]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - block/bio.c
block: Unexport blk_mq_add_to_requeue_list()
[thirdparty/kernel/linux.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
6f70fb66 247 bio_disassociate_blkg(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
6c210aa5 574int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
581
59d276fe
KO
582/**
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
586 *
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
590 *
591 * Caller must ensure that @bio_src is not freed before @bio.
592 */
593void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594{
ed996a52 595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
596
597 /*
74d46992 598 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
599 * so we don't set nor calculate new physical/hw segment counts here
600 */
74d46992 601 bio->bi_disk = bio_src->bi_disk;
62530ed8 602 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 603 bio_set_flag(bio, BIO_CLONED);
111be883
SL
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 606 bio->bi_opf = bio_src->bi_opf;
ca474b73 607 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 611
db6638d7 612 bio_clone_blkg_association(bio, bio_src);
e439bedf 613 blkcg_bio_issue_init(bio);
59d276fe
KO
614}
615EXPORT_SYMBOL(__bio_clone_fast);
616
617/**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626{
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
1da177e4 650/**
c66a14d0
KO
651 * bio_add_pc_page - attempt to add page to bio
652 * @q: the target queue
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
1da177e4 657 *
c66a14d0
KO
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block device
660 * limitations. The target block device must allow bio's up to PAGE_SIZE,
661 * so it is always possible to add a single page to an empty bio.
662 *
663 * This should only be used by REQ_PC bios.
1da177e4 664 */
c66a14d0
KO
665int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 *page, unsigned int len, unsigned int offset)
1da177e4
LT
667{
668 int retried_segments = 0;
669 struct bio_vec *bvec;
670
671 /*
672 * cloned bio must not modify vec list
673 */
674 if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 return 0;
676
c66a14d0 677 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
678 return 0;
679
80cfd548
JA
680 /*
681 * For filesystems with a blocksize smaller than the pagesize
682 * we will often be called with the same page as last time and
683 * a consecutive offset. Optimize this special case.
684 */
685 if (bio->bi_vcnt > 0) {
686 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687
688 if (page == prev->bv_page &&
689 offset == prev->bv_offset + prev->bv_len) {
690 prev->bv_len += len;
fcbf6a08 691 bio->bi_iter.bi_size += len;
80cfd548
JA
692 goto done;
693 }
66cb45aa
JA
694
695 /*
696 * If the queue doesn't support SG gaps and adding this
697 * offset would create a gap, disallow it.
698 */
03100aad 699 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 700 return 0;
80cfd548
JA
701 }
702
0aa69fd3 703 if (bio_full(bio))
1da177e4
LT
704 return 0;
705
706 /*
fcbf6a08
ML
707 * setup the new entry, we might clear it again later if we
708 * cannot add the page
709 */
710 bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 bvec->bv_page = page;
712 bvec->bv_len = len;
713 bvec->bv_offset = offset;
714 bio->bi_vcnt++;
715 bio->bi_phys_segments++;
716 bio->bi_iter.bi_size += len;
717
718 /*
719 * Perform a recount if the number of segments is greater
720 * than queue_max_segments(q).
1da177e4
LT
721 */
722
fcbf6a08 723 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
724
725 if (retried_segments)
fcbf6a08 726 goto failed;
1da177e4
LT
727
728 retried_segments = 1;
729 blk_recount_segments(q, bio);
730 }
731
1da177e4 732 /* If we may be able to merge these biovecs, force a recount */
3dccdae5 733 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
b7c44ed9 734 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 735
80cfd548 736 done:
1da177e4 737 return len;
fcbf6a08
ML
738
739 failed:
740 bvec->bv_page = NULL;
741 bvec->bv_len = 0;
742 bvec->bv_offset = 0;
743 bio->bi_vcnt--;
744 bio->bi_iter.bi_size -= len;
745 blk_recount_segments(q, bio);
746 return 0;
1da177e4 747}
a112a71d 748EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 749
1da177e4 750/**
0aa69fd3
CH
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: page to add
754 * @len: length of the data to add
755 * @off: offset of the data in @page
07173c3e
ML
756 * @same_page: if %true only merge if the new data is in the same physical
757 * page as the last segment of the bio.
1da177e4 758 *
0aa69fd3
CH
759 * Try to add the data at @page + @off to the last bvec of @bio. This is a
760 * a useful optimisation for file systems with a block size smaller than the
761 * page size.
762 *
763 * Return %true on success or %false on failure.
1da177e4 764 */
0aa69fd3 765bool __bio_try_merge_page(struct bio *bio, struct page *page,
07173c3e 766 unsigned int len, unsigned int off, bool same_page)
1da177e4 767{
c66a14d0 768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 769 return false;
762380ad 770
c66a14d0 771 if (bio->bi_vcnt > 0) {
0aa69fd3 772 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
07173c3e
ML
773 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
774 bv->bv_offset + bv->bv_len - 1;
775 phys_addr_t page_addr = page_to_phys(page);
776
777 if (vec_end_addr + 1 != page_addr + off)
778 return false;
779 if (same_page && (vec_end_addr & PAGE_MASK) != page_addr)
780 return false;
781
782 bv->bv_len += len;
783 bio->bi_iter.bi_size += len;
784 return true;
c66a14d0 785 }
0aa69fd3
CH
786 return false;
787}
788EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 789
0aa69fd3
CH
790/**
791 * __bio_add_page - add page to a bio in a new segment
792 * @bio: destination bio
793 * @page: page to add
794 * @len: length of the data to add
795 * @off: offset of the data in @page
796 *
797 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
798 * that @bio has space for another bvec.
799 */
800void __bio_add_page(struct bio *bio, struct page *page,
801 unsigned int len, unsigned int off)
802{
803 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 804
0aa69fd3
CH
805 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
806 WARN_ON_ONCE(bio_full(bio));
807
808 bv->bv_page = page;
809 bv->bv_offset = off;
810 bv->bv_len = len;
c66a14d0 811
c66a14d0 812 bio->bi_iter.bi_size += len;
0aa69fd3
CH
813 bio->bi_vcnt++;
814}
815EXPORT_SYMBOL_GPL(__bio_add_page);
816
817/**
818 * bio_add_page - attempt to add page to bio
819 * @bio: destination bio
820 * @page: page to add
821 * @len: vec entry length
822 * @offset: vec entry offset
823 *
824 * Attempt to add a page to the bio_vec maplist. This will only fail
825 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
826 */
827int bio_add_page(struct bio *bio, struct page *page,
828 unsigned int len, unsigned int offset)
829{
07173c3e 830 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
0aa69fd3
CH
831 if (bio_full(bio))
832 return 0;
833 __bio_add_page(bio, page, len, offset);
834 }
c66a14d0 835 return len;
1da177e4 836}
a112a71d 837EXPORT_SYMBOL(bio_add_page);
1da177e4 838
6d0c48ae
JA
839static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
840{
841 const struct bio_vec *bv = iter->bvec;
842 unsigned int len;
843 size_t size;
844
845 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
846 return -EINVAL;
847
848 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
849 size = bio_add_page(bio, bv->bv_page, len,
850 bv->bv_offset + iter->iov_offset);
851 if (size == len) {
852 struct page *page;
853 int i;
854
855 /*
856 * For the normal O_DIRECT case, we could skip grabbing this
857 * reference and then not have to put them again when IO
858 * completes. But this breaks some in-kernel users, like
859 * splicing to/from a loop device, where we release the pipe
860 * pages unconditionally. If we can fix that case, we can
861 * get rid of the get here and the need to call
862 * bio_release_pages() at IO completion time.
863 */
864 mp_bvec_for_each_page(page, bv, i)
865 get_page(page);
866 iov_iter_advance(iter, size);
867 return 0;
868 }
869
870 return -EINVAL;
871}
872
576ed913
CH
873#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
874
2cefe4db 875/**
17d51b10 876 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
877 * @bio: bio to add pages to
878 * @iter: iov iterator describing the region to be mapped
879 *
17d51b10 880 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 881 * pages will have to be released using put_page() when done.
17d51b10
MW
882 * For multi-segment *iter, this function only adds pages from the
883 * the next non-empty segment of the iov iterator.
2cefe4db 884 */
17d51b10 885static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 886{
576ed913
CH
887 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
888 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
889 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
890 struct page **pages = (struct page **)bv;
576ed913
CH
891 ssize_t size, left;
892 unsigned len, i;
b403ea24 893 size_t offset;
576ed913
CH
894
895 /*
896 * Move page array up in the allocated memory for the bio vecs as far as
897 * possible so that we can start filling biovecs from the beginning
898 * without overwriting the temporary page array.
899 */
900 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
901 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
902
903 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
904 if (unlikely(size <= 0))
905 return size ? size : -EFAULT;
2cefe4db 906
576ed913
CH
907 for (left = size, i = 0; left > 0; left -= len, i++) {
908 struct page *page = pages[i];
2cefe4db 909
576ed913
CH
910 len = min_t(size_t, PAGE_SIZE - offset, left);
911 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
912 return -EINVAL;
913 offset = 0;
2cefe4db
KO
914 }
915
2cefe4db
KO
916 iov_iter_advance(iter, size);
917 return 0;
918}
17d51b10
MW
919
920/**
6d0c48ae 921 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 922 * @bio: bio to add pages to
6d0c48ae
JA
923 * @iter: iov iterator describing the region to be added
924 *
925 * This takes either an iterator pointing to user memory, or one pointing to
926 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
927 * map them into the kernel. On IO completion, the caller should put those
928 * pages. For now, when adding kernel pages, we still grab a reference to the
929 * page. This isn't strictly needed for the common case, but some call paths
930 * end up releasing pages from eg a pipe and we can't easily control these.
931 * See comment in __bio_iov_bvec_add_pages().
17d51b10 932 *
17d51b10 933 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
934 * fit into the bio, or are requested in *iter, whatever is smaller. If
935 * MM encounters an error pinning the requested pages, it stops. Error
936 * is returned only if 0 pages could be pinned.
17d51b10
MW
937 */
938int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
939{
6d0c48ae 940 const bool is_bvec = iov_iter_is_bvec(iter);
17d51b10
MW
941 unsigned short orig_vcnt = bio->bi_vcnt;
942
943 do {
6d0c48ae
JA
944 int ret;
945
946 if (is_bvec)
947 ret = __bio_iov_bvec_add_pages(bio, iter);
948 else
949 ret = __bio_iov_iter_get_pages(bio, iter);
17d51b10
MW
950
951 if (unlikely(ret))
952 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
953
954 } while (iov_iter_count(iter) && !bio_full(bio));
955
956 return 0;
957}
2cefe4db 958
4246a0b6 959static void submit_bio_wait_endio(struct bio *bio)
9e882242 960{
65e53aab 961 complete(bio->bi_private);
9e882242
KO
962}
963
964/**
965 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
966 * @bio: The &struct bio which describes the I/O
967 *
968 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
969 * bio_endio() on failure.
3d289d68
JK
970 *
971 * WARNING: Unlike to how submit_bio() is usually used, this function does not
972 * result in bio reference to be consumed. The caller must drop the reference
973 * on his own.
9e882242 974 */
4e49ea4a 975int submit_bio_wait(struct bio *bio)
9e882242 976{
e319e1fb 977 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 978
65e53aab 979 bio->bi_private = &done;
9e882242 980 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 981 bio->bi_opf |= REQ_SYNC;
4e49ea4a 982 submit_bio(bio);
65e53aab 983 wait_for_completion_io(&done);
9e882242 984
65e53aab 985 return blk_status_to_errno(bio->bi_status);
9e882242
KO
986}
987EXPORT_SYMBOL(submit_bio_wait);
988
054bdf64
KO
989/**
990 * bio_advance - increment/complete a bio by some number of bytes
991 * @bio: bio to advance
992 * @bytes: number of bytes to complete
993 *
994 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
995 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
996 * be updated on the last bvec as well.
997 *
998 * @bio will then represent the remaining, uncompleted portion of the io.
999 */
1000void bio_advance(struct bio *bio, unsigned bytes)
1001{
1002 if (bio_integrity(bio))
1003 bio_integrity_advance(bio, bytes);
1004
4550dd6c 1005 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1006}
1007EXPORT_SYMBOL(bio_advance);
1008
45db54d5
KO
1009void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1010 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1011{
1cb9dda4 1012 struct bio_vec src_bv, dst_bv;
16ac3d63 1013 void *src_p, *dst_p;
1cb9dda4 1014 unsigned bytes;
16ac3d63 1015
45db54d5
KO
1016 while (src_iter->bi_size && dst_iter->bi_size) {
1017 src_bv = bio_iter_iovec(src, *src_iter);
1018 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1019
1020 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1021
1cb9dda4
KO
1022 src_p = kmap_atomic(src_bv.bv_page);
1023 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1024
1cb9dda4
KO
1025 memcpy(dst_p + dst_bv.bv_offset,
1026 src_p + src_bv.bv_offset,
16ac3d63
KO
1027 bytes);
1028
1029 kunmap_atomic(dst_p);
1030 kunmap_atomic(src_p);
1031
6e6e811d
KO
1032 flush_dcache_page(dst_bv.bv_page);
1033
45db54d5
KO
1034 bio_advance_iter(src, src_iter, bytes);
1035 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1036 }
1037}
38a72dac
KO
1038EXPORT_SYMBOL(bio_copy_data_iter);
1039
1040/**
45db54d5
KO
1041 * bio_copy_data - copy contents of data buffers from one bio to another
1042 * @src: source bio
1043 * @dst: destination bio
38a72dac
KO
1044 *
1045 * Stops when it reaches the end of either @src or @dst - that is, copies
1046 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1047 */
1048void bio_copy_data(struct bio *dst, struct bio *src)
1049{
45db54d5
KO
1050 struct bvec_iter src_iter = src->bi_iter;
1051 struct bvec_iter dst_iter = dst->bi_iter;
1052
1053 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1054}
16ac3d63
KO
1055EXPORT_SYMBOL(bio_copy_data);
1056
45db54d5
KO
1057/**
1058 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1059 * another
1060 * @src: source bio list
1061 * @dst: destination bio list
1062 *
1063 * Stops when it reaches the end of either the @src list or @dst list - that is,
1064 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1065 * bios).
1066 */
1067void bio_list_copy_data(struct bio *dst, struct bio *src)
1068{
1069 struct bvec_iter src_iter = src->bi_iter;
1070 struct bvec_iter dst_iter = dst->bi_iter;
1071
1072 while (1) {
1073 if (!src_iter.bi_size) {
1074 src = src->bi_next;
1075 if (!src)
1076 break;
1077
1078 src_iter = src->bi_iter;
1079 }
1080
1081 if (!dst_iter.bi_size) {
1082 dst = dst->bi_next;
1083 if (!dst)
1084 break;
1085
1086 dst_iter = dst->bi_iter;
1087 }
1088
1089 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1090 }
1091}
1092EXPORT_SYMBOL(bio_list_copy_data);
1093
1da177e4 1094struct bio_map_data {
152e283f 1095 int is_our_pages;
26e49cfc
KO
1096 struct iov_iter iter;
1097 struct iovec iov[];
1da177e4
LT
1098};
1099
0e5b935d 1100static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1101 gfp_t gfp_mask)
1da177e4 1102{
0e5b935d
AV
1103 struct bio_map_data *bmd;
1104 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1105 return NULL;
1da177e4 1106
0e5b935d
AV
1107 bmd = kmalloc(sizeof(struct bio_map_data) +
1108 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1109 if (!bmd)
1110 return NULL;
1111 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1112 bmd->iter = *data;
1113 bmd->iter.iov = bmd->iov;
1114 return bmd;
1da177e4
LT
1115}
1116
9124d3fe
DP
1117/**
1118 * bio_copy_from_iter - copy all pages from iov_iter to bio
1119 * @bio: The &struct bio which describes the I/O as destination
1120 * @iter: iov_iter as source
1121 *
1122 * Copy all pages from iov_iter to bio.
1123 * Returns 0 on success, or error on failure.
1124 */
98a09d61 1125static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1126{
9124d3fe 1127 int i;
c5dec1c3 1128 struct bio_vec *bvec;
6dc4f100 1129 struct bvec_iter_all iter_all;
c5dec1c3 1130
6dc4f100 1131 bio_for_each_segment_all(bvec, bio, i, iter_all) {
9124d3fe 1132 ssize_t ret;
c5dec1c3 1133
9124d3fe
DP
1134 ret = copy_page_from_iter(bvec->bv_page,
1135 bvec->bv_offset,
1136 bvec->bv_len,
98a09d61 1137 iter);
9124d3fe 1138
98a09d61 1139 if (!iov_iter_count(iter))
9124d3fe
DP
1140 break;
1141
1142 if (ret < bvec->bv_len)
1143 return -EFAULT;
c5dec1c3
FT
1144 }
1145
9124d3fe
DP
1146 return 0;
1147}
1148
1149/**
1150 * bio_copy_to_iter - copy all pages from bio to iov_iter
1151 * @bio: The &struct bio which describes the I/O as source
1152 * @iter: iov_iter as destination
1153 *
1154 * Copy all pages from bio to iov_iter.
1155 * Returns 0 on success, or error on failure.
1156 */
1157static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1158{
1159 int i;
1160 struct bio_vec *bvec;
6dc4f100 1161 struct bvec_iter_all iter_all;
9124d3fe 1162
6dc4f100 1163 bio_for_each_segment_all(bvec, bio, i, iter_all) {
9124d3fe
DP
1164 ssize_t ret;
1165
1166 ret = copy_page_to_iter(bvec->bv_page,
1167 bvec->bv_offset,
1168 bvec->bv_len,
1169 &iter);
1170
1171 if (!iov_iter_count(&iter))
1172 break;
1173
1174 if (ret < bvec->bv_len)
1175 return -EFAULT;
1176 }
1177
1178 return 0;
c5dec1c3
FT
1179}
1180
491221f8 1181void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1182{
1183 struct bio_vec *bvec;
1184 int i;
6dc4f100 1185 struct bvec_iter_all iter_all;
1dfa0f68 1186
6dc4f100 1187 bio_for_each_segment_all(bvec, bio, i, iter_all)
1dfa0f68
CH
1188 __free_page(bvec->bv_page);
1189}
491221f8 1190EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1191
1da177e4
LT
1192/**
1193 * bio_uncopy_user - finish previously mapped bio
1194 * @bio: bio being terminated
1195 *
ddad8dd0 1196 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1197 * to user space in case of a read.
1198 */
1199int bio_uncopy_user(struct bio *bio)
1200{
1201 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1202 int ret = 0;
1da177e4 1203
35dc2483
RD
1204 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1205 /*
1206 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1207 * don't copy into a random user address space, just free
1208 * and return -EINTR so user space doesn't expect any data.
35dc2483 1209 */
2d99b55d
HR
1210 if (!current->mm)
1211 ret = -EINTR;
1212 else if (bio_data_dir(bio) == READ)
9124d3fe 1213 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1214 if (bmd->is_our_pages)
1215 bio_free_pages(bio);
35dc2483 1216 }
c8db4448 1217 kfree(bmd);
1da177e4
LT
1218 bio_put(bio);
1219 return ret;
1220}
1221
1222/**
c5dec1c3 1223 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1224 * @q: destination block queue
1225 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1226 * @iter: iovec iterator
1227 * @gfp_mask: memory allocation flags
1da177e4
LT
1228 *
1229 * Prepares and returns a bio for indirect user io, bouncing data
1230 * to/from kernel pages as necessary. Must be paired with
1231 * call bio_uncopy_user() on io completion.
1232 */
152e283f
FT
1233struct bio *bio_copy_user_iov(struct request_queue *q,
1234 struct rq_map_data *map_data,
e81cef5d 1235 struct iov_iter *iter,
26e49cfc 1236 gfp_t gfp_mask)
1da177e4 1237{
1da177e4 1238 struct bio_map_data *bmd;
1da177e4
LT
1239 struct page *page;
1240 struct bio *bio;
d16d44eb
AV
1241 int i = 0, ret;
1242 int nr_pages;
26e49cfc 1243 unsigned int len = iter->count;
bd5cecea 1244 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1245
0e5b935d 1246 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1247 if (!bmd)
1248 return ERR_PTR(-ENOMEM);
1249
26e49cfc
KO
1250 /*
1251 * We need to do a deep copy of the iov_iter including the iovecs.
1252 * The caller provided iov might point to an on-stack or otherwise
1253 * shortlived one.
1254 */
1255 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1256
d16d44eb
AV
1257 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1258 if (nr_pages > BIO_MAX_PAGES)
1259 nr_pages = BIO_MAX_PAGES;
26e49cfc 1260
1da177e4 1261 ret = -ENOMEM;
a9e9dc24 1262 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1263 if (!bio)
1264 goto out_bmd;
1265
1da177e4 1266 ret = 0;
56c451f4
FT
1267
1268 if (map_data) {
e623ddb4 1269 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1270 i = map_data->offset / PAGE_SIZE;
1271 }
1da177e4 1272 while (len) {
e623ddb4 1273 unsigned int bytes = PAGE_SIZE;
1da177e4 1274
56c451f4
FT
1275 bytes -= offset;
1276
1da177e4
LT
1277 if (bytes > len)
1278 bytes = len;
1279
152e283f 1280 if (map_data) {
e623ddb4 1281 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1282 ret = -ENOMEM;
1283 break;
1284 }
e623ddb4
FT
1285
1286 page = map_data->pages[i / nr_pages];
1287 page += (i % nr_pages);
1288
1289 i++;
1290 } else {
152e283f 1291 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1292 if (!page) {
1293 ret = -ENOMEM;
1294 break;
1295 }
1da177e4
LT
1296 }
1297
56c451f4 1298 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1299 break;
1da177e4
LT
1300
1301 len -= bytes;
56c451f4 1302 offset = 0;
1da177e4
LT
1303 }
1304
1305 if (ret)
1306 goto cleanup;
1307
2884d0be
AV
1308 if (map_data)
1309 map_data->offset += bio->bi_iter.bi_size;
1310
1da177e4
LT
1311 /*
1312 * success
1313 */
00e23707 1314 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1315 (map_data && map_data->from_user)) {
98a09d61 1316 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1317 if (ret)
1318 goto cleanup;
98a09d61 1319 } else {
f55adad6
KB
1320 if (bmd->is_our_pages)
1321 zero_fill_bio(bio);
98a09d61 1322 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1323 }
1324
26e49cfc 1325 bio->bi_private = bmd;
2884d0be
AV
1326 if (map_data && map_data->null_mapped)
1327 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1328 return bio;
1329cleanup:
152e283f 1330 if (!map_data)
1dfa0f68 1331 bio_free_pages(bio);
1da177e4
LT
1332 bio_put(bio);
1333out_bmd:
c8db4448 1334 kfree(bmd);
1da177e4
LT
1335 return ERR_PTR(ret);
1336}
1337
37f19e57
CH
1338/**
1339 * bio_map_user_iov - map user iovec into bio
1340 * @q: the struct request_queue for the bio
1341 * @iter: iovec iterator
1342 * @gfp_mask: memory allocation flags
1343 *
1344 * Map the user space address into a bio suitable for io to a block
1345 * device. Returns an error pointer in case of error.
1346 */
1347struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1348 struct iov_iter *iter,
37f19e57 1349 gfp_t gfp_mask)
1da177e4 1350{
26e49cfc 1351 int j;
1da177e4 1352 struct bio *bio;
076098e5 1353 int ret;
2b04e8f6 1354 struct bio_vec *bvec;
6dc4f100 1355 struct bvec_iter_all iter_all;
1da177e4 1356
b282cc76 1357 if (!iov_iter_count(iter))
1da177e4
LT
1358 return ERR_PTR(-EINVAL);
1359
b282cc76 1360 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1361 if (!bio)
1362 return ERR_PTR(-ENOMEM);
1363
0a0f1513 1364 while (iov_iter_count(iter)) {
629e42bc 1365 struct page **pages;
076098e5
AV
1366 ssize_t bytes;
1367 size_t offs, added = 0;
1368 int npages;
1da177e4 1369
0a0f1513 1370 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1371 if (unlikely(bytes <= 0)) {
1372 ret = bytes ? bytes : -EFAULT;
f1970baf 1373 goto out_unmap;
99172157 1374 }
f1970baf 1375
076098e5 1376 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1377
98f0bc99
AV
1378 if (unlikely(offs & queue_dma_alignment(q))) {
1379 ret = -EINVAL;
1380 j = 0;
1381 } else {
1382 for (j = 0; j < npages; j++) {
1383 struct page *page = pages[j];
1384 unsigned int n = PAGE_SIZE - offs;
1385 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1386
98f0bc99
AV
1387 if (n > bytes)
1388 n = bytes;
95d78c28 1389
98f0bc99
AV
1390 if (!bio_add_pc_page(q, bio, page, n, offs))
1391 break;
1da177e4 1392
98f0bc99
AV
1393 /*
1394 * check if vector was merged with previous
1395 * drop page reference if needed
1396 */
1397 if (bio->bi_vcnt == prev_bi_vcnt)
1398 put_page(page);
1399
1400 added += n;
1401 bytes -= n;
1402 offs = 0;
1403 }
0a0f1513 1404 iov_iter_advance(iter, added);
f1970baf 1405 }
1da177e4 1406 /*
f1970baf 1407 * release the pages we didn't map into the bio, if any
1da177e4 1408 */
629e42bc 1409 while (j < npages)
09cbfeaf 1410 put_page(pages[j++]);
629e42bc 1411 kvfree(pages);
e2e115d1
AV
1412 /* couldn't stuff something into bio? */
1413 if (bytes)
1414 break;
1da177e4
LT
1415 }
1416
b7c44ed9 1417 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1418
1419 /*
5fad1b64 1420 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1421 * it would normally disappear when its bi_end_io is run.
1422 * however, we need it for the unmap, so grab an extra
1423 * reference to it
1424 */
1425 bio_get(bio);
1da177e4 1426 return bio;
f1970baf
JB
1427
1428 out_unmap:
6dc4f100 1429 bio_for_each_segment_all(bvec, bio, j, iter_all) {
2b04e8f6 1430 put_page(bvec->bv_page);
f1970baf 1431 }
1da177e4
LT
1432 bio_put(bio);
1433 return ERR_PTR(ret);
1434}
1435
1da177e4
LT
1436static void __bio_unmap_user(struct bio *bio)
1437{
1438 struct bio_vec *bvec;
1439 int i;
6dc4f100 1440 struct bvec_iter_all iter_all;
1da177e4
LT
1441
1442 /*
1443 * make sure we dirty pages we wrote to
1444 */
6dc4f100 1445 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1da177e4
LT
1446 if (bio_data_dir(bio) == READ)
1447 set_page_dirty_lock(bvec->bv_page);
1448
09cbfeaf 1449 put_page(bvec->bv_page);
1da177e4
LT
1450 }
1451
1452 bio_put(bio);
1453}
1454
1455/**
1456 * bio_unmap_user - unmap a bio
1457 * @bio: the bio being unmapped
1458 *
5fad1b64
BVA
1459 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1460 * process context.
1da177e4
LT
1461 *
1462 * bio_unmap_user() may sleep.
1463 */
1464void bio_unmap_user(struct bio *bio)
1465{
1466 __bio_unmap_user(bio);
1467 bio_put(bio);
1468}
1469
4246a0b6 1470static void bio_map_kern_endio(struct bio *bio)
b823825e 1471{
b823825e 1472 bio_put(bio);
b823825e
JA
1473}
1474
75c72b83
CH
1475/**
1476 * bio_map_kern - map kernel address into bio
1477 * @q: the struct request_queue for the bio
1478 * @data: pointer to buffer to map
1479 * @len: length in bytes
1480 * @gfp_mask: allocation flags for bio allocation
1481 *
1482 * Map the kernel address into a bio suitable for io to a block
1483 * device. Returns an error pointer in case of error.
1484 */
1485struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1486 gfp_t gfp_mask)
df46b9a4
MC
1487{
1488 unsigned long kaddr = (unsigned long)data;
1489 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 unsigned long start = kaddr >> PAGE_SHIFT;
1491 const int nr_pages = end - start;
1492 int offset, i;
1493 struct bio *bio;
1494
a9e9dc24 1495 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1496 if (!bio)
1497 return ERR_PTR(-ENOMEM);
1498
1499 offset = offset_in_page(kaddr);
1500 for (i = 0; i < nr_pages; i++) {
1501 unsigned int bytes = PAGE_SIZE - offset;
1502
1503 if (len <= 0)
1504 break;
1505
1506 if (bytes > len)
1507 bytes = len;
1508
defd94b7 1509 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1510 offset) < bytes) {
1511 /* we don't support partial mappings */
1512 bio_put(bio);
1513 return ERR_PTR(-EINVAL);
1514 }
df46b9a4
MC
1515
1516 data += bytes;
1517 len -= bytes;
1518 offset = 0;
1519 }
1520
b823825e 1521 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1522 return bio;
1523}
a112a71d 1524EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1525
4246a0b6 1526static void bio_copy_kern_endio(struct bio *bio)
68154e90 1527{
1dfa0f68
CH
1528 bio_free_pages(bio);
1529 bio_put(bio);
1530}
1531
4246a0b6 1532static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1533{
42d2683a 1534 char *p = bio->bi_private;
1dfa0f68 1535 struct bio_vec *bvec;
68154e90 1536 int i;
6dc4f100 1537 struct bvec_iter_all iter_all;
68154e90 1538
6dc4f100 1539 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1dfa0f68 1540 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1541 p += bvec->bv_len;
68154e90
FT
1542 }
1543
4246a0b6 1544 bio_copy_kern_endio(bio);
68154e90
FT
1545}
1546
1547/**
1548 * bio_copy_kern - copy kernel address into bio
1549 * @q: the struct request_queue for the bio
1550 * @data: pointer to buffer to copy
1551 * @len: length in bytes
1552 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1553 * @reading: data direction is READ
68154e90
FT
1554 *
1555 * copy the kernel address into a bio suitable for io to a block
1556 * device. Returns an error pointer in case of error.
1557 */
1558struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1559 gfp_t gfp_mask, int reading)
1560{
42d2683a
CH
1561 unsigned long kaddr = (unsigned long)data;
1562 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1563 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1564 struct bio *bio;
1565 void *p = data;
1dfa0f68 1566 int nr_pages = 0;
68154e90 1567
42d2683a
CH
1568 /*
1569 * Overflow, abort
1570 */
1571 if (end < start)
1572 return ERR_PTR(-EINVAL);
68154e90 1573
42d2683a
CH
1574 nr_pages = end - start;
1575 bio = bio_kmalloc(gfp_mask, nr_pages);
1576 if (!bio)
1577 return ERR_PTR(-ENOMEM);
68154e90 1578
42d2683a
CH
1579 while (len) {
1580 struct page *page;
1581 unsigned int bytes = PAGE_SIZE;
68154e90 1582
42d2683a
CH
1583 if (bytes > len)
1584 bytes = len;
1585
1586 page = alloc_page(q->bounce_gfp | gfp_mask);
1587 if (!page)
1588 goto cleanup;
1589
1590 if (!reading)
1591 memcpy(page_address(page), p, bytes);
1592
1593 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1594 break;
1595
1596 len -= bytes;
1597 p += bytes;
68154e90
FT
1598 }
1599
1dfa0f68
CH
1600 if (reading) {
1601 bio->bi_end_io = bio_copy_kern_endio_read;
1602 bio->bi_private = data;
1603 } else {
1604 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1605 }
76029ff3 1606
68154e90 1607 return bio;
42d2683a
CH
1608
1609cleanup:
1dfa0f68 1610 bio_free_pages(bio);
42d2683a
CH
1611 bio_put(bio);
1612 return ERR_PTR(-ENOMEM);
68154e90
FT
1613}
1614
1da177e4
LT
1615/*
1616 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1617 * for performing direct-IO in BIOs.
1618 *
1619 * The problem is that we cannot run set_page_dirty() from interrupt context
1620 * because the required locks are not interrupt-safe. So what we can do is to
1621 * mark the pages dirty _before_ performing IO. And in interrupt context,
1622 * check that the pages are still dirty. If so, fine. If not, redirty them
1623 * in process context.
1624 *
1625 * We special-case compound pages here: normally this means reads into hugetlb
1626 * pages. The logic in here doesn't really work right for compound pages
1627 * because the VM does not uniformly chase down the head page in all cases.
1628 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1629 * handle them at all. So we skip compound pages here at an early stage.
1630 *
1631 * Note that this code is very hard to test under normal circumstances because
1632 * direct-io pins the pages with get_user_pages(). This makes
1633 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1634 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1635 * pagecache.
1636 *
1637 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1638 * deferred bio dirtying paths.
1639 */
1640
1641/*
1642 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1643 */
1644void bio_set_pages_dirty(struct bio *bio)
1645{
cb34e057 1646 struct bio_vec *bvec;
1da177e4 1647 int i;
6dc4f100 1648 struct bvec_iter_all iter_all;
1da177e4 1649
6dc4f100 1650 bio_for_each_segment_all(bvec, bio, i, iter_all) {
3bb50983
CH
1651 if (!PageCompound(bvec->bv_page))
1652 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1653 }
1654}
1655
86b6c7a7 1656static void bio_release_pages(struct bio *bio)
1da177e4 1657{
cb34e057 1658 struct bio_vec *bvec;
1da177e4 1659 int i;
6dc4f100 1660 struct bvec_iter_all iter_all;
1da177e4 1661
6dc4f100 1662 bio_for_each_segment_all(bvec, bio, i, iter_all)
24d5493f 1663 put_page(bvec->bv_page);
1da177e4
LT
1664}
1665
1666/*
1667 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668 * If they are, then fine. If, however, some pages are clean then they must
1669 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1670 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1671 *
1672 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1673 * here on. It will run one put_page() against each page and will run one
1674 * bio_put() against the BIO.
1da177e4
LT
1675 */
1676
65f27f38 1677static void bio_dirty_fn(struct work_struct *work);
1da177e4 1678
65f27f38 1679static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1680static DEFINE_SPINLOCK(bio_dirty_lock);
1681static struct bio *bio_dirty_list;
1682
1683/*
1684 * This runs in process context
1685 */
65f27f38 1686static void bio_dirty_fn(struct work_struct *work)
1da177e4 1687{
24d5493f 1688 struct bio *bio, *next;
1da177e4 1689
24d5493f
CH
1690 spin_lock_irq(&bio_dirty_lock);
1691 next = bio_dirty_list;
1da177e4 1692 bio_dirty_list = NULL;
24d5493f 1693 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1694
24d5493f
CH
1695 while ((bio = next) != NULL) {
1696 next = bio->bi_private;
1da177e4
LT
1697
1698 bio_set_pages_dirty(bio);
1699 bio_release_pages(bio);
1700 bio_put(bio);
1da177e4
LT
1701 }
1702}
1703
1704void bio_check_pages_dirty(struct bio *bio)
1705{
cb34e057 1706 struct bio_vec *bvec;
24d5493f 1707 unsigned long flags;
1da177e4 1708 int i;
6dc4f100 1709 struct bvec_iter_all iter_all;
1da177e4 1710
6dc4f100 1711 bio_for_each_segment_all(bvec, bio, i, iter_all) {
24d5493f
CH
1712 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1713 goto defer;
1da177e4
LT
1714 }
1715
24d5493f
CH
1716 bio_release_pages(bio);
1717 bio_put(bio);
1718 return;
1719defer:
1720 spin_lock_irqsave(&bio_dirty_lock, flags);
1721 bio->bi_private = bio_dirty_list;
1722 bio_dirty_list = bio;
1723 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 schedule_work(&bio_dirty_work);
1da177e4
LT
1725}
1726
5b18b5a7
MP
1727void update_io_ticks(struct hd_struct *part, unsigned long now)
1728{
1729 unsigned long stamp;
1730again:
1731 stamp = READ_ONCE(part->stamp);
1732 if (unlikely(stamp != now)) {
1733 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1734 __part_stat_add(part, io_ticks, 1);
1735 }
1736 }
1737 if (part->partno) {
1738 part = &part_to_disk(part)->part0;
1739 goto again;
1740 }
1741}
1da177e4 1742
ddcf35d3 1743void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1744 unsigned long sectors, struct hd_struct *part)
394ffa50 1745{
ddcf35d3 1746 const int sgrp = op_stat_group(op);
394ffa50 1747
112f158f
MS
1748 part_stat_lock();
1749
5b18b5a7 1750 update_io_ticks(part, jiffies);
112f158f
MS
1751 part_stat_inc(part, ios[sgrp]);
1752 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1753 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1754
1755 part_stat_unlock();
1756}
1757EXPORT_SYMBOL(generic_start_io_acct);
1758
ddcf35d3 1759void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1760 struct hd_struct *part, unsigned long start_time)
394ffa50 1761{
5b18b5a7
MP
1762 unsigned long now = jiffies;
1763 unsigned long duration = now - start_time;
ddcf35d3 1764 const int sgrp = op_stat_group(req_op);
394ffa50 1765
112f158f
MS
1766 part_stat_lock();
1767
5b18b5a7 1768 update_io_ticks(part, now);
112f158f 1769 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1770 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1771 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1772
1773 part_stat_unlock();
1774}
1775EXPORT_SYMBOL(generic_end_io_acct);
1776
2d4dc890
IL
1777#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1778void bio_flush_dcache_pages(struct bio *bi)
1779{
7988613b
KO
1780 struct bio_vec bvec;
1781 struct bvec_iter iter;
2d4dc890 1782
7988613b
KO
1783 bio_for_each_segment(bvec, bi, iter)
1784 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1785}
1786EXPORT_SYMBOL(bio_flush_dcache_pages);
1787#endif
1788
c4cf5261
JA
1789static inline bool bio_remaining_done(struct bio *bio)
1790{
1791 /*
1792 * If we're not chaining, then ->__bi_remaining is always 1 and
1793 * we always end io on the first invocation.
1794 */
1795 if (!bio_flagged(bio, BIO_CHAIN))
1796 return true;
1797
1798 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1799
326e1dbb 1800 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1801 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1802 return true;
326e1dbb 1803 }
c4cf5261
JA
1804
1805 return false;
1806}
1807
1da177e4
LT
1808/**
1809 * bio_endio - end I/O on a bio
1810 * @bio: bio
1da177e4
LT
1811 *
1812 * Description:
4246a0b6
CH
1813 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1814 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1815 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1816 *
1817 * bio_endio() can be called several times on a bio that has been chained
1818 * using bio_chain(). The ->bi_end_io() function will only be called the
1819 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1820 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1821 **/
4246a0b6 1822void bio_endio(struct bio *bio)
1da177e4 1823{
ba8c6967 1824again:
2b885517 1825 if (!bio_remaining_done(bio))
ba8c6967 1826 return;
7c20f116
CH
1827 if (!bio_integrity_endio(bio))
1828 return;
1da177e4 1829
67b42d0b
JB
1830 if (bio->bi_disk)
1831 rq_qos_done_bio(bio->bi_disk->queue, bio);
1832
ba8c6967
CH
1833 /*
1834 * Need to have a real endio function for chained bios, otherwise
1835 * various corner cases will break (like stacking block devices that
1836 * save/restore bi_end_io) - however, we want to avoid unbounded
1837 * recursion and blowing the stack. Tail call optimization would
1838 * handle this, but compiling with frame pointers also disables
1839 * gcc's sibling call optimization.
1840 */
1841 if (bio->bi_end_io == bio_chain_endio) {
1842 bio = __bio_chain_endio(bio);
1843 goto again;
196d38bc 1844 }
ba8c6967 1845
74d46992
CH
1846 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1847 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1848 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1849 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1850 }
1851
9e234eea 1852 blk_throtl_bio_endio(bio);
b222dd2f
SL
1853 /* release cgroup info */
1854 bio_uninit(bio);
ba8c6967
CH
1855 if (bio->bi_end_io)
1856 bio->bi_end_io(bio);
1da177e4 1857}
a112a71d 1858EXPORT_SYMBOL(bio_endio);
1da177e4 1859
20d0189b
KO
1860/**
1861 * bio_split - split a bio
1862 * @bio: bio to split
1863 * @sectors: number of sectors to split from the front of @bio
1864 * @gfp: gfp mask
1865 * @bs: bio set to allocate from
1866 *
1867 * Allocates and returns a new bio which represents @sectors from the start of
1868 * @bio, and updates @bio to represent the remaining sectors.
1869 *
f3f5da62
MP
1870 * Unless this is a discard request the newly allocated bio will point
1871 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1872 * @bio is not freed before the split.
20d0189b
KO
1873 */
1874struct bio *bio_split(struct bio *bio, int sectors,
1875 gfp_t gfp, struct bio_set *bs)
1876{
f341a4d3 1877 struct bio *split;
20d0189b
KO
1878
1879 BUG_ON(sectors <= 0);
1880 BUG_ON(sectors >= bio_sectors(bio));
1881
f9d03f96 1882 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1883 if (!split)
1884 return NULL;
1885
1886 split->bi_iter.bi_size = sectors << 9;
1887
1888 if (bio_integrity(split))
fbd08e76 1889 bio_integrity_trim(split);
20d0189b
KO
1890
1891 bio_advance(bio, split->bi_iter.bi_size);
1892
fbbaf700 1893 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1894 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1895
20d0189b
KO
1896 return split;
1897}
1898EXPORT_SYMBOL(bio_split);
1899
6678d83f
KO
1900/**
1901 * bio_trim - trim a bio
1902 * @bio: bio to trim
1903 * @offset: number of sectors to trim from the front of @bio
1904 * @size: size we want to trim @bio to, in sectors
1905 */
1906void bio_trim(struct bio *bio, int offset, int size)
1907{
1908 /* 'bio' is a cloned bio which we need to trim to match
1909 * the given offset and size.
6678d83f 1910 */
6678d83f
KO
1911
1912 size <<= 9;
4f024f37 1913 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1914 return;
1915
b7c44ed9 1916 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1917
1918 bio_advance(bio, offset << 9);
1919
4f024f37 1920 bio->bi_iter.bi_size = size;
376a78ab
DM
1921
1922 if (bio_integrity(bio))
fbd08e76 1923 bio_integrity_trim(bio);
376a78ab 1924
6678d83f
KO
1925}
1926EXPORT_SYMBOL_GPL(bio_trim);
1927
1da177e4
LT
1928/*
1929 * create memory pools for biovec's in a bio_set.
1930 * use the global biovec slabs created for general use.
1931 */
8aa6ba2f 1932int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1933{
ed996a52 1934 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1935
8aa6ba2f 1936 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1937}
1938
917a38c7
KO
1939/*
1940 * bioset_exit - exit a bioset initialized with bioset_init()
1941 *
1942 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1943 * kzalloc()).
1944 */
1945void bioset_exit(struct bio_set *bs)
1da177e4 1946{
df2cb6da
KO
1947 if (bs->rescue_workqueue)
1948 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1949 bs->rescue_workqueue = NULL;
df2cb6da 1950
8aa6ba2f
KO
1951 mempool_exit(&bs->bio_pool);
1952 mempool_exit(&bs->bvec_pool);
9f060e22 1953
7878cba9 1954 bioset_integrity_free(bs);
917a38c7
KO
1955 if (bs->bio_slab)
1956 bio_put_slab(bs);
1957 bs->bio_slab = NULL;
1958}
1959EXPORT_SYMBOL(bioset_exit);
1da177e4 1960
917a38c7
KO
1961/**
1962 * bioset_init - Initialize a bio_set
dad08527 1963 * @bs: pool to initialize
917a38c7
KO
1964 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1965 * @front_pad: Number of bytes to allocate in front of the returned bio
1966 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1967 * and %BIOSET_NEED_RESCUER
1968 *
dad08527
KO
1969 * Description:
1970 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1971 * to ask for a number of bytes to be allocated in front of the bio.
1972 * Front pad allocation is useful for embedding the bio inside
1973 * another structure, to avoid allocating extra data to go with the bio.
1974 * Note that the bio must be embedded at the END of that structure always,
1975 * or things will break badly.
1976 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1977 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1978 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1979 * dispatch queued requests when the mempool runs out of space.
1980 *
917a38c7
KO
1981 */
1982int bioset_init(struct bio_set *bs,
1983 unsigned int pool_size,
1984 unsigned int front_pad,
1985 int flags)
1986{
1987 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1988
1989 bs->front_pad = front_pad;
1990
1991 spin_lock_init(&bs->rescue_lock);
1992 bio_list_init(&bs->rescue_list);
1993 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1994
1995 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1996 if (!bs->bio_slab)
1997 return -ENOMEM;
1998
1999 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2000 goto bad;
2001
2002 if ((flags & BIOSET_NEED_BVECS) &&
2003 biovec_init_pool(&bs->bvec_pool, pool_size))
2004 goto bad;
2005
2006 if (!(flags & BIOSET_NEED_RESCUER))
2007 return 0;
2008
2009 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2010 if (!bs->rescue_workqueue)
2011 goto bad;
2012
2013 return 0;
2014bad:
2015 bioset_exit(bs);
2016 return -ENOMEM;
2017}
2018EXPORT_SYMBOL(bioset_init);
2019
28e89fd9
JA
2020/*
2021 * Initialize and setup a new bio_set, based on the settings from
2022 * another bio_set.
2023 */
2024int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2025{
2026 int flags;
2027
2028 flags = 0;
2029 if (src->bvec_pool.min_nr)
2030 flags |= BIOSET_NEED_BVECS;
2031 if (src->rescue_workqueue)
2032 flags |= BIOSET_NEED_RESCUER;
2033
2034 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2035}
2036EXPORT_SYMBOL(bioset_init_from_src);
2037
852c788f 2038#ifdef CONFIG_BLK_CGROUP
1d933cf0 2039
74b7c02a 2040/**
2268c0fe 2041 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2042 * @bio: target bio
74b7c02a 2043 *
2268c0fe 2044 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2045 */
2268c0fe 2046void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2047{
2268c0fe
DZ
2048 if (bio->bi_blkg) {
2049 blkg_put(bio->bi_blkg);
2050 bio->bi_blkg = NULL;
2051 }
74b7c02a 2052}
892ad71f 2053EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2054
a7b39b4e 2055/**
2268c0fe 2056 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2057 * @bio: target bio
b5f2954d 2058 * @blkg: the blkg to associate
b5f2954d 2059 *
beea9da0
DZ
2060 * This tries to associate @bio with the specified @blkg. Association failure
2061 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2062 * be anything between @blkg and the root_blkg. This situation only happens
2063 * when a cgroup is dying and then the remaining bios will spill to the closest
2064 * alive blkg.
a7b39b4e 2065 *
beea9da0
DZ
2066 * A reference will be taken on the @blkg and will be released when @bio is
2067 * freed.
a7b39b4e 2068 */
2268c0fe 2069static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2070{
2268c0fe
DZ
2071 bio_disassociate_blkg(bio);
2072
7754f669 2073 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2074}
2075
d459d853 2076/**
fd42df30 2077 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2078 * @bio: target bio
fd42df30 2079 * @css: target css
d459d853 2080 *
fd42df30 2081 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2082 * request_queue of the @bio. This falls back to the queue's root_blkg if
2083 * the association fails with the css.
d459d853 2084 */
fd42df30
DZ
2085void bio_associate_blkg_from_css(struct bio *bio,
2086 struct cgroup_subsys_state *css)
d459d853 2087{
fc5a828b
DZ
2088 struct request_queue *q = bio->bi_disk->queue;
2089 struct blkcg_gq *blkg;
2090
2091 rcu_read_lock();
2092
2093 if (!css || !css->parent)
2094 blkg = q->root_blkg;
2095 else
2096 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2097
2098 __bio_associate_blkg(bio, blkg);
2099
2100 rcu_read_unlock();
d459d853 2101}
fd42df30 2102EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2103
6a7f6d86 2104#ifdef CONFIG_MEMCG
852c788f 2105/**
6a7f6d86 2106 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2107 * @bio: target bio
6a7f6d86
DZ
2108 * @page: the page to lookup the blkcg from
2109 *
2110 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2111 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2112 * root_blkg.
852c788f 2113 */
6a7f6d86 2114void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2115{
6a7f6d86
DZ
2116 struct cgroup_subsys_state *css;
2117
6a7f6d86
DZ
2118 if (!page->mem_cgroup)
2119 return;
2120
fc5a828b
DZ
2121 rcu_read_lock();
2122
2123 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2124 bio_associate_blkg_from_css(bio, css);
2125
2126 rcu_read_unlock();
6a7f6d86
DZ
2127}
2128#endif /* CONFIG_MEMCG */
2129
2268c0fe
DZ
2130/**
2131 * bio_associate_blkg - associate a bio with a blkg
2132 * @bio: target bio
2133 *
2134 * Associate @bio with the blkg found from the bio's css and request_queue.
2135 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2136 * already associated, the css is reused and association redone as the
2137 * request_queue may have changed.
2138 */
2139void bio_associate_blkg(struct bio *bio)
2140{
fc5a828b 2141 struct cgroup_subsys_state *css;
2268c0fe
DZ
2142
2143 rcu_read_lock();
2144
db6638d7 2145 if (bio->bi_blkg)
fc5a828b 2146 css = &bio_blkcg(bio)->css;
db6638d7 2147 else
fc5a828b 2148 css = blkcg_css();
2268c0fe 2149
fc5a828b 2150 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2151
2152 rcu_read_unlock();
852c788f 2153}
5cdf2e3f 2154EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2155
20bd723e 2156/**
db6638d7 2157 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2158 * @dst: destination bio
2159 * @src: source bio
2160 */
db6638d7 2161void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2162{
6ab21879
DZ
2163 rcu_read_lock();
2164
fc5a828b 2165 if (src->bi_blkg)
2268c0fe 2166 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2167
2168 rcu_read_unlock();
20bd723e 2169}
db6638d7 2170EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2171#endif /* CONFIG_BLK_CGROUP */
2172
1da177e4
LT
2173static void __init biovec_init_slabs(void)
2174{
2175 int i;
2176
ed996a52 2177 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2178 int size;
2179 struct biovec_slab *bvs = bvec_slabs + i;
2180
a7fcd37c
JA
2181 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2182 bvs->slab = NULL;
2183 continue;
2184 }
a7fcd37c 2185
1da177e4
LT
2186 size = bvs->nr_vecs * sizeof(struct bio_vec);
2187 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2188 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2189 }
2190}
2191
2192static int __init init_bio(void)
2193{
bb799ca0
JA
2194 bio_slab_max = 2;
2195 bio_slab_nr = 0;
6396bb22
KC
2196 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2197 GFP_KERNEL);
bb799ca0
JA
2198 if (!bio_slabs)
2199 panic("bio: can't allocate bios\n");
1da177e4 2200
7878cba9 2201 bio_integrity_init();
1da177e4
LT
2202 biovec_init_slabs();
2203
f4f8154a 2204 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2205 panic("bio: can't allocate bios\n");
2206
f4f8154a 2207 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2208 panic("bio: can't create integrity pool\n");
2209
1da177e4
LT
2210 return 0;
2211}
1da177e4 2212subsys_initcall(init_bio);