]> git.ipfire.org Git - people/ms/linux.git/blame - block/bio.c
Linux 5.18-rc3
[people/ms/linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
b4c5875d 18#include <linux/highmem.h>
de6a78b6 19#include <linux/sched/sysctl.h>
a892c8d5 20#include <linux/blk-crypto.h>
49d1ec85 21#include <linux/xarray.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
672fdcf0 26#include "blk-cgroup.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
49add496
CH
252void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 unsigned short max_vecs, unsigned int opf)
1da177e4 254{
da521626 255 bio->bi_next = NULL;
49add496
CH
256 bio->bi_bdev = bdev;
257 bio->bi_opf = opf;
da521626
JA
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
da521626
JA
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267#ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
49add496
CH
270 if (bdev)
271 bio_associate_blkg(bio);
da521626
JA
272#ifdef CONFIG_BLK_CGROUP_IOCOST
273 bio->bi_iocost_cost = 0;
274#endif
275#endif
276#ifdef CONFIG_BLK_INLINE_ENCRYPTION
277 bio->bi_crypt_context = NULL;
278#endif
279#ifdef CONFIG_BLK_DEV_INTEGRITY
280 bio->bi_integrity = NULL;
281#endif
282 bio->bi_vcnt = 0;
283
c4cf5261 284 atomic_set(&bio->__bi_remaining, 1);
dac56212 285 atomic_set(&bio->__bi_cnt, 1);
3e08773c 286 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 287
3a83f467 288 bio->bi_max_vecs = max_vecs;
da521626
JA
289 bio->bi_io_vec = table;
290 bio->bi_pool = NULL;
1da177e4 291}
a112a71d 292EXPORT_SYMBOL(bio_init);
1da177e4 293
f44b48c7
KO
294/**
295 * bio_reset - reinitialize a bio
296 * @bio: bio to reset
a7c50c94
CH
297 * @bdev: block device to use the bio for
298 * @opf: operation and flags for bio
f44b48c7
KO
299 *
300 * Description:
301 * After calling bio_reset(), @bio will be in the same state as a freshly
302 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
303 * preserved are the ones that are initialized by bio_alloc_bioset(). See
304 * comment in struct bio.
305 */
a7c50c94 306void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
f44b48c7 307{
9ae3b3f5 308 bio_uninit(bio);
f44b48c7 309 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 310 atomic_set(&bio->__bi_remaining, 1);
a7c50c94 311 bio->bi_bdev = bdev;
78e34374
CH
312 if (bio->bi_bdev)
313 bio_associate_blkg(bio);
a7c50c94 314 bio->bi_opf = opf;
f44b48c7
KO
315}
316EXPORT_SYMBOL(bio_reset);
317
38f8baae 318static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 319{
4246a0b6
CH
320 struct bio *parent = bio->bi_private;
321
3edf5346 322 if (bio->bi_status && !parent->bi_status)
4e4cbee9 323 parent->bi_status = bio->bi_status;
196d38bc 324 bio_put(bio);
38f8baae
CH
325 return parent;
326}
327
328static void bio_chain_endio(struct bio *bio)
329{
330 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
331}
332
333/**
334 * bio_chain - chain bio completions
1051a902 335 * @bio: the target bio
5b874af6 336 * @parent: the parent bio of @bio
196d38bc
KO
337 *
338 * The caller won't have a bi_end_io called when @bio completes - instead,
339 * @parent's bi_end_io won't be called until both @parent and @bio have
340 * completed; the chained bio will also be freed when it completes.
341 *
342 * The caller must not set bi_private or bi_end_io in @bio.
343 */
344void bio_chain(struct bio *bio, struct bio *parent)
345{
346 BUG_ON(bio->bi_private || bio->bi_end_io);
347
348 bio->bi_private = parent;
349 bio->bi_end_io = bio_chain_endio;
c4cf5261 350 bio_inc_remaining(parent);
196d38bc
KO
351}
352EXPORT_SYMBOL(bio_chain);
353
0a3140ea
CK
354struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
355 unsigned int nr_pages, unsigned int opf, gfp_t gfp)
3b005bf6 356{
07888c66 357 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 358
3b005bf6
CH
359 if (bio) {
360 bio_chain(bio, new);
361 submit_bio(bio);
362 }
363
364 return new;
365}
366EXPORT_SYMBOL_GPL(blk_next_bio);
367
df2cb6da
KO
368static void bio_alloc_rescue(struct work_struct *work)
369{
370 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
371 struct bio *bio;
372
373 while (1) {
374 spin_lock(&bs->rescue_lock);
375 bio = bio_list_pop(&bs->rescue_list);
376 spin_unlock(&bs->rescue_lock);
377
378 if (!bio)
379 break;
380
ed00aabd 381 submit_bio_noacct(bio);
df2cb6da
KO
382 }
383}
384
385static void punt_bios_to_rescuer(struct bio_set *bs)
386{
387 struct bio_list punt, nopunt;
388 struct bio *bio;
389
47e0fb46
N
390 if (WARN_ON_ONCE(!bs->rescue_workqueue))
391 return;
df2cb6da
KO
392 /*
393 * In order to guarantee forward progress we must punt only bios that
394 * were allocated from this bio_set; otherwise, if there was a bio on
395 * there for a stacking driver higher up in the stack, processing it
396 * could require allocating bios from this bio_set, and doing that from
397 * our own rescuer would be bad.
398 *
399 * Since bio lists are singly linked, pop them all instead of trying to
400 * remove from the middle of the list:
401 */
402
403 bio_list_init(&punt);
404 bio_list_init(&nopunt);
405
f5fe1b51 406 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 408 current->bio_list[0] = nopunt;
df2cb6da 409
f5fe1b51
N
410 bio_list_init(&nopunt);
411 while ((bio = bio_list_pop(&current->bio_list[1])))
412 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413 current->bio_list[1] = nopunt;
df2cb6da
KO
414
415 spin_lock(&bs->rescue_lock);
416 bio_list_merge(&bs->rescue_list, &punt);
417 spin_unlock(&bs->rescue_lock);
418
419 queue_work(bs->rescue_workqueue, &bs->rescue_work);
420}
421
1da177e4
LT
422/**
423 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
424 * @bdev: block device to allocate the bio for (can be %NULL)
425 * @nr_vecs: number of bvecs to pre-allocate
426 * @opf: operation and flags for bio
519c8e9f 427 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 428 * @bs: the bio_set to allocate from.
1da177e4 429 *
3175199a 430 * Allocate a bio from the mempools in @bs.
3f86a82a 431 *
3175199a
CH
432 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
433 * allocate a bio. This is due to the mempool guarantees. To make this work,
434 * callers must never allocate more than 1 bio at a time from the general pool.
435 * Callers that need to allocate more than 1 bio must always submit the
436 * previously allocated bio for IO before attempting to allocate a new one.
437 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 438 *
3175199a
CH
439 * Note that when running under submit_bio_noacct() (i.e. any block driver),
440 * bios are not submitted until after you return - see the code in
441 * submit_bio_noacct() that converts recursion into iteration, to prevent
442 * stack overflows.
df2cb6da 443 *
3175199a
CH
444 * This would normally mean allocating multiple bios under submit_bio_noacct()
445 * would be susceptible to deadlocks, but we have
446 * deadlock avoidance code that resubmits any blocked bios from a rescuer
447 * thread.
df2cb6da 448 *
3175199a
CH
449 * However, we do not guarantee forward progress for allocations from other
450 * mempools. Doing multiple allocations from the same mempool under
451 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
452 * for per bio allocations.
df2cb6da 453 *
3175199a 454 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 455 */
609be106
CH
456struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
457 unsigned int opf, gfp_t gfp_mask,
7a88fa19 458 struct bio_set *bs)
1da177e4 459{
df2cb6da 460 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
461 struct bio *bio;
462 void *p;
463
609be106
CH
464 /* should not use nobvec bioset for nr_vecs > 0 */
465 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 466 return NULL;
df2cb6da 467
3175199a
CH
468 /*
469 * submit_bio_noacct() converts recursion to iteration; this means if
470 * we're running beneath it, any bios we allocate and submit will not be
471 * submitted (and thus freed) until after we return.
472 *
473 * This exposes us to a potential deadlock if we allocate multiple bios
474 * from the same bio_set() while running underneath submit_bio_noacct().
475 * If we were to allocate multiple bios (say a stacking block driver
476 * that was splitting bios), we would deadlock if we exhausted the
477 * mempool's reserve.
478 *
479 * We solve this, and guarantee forward progress, with a rescuer
480 * workqueue per bio_set. If we go to allocate and there are bios on
481 * current->bio_list, we first try the allocation without
482 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
483 * blocking to the rescuer workqueue before we retry with the original
484 * gfp_flags.
485 */
486 if (current->bio_list &&
487 (!bio_list_empty(&current->bio_list[0]) ||
488 !bio_list_empty(&current->bio_list[1])) &&
489 bs->rescue_workqueue)
490 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
491
492 p = mempool_alloc(&bs->bio_pool, gfp_mask);
493 if (!p && gfp_mask != saved_gfp) {
494 punt_bios_to_rescuer(bs);
495 gfp_mask = saved_gfp;
8aa6ba2f 496 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 497 }
451a9ebf
TH
498 if (unlikely(!p))
499 return NULL;
1da177e4 500
3175199a 501 bio = p + bs->front_pad;
609be106 502 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 503 struct bio_vec *bvl = NULL;
34053979 504
609be106 505 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
506 if (!bvl && gfp_mask != saved_gfp) {
507 punt_bios_to_rescuer(bs);
508 gfp_mask = saved_gfp;
609be106 509 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 510 }
34053979
IM
511 if (unlikely(!bvl))
512 goto err_free;
a38352e0 513
49add496 514 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 515 } else if (nr_vecs) {
49add496 516 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 517 } else {
49add496 518 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
1da177e4 522 return bio;
34053979
IM
523
524err_free:
8aa6ba2f 525 mempool_free(p, &bs->bio_pool);
34053979 526 return NULL;
1da177e4 527}
a112a71d 528EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 529
3175199a
CH
530/**
531 * bio_kmalloc - kmalloc a bio for I/O
532 * @gfp_mask: the GFP_* mask given to the slab allocator
533 * @nr_iovecs: number of iovecs to pre-allocate
534 *
535 * Use kmalloc to allocate and initialize a bio.
536 *
537 * Returns: Pointer to new bio on success, NULL on failure.
538 */
0f2e6ab8 539struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
540{
541 struct bio *bio;
542
543 if (nr_iovecs > UIO_MAXIOV)
544 return NULL;
545
546 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
547 if (unlikely(!bio))
548 return NULL;
49add496
CH
549 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
550 0);
3175199a
CH
551 bio->bi_pool = NULL;
552 return bio;
553}
554EXPORT_SYMBOL(bio_kmalloc);
555
6f822e1b 556void zero_fill_bio(struct bio *bio)
1da177e4 557{
7988613b
KO
558 struct bio_vec bv;
559 struct bvec_iter iter;
1da177e4 560
ab6c340e
CH
561 bio_for_each_segment(bv, bio, iter)
562 memzero_bvec(&bv);
1da177e4 563}
6f822e1b 564EXPORT_SYMBOL(zero_fill_bio);
1da177e4 565
83c9c547
ML
566/**
567 * bio_truncate - truncate the bio to small size of @new_size
568 * @bio: the bio to be truncated
569 * @new_size: new size for truncating the bio
570 *
571 * Description:
572 * Truncate the bio to new size of @new_size. If bio_op(bio) is
573 * REQ_OP_READ, zero the truncated part. This function should only
574 * be used for handling corner cases, such as bio eod.
575 */
4f7ab09a 576static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
577{
578 struct bio_vec bv;
579 struct bvec_iter iter;
580 unsigned int done = 0;
581 bool truncated = false;
582
583 if (new_size >= bio->bi_iter.bi_size)
584 return;
585
83c9c547 586 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
587 goto exit;
588
589 bio_for_each_segment(bv, bio, iter) {
590 if (done + bv.bv_len > new_size) {
591 unsigned offset;
592
593 if (!truncated)
594 offset = new_size - done;
595 else
596 offset = 0;
3ee859e3
OH
597 zero_user(bv.bv_page, bv.bv_offset + offset,
598 bv.bv_len - offset);
85a8ce62
ML
599 truncated = true;
600 }
601 done += bv.bv_len;
602 }
603
604 exit:
605 /*
606 * Don't touch bvec table here and make it really immutable, since
607 * fs bio user has to retrieve all pages via bio_for_each_segment_all
608 * in its .end_bio() callback.
609 *
610 * It is enough to truncate bio by updating .bi_size since we can make
611 * correct bvec with the updated .bi_size for drivers.
612 */
613 bio->bi_iter.bi_size = new_size;
614}
615
29125ed6
CH
616/**
617 * guard_bio_eod - truncate a BIO to fit the block device
618 * @bio: bio to truncate
619 *
620 * This allows us to do IO even on the odd last sectors of a device, even if the
621 * block size is some multiple of the physical sector size.
622 *
623 * We'll just truncate the bio to the size of the device, and clear the end of
624 * the buffer head manually. Truly out-of-range accesses will turn into actual
625 * I/O errors, this only handles the "we need to be able to do I/O at the final
626 * sector" case.
627 */
628void guard_bio_eod(struct bio *bio)
629{
309dca30 630 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
631
632 if (!maxsector)
633 return;
634
635 /*
636 * If the *whole* IO is past the end of the device,
637 * let it through, and the IO layer will turn it into
638 * an EIO.
639 */
640 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
641 return;
642
643 maxsector -= bio->bi_iter.bi_sector;
644 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
645 return;
646
647 bio_truncate(bio, maxsector << 9);
648}
649
be4d234d
JA
650#define ALLOC_CACHE_MAX 512
651#define ALLOC_CACHE_SLACK 64
652
653static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
654 unsigned int nr)
655{
656 unsigned int i = 0;
657 struct bio *bio;
658
fcade2ce
JA
659 while ((bio = cache->free_list) != NULL) {
660 cache->free_list = bio->bi_next;
be4d234d
JA
661 cache->nr--;
662 bio_free(bio);
663 if (++i == nr)
664 break;
665 }
666}
667
668static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
669{
670 struct bio_set *bs;
671
672 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
673 if (bs->cache) {
674 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
675
676 bio_alloc_cache_prune(cache, -1U);
677 }
678 return 0;
679}
680
681static void bio_alloc_cache_destroy(struct bio_set *bs)
682{
683 int cpu;
684
685 if (!bs->cache)
686 return;
687
688 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
689 for_each_possible_cpu(cpu) {
690 struct bio_alloc_cache *cache;
691
692 cache = per_cpu_ptr(bs->cache, cpu);
693 bio_alloc_cache_prune(cache, -1U);
694 }
695 free_percpu(bs->cache);
696}
697
1da177e4
LT
698/**
699 * bio_put - release a reference to a bio
700 * @bio: bio to release reference to
701 *
702 * Description:
703 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 704 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
705 **/
706void bio_put(struct bio *bio)
707{
be4d234d 708 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 709 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
710 if (!atomic_dec_and_test(&bio->__bi_cnt))
711 return;
712 }
dac56212 713
be4d234d
JA
714 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
715 struct bio_alloc_cache *cache;
716
717 bio_uninit(bio);
718 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
719 bio->bi_next = cache->free_list;
720 cache->free_list = bio;
be4d234d
JA
721 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
722 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
723 put_cpu();
724 } else {
725 bio_free(bio);
dac56212 726 }
1da177e4 727}
a112a71d 728EXPORT_SYMBOL(bio_put);
1da177e4 729
a0e8de79 730static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
59d276fe 731{
b7c44ed9 732 bio_set_flag(bio, BIO_CLONED);
111be883
SL
733 if (bio_flagged(bio_src, BIO_THROTTLED))
734 bio_set_flag(bio, BIO_THROTTLED);
abfc426d
CH
735 if (bio->bi_bdev == bio_src->bi_bdev &&
736 bio_flagged(bio_src, BIO_REMAPPED))
46bbf653 737 bio_set_flag(bio, BIO_REMAPPED);
ca474b73 738 bio->bi_ioprio = bio_src->bi_ioprio;
59d276fe 739 bio->bi_iter = bio_src->bi_iter;
20bd723e 740
db6638d7 741 bio_clone_blkg_association(bio, bio_src);
e439bedf 742 blkcg_bio_issue_init(bio);
56b4b5ab
CH
743
744 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
745 return -ENOMEM;
746 if (bio_integrity(bio_src) &&
747 bio_integrity_clone(bio, bio_src, gfp) < 0)
748 return -ENOMEM;
749 return 0;
59d276fe 750}
59d276fe
KO
751
752/**
abfc426d
CH
753 * bio_alloc_clone - clone a bio that shares the original bio's biovec
754 * @bdev: block_device to clone onto
a0e8de79
CH
755 * @bio_src: bio to clone from
756 * @gfp: allocation priority
757 * @bs: bio_set to allocate from
59d276fe 758 *
a0e8de79
CH
759 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
760 * bio, but not the actual data it points to.
761 *
762 * The caller must ensure that the return bio is not freed before @bio_src.
59d276fe 763 */
abfc426d
CH
764struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
765 gfp_t gfp, struct bio_set *bs)
59d276fe 766{
a0e8de79 767 struct bio *bio;
59d276fe 768
abfc426d 769 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
a0e8de79 770 if (!bio)
59d276fe
KO
771 return NULL;
772
a0e8de79
CH
773 if (__bio_clone(bio, bio_src, gfp) < 0) {
774 bio_put(bio);
56b4b5ab
CH
775 return NULL;
776 }
a0e8de79 777 bio->bi_io_vec = bio_src->bi_io_vec;
59d276fe 778
a0e8de79 779 return bio;
59d276fe 780}
abfc426d 781EXPORT_SYMBOL(bio_alloc_clone);
59d276fe 782
a0e8de79 783/**
abfc426d
CH
784 * bio_init_clone - clone a bio that shares the original bio's biovec
785 * @bdev: block_device to clone onto
a0e8de79
CH
786 * @bio: bio to clone into
787 * @bio_src: bio to clone from
788 * @gfp: allocation priority
789 *
790 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
791 * The caller owns the returned bio, but not the actual data it points to.
792 *
793 * The caller must ensure that @bio_src is not freed before @bio.
794 */
abfc426d
CH
795int bio_init_clone(struct block_device *bdev, struct bio *bio,
796 struct bio *bio_src, gfp_t gfp)
a0e8de79
CH
797{
798 int ret;
799
abfc426d 800 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
a0e8de79
CH
801 ret = __bio_clone(bio, bio_src, gfp);
802 if (ret)
803 bio_uninit(bio);
804 return ret;
805}
abfc426d 806EXPORT_SYMBOL(bio_init_clone);
a0e8de79 807
9a6083be
CH
808/**
809 * bio_full - check if the bio is full
810 * @bio: bio to check
811 * @len: length of one segment to be added
812 *
813 * Return true if @bio is full and one segment with @len bytes can't be
814 * added to the bio, otherwise return false
815 */
816static inline bool bio_full(struct bio *bio, unsigned len)
817{
818 if (bio->bi_vcnt >= bio->bi_max_vecs)
819 return true;
820 if (bio->bi_iter.bi_size > UINT_MAX - len)
821 return true;
822 return false;
823}
824
5919482e
ML
825static inline bool page_is_mergeable(const struct bio_vec *bv,
826 struct page *page, unsigned int len, unsigned int off,
ff896738 827 bool *same_page)
5919482e 828{
d8166519
MWO
829 size_t bv_end = bv->bv_offset + bv->bv_len;
830 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
831 phys_addr_t page_addr = page_to_phys(page);
832
833 if (vec_end_addr + 1 != page_addr + off)
834 return false;
835 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
836 return false;
52d52d1c 837
ff896738 838 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
839 if (*same_page)
840 return true;
841 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
842}
843
9774b391
CH
844/**
845 * __bio_try_merge_page - try appending data to an existing bvec.
846 * @bio: destination bio
847 * @page: start page to add
848 * @len: length of the data to add
849 * @off: offset of the data relative to @page
850 * @same_page: return if the segment has been merged inside the same page
851 *
852 * Try to add the data at @page + @off to the last bvec of @bio. This is a
853 * useful optimisation for file systems with a block size smaller than the
854 * page size.
855 *
856 * Warn if (@len, @off) crosses pages in case that @same_page is true.
857 *
858 * Return %true on success or %false on failure.
859 */
860static bool __bio_try_merge_page(struct bio *bio, struct page *page,
861 unsigned int len, unsigned int off, bool *same_page)
862{
863 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
864 return false;
865
866 if (bio->bi_vcnt > 0) {
867 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
868
869 if (page_is_mergeable(bv, page, len, off, same_page)) {
870 if (bio->bi_iter.bi_size > UINT_MAX - len) {
871 *same_page = false;
872 return false;
873 }
874 bv->bv_len += len;
875 bio->bi_iter.bi_size += len;
876 return true;
877 }
878 }
879 return false;
880}
881
e4581105
CH
882/*
883 * Try to merge a page into a segment, while obeying the hardware segment
884 * size limit. This is not for normal read/write bios, but for passthrough
885 * or Zone Append operations that we can't split.
886 */
887static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
888 struct page *page, unsigned len,
889 unsigned offset, bool *same_page)
489fbbcb 890{
384209cd 891 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
892 unsigned long mask = queue_segment_boundary(q);
893 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
894 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
895
896 if ((addr1 | mask) != (addr2 | mask))
897 return false;
489fbbcb
ML
898 if (bv->bv_len + len > queue_max_segment_size(q))
899 return false;
384209cd 900 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
901}
902
1da177e4 903/**
e4581105
CH
904 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
905 * @q: the target queue
906 * @bio: destination bio
907 * @page: page to add
908 * @len: vec entry length
909 * @offset: vec entry offset
910 * @max_sectors: maximum number of sectors that can be added
911 * @same_page: return if the segment has been merged inside the same page
c66a14d0 912 *
e4581105
CH
913 * Add a page to a bio while respecting the hardware max_sectors, max_segment
914 * and gap limitations.
1da177e4 915 */
e4581105 916int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 917 struct page *page, unsigned int len, unsigned int offset,
e4581105 918 unsigned int max_sectors, bool *same_page)
1da177e4 919{
1da177e4
LT
920 struct bio_vec *bvec;
921
e4581105 922 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
923 return 0;
924
e4581105 925 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
926 return 0;
927
80cfd548 928 if (bio->bi_vcnt > 0) {
e4581105 929 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 930 return len;
320ea869
CH
931
932 /*
933 * If the queue doesn't support SG gaps and adding this segment
934 * would create a gap, disallow it.
935 */
384209cd 936 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
937 if (bvec_gap_to_prev(q, bvec, offset))
938 return 0;
80cfd548
JA
939 }
940
79d08f89 941 if (bio_full(bio, len))
1da177e4
LT
942 return 0;
943
14ccb66b 944 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
945 return 0;
946
fcbf6a08
ML
947 bvec = &bio->bi_io_vec[bio->bi_vcnt];
948 bvec->bv_page = page;
949 bvec->bv_len = len;
950 bvec->bv_offset = offset;
951 bio->bi_vcnt++;
dcdca753 952 bio->bi_iter.bi_size += len;
1da177e4
LT
953 return len;
954}
19047087 955
e4581105
CH
956/**
957 * bio_add_pc_page - attempt to add page to passthrough bio
958 * @q: the target queue
959 * @bio: destination bio
960 * @page: page to add
961 * @len: vec entry length
962 * @offset: vec entry offset
963 *
964 * Attempt to add a page to the bio_vec maplist. This can fail for a
965 * number of reasons, such as the bio being full or target block device
966 * limitations. The target block device must allow bio's up to PAGE_SIZE,
967 * so it is always possible to add a single page to an empty bio.
968 *
969 * This should only be used by passthrough bios.
970 */
19047087
ML
971int bio_add_pc_page(struct request_queue *q, struct bio *bio,
972 struct page *page, unsigned int len, unsigned int offset)
973{
d1916c86 974 bool same_page = false;
e4581105
CH
975 return bio_add_hw_page(q, bio, page, len, offset,
976 queue_max_hw_sectors(q), &same_page);
19047087 977}
a112a71d 978EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 979
ae29333f
JT
980/**
981 * bio_add_zone_append_page - attempt to add page to zone-append bio
982 * @bio: destination bio
983 * @page: page to add
984 * @len: vec entry length
985 * @offset: vec entry offset
986 *
987 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
988 * for a zone-append request. This can fail for a number of reasons, such as the
989 * bio being full or the target block device is not a zoned block device or
990 * other limitations of the target block device. The target block device must
991 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
992 * to an empty bio.
993 *
994 * Returns: number of bytes added to the bio, or 0 in case of a failure.
995 */
996int bio_add_zone_append_page(struct bio *bio, struct page *page,
997 unsigned int len, unsigned int offset)
998{
3caee463 999 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
1000 bool same_page = false;
1001
1002 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1003 return 0;
1004
1005 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1006 return 0;
1007
1008 return bio_add_hw_page(q, bio, page, len, offset,
1009 queue_max_zone_append_sectors(q), &same_page);
1010}
1011EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1012
0aa69fd3 1013/**
551879a4 1014 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1015 * @bio: destination bio
551879a4
ML
1016 * @page: start page to add
1017 * @len: length of the data to add, may cross pages
1018 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1019 *
1020 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1021 * that @bio has space for another bvec.
1022 */
1023void __bio_add_page(struct bio *bio, struct page *page,
1024 unsigned int len, unsigned int off)
1025{
1026 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1027
0aa69fd3 1028 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1029 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1030
1031 bv->bv_page = page;
1032 bv->bv_offset = off;
1033 bv->bv_len = len;
c66a14d0 1034
c66a14d0 1035 bio->bi_iter.bi_size += len;
0aa69fd3 1036 bio->bi_vcnt++;
b8e24a93
JW
1037
1038 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1039 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1040}
1041EXPORT_SYMBOL_GPL(__bio_add_page);
1042
1043/**
551879a4 1044 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1045 * @bio: destination bio
551879a4
ML
1046 * @page: start page to add
1047 * @len: vec entry length, may cross pages
1048 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1049 *
551879a4 1050 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1051 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1052 */
1053int bio_add_page(struct bio *bio, struct page *page,
1054 unsigned int len, unsigned int offset)
1055{
ff896738
CH
1056 bool same_page = false;
1057
1058 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1059 if (bio_full(bio, len))
0aa69fd3
CH
1060 return 0;
1061 __bio_add_page(bio, page, len, offset);
1062 }
c66a14d0 1063 return len;
1da177e4 1064}
a112a71d 1065EXPORT_SYMBOL(bio_add_page);
1da177e4 1066
85f5a74c
MWO
1067/**
1068 * bio_add_folio - Attempt to add part of a folio to a bio.
1069 * @bio: BIO to add to.
1070 * @folio: Folio to add.
1071 * @len: How many bytes from the folio to add.
1072 * @off: First byte in this folio to add.
1073 *
1074 * Filesystems that use folios can call this function instead of calling
1075 * bio_add_page() for each page in the folio. If @off is bigger than
1076 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1077 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1078 *
1079 * Return: Whether the addition was successful.
1080 */
1081bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1082 size_t off)
1083{
1084 if (len > UINT_MAX || off > UINT_MAX)
455a844d 1085 return false;
85f5a74c
MWO
1086 return bio_add_page(bio, &folio->page, len, off) > 0;
1087}
1088
c809084a 1089void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1090{
1091 struct bvec_iter_all iter_all;
1092 struct bio_vec *bvec;
7321ecbf 1093
d241a95f
CH
1094 bio_for_each_segment_all(bvec, bio, iter_all) {
1095 if (mark_dirty && !PageCompound(bvec->bv_page))
1096 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1097 put_page(bvec->bv_page);
d241a95f 1098 }
7321ecbf 1099}
c809084a 1100EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1101
1bb6b810 1102void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1103{
fa5fa8ec
PB
1104 size_t size = iov_iter_count(iter);
1105
7a800a20 1106 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1107
fa5fa8ec
PB
1108 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1109 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1110 size_t max_sectors = queue_max_zone_append_sectors(q);
1111
1112 size = min(size, max_sectors << SECTOR_SHIFT);
1113 }
1114
c42bca92 1115 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1116 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1117 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1118 bio->bi_iter.bi_size = size;
ed97ce5e 1119 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1120 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1121}
c42bca92 1122
d9cf3bd5
PB
1123static void bio_put_pages(struct page **pages, size_t size, size_t off)
1124{
1125 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1126
1127 for (i = 0; i < nr; i++)
1128 put_page(pages[i]);
1129}
1130
576ed913
CH
1131#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1132
2cefe4db 1133/**
17d51b10 1134 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1135 * @bio: bio to add pages to
1136 * @iter: iov iterator describing the region to be mapped
1137 *
17d51b10 1138 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1139 * pages will have to be released using put_page() when done.
17d51b10 1140 * For multi-segment *iter, this function only adds pages from the
3cf14889 1141 * next non-empty segment of the iov iterator.
2cefe4db 1142 */
17d51b10 1143static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1144{
576ed913
CH
1145 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1146 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1147 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1148 struct page **pages = (struct page **)bv;
45691804 1149 bool same_page = false;
576ed913
CH
1150 ssize_t size, left;
1151 unsigned len, i;
b403ea24 1152 size_t offset;
576ed913
CH
1153
1154 /*
1155 * Move page array up in the allocated memory for the bio vecs as far as
1156 * possible so that we can start filling biovecs from the beginning
1157 * without overwriting the temporary page array.
1158 */
1159 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1160 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1161
35c820e7 1162 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1163 if (unlikely(size <= 0))
1164 return size ? size : -EFAULT;
2cefe4db 1165
576ed913
CH
1166 for (left = size, i = 0; left > 0; left -= len, i++) {
1167 struct page *page = pages[i];
2cefe4db 1168
576ed913 1169 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1170
1171 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1172 if (same_page)
1173 put_page(page);
1174 } else {
d9cf3bd5
PB
1175 if (WARN_ON_ONCE(bio_full(bio, len))) {
1176 bio_put_pages(pages + i, left, offset);
1177 return -EINVAL;
1178 }
45691804
CH
1179 __bio_add_page(bio, page, len, offset);
1180 }
576ed913 1181 offset = 0;
2cefe4db
KO
1182 }
1183
2cefe4db
KO
1184 iov_iter_advance(iter, size);
1185 return 0;
1186}
17d51b10 1187
0512a75b
KB
1188static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1189{
1190 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1191 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
3caee463 1192 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
0512a75b
KB
1193 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1194 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1195 struct page **pages = (struct page **)bv;
1196 ssize_t size, left;
1197 unsigned len, i;
1198 size_t offset;
4977d121 1199 int ret = 0;
0512a75b
KB
1200
1201 if (WARN_ON_ONCE(!max_append_sectors))
1202 return 0;
1203
1204 /*
1205 * Move page array up in the allocated memory for the bio vecs as far as
1206 * possible so that we can start filling biovecs from the beginning
1207 * without overwriting the temporary page array.
1208 */
1209 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1210 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1211
1212 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1213 if (unlikely(size <= 0))
1214 return size ? size : -EFAULT;
1215
1216 for (left = size, i = 0; left > 0; left -= len, i++) {
1217 struct page *page = pages[i];
1218 bool same_page = false;
1219
1220 len = min_t(size_t, PAGE_SIZE - offset, left);
1221 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1222 max_append_sectors, &same_page) != len) {
d9cf3bd5 1223 bio_put_pages(pages + i, left, offset);
4977d121
NA
1224 ret = -EINVAL;
1225 break;
1226 }
0512a75b
KB
1227 if (same_page)
1228 put_page(page);
1229 offset = 0;
1230 }
1231
4977d121
NA
1232 iov_iter_advance(iter, size - left);
1233 return ret;
0512a75b
KB
1234}
1235
17d51b10 1236/**
6d0c48ae 1237 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1238 * @bio: bio to add pages to
6d0c48ae
JA
1239 * @iter: iov iterator describing the region to be added
1240 *
1241 * This takes either an iterator pointing to user memory, or one pointing to
1242 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1243 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1244 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1245 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1246 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1247 * completed by a call to ->ki_complete() or returns with an error other than
1248 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1249 * on IO completion. If it isn't, then pages should be released.
17d51b10 1250 *
17d51b10 1251 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1252 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1253 * MM encounters an error pinning the requested pages, it stops. Error
1254 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1255 *
1256 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1257 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1258 */
1259int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1260{
c42bca92 1261 int ret = 0;
14eacf12 1262
c42bca92 1263 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1264 bio_iov_bvec_set(bio, iter);
1265 iov_iter_advance(iter, bio->bi_iter.bi_size);
1266 return 0;
c42bca92 1267 }
17d51b10
MW
1268
1269 do {
86004515 1270 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1271 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1272 else
1273 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1274 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1275
0cf41e5e
PB
1276 /* don't account direct I/O as memory stall */
1277 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1278 return bio->bi_vcnt ? 0 : ret;
17d51b10 1279}
29b2a3aa 1280EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1281
4246a0b6 1282static void submit_bio_wait_endio(struct bio *bio)
9e882242 1283{
65e53aab 1284 complete(bio->bi_private);
9e882242
KO
1285}
1286
1287/**
1288 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1289 * @bio: The &struct bio which describes the I/O
1290 *
1291 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1292 * bio_endio() on failure.
3d289d68
JK
1293 *
1294 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1295 * result in bio reference to be consumed. The caller must drop the reference
1296 * on his own.
9e882242 1297 */
4e49ea4a 1298int submit_bio_wait(struct bio *bio)
9e882242 1299{
309dca30
CH
1300 DECLARE_COMPLETION_ONSTACK_MAP(done,
1301 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1302 unsigned long hang_check;
9e882242 1303
65e53aab 1304 bio->bi_private = &done;
9e882242 1305 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1306 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1307 submit_bio(bio);
de6a78b6
ML
1308
1309 /* Prevent hang_check timer from firing at us during very long I/O */
1310 hang_check = sysctl_hung_task_timeout_secs;
1311 if (hang_check)
1312 while (!wait_for_completion_io_timeout(&done,
1313 hang_check * (HZ/2)))
1314 ;
1315 else
1316 wait_for_completion_io(&done);
9e882242 1317
65e53aab 1318 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1319}
1320EXPORT_SYMBOL(submit_bio_wait);
1321
d4aa57a1 1322void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1323{
1324 if (bio_integrity(bio))
1325 bio_integrity_advance(bio, bytes);
1326
a892c8d5 1327 bio_crypt_advance(bio, bytes);
4550dd6c 1328 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1329}
d4aa57a1 1330EXPORT_SYMBOL(__bio_advance);
054bdf64 1331
45db54d5
KO
1332void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1333 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1334{
45db54d5 1335 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1336 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1337 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1338 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1339 void *src_buf;
1340
1341 src_buf = bvec_kmap_local(&src_bv);
1342 memcpy_to_bvec(&dst_bv, src_buf);
1343 kunmap_local(src_buf);
6e6e811d 1344
22b56c29
PB
1345 bio_advance_iter_single(src, src_iter, bytes);
1346 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1347 }
1348}
38a72dac
KO
1349EXPORT_SYMBOL(bio_copy_data_iter);
1350
1351/**
45db54d5
KO
1352 * bio_copy_data - copy contents of data buffers from one bio to another
1353 * @src: source bio
1354 * @dst: destination bio
38a72dac
KO
1355 *
1356 * Stops when it reaches the end of either @src or @dst - that is, copies
1357 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1358 */
1359void bio_copy_data(struct bio *dst, struct bio *src)
1360{
45db54d5
KO
1361 struct bvec_iter src_iter = src->bi_iter;
1362 struct bvec_iter dst_iter = dst->bi_iter;
1363
1364 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1365}
16ac3d63
KO
1366EXPORT_SYMBOL(bio_copy_data);
1367
491221f8 1368void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1369{
1370 struct bio_vec *bvec;
6dc4f100 1371 struct bvec_iter_all iter_all;
1dfa0f68 1372
2b070cfe 1373 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1374 __free_page(bvec->bv_page);
1375}
491221f8 1376EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1377
1da177e4
LT
1378/*
1379 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1380 * for performing direct-IO in BIOs.
1381 *
1382 * The problem is that we cannot run set_page_dirty() from interrupt context
1383 * because the required locks are not interrupt-safe. So what we can do is to
1384 * mark the pages dirty _before_ performing IO. And in interrupt context,
1385 * check that the pages are still dirty. If so, fine. If not, redirty them
1386 * in process context.
1387 *
1388 * We special-case compound pages here: normally this means reads into hugetlb
1389 * pages. The logic in here doesn't really work right for compound pages
1390 * because the VM does not uniformly chase down the head page in all cases.
1391 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1392 * handle them at all. So we skip compound pages here at an early stage.
1393 *
1394 * Note that this code is very hard to test under normal circumstances because
1395 * direct-io pins the pages with get_user_pages(). This makes
1396 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1397 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1398 * pagecache.
1399 *
1400 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1401 * deferred bio dirtying paths.
1402 */
1403
1404/*
1405 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1406 */
1407void bio_set_pages_dirty(struct bio *bio)
1408{
cb34e057 1409 struct bio_vec *bvec;
6dc4f100 1410 struct bvec_iter_all iter_all;
1da177e4 1411
2b070cfe 1412 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1413 if (!PageCompound(bvec->bv_page))
1414 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1415 }
1416}
1417
1da177e4
LT
1418/*
1419 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1420 * If they are, then fine. If, however, some pages are clean then they must
1421 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1422 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1423 *
1424 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1425 * here on. It will run one put_page() against each page and will run one
1426 * bio_put() against the BIO.
1da177e4
LT
1427 */
1428
65f27f38 1429static void bio_dirty_fn(struct work_struct *work);
1da177e4 1430
65f27f38 1431static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1432static DEFINE_SPINLOCK(bio_dirty_lock);
1433static struct bio *bio_dirty_list;
1434
1435/*
1436 * This runs in process context
1437 */
65f27f38 1438static void bio_dirty_fn(struct work_struct *work)
1da177e4 1439{
24d5493f 1440 struct bio *bio, *next;
1da177e4 1441
24d5493f
CH
1442 spin_lock_irq(&bio_dirty_lock);
1443 next = bio_dirty_list;
1da177e4 1444 bio_dirty_list = NULL;
24d5493f 1445 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1446
24d5493f
CH
1447 while ((bio = next) != NULL) {
1448 next = bio->bi_private;
1da177e4 1449
d241a95f 1450 bio_release_pages(bio, true);
1da177e4 1451 bio_put(bio);
1da177e4
LT
1452 }
1453}
1454
1455void bio_check_pages_dirty(struct bio *bio)
1456{
cb34e057 1457 struct bio_vec *bvec;
24d5493f 1458 unsigned long flags;
6dc4f100 1459 struct bvec_iter_all iter_all;
1da177e4 1460
2b070cfe 1461 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1462 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1463 goto defer;
1da177e4
LT
1464 }
1465
d241a95f 1466 bio_release_pages(bio, false);
24d5493f
CH
1467 bio_put(bio);
1468 return;
1469defer:
1470 spin_lock_irqsave(&bio_dirty_lock, flags);
1471 bio->bi_private = bio_dirty_list;
1472 bio_dirty_list = bio;
1473 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1474 schedule_work(&bio_dirty_work);
1da177e4
LT
1475}
1476
c4cf5261
JA
1477static inline bool bio_remaining_done(struct bio *bio)
1478{
1479 /*
1480 * If we're not chaining, then ->__bi_remaining is always 1 and
1481 * we always end io on the first invocation.
1482 */
1483 if (!bio_flagged(bio, BIO_CHAIN))
1484 return true;
1485
1486 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1487
326e1dbb 1488 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1489 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1490 return true;
326e1dbb 1491 }
c4cf5261
JA
1492
1493 return false;
1494}
1495
1da177e4
LT
1496/**
1497 * bio_endio - end I/O on a bio
1498 * @bio: bio
1da177e4
LT
1499 *
1500 * Description:
4246a0b6
CH
1501 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1502 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1503 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1504 *
1505 * bio_endio() can be called several times on a bio that has been chained
1506 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1507 * last time.
1da177e4 1508 **/
4246a0b6 1509void bio_endio(struct bio *bio)
1da177e4 1510{
ba8c6967 1511again:
2b885517 1512 if (!bio_remaining_done(bio))
ba8c6967 1513 return;
7c20f116
CH
1514 if (!bio_integrity_endio(bio))
1515 return;
1da177e4 1516
aa1b46dc 1517 rq_qos_done_bio(bio);
67b42d0b 1518
60b6a7e6 1519 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1520 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1521 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1522 }
1523
ba8c6967
CH
1524 /*
1525 * Need to have a real endio function for chained bios, otherwise
1526 * various corner cases will break (like stacking block devices that
1527 * save/restore bi_end_io) - however, we want to avoid unbounded
1528 * recursion and blowing the stack. Tail call optimization would
1529 * handle this, but compiling with frame pointers also disables
1530 * gcc's sibling call optimization.
1531 */
1532 if (bio->bi_end_io == bio_chain_endio) {
1533 bio = __bio_chain_endio(bio);
1534 goto again;
196d38bc 1535 }
ba8c6967 1536
9e234eea 1537 blk_throtl_bio_endio(bio);
b222dd2f
SL
1538 /* release cgroup info */
1539 bio_uninit(bio);
ba8c6967
CH
1540 if (bio->bi_end_io)
1541 bio->bi_end_io(bio);
1da177e4 1542}
a112a71d 1543EXPORT_SYMBOL(bio_endio);
1da177e4 1544
20d0189b
KO
1545/**
1546 * bio_split - split a bio
1547 * @bio: bio to split
1548 * @sectors: number of sectors to split from the front of @bio
1549 * @gfp: gfp mask
1550 * @bs: bio set to allocate from
1551 *
1552 * Allocates and returns a new bio which represents @sectors from the start of
1553 * @bio, and updates @bio to represent the remaining sectors.
1554 *
f3f5da62 1555 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1556 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1557 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1558 */
1559struct bio *bio_split(struct bio *bio, int sectors,
1560 gfp_t gfp, struct bio_set *bs)
1561{
f341a4d3 1562 struct bio *split;
20d0189b
KO
1563
1564 BUG_ON(sectors <= 0);
1565 BUG_ON(sectors >= bio_sectors(bio));
1566
0512a75b
KB
1567 /* Zone append commands cannot be split */
1568 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1569 return NULL;
1570
abfc426d 1571 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
20d0189b
KO
1572 if (!split)
1573 return NULL;
1574
1575 split->bi_iter.bi_size = sectors << 9;
1576
1577 if (bio_integrity(split))
fbd08e76 1578 bio_integrity_trim(split);
20d0189b
KO
1579
1580 bio_advance(bio, split->bi_iter.bi_size);
1581
fbbaf700 1582 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1583 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1584
20d0189b
KO
1585 return split;
1586}
1587EXPORT_SYMBOL(bio_split);
1588
6678d83f
KO
1589/**
1590 * bio_trim - trim a bio
1591 * @bio: bio to trim
1592 * @offset: number of sectors to trim from the front of @bio
1593 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1594 *
1595 * This function is typically used for bios that are cloned and submitted
1596 * to the underlying device in parts.
6678d83f 1597 */
e83502ca 1598void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1599{
e83502ca 1600 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
8535c018 1601 offset + size > bio_sectors(bio)))
e83502ca 1602 return;
6678d83f
KO
1603
1604 size <<= 9;
4f024f37 1605 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1606 return;
1607
6678d83f 1608 bio_advance(bio, offset << 9);
4f024f37 1609 bio->bi_iter.bi_size = size;
376a78ab
DM
1610
1611 if (bio_integrity(bio))
fbd08e76 1612 bio_integrity_trim(bio);
6678d83f
KO
1613}
1614EXPORT_SYMBOL_GPL(bio_trim);
1615
1da177e4
LT
1616/*
1617 * create memory pools for biovec's in a bio_set.
1618 * use the global biovec slabs created for general use.
1619 */
8aa6ba2f 1620int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1621{
7a800a20 1622 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1623
8aa6ba2f 1624 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1625}
1626
917a38c7
KO
1627/*
1628 * bioset_exit - exit a bioset initialized with bioset_init()
1629 *
1630 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1631 * kzalloc()).
1632 */
1633void bioset_exit(struct bio_set *bs)
1da177e4 1634{
be4d234d 1635 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1636 if (bs->rescue_workqueue)
1637 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1638 bs->rescue_workqueue = NULL;
df2cb6da 1639
8aa6ba2f
KO
1640 mempool_exit(&bs->bio_pool);
1641 mempool_exit(&bs->bvec_pool);
9f060e22 1642
7878cba9 1643 bioset_integrity_free(bs);
917a38c7
KO
1644 if (bs->bio_slab)
1645 bio_put_slab(bs);
1646 bs->bio_slab = NULL;
1647}
1648EXPORT_SYMBOL(bioset_exit);
1da177e4 1649
917a38c7
KO
1650/**
1651 * bioset_init - Initialize a bio_set
dad08527 1652 * @bs: pool to initialize
917a38c7
KO
1653 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1654 * @front_pad: Number of bytes to allocate in front of the returned bio
1655 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1656 * and %BIOSET_NEED_RESCUER
1657 *
dad08527
KO
1658 * Description:
1659 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1660 * to ask for a number of bytes to be allocated in front of the bio.
1661 * Front pad allocation is useful for embedding the bio inside
1662 * another structure, to avoid allocating extra data to go with the bio.
1663 * Note that the bio must be embedded at the END of that structure always,
1664 * or things will break badly.
1665 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
abfc426d
CH
1666 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1667 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1668 * to dispatch queued requests when the mempool runs out of space.
dad08527 1669 *
917a38c7
KO
1670 */
1671int bioset_init(struct bio_set *bs,
1672 unsigned int pool_size,
1673 unsigned int front_pad,
1674 int flags)
1675{
917a38c7 1676 bs->front_pad = front_pad;
9f180e31
ML
1677 if (flags & BIOSET_NEED_BVECS)
1678 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1679 else
1680 bs->back_pad = 0;
917a38c7
KO
1681
1682 spin_lock_init(&bs->rescue_lock);
1683 bio_list_init(&bs->rescue_list);
1684 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1685
49d1ec85 1686 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1687 if (!bs->bio_slab)
1688 return -ENOMEM;
1689
1690 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1691 goto bad;
1692
1693 if ((flags & BIOSET_NEED_BVECS) &&
1694 biovec_init_pool(&bs->bvec_pool, pool_size))
1695 goto bad;
1696
be4d234d
JA
1697 if (flags & BIOSET_NEED_RESCUER) {
1698 bs->rescue_workqueue = alloc_workqueue("bioset",
1699 WQ_MEM_RECLAIM, 0);
1700 if (!bs->rescue_workqueue)
1701 goto bad;
1702 }
1703 if (flags & BIOSET_PERCPU_CACHE) {
1704 bs->cache = alloc_percpu(struct bio_alloc_cache);
1705 if (!bs->cache)
1706 goto bad;
1707 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1708 }
917a38c7
KO
1709
1710 return 0;
1711bad:
1712 bioset_exit(bs);
1713 return -ENOMEM;
1714}
1715EXPORT_SYMBOL(bioset_init);
1716
28e89fd9
JA
1717/*
1718 * Initialize and setup a new bio_set, based on the settings from
1719 * another bio_set.
1720 */
1721int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1722{
1723 int flags;
1724
1725 flags = 0;
1726 if (src->bvec_pool.min_nr)
1727 flags |= BIOSET_NEED_BVECS;
1728 if (src->rescue_workqueue)
1729 flags |= BIOSET_NEED_RESCUER;
1730
1731 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1732}
1733EXPORT_SYMBOL(bioset_init_from_src);
1734
be4d234d
JA
1735/**
1736 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1737 * @kiocb: kiocb describing the IO
b77c88c2 1738 * @bdev: block device to allocate the bio for (can be %NULL)
0ef47db1 1739 * @nr_vecs: number of iovecs to pre-allocate
b77c88c2 1740 * @opf: operation and flags for bio
be4d234d
JA
1741 * @bs: bio_set to allocate from
1742 *
1743 * Description:
1744 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1745 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1746 * cache. The allocation uses GFP_KERNEL internally. On return, the
1747 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1748 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1749 *
1750 */
b77c88c2
CH
1751struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1752 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
be4d234d
JA
1753{
1754 struct bio_alloc_cache *cache;
1755 struct bio *bio;
1756
1757 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
b77c88c2 1758 return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
be4d234d
JA
1759
1760 cache = per_cpu_ptr(bs->cache, get_cpu());
fcade2ce
JA
1761 if (cache->free_list) {
1762 bio = cache->free_list;
1763 cache->free_list = bio->bi_next;
be4d234d
JA
1764 cache->nr--;
1765 put_cpu();
49add496
CH
1766 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1767 nr_vecs, opf);
be4d234d
JA
1768 bio->bi_pool = bs;
1769 bio_set_flag(bio, BIO_PERCPU_CACHE);
1770 return bio;
1771 }
1772 put_cpu();
b77c88c2 1773 bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
be4d234d
JA
1774 bio_set_flag(bio, BIO_PERCPU_CACHE);
1775 return bio;
1776}
1777EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1778
de76fd89 1779static int __init init_bio(void)
1da177e4
LT
1780{
1781 int i;
1782
7878cba9 1783 bio_integrity_init();
1da177e4 1784
de76fd89
CH
1785 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1786 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1787
de76fd89
CH
1788 bvs->slab = kmem_cache_create(bvs->name,
1789 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1790 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1791 }
1da177e4 1792
be4d234d
JA
1793 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1794 bio_cpu_dead);
1795
f4f8154a 1796 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1797 panic("bio: can't allocate bios\n");
1798
f4f8154a 1799 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1800 panic("bio: can't create integrity pool\n");
1801
1da177e4
LT
1802 return 0;
1803}
1da177e4 1804subsys_initcall(init_bio);