]> git.ipfire.org Git - people/ms/linux.git/blame - block/bio.c
block: reuse BIO_INLINE_VECS for integrity bvecs
[people/ms/linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
1da177e4
LT
28/*
29 * if you change this list, also change bvec_alloc or things will
30 * break badly! cannot be bigger than what you can fit into an
31 * unsigned short
32 */
bd5c4fac 33#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 34static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 35 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
36};
37#undef BV
38
1da177e4
LT
39/*
40 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
41 * IO code that does not need private memory pools.
42 */
f4f8154a 43struct bio_set fs_bio_set;
3f86a82a 44EXPORT_SYMBOL(fs_bio_set);
1da177e4 45
bb799ca0
JA
46/*
47 * Our slab pool management
48 */
49struct bio_slab {
50 struct kmem_cache *slab;
51 unsigned int slab_ref;
52 unsigned int slab_size;
53 char name[8];
54};
55static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 56static DEFINE_XARRAY(bio_slabs);
bb799ca0 57
49d1ec85 58static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 59{
49d1ec85 60 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 61
49d1ec85
ML
62 if (!bslab)
63 return NULL;
bb799ca0 64
49d1ec85
ML
65 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
66 bslab->slab = kmem_cache_create(bslab->name, size,
67 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
68 if (!bslab->slab)
69 goto fail_alloc_slab;
bb799ca0 70
49d1ec85
ML
71 bslab->slab_ref = 1;
72 bslab->slab_size = size;
bb799ca0 73
49d1ec85
ML
74 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
75 return bslab;
bb799ca0 76
49d1ec85 77 kmem_cache_destroy(bslab->slab);
bb799ca0 78
49d1ec85
ML
79fail_alloc_slab:
80 kfree(bslab);
81 return NULL;
82}
bb799ca0 83
49d1ec85
ML
84static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
85{
9f180e31 86 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85
ML
87}
88
89static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
90{
91 unsigned int size = bs_bio_slab_size(bs);
92 struct bio_slab *bslab;
93
94 mutex_lock(&bio_slab_lock);
95 bslab = xa_load(&bio_slabs, size);
96 if (bslab)
97 bslab->slab_ref++;
98 else
99 bslab = create_bio_slab(size);
bb799ca0 100 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
101
102 if (bslab)
103 return bslab->slab;
104 return NULL;
bb799ca0
JA
105}
106
107static void bio_put_slab(struct bio_set *bs)
108{
109 struct bio_slab *bslab = NULL;
49d1ec85 110 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
111
112 mutex_lock(&bio_slab_lock);
113
49d1ec85 114 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
115 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
116 goto out;
117
49d1ec85
ML
118 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
119
bb799ca0
JA
120 WARN_ON(!bslab->slab_ref);
121
122 if (--bslab->slab_ref)
123 goto out;
124
49d1ec85
ML
125 xa_erase(&bio_slabs, slab_size);
126
bb799ca0 127 kmem_cache_destroy(bslab->slab);
49d1ec85 128 kfree(bslab);
bb799ca0
JA
129
130out:
131 mutex_unlock(&bio_slab_lock);
132}
133
7ba1ba12
MP
134unsigned int bvec_nr_vecs(unsigned short idx)
135{
d6c02a9b 136 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
137}
138
9f060e22 139void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 140{
ed996a52
CH
141 if (!idx)
142 return;
143 idx--;
144
145 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 146
ed996a52 147 if (idx == BVEC_POOL_MAX) {
9f060e22 148 mempool_free(bv, pool);
ed996a52 149 } else {
bb799ca0
JA
150 struct biovec_slab *bvs = bvec_slabs + idx;
151
152 kmem_cache_free(bvs->slab, bv);
153 }
154}
155
9f060e22
KO
156struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
157 mempool_t *pool)
1da177e4
LT
158{
159 struct bio_vec *bvl;
1da177e4 160
7ff9345f
JA
161 /*
162 * see comment near bvec_array define!
163 */
164 switch (nr) {
165 case 1:
166 *idx = 0;
167 break;
168 case 2 ... 4:
169 *idx = 1;
170 break;
171 case 5 ... 16:
172 *idx = 2;
173 break;
174 case 17 ... 64:
175 *idx = 3;
176 break;
177 case 65 ... 128:
178 *idx = 4;
179 break;
180 case 129 ... BIO_MAX_PAGES:
181 *idx = 5;
182 break;
183 default:
184 return NULL;
185 }
186
187 /*
188 * idx now points to the pool we want to allocate from. only the
189 * 1-vec entry pool is mempool backed.
190 */
ed996a52 191 if (*idx == BVEC_POOL_MAX) {
7ff9345f 192fallback:
9f060e22 193 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
194 } else {
195 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 196 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 197
0a0d96b0 198 /*
7ff9345f
JA
199 * Make this allocation restricted and don't dump info on
200 * allocation failures, since we'll fallback to the mempool
201 * in case of failure.
0a0d96b0 202 */
7ff9345f 203 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 204
0a0d96b0 205 /*
d0164adc 206 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 207 * is set, retry with the 1-entry mempool
0a0d96b0 208 */
7ff9345f 209 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 210 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 211 *idx = BVEC_POOL_MAX;
7ff9345f
JA
212 goto fallback;
213 }
214 }
215
ed996a52 216 (*idx)++;
1da177e4
LT
217 return bvl;
218}
219
9ae3b3f5 220void bio_uninit(struct bio *bio)
1da177e4 221{
db9819c7
CH
222#ifdef CONFIG_BLK_CGROUP
223 if (bio->bi_blkg) {
224 blkg_put(bio->bi_blkg);
225 bio->bi_blkg = NULL;
226 }
227#endif
ece841ab
JT
228 if (bio_integrity(bio))
229 bio_integrity_free(bio);
a892c8d5
ST
230
231 bio_crypt_free_ctx(bio);
4254bba1 232}
9ae3b3f5 233EXPORT_SYMBOL(bio_uninit);
7ba1ba12 234
4254bba1
KO
235static void bio_free(struct bio *bio)
236{
237 struct bio_set *bs = bio->bi_pool;
238 void *p;
239
9ae3b3f5 240 bio_uninit(bio);
4254bba1
KO
241
242 if (bs) {
8aa6ba2f 243 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
244
245 /*
246 * If we have front padding, adjust the bio pointer before freeing
247 */
248 p = bio;
bb799ca0
JA
249 p -= bs->front_pad;
250
8aa6ba2f 251 mempool_free(p, &bs->bio_pool);
4254bba1
KO
252 } else {
253 /* Bio was allocated by bio_kmalloc() */
254 kfree(bio);
255 }
3676347a
PO
256}
257
9ae3b3f5
JA
258/*
259 * Users of this function have their own bio allocation. Subsequently,
260 * they must remember to pair any call to bio_init() with bio_uninit()
261 * when IO has completed, or when the bio is released.
262 */
3a83f467
ML
263void bio_init(struct bio *bio, struct bio_vec *table,
264 unsigned short max_vecs)
1da177e4 265{
2b94de55 266 memset(bio, 0, sizeof(*bio));
c4cf5261 267 atomic_set(&bio->__bi_remaining, 1);
dac56212 268 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
269
270 bio->bi_io_vec = table;
271 bio->bi_max_vecs = max_vecs;
1da177e4 272}
a112a71d 273EXPORT_SYMBOL(bio_init);
1da177e4 274
f44b48c7
KO
275/**
276 * bio_reset - reinitialize a bio
277 * @bio: bio to reset
278 *
279 * Description:
280 * After calling bio_reset(), @bio will be in the same state as a freshly
281 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
282 * preserved are the ones that are initialized by bio_alloc_bioset(). See
283 * comment in struct bio.
284 */
285void bio_reset(struct bio *bio)
286{
287 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
288
9ae3b3f5 289 bio_uninit(bio);
f44b48c7
KO
290
291 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 292 bio->bi_flags = flags;
c4cf5261 293 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
294}
295EXPORT_SYMBOL(bio_reset);
296
38f8baae 297static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 298{
4246a0b6
CH
299 struct bio *parent = bio->bi_private;
300
4e4cbee9
CH
301 if (!parent->bi_status)
302 parent->bi_status = bio->bi_status;
196d38bc 303 bio_put(bio);
38f8baae
CH
304 return parent;
305}
306
307static void bio_chain_endio(struct bio *bio)
308{
309 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
310}
311
312/**
313 * bio_chain - chain bio completions
1051a902 314 * @bio: the target bio
5b874af6 315 * @parent: the parent bio of @bio
196d38bc
KO
316 *
317 * The caller won't have a bi_end_io called when @bio completes - instead,
318 * @parent's bi_end_io won't be called until both @parent and @bio have
319 * completed; the chained bio will also be freed when it completes.
320 *
321 * The caller must not set bi_private or bi_end_io in @bio.
322 */
323void bio_chain(struct bio *bio, struct bio *parent)
324{
325 BUG_ON(bio->bi_private || bio->bi_end_io);
326
327 bio->bi_private = parent;
328 bio->bi_end_io = bio_chain_endio;
c4cf5261 329 bio_inc_remaining(parent);
196d38bc
KO
330}
331EXPORT_SYMBOL(bio_chain);
332
df2cb6da
KO
333static void bio_alloc_rescue(struct work_struct *work)
334{
335 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
336 struct bio *bio;
337
338 while (1) {
339 spin_lock(&bs->rescue_lock);
340 bio = bio_list_pop(&bs->rescue_list);
341 spin_unlock(&bs->rescue_lock);
342
343 if (!bio)
344 break;
345
ed00aabd 346 submit_bio_noacct(bio);
df2cb6da
KO
347 }
348}
349
350static void punt_bios_to_rescuer(struct bio_set *bs)
351{
352 struct bio_list punt, nopunt;
353 struct bio *bio;
354
47e0fb46
N
355 if (WARN_ON_ONCE(!bs->rescue_workqueue))
356 return;
df2cb6da
KO
357 /*
358 * In order to guarantee forward progress we must punt only bios that
359 * were allocated from this bio_set; otherwise, if there was a bio on
360 * there for a stacking driver higher up in the stack, processing it
361 * could require allocating bios from this bio_set, and doing that from
362 * our own rescuer would be bad.
363 *
364 * Since bio lists are singly linked, pop them all instead of trying to
365 * remove from the middle of the list:
366 */
367
368 bio_list_init(&punt);
369 bio_list_init(&nopunt);
370
f5fe1b51 371 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 372 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 373 current->bio_list[0] = nopunt;
df2cb6da 374
f5fe1b51
N
375 bio_list_init(&nopunt);
376 while ((bio = bio_list_pop(&current->bio_list[1])))
377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
378 current->bio_list[1] = nopunt;
df2cb6da
KO
379
380 spin_lock(&bs->rescue_lock);
381 bio_list_merge(&bs->rescue_list, &punt);
382 spin_unlock(&bs->rescue_lock);
383
384 queue_work(bs->rescue_workqueue, &bs->rescue_work);
385}
386
1da177e4
LT
387/**
388 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 389 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 390 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 391 * @bs: the bio_set to allocate from.
1da177e4 392 *
3175199a 393 * Allocate a bio from the mempools in @bs.
3f86a82a 394 *
3175199a
CH
395 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
396 * allocate a bio. This is due to the mempool guarantees. To make this work,
397 * callers must never allocate more than 1 bio at a time from the general pool.
398 * Callers that need to allocate more than 1 bio must always submit the
399 * previously allocated bio for IO before attempting to allocate a new one.
400 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 401 *
3175199a
CH
402 * Note that when running under submit_bio_noacct() (i.e. any block driver),
403 * bios are not submitted until after you return - see the code in
404 * submit_bio_noacct() that converts recursion into iteration, to prevent
405 * stack overflows.
df2cb6da 406 *
3175199a
CH
407 * This would normally mean allocating multiple bios under submit_bio_noacct()
408 * would be susceptible to deadlocks, but we have
409 * deadlock avoidance code that resubmits any blocked bios from a rescuer
410 * thread.
df2cb6da 411 *
3175199a
CH
412 * However, we do not guarantee forward progress for allocations from other
413 * mempools. Doing multiple allocations from the same mempool under
414 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
415 * for per bio allocations.
df2cb6da 416 *
3175199a 417 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 418 */
7a88fa19
DC
419struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
420 struct bio_set *bs)
1da177e4 421{
df2cb6da 422 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
423 struct bio *bio;
424 void *p;
425
3175199a
CH
426 /* should not use nobvec bioset for nr_iovecs > 0 */
427 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
428 return NULL;
df2cb6da 429
3175199a
CH
430 /*
431 * submit_bio_noacct() converts recursion to iteration; this means if
432 * we're running beneath it, any bios we allocate and submit will not be
433 * submitted (and thus freed) until after we return.
434 *
435 * This exposes us to a potential deadlock if we allocate multiple bios
436 * from the same bio_set() while running underneath submit_bio_noacct().
437 * If we were to allocate multiple bios (say a stacking block driver
438 * that was splitting bios), we would deadlock if we exhausted the
439 * mempool's reserve.
440 *
441 * We solve this, and guarantee forward progress, with a rescuer
442 * workqueue per bio_set. If we go to allocate and there are bios on
443 * current->bio_list, we first try the allocation without
444 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
445 * blocking to the rescuer workqueue before we retry with the original
446 * gfp_flags.
447 */
448 if (current->bio_list &&
449 (!bio_list_empty(&current->bio_list[0]) ||
450 !bio_list_empty(&current->bio_list[1])) &&
451 bs->rescue_workqueue)
452 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
453
454 p = mempool_alloc(&bs->bio_pool, gfp_mask);
455 if (!p && gfp_mask != saved_gfp) {
456 punt_bios_to_rescuer(bs);
457 gfp_mask = saved_gfp;
8aa6ba2f 458 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 459 }
451a9ebf
TH
460 if (unlikely(!p))
461 return NULL;
1da177e4 462
3175199a
CH
463 bio = p + bs->front_pad;
464 if (nr_iovecs > BIO_INLINE_VECS) {
ed996a52 465 unsigned long idx = 0;
3175199a 466 struct bio_vec *bvl = NULL;
ed996a52 467
8aa6ba2f 468 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
469 if (!bvl && gfp_mask != saved_gfp) {
470 punt_bios_to_rescuer(bs);
471 gfp_mask = saved_gfp;
3175199a
CH
472 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx,
473 &bs->bvec_pool);
df2cb6da
KO
474 }
475
34053979
IM
476 if (unlikely(!bvl))
477 goto err_free;
a38352e0 478
3175199a 479 bio_init(bio, bvl, bvec_nr_vecs(idx));
8358c28a 480 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a 481 } else if (nr_iovecs) {
3175199a
CH
482 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
483 } else {
484 bio_init(bio, NULL, 0);
1da177e4 485 }
3f86a82a
KO
486
487 bio->bi_pool = bs;
1da177e4 488 return bio;
34053979
IM
489
490err_free:
8aa6ba2f 491 mempool_free(p, &bs->bio_pool);
34053979 492 return NULL;
1da177e4 493}
a112a71d 494EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 495
3175199a
CH
496/**
497 * bio_kmalloc - kmalloc a bio for I/O
498 * @gfp_mask: the GFP_* mask given to the slab allocator
499 * @nr_iovecs: number of iovecs to pre-allocate
500 *
501 * Use kmalloc to allocate and initialize a bio.
502 *
503 * Returns: Pointer to new bio on success, NULL on failure.
504 */
505struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
506{
507 struct bio *bio;
508
509 if (nr_iovecs > UIO_MAXIOV)
510 return NULL;
511
512 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
513 if (unlikely(!bio))
514 return NULL;
515 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
516 bio->bi_pool = NULL;
517 return bio;
518}
519EXPORT_SYMBOL(bio_kmalloc);
520
38a72dac 521void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
522{
523 unsigned long flags;
7988613b
KO
524 struct bio_vec bv;
525 struct bvec_iter iter;
1da177e4 526
38a72dac 527 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
1da177e4
LT
531 bvec_kunmap_irq(data, &flags);
532 }
533}
38a72dac 534EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 535
83c9c547
ML
536/**
537 * bio_truncate - truncate the bio to small size of @new_size
538 * @bio: the bio to be truncated
539 * @new_size: new size for truncating the bio
540 *
541 * Description:
542 * Truncate the bio to new size of @new_size. If bio_op(bio) is
543 * REQ_OP_READ, zero the truncated part. This function should only
544 * be used for handling corner cases, such as bio eod.
545 */
85a8ce62
ML
546void bio_truncate(struct bio *bio, unsigned new_size)
547{
548 struct bio_vec bv;
549 struct bvec_iter iter;
550 unsigned int done = 0;
551 bool truncated = false;
552
553 if (new_size >= bio->bi_iter.bi_size)
554 return;
555
83c9c547 556 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
557 goto exit;
558
559 bio_for_each_segment(bv, bio, iter) {
560 if (done + bv.bv_len > new_size) {
561 unsigned offset;
562
563 if (!truncated)
564 offset = new_size - done;
565 else
566 offset = 0;
567 zero_user(bv.bv_page, offset, bv.bv_len - offset);
568 truncated = true;
569 }
570 done += bv.bv_len;
571 }
572
573 exit:
574 /*
575 * Don't touch bvec table here and make it really immutable, since
576 * fs bio user has to retrieve all pages via bio_for_each_segment_all
577 * in its .end_bio() callback.
578 *
579 * It is enough to truncate bio by updating .bi_size since we can make
580 * correct bvec with the updated .bi_size for drivers.
581 */
582 bio->bi_iter.bi_size = new_size;
583}
584
29125ed6
CH
585/**
586 * guard_bio_eod - truncate a BIO to fit the block device
587 * @bio: bio to truncate
588 *
589 * This allows us to do IO even on the odd last sectors of a device, even if the
590 * block size is some multiple of the physical sector size.
591 *
592 * We'll just truncate the bio to the size of the device, and clear the end of
593 * the buffer head manually. Truly out-of-range accesses will turn into actual
594 * I/O errors, this only handles the "we need to be able to do I/O at the final
595 * sector" case.
596 */
597void guard_bio_eod(struct bio *bio)
598{
309dca30 599 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
600
601 if (!maxsector)
602 return;
603
604 /*
605 * If the *whole* IO is past the end of the device,
606 * let it through, and the IO layer will turn it into
607 * an EIO.
608 */
609 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
610 return;
611
612 maxsector -= bio->bi_iter.bi_sector;
613 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
614 return;
615
616 bio_truncate(bio, maxsector << 9);
617}
618
1da177e4
LT
619/**
620 * bio_put - release a reference to a bio
621 * @bio: bio to release reference to
622 *
623 * Description:
624 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 625 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
626 **/
627void bio_put(struct bio *bio)
628{
dac56212 629 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 630 bio_free(bio);
dac56212
JA
631 else {
632 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
633
634 /*
635 * last put frees it
636 */
637 if (atomic_dec_and_test(&bio->__bi_cnt))
638 bio_free(bio);
639 }
1da177e4 640}
a112a71d 641EXPORT_SYMBOL(bio_put);
1da177e4 642
59d276fe
KO
643/**
644 * __bio_clone_fast - clone a bio that shares the original bio's biovec
645 * @bio: destination bio
646 * @bio_src: bio to clone
647 *
648 * Clone a &bio. Caller will own the returned bio, but not
649 * the actual data it points to. Reference count of returned
650 * bio will be one.
651 *
652 * Caller must ensure that @bio_src is not freed before @bio.
653 */
654void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
655{
ed996a52 656 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
657
658 /*
309dca30 659 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
660 * so we don't set nor calculate new physical/hw segment counts here
661 */
309dca30 662 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 663 bio_set_flag(bio, BIO_CLONED);
111be883
SL
664 if (bio_flagged(bio_src, BIO_THROTTLED))
665 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
666 if (bio_flagged(bio_src, BIO_REMAPPED))
667 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 668 bio->bi_opf = bio_src->bi_opf;
ca474b73 669 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 670 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
671 bio->bi_iter = bio_src->bi_iter;
672 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 673
db6638d7 674 bio_clone_blkg_association(bio, bio_src);
e439bedf 675 blkcg_bio_issue_init(bio);
59d276fe
KO
676}
677EXPORT_SYMBOL(__bio_clone_fast);
678
679/**
680 * bio_clone_fast - clone a bio that shares the original bio's biovec
681 * @bio: bio to clone
682 * @gfp_mask: allocation priority
683 * @bs: bio_set to allocate from
684 *
685 * Like __bio_clone_fast, only also allocates the returned bio
686 */
687struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
688{
689 struct bio *b;
690
691 b = bio_alloc_bioset(gfp_mask, 0, bs);
692 if (!b)
693 return NULL;
694
695 __bio_clone_fast(b, bio);
696
07560151
EB
697 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
698 goto err_put;
a892c8d5 699
07560151
EB
700 if (bio_integrity(bio) &&
701 bio_integrity_clone(b, bio, gfp_mask) < 0)
702 goto err_put;
59d276fe
KO
703
704 return b;
07560151
EB
705
706err_put:
707 bio_put(b);
708 return NULL;
59d276fe
KO
709}
710EXPORT_SYMBOL(bio_clone_fast);
711
5cbd28e3
CH
712const char *bio_devname(struct bio *bio, char *buf)
713{
309dca30 714 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
715}
716EXPORT_SYMBOL(bio_devname);
717
5919482e
ML
718static inline bool page_is_mergeable(const struct bio_vec *bv,
719 struct page *page, unsigned int len, unsigned int off,
ff896738 720 bool *same_page)
5919482e 721{
d8166519
MWO
722 size_t bv_end = bv->bv_offset + bv->bv_len;
723 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
724 phys_addr_t page_addr = page_to_phys(page);
725
726 if (vec_end_addr + 1 != page_addr + off)
727 return false;
728 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
729 return false;
52d52d1c 730
ff896738 731 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
732 if (*same_page)
733 return true;
734 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
735}
736
e4581105
CH
737/*
738 * Try to merge a page into a segment, while obeying the hardware segment
739 * size limit. This is not for normal read/write bios, but for passthrough
740 * or Zone Append operations that we can't split.
741 */
742static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
743 struct page *page, unsigned len,
744 unsigned offset, bool *same_page)
489fbbcb 745{
384209cd 746 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
747 unsigned long mask = queue_segment_boundary(q);
748 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
749 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
750
751 if ((addr1 | mask) != (addr2 | mask))
752 return false;
489fbbcb
ML
753 if (bv->bv_len + len > queue_max_segment_size(q))
754 return false;
384209cd 755 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
756}
757
1da177e4 758/**
e4581105
CH
759 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
760 * @q: the target queue
761 * @bio: destination bio
762 * @page: page to add
763 * @len: vec entry length
764 * @offset: vec entry offset
765 * @max_sectors: maximum number of sectors that can be added
766 * @same_page: return if the segment has been merged inside the same page
c66a14d0 767 *
e4581105
CH
768 * Add a page to a bio while respecting the hardware max_sectors, max_segment
769 * and gap limitations.
1da177e4 770 */
e4581105 771int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 772 struct page *page, unsigned int len, unsigned int offset,
e4581105 773 unsigned int max_sectors, bool *same_page)
1da177e4 774{
1da177e4
LT
775 struct bio_vec *bvec;
776
e4581105 777 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
778 return 0;
779
e4581105 780 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
781 return 0;
782
80cfd548 783 if (bio->bi_vcnt > 0) {
e4581105 784 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 785 return len;
320ea869
CH
786
787 /*
788 * If the queue doesn't support SG gaps and adding this segment
789 * would create a gap, disallow it.
790 */
384209cd 791 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
792 if (bvec_gap_to_prev(q, bvec, offset))
793 return 0;
80cfd548
JA
794 }
795
79d08f89 796 if (bio_full(bio, len))
1da177e4
LT
797 return 0;
798
14ccb66b 799 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
800 return 0;
801
fcbf6a08
ML
802 bvec = &bio->bi_io_vec[bio->bi_vcnt];
803 bvec->bv_page = page;
804 bvec->bv_len = len;
805 bvec->bv_offset = offset;
806 bio->bi_vcnt++;
dcdca753 807 bio->bi_iter.bi_size += len;
1da177e4
LT
808 return len;
809}
19047087 810
e4581105
CH
811/**
812 * bio_add_pc_page - attempt to add page to passthrough bio
813 * @q: the target queue
814 * @bio: destination bio
815 * @page: page to add
816 * @len: vec entry length
817 * @offset: vec entry offset
818 *
819 * Attempt to add a page to the bio_vec maplist. This can fail for a
820 * number of reasons, such as the bio being full or target block device
821 * limitations. The target block device must allow bio's up to PAGE_SIZE,
822 * so it is always possible to add a single page to an empty bio.
823 *
824 * This should only be used by passthrough bios.
825 */
19047087
ML
826int bio_add_pc_page(struct request_queue *q, struct bio *bio,
827 struct page *page, unsigned int len, unsigned int offset)
828{
d1916c86 829 bool same_page = false;
e4581105
CH
830 return bio_add_hw_page(q, bio, page, len, offset,
831 queue_max_hw_sectors(q), &same_page);
19047087 832}
a112a71d 833EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 834
1da177e4 835/**
0aa69fd3
CH
836 * __bio_try_merge_page - try appending data to an existing bvec.
837 * @bio: destination bio
551879a4 838 * @page: start page to add
0aa69fd3 839 * @len: length of the data to add
551879a4 840 * @off: offset of the data relative to @page
ff896738 841 * @same_page: return if the segment has been merged inside the same page
1da177e4 842 *
0aa69fd3 843 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 844 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
845 * page size.
846 *
551879a4
ML
847 * Warn if (@len, @off) crosses pages in case that @same_page is true.
848 *
0aa69fd3 849 * Return %true on success or %false on failure.
1da177e4 850 */
0aa69fd3 851bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 852 unsigned int len, unsigned int off, bool *same_page)
1da177e4 853{
c66a14d0 854 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 855 return false;
762380ad 856
cc90bc68 857 if (bio->bi_vcnt > 0) {
0aa69fd3 858 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
859
860 if (page_is_mergeable(bv, page, len, off, same_page)) {
2cd896a5
RH
861 if (bio->bi_iter.bi_size > UINT_MAX - len) {
862 *same_page = false;
cc90bc68 863 return false;
2cd896a5 864 }
5919482e
ML
865 bv->bv_len += len;
866 bio->bi_iter.bi_size += len;
867 return true;
868 }
c66a14d0 869 }
0aa69fd3
CH
870 return false;
871}
872EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 873
0aa69fd3 874/**
551879a4 875 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 876 * @bio: destination bio
551879a4
ML
877 * @page: start page to add
878 * @len: length of the data to add, may cross pages
879 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
880 *
881 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
882 * that @bio has space for another bvec.
883 */
884void __bio_add_page(struct bio *bio, struct page *page,
885 unsigned int len, unsigned int off)
886{
887 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 888
0aa69fd3 889 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 890 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
891
892 bv->bv_page = page;
893 bv->bv_offset = off;
894 bv->bv_len = len;
c66a14d0 895
c66a14d0 896 bio->bi_iter.bi_size += len;
0aa69fd3 897 bio->bi_vcnt++;
b8e24a93
JW
898
899 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
900 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
901}
902EXPORT_SYMBOL_GPL(__bio_add_page);
903
904/**
551879a4 905 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 906 * @bio: destination bio
551879a4
ML
907 * @page: start page to add
908 * @len: vec entry length, may cross pages
909 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 910 *
551879a4 911 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
912 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
913 */
914int bio_add_page(struct bio *bio, struct page *page,
915 unsigned int len, unsigned int offset)
916{
ff896738
CH
917 bool same_page = false;
918
919 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 920 if (bio_full(bio, len))
0aa69fd3
CH
921 return 0;
922 __bio_add_page(bio, page, len, offset);
923 }
c66a14d0 924 return len;
1da177e4 925}
a112a71d 926EXPORT_SYMBOL(bio_add_page);
1da177e4 927
d241a95f 928void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
929{
930 struct bvec_iter_all iter_all;
931 struct bio_vec *bvec;
7321ecbf 932
b2d0d991
CH
933 if (bio_flagged(bio, BIO_NO_PAGE_REF))
934 return;
935
d241a95f
CH
936 bio_for_each_segment_all(bvec, bio, iter_all) {
937 if (mark_dirty && !PageCompound(bvec->bv_page))
938 set_page_dirty_lock(bvec->bv_page);
7321ecbf 939 put_page(bvec->bv_page);
d241a95f 940 }
7321ecbf 941}
29b2a3aa 942EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 943
c42bca92 944static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 945{
c42bca92
PB
946 WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);
947
948 bio->bi_vcnt = iter->nr_segs;
949 bio->bi_max_vecs = iter->nr_segs;
950 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
951 bio->bi_iter.bi_bvec_done = iter->iov_offset;
952 bio->bi_iter.bi_size = iter->count;
953
954 iov_iter_advance(iter, iter->count);
a10584c3 955 return 0;
6d0c48ae
JA
956}
957
576ed913
CH
958#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
959
2cefe4db 960/**
17d51b10 961 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
962 * @bio: bio to add pages to
963 * @iter: iov iterator describing the region to be mapped
964 *
17d51b10 965 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 966 * pages will have to be released using put_page() when done.
17d51b10 967 * For multi-segment *iter, this function only adds pages from the
3cf14889 968 * next non-empty segment of the iov iterator.
2cefe4db 969 */
17d51b10 970static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 971{
576ed913
CH
972 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
973 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
974 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
975 struct page **pages = (struct page **)bv;
45691804 976 bool same_page = false;
576ed913
CH
977 ssize_t size, left;
978 unsigned len, i;
b403ea24 979 size_t offset;
576ed913
CH
980
981 /*
982 * Move page array up in the allocated memory for the bio vecs as far as
983 * possible so that we can start filling biovecs from the beginning
984 * without overwriting the temporary page array.
985 */
986 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
987 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
988
989 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
990 if (unlikely(size <= 0))
991 return size ? size : -EFAULT;
2cefe4db 992
576ed913
CH
993 for (left = size, i = 0; left > 0; left -= len, i++) {
994 struct page *page = pages[i];
2cefe4db 995
576ed913 996 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
997
998 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
999 if (same_page)
1000 put_page(page);
1001 } else {
79d08f89 1002 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1003 return -EINVAL;
1004 __bio_add_page(bio, page, len, offset);
1005 }
576ed913 1006 offset = 0;
2cefe4db
KO
1007 }
1008
2cefe4db
KO
1009 iov_iter_advance(iter, size);
1010 return 0;
1011}
17d51b10 1012
0512a75b
KB
1013static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1014{
1015 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1016 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1017 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1018 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1019 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1020 struct page **pages = (struct page **)bv;
1021 ssize_t size, left;
1022 unsigned len, i;
1023 size_t offset;
4977d121 1024 int ret = 0;
0512a75b
KB
1025
1026 if (WARN_ON_ONCE(!max_append_sectors))
1027 return 0;
1028
1029 /*
1030 * Move page array up in the allocated memory for the bio vecs as far as
1031 * possible so that we can start filling biovecs from the beginning
1032 * without overwriting the temporary page array.
1033 */
1034 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1035 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1036
1037 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1038 if (unlikely(size <= 0))
1039 return size ? size : -EFAULT;
1040
1041 for (left = size, i = 0; left > 0; left -= len, i++) {
1042 struct page *page = pages[i];
1043 bool same_page = false;
1044
1045 len = min_t(size_t, PAGE_SIZE - offset, left);
1046 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1047 max_append_sectors, &same_page) != len) {
1048 ret = -EINVAL;
1049 break;
1050 }
0512a75b
KB
1051 if (same_page)
1052 put_page(page);
1053 offset = 0;
1054 }
1055
4977d121
NA
1056 iov_iter_advance(iter, size - left);
1057 return ret;
0512a75b
KB
1058}
1059
17d51b10 1060/**
6d0c48ae 1061 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1062 * @bio: bio to add pages to
6d0c48ae
JA
1063 * @iter: iov iterator describing the region to be added
1064 *
1065 * This takes either an iterator pointing to user memory, or one pointing to
1066 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1067 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1068 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1069 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1070 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1071 * completed by a call to ->ki_complete() or returns with an error other than
1072 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1073 * on IO completion. If it isn't, then pages should be released.
17d51b10 1074 *
17d51b10 1075 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1076 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1077 * MM encounters an error pinning the requested pages, it stops. Error
1078 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1079 *
1080 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1081 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1082 */
1083int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1084{
c42bca92 1085 int ret = 0;
17d51b10 1086
c42bca92
PB
1087 if (iov_iter_is_bvec(iter)) {
1088 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1089 return -EINVAL;
1090 bio_iov_bvec_set(bio, iter);
1091 bio_set_flag(bio, BIO_NO_PAGE_REF);
1092 return 0;
1093 } else {
1094 do {
1095 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1096 ret = __bio_iov_append_get_pages(bio, iter);
0512a75b
KB
1097 else
1098 ret = __bio_iov_iter_get_pages(bio, iter);
c42bca92
PB
1099 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1100 }
0cf41e5e
PB
1101
1102 /* don't account direct I/O as memory stall */
1103 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1104 return bio->bi_vcnt ? 0 : ret;
17d51b10 1105}
29b2a3aa 1106EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1107
4246a0b6 1108static void submit_bio_wait_endio(struct bio *bio)
9e882242 1109{
65e53aab 1110 complete(bio->bi_private);
9e882242
KO
1111}
1112
1113/**
1114 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1115 * @bio: The &struct bio which describes the I/O
1116 *
1117 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1118 * bio_endio() on failure.
3d289d68
JK
1119 *
1120 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1121 * result in bio reference to be consumed. The caller must drop the reference
1122 * on his own.
9e882242 1123 */
4e49ea4a 1124int submit_bio_wait(struct bio *bio)
9e882242 1125{
309dca30
CH
1126 DECLARE_COMPLETION_ONSTACK_MAP(done,
1127 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1128 unsigned long hang_check;
9e882242 1129
65e53aab 1130 bio->bi_private = &done;
9e882242 1131 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1132 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1133 submit_bio(bio);
de6a78b6
ML
1134
1135 /* Prevent hang_check timer from firing at us during very long I/O */
1136 hang_check = sysctl_hung_task_timeout_secs;
1137 if (hang_check)
1138 while (!wait_for_completion_io_timeout(&done,
1139 hang_check * (HZ/2)))
1140 ;
1141 else
1142 wait_for_completion_io(&done);
9e882242 1143
65e53aab 1144 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1145}
1146EXPORT_SYMBOL(submit_bio_wait);
1147
054bdf64
KO
1148/**
1149 * bio_advance - increment/complete a bio by some number of bytes
1150 * @bio: bio to advance
1151 * @bytes: number of bytes to complete
1152 *
1153 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1154 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1155 * be updated on the last bvec as well.
1156 *
1157 * @bio will then represent the remaining, uncompleted portion of the io.
1158 */
1159void bio_advance(struct bio *bio, unsigned bytes)
1160{
1161 if (bio_integrity(bio))
1162 bio_integrity_advance(bio, bytes);
1163
a892c8d5 1164 bio_crypt_advance(bio, bytes);
4550dd6c 1165 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1166}
1167EXPORT_SYMBOL(bio_advance);
1168
45db54d5
KO
1169void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1170 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1171{
1cb9dda4 1172 struct bio_vec src_bv, dst_bv;
16ac3d63 1173 void *src_p, *dst_p;
1cb9dda4 1174 unsigned bytes;
16ac3d63 1175
45db54d5
KO
1176 while (src_iter->bi_size && dst_iter->bi_size) {
1177 src_bv = bio_iter_iovec(src, *src_iter);
1178 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1179
1180 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1181
1cb9dda4
KO
1182 src_p = kmap_atomic(src_bv.bv_page);
1183 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1184
1cb9dda4
KO
1185 memcpy(dst_p + dst_bv.bv_offset,
1186 src_p + src_bv.bv_offset,
16ac3d63
KO
1187 bytes);
1188
1189 kunmap_atomic(dst_p);
1190 kunmap_atomic(src_p);
1191
6e6e811d
KO
1192 flush_dcache_page(dst_bv.bv_page);
1193
22b56c29
PB
1194 bio_advance_iter_single(src, src_iter, bytes);
1195 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1196 }
1197}
38a72dac
KO
1198EXPORT_SYMBOL(bio_copy_data_iter);
1199
1200/**
45db54d5
KO
1201 * bio_copy_data - copy contents of data buffers from one bio to another
1202 * @src: source bio
1203 * @dst: destination bio
38a72dac
KO
1204 *
1205 * Stops when it reaches the end of either @src or @dst - that is, copies
1206 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1207 */
1208void bio_copy_data(struct bio *dst, struct bio *src)
1209{
45db54d5
KO
1210 struct bvec_iter src_iter = src->bi_iter;
1211 struct bvec_iter dst_iter = dst->bi_iter;
1212
1213 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1214}
16ac3d63
KO
1215EXPORT_SYMBOL(bio_copy_data);
1216
45db54d5
KO
1217/**
1218 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1219 * another
1220 * @src: source bio list
1221 * @dst: destination bio list
1222 *
1223 * Stops when it reaches the end of either the @src list or @dst list - that is,
1224 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1225 * bios).
1226 */
1227void bio_list_copy_data(struct bio *dst, struct bio *src)
1228{
1229 struct bvec_iter src_iter = src->bi_iter;
1230 struct bvec_iter dst_iter = dst->bi_iter;
1231
1232 while (1) {
1233 if (!src_iter.bi_size) {
1234 src = src->bi_next;
1235 if (!src)
1236 break;
1237
1238 src_iter = src->bi_iter;
1239 }
1240
1241 if (!dst_iter.bi_size) {
1242 dst = dst->bi_next;
1243 if (!dst)
1244 break;
1245
1246 dst_iter = dst->bi_iter;
1247 }
1248
1249 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1250 }
1251}
1252EXPORT_SYMBOL(bio_list_copy_data);
1253
491221f8 1254void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1255{
1256 struct bio_vec *bvec;
6dc4f100 1257 struct bvec_iter_all iter_all;
1dfa0f68 1258
2b070cfe 1259 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1260 __free_page(bvec->bv_page);
1261}
491221f8 1262EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1263
1da177e4
LT
1264/*
1265 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1266 * for performing direct-IO in BIOs.
1267 *
1268 * The problem is that we cannot run set_page_dirty() from interrupt context
1269 * because the required locks are not interrupt-safe. So what we can do is to
1270 * mark the pages dirty _before_ performing IO. And in interrupt context,
1271 * check that the pages are still dirty. If so, fine. If not, redirty them
1272 * in process context.
1273 *
1274 * We special-case compound pages here: normally this means reads into hugetlb
1275 * pages. The logic in here doesn't really work right for compound pages
1276 * because the VM does not uniformly chase down the head page in all cases.
1277 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1278 * handle them at all. So we skip compound pages here at an early stage.
1279 *
1280 * Note that this code is very hard to test under normal circumstances because
1281 * direct-io pins the pages with get_user_pages(). This makes
1282 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1283 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1284 * pagecache.
1285 *
1286 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1287 * deferred bio dirtying paths.
1288 */
1289
1290/*
1291 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1292 */
1293void bio_set_pages_dirty(struct bio *bio)
1294{
cb34e057 1295 struct bio_vec *bvec;
6dc4f100 1296 struct bvec_iter_all iter_all;
1da177e4 1297
2b070cfe 1298 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1299 if (!PageCompound(bvec->bv_page))
1300 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1301 }
1302}
1303
1da177e4
LT
1304/*
1305 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1306 * If they are, then fine. If, however, some pages are clean then they must
1307 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1308 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1309 *
1310 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1311 * here on. It will run one put_page() against each page and will run one
1312 * bio_put() against the BIO.
1da177e4
LT
1313 */
1314
65f27f38 1315static void bio_dirty_fn(struct work_struct *work);
1da177e4 1316
65f27f38 1317static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1318static DEFINE_SPINLOCK(bio_dirty_lock);
1319static struct bio *bio_dirty_list;
1320
1321/*
1322 * This runs in process context
1323 */
65f27f38 1324static void bio_dirty_fn(struct work_struct *work)
1da177e4 1325{
24d5493f 1326 struct bio *bio, *next;
1da177e4 1327
24d5493f
CH
1328 spin_lock_irq(&bio_dirty_lock);
1329 next = bio_dirty_list;
1da177e4 1330 bio_dirty_list = NULL;
24d5493f 1331 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1332
24d5493f
CH
1333 while ((bio = next) != NULL) {
1334 next = bio->bi_private;
1da177e4 1335
d241a95f 1336 bio_release_pages(bio, true);
1da177e4 1337 bio_put(bio);
1da177e4
LT
1338 }
1339}
1340
1341void bio_check_pages_dirty(struct bio *bio)
1342{
cb34e057 1343 struct bio_vec *bvec;
24d5493f 1344 unsigned long flags;
6dc4f100 1345 struct bvec_iter_all iter_all;
1da177e4 1346
2b070cfe 1347 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1348 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1349 goto defer;
1da177e4
LT
1350 }
1351
d241a95f 1352 bio_release_pages(bio, false);
24d5493f
CH
1353 bio_put(bio);
1354 return;
1355defer:
1356 spin_lock_irqsave(&bio_dirty_lock, flags);
1357 bio->bi_private = bio_dirty_list;
1358 bio_dirty_list = bio;
1359 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1360 schedule_work(&bio_dirty_work);
1da177e4
LT
1361}
1362
c4cf5261
JA
1363static inline bool bio_remaining_done(struct bio *bio)
1364{
1365 /*
1366 * If we're not chaining, then ->__bi_remaining is always 1 and
1367 * we always end io on the first invocation.
1368 */
1369 if (!bio_flagged(bio, BIO_CHAIN))
1370 return true;
1371
1372 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1373
326e1dbb 1374 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1375 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1376 return true;
326e1dbb 1377 }
c4cf5261
JA
1378
1379 return false;
1380}
1381
1da177e4
LT
1382/**
1383 * bio_endio - end I/O on a bio
1384 * @bio: bio
1da177e4
LT
1385 *
1386 * Description:
4246a0b6
CH
1387 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1388 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1389 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1390 *
1391 * bio_endio() can be called several times on a bio that has been chained
1392 * using bio_chain(). The ->bi_end_io() function will only be called the
1393 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1394 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1395 **/
4246a0b6 1396void bio_endio(struct bio *bio)
1da177e4 1397{
ba8c6967 1398again:
2b885517 1399 if (!bio_remaining_done(bio))
ba8c6967 1400 return;
7c20f116
CH
1401 if (!bio_integrity_endio(bio))
1402 return;
1da177e4 1403
309dca30
CH
1404 if (bio->bi_bdev)
1405 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1406
ba8c6967
CH
1407 /*
1408 * Need to have a real endio function for chained bios, otherwise
1409 * various corner cases will break (like stacking block devices that
1410 * save/restore bi_end_io) - however, we want to avoid unbounded
1411 * recursion and blowing the stack. Tail call optimization would
1412 * handle this, but compiling with frame pointers also disables
1413 * gcc's sibling call optimization.
1414 */
1415 if (bio->bi_end_io == bio_chain_endio) {
1416 bio = __bio_chain_endio(bio);
1417 goto again;
196d38bc 1418 }
ba8c6967 1419
309dca30
CH
1420 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1421 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1422 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1423 }
1424
9e234eea 1425 blk_throtl_bio_endio(bio);
b222dd2f
SL
1426 /* release cgroup info */
1427 bio_uninit(bio);
ba8c6967
CH
1428 if (bio->bi_end_io)
1429 bio->bi_end_io(bio);
1da177e4 1430}
a112a71d 1431EXPORT_SYMBOL(bio_endio);
1da177e4 1432
20d0189b
KO
1433/**
1434 * bio_split - split a bio
1435 * @bio: bio to split
1436 * @sectors: number of sectors to split from the front of @bio
1437 * @gfp: gfp mask
1438 * @bs: bio set to allocate from
1439 *
1440 * Allocates and returns a new bio which represents @sectors from the start of
1441 * @bio, and updates @bio to represent the remaining sectors.
1442 *
f3f5da62 1443 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1444 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1445 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1446 */
1447struct bio *bio_split(struct bio *bio, int sectors,
1448 gfp_t gfp, struct bio_set *bs)
1449{
f341a4d3 1450 struct bio *split;
20d0189b
KO
1451
1452 BUG_ON(sectors <= 0);
1453 BUG_ON(sectors >= bio_sectors(bio));
1454
0512a75b
KB
1455 /* Zone append commands cannot be split */
1456 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1457 return NULL;
1458
f9d03f96 1459 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1460 if (!split)
1461 return NULL;
1462
1463 split->bi_iter.bi_size = sectors << 9;
1464
1465 if (bio_integrity(split))
fbd08e76 1466 bio_integrity_trim(split);
20d0189b
KO
1467
1468 bio_advance(bio, split->bi_iter.bi_size);
1469
fbbaf700 1470 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1471 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1472
20d0189b
KO
1473 return split;
1474}
1475EXPORT_SYMBOL(bio_split);
1476
6678d83f
KO
1477/**
1478 * bio_trim - trim a bio
1479 * @bio: bio to trim
1480 * @offset: number of sectors to trim from the front of @bio
1481 * @size: size we want to trim @bio to, in sectors
1482 */
1483void bio_trim(struct bio *bio, int offset, int size)
1484{
1485 /* 'bio' is a cloned bio which we need to trim to match
1486 * the given offset and size.
6678d83f 1487 */
6678d83f
KO
1488
1489 size <<= 9;
4f024f37 1490 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1491 return;
1492
6678d83f 1493 bio_advance(bio, offset << 9);
4f024f37 1494 bio->bi_iter.bi_size = size;
376a78ab
DM
1495
1496 if (bio_integrity(bio))
fbd08e76 1497 bio_integrity_trim(bio);
376a78ab 1498
6678d83f
KO
1499}
1500EXPORT_SYMBOL_GPL(bio_trim);
1501
1da177e4
LT
1502/*
1503 * create memory pools for biovec's in a bio_set.
1504 * use the global biovec slabs created for general use.
1505 */
8aa6ba2f 1506int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1507{
ed996a52 1508 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1509
8aa6ba2f 1510 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1511}
1512
917a38c7
KO
1513/*
1514 * bioset_exit - exit a bioset initialized with bioset_init()
1515 *
1516 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1517 * kzalloc()).
1518 */
1519void bioset_exit(struct bio_set *bs)
1da177e4 1520{
df2cb6da
KO
1521 if (bs->rescue_workqueue)
1522 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1523 bs->rescue_workqueue = NULL;
df2cb6da 1524
8aa6ba2f
KO
1525 mempool_exit(&bs->bio_pool);
1526 mempool_exit(&bs->bvec_pool);
9f060e22 1527
7878cba9 1528 bioset_integrity_free(bs);
917a38c7
KO
1529 if (bs->bio_slab)
1530 bio_put_slab(bs);
1531 bs->bio_slab = NULL;
1532}
1533EXPORT_SYMBOL(bioset_exit);
1da177e4 1534
917a38c7
KO
1535/**
1536 * bioset_init - Initialize a bio_set
dad08527 1537 * @bs: pool to initialize
917a38c7
KO
1538 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1539 * @front_pad: Number of bytes to allocate in front of the returned bio
1540 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1541 * and %BIOSET_NEED_RESCUER
1542 *
dad08527
KO
1543 * Description:
1544 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1545 * to ask for a number of bytes to be allocated in front of the bio.
1546 * Front pad allocation is useful for embedding the bio inside
1547 * another structure, to avoid allocating extra data to go with the bio.
1548 * Note that the bio must be embedded at the END of that structure always,
1549 * or things will break badly.
1550 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1551 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1552 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1553 * dispatch queued requests when the mempool runs out of space.
1554 *
917a38c7
KO
1555 */
1556int bioset_init(struct bio_set *bs,
1557 unsigned int pool_size,
1558 unsigned int front_pad,
1559 int flags)
1560{
917a38c7 1561 bs->front_pad = front_pad;
9f180e31
ML
1562 if (flags & BIOSET_NEED_BVECS)
1563 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1564 else
1565 bs->back_pad = 0;
917a38c7
KO
1566
1567 spin_lock_init(&bs->rescue_lock);
1568 bio_list_init(&bs->rescue_list);
1569 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1570
49d1ec85 1571 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1572 if (!bs->bio_slab)
1573 return -ENOMEM;
1574
1575 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1576 goto bad;
1577
1578 if ((flags & BIOSET_NEED_BVECS) &&
1579 biovec_init_pool(&bs->bvec_pool, pool_size))
1580 goto bad;
1581
1582 if (!(flags & BIOSET_NEED_RESCUER))
1583 return 0;
1584
1585 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1586 if (!bs->rescue_workqueue)
1587 goto bad;
1588
1589 return 0;
1590bad:
1591 bioset_exit(bs);
1592 return -ENOMEM;
1593}
1594EXPORT_SYMBOL(bioset_init);
1595
28e89fd9
JA
1596/*
1597 * Initialize and setup a new bio_set, based on the settings from
1598 * another bio_set.
1599 */
1600int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1601{
1602 int flags;
1603
1604 flags = 0;
1605 if (src->bvec_pool.min_nr)
1606 flags |= BIOSET_NEED_BVECS;
1607 if (src->rescue_workqueue)
1608 flags |= BIOSET_NEED_RESCUER;
1609
1610 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1611}
1612EXPORT_SYMBOL(bioset_init_from_src);
1613
1da177e4
LT
1614static void __init biovec_init_slabs(void)
1615{
1616 int i;
1617
ed996a52 1618 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1619 int size;
1620 struct biovec_slab *bvs = bvec_slabs + i;
1621
a7fcd37c
JA
1622 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1623 bvs->slab = NULL;
1624 continue;
1625 }
a7fcd37c 1626
1da177e4
LT
1627 size = bvs->nr_vecs * sizeof(struct bio_vec);
1628 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1629 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1630 }
1631}
1632
1633static int __init init_bio(void)
1634{
2b24e6f6
JT
1635 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1636
7878cba9 1637 bio_integrity_init();
1da177e4
LT
1638 biovec_init_slabs();
1639
f4f8154a 1640 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1641 panic("bio: can't allocate bios\n");
1642
f4f8154a 1643 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1644 panic("bio: can't create integrity pool\n");
1645
1da177e4
LT
1646 return 0;
1647}
1da177e4 1648subsys_initcall(init_bio);