]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/asm/ia64.S
Remove unnecessary trailing whitespace
[thirdparty/openssl.git] / crypto / bn / asm / ia64.S
CommitLineData
52c0d300 1.explicit
4cb73bf8 2.text
e2f2a9af 3.ident "ia64.S, Version 2.1"
e3713c36 4.ident "IA-64 ISA artwork by Andy Polyakov <appro@openssl.org>"
4cb73bf8 5
0d664759 6// Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
44c8a5e2 7//
367ace68 8// Licensed under the Apache License 2.0 (the "License"). You may not use
44c8a5e2
RS
9// this file except in compliance with the License. You can obtain a copy
10// in the file LICENSE in the source distribution or at
11// https://www.openssl.org/source/license.html
12
4cb73bf8
AP
13//
14// ====================================================================
e3713c36 15// Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
4cb73bf8
AP
16// project.
17//
18// Rights for redistribution and usage in source and binary forms are
389c09fa 19// granted according to the License. Warranty of any kind is disclaimed.
4cb73bf8
AP
20// ====================================================================
21//
46f4e1be 22// Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is
722d17cb
AP
23// different from Itanium to this module viewpoint. Most notably, is it
24// "wider" than Itanium? Can you experience loop scalability as
25// discussed in commentary sections? Not really:-( Itanium2 has 6
26// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
27// spin twice as fast, as I need 8 IALU ports. Amount of floating point
28// ports is the same, i.e. 2, while I need 4. In other words, to this
29// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
30// essentially different in respect to this module, and a re-tune was
60250017 31// required. Well, because some instruction latencies has changed. Most
722d17cb
AP
32// noticeably those intensively used:
33//
34// Itanium Itanium2
35// ldf8 9 6 L2 hit
36// ld8 2 1 L1 hit
37// getf 2 5
38// xma[->getf] 7[+1] 4[+0]
39// add[->st8] 1[+1] 1[+0]
40//
41// What does it mean? You might ratiocinate that the original code
42// should run just faster... Because sum of latencies is smaller...
43// Wrong! Note that getf latency increased. This means that if a loop is
e2f2a9af 44// scheduled for lower latency (as they were), then it will suffer from
722d17cb
AP
45// stall condition and the code will therefore turn anti-scalable, e.g.
46// original bn_mul_words spun at 5*n or 2.5 times slower than expected
47// on Itanium2! What to do? Reschedule loops for Itanium2? But then
48// Itanium would exhibit anti-scalability. So I've chosen to reschedule
49// for worst latency for every instruction aiming for best *all-round*
df443918 50// performance.
4cb73bf8
AP
51
52// Q. How much faster does it get?
53// A. Here is the output from 'openssl speed rsa dsa' for vanilla
54// 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
55// Linux 7.1 2.96-81):
56//
57// sign verify sign/s verify/s
58// rsa 512 bits 0.0036s 0.0003s 275.3 2999.2
59// rsa 1024 bits 0.0203s 0.0011s 49.3 894.1
60// rsa 2048 bits 0.1331s 0.0040s 7.5 250.9
61// rsa 4096 bits 0.9270s 0.0147s 1.1 68.1
62// sign verify sign/s verify/s
63// dsa 512 bits 0.0035s 0.0043s 288.3 234.8
64// dsa 1024 bits 0.0111s 0.0135s 90.0 74.2
65//
66// And here is similar output but for this assembler
67// implementation:-)
68//
69// sign verify sign/s verify/s
70// rsa 512 bits 0.0021s 0.0001s 549.4 9638.5
71// rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1
72// rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3
73// rsa 4096 bits 0.1295s 0.0018s 7.7 561.5
74// sign verify sign/s verify/s
75// dsa 512 bits 0.0012s 0.0013s 891.9 756.6
76// dsa 1024 bits 0.0023s 0.0028s 440.4 376.2
77//
78// Yes, you may argue that it's not fair comparison as it's
79// possible to craft the C implementation with BN_UMULT_HIGH
80// inline assembler macro. But of course! Here is the output
81// with the macro:
82//
83// sign verify sign/s verify/s
84// rsa 512 bits 0.0020s 0.0002s 495.0 6561.0
85// rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7
86// rsa 2048 bits 0.0519s 0.0015s 19.3 667.3
87// rsa 4096 bits 0.3464s 0.0053s 2.9 187.7
88// sign verify sign/s verify/s
89// dsa 512 bits 0.0016s 0.0020s 613.1 510.5
90// dsa 1024 bits 0.0045s 0.0054s 221.0 183.9
91//
92// My code is still way faster, huh:-) And I believe that even
93// higher performance can be achieved. Note that as keys get
94// longer, performance gain is larger. Why? According to the
95// profiler there is another player in the field, namely
96// BN_from_montgomery consuming larger and larger portion of CPU
97// time as keysize decreases. I therefore consider putting effort
98// to assembler implementation of the following routine:
99//
100// void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
101// {
102// int i,j;
103// BN_ULONG v;
104//
105// for (i=0; i<nl; i++)
106// {
107// v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
108// nrp++;
109// rp++;
110// if (((nrp[-1]+=v)&BN_MASK2) < v)
111// for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
112// }
113// }
114//
115// It might as well be beneficial to implement even combaX
116// variants, as it appears as it can literally unleash the
117// performance (see comment section to bn_mul_comba8 below).
118//
119// And finally for your reference the output for 0.9.6a compiled
120// with SGIcc version 0.01.0-12 (keep in mind that for the moment
121// of this writing it's not possible to convince SGIcc to use
122// BN_UMULT_HIGH inline assembler macro, yet the code is fast,
123// i.e. for a compiler generated one:-):
124//
125// sign verify sign/s verify/s
126// rsa 512 bits 0.0022s 0.0002s 452.7 5894.3
127// rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9
128// rsa 2048 bits 0.0578s 0.0017s 17.3 600.2
129// rsa 4096 bits 0.3838s 0.0061s 2.6 164.5
130// sign verify sign/s verify/s
131// dsa 512 bits 0.0018s 0.0022s 547.3 459.6
132// dsa 1024 bits 0.0051s 0.0062s 196.6 161.3
133//
134// Oh! Benchmarks were performed on 733MHz Lion-class Itanium
135// system running Redhat Linux 7.1 (very special thanks to Ray
136// McCaffity of Williams Communications for providing an account).
137//
138// Q. What's the heck with 'rum 1<<5' at the end of every function?
139// A. Well, by clearing the "upper FP registers written" bit of the
140// User Mask I want to excuse the kernel from preserving upper
141// (f32-f128) FP register bank over process context switch, thus
142// minimizing bus bandwidth consumption during the switch (i.e.
46f4e1be 143// after PKI operation completes and the program is off doing
4cb73bf8
AP
144// something else like bulk symmetric encryption). Having said
145// this, I also want to point out that it might be good idea
146// to compile the whole toolkit (as well as majority of the
147// programs for that matter) with -mfixed-range=f32-f127 command
148// line option. No, it doesn't prevent the compiler from writing
149// to upper bank, but at least discourages to do so. If you don't
150// like the idea you have the option to compile the module with
151// -Drum=nop.m in command line.
152//
153
e2f2a9af
AP
154#if defined(_HPUX_SOURCE) && !defined(_LP64)
155#define ADDP addp4
156#else
157#define ADDP add
158#endif
6e652da4
RL
159#ifdef __VMS
160.alias abort, "decc$abort"
161#endif
e2f2a9af 162
4cb73bf8
AP
163#if 1
164//
165// bn_[add|sub]_words routines.
166//
46f4e1be 167// Loops are spinning in 2*(n+5) ticks on Itanium (provided that the
4cb73bf8
AP
168// data reside in L1 cache, i.e. 2 ticks away). It's possible to
169// compress the epilogue and get down to 2*n+6, but at the cost of
170// scalability (the neat feature of this implementation is that it
171// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
172// I consider that the epilogue is short enough as it is to trade tiny
173// performance loss on Itanium for scalability.
174//
175// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
176//
177.global bn_add_words#
178.proc bn_add_words#
179.align 64
622d3d35 180.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
181bn_add_words:
182 .prologue
4cb73bf8 183 .save ar.pfs,r2
622d3d35 184{ .mii; alloc r2=ar.pfs,4,12,0,16
4cb73bf8 185 cmp4.le p6,p0=r35,r0 };;
622d3d35 186{ .mfb; mov r8=r0 // return value
4cb73bf8
AP
187(p6) br.ret.spnt.many b0 };;
188
622d3d35 189{ .mib; sub r10=r35,r0,1
ef428d56 190 .save ar.lc,r3
4cb73bf8
AP
191 mov r3=ar.lc
192 brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16
193 }
e2f2a9af 194{ .mib; ADDP r14=0,r32 // rp
7cfe2a5e 195 .save pr,r9
4cb73bf8 196 mov r9=pr };;
7cfe2a5e 197 .body
e2f2a9af 198{ .mii; ADDP r15=0,r33 // ap
4cb73bf8
AP
199 mov ar.lc=r10
200 mov ar.ec=6 }
e2f2a9af 201{ .mib; ADDP r16=0,r34 // bp
622d3d35 202 mov pr.rot=1<<16 };;
4cb73bf8 203
622d3d35
AP
204.L_bn_add_words_ctop:
205{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
4cb73bf8
AP
206 (p18) add r39=r37,r34
207 (p19) cmp.ltu.unc p56,p0=r40,r38 }
622d3d35 208{ .mfb; (p0) nop.m 0x0
4cb73bf8
AP
209 (p0) nop.f 0x0
210 (p0) nop.b 0x0 }
622d3d35 211{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
4cb73bf8
AP
212 (p58) cmp.eq.or p57,p0=-1,r41 // (p20)
213 (p58) add r41=1,r41 } // (p20)
622d3d35 214{ .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r
4cb73bf8
AP
215 (p0) nop.f 0x0
216 br.ctop.sptk .L_bn_add_words_ctop };;
217.L_bn_add_words_cend:
218
622d3d35 219{ .mii;
4cb73bf8 220(p59) add r8=1,r8 // return value
46a0d4fb 221 mov pr=r9,0x1ffff
4cb73bf8 222 mov ar.lc=r3 }
622d3d35 223{ .mbb; nop.b 0x0
4cb73bf8
AP
224 br.ret.sptk.many b0 };;
225.endp bn_add_words#
226
227//
228// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
229//
230.global bn_sub_words#
231.proc bn_sub_words#
232.align 64
622d3d35 233.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
234bn_sub_words:
235 .prologue
4cb73bf8 236 .save ar.pfs,r2
622d3d35 237{ .mii; alloc r2=ar.pfs,4,12,0,16
4cb73bf8 238 cmp4.le p6,p0=r35,r0 };;
622d3d35 239{ .mfb; mov r8=r0 // return value
4cb73bf8
AP
240(p6) br.ret.spnt.many b0 };;
241
622d3d35 242{ .mib; sub r10=r35,r0,1
ef428d56 243 .save ar.lc,r3
4cb73bf8
AP
244 mov r3=ar.lc
245 brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
246 }
e2f2a9af 247{ .mib; ADDP r14=0,r32 // rp
7cfe2a5e 248 .save pr,r9
4cb73bf8 249 mov r9=pr };;
7cfe2a5e 250 .body
e2f2a9af 251{ .mii; ADDP r15=0,r33 // ap
4cb73bf8
AP
252 mov ar.lc=r10
253 mov ar.ec=6 }
e2f2a9af 254{ .mib; ADDP r16=0,r34 // bp
622d3d35 255 mov pr.rot=1<<16 };;
4cb73bf8 256
622d3d35
AP
257.L_bn_sub_words_ctop:
258{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
4cb73bf8
AP
259 (p18) sub r39=r37,r34
260 (p19) cmp.gtu.unc p56,p0=r40,r38 }
622d3d35 261{ .mfb; (p0) nop.m 0x0
4cb73bf8
AP
262 (p0) nop.f 0x0
263 (p0) nop.b 0x0 }
622d3d35 264{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
4cb73bf8
AP
265 (p58) cmp.eq.or p57,p0=0,r41 // (p20)
266 (p58) add r41=-1,r41 } // (p20)
622d3d35 267{ .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r
4cb73bf8
AP
268 (p0) nop.b 0x0
269 br.ctop.sptk .L_bn_sub_words_ctop };;
270.L_bn_sub_words_cend:
271
622d3d35 272{ .mii;
4cb73bf8 273(p59) add r8=1,r8 // return value
46a0d4fb 274 mov pr=r9,0x1ffff
4cb73bf8 275 mov ar.lc=r3 }
622d3d35 276{ .mbb; nop.b 0x0
4cb73bf8
AP
277 br.ret.sptk.many b0 };;
278.endp bn_sub_words#
279#endif
280
281#if 0
282#define XMA_TEMPTATION
283#endif
284
285#if 1
286//
287// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
288//
289.global bn_mul_words#
290.proc bn_mul_words#
291.align 64
622d3d35 292.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
293bn_mul_words:
294 .prologue
4cb73bf8
AP
295 .save ar.pfs,r2
296#ifdef XMA_TEMPTATION
622d3d35 297{ .mfi; alloc r2=ar.pfs,4,0,0,0 };;
4cb73bf8 298#else
722d17cb 299{ .mfi; alloc r2=ar.pfs,4,12,0,16 };;
4cb73bf8 300#endif
622d3d35 301{ .mib; mov r8=r0 // return value
4cb73bf8
AP
302 cmp4.le p6,p0=r34,r0
303(p6) br.ret.spnt.many b0 };;
304
622d3d35 305{ .mii; sub r10=r34,r0,1
ef428d56 306 .save ar.lc,r3
4cb73bf8 307 mov r3=ar.lc
7cfe2a5e 308 .save pr,r9
4cb73bf8
AP
309 mov r9=pr };;
310
311 .body
622d3d35 312{ .mib; setf.sig f8=r35 // w
722d17cb
AP
313 mov pr.rot=0x800001<<16
314 // ------^----- serves as (p50) at first (p27)
4cb73bf8
AP
315 brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
316 }
317
318#ifndef XMA_TEMPTATION
319
e2f2a9af
AP
320{ .mmi; ADDP r14=0,r32 // rp
321 ADDP r15=0,r33 // ap
4cb73bf8 322 mov ar.lc=r10 }
e2f2a9af 323{ .mmi; mov r40=0 // serves as r35 at first (p27)
722d17cb 324 mov ar.ec=13 };;
4cb73bf8 325
722d17cb
AP
326// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
327// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
4cb73bf8 328// bypass L1 cache and L2 latency is actually best-case scenario for
722d17cb
AP
329// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
330// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
4cb73bf8
AP
331// would give us ~5% in *overall* performance improvement on "wider"
332// IA-64, but would hurt Itanium for about same because of longer
333// epilogue. As it's a matter of few percents in either case I've
334// chosen to trade the scalability for development time (you can see
335// this very instruction sequence in bn_mul_add_words loop which in
336// turn is scalable).
622d3d35 337.L_bn_mul_words_ctop:
722d17cb
AP
338{ .mfi; (p25) getf.sig r36=f52 // low
339 (p21) xmpy.lu f48=f37,f8
340 (p28) cmp.ltu p54,p50=r41,r39 }
622d3d35 341{ .mfi; (p16) ldf8 f32=[r15],8
722d17cb 342 (p21) xmpy.hu f40=f37,f8
4cb73bf8 343 (p0) nop.i 0x0 };;
722d17cb
AP
344{ .mii; (p25) getf.sig r32=f44 // high
345 .pred.rel "mutex",p50,p54
346 (p50) add r40=r38,r35 // (p27)
347 (p54) add r40=r38,r35,1 } // (p27)
348{ .mfb; (p28) st8 [r14]=r41,8
4cb73bf8
AP
349 (p0) nop.f 0x0
350 br.ctop.sptk .L_bn_mul_words_ctop };;
351.L_bn_mul_words_cend:
352
622d3d35 353{ .mii; nop.m 0x0
722d17cb
AP
354.pred.rel "mutex",p51,p55
355(p51) add r8=r36,r0
356(p55) add r8=r36,r0,1 }
622d3d35 357{ .mfb; nop.m 0x0
4cb73bf8
AP
358 nop.f 0x0
359 nop.b 0x0 }
360
361#else // XMA_TEMPTATION
362
363 setf.sig f37=r0 // serves as carry at (p18) tick
364 mov ar.lc=r10
622d3d35 365 mov ar.ec=5;;
4cb73bf8
AP
366
367// Most of you examining this code very likely wonder why in the name
368// of Intel the following loop is commented out? Indeed, it looks so
369// neat that you find it hard to believe that it's something wrong
370// with it, right? The catch is that every iteration depends on the
371// result from previous one and the latter isn't available instantly.
372// The loop therefore spins at the latency of xma minus 1, or in other
373// words at 6*(n+4) ticks:-( Compare to the "production" loop above
374// that runs in 2*(n+11) where the low latency problem is worked around
60250017 375// by moving the dependency to one-tick latent integer ALU. Note that
4cb73bf8
AP
376// "distance" between ldf8 and xma is not latency of ldf8, but the
377// *difference* between xma and ldf8 latencies.
622d3d35
AP
378.L_bn_mul_words_ctop:
379{ .mfi; (p16) ldf8 f32=[r33],8
4cb73bf8 380 (p18) xma.hu f38=f34,f8,f39 }
622d3d35 381{ .mfb; (p20) stf8 [r32]=f37,8
4cb73bf8
AP
382 (p18) xma.lu f35=f34,f8,f39
383 br.ctop.sptk .L_bn_mul_words_ctop };;
384.L_bn_mul_words_cend:
385
386 getf.sig r8=f41 // the return value
387
388#endif // XMA_TEMPTATION
389
622d3d35 390{ .mii; nop.m 0x0
46a0d4fb 391 mov pr=r9,0x1ffff
4cb73bf8 392 mov ar.lc=r3 }
622d3d35 393{ .mfb; rum 1<<5 // clear um.mfh
4cb73bf8
AP
394 nop.f 0x0
395 br.ret.sptk.many b0 };;
396.endp bn_mul_words#
397#endif
398
399#if 1
400//
401// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
402//
403.global bn_mul_add_words#
404.proc bn_mul_add_words#
405.align 64
e2f2a9af 406.skip 48 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
407bn_mul_add_words:
408 .prologue
4cb73bf8 409 .save ar.pfs,r2
e2f2a9af
AP
410{ .mmi; alloc r2=ar.pfs,4,4,0,8
411 cmp4.le p6,p0=r34,r0
ef428d56 412 .save ar.lc,r3
e2f2a9af
AP
413 mov r3=ar.lc };;
414{ .mib; mov r8=r0 // return value
415 sub r10=r34,r0,1
416(p6) br.ret.spnt.many b0 };;
4cb73bf8 417
e2f2a9af 418{ .mib; setf.sig f8=r35 // w
ef428d56 419 .save pr,r9
e2f2a9af 420 mov r9=pr
4cb73bf8
AP
421 brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
422 }
7cfe2a5e 423 .body
e2f2a9af
AP
424{ .mmi; ADDP r14=0,r32 // rp
425 ADDP r15=0,r33 // ap
4cb73bf8 426 mov ar.lc=r10 }
e2f2a9af
AP
427{ .mii; ADDP r16=0,r32 // rp copy
428 mov pr.rot=0x2001<<16
429 // ------^----- serves as (p40) at first (p27)
430 mov ar.ec=11 };;
431
432// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
433// Itanium 2. Yes, unlike previous versions it scales:-) Previous
d900a015 434// version was performing *all* additions in IALU and was starving
e2f2a9af
AP
435// for those even on Itanium 2. In this version one addition is
436// moved to FPU and is folded with multiplication. This is at cost
60250017 437// of propagating the result from previous call to this subroutine
e2f2a9af
AP
438// to L2 cache... In other words negligible even for shorter keys.
439// *Overall* performance improvement [over previous version] varies
440// from 11 to 22 percent depending on key length.
622d3d35 441.L_bn_mul_add_words_ctop:
e2f2a9af
AP
442.pred.rel "mutex",p40,p42
443{ .mfi; (p23) getf.sig r36=f45 // low
444 (p20) xma.lu f42=f36,f8,f50 // low
445 (p40) add r39=r39,r35 } // (p27)
446{ .mfi; (p16) ldf8 f32=[r15],8 // *(ap++)
447 (p20) xma.hu f36=f36,f8,f50 // high
448 (p42) add r39=r39,r35,1 };; // (p27)
449{ .mmi; (p24) getf.sig r32=f40 // high
450 (p16) ldf8 f46=[r16],8 // *(rp1++)
451 (p40) cmp.ltu p41,p39=r39,r35 } // (p27)
452{ .mib; (p26) st8 [r14]=r39,8 // *(rp2++)
453 (p42) cmp.leu p41,p39=r39,r35 // (p27)
4cb73bf8
AP
454 br.ctop.sptk .L_bn_mul_add_words_ctop};;
455.L_bn_mul_add_words_cend:
456
e2f2a9af
AP
457{ .mmi; .pred.rel "mutex",p40,p42
458(p40) add r8=r35,r0
459(p42) add r8=r35,r0,1
460 mov pr=r9,0x1ffff }
461{ .mib; rum 1<<5 // clear um.mfh
462 mov ar.lc=r3
4cb73bf8
AP
463 br.ret.sptk.many b0 };;
464.endp bn_mul_add_words#
465#endif
466
467#if 1
468//
469// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
470//
471.global bn_sqr_words#
472.proc bn_sqr_words#
473.align 64
df443918 474.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
475bn_sqr_words:
476 .prologue
4cb73bf8 477 .save ar.pfs,r2
622d3d35 478{ .mii; alloc r2=ar.pfs,3,0,0,0
4cb73bf8 479 sxt4 r34=r34 };;
622d3d35 480{ .mii; cmp.le p6,p0=r34,r0
4cb73bf8 481 mov r8=r0 } // return value
e2f2a9af
AP
482{ .mfb; ADDP r32=0,r32
483 nop.f 0x0
4cb73bf8
AP
484(p6) br.ret.spnt.many b0 };;
485
622d3d35 486{ .mii; sub r10=r34,r0,1
ef428d56 487 .save ar.lc,r3
4cb73bf8 488 mov r3=ar.lc
ef428d56 489 .save pr,r9
4cb73bf8
AP
490 mov r9=pr };;
491
492 .body
e2f2a9af 493{ .mib; ADDP r33=0,r33
4cb73bf8
AP
494 mov pr.rot=1<<16
495 brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
496 }
622d3d35 497{ .mii; add r34=8,r32
4cb73bf8 498 mov ar.lc=r10
622d3d35 499 mov ar.ec=18 };;
4cb73bf8
AP
500
501// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
502// possible to compress the epilogue (I'm getting tired to write this
503// comment over and over) and get down to 2*n+16 at the cost of
504// scalability. The decision will very likely be reconsidered after the
46f4e1be 505// benchmark program is profiled. I.e. if performance gain on Itanium
4cb73bf8 506// will appear larger than loss on "wider" IA-64, then the loop should
0d4fb843 507// be explicitly split and the epilogue compressed.
622d3d35
AP
508.L_bn_sqr_words_ctop:
509{ .mfi; (p16) ldf8 f32=[r33],8
4cb73bf8
AP
510 (p25) xmpy.lu f42=f41,f41
511 (p0) nop.i 0x0 }
622d3d35 512{ .mib; (p33) stf8 [r32]=f50,16
4cb73bf8
AP
513 (p0) nop.i 0x0
514 (p0) nop.b 0x0 }
622d3d35 515{ .mfi; (p0) nop.m 0x0
4cb73bf8
AP
516 (p25) xmpy.hu f52=f41,f41
517 (p0) nop.i 0x0 }
622d3d35 518{ .mib; (p33) stf8 [r34]=f60,16
4cb73bf8
AP
519 (p0) nop.i 0x0
520 br.ctop.sptk .L_bn_sqr_words_ctop };;
521.L_bn_sqr_words_cend:
522
622d3d35 523{ .mii; nop.m 0x0
46a0d4fb 524 mov pr=r9,0x1ffff
4cb73bf8 525 mov ar.lc=r3 }
622d3d35 526{ .mfb; rum 1<<5 // clear um.mfh
4cb73bf8
AP
527 nop.f 0x0
528 br.ret.sptk.many b0 };;
529.endp bn_sqr_words#
530#endif
531
532#if 1
a95541d6 533// Apparently we win nothing by implementing special bn_sqr_comba8.
4cb73bf8
AP
534// Yes, it is possible to reduce the number of multiplications by
535// almost factor of two, but then the amount of additions would
536// increase by factor of two (as we would have to perform those
537// otherwise performed by xma ourselves). Normally we would trade
538// anyway as multiplications are way more expensive, but not this
539// time... Multiplication kernel is fully pipelined and as we drain
540// one 128-bit multiplication result per clock cycle multiplications
541// are effectively as inexpensive as additions. Special implementation
542// might become of interest for "wider" IA-64 implementation as you'll
543// be able to get through the multiplication phase faster (there won't
544// be any stall issues as discussed in the commentary section below and
545// you therefore will be able to employ all 4 FP units)... But these
546// Itanium days it's simply too hard to justify the effort so I just
547// drop down to bn_mul_comba8 code:-)
548//
549// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
550//
551.global bn_sqr_comba8#
552.proc bn_sqr_comba8#
553.align 64
554bn_sqr_comba8:
555 .prologue
4cb73bf8 556 .save ar.pfs,r2
e2f2a9af 557#if defined(_HPUX_SOURCE) && !defined(_LP64)
622d3d35 558{ .mii; alloc r2=ar.pfs,2,1,0,0
46a0d4fb
AP
559 addp4 r33=0,r33
560 addp4 r32=0,r32 };;
561{ .mii;
562#else
563{ .mii; alloc r2=ar.pfs,2,1,0,0
564#endif
4cb73bf8
AP
565 mov r34=r33
566 add r14=8,r33 };;
567 .body
622d3d35 568{ .mii; add r17=8,r34
4cb73bf8
AP
569 add r15=16,r33
570 add r18=16,r34 }
622d3d35 571{ .mfb; add r16=24,r33
4cb73bf8 572 br .L_cheat_entry_point8 };;
622d3d35 573.endp bn_sqr_comba8#
4cb73bf8
AP
574#endif
575
576#if 1
577// I've estimated this routine to run in ~120 ticks, but in reality
578// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
579// cycles consumed for instructions fetch? Or did I misinterpret some
053fa39a 580// clause in Itanium µ-architecture manual? Comments are welcomed and
4cb73bf8
AP
581// highly appreciated.
582//
e2f2a9af
AP
583// On Itanium 2 it takes ~190 ticks. This is because of stalls on
584// result from getf.sig. I do nothing about it at this point for
585// reasons depicted below.
586//
4cb73bf8
AP
587// However! It should be noted that even 160 ticks is darn good result
588// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
589// C version (compiled with gcc with inline assembler). I really
590// kicked compiler's butt here, didn't I? Yeah! This brings us to the
591// following statement. It's damn shame that this routine isn't called
592// very often nowadays! According to the profiler most CPU time is
593// consumed by bn_mul_add_words called from BN_from_montgomery. In
594// order to estimate what we're missing, I've compared the performance
595// of this routine against "traditional" implementation, i.e. against
596// following routine:
597//
598// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
599// { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
600// r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
601// r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
602// r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
603// r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
604// r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
605// r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
606// r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
607// }
608//
609// The one below is over 8 times faster than the one above:-( Even
610// more reasons to "combafy" bn_mul_add_mont...
611//
612// And yes, this routine really made me wish there were an optimizing
613// assembler! It also feels like it deserves a dedication.
614//
615// To my wife for being there and to my kids...
616//
617// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
618//
619#define carry1 r14
620#define carry2 r15
621#define carry3 r34
622.global bn_mul_comba8#
623.proc bn_mul_comba8#
624.align 64
625bn_mul_comba8:
626 .prologue
4cb73bf8 627 .save ar.pfs,r2
e2f2a9af 628#if defined(_HPUX_SOURCE) && !defined(_LP64)
622d3d35 629{ .mii; alloc r2=ar.pfs,3,0,0,0
46a0d4fb
AP
630 addp4 r33=0,r33
631 addp4 r34=0,r34 };;
632{ .mii; addp4 r32=0,r32
633#else
634{ .mii; alloc r2=ar.pfs,3,0,0,0
635#endif
4cb73bf8
AP
636 add r14=8,r33
637 add r17=8,r34 }
638 .body
622d3d35 639{ .mii; add r15=16,r33
4cb73bf8 640 add r18=16,r34
622d3d35 641 add r16=24,r33 }
4cb73bf8 642.L_cheat_entry_point8:
622d3d35 643{ .mmi; add r19=24,r34
4cb73bf8 644
622d3d35 645 ldf8 f32=[r33],32 };;
4cb73bf8 646
622d3d35
AP
647{ .mmi; ldf8 f120=[r34],32
648 ldf8 f121=[r17],32 }
649{ .mmi; ldf8 f122=[r18],32
650 ldf8 f123=[r19],32 };;
651{ .mmi; ldf8 f124=[r34]
4cb73bf8 652 ldf8 f125=[r17] }
622d3d35 653{ .mmi; ldf8 f126=[r18]
4cb73bf8
AP
654 ldf8 f127=[r19] }
655
622d3d35 656{ .mmi; ldf8 f33=[r14],32
4cb73bf8 657 ldf8 f34=[r15],32 }
622d3d35 658{ .mmi; ldf8 f35=[r16],32;;
4cb73bf8 659 ldf8 f36=[r33] }
622d3d35 660{ .mmi; ldf8 f37=[r14]
4cb73bf8 661 ldf8 f38=[r15] }
622d3d35 662{ .mfi; ldf8 f39=[r16]
4cb73bf8
AP
663// -------\ Entering multiplier's heaven /-------
664// ------------\ /------------
665// -----------------\ /-----------------
666// ----------------------\/----------------------
667 xma.hu f41=f32,f120,f0 }
622d3d35
AP
668{ .mfi; xma.lu f40=f32,f120,f0 };; // (*)
669{ .mfi; xma.hu f51=f32,f121,f0 }
670{ .mfi; xma.lu f50=f32,f121,f0 };;
671{ .mfi; xma.hu f61=f32,f122,f0 }
672{ .mfi; xma.lu f60=f32,f122,f0 };;
673{ .mfi; xma.hu f71=f32,f123,f0 }
674{ .mfi; xma.lu f70=f32,f123,f0 };;
675{ .mfi; xma.hu f81=f32,f124,f0 }
676{ .mfi; xma.lu f80=f32,f124,f0 };;
677{ .mfi; xma.hu f91=f32,f125,f0 }
678{ .mfi; xma.lu f90=f32,f125,f0 };;
679{ .mfi; xma.hu f101=f32,f126,f0 }
680{ .mfi; xma.lu f100=f32,f126,f0 };;
681{ .mfi; xma.hu f111=f32,f127,f0 }
682{ .mfi; xma.lu f110=f32,f127,f0 };;//
4cb73bf8
AP
683// (*) You can argue that splitting at every second bundle would
684// prevent "wider" IA-64 implementations from achieving the peak
685// performance. Well, not really... The catch is that if you
686// intend to keep 4 FP units busy by splitting at every fourth
687// bundle and thus perform these 16 multiplications in 4 ticks,
688// the first bundle *below* would stall because the result from
689// the first xma bundle *above* won't be available for another 3
690// ticks (if not more, being an optimist, I assume that "wider"
691// implementation will have same latency:-). This stall will hold
692// you back and the performance would be as if every second bundle
693// were split *anyway*...
622d3d35 694{ .mfi; getf.sig r16=f40
4cb73bf8
AP
695 xma.hu f42=f33,f120,f41
696 add r33=8,r32 }
622d3d35
AP
697{ .mfi; xma.lu f41=f33,f120,f41 };;
698{ .mfi; getf.sig r24=f50
4cb73bf8 699 xma.hu f52=f33,f121,f51 }
622d3d35
AP
700{ .mfi; xma.lu f51=f33,f121,f51 };;
701{ .mfi; st8 [r32]=r16,16
4cb73bf8 702 xma.hu f62=f33,f122,f61 }
622d3d35
AP
703{ .mfi; xma.lu f61=f33,f122,f61 };;
704{ .mfi; xma.hu f72=f33,f123,f71 }
705{ .mfi; xma.lu f71=f33,f123,f71 };;
706{ .mfi; xma.hu f82=f33,f124,f81 }
707{ .mfi; xma.lu f81=f33,f124,f81 };;
708{ .mfi; xma.hu f92=f33,f125,f91 }
709{ .mfi; xma.lu f91=f33,f125,f91 };;
710{ .mfi; xma.hu f102=f33,f126,f101 }
711{ .mfi; xma.lu f101=f33,f126,f101 };;
712{ .mfi; xma.hu f112=f33,f127,f111 }
713{ .mfi; xma.lu f111=f33,f127,f111 };;//
4cb73bf8 714//-------------------------------------------------//
622d3d35 715{ .mfi; getf.sig r25=f41
4cb73bf8 716 xma.hu f43=f34,f120,f42 }
622d3d35
AP
717{ .mfi; xma.lu f42=f34,f120,f42 };;
718{ .mfi; getf.sig r16=f60
4cb73bf8 719 xma.hu f53=f34,f121,f52 }
622d3d35
AP
720{ .mfi; xma.lu f52=f34,f121,f52 };;
721{ .mfi; getf.sig r17=f51
4cb73bf8
AP
722 xma.hu f63=f34,f122,f62
723 add r25=r25,r24 }
622d3d35 724{ .mfi; xma.lu f62=f34,f122,f62
4cb73bf8 725 mov carry1=0 };;
622d3d35 726{ .mfi; cmp.ltu p6,p0=r25,r24
4cb73bf8 727 xma.hu f73=f34,f123,f72 }
622d3d35
AP
728{ .mfi; xma.lu f72=f34,f123,f72 };;
729{ .mfi; st8 [r33]=r25,16
4cb73bf8
AP
730 xma.hu f83=f34,f124,f82
731(p6) add carry1=1,carry1 }
622d3d35
AP
732{ .mfi; xma.lu f82=f34,f124,f82 };;
733{ .mfi; xma.hu f93=f34,f125,f92 }
734{ .mfi; xma.lu f92=f34,f125,f92 };;
735{ .mfi; xma.hu f103=f34,f126,f102 }
736{ .mfi; xma.lu f102=f34,f126,f102 };;
737{ .mfi; xma.hu f113=f34,f127,f112 }
738{ .mfi; xma.lu f112=f34,f127,f112 };;//
4cb73bf8 739//-------------------------------------------------//
622d3d35 740{ .mfi; getf.sig r18=f42
4cb73bf8
AP
741 xma.hu f44=f35,f120,f43
742 add r17=r17,r16 }
622d3d35
AP
743{ .mfi; xma.lu f43=f35,f120,f43 };;
744{ .mfi; getf.sig r24=f70
4cb73bf8 745 xma.hu f54=f35,f121,f53 }
622d3d35 746{ .mfi; mov carry2=0
4cb73bf8 747 xma.lu f53=f35,f121,f53 };;
622d3d35 748{ .mfi; getf.sig r25=f61
4cb73bf8
AP
749 xma.hu f64=f35,f122,f63
750 cmp.ltu p7,p0=r17,r16 }
622d3d35 751{ .mfi; add r18=r18,r17
4cb73bf8 752 xma.lu f63=f35,f122,f63 };;
622d3d35 753{ .mfi; getf.sig r26=f52
4cb73bf8
AP
754 xma.hu f74=f35,f123,f73
755(p7) add carry2=1,carry2 }
622d3d35 756{ .mfi; cmp.ltu p7,p0=r18,r17
4cb73bf8
AP
757 xma.lu f73=f35,f123,f73
758 add r18=r18,carry1 };;
622d3d35 759{ .mfi;
4cb73bf8
AP
760 xma.hu f84=f35,f124,f83
761(p7) add carry2=1,carry2 }
622d3d35 762{ .mfi; cmp.ltu p7,p0=r18,carry1
4cb73bf8 763 xma.lu f83=f35,f124,f83 };;
622d3d35 764{ .mfi; st8 [r32]=r18,16
4cb73bf8
AP
765 xma.hu f94=f35,f125,f93
766(p7) add carry2=1,carry2 }
622d3d35
AP
767{ .mfi; xma.lu f93=f35,f125,f93 };;
768{ .mfi; xma.hu f104=f35,f126,f103 }
769{ .mfi; xma.lu f103=f35,f126,f103 };;
770{ .mfi; xma.hu f114=f35,f127,f113 }
771{ .mfi; mov carry1=0
4cb73bf8 772 xma.lu f113=f35,f127,f113
622d3d35 773 add r25=r25,r24 };;//
4cb73bf8 774//-------------------------------------------------//
622d3d35 775{ .mfi; getf.sig r27=f43
4cb73bf8
AP
776 xma.hu f45=f36,f120,f44
777 cmp.ltu p6,p0=r25,r24 }
622d3d35 778{ .mfi; xma.lu f44=f36,f120,f44
4cb73bf8 779 add r26=r26,r25 };;
622d3d35 780{ .mfi; getf.sig r16=f80
4cb73bf8
AP
781 xma.hu f55=f36,f121,f54
782(p6) add carry1=1,carry1 }
622d3d35
AP
783{ .mfi; xma.lu f54=f36,f121,f54 };;
784{ .mfi; getf.sig r17=f71
4cb73bf8
AP
785 xma.hu f65=f36,f122,f64
786 cmp.ltu p6,p0=r26,r25 }
622d3d35 787{ .mfi; xma.lu f64=f36,f122,f64
4cb73bf8 788 add r27=r27,r26 };;
622d3d35 789{ .mfi; getf.sig r18=f62
4cb73bf8
AP
790 xma.hu f75=f36,f123,f74
791(p6) add carry1=1,carry1 }
622d3d35 792{ .mfi; cmp.ltu p6,p0=r27,r26
4cb73bf8
AP
793 xma.lu f74=f36,f123,f74
794 add r27=r27,carry2 };;
622d3d35 795{ .mfi; getf.sig r19=f53
4cb73bf8
AP
796 xma.hu f85=f36,f124,f84
797(p6) add carry1=1,carry1 }
622d3d35 798{ .mfi; xma.lu f84=f36,f124,f84
4cb73bf8 799 cmp.ltu p6,p0=r27,carry2 };;
622d3d35 800{ .mfi; st8 [r33]=r27,16
4cb73bf8
AP
801 xma.hu f95=f36,f125,f94
802(p6) add carry1=1,carry1 }
622d3d35
AP
803{ .mfi; xma.lu f94=f36,f125,f94 };;
804{ .mfi; xma.hu f105=f36,f126,f104 }
805{ .mfi; mov carry2=0
4cb73bf8
AP
806 xma.lu f104=f36,f126,f104
807 add r17=r17,r16 };;
622d3d35 808{ .mfi; xma.hu f115=f36,f127,f114
4cb73bf8 809 cmp.ltu p7,p0=r17,r16 }
622d3d35
AP
810{ .mfi; xma.lu f114=f36,f127,f114
811 add r18=r18,r17 };;//
4cb73bf8 812//-------------------------------------------------//
622d3d35 813{ .mfi; getf.sig r20=f44
4cb73bf8
AP
814 xma.hu f46=f37,f120,f45
815(p7) add carry2=1,carry2 }
622d3d35 816{ .mfi; cmp.ltu p7,p0=r18,r17
4cb73bf8
AP
817 xma.lu f45=f37,f120,f45
818 add r19=r19,r18 };;
622d3d35 819{ .mfi; getf.sig r24=f90
4cb73bf8 820 xma.hu f56=f37,f121,f55 }
622d3d35
AP
821{ .mfi; xma.lu f55=f37,f121,f55 };;
822{ .mfi; getf.sig r25=f81
4cb73bf8
AP
823 xma.hu f66=f37,f122,f65
824(p7) add carry2=1,carry2 }
622d3d35 825{ .mfi; cmp.ltu p7,p0=r19,r18
4cb73bf8
AP
826 xma.lu f65=f37,f122,f65
827 add r20=r20,r19 };;
622d3d35 828{ .mfi; getf.sig r26=f72
4cb73bf8
AP
829 xma.hu f76=f37,f123,f75
830(p7) add carry2=1,carry2 }
622d3d35 831{ .mfi; cmp.ltu p7,p0=r20,r19
4cb73bf8
AP
832 xma.lu f75=f37,f123,f75
833 add r20=r20,carry1 };;
622d3d35 834{ .mfi; getf.sig r27=f63
4cb73bf8
AP
835 xma.hu f86=f37,f124,f85
836(p7) add carry2=1,carry2 }
622d3d35 837{ .mfi; xma.lu f85=f37,f124,f85
4cb73bf8 838 cmp.ltu p7,p0=r20,carry1 };;
622d3d35 839{ .mfi; getf.sig r28=f54
4cb73bf8
AP
840 xma.hu f96=f37,f125,f95
841(p7) add carry2=1,carry2 }
622d3d35 842{ .mfi; st8 [r32]=r20,16
4cb73bf8 843 xma.lu f95=f37,f125,f95 };;
622d3d35
AP
844{ .mfi; xma.hu f106=f37,f126,f105 }
845{ .mfi; mov carry1=0
4cb73bf8
AP
846 xma.lu f105=f37,f126,f105
847 add r25=r25,r24 };;
622d3d35 848{ .mfi; xma.hu f116=f37,f127,f115
4cb73bf8 849 cmp.ltu p6,p0=r25,r24 }
622d3d35
AP
850{ .mfi; xma.lu f115=f37,f127,f115
851 add r26=r26,r25 };;//
4cb73bf8 852//-------------------------------------------------//
622d3d35 853{ .mfi; getf.sig r29=f45
4cb73bf8
AP
854 xma.hu f47=f38,f120,f46
855(p6) add carry1=1,carry1 }
622d3d35 856{ .mfi; cmp.ltu p6,p0=r26,r25
4cb73bf8
AP
857 xma.lu f46=f38,f120,f46
858 add r27=r27,r26 };;
622d3d35 859{ .mfi; getf.sig r16=f100
4cb73bf8
AP
860 xma.hu f57=f38,f121,f56
861(p6) add carry1=1,carry1 }
622d3d35 862{ .mfi; cmp.ltu p6,p0=r27,r26
4cb73bf8
AP
863 xma.lu f56=f38,f121,f56
864 add r28=r28,r27 };;
622d3d35 865{ .mfi; getf.sig r17=f91
4cb73bf8
AP
866 xma.hu f67=f38,f122,f66
867(p6) add carry1=1,carry1 }
622d3d35 868{ .mfi; cmp.ltu p6,p0=r28,r27
4cb73bf8
AP
869 xma.lu f66=f38,f122,f66
870 add r29=r29,r28 };;
622d3d35 871{ .mfi; getf.sig r18=f82
4cb73bf8
AP
872 xma.hu f77=f38,f123,f76
873(p6) add carry1=1,carry1 }
622d3d35 874{ .mfi; cmp.ltu p6,p0=r29,r28
4cb73bf8
AP
875 xma.lu f76=f38,f123,f76
876 add r29=r29,carry2 };;
622d3d35 877{ .mfi; getf.sig r19=f73
4cb73bf8
AP
878 xma.hu f87=f38,f124,f86
879(p6) add carry1=1,carry1 }
622d3d35 880{ .mfi; xma.lu f86=f38,f124,f86
4cb73bf8 881 cmp.ltu p6,p0=r29,carry2 };;
622d3d35 882{ .mfi; getf.sig r20=f64
4cb73bf8
AP
883 xma.hu f97=f38,f125,f96
884(p6) add carry1=1,carry1 }
622d3d35 885{ .mfi; st8 [r33]=r29,16
4cb73bf8 886 xma.lu f96=f38,f125,f96 };;
622d3d35 887{ .mfi; getf.sig r21=f55
4cb73bf8 888 xma.hu f107=f38,f126,f106 }
622d3d35 889{ .mfi; mov carry2=0
4cb73bf8
AP
890 xma.lu f106=f38,f126,f106
891 add r17=r17,r16 };;
622d3d35 892{ .mfi; xma.hu f117=f38,f127,f116
4cb73bf8 893 cmp.ltu p7,p0=r17,r16 }
622d3d35
AP
894{ .mfi; xma.lu f116=f38,f127,f116
895 add r18=r18,r17 };;//
4cb73bf8 896//-------------------------------------------------//
622d3d35 897{ .mfi; getf.sig r22=f46
4cb73bf8
AP
898 xma.hu f48=f39,f120,f47
899(p7) add carry2=1,carry2 }
622d3d35 900{ .mfi; cmp.ltu p7,p0=r18,r17
4cb73bf8
AP
901 xma.lu f47=f39,f120,f47
902 add r19=r19,r18 };;
622d3d35 903{ .mfi; getf.sig r24=f110
4cb73bf8
AP
904 xma.hu f58=f39,f121,f57
905(p7) add carry2=1,carry2 }
622d3d35 906{ .mfi; cmp.ltu p7,p0=r19,r18
4cb73bf8
AP
907 xma.lu f57=f39,f121,f57
908 add r20=r20,r19 };;
622d3d35 909{ .mfi; getf.sig r25=f101
4cb73bf8
AP
910 xma.hu f68=f39,f122,f67
911(p7) add carry2=1,carry2 }
622d3d35 912{ .mfi; cmp.ltu p7,p0=r20,r19
4cb73bf8
AP
913 xma.lu f67=f39,f122,f67
914 add r21=r21,r20 };;
622d3d35 915{ .mfi; getf.sig r26=f92
4cb73bf8
AP
916 xma.hu f78=f39,f123,f77
917(p7) add carry2=1,carry2 }
622d3d35 918{ .mfi; cmp.ltu p7,p0=r21,r20
4cb73bf8
AP
919 xma.lu f77=f39,f123,f77
920 add r22=r22,r21 };;
622d3d35 921{ .mfi; getf.sig r27=f83
4cb73bf8
AP
922 xma.hu f88=f39,f124,f87
923(p7) add carry2=1,carry2 }
622d3d35 924{ .mfi; cmp.ltu p7,p0=r22,r21
4cb73bf8
AP
925 xma.lu f87=f39,f124,f87
926 add r22=r22,carry1 };;
622d3d35 927{ .mfi; getf.sig r28=f74
4cb73bf8
AP
928 xma.hu f98=f39,f125,f97
929(p7) add carry2=1,carry2 }
622d3d35 930{ .mfi; xma.lu f97=f39,f125,f97
4cb73bf8 931 cmp.ltu p7,p0=r22,carry1 };;
622d3d35 932{ .mfi; getf.sig r29=f65
4cb73bf8
AP
933 xma.hu f108=f39,f126,f107
934(p7) add carry2=1,carry2 }
622d3d35 935{ .mfi; st8 [r32]=r22,16
4cb73bf8 936 xma.lu f107=f39,f126,f107 };;
622d3d35 937{ .mfi; getf.sig r30=f56
4cb73bf8 938 xma.hu f118=f39,f127,f117 }
622d3d35 939{ .mfi; xma.lu f117=f39,f127,f117 };;//
4cb73bf8 940//-------------------------------------------------//
46f4e1be 941// Leaving multiplier's heaven... Quite a ride, huh?
4cb73bf8 942
622d3d35 943{ .mii; getf.sig r31=f47
4cb73bf8
AP
944 add r25=r25,r24
945 mov carry1=0 };;
622d3d35 946{ .mii; getf.sig r16=f111
4cb73bf8
AP
947 cmp.ltu p6,p0=r25,r24
948 add r26=r26,r25 };;
622d3d35
AP
949{ .mfb; getf.sig r17=f102 }
950{ .mii;
4cb73bf8
AP
951(p6) add carry1=1,carry1
952 cmp.ltu p6,p0=r26,r25
953 add r27=r27,r26 };;
622d3d35
AP
954{ .mfb; nop.m 0x0 }
955{ .mii;
4cb73bf8
AP
956(p6) add carry1=1,carry1
957 cmp.ltu p6,p0=r27,r26
958 add r28=r28,r27 };;
622d3d35 959{ .mii; getf.sig r18=f93
4cb73bf8
AP
960 add r17=r17,r16
961 mov carry3=0 }
622d3d35 962{ .mii;
4cb73bf8
AP
963(p6) add carry1=1,carry1
964 cmp.ltu p6,p0=r28,r27
965 add r29=r29,r28 };;
622d3d35 966{ .mii; getf.sig r19=f84
4cb73bf8 967 cmp.ltu p7,p0=r17,r16 }
622d3d35 968{ .mii;
4cb73bf8
AP
969(p6) add carry1=1,carry1
970 cmp.ltu p6,p0=r29,r28
971 add r30=r30,r29 };;
622d3d35 972{ .mii; getf.sig r20=f75
4cb73bf8 973 add r18=r18,r17 }
622d3d35 974{ .mii;
4cb73bf8
AP
975(p6) add carry1=1,carry1
976 cmp.ltu p6,p0=r30,r29
977 add r31=r31,r30 };;
622d3d35
AP
978{ .mfb; getf.sig r21=f66 }
979{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
980 cmp.ltu p7,p0=r18,r17
981 add r19=r19,r18 }
622d3d35
AP
982{ .mfb; nop.m 0x0 }
983{ .mii;
4cb73bf8
AP
984(p6) add carry1=1,carry1
985 cmp.ltu p6,p0=r31,r30
986 add r31=r31,carry2 };;
622d3d35
AP
987{ .mfb; getf.sig r22=f57 }
988{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
989 cmp.ltu p7,p0=r19,r18
990 add r20=r20,r19 }
622d3d35
AP
991{ .mfb; nop.m 0x0 }
992{ .mii;
4cb73bf8
AP
993(p6) add carry1=1,carry1
994 cmp.ltu p6,p0=r31,carry2 };;
622d3d35
AP
995{ .mfb; getf.sig r23=f48 }
996{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
997 cmp.ltu p7,p0=r20,r19
998 add r21=r21,r20 }
622d3d35 999{ .mii;
4cb73bf8 1000(p6) add carry1=1,carry1 }
622d3d35 1001{ .mfb; st8 [r33]=r31,16 };;
4cb73bf8 1002
622d3d35
AP
1003{ .mfb; getf.sig r24=f112 }
1004{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1005 cmp.ltu p7,p0=r21,r20
1006 add r22=r22,r21 };;
622d3d35
AP
1007{ .mfb; getf.sig r25=f103 }
1008{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1009 cmp.ltu p7,p0=r22,r21
1010 add r23=r23,r22 };;
622d3d35
AP
1011{ .mfb; getf.sig r26=f94 }
1012{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1013 cmp.ltu p7,p0=r23,r22
1014 add r23=r23,carry1 };;
622d3d35
AP
1015{ .mfb; getf.sig r27=f85 }
1016{ .mii; (p7) add carry3=1,carry3
4cb73bf8 1017 cmp.ltu p7,p8=r23,carry1};;
622d3d35 1018{ .mii; getf.sig r28=f76
4cb73bf8
AP
1019 add r25=r25,r24
1020 mov carry1=0 }
622d3d35 1021{ .mii; st8 [r32]=r23,16
4cb73bf8
AP
1022 (p7) add carry2=1,carry3
1023 (p8) add carry2=0,carry3 };;
1024
622d3d35
AP
1025{ .mfb; nop.m 0x0 }
1026{ .mii; getf.sig r29=f67
4cb73bf8
AP
1027 cmp.ltu p6,p0=r25,r24
1028 add r26=r26,r25 };;
622d3d35
AP
1029{ .mfb; getf.sig r30=f58 }
1030{ .mii;
4cb73bf8
AP
1031(p6) add carry1=1,carry1
1032 cmp.ltu p6,p0=r26,r25
1033 add r27=r27,r26 };;
622d3d35
AP
1034{ .mfb; getf.sig r16=f113 }
1035{ .mii;
4cb73bf8
AP
1036(p6) add carry1=1,carry1
1037 cmp.ltu p6,p0=r27,r26
1038 add r28=r28,r27 };;
622d3d35
AP
1039{ .mfb; getf.sig r17=f104 }
1040{ .mii;
4cb73bf8
AP
1041(p6) add carry1=1,carry1
1042 cmp.ltu p6,p0=r28,r27
1043 add r29=r29,r28 };;
622d3d35
AP
1044{ .mfb; getf.sig r18=f95 }
1045{ .mii;
4cb73bf8
AP
1046(p6) add carry1=1,carry1
1047 cmp.ltu p6,p0=r29,r28
1048 add r30=r30,r29 };;
622d3d35 1049{ .mii; getf.sig r19=f86
4cb73bf8
AP
1050 add r17=r17,r16
1051 mov carry3=0 }
622d3d35 1052{ .mii;
4cb73bf8
AP
1053(p6) add carry1=1,carry1
1054 cmp.ltu p6,p0=r30,r29
1055 add r30=r30,carry2 };;
622d3d35 1056{ .mii; getf.sig r20=f77
4cb73bf8
AP
1057 cmp.ltu p7,p0=r17,r16
1058 add r18=r18,r17 }
622d3d35 1059{ .mii;
4cb73bf8
AP
1060(p6) add carry1=1,carry1
1061 cmp.ltu p6,p0=r30,carry2 };;
622d3d35
AP
1062{ .mfb; getf.sig r21=f68 }
1063{ .mii; st8 [r33]=r30,16
4cb73bf8
AP
1064(p6) add carry1=1,carry1 };;
1065
622d3d35
AP
1066{ .mfb; getf.sig r24=f114 }
1067{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1068 cmp.ltu p7,p0=r18,r17
1069 add r19=r19,r18 };;
622d3d35
AP
1070{ .mfb; getf.sig r25=f105 }
1071{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1072 cmp.ltu p7,p0=r19,r18
1073 add r20=r20,r19 };;
622d3d35
AP
1074{ .mfb; getf.sig r26=f96 }
1075{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1076 cmp.ltu p7,p0=r20,r19
1077 add r21=r21,r20 };;
622d3d35
AP
1078{ .mfb; getf.sig r27=f87 }
1079{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1080 cmp.ltu p7,p0=r21,r20
1081 add r21=r21,carry1 };;
622d3d35 1082{ .mib; getf.sig r28=f78
4cb73bf8 1083 add r25=r25,r24 }
622d3d35 1084{ .mib; (p7) add carry3=1,carry3
4cb73bf8 1085 cmp.ltu p7,p8=r21,carry1};;
622d3d35 1086{ .mii; st8 [r32]=r21,16
4cb73bf8
AP
1087 (p7) add carry2=1,carry3
1088 (p8) add carry2=0,carry3 }
1089
622d3d35 1090{ .mii; mov carry1=0
4cb73bf8
AP
1091 cmp.ltu p6,p0=r25,r24
1092 add r26=r26,r25 };;
622d3d35
AP
1093{ .mfb; getf.sig r16=f115 }
1094{ .mii;
4cb73bf8
AP
1095(p6) add carry1=1,carry1
1096 cmp.ltu p6,p0=r26,r25
1097 add r27=r27,r26 };;
622d3d35
AP
1098{ .mfb; getf.sig r17=f106 }
1099{ .mii;
4cb73bf8
AP
1100(p6) add carry1=1,carry1
1101 cmp.ltu p6,p0=r27,r26
1102 add r28=r28,r27 };;
622d3d35
AP
1103{ .mfb; getf.sig r18=f97 }
1104{ .mii;
4cb73bf8
AP
1105(p6) add carry1=1,carry1
1106 cmp.ltu p6,p0=r28,r27
1107 add r28=r28,carry2 };;
622d3d35 1108{ .mib; getf.sig r19=f88
4cb73bf8 1109 add r17=r17,r16 }
622d3d35 1110{ .mib;
4cb73bf8
AP
1111(p6) add carry1=1,carry1
1112 cmp.ltu p6,p0=r28,carry2 };;
622d3d35 1113{ .mii; st8 [r33]=r28,16
4cb73bf8
AP
1114(p6) add carry1=1,carry1 }
1115
622d3d35 1116{ .mii; mov carry2=0
4cb73bf8
AP
1117 cmp.ltu p7,p0=r17,r16
1118 add r18=r18,r17 };;
622d3d35
AP
1119{ .mfb; getf.sig r24=f116 }
1120{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1121 cmp.ltu p7,p0=r18,r17
1122 add r19=r19,r18 };;
622d3d35
AP
1123{ .mfb; getf.sig r25=f107 }
1124{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1125 cmp.ltu p7,p0=r19,r18
1126 add r19=r19,carry1 };;
622d3d35
AP
1127{ .mfb; getf.sig r26=f98 }
1128{ .mii; (p7) add carry2=1,carry2
4cb73bf8 1129 cmp.ltu p7,p0=r19,carry1};;
622d3d35 1130{ .mii; st8 [r32]=r19,16
4cb73bf8
AP
1131 (p7) add carry2=1,carry2 }
1132
622d3d35 1133{ .mfb; add r25=r25,r24 };;
4cb73bf8 1134
622d3d35
AP
1135{ .mfb; getf.sig r16=f117 }
1136{ .mii; mov carry1=0
4cb73bf8
AP
1137 cmp.ltu p6,p0=r25,r24
1138 add r26=r26,r25 };;
622d3d35
AP
1139{ .mfb; getf.sig r17=f108 }
1140{ .mii;
4cb73bf8
AP
1141(p6) add carry1=1,carry1
1142 cmp.ltu p6,p0=r26,r25
1143 add r26=r26,carry2 };;
622d3d35
AP
1144{ .mfb; nop.m 0x0 }
1145{ .mii;
4cb73bf8
AP
1146(p6) add carry1=1,carry1
1147 cmp.ltu p6,p0=r26,carry2 };;
622d3d35 1148{ .mii; st8 [r33]=r26,16
4cb73bf8
AP
1149(p6) add carry1=1,carry1 }
1150
622d3d35
AP
1151{ .mfb; add r17=r17,r16 };;
1152{ .mfb; getf.sig r24=f118 }
1153{ .mii; mov carry2=0
4cb73bf8
AP
1154 cmp.ltu p7,p0=r17,r16
1155 add r17=r17,carry1 };;
622d3d35 1156{ .mii; (p7) add carry2=1,carry2
4cb73bf8 1157 cmp.ltu p7,p0=r17,carry1};;
622d3d35 1158{ .mii; st8 [r32]=r17
4cb73bf8 1159 (p7) add carry2=1,carry2 };;
622d3d35
AP
1160{ .mfb; add r24=r24,carry2 };;
1161{ .mib; st8 [r33]=r24 }
4cb73bf8 1162
622d3d35 1163{ .mib; rum 1<<5 // clear um.mfh
4cb73bf8
AP
1164 br.ret.sptk.many b0 };;
1165.endp bn_mul_comba8#
4cb73bf8
AP
1166#undef carry3
1167#undef carry2
1168#undef carry1
1169#endif
1170
1171#if 1
1172// It's possible to make it faster (see comment to bn_sqr_comba8), but
1173// I reckon it doesn't worth the effort. Basically because the routine
1174// (actually both of them) practically never called... So I just play
1175// same trick as with bn_sqr_comba8.
1176//
1177// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1178//
1179.global bn_sqr_comba4#
1180.proc bn_sqr_comba4#
1181.align 64
1182bn_sqr_comba4:
1183 .prologue
4cb73bf8 1184 .save ar.pfs,r2
e2f2a9af 1185#if defined(_HPUX_SOURCE) && !defined(_LP64)
46a0d4fb
AP
1186{ .mii; alloc r2=ar.pfs,2,1,0,0
1187 addp4 r32=0,r32
1188 addp4 r33=0,r33 };;
1189{ .mii;
1190#else
622d3d35 1191{ .mii; alloc r2=ar.pfs,2,1,0,0
46a0d4fb 1192#endif
4cb73bf8
AP
1193 mov r34=r33
1194 add r14=8,r33 };;
1195 .body
622d3d35 1196{ .mii; add r17=8,r34
4cb73bf8
AP
1197 add r15=16,r33
1198 add r18=16,r34 }
622d3d35 1199{ .mfb; add r16=24,r33
4cb73bf8 1200 br .L_cheat_entry_point4 };;
622d3d35 1201.endp bn_sqr_comba4#
4cb73bf8
AP
1202#endif
1203
1204#if 1
1205// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1206//
1207// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1208//
622d3d35 1209#define carry1 r14
4cb73bf8
AP
1210#define carry2 r15
1211.global bn_mul_comba4#
1212.proc bn_mul_comba4#
1213.align 64
1214bn_mul_comba4:
1215 .prologue
4cb73bf8 1216 .save ar.pfs,r2
e2f2a9af 1217#if defined(_HPUX_SOURCE) && !defined(_LP64)
46a0d4fb
AP
1218{ .mii; alloc r2=ar.pfs,3,0,0,0
1219 addp4 r33=0,r33
1220 addp4 r34=0,r34 };;
1221{ .mii; addp4 r32=0,r32
1222#else
622d3d35 1223{ .mii; alloc r2=ar.pfs,3,0,0,0
46a0d4fb 1224#endif
4cb73bf8
AP
1225 add r14=8,r33
1226 add r17=8,r34 }
1227 .body
622d3d35 1228{ .mii; add r15=16,r33
4cb73bf8
AP
1229 add r18=16,r34
1230 add r16=24,r33 };;
1231.L_cheat_entry_point4:
622d3d35 1232{ .mmi; add r19=24,r34
4cb73bf8
AP
1233
1234 ldf8 f32=[r33] }
1235
622d3d35 1236{ .mmi; ldf8 f120=[r34]
4cb73bf8 1237 ldf8 f121=[r17] };;
622d3d35 1238{ .mmi; ldf8 f122=[r18]
4cb73bf8
AP
1239 ldf8 f123=[r19] }
1240
622d3d35 1241{ .mmi; ldf8 f33=[r14]
4cb73bf8 1242 ldf8 f34=[r15] }
622d3d35 1243{ .mfi; ldf8 f35=[r16]
4cb73bf8
AP
1244
1245 xma.hu f41=f32,f120,f0 }
622d3d35
AP
1246{ .mfi; xma.lu f40=f32,f120,f0 };;
1247{ .mfi; xma.hu f51=f32,f121,f0 }
1248{ .mfi; xma.lu f50=f32,f121,f0 };;
1249{ .mfi; xma.hu f61=f32,f122,f0 }
1250{ .mfi; xma.lu f60=f32,f122,f0 };;
1251{ .mfi; xma.hu f71=f32,f123,f0 }
1252{ .mfi; xma.lu f70=f32,f123,f0 };;//
4cb73bf8
AP
1253// Major stall takes place here, and 3 more places below. Result from
1254// first xma is not available for another 3 ticks.
622d3d35 1255{ .mfi; getf.sig r16=f40
4cb73bf8
AP
1256 xma.hu f42=f33,f120,f41
1257 add r33=8,r32 }
622d3d35
AP
1258{ .mfi; xma.lu f41=f33,f120,f41 };;
1259{ .mfi; getf.sig r24=f50
4cb73bf8 1260 xma.hu f52=f33,f121,f51 }
622d3d35
AP
1261{ .mfi; xma.lu f51=f33,f121,f51 };;
1262{ .mfi; st8 [r32]=r16,16
4cb73bf8 1263 xma.hu f62=f33,f122,f61 }
622d3d35
AP
1264{ .mfi; xma.lu f61=f33,f122,f61 };;
1265{ .mfi; xma.hu f72=f33,f123,f71 }
1266{ .mfi; xma.lu f71=f33,f123,f71 };;//
4cb73bf8 1267//-------------------------------------------------//
622d3d35 1268{ .mfi; getf.sig r25=f41
4cb73bf8 1269 xma.hu f43=f34,f120,f42 }
622d3d35
AP
1270{ .mfi; xma.lu f42=f34,f120,f42 };;
1271{ .mfi; getf.sig r16=f60
4cb73bf8 1272 xma.hu f53=f34,f121,f52 }
622d3d35
AP
1273{ .mfi; xma.lu f52=f34,f121,f52 };;
1274{ .mfi; getf.sig r17=f51
4cb73bf8
AP
1275 xma.hu f63=f34,f122,f62
1276 add r25=r25,r24 }
622d3d35 1277{ .mfi; mov carry1=0
4cb73bf8 1278 xma.lu f62=f34,f122,f62 };;
622d3d35 1279{ .mfi; st8 [r33]=r25,16
4cb73bf8
AP
1280 xma.hu f73=f34,f123,f72
1281 cmp.ltu p6,p0=r25,r24 }
622d3d35 1282{ .mfi; xma.lu f72=f34,f123,f72 };;//
4cb73bf8 1283//-------------------------------------------------//
622d3d35 1284{ .mfi; getf.sig r18=f42
4cb73bf8
AP
1285 xma.hu f44=f35,f120,f43
1286(p6) add carry1=1,carry1 }
622d3d35 1287{ .mfi; add r17=r17,r16
4cb73bf8
AP
1288 xma.lu f43=f35,f120,f43
1289 mov carry2=0 };;
622d3d35 1290{ .mfi; getf.sig r24=f70
4cb73bf8
AP
1291 xma.hu f54=f35,f121,f53
1292 cmp.ltu p7,p0=r17,r16 }
622d3d35
AP
1293{ .mfi; xma.lu f53=f35,f121,f53 };;
1294{ .mfi; getf.sig r25=f61
4cb73bf8
AP
1295 xma.hu f64=f35,f122,f63
1296 add r18=r18,r17 }
622d3d35 1297{ .mfi; xma.lu f63=f35,f122,f63
4cb73bf8 1298(p7) add carry2=1,carry2 };;
622d3d35 1299{ .mfi; getf.sig r26=f52
4cb73bf8
AP
1300 xma.hu f74=f35,f123,f73
1301 cmp.ltu p7,p0=r18,r17 }
622d3d35 1302{ .mfi; xma.lu f73=f35,f123,f73
4cb73bf8
AP
1303 add r18=r18,carry1 };;
1304//-------------------------------------------------//
622d3d35 1305{ .mii; st8 [r32]=r18,16
4cb73bf8
AP
1306(p7) add carry2=1,carry2
1307 cmp.ltu p7,p0=r18,carry1 };;
1308
622d3d35 1309{ .mfi; getf.sig r27=f43 // last major stall
4cb73bf8 1310(p7) add carry2=1,carry2 };;
622d3d35 1311{ .mii; getf.sig r16=f71
4cb73bf8
AP
1312 add r25=r25,r24
1313 mov carry1=0 };;
622d3d35 1314{ .mii; getf.sig r17=f62
4cb73bf8
AP
1315 cmp.ltu p6,p0=r25,r24
1316 add r26=r26,r25 };;
622d3d35 1317{ .mii;
4cb73bf8
AP
1318(p6) add carry1=1,carry1
1319 cmp.ltu p6,p0=r26,r25
1320 add r27=r27,r26 };;
622d3d35 1321{ .mii;
4cb73bf8
AP
1322(p6) add carry1=1,carry1
1323 cmp.ltu p6,p0=r27,r26
1324 add r27=r27,carry2 };;
622d3d35 1325{ .mii; getf.sig r18=f53
4cb73bf8
AP
1326(p6) add carry1=1,carry1
1327 cmp.ltu p6,p0=r27,carry2 };;
622d3d35 1328{ .mfi; st8 [r33]=r27,16
4cb73bf8
AP
1329(p6) add carry1=1,carry1 }
1330
622d3d35 1331{ .mii; getf.sig r19=f44
4cb73bf8
AP
1332 add r17=r17,r16
1333 mov carry2=0 };;
622d3d35 1334{ .mii; getf.sig r24=f72
4cb73bf8
AP
1335 cmp.ltu p7,p0=r17,r16
1336 add r18=r18,r17 };;
622d3d35 1337{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1338 cmp.ltu p7,p0=r18,r17
1339 add r19=r19,r18 };;
622d3d35 1340{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1341 cmp.ltu p7,p0=r19,r18
1342 add r19=r19,carry1 };;
622d3d35 1343{ .mii; getf.sig r25=f63
4cb73bf8
AP
1344 (p7) add carry2=1,carry2
1345 cmp.ltu p7,p0=r19,carry1};;
622d3d35 1346{ .mii; st8 [r32]=r19,16
4cb73bf8
AP
1347 (p7) add carry2=1,carry2 }
1348
622d3d35 1349{ .mii; getf.sig r26=f54
4cb73bf8
AP
1350 add r25=r25,r24
1351 mov carry1=0 };;
622d3d35 1352{ .mii; getf.sig r16=f73
4cb73bf8
AP
1353 cmp.ltu p6,p0=r25,r24
1354 add r26=r26,r25 };;
622d3d35 1355{ .mii;
4cb73bf8
AP
1356(p6) add carry1=1,carry1
1357 cmp.ltu p6,p0=r26,r25
1358 add r26=r26,carry2 };;
622d3d35 1359{ .mii; getf.sig r17=f64
4cb73bf8
AP
1360(p6) add carry1=1,carry1
1361 cmp.ltu p6,p0=r26,carry2 };;
622d3d35 1362{ .mii; st8 [r33]=r26,16
4cb73bf8
AP
1363(p6) add carry1=1,carry1 }
1364
622d3d35 1365{ .mii; getf.sig r24=f74
4cb73bf8
AP
1366 add r17=r17,r16
1367 mov carry2=0 };;
622d3d35 1368{ .mii; cmp.ltu p7,p0=r17,r16
4cb73bf8
AP
1369 add r17=r17,carry1 };;
1370
622d3d35 1371{ .mii; (p7) add carry2=1,carry2
4cb73bf8 1372 cmp.ltu p7,p0=r17,carry1};;
622d3d35 1373{ .mii; st8 [r32]=r17,16
4cb73bf8
AP
1374 (p7) add carry2=1,carry2 };;
1375
622d3d35
AP
1376{ .mii; add r24=r24,carry2 };;
1377{ .mii; st8 [r33]=r24 }
4cb73bf8 1378
622d3d35 1379{ .mib; rum 1<<5 // clear um.mfh
4cb73bf8
AP
1380 br.ret.sptk.many b0 };;
1381.endp bn_mul_comba4#
4cb73bf8
AP
1382#undef carry2
1383#undef carry1
1384#endif
1385
1386#if 1
1387//
1388// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1389//
1390// In the nutshell it's a port of my MIPS III/IV implementation.
1391//
1392#define AT r14
1393#define H r16
1394#define HH r20
1395#define L r17
1396#define D r18
1397#define DH r22
1398#define I r21
1399
622d3d35 1400#if 0
e2f2a9af
AP
1401// Some preprocessors (most notably HP-UX) appear to be allergic to
1402// macros enclosed to parenthesis [as these three were].
4cb73bf8
AP
1403#define cont p16
1404#define break p0 // p20
1405#define equ p24
622d3d35
AP
1406#else
1407cont=p16
1408break=p0
1409equ=p24
1410#endif
1411
4cb73bf8
AP
1412.global abort#
1413.global bn_div_words#
1414.proc bn_div_words#
1415.align 64
1416bn_div_words:
1417 .prologue
4cb73bf8 1418 .save ar.pfs,r2
622d3d35 1419{ .mii; alloc r2=ar.pfs,3,5,0,8
ef428d56 1420 .save b0,r3
4cb73bf8 1421 mov r3=b0
7cfe2a5e 1422 .save pr,r10
4cb73bf8 1423 mov r10=pr };;
622d3d35 1424{ .mmb; cmp.eq p6,p0=r34,r0
4cb73bf8
AP
1425 mov r8=-1
1426(p6) br.ret.spnt.many b0 };;
1427
1428 .body
622d3d35 1429{ .mii; mov H=r32 // save h
4cb73bf8
AP
1430 mov ar.ec=0 // don't rotate at exit
1431 mov pr.rot=0 }
622d3d35 1432{ .mii; mov L=r33 // save l
6e652da4 1433 mov r25=r0 // needed if abort is called on VMS
622d3d35 1434 mov r36=r0 };;
4cb73bf8 1435
622d3d35
AP
1436.L_divw_shift: // -vv- note signed comparison
1437{ .mfi; (p0) cmp.lt p16,p0=r0,r34 // d
4cb73bf8 1438 (p0) shladd r33=r34,1,r0 }
622d3d35 1439{ .mfb; (p0) add r35=1,r36
4cb73bf8 1440 (p0) nop.f 0x0
622d3d35 1441(p16) br.wtop.dpnt .L_divw_shift };;
4cb73bf8 1442
622d3d35 1443{ .mii; mov D=r34
4cb73bf8
AP
1444 shr.u DH=r34,32
1445 sub r35=64,r36 };;
622d3d35 1446{ .mii; setf.sig f7=DH
4cb73bf8
AP
1447 shr.u AT=H,r35
1448 mov I=r36 };;
622d3d35 1449{ .mib; cmp.ne p6,p0=r0,AT
4cb73bf8
AP
1450 shl H=H,r36
1451(p6) br.call.spnt.clr b0=abort };; // overflow, die...
1452
622d3d35 1453{ .mfi; fcvt.xuf.s1 f7=f7
4cb73bf8 1454 shr.u AT=L,r35 };;
622d3d35 1455{ .mii; shl L=L,r36
4cb73bf8
AP
1456 or H=H,AT };;
1457
622d3d35 1458{ .mii; nop.m 0x0
4cb73bf8
AP
1459 cmp.leu p6,p0=D,H;;
1460(p6) sub H=H,D }
1461
622d3d35 1462{ .mlx; setf.sig f14=D
a95541d6 1463 movl AT=0xffffffff };;
4cb73bf8 1464///////////////////////////////////////////////////////////
622d3d35 1465{ .mii; setf.sig f6=H
4cb73bf8
AP
1466 shr.u HH=H,32;;
1467 cmp.eq p6,p7=HH,DH };;
622d3d35 1468{ .mfb;
4cb73bf8
AP
1469(p6) setf.sig f8=AT
1470(p7) fcvt.xuf.s1 f6=f6
1471(p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1472
622d3d35 1473{ .mfi; getf.sig r33=f8 // q
4cb73bf8 1474 xmpy.lu f9=f8,f14 }
622d3d35 1475{ .mfi; xmpy.hu f10=f8,f14
4cb73bf8
AP
1476 shrp H=H,L,32 };;
1477
622d3d35 1478{ .mmi; getf.sig r35=f9 // tl
4cb73bf8
AP
1479 getf.sig r31=f10 };; // th
1480
622d3d35
AP
1481.L_divw_1st_iter:
1482{ .mii; (p0) add r32=-1,r33
4cb73bf8 1483 (p0) cmp.eq equ,cont=HH,r31 };;
622d3d35 1484{ .mii; (p0) cmp.ltu p8,p0=r35,D
4cb73bf8
AP
1485 (p0) sub r34=r35,D
1486 (equ) cmp.leu break,cont=r35,H };;
622d3d35 1487{ .mib; (cont) cmp.leu cont,break=HH,r31
4cb73bf8 1488 (p8) add r31=-1,r31
622d3d35 1489(cont) br.wtop.spnt .L_divw_1st_iter };;
4cb73bf8 1490///////////////////////////////////////////////////////////
622d3d35 1491{ .mii; sub H=H,r35
4cb73bf8 1492 shl r8=r33,32
a95541d6 1493 shl L=L,32 };;
4cb73bf8 1494///////////////////////////////////////////////////////////
622d3d35 1495{ .mii; setf.sig f6=H
4cb73bf8
AP
1496 shr.u HH=H,32;;
1497 cmp.eq p6,p7=HH,DH };;
622d3d35 1498{ .mfb;
4cb73bf8
AP
1499(p6) setf.sig f8=AT
1500(p7) fcvt.xuf.s1 f6=f6
1501(p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1502
622d3d35 1503{ .mfi; getf.sig r33=f8 // q
4cb73bf8 1504 xmpy.lu f9=f8,f14 }
622d3d35 1505{ .mfi; xmpy.hu f10=f8,f14
4cb73bf8
AP
1506 shrp H=H,L,32 };;
1507
622d3d35 1508{ .mmi; getf.sig r35=f9 // tl
4cb73bf8
AP
1509 getf.sig r31=f10 };; // th
1510
622d3d35
AP
1511.L_divw_2nd_iter:
1512{ .mii; (p0) add r32=-1,r33
4cb73bf8 1513 (p0) cmp.eq equ,cont=HH,r31 };;
622d3d35 1514{ .mii; (p0) cmp.ltu p8,p0=r35,D
4cb73bf8
AP
1515 (p0) sub r34=r35,D
1516 (equ) cmp.leu break,cont=r35,H };;
622d3d35 1517{ .mib; (cont) cmp.leu cont,break=HH,r31
4cb73bf8 1518 (p8) add r31=-1,r31
622d3d35 1519(cont) br.wtop.spnt .L_divw_2nd_iter };;
4cb73bf8 1520///////////////////////////////////////////////////////////
622d3d35 1521{ .mii; sub H=H,r35
4cb73bf8
AP
1522 or r8=r8,r33
1523 mov ar.pfs=r2 };;
622d3d35 1524{ .mii; shr.u r9=H,I // remainder if anybody wants it
46a0d4fb 1525 mov pr=r10,0x1ffff }
622d3d35 1526{ .mfb; br.ret.sptk.many b0 };;
4cb73bf8
AP
1527
1528// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1529// procedure.
1530//
a95541d6
AP
1531// inputs: f6 = (double)a, f7 = (double)b
1532// output: f8 = (int)(a/b)
622d3d35
AP
1533// clobbered: f8,f9,f10,f11,pred
1534pred=p15
dcf6e50f
RS
1535// This snippet is based on text found in the "Divide, Square
1536// Root and Remainder" section at
e2f2a9af
AP
1537// http://www.intel.com/software/products/opensource/libraries/num.htm.
1538// Yes, I admit that the referred code was used as template,
1539// but after I realized that there hardly is any other instruction
1540// sequence which would perform this operation. I mean I figure that
1541// any independent attempt to implement high-performance division
1542// will result in code virtually identical to the Intel code. It
1543// should be noted though that below division kernel is 1 cycle
1544// faster than Intel one (note commented splits:-), not to mention
1545// original prologue (rather lack of one) and epilogue.
4cb73bf8 1546.align 32
622d3d35 1547.skip 16
4cb73bf8 1548.L_udiv64_32_b6:
622d3d35
AP
1549 frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b
1550
1551(pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0
1552(pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0
1553(pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0
1554(pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0
1555(pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0
1556(pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1
1557(pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1
1558(pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2
1559(pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2
4cb73bf8
AP
1560
1561 fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3)
1562 br.ret.sptk.many b6;;
1563.endp bn_div_words#
1564#endif