min_alloc_dsize);
57
58 /* When dns_packet_new() is called with min_alloc_dsize == 0, allocate more than the
59 * absolute minimum (which is the dns packet header size), to avoid
60 * resizing immediately again after appending the first data to the packet.
61 */
62 if (min_alloc_dsize < DNS_PACKET_HEADER_SIZE)
63 a = DNS_PACKET_SIZE_START;
64 else
65 a = min_alloc_dsize;
66
67 /* round up to next page size */
68 a = PAGE_ALIGN(ALIGN(sizeof(DnsPacket)) + a) - ALIGN(sizeof(DnsPacket));
69
70 /* make sure we never allocate more than useful */
71 if (a > max_size)
72 a = max_size;
73
74 p = malloc0(ALIGN(sizeof(DnsPacket)) + a);
75 if (!p)
76 return -ENOMEM;
77
78 *p = (DnsPacket) {
79 .n_ref = 1,
80 .protocol = protocol,
81 .size = DNS_PACKET_HEADER_SIZE,
82 .rindex = DNS_PACKET_HEADER_SIZE,
83 .allocated = a,
84 .max_size = max_size,
85 .opt_start = SIZE_MAX,
86 .opt_size = SIZE_MAX,
87 };
88
89 *ret = p;
90
91 return 0;
92 }
93
94 void dns_packet_set_flags(DnsPacket *p, bool dnssec_checking_disabled, bool truncated) {
95
96 DnsPacketHeader *h;
97
98 assert(p);
99
100 h = DNS_PACKET_HEADER(p);
101
102 switch(p->protocol) {
103 case DNS_PROTOCOL_LLMNR:
104 assert(!truncated);
105
106 h->flags = htobe16(DNS_PACKET_MAKE_FLAGS(0 /* qr */,
107 0 /* opcode */,
108 0 /* c */,
109 0 /* tc */,
110 0 /* t */,
111 0 /* ra */,
112 0 /* ad */,
113 0 /* cd */,
114 0 /* rcode */));
115 break;
116
117 case DNS_PROTOCOL_MDNS:
118 h->flags = htobe16(DNS_PACKET_MAKE_FLAGS(0 /* qr */,
119 0 /* opcode */,
120 0 /* aa */,
121 truncated /* tc */,
122 0 /* rd (ask for recursion) */,
123 0 /* ra */,
124 0 /* ad */,
125 0 /* cd */,
126 0 /* rcode */));
127 break;
128
129 default:
130 assert(!truncated);
131
132 h->flags = htobe16(DNS_PACKET_MAKE_FLAGS(0 /* qr */,
133 0 /* opcode */,
134 0 /* aa */,
135 0 /* tc */,
136 1 /* rd (ask for recursion) */,
137 0 /* ra */,
138 0 /* ad */,
139 dnssec_checking_disabled /* cd */,
140 0 /* rcode */));
141 }
142 }
143
144 int dns_packet_new_query(DnsPacket **ret, DnsProtocol protocol, size_t min_alloc_dsize, bool dnssec_checking_disabled) {
145 DnsPacket *p;
146 int r;
147
148 assert(ret);
149
150 r = dns_packet_new(&p, protocol, min_alloc_dsize, DNS_PACKET_SIZE_MAX);
151 if (r < 0)
152 return r;
153
154 /* Always set the TC bit to 0 initially.
155 * If there are multiple packets later, we'll update the bit shortly before sending.
156 */
157 dns_packet_set_flags(p, dnssec_checking_disabled, false);
158
159 *ret = p;
160 return 0;
161 }
162
163 int dns_packet_dup(DnsPacket **ret, DnsPacket *p) {
164 DnsPacket *c;
165 int r;
166
167 assert(ret);
168 assert(p);
169
170 r = dns_packet_validate(p);
171 if (r < 0)
172 return r;
173
174 c = malloc(ALIGN(sizeof(DnsPacket)) + p->size);
175 if (!c)
176 return -ENOMEM;
177
178 *c = (DnsPacket) {
179 .n_ref = 1,
180 .protocol = p->protocol,
181 .size = p->size,
182 .rindex = DNS_PACKET_HEADER_SIZE,
183 .allocated = p->size,
184 .max_size = p->max_size,
185 .opt_start = SIZE_MAX,
186 .opt_size = SIZE_MAX,
187 };
188
189 memcpy(DNS_PACKET_DATA(c), DNS_PACKET_DATA(p), p->size);
190
191 *ret = c;
192 return 0;
193 }
194
195 DnsPacket *dns_packet_ref(DnsPacket *p) {
196
197 if (!p)
198 return NULL;
199
200 assert(!p->on_stack);
201
202 assert(p->n_ref > 0);
203 p->n_ref++;
204 return p;
205 }
206
207 static void dns_packet_free(DnsPacket *p) {
208 char *s;
209
210 assert(p);
211
212 dns_question_unref(p->question);
213 dns_answer_unref(p->answer);
214 dns_resource_record_unref(p->opt);
215
216 while ((s = hashmap_steal_first_key(p->names)))
217 free(s);
218 hashmap_free(p->names);
219
220 free(p->_data);
221
222 if (!p->on_stack)
223 free(p);
224 }
225
226 DnsPacket *dns_packet_unref(DnsPacket *p) {
227 if (!p)
228 return NULL;
229
230 assert(p->n_ref > 0);
231
232 dns_packet_unref(p->more);
233
234 if (p->n_ref == 1)
235 dns_packet_free(p);
236 else
237 p->n_ref--;
238
239 return NULL;
240 }
241
242 int dns_packet_validate(DnsPacket *p) {
243 assert(p);
244
245 if (p->size < DNS_PACKET_HEADER_SIZE)
246 return -EBADMSG;
247
248 if (p->size > DNS_PACKET_SIZE_MAX)
249 return -EBADMSG;
250
251 return 1;
252 }
253
254 int dns_packet_validate_reply(DnsPacket *p) {
255 int r;
256
257 assert(p);
258
259 r = dns_packet_validate(p);
260 if (r < 0)
261 return r;
262
263 if (DNS_PACKET_QR(p) != 1)
264 return 0;
265
266 if (DNS_PACKET_OPCODE(p) != 0)
267 return -EBADMSG;
268
269 switch (p->protocol) {
270
271 case DNS_PROTOCOL_LLMNR:
272 /* RFC 4795, Section 2.1.1. says to discard all replies with QDCOUNT != 1 */
273 if (DNS_PACKET_QDCOUNT(p) != 1)
274 return -EBADMSG;
275
276 break;
277
278 case DNS_PROTOCOL_MDNS:
279 /* RFC 6762, Section 18 */
280 if (DNS_PACKET_RCODE(p) != 0)
281 return -EBADMSG;
282
283 break;
284
285 default:
286 break;
287 }
288
289 return 1;
290 }
291
292 int dns_packet_validate_query(DnsPacket *p) {
293 int r;
294
295 assert(p);
296
297 r = dns_packet_validate(p);
298 if (r < 0)
299 return r;
300
301 if (DNS_PACKET_QR(p) != 0)
302 return 0;
303
304 if (DNS_PACKET_OPCODE(p) != 0)
305 return -EBADMSG;
306
307 if (DNS_PACKET_TC(p))
308 return -EBADMSG;
309
310 switch (p->protocol) {
311
312 case DNS_PROTOCOL_LLMNR:
313 case DNS_PROTOCOL_DNS:
314 /* RFC 4795, Section 2.1.1. says to discard all queries with QDCOUNT != 1 */
315 if (DNS_PACKET_QDCOUNT(p) != 1)
316 return -EBADMSG;
317
318 /* RFC 4795, Section 2.1.1. says to discard all queries with ANCOUNT != 0 */
319 if (DNS_PACKET_ANCOUNT(p) > 0)
320 return -EBADMSG;
321
322 /* RFC 4795, Section 2.1.1. says to discard all queries with NSCOUNT != 0 */
323 if (DNS_PACKET_NSCOUNT(p) > 0)
324 return -EBADMSG;
325
326 break;
327
328 case DNS_PROTOCOL_MDNS:
329 /* RFC 6762, Section 18 specifies that messages with non-zero RCODE
330 * must be silently ignored, and that we must ignore the values of
331 * AA, RD, RA, AD, and CD bits. */
332 if (DNS_PACKET_RCODE(p) != 0)
333 return -EBADMSG;
334
335 break;
336
337 default:
338 break;
339 }
340
341 return 1;
342 }
343
344 static int dns_packet_extend(DnsPacket *p, size_t add, void **ret, size_t *start) {
345 assert(p);
346
347 if (p->size + add > p->allocated) {
348 size_t a, ms;
349
350 a = PAGE_ALIGN((p->size + add) * 2);
351
352 ms = dns_packet_size_max(p);
353 if (a > ms)
354 a = ms;
355
356 if (p->size + add > a)
357 return -EMSGSIZE;
358
359 if (p->_data) {
360 void *d;
361
362 d = realloc(p->_data, a);
363 if (!d)
364 return -ENOMEM;
365
366 p->_data = d;
367 } else {
368 p->_data = malloc(a);
369 if (!p->_data)
370 return -ENOMEM;
371
372 memcpy(p->_data, (uint8_t*) p + ALIGN(sizeof(DnsPacket)), p->size);
373 memzero((uint8_t*) p->_data + p->size, a - p->size);
374 }
375
376 p->allocated = a;
377 }
378
379 if (start)
380 *start = p->size;
381
382 if (ret)
383 *ret = (uint8_t*) DNS_PACKET_DATA(p) + p->size;
384
385 p->size += add;
386 return 0;
387 }
388
389 void dns_packet_truncate(DnsPacket *p, size_t sz) {
390 char *s;
391 void *n;
392
393 assert(p);
394
395 if (p->size <= sz)
396 return;
397
398 HASHMAP_FOREACH_KEY(n, s, p->names) {
399
400 if (PTR_TO_SIZE(n) < sz)
401 continue;
402
403 hashmap_remove(p->names, s);
404 free(s);
405 }
406
407 p->size = sz;
408 }
409
410 int dns_packet_append_blob(DnsPacket *p, const void *d, size_t l, size_t *start) {
411 void *q;
412 int r;
413
414 assert(p);
415
416 r = dns_packet_extend(p, l, &q, start);
417 if (r < 0)
418 return r;
419
420 memcpy_safe(q, d, l);
421 return 0;
422 }
423
424 int dns_packet_append_uint8(DnsPacket *p, uint8_t v, size_t *start) {
425 void *d;
426 int r;
427
428 assert(p);
429
430 r = dns_packet_extend(p, sizeof(uint8_t), &d, start);
431 if (r < 0)
432 return r;
433
434 ((uint8_t*) d)[0] = v;
435
436 return 0;
437 }
438
439 int dns_packet_append_uint16(DnsPacket *p, uint16_t v, size_t *start) {
440 void *d;
441 int r;
442
443 assert(p);
444
445 r = dns_packet_extend(p, sizeof(uint16_t), &d, start);
446 if (r < 0)
447 return r;
448
449 unaligned_write_be16(d, v);
450
451 return 0;
452 }
453
454 int dns_packet_append_uint32(DnsPacket *p, uint32_t v, size_t *start) {
455 void *d;
456 int r;
457
458 assert(p);
459
460 r = dns_packet_extend(p, sizeof(uint32_t), &d, start);
461 if (r < 0)
462 return r;
463
464 unaligned_write_be32(d, v);
465
466 return 0;
467 }
468
469 int dns_packet_append_string(DnsPacket *p, const char *s, size_t *start) {
470 assert(p);
471 assert(s);
472
473 return dns_packet_append_raw_string(p, s, strlen(s), start);
474 }
475
476 int dns_packet_append_raw_string(DnsPacket *p, const void *s, size_t size, size_t *start) {
477 void *d;
478 int r;
479
480 assert(p);
481 assert(s || size == 0);
482
483 if (size > 255)
484 return -E2BIG;
485
486 r = dns_packet_extend(p, 1 + size, &d, start);
487 if (r < 0)
488 return r;
489
490 ((uint8_t*) d)[0] = (uint8_t) size;
491
492 memcpy_safe(((uint8_t*) d) + 1, s, size);
493
494 return 0;
495 }
496
497 int dns_packet_append_label(DnsPacket *p, const char *d, size_t l, bool canonical_candidate, size_t *start) {
498 uint8_t *w;
499 int r;
500
501 /* Append a label to a packet. Optionally, does this in DNSSEC
502 * canonical form, if this label is marked as a candidate for
503 * it, and the canonical form logic is enabled for the
504 * packet */
505
506 assert(p);
507 assert(d);
508
509 if (l > DNS_LABEL_MAX)
510 return -E2BIG;
511
512 r = dns_packet_extend(p, 1 + l, (void**) &w, start);
513 if (r < 0)
514 return r;
515
516 *(w++) = (uint8_t) l;
517
518 if (p->canonical_form && canonical_candidate) {
519 size_t i;
520
521 /* Generate in canonical form, as defined by DNSSEC
522 * RFC 4034, Section 6.2, i.e. all lower-case. */
523
524 for (i = 0; i < l; i++)
525 w[i] = (uint8_t) ascii_tolower(d[i]);
526 } else
527 /* Otherwise, just copy the string unaltered. This is
528 * essential for DNS-SD, where the casing of labels
529 * matters and needs to be retained. */
530 memcpy(w, d, l);
531
532 return 0;
533 }
534
535 int dns_packet_append_name(
536 DnsPacket *p,
537 const char *name,
538 bool allow_compression,
539 bool canonical_candidate,
540 size_t *start) {
541
542 size_t saved_size;
543 int r;
544
545 assert(p);
546 assert(name);
547
548 if (p->refuse_compression)
549 allow_compression = false;
550
551 saved_size = p->size;
552
553 while (!dns_name_is_root(name)) {
554 const char *z = name;
555 char label[DNS_LABEL_MAX];
556 size_t n = 0;
557
558 if (allow_compression)
559 n = PTR_TO_SIZE(hashmap_get(p->names, name));
560 if (n > 0) {
561 assert(n < p->size);
562
563 if (n < 0x4000) {
564 r = dns_packet_append_uint16(p, 0xC000 | n, NULL);
565 if (r < 0)
566 goto fail;
567
568 goto done;
569 }
570 }
571
572 r = dns_label_unescape(&name, label, sizeof label, 0);
573 if (r < 0)
574 goto fail;
575
576 r = dns_packet_append_label(p, label, r, canonical_candidate, &n);
577 if (r < 0)
578 goto fail;
579
580 if (allow_compression) {
581 _cleanup_free_ char *s = NULL;
582
583 s = strdup(z);
584 if (!s) {
585 r = -ENOMEM;
586 goto fail;
587 }
588
589 r = hashmap_ensure_put(&p->names, &dns_name_hash_ops, s, SIZE_TO_PTR(n));
590 if (r < 0)
591 goto fail;
592
593 TAKE_PTR(s);
594 }
595 }
596
597 r = dns_packet_append_uint8(p, 0, NULL);
598 if (r < 0)
599 return r;
600
601 done:
602 if (start)
603 *start = saved_size;
604
605 return 0;
606
607 fail:
608 dns_packet_truncate(p, saved_size);
609 return r;
610 }
611
612 int dns_packet_append_key(DnsPacket *p, const DnsResourceKey *k, const DnsAnswerFlags flags, size_t *start) {
613 size_t saved_size;
614 uint16_t class;
615 int r;
616
617 assert(p);
618 assert(k);
619
620 saved_size = p->size;
621
622 r = dns_packet_append_name(p, dns_resource_key_name(k), true, true, NULL);
623 if (r < 0)
624 goto fail;
625
626 r = dns_packet_append_uint16(p, k->type, NULL);
627 if (r < 0)
628 goto fail;
629
630 class = flags & DNS_ANSWER_CACHE_FLUSH ? k->class | MDNS_RR_CACHE_FLUSH : k->class;
631 r = dns_packet_append_uint16(p, class, NULL);
632 if (r < 0)
633 goto fail;
634
635 if (start)
636 *start = saved_size;
637
638 return 0;
639
640 fail:
641 dns_packet_truncate(p, saved_size);
642 return r;
643 }
644
645 static int dns_packet_append_type_window(DnsPacket *p, uint8_t window, uint8_t length, const uint8_t *types, size_t *start) {
646 size_t saved_size;
647 int r;
648
649 assert(p);
650 assert(types);
651 assert(length > 0);
652
653 saved_size = p->size;
654
655 r = dns_packet_append_uint8(p, window, NULL);
656 if (r < 0)
657 goto fail;
658
659 r = dns_packet_append_uint8(p, length, NULL);
660 if (r < 0)
661 goto fail;
662
663 r = dns_packet_append_blob(p, types, length, NULL);
664 if (r < 0)
665 goto fail;
666
667 if (start)
668 *start = saved_size;
669
670 return 0;
671 fail:
672 dns_packet_truncate(p, saved_size);
673 return r;
674 }
675
676 static int dns_packet_append_types(DnsPacket *p, Bitmap *types, size_t *start) {
677 uint8_t window = 0;
678 uint8_t entry = 0;
679 uint8_t bitmaps[32] = {};
680 unsigned n;
681 size_t saved_size;
682 int r;
683
684 assert(p);
685
686 saved_size = p->size;
687
688 BITMAP_FOREACH(n, types) {
689 assert(n <= 0xffff);
690
691 if ((n >> 8) != window && bitmaps[entry / 8] != 0) {
692 r = dns_packet_append_type_window(p, window, entry / 8 + 1, bitmaps, NULL);
693 if (r < 0)
694 goto fail;
695
696 zero(bitmaps);
697 }
698
699 window = n >> 8;
700 entry = n & 255;
701
702 bitmaps[entry / 8] |= 1 << (7 - (entry % 8));
703 }
704
705 if (bitmaps[entry / 8] != 0) {
706 r = dns_packet_append_type_window(p, window, entry / 8 + 1, bitmaps, NULL);
707 if (r < 0)
708 goto fail;
709 }
710
711 if (start)
712 *start = saved_size;
713
714 return 0;
715 fail:
716 dns_packet_truncate(p, saved_size);
717 return r;
718 }
719
720 /* Append the OPT pseudo-RR described in RFC6891 */
721 int dns_packet_append_opt(
722 DnsPacket *p,
723 uint16_t max_udp_size,
724 bool edns0_do,
725 bool include_rfc6975,
726 const char *nsid,
727 int rcode,
728 size_t *ret_start) {
729
730 size_t saved_size;
731 int r;
732
733 assert(p);
734 /* we must never advertise supported packet size smaller than the legacy max */
735 assert(max_udp_size >= DNS_PACKET_UNICAST_SIZE_MAX);
736 assert(rcode >= 0);
737 assert(rcode <= _DNS_RCODE_MAX);
738
739 if (p->opt_start != SIZE_MAX)
740 return -EBUSY;
741
742 assert(p->opt_size == SIZE_MAX);
743
744 saved_size = p->size;
745
746 /* empty name */
747 r = dns_packet_append_uint8(p, 0, NULL);
748 if (r < 0)
749 return r;
750
751 /* type */
752 r = dns_packet_append_uint16(p, DNS_TYPE_OPT, NULL);
753 if (r < 0)
754 goto fail;
755
756 /* class: maximum udp packet that can be received */
757 r = dns_packet_append_uint16(p, max_udp_size, NULL);
758 if (r < 0)
759 goto fail;
760
761 /* extended RCODE and VERSION */
762 r = dns_packet_append_uint16(p, ((uint16_t) rcode & 0x0FF0) << 4, NULL);
763 if (r < 0)
764 goto fail;
765
766 /* flags: DNSSEC OK (DO), see RFC3225 */
767 r = dns_packet_append_uint16(p, edns0_do ? EDNS0_OPT_DO : 0, NULL);
768 if (r < 0)
769 goto fail;
770
771 if (edns0_do && include_rfc6975) {
772 /* If DO is on and this is requested, also append RFC6975 Algorithm data. This is supposed to
773 * be done on queries, not on replies, hencer callers should turn this off when finishing off
774 * replies. */
775
776 static const uint8_t rfc6975[] = {
777
778 0, 5, /* OPTION_CODE: DAU */
779 #if HAVE_GCRYPT && GCRYPT_VERSION_NUMBER >= 0x010600
780 0, 7, /* LIST_LENGTH */
781 #else
782 0, 6, /* LIST_LENGTH */
783 #endif
784 DNSSEC_ALGORITHM_RSASHA1,
785 DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1,
786 DNSSEC_ALGORITHM_RSASHA256,
787 DNSSEC_ALGORITHM_RSASHA512,
788 DNSSEC_ALGORITHM_ECDSAP256SHA256,
789 DNSSEC_ALGORITHM_ECDSAP384SHA384,
790 #if HAVE_GCRYPT && GCRYPT_VERSION_NUMBER >= 0x010600
791 DNSSEC_ALGORITHM_ED25519,
792 #endif
793
794 0, 6, /* OPTION_CODE: DHU */
795 0, 3, /* LIST_LENGTH */
796 DNSSEC_DIGEST_SHA1,
797 DNSSEC_DIGEST_SHA256,
798 DNSSEC_DIGEST_SHA384,
799
800 0, 7, /* OPTION_CODE: N3U */
801 0, 1, /* LIST_LENGTH */
802 NSEC3_ALGORITHM_SHA1,
803 };
804
805 r = dns_packet_append_uint16(p, sizeof(rfc6975), NULL); /* RDLENGTH */
806 if (r < 0)
807 goto fail;
808
809 r = dns_packet_append_blob(p, rfc6975, sizeof(rfc6975), NULL); /* the payload, as defined above */
810
811 } else if (nsid) {
812
813 if (strlen(nsid) > UINT16_MAX - 4) {
814 r = -E2BIG;
815 goto fail;
816 }
817
818 r = dns_packet_append_uint16(p, 4 + strlen(nsid), NULL); /* RDLENGTH */
819 if (r < 0)
820 goto fail;
821
822 r = dns_packet_append_uint16(p, 3, NULL); /* OPTION-CODE: NSID */
823 if (r < 0)
824 goto fail;
825
826 r = dns_packet_append_uint16(p, strlen(nsid), NULL); /* OPTION-LENGTH */
827 if (r < 0)
828 goto fail;
829
830 r = dns_packet_append_blob(p, nsid, strlen(nsid), NULL);
831 } else
832 r = dns_packet_append_uint16(p, 0, NULL);
833 if (r < 0)
834 goto fail;
835
836 DNS_PACKET_HEADER(p)->arcount = htobe16(DNS_PACKET_ARCOUNT(p) + 1);
837
838 p->opt_start = saved_size;
839 p->opt_size = p->size - saved_size;
840
841 if (ret_start)
842 *ret_start = saved_size;
843
844 return 0;
845
846 fail:
847 dns_packet_truncate(p, saved_size);
848 return r;
849 }
850
851 int dns_packet_truncate_opt(DnsPacket *p) {
852 assert(p);
853
854 if (p->opt_start == SIZE_MAX) {
855 assert(p->opt_size == SIZE_MAX);
856 return 0;
857 }
858
859 assert(p->opt_size != SIZE_MAX);
860 assert(DNS_PACKET_ARCOUNT(p) > 0);
861
862 if (p->opt_start + p->opt_size != p->size)
863 return -EBUSY;
864
865 dns_packet_truncate(p, p->opt_start);
866 DNS_PACKET_HEADER(p)->arcount = htobe16(DNS_PACKET_ARCOUNT(p) - 1);
867 p->opt_start = p->opt_size = SIZE_MAX;
868
869 return 1;
870 }
871
872 int dns_packet_append_rr(DnsPacket *p, const DnsResourceRecord *rr, const DnsAnswerFlags flags, size_t *start, size_t *rdata_start) {
873
874 size_t saved_size, rdlength_offset, end, rdlength, rds;
875 uint32_t ttl;
876 int r;
877
878 assert(p);
879 assert(rr);
880
881 saved_size = p->size;
882
883 r = dns_packet_append_key(p, rr->key, flags, NULL);
884 if (r < 0)
885 goto fail;
886
887 ttl = flags & DNS_ANSWER_GOODBYE ? 0 : rr->ttl;
888 r = dns_packet_append_uint32(p, ttl, NULL);
889 if (r < 0)
890 goto fail;
891
892 /* Initially we write 0 here */
893 r = dns_packet_append_uint16(p, 0, &rdlength_offset);
894 if (r < 0)
895 goto fail;
896
897 rds = p->size - saved_size;
898
899 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
900
901 case DNS_TYPE_SRV:
902 r = dns_packet_append_uint16(p, rr->srv.priority, NULL);
903 if (r < 0)
904 goto fail;
905
906 r = dns_packet_append_uint16(p, rr->srv.weight, NULL);
907 if (r < 0)
908 goto fail;
909
910 r = dns_packet_append_uint16(p, rr->srv.port, NULL);
911 if (r < 0)
912 goto fail;
913
914 /* RFC 2782 states "Unless and until permitted by future standards
915 * action, name compression is not to be used for this field." */
916 r = dns_packet_append_name(p, rr->srv.name, false, true, NULL);
917 break;
918
919 case DNS_TYPE_PTR:
920 case DNS_TYPE_NS:
921 case DNS_TYPE_CNAME:
922 case DNS_TYPE_DNAME:
923 r = dns_packet_append_name(p, rr->ptr.name, true, true, NULL);
924 break;
925
926 case DNS_TYPE_HINFO:
927 r = dns_packet_append_string(p, rr->hinfo.cpu, NULL);
928 if (r < 0)
929 goto fail;
930
931 r = dns_packet_append_string(p, rr->hinfo.os, NULL);
932 break;
933
934 case DNS_TYPE_SPF: /* exactly the same as TXT */
935 case DNS_TYPE_TXT:
936
937 if (!rr->txt.items) {
938 /* RFC 6763, section 6.1 suggests to generate
939 * single empty string for an empty array. */
940
941 r = dns_packet_append_raw_string(p, NULL, 0, NULL);
942 if (r < 0)
943 goto fail;
944 } else {
945 DnsTxtItem *i;
946
947 LIST_FOREACH(items, i, rr->txt.items) {
948 r = dns_packet_append_raw_string(p, i->data, i->length, NULL);
949 if (r < 0)
950 goto fail;
951 }
952 }
953
954 r = 0;
955 break;
956
957 case DNS_TYPE_A:
958 r = dns_packet_append_blob(p, &rr->a.in_addr, sizeof(struct in_addr), NULL);
959 break;
960
961 case DNS_TYPE_AAAA:
962 r = dns_packet_append_blob(p, &rr->aaaa.in6_addr, sizeof(struct in6_addr), NULL);
963 break;
964
965 case DNS_TYPE_SOA:
966 r = dns_packet_append_name(p, rr->soa.mname, true, true, NULL);
967 if (r < 0)
968 goto fail;
969
970 r = dns_packet_append_name(p, rr->soa.rname, true, true, NULL);
971 if (r < 0)
972 goto fail;
973
974 r = dns_packet_append_uint32(p, rr->soa.serial, NULL);
975 if (r < 0)
976 goto fail;
977
978 r = dns_packet_append_uint32(p, rr->soa.refresh, NULL);
979 if (r < 0)
980 goto fail;
981
982 r = dns_packet_append_uint32(p, rr->soa.retry, NULL);
983 if (r < 0)
984 goto fail;
985
986 r = dns_packet_append_uint32(p, rr->soa.expire, NULL);
987 if (r < 0)
988 goto fail;
989
990 r = dns_packet_append_uint32(p, rr->soa.minimum, NULL);
991 break;
992
993 case DNS_TYPE_MX:
994 r = dns_packet_append_uint16(p, rr->mx.priority, NULL);
995 if (r < 0)
996 goto fail;
997
998 r = dns_packet_append_name(p, rr->mx.exchange, true, true, NULL);
999 break;
1000
1001 case DNS_TYPE_LOC:
1002 r = dns_packet_append_uint8(p, rr->loc.version, NULL);
1003 if (r < 0)
1004 goto fail;
1005
1006 r = dns_packet_append_uint8(p, rr->loc.size, NULL);
1007 if (r < 0)
1008 goto fail;
1009
1010 r = dns_packet_append_uint8(p, rr->loc.horiz_pre, NULL);
1011 if (r < 0)
1012 goto fail;
1013
1014 r = dns_packet_append_uint8(p, rr->loc.vert_pre, NULL);
1015 if (r < 0)
1016 goto fail;
1017
1018 r = dns_packet_append_uint32(p, rr->loc.latitude, NULL);
1019 if (r < 0)
1020 goto fail;
1021
1022 r = dns_packet_append_uint32(p, rr->loc.longitude, NULL);
1023 if (r < 0)
1024 goto fail;
1025
1026 r = dns_packet_append_uint32(p, rr->loc.altitude, NULL);
1027 break;
1028
1029 case DNS_TYPE_DS:
1030 r = dns_packet_append_uint16(p, rr->ds.key_tag, NULL);
1031 if (r < 0)
1032 goto fail;
1033
1034 r = dns_packet_append_uint8(p, rr->ds.algorithm, NULL);
1035 if (r < 0)
1036 goto fail;
1037
1038 r = dns_packet_append_uint8(p, rr->ds.digest_type, NULL);
1039 if (r < 0)
1040 goto fail;
1041
1042 r = dns_packet_append_blob(p, rr->ds.digest, rr->ds.digest_size, NULL);
1043 break;
1044
1045 case DNS_TYPE_SSHFP:
1046 r = dns_packet_append_uint8(p, rr->sshfp.algorithm, NULL);
1047 if (r < 0)
1048 goto fail;
1049
1050 r = dns_packet_append_uint8(p, rr->sshfp.fptype, NULL);
1051 if (r < 0)
1052 goto fail;
1053
1054 r = dns_packet_append_blob(p, rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, NULL);
1055 break;
1056
1057 case DNS_TYPE_DNSKEY:
1058 r = dns_packet_append_uint16(p, rr->dnskey.flags, NULL);
1059 if (r < 0)
1060 goto fail;
1061
1062 r = dns_packet_append_uint8(p, rr->dnskey.protocol, NULL);
1063 if (r < 0)
1064 goto fail;
1065
1066 r = dns_packet_append_uint8(p, rr->dnskey.algorithm, NULL);
1067 if (r < 0)
1068 goto fail;
1069
1070 r = dns_packet_append_blob(p, rr->dnskey.key, rr->dnskey.key_size, NULL);
1071 break;
1072
1073 case DNS_TYPE_RRSIG:
1074 r = dns_packet_append_uint16(p, rr->rrsig.type_covered, NULL);
1075 if (r < 0)
1076 goto fail;
1077
1078 r = dns_packet_append_uint8(p, rr->rrsig.algorithm, NULL);
1079 if (r < 0)
1080 goto fail;
1081
1082 r = dns_packet_append_uint8(p, rr->rrsig.labels, NULL);
1083 if (r < 0)
1084 goto fail;
1085
1086 r = dns_packet_append_uint32(p, rr->rrsig.original_ttl, NULL);
1087 if (r < 0)
1088 goto fail;
1089
1090 r = dns_packet_append_uint32(p, rr->rrsig.expiration, NULL);
1091 if (r < 0)
1092 goto fail;
1093
1094 r = dns_packet_append_uint32(p, rr->rrsig.inception, NULL);
1095 if (r < 0)
1096 goto fail;
1097
1098 r = dns_packet_append_uint16(p, rr->rrsig.key_tag, NULL);
1099 if (r < 0)
1100 goto fail;
1101
1102 r = dns_packet_append_name(p, rr->rrsig.signer, false, true, NULL);
1103 if (r < 0)
1104 goto fail;
1105
1106 r = dns_packet_append_blob(p, rr->rrsig.signature, rr->rrsig.signature_size, NULL);
1107 break;
1108
1109 case DNS_TYPE_NSEC:
1110 r = dns_packet_append_name(p, rr->nsec.next_domain_name, false, false, NULL);
1111 if (r < 0)
1112 goto fail;
1113
1114 r = dns_packet_append_types(p, rr->nsec.types, NULL);
1115 if (r < 0)
1116 goto fail;
1117
1118 break;
1119
1120 case DNS_TYPE_NSEC3:
1121 r = dns_packet_append_uint8(p, rr->nsec3.algorithm, NULL);
1122 if (r < 0)
1123 goto fail;
1124
1125 r = dns_packet_append_uint8(p, rr->nsec3.flags, NULL);
1126 if (r < 0)
1127 goto fail;
1128
1129 r = dns_packet_append_uint16(p, rr->nsec3.iterations, NULL);
1130 if (r < 0)
1131 goto fail;
1132
1133 r = dns_packet_append_uint8(p, rr->nsec3.salt_size, NULL);
1134 if (r < 0)
1135 goto fail;
1136
1137 r = dns_packet_append_blob(p, rr->nsec3.salt, rr->nsec3.salt_size, NULL);
1138 if (r < 0)
1139 goto fail;
1140
1141 r = dns_packet_append_uint8(p, rr->nsec3.next_hashed_name_size, NULL);
1142 if (r < 0)
1143 goto fail;
1144
1145 r = dns_packet_append_blob(p, rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, NULL);
1146 if (r < 0)
1147 goto fail;
1148
1149 r = dns_packet_append_types(p, rr->nsec3.types, NULL);
1150 if (r < 0)
1151 goto fail;
1152
1153 break;
1154
1155 case DNS_TYPE_TLSA:
1156 r = dns_packet_append_uint8(p, rr->tlsa.cert_usage, NULL);
1157 if (r < 0)
1158 goto fail;
1159
1160 r = dns_packet_append_uint8(p, rr->tlsa.selector, NULL);
1161 if (r < 0)
1162 goto fail;
1163
1164 r = dns_packet_append_uint8(p, rr->tlsa.matching_type, NULL);
1165 if (r < 0)
1166 goto fail;
1167
1168 r = dns_packet_append_blob(p, rr->tlsa.data, rr->tlsa.data_size, NULL);
1169 break;
1170
1171 case DNS_TYPE_CAA:
1172 r = dns_packet_append_uint8(p, rr->caa.flags, NULL);
1173 if (r < 0)
1174 goto fail;
1175
1176 r = dns_packet_append_string(p, rr->caa.tag, NULL);
1177 if (r < 0)
1178 goto fail;
1179
1180 r = dns_packet_append_blob(p, rr->caa.value, rr->caa.value_size, NULL);
1181 break;
1182
1183 case DNS_TYPE_OPT:
1184 case DNS_TYPE_OPENPGPKEY:
1185 case _DNS_TYPE_INVALID: /* unparsable */
1186 default:
1187
1188 r = dns_packet_append_blob(p, rr->generic.data, rr->generic.data_size, NULL);
1189 break;
1190 }
1191 if (r < 0)
1192 goto fail;
1193
1194 /* Let's calculate the actual data size and update the field */
1195 rdlength = p->size - rdlength_offset - sizeof(uint16_t);
1196 if (rdlength > 0xFFFF) {
1197 r = -ENOSPC;
1198 goto fail;
1199 }
1200
1201 end = p->size;
1202 p->size = rdlength_offset;
1203 r = dns_packet_append_uint16(p, rdlength, NULL);
1204 if (r < 0)
1205 goto fail;
1206 p->size = end;
1207
1208 if (start)
1209 *start = saved_size;
1210
1211 if (rdata_start)
1212 *rdata_start = rds;
1213
1214 return 0;
1215
1216 fail:
1217 dns_packet_truncate(p, saved_size);
1218 return r;
1219 }
1220
1221 int dns_packet_append_question(DnsPacket *p, DnsQuestion *q) {
1222 DnsResourceKey *key;
1223 int r;
1224
1225 assert(p);
1226
1227 DNS_QUESTION_FOREACH(key, q) {
1228 r = dns_packet_append_key(p, key, 0, NULL);
1229 if (r < 0)
1230 return r;
1231 }
1232
1233 return 0;
1234 }
1235
1236 int dns_packet_append_answer(DnsPacket *p, DnsAnswer *a, unsigned *completed) {
1237 DnsResourceRecord *rr;
1238 DnsAnswerFlags flags;
1239 int r;
1240
1241 assert(p);
1242
1243 DNS_ANSWER_FOREACH_FLAGS(rr, flags, a) {
1244 r = dns_packet_append_rr(p, rr, flags, NULL, NULL);
1245 if (r < 0)
1246 return r;
1247
1248 if (completed)
1249 (*completed)++;
1250 }
1251
1252 return 0;
1253 }
1254
1255 int dns_packet_read(DnsPacket *p, size_t sz, const void **ret, size_t *start) {
1256 assert(p);
1257
1258 if (p->rindex + sz > p->size)
1259 return -EMSGSIZE;
1260
1261 if (ret)
1262 *ret = (uint8_t*) DNS_PACKET_DATA(p) + p->rindex;
1263
1264 if (start)
1265 *start = p->rindex;
1266
1267 p->rindex += sz;
1268 return 0;
1269 }
1270
1271 void dns_packet_rewind(DnsPacket *p, size_t idx) {
1272 assert(p);
1273 assert(idx <= p->size);
1274 assert(idx >= DNS_PACKET_HEADER_SIZE);
1275
1276 p->rindex = idx;
1277 }
1278
1279 int dns_packet_read_blob(DnsPacket *p, void *d, size_t sz, size_t *start) {
1280 const void *q;
1281 int r;
1282
1283 assert(p);
1284 assert(d);
1285
1286 r = dns_packet_read(p, sz, &q, start);
1287 if (r < 0)
1288 return r;
1289
1290 memcpy(d, q, sz);
1291 return 0;
1292 }
1293
1294 static int dns_packet_read_memdup(
1295 DnsPacket *p, size_t size,
1296 void **ret, size_t *ret_size,
1297 size_t *ret_start) {
1298
1299 const void *src;
1300 size_t start;
1301 int r;
1302
1303 assert(p);
1304 assert(ret);
1305
1306 r = dns_packet_read(p, size, &src, &start);
1307 if (r < 0)
1308 return r;
1309
1310 if (size <= 0)
1311 *ret = NULL;
1312 else {
1313 void *copy;
1314
1315 copy = memdup(src, size);
1316 if (!copy)
1317 return -ENOMEM;
1318
1319 *ret = copy;
1320 }
1321
1322 if (ret_size)
1323 *ret_size = size;
1324 if (ret_start)
1325 *ret_start = start;
1326
1327 return 0;
1328 }
1329
1330 int dns_packet_read_uint8(DnsPacket *p, uint8_t *ret, size_t *start) {
1331 const void *d;
1332 int r;
1333
1334 assert(p);
1335
1336 r = dns_packet_read(p, sizeof(uint8_t), &d, start);
1337 if (r < 0)
1338 return r;
1339
1340 *ret = ((uint8_t*) d)[0];
1341 return 0;
1342 }
1343
1344 int dns_packet_read_uint16(DnsPacket *p, uint16_t *ret, size_t *start) {
1345 const void *d;
1346 int r;
1347
1348 assert(p);
1349
1350 r = dns_packet_read(p, sizeof(uint16_t), &d, start);
1351 if (r < 0)
1352 return r;
1353
1354 if (ret)
1355 *ret = unaligned_read_be16(d);
1356
1357 return 0;
1358 }
1359
1360 int dns_packet_read_uint32(DnsPacket *p, uint32_t *ret, size_t *start) {
1361 const void *d;
1362 int r;
1363
1364 assert(p);
1365
1366 r = dns_packet_read(p, sizeof(uint32_t), &d, start);
1367 if (r < 0)
1368 return r;
1369
1370 *ret = unaligned_read_be32(d);
1371
1372 return 0;
1373 }
1374
1375 int dns_packet_read_string(DnsPacket *p, char **ret, size_t *start) {
1376 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1377 const void *d;
1378 char *t;
1379 uint8_t c;
1380 int r;
1381
1382 assert(p);
1383 INIT_REWINDER(rewinder, p);
1384
1385 r = dns_packet_read_uint8(p, &c, NULL);
1386 if (r < 0)
1387 return r;
1388
1389 r = dns_packet_read(p, c, &d, NULL);
1390 if (r < 0)
1391 return r;
1392
1393 if (memchr(d, 0, c))
1394 return -EBADMSG;
1395
1396 t = strndup(d, c);
1397 if (!t)
1398 return -ENOMEM;
1399
1400 if (!utf8_is_valid(t)) {
1401 free(t);
1402 return -EBADMSG;
1403 }
1404
1405 *ret = t;
1406
1407 if (start)
1408 *start = rewinder.saved_rindex;
1409 CANCEL_REWINDER(rewinder);
1410
1411 return 0;
1412 }
1413
1414 int dns_packet_read_raw_string(DnsPacket *p, const void **ret, size_t *size, size_t *start) {
1415 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1416 uint8_t c;
1417 int r;
1418
1419 assert(p);
1420 INIT_REWINDER(rewinder, p);
1421
1422 r = dns_packet_read_uint8(p, &c, NULL);
1423 if (r < 0)
1424 return r;
1425
1426 r = dns_packet_read(p, c, ret, NULL);
1427 if (r < 0)
1428 return r;
1429
1430 if (size)
1431 *size = c;
1432 if (start)
1433 *start = rewinder.saved_rindex;
1434 CANCEL_REWINDER(rewinder);
1435
1436 return 0;
1437 }
1438
1439 int dns_packet_read_name(
1440 DnsPacket *p,
1441 char **ret,
1442 bool allow_compression,
1443 size_t *ret_start) {
1444
1445 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1446 size_t after_rindex = 0, jump_barrier;
1447 _cleanup_free_ char *name = NULL;
1448 size_t n = 0, allocated = 0;
1449 bool first = true;
1450 int r;
1451
1452 assert(p);
1453
1454 INIT_REWINDER(rewinder, p);
1455 jump_barrier = p->rindex;
1456
1457 if (p->refuse_compression)
1458 allow_compression = false;
1459
1460 for (;;) {
1461 uint8_t c, d;
1462
1463 r = dns_packet_read_uint8(p, &c, NULL);
1464 if (r < 0)
1465 return r;
1466
1467 if (c == 0)
1468 /* End of name */
1469 break;
1470 else if (c <= 63) {
1471 const char *label;
1472
1473 /* Literal label */
1474 r = dns_packet_read(p, c, (const void**) &label, NULL);
1475 if (r < 0)
1476 return r;
1477
1478 if (!GREEDY_REALLOC(name, allocated, n + !first + DNS_LABEL_ESCAPED_MAX))
1479 return -ENOMEM;
1480
1481 if (first)
1482 first = false;
1483 else
1484 name[n++] = '.';
1485
1486 r = dns_label_escape(label, c, name + n, DNS_LABEL_ESCAPED_MAX);
1487 if (r < 0)
1488 return r;
1489
1490 n += r;
1491 continue;
1492 } else if (allow_compression && FLAGS_SET(c, 0xc0)) {
1493 uint16_t ptr;
1494
1495 /* Pointer */
1496 r = dns_packet_read_uint8(p, &d, NULL);
1497 if (r < 0)
1498 return r;
1499
1500 ptr = (uint16_t) (c & ~0xc0) << 8 | (uint16_t) d;
1501 if (ptr < DNS_PACKET_HEADER_SIZE || ptr >= jump_barrier)
1502 return -EBADMSG;
1503
1504 if (after_rindex == 0)
1505 after_rindex = p->rindex;
1506
1507 /* Jumps are limited to a "prior occurrence" (RFC-1035 4.1.4) */
1508 jump_barrier = ptr;
1509 p->rindex = ptr;
1510 } else
1511 return -EBADMSG;
1512 }
1513
1514 if (!GREEDY_REALLOC(name, allocated, n + 1))
1515 return -ENOMEM;
1516
1517 name[n] = 0;
1518
1519 if (after_rindex != 0)
1520 p->rindex= after_rindex;
1521
1522 if (ret)
1523 *ret = TAKE_PTR(name);
1524 if (ret_start)
1525 *ret_start = rewinder.saved_rindex;
1526
1527 CANCEL_REWINDER(rewinder);
1528
1529 return 0;
1530 }
1531
1532 static int dns_packet_read_type_window(DnsPacket *p, Bitmap **types, size_t *start) {
1533 uint8_t window;
1534 uint8_t length;
1535 const uint8_t *bitmap;
1536 uint8_t bit = 0;
1537 unsigned i;
1538 bool found = false;
1539 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1540 int r;
1541
1542 assert(p);
1543 assert(types);
1544 INIT_REWINDER(rewinder, p);
1545
1546 r = bitmap_ensure_allocated(types);
1547 if (r < 0)
1548 return r;
1549
1550 r = dns_packet_read_uint8(p, &window, NULL);
1551 if (r < 0)
1552 return r;
1553
1554 r = dns_packet_read_uint8(p, &length, NULL);
1555 if (r < 0)
1556 return r;
1557
1558 if (length == 0 || length > 32)
1559 return -EBADMSG;
1560
1561 r = dns_packet_read(p, length, (const void **)&bitmap, NULL);
1562 if (r < 0)
1563 return r;
1564
1565 for (i = 0; i < length; i++) {
1566 uint8_t bitmask = 1 << 7;
1567
1568 if (!bitmap[i]) {
1569 found = false;
1570 bit += 8;
1571 continue;
1572 }
1573
1574 found = true;
1575
1576 for (; bitmask; bit++, bitmask >>= 1)
1577 if (bitmap[i] & bitmask) {
1578 uint16_t n;
1579
1580 n = (uint16_t) window << 8 | (uint16_t) bit;
1581
1582 /* Ignore pseudo-types. see RFC4034 section 4.1.2 */
1583 if (dns_type_is_pseudo(n))
1584 continue;
1585
1586 r = bitmap_set(*types, n);
1587 if (r < 0)
1588 return r;
1589 }
1590 }
1591
1592 if (!found)
1593 return -EBADMSG;
1594
1595 if (start)
1596 *start = rewinder.saved_rindex;
1597 CANCEL_REWINDER(rewinder);
1598
1599 return 0;
1600 }
1601
1602 static int dns_packet_read_type_windows(DnsPacket *p, Bitmap **types, size_t size, size_t *start) {
1603 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1604 int r;
1605
1606 INIT_REWINDER(rewinder, p);
1607
1608 while (p->rindex < rewinder.saved_rindex + size) {
1609 r = dns_packet_read_type_window(p, types, NULL);
1610 if (r < 0)
1611 return r;
1612
1613 /* don't read past end of current RR */
1614 if (p->rindex > rewinder.saved_rindex + size)
1615 return -EBADMSG;
1616 }
1617
1618 if (p->rindex != rewinder.saved_rindex + size)
1619 return -EBADMSG;
1620
1621 if (start)
1622 *start = rewinder.saved_rindex;
1623 CANCEL_REWINDER(rewinder);
1624
1625 return 0;
1626 }
1627
1628 int dns_packet_read_key(
1629 DnsPacket *p,
1630 DnsResourceKey **ret,
1631 bool *ret_cache_flush,
1632 size_t *ret_start) {
1633
1634 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1635 _cleanup_free_ char *name = NULL;
1636 bool cache_flush = false;
1637 uint16_t class, type;
1638 int r;
1639
1640 assert(p);
1641 INIT_REWINDER(rewinder, p);
1642
1643 r = dns_packet_read_name(p, &name, true, NULL);
1644 if (r < 0)
1645 return r;
1646
1647 r = dns_packet_read_uint16(p, &type, NULL);
1648 if (r < 0)
1649 return r;
1650
1651 r = dns_packet_read_uint16(p, &class, NULL);
1652 if (r < 0)
1653 return r;
1654
1655 if (p->protocol == DNS_PROTOCOL_MDNS) {
1656 /* See RFC6762, Section 10.2 */
1657
1658 if (type != DNS_TYPE_OPT && (class & MDNS_RR_CACHE_FLUSH)) {
1659 class &= ~MDNS_RR_CACHE_FLUSH;
1660 cache_flush = true;
1661 }
1662 }
1663
1664 if (ret) {
1665 DnsResourceKey *key;
1666
1667 key = dns_resource_key_new_consume(class, type, name);
1668 if (!key)
1669 return -ENOMEM;
1670
1671 TAKE_PTR(name);
1672 *ret = key;
1673 }
1674
1675 if (ret_cache_flush)
1676 *ret_cache_flush = cache_flush;
1677 if (ret_start)
1678 *ret_start = rewinder.saved_rindex;
1679
1680 CANCEL_REWINDER(rewinder);
1681 return 0;
1682 }
1683
1684 static bool loc_size_ok(uint8_t size) {
1685 uint8_t m = size >> 4, e = size & 0xF;
1686
1687 return m <= 9 && e <= 9 && (m > 0 || e == 0);
1688 }
1689
1690 int dns_packet_read_rr(
1691 DnsPacket *p,
1692 DnsResourceRecord **ret,
1693 bool *ret_cache_flush,
1694 size_t *ret_start) {
1695
1696 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
1697 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
1698 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
1699 size_t offset;
1700 uint16_t rdlength;
1701 bool cache_flush;
1702 int r;
1703
1704 assert(p);
1705
1706 INIT_REWINDER(rewinder, p);
1707
1708 r = dns_packet_read_key(p, &key, &cache_flush, NULL);
1709 if (r < 0)
1710 return r;
1711
1712 if (!dns_class_is_valid_rr(key->class) || !dns_type_is_valid_rr(key->type))
1713 return -EBADMSG;
1714
1715 rr = dns_resource_record_new(key);
1716 if (!rr)
1717 return -ENOMEM;
1718
1719 r = dns_packet_read_uint32(p, &rr->ttl, NULL);
1720 if (r < 0)
1721 return r;
1722
1723 /* RFC 2181, Section 8, suggests to
1724 * treat a TTL with the MSB set as a zero TTL. */
1725 if (rr->ttl & UINT32_C(0x80000000))
1726 rr->ttl = 0;
1727
1728 r = dns_packet_read_uint16(p, &rdlength, NULL);
1729 if (r < 0)
1730 return r;
1731
1732 if (p->rindex + rdlength > p->size)
1733 return -EBADMSG;
1734
1735 offset = p->rindex;
1736
1737 switch (rr->key->type) {
1738
1739 case DNS_TYPE_SRV:
1740 r = dns_packet_read_uint16(p, &rr->srv.priority, NULL);
1741 if (r < 0)
1742 return r;
1743 r = dns_packet_read_uint16(p, &rr->srv.weight, NULL);
1744 if (r < 0)
1745 return r;
1746 r = dns_packet_read_uint16(p, &rr->srv.port, NULL);
1747 if (r < 0)
1748 return r;
1749 r = dns_packet_read_name(p, &rr->srv.name, true, NULL);
1750 break;
1751
1752 case DNS_TYPE_PTR:
1753 case DNS_TYPE_NS:
1754 case DNS_TYPE_CNAME:
1755 case DNS_TYPE_DNAME:
1756 r = dns_packet_read_name(p, &rr->ptr.name, true, NULL);
1757 break;
1758
1759 case DNS_TYPE_HINFO:
1760 r = dns_packet_read_string(p, &rr->hinfo.cpu, NULL);
1761 if (r < 0)
1762 return r;
1763
1764 r = dns_packet_read_string(p, &rr->hinfo.os, NULL);
1765 break;
1766
1767 case DNS_TYPE_SPF: /* exactly the same as TXT */
1768 case DNS_TYPE_TXT:
1769 if (rdlength <= 0) {
1770 r = dns_txt_item_new_empty(&rr->txt.items);
1771 if (r < 0)
1772 return r;
1773 } else {
1774 DnsTxtItem *last = NULL;
1775
1776 while (p->rindex < offset + rdlength) {
1777 DnsTxtItem *i;
1778 const void *data;
1779 size_t sz;
1780
1781 r = dns_packet_read_raw_string(p, &data, &sz, NULL);
1782 if (r < 0)
1783 return r;
1784
1785 i = malloc0(offsetof(DnsTxtItem, data) + sz + 1); /* extra NUL byte at the end */
1786 if (!i)
1787 return -ENOMEM;
1788
1789 memcpy(i->data, data, sz);
1790 i->length = sz;
1791
1792 LIST_INSERT_AFTER(items, rr->txt.items, last, i);
1793 last = i;
1794 }
1795 }
1796
1797 r = 0;
1798 break;
1799
1800 case DNS_TYPE_A:
1801 r = dns_packet_read_blob(p, &rr->a.in_addr, sizeof(struct in_addr), NULL);
1802 break;
1803
1804 case DNS_TYPE_AAAA:
1805 r = dns_packet_read_blob(p, &rr->aaaa.in6_addr, sizeof(struct in6_addr), NULL);
1806 break;
1807
1808 case DNS_TYPE_SOA:
1809 r = dns_packet_read_name(p, &rr->soa.mname, true, NULL);
1810 if (r < 0)
1811 return r;
1812
1813 r = dns_packet_read_name(p, &rr->soa.rname, true, NULL);
1814 if (r < 0)
1815 return r;
1816
1817 r = dns_packet_read_uint32(p, &rr->soa.serial, NULL);
1818 if (r < 0)
1819 return r;
1820
1821 r = dns_packet_read_uint32(p, &rr->soa.refresh, NULL);
1822 if (r < 0)
1823 return r;
1824
1825 r = dns_packet_read_uint32(p, &rr->soa.retry, NULL);
1826 if (r < 0)
1827 return r;
1828
1829 r = dns_packet_read_uint32(p, &rr->soa.expire, NULL);
1830 if (r < 0)
1831 return r;
1832
1833 r = dns_packet_read_uint32(p, &rr->soa.minimum, NULL);
1834 break;
1835
1836 case DNS_TYPE_MX:
1837 r = dns_packet_read_uint16(p, &rr->mx.priority, NULL);
1838 if (r < 0)
1839 return r;
1840
1841 r = dns_packet_read_name(p, &rr->mx.exchange, true, NULL);
1842 break;
1843
1844 case DNS_TYPE_LOC: {
1845 uint8_t t;
1846 size_t pos;
1847
1848 r = dns_packet_read_uint8(p, &t, &pos);
1849 if (r < 0)
1850 return r;
1851
1852 if (t == 0) {
1853 rr->loc.version = t;
1854
1855 r = dns_packet_read_uint8(p, &rr->loc.size, NULL);
1856 if (r < 0)
1857 return r;
1858
1859 if (!loc_size_ok(rr->loc.size))
1860 return -EBADMSG;
1861
1862 r = dns_packet_read_uint8(p, &rr->loc.horiz_pre, NULL);
1863 if (r < 0)
1864 return r;
1865
1866 if (!loc_size_ok(rr->loc.horiz_pre))
1867 return -EBADMSG;
1868
1869 r = dns_packet_read_uint8(p, &rr->loc.vert_pre, NULL);
1870 if (r < 0)
1871 return r;
1872
1873 if (!loc_size_ok(rr->loc.vert_pre))
1874 return -EBADMSG;
1875
1876 r = dns_packet_read_uint32(p, &rr->loc.latitude, NULL);
1877 if (r < 0)
1878 return r;
1879
1880 r = dns_packet_read_uint32(p, &rr->loc.longitude, NULL);
1881 if (r < 0)
1882 return r;
1883
1884 r = dns_packet_read_uint32(p, &rr->loc.altitude, NULL);
1885 if (r < 0)
1886 return r;
1887
1888 break;
1889 } else {
1890 dns_packet_rewind(p, pos);
1891 rr->unparsable = true;
1892 goto unparsable;
1893 }
1894 }
1895
1896 case DNS_TYPE_DS:
1897 r = dns_packet_read_uint16(p, &rr->ds.key_tag, NULL);
1898 if (r < 0)
1899 return r;
1900
1901 r = dns_packet_read_uint8(p, &rr->ds.algorithm, NULL);
1902 if (r < 0)
1903 return r;
1904
1905 r = dns_packet_read_uint8(p, &rr->ds.digest_type, NULL);
1906 if (r < 0)
1907 return r;
1908
1909 if (rdlength < 4)
1910 return -EBADMSG;
1911
1912 r = dns_packet_read_memdup(p, rdlength - 4,
1913 &rr->ds.digest, &rr->ds.digest_size,
1914 NULL);
1915 if (r < 0)
1916 return r;
1917
1918 if (rr->ds.digest_size <= 0)
1919 /* the accepted size depends on the algorithm, but for now
1920 just ensure that the value is greater than zero */
1921 return -EBADMSG;
1922
1923 break;
1924
1925 case DNS_TYPE_SSHFP:
1926 r = dns_packet_read_uint8(p, &rr->sshfp.algorithm, NULL);
1927 if (r < 0)
1928 return r;
1929
1930 r = dns_packet_read_uint8(p, &rr->sshfp.fptype, NULL);
1931 if (r < 0)
1932 return r;
1933
1934 if (rdlength < 2)
1935 return -EBADMSG;
1936
1937 r = dns_packet_read_memdup(p, rdlength - 2,
1938 &rr->sshfp.fingerprint, &rr->sshfp.fingerprint_size,
1939 NULL);
1940
1941 if (rr->sshfp.fingerprint_size <= 0)
1942 /* the accepted size depends on the algorithm, but for now
1943 just ensure that the value is greater than zero */
1944 return -EBADMSG;
1945
1946 break;
1947
1948 case DNS_TYPE_DNSKEY:
1949 r = dns_packet_read_uint16(p, &rr->dnskey.flags, NULL);
1950 if (r < 0)
1951 return r;
1952
1953 r = dns_packet_read_uint8(p, &rr->dnskey.protocol, NULL);
1954 if (r < 0)
1955 return r;
1956
1957 r = dns_packet_read_uint8(p, &rr->dnskey.algorithm, NULL);
1958 if (r < 0)
1959 return r;
1960
1961 if (rdlength < 4)
1962 return -EBADMSG;
1963
1964 r = dns_packet_read_memdup(p, rdlength - 4,
1965 &rr->dnskey.key, &rr->dnskey.key_size,
1966 NULL);
1967
1968 if (rr->dnskey.key_size <= 0)
1969 /* the accepted size depends on the algorithm, but for now
1970 just ensure that the value is greater than zero */
1971 return -EBADMSG;
1972
1973 break;
1974
1975 case DNS_TYPE_RRSIG:
1976 r = dns_packet_read_uint16(p, &rr->rrsig.type_covered, NULL);
1977 if (r < 0)
1978 return r;
1979
1980 r = dns_packet_read_uint8(p, &rr->rrsig.algorithm, NULL);
1981 if (r < 0)
1982 return r;
1983
1984 r = dns_packet_read_uint8(p, &rr->rrsig.labels, NULL);
1985 if (r < 0)
1986 return r;
1987
1988 r = dns_packet_read_uint32(p, &rr->rrsig.original_ttl, NULL);
1989 if (r < 0)
1990 return r;
1991
1992 r = dns_packet_read_uint32(p, &rr->rrsig.expiration, NULL);
1993 if (r < 0)
1994 return r;
1995
1996 r = dns_packet_read_uint32(p, &rr->rrsig.inception, NULL);
1997 if (r < 0)
1998 return r;
1999
2000 r = dns_packet_read_uint16(p, &rr->rrsig.key_tag, NULL);
2001 if (r < 0)
2002 return r;
2003
2004 r = dns_packet_read_name(p, &rr->rrsig.signer, false, NULL);
2005 if (r < 0)
2006 return r;
2007
2008 if (rdlength + offset < p->rindex)
2009 return -EBADMSG;
2010
2011 r = dns_packet_read_memdup(p, offset + rdlength - p->rindex,
2012 &rr->rrsig.signature, &rr->rrsig.signature_size,
2013 NULL);
2014
2015 if (rr->rrsig.signature_size <= 0)
2016 /* the accepted size depends on the algorithm, but for now
2017 just ensure that the value is greater than zero */
2018 return -EBADMSG;
2019
2020 break;
2021
2022 case DNS_TYPE_NSEC: {
2023
2024 /*
2025 * RFC6762, section 18.14 explicitly states mDNS should use name compression.
2026 * This contradicts RFC3845, section 2.1.1
2027 */
2028
2029 bool allow_compressed = p->protocol == DNS_PROTOCOL_MDNS;
2030
2031 r = dns_packet_read_name(p, &rr->nsec.next_domain_name, allow_compressed, NULL);
2032 if (r < 0)
2033 return r;
2034
2035 r = dns_packet_read_type_windows(p, &rr->nsec.types, offset + rdlength - p->rindex, NULL);
2036
2037 /* We accept empty NSEC bitmaps. The bit indicating the presence of the NSEC record itself
2038 * is redundant and in e.g., RFC4956 this fact is used to define a use for NSEC records
2039 * without the NSEC bit set. */
2040
2041 break;
2042 }
2043 case DNS_TYPE_NSEC3: {
2044 uint8_t size;
2045
2046 r = dns_packet_read_uint8(p, &rr->nsec3.algorithm, NULL);
2047 if (r < 0)
2048 return r;
2049
2050 r = dns_packet_read_uint8(p, &rr->nsec3.flags, NULL);
2051 if (r < 0)
2052 return r;
2053
2054 r = dns_packet_read_uint16(p, &rr->nsec3.iterations, NULL);
2055 if (r < 0)
2056 return r;
2057
2058 /* this may be zero */
2059 r = dns_packet_read_uint8(p, &size, NULL);
2060 if (r < 0)
2061 return r;
2062
2063 r = dns_packet_read_memdup(p, size, &rr->nsec3.salt, &rr->nsec3.salt_size, NULL);
2064 if (r < 0)
2065 return r;
2066
2067 r = dns_packet_read_uint8(p, &size, NULL);
2068 if (r < 0)
2069 return r;
2070
2071 if (size <= 0)
2072 return -EBADMSG;
2073
2074 r = dns_packet_read_memdup(p, size,
2075 &rr->nsec3.next_hashed_name, &rr->nsec3.next_hashed_name_size,
2076 NULL);
2077 if (r < 0)
2078 return r;
2079
2080 r = dns_packet_read_type_windows(p, &rr->nsec3.types, offset + rdlength - p->rindex, NULL);
2081
2082 /* empty non-terminals can have NSEC3 records, so empty bitmaps are allowed */
2083
2084 break;
2085 }
2086
2087 case DNS_TYPE_TLSA:
2088 r = dns_packet_read_uint8(p, &rr->tlsa.cert_usage, NULL);
2089 if (r < 0)
2090 return r;
2091
2092 r = dns_packet_read_uint8(p, &rr->tlsa.selector, NULL);
2093 if (r < 0)
2094 return r;
2095
2096 r = dns_packet_read_uint8(p, &rr->tlsa.matching_type, NULL);
2097 if (r < 0)
2098 return r;
2099
2100 if (rdlength < 3)
2101 return -EBADMSG;
2102
2103 r = dns_packet_read_memdup(p, rdlength - 3,
2104 &rr->tlsa.data, &rr->tlsa.data_size,
2105 NULL);
2106
2107 if (rr->tlsa.data_size <= 0)
2108 /* the accepted size depends on the algorithm, but for now
2109 just ensure that the value is greater than zero */
2110 return -EBADMSG;
2111
2112 break;
2113
2114 case DNS_TYPE_CAA:
2115 r = dns_packet_read_uint8(p, &rr->caa.flags, NULL);
2116 if (r < 0)
2117 return r;
2118
2119 r = dns_packet_read_string(p, &rr->caa.tag, NULL);
2120 if (r < 0)
2121 return r;
2122
2123 if (rdlength + offset < p->rindex)
2124 return -EBADMSG;
2125
2126 r = dns_packet_read_memdup(p,
2127 rdlength + offset - p->rindex,
2128 &rr->caa.value, &rr->caa.value_size, NULL);
2129
2130 break;
2131
2132 case DNS_TYPE_OPT: /* we only care about the header of OPT for now. */
2133 case DNS_TYPE_OPENPGPKEY:
2134 default:
2135 unparsable:
2136 r = dns_packet_read_memdup(p, rdlength, &rr->generic.data, &rr->generic.data_size, NULL);
2137
2138 break;
2139 }
2140 if (r < 0)
2141 return r;
2142 if (p->rindex != offset + rdlength)
2143 return -EBADMSG;
2144
2145 if (ret)
2146 *ret = TAKE_PTR(rr);
2147 if (ret_cache_flush)
2148 *ret_cache_flush = cache_flush;
2149 if (ret_start)
2150 *ret_start = rewinder.saved_rindex;
2151
2152 CANCEL_REWINDER(rewinder);
2153 return 0;
2154 }
2155
2156 static bool opt_is_good(DnsResourceRecord *rr, bool *rfc6975) {
2157 const uint8_t* p;
2158 bool found_dau_dhu_n3u = false;
2159 size_t l;
2160
2161 /* Checks whether the specified OPT RR is well-formed and whether it contains RFC6975 data (which is not OK in
2162 * a reply). */
2163
2164 assert(rr);
2165 assert(rr->key->type == DNS_TYPE_OPT);
2166
2167 /* Check that the version is 0 */
2168 if (((rr->ttl >> 16) & UINT32_C(0xFF)) != 0) {
2169 *rfc6975 = false;
2170 return true; /* if it's not version 0, it's OK, but we will ignore the OPT field contents */
2171 }
2172
2173 p = rr->opt.data;
2174 l = rr->opt.data_size;
2175 while (l > 0) {
2176 uint16_t option_code, option_length;
2177
2178 /* At least four bytes for OPTION-CODE and OPTION-LENGTH are required */
2179 if (l < 4U)
2180 return false;
2181
2182 option_code = unaligned_read_be16(p);
2183 option_length = unaligned_read_be16(p + 2);
2184
2185 if (l < option_length + 4U)
2186 return false;
2187
2188 /* RFC 6975 DAU, DHU or N3U fields found. */
2189 if (IN_SET(option_code, 5, 6, 7))
2190 found_dau_dhu_n3u = true;
2191
2192 p += option_length + 4U;
2193 l -= option_length + 4U;
2194 }
2195
2196 *rfc6975 = found_dau_dhu_n3u;
2197 return true;
2198 }
2199
2200 static int dns_packet_extract_question(DnsPacket *p, DnsQuestion **ret_question) {
2201 _cleanup_(dns_question_unrefp) DnsQuestion *question = NULL;
2202 unsigned n, i;
2203 int r;
2204
2205 n = DNS_PACKET_QDCOUNT(p);
2206 if (n > 0) {
2207 question = dns_question_new(n);
2208 if (!question)
2209 return -ENOMEM;
2210
2211 _cleanup_set_free_ Set *keys = NULL; /* references to keys are kept by Question */
2212
2213 keys = set_new(&dns_resource_key_hash_ops);
2214 if (!keys)
2215 return log_oom();
2216
2217 r = set_reserve(keys, n * 2); /* Higher multipliers give slightly higher efficiency through
2218 * hash collisions, but the gains quickly drop off after 2. */
2219 if (r < 0)
2220 return r;
2221
2222 for (i = 0; i < n; i++) {
2223 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
2224 bool cache_flush;
2225
2226 r = dns_packet_read_key(p, &key, &cache_flush, NULL);
2227 if (r < 0)
2228 return r;
2229
2230 if (cache_flush)
2231 return -EBADMSG;
2232
2233 if (!dns_type_is_valid_query(key->type))
2234 return -EBADMSG;
2235
2236 r = set_put(keys, key);
2237 if (r < 0)
2238 return r;
2239 if (r == 0)
2240 /* Already in the Question, let's skip */
2241 continue;
2242
2243 r = dns_question_add_raw(question, key);
2244 if (r < 0)
2245 return r;
2246 }
2247 }
2248
2249 *ret_question = TAKE_PTR(question);
2250
2251 return 0;
2252 }
2253
2254 static int dns_packet_extract_answer(DnsPacket *p, DnsAnswer **ret_answer) {
2255 _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL;
2256 unsigned n, i;
2257 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *previous = NULL;
2258 bool bad_opt = false;
2259 int r;
2260
2261 n = DNS_PACKET_RRCOUNT(p);
2262 if (n == 0)
2263 return 0;
2264
2265 answer = dns_answer_new(n);
2266 if (!answer)
2267 return -ENOMEM;
2268
2269 for (i = 0; i < n; i++) {
2270 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
2271 bool cache_flush = false;
2272 size_t start;
2273
2274 if (p->rindex == p->size) {
2275 /* If we reached the end of the packet already, but there are still more RRs
2276 * declared, then that's a corrupt packet. Let's accept the packet anyway, since it's
2277 * apparently a common bug in routers. Let's however suppress OPT support in this
2278 * case, so that we force the rest of the logic into lowest DNS baseline support. Or
2279 * to say this differently: if the DNS server doesn't even get the RR counts right,
2280 * it's highly unlikely it gets EDNS right. */
2281 log_debug("More resource records declared in packet than included, suppressing OPT.");
2282 bad_opt = true;
2283 break;
2284 }
2285
2286 r = dns_packet_read_rr(p, &rr, &cache_flush, &start);
2287 if (r < 0)
2288 return r;
2289
2290 /* Try to reduce memory usage a bit */
2291 if (previous)
2292 dns_resource_key_reduce(&rr->key, &previous->key);
2293
2294 if (rr->key->type == DNS_TYPE_OPT) {
2295 bool has_rfc6975;
2296
2297 if (p->opt || bad_opt) {
2298 /* Multiple OPT RRs? if so, let's ignore all, because there's
2299 * something wrong with the server, and if one is valid we wouldn't
2300 * know which one. */
2301 log_debug("Multiple OPT RRs detected, ignoring all.");
2302 bad_opt = true;
2303 continue;
2304 }
2305
2306 if (!dns_name_is_root(dns_resource_key_name(rr->key))) {
2307 /* If the OPT RR is not owned by the root domain, then it is bad,
2308 * let's ignore it. */
2309 log_debug("OPT RR is not owned by root domain, ignoring.");
2310 bad_opt = true;
2311 continue;
2312 }
2313
2314 if (i < DNS_PACKET_ANCOUNT(p) + DNS_PACKET_NSCOUNT(p)) {
2315 /* OPT RR is in the wrong section? Some Belkin routers do this. This
2316 * is a hint the EDNS implementation is borked, like the Belkin one
2317 * is, hence ignore it. */
2318 log_debug("OPT RR in wrong section, ignoring.");
2319 bad_opt = true;
2320 continue;
2321 }
2322
2323 if (!opt_is_good(rr, &has_rfc6975)) {
2324 log_debug("Malformed OPT RR, ignoring.");
2325 bad_opt = true;
2326 continue;
2327 }
2328
2329 if (DNS_PACKET_QR(p)) {
2330 /* Additional checks for responses */
2331
2332 if (!DNS_RESOURCE_RECORD_OPT_VERSION_SUPPORTED(rr))
2333 /* If this is a reply and we don't know the EDNS version
2334 * then something is weird... */
2335 return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG),
2336 "EDNS version newer that our request, bad server.");
2337
2338 if (has_rfc6975) {
2339 /* If the OPT RR contains RFC6975 algorithm data, then this
2340 * is indication that the server just copied the OPT it got
2341 * from us (which contained that data) back into the reply.
2342 * If so, then it doesn't properly support EDNS, as RFC6975
2343 * makes it very clear that the algorithm data should only
2344 * be contained in questions, never in replies. Crappy
2345 * Belkin routers copy the OPT data for example, hence let's
2346 * detect this so that we downgrade early. */
2347 log_debug("OPT RR contains RFC6975 data, ignoring.");
2348 bad_opt = true;
2349 continue;
2350 }
2351 }
2352
2353 p->opt = dns_resource_record_ref(rr);
2354 p->opt_start = start;
2355 assert(p->rindex >= start);
2356 p->opt_size = p->rindex - start;
2357 } else {
2358 DnsAnswerFlags flags = 0;
2359
2360 if (p->protocol == DNS_PROTOCOL_MDNS && !cache_flush)
2361 flags |= DNS_ANSWER_SHARED_OWNER;
2362
2363 /* According to RFC 4795, section 2.9. only the RRs from the Answer section shall be
2364 * cached. Hence mark only those RRs as cacheable by default, but not the ones from
2365 * the Additional or Authority sections. */
2366 if (i < DNS_PACKET_ANCOUNT(p))
2367 flags |= DNS_ANSWER_CACHEABLE|DNS_ANSWER_SECTION_ANSWER;
2368 else if (i < DNS_PACKET_ANCOUNT(p) + DNS_PACKET_NSCOUNT(p))
2369 flags |= DNS_ANSWER_SECTION_AUTHORITY;
2370 else
2371 flags |= DNS_ANSWER_SECTION_ADDITIONAL;
2372
2373 r = dns_answer_add(answer, rr, p->ifindex, flags, NULL);
2374 if (r < 0)
2375 return r;
2376 }
2377
2378 /* Remember this RR, so that we can potentially merge its ->key object with the
2379 * next RR. Note that we only do this if we actually decided to keep the RR around.
2380 */
2381 dns_resource_record_unref(previous);
2382 previous = dns_resource_record_ref(rr);
2383 }
2384
2385 if (bad_opt) {
2386 p->opt = dns_resource_record_unref(p->opt);
2387 p->opt_start = p->opt_size = SIZE_MAX;
2388 }
2389
2390 *ret_answer = TAKE_PTR(answer);
2391
2392 return 0;
2393 }
2394
2395 int dns_packet_extract(DnsPacket *p) {
2396 _cleanup_(dns_question_unrefp) DnsQuestion *question = NULL;
2397 _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL;
2398 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = {};
2399 int r;
2400
2401 if (p->extracted)
2402 return 0;
2403
2404 INIT_REWINDER(rewinder, p);
2405 dns_packet_rewind(p, DNS_PACKET_HEADER_SIZE);
2406
2407 r = dns_packet_extract_question(p, &question);
2408 if (r < 0)
2409 return r;
2410
2411 r = dns_packet_extract_answer(p, &answer);
2412 if (r < 0)
2413 return r;
2414
2415 if (p->rindex < p->size) {
2416 log_debug("Trailing garbage in packet, suppressing OPT.");
2417 p->opt = dns_resource_record_unref(p->opt);
2418 p->opt_start = p->opt_size = SIZE_MAX;
2419 }
2420
2421 p->question = TAKE_PTR(question);
2422 p->answer = TAKE_PTR(answer);
2423
2424 p->extracted = true;
2425
2426 /* no CANCEL, always rewind */
2427 return 0;
2428 }
2429
2430 int dns_packet_is_reply_for(DnsPacket *p, const DnsResourceKey *key) {
2431 int r;
2432
2433 assert(p);
2434 assert(key);
2435
2436 /* Checks if the specified packet is a reply for the specified
2437 * key and the specified key is the only one in the question
2438 * section. */
2439
2440 if (DNS_PACKET_QR(p) != 1)
2441 return 0;
2442
2443 /* Let's unpack the packet, if that hasn't happened yet. */
2444 r = dns_packet_extract(p);
2445 if (r < 0)
2446 return r;
2447
2448 if (!p->question)
2449 return 0;
2450
2451 if (p->question->n_keys != 1)
2452 return 0;
2453
2454 return dns_resource_key_equal(p->question->keys[0], key);
2455 }
2456
2457 int dns_packet_patch_max_udp_size(DnsPacket *p, uint16_t max_udp_size) {
2458 assert(p);
2459 assert(max_udp_size >= DNS_PACKET_UNICAST_SIZE_MAX);
2460
2461 if (p->opt_start == SIZE_MAX) /* No OPT section, nothing to patch */
2462 return 0;
2463
2464 assert(p->opt_size != SIZE_MAX);
2465 assert(p->opt_size >= 5);
2466
2467 unaligned_write_be16(DNS_PACKET_DATA(p) + p->opt_start + 3, max_udp_size);
2468 return 1;
2469 }
2470
2471 static int patch_rr(DnsPacket *p, usec_t age) {
2472 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder;
2473 size_t ttl_index;
2474 uint32_t ttl;
2475 uint16_t type, rdlength;
2476 int r;
2477
2478 INIT_REWINDER(rewinder, p);
2479
2480 /* Patches the RR at the current rindex, subtracts the specified time from the TTL */
2481
2482 r = dns_packet_read_name(p, NULL, true, NULL);
2483 if (r < 0)
2484 return r;
2485
2486 r = dns_packet_read_uint16(p, &type, NULL);
2487 if (r < 0)
2488 return r;
2489
2490 r = dns_packet_read_uint16(p, NULL, NULL);
2491 if (r < 0)
2492 return r;
2493
2494 r = dns_packet_read_uint32(p, &ttl, &ttl_index);
2495 if (r < 0)
2496 return r;
2497
2498 if (type != DNS_TYPE_OPT) { /* The TTL of the OPT field is not actually a TTL, skip it */
2499 ttl = LESS_BY(ttl * USEC_PER_SEC, age) / USEC_PER_SEC;
2500 unaligned_write_be32(DNS_PACKET_DATA(p) + ttl_index, ttl);
2501 }
2502
2503 r = dns_packet_read_uint16(p, &rdlength, NULL);
2504 if (r < 0)
2505 return r;
2506
2507 r = dns_packet_read(p, rdlength, NULL, NULL);
2508 if (r < 0)
2509 return r;
2510
2511 CANCEL_REWINDER(rewinder);
2512 return 0;
2513 }
2514
2515 int dns_packet_patch_ttls(DnsPacket *p, usec_t timestamp) {
2516 _cleanup_(rewind_dns_packet) DnsPacketRewinder rewinder = {};
2517 unsigned i, n;
2518 usec_t k;
2519 int r;
2520
2521 assert(p);
2522 assert(timestamp_is_set(timestamp));
2523
2524 /* Adjusts all TTLs in the packet by subtracting the time difference between now and the specified timestamp */
2525
2526 k = now(clock_boottime_or_monotonic());
2527 assert(k >= timestamp);
2528 k -= timestamp;
2529
2530 INIT_REWINDER(rewinder, p);
2531
2532 dns_packet_rewind(p, DNS_PACKET_HEADER_SIZE);
2533
2534 n = DNS_PACKET_QDCOUNT(p);
2535 for (i = 0; i < n; i++) {
2536 r = dns_packet_read_key(p, NULL, NULL, NULL);
2537 if (r < 0)
2538 return r;
2539 }
2540
2541 n = DNS_PACKET_RRCOUNT(p);
2542 for (i = 0; i < n; i++) {
2543
2544 /* DNS servers suck, hence the RR count is in many servers off. If we reached the end
2545 * prematurely, accept that, exit early */
2546 if (p->rindex == p->size)
2547 break;
2548
2549 r = patch_rr(p, k);
2550 if (r < 0)
2551 return r;
2552 }
2553
2554 return 0;
2555 }
2556
2557 static void dns_packet_hash_func(const DnsPacket *s, struct siphash *state) {
2558 assert(s);
2559
2560 siphash24_compress(&s->size, sizeof(s->size), state);
2561 siphash24_compress(DNS_PACKET_DATA((DnsPacket*) s), s->size, state);
2562 }
2563
2564 static int dns_packet_compare_func(const DnsPacket *x, const DnsPacket *y) {
2565 int r;
2566
2567 r = CMP(x->size, y->size);
2568 if (r != 0)
2569 return r;
2570
2571 return memcmp(DNS_PACKET_DATA((DnsPacket*) x), DNS_PACKET_DATA((DnsPacket*) y), x->size);
2572 }
2573
2574 DEFINE_HASH_OPS(dns_packet_hash_ops, DnsPacket, dns_packet_hash_func, dns_packet_compare_func);
2575
2576 bool dns_packet_equal(const DnsPacket *a, const DnsPacket *b) {
2577 return dns_packet_compare_func(a, b) == 0;
2578 }
2579
2580 int dns_packet_has_nsid_request(DnsPacket *p) {
2581 bool has_nsid = false;
2582 const uint8_t *d;
2583 size_t l;
2584
2585 assert(p);
2586
2587 if (!p->opt)
2588 return false;
2589
2590 d = p->opt->opt.data;
2591 l = p->opt->opt.data_size;
2592
2593 while (l > 0) {
2594 uint16_t code, length;
2595
2596 if (l < 4U)
2597 return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG),
2598 "EDNS0 variable part has invalid size.");
2599
2600 code = unaligned_read_be16(d);
2601 length = unaligned_read_be16(d + 2);
2602
2603 if (l < 4U + length)
2604 return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG),
2605 "Truncated option in EDNS0 variable part.");
2606
2607 if (code == 3) {
2608 if (has_nsid)
2609 return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG),
2610 "Duplicate NSID option in EDNS0 variable part.");
2611
2612 if (length != 0)
2613 return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG),
2614 "Non-empty NSID option in DNS request.");
2615
2616 has_nsid = true;
2617 }
2618
2619 d += 4U + length;
2620 l -= 4U + length;
2621 }
2622
2623 return has_nsid;
2624 }
2625
2626 size_t dns_packet_size_unfragmented(DnsPacket *p) {
2627 assert(p);
2628
2629 if (p->fragsize == 0) /* Wasn't fragmented */
2630 return p->size;
2631
2632 /* The fragment size (p->fragsize) covers the whole (fragmented) IP packet, while the regular packet
2633 * size (p->size) only covers the DNS part. Thus, subtract the UDP header from the largest fragment
2634 * size, in order to determine which size of DNS packet would have gone through without
2635 * fragmenting. */
2636
2637 return LESS_BY(p->fragsize, udp_header_size(p->family));
2638 }
2639
2640 static const char* const dns_rcode_table[_DNS_RCODE_MAX_DEFINED] = {
2641 [DNS_RCODE_SUCCESS] = "SUCCESS",
2642 [DNS_RCODE_FORMERR] = "FORMERR",
2643 [DNS_RCODE_SERVFAIL] = "SERVFAIL",
2644 [DNS_RCODE_NXDOMAIN] = "NXDOMAIN",
2645 [DNS_RCODE_NOTIMP] = "NOTIMP",
2646 [DNS_RCODE_REFUSED] = "REFUSED",
2647 [DNS_RCODE_YXDOMAIN] = "YXDOMAIN",
2648 [DNS_RCODE_YXRRSET] = "YRRSET",
2649 [DNS_RCODE_NXRRSET] = "NXRRSET",
2650 [DNS_RCODE_NOTAUTH] = "NOTAUTH",
2651 [DNS_RCODE_NOTZONE] = "NOTZONE",
2652 [DNS_RCODE_BADVERS] = "BADVERS",
2653 [DNS_RCODE_BADKEY] = "BADKEY",
2654 [DNS_RCODE_BADTIME] = "BADTIME",
2655 [DNS_RCODE_BADMODE] = "BADMODE",
2656 [DNS_RCODE_BADNAME] = "BADNAME",
2657 [DNS_RCODE_BADALG] = "BADALG",
2658 [DNS_RCODE_BADTRUNC] = "BADTRUNC",
2659 [DNS_RCODE_BADCOOKIE] = "BADCOOKIE",
2660 };
2661 DEFINE_STRING_TABLE_LOOKUP(dns_rcode, int);
2662
2663 static const char* const dns_protocol_table[_DNS_PROTOCOL_MAX] = {
2664 [DNS_PROTOCOL_DNS] = "dns",
2665 [DNS_PROTOCOL_MDNS] = "mdns",
2666 [DNS_PROTOCOL_LLMNR] = "llmnr",
2667 };
2668 DEFINE_STRING_TABLE_LOOKUP(dns_protocol, DnsProtocol);