]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/asm/rsaz-2k-avx512.pl
Copyright year updates
[thirdparty/openssl.git] / crypto / bn / asm / rsaz-2k-avx512.pl
CommitLineData
da1c088f 1# Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
c781eb1c
AM
2# Copyright (c) 2020, Intel Corporation. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8#
9#
f87b4c4e
AM
10# Originally written by Sergey Kirillov and Andrey Matyukov.
11# Special thanks to Ilya Albrekht for his valuable hints.
c781eb1c
AM
12# Intel Corporation
13#
14# December 2020
15#
16# Initial release.
17#
18# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
19#
20# IceLake-Client @ 1.3GHz
21# |---------+----------------------+--------------+-------------|
22# | | OpenSSL 3.0.0-alpha9 | this | Unit |
23# |---------+----------------------+--------------+-------------|
24# | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
25# | | 611 | 1280 / +109% | sign/s |
26# |---------+----------------------+--------------+-------------|
27#
28
29# $output is the last argument if it looks like a file (it has an extension)
30# $flavour is the first argument if it doesn't look like a file
31$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
32$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
33
34$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
35$avx512ifma=0;
36
37$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
38( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
39( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
40die "can't locate x86_64-xlate.pl";
41
42if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
43 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
44 $avx512ifma = ($1>=2.26);
45}
46
e5dd7327 47if (!$avx512ifma && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
c781eb1c
AM
48 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
49 $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
50}
51
e5dd7327 52if (!$avx512ifma && `$ENV{CC} -v 2>&1`
523e0577
RL
53 =~ /(Apple)?\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
54 my $ver = $3 + $4/100.0 + $5/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
55 if ($1) {
56 # Apple conditions, they use a different version series, see
57 # https://en.wikipedia.org/wiki/Xcode#Xcode_7.0_-_10.x_(since_Free_On-Device_Development)_2
58 # clang 7.0.0 is Apple clang 10.0.1
59 $avx512ifma = ($ver>=10.0001)
60 } else {
61 $avx512ifma = ($ver>=7.0);
62 }
c781eb1c
AM
63}
64
65open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
66 or die "can't call $xlate: $!";
67*STDOUT=*OUT;
68
69if ($avx512ifma>0) {{{
70@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
71
72$code.=<<___;
73.extern OPENSSL_ia32cap_P
e475d9a4
P
74.globl ossl_rsaz_avx512ifma_eligible
75.type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
c781eb1c 76.align 32
e475d9a4 77ossl_rsaz_avx512ifma_eligible:
c781eb1c
AM
78 mov OPENSSL_ia32cap_P+8(%rip), %ecx
79 xor %eax,%eax
80 and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
81 cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
82 cmove %ecx,%eax
83 ret
e475d9a4 84.size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
c781eb1c
AM
85___
86
87###############################################################################
88# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
89#
f87b4c4e 90# AMM is defined as presented in the paper [1].
c781eb1c
AM
91#
92# The input and output are presented in 2^52 radix domain, i.e.
93# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
94# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
c781eb1c 95#
f87b4c4e
AM
96# NB: the AMM implementation does not perform "conditional" subtraction step
97# specified in the original algorithm as according to the Lemma 1 from the paper
98# [2], the result will be always < 2*m and can be used as a direct input to
99# the next AMM iteration. This post-condition is true, provided the correct
e304aa87 100# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
f87b4c4e 101# which matches our case: 1040 > 1024 + 2 * 1.
c781eb1c 102#
f87b4c4e
AM
103# [1] Gueron, S. Efficient software implementations of modular exponentiation.
104# DOI: 10.1007/s13389-012-0031-5
105# [2] Gueron, S. Enhanced Montgomery Multiplication.
106# DOI: 10.1007/3-540-36400-5_5
107#
108# void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res,
109# const BN_ULONG *a,
110# const BN_ULONG *b,
111# const BN_ULONG *m,
112# BN_ULONG k0);
c781eb1c
AM
113###############################################################################
114{
115# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
116my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
117
118my $mask52 = "%rax";
119my $acc0_0 = "%r9";
120my $acc0_0_low = "%r9d";
121my $acc0_1 = "%r15";
122my $acc0_1_low = "%r15d";
123my $b_ptr = "%r11";
124
125my $iter = "%ebx";
126
127my $zero = "%ymm0";
f87b4c4e
AM
128my $Bi = "%ymm1";
129my $Yi = "%ymm2";
130my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(16..19)));
131my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(20..23)));
c781eb1c
AM
132
133# Registers mapping for normalization.
f87b4c4e 134my ($T0,$T0h,$T1,$T1h,$T2) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (25..26)));
c781eb1c
AM
135
136sub amm52x20_x1() {
137# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
138# of data for corresponding AMM operation;
139# _b_offset - offset in the |b| array pointing to the next qword digit;
140my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
d136db21
MC
141my $_R0_xmm = $_R0;
142$_R0_xmm =~ s/%y/%x/;
c781eb1c
AM
143$code.=<<___;
144 movq $_b_offset($b_ptr), %r13 # b[i]
145
146 vpbroadcastq %r13, $Bi # broadcast b[i]
147 movq $_data_offset($a), %rdx
148 mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
149 addq %r13, $_acc # acc += t0
150 movq %r12, %r10
151 adcq \$0, %r10 # t2 += CF
152
153 movq $_k0, %r13
154 imulq $_acc, %r13 # acc * k0
155 andq $mask52, %r13 # yi = (acc * k0) & mask52
156
157 vpbroadcastq %r13, $Yi # broadcast y[i]
158 movq $_data_offset($m), %rdx
159 mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
160 addq %r13, $_acc # acc += t0
161 adcq %r12, %r10 # t2 += (t1 + CF)
162
163 shrq \$52, $_acc
164 salq \$12, %r10
165 or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
166
167 vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
168 vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
169 vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
170 vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
171 vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
172
173 vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
174 vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
175 vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
176 vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
177 vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
178
179 # Shift accumulators right by 1 qword, zero extending the highest one
180 valignq \$1, $_R0, $_R0h, $_R0
181 valignq \$1, $_R0h, $_R1, $_R0h
182 valignq \$1, $_R1, $_R1h, $_R1
183 valignq \$1, $_R1h, $_R2, $_R1h
184 valignq \$1, $_R2, $zero, $_R2
185
186 vmovq $_R0_xmm, %r13
187 addq %r13, $_acc # acc += R0[0]
188
189 vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
190 vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
191 vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
192 vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
193 vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
194
195 vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
196 vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
197 vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
198 vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
199 vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
200___
201}
202
f87b4c4e
AM
203# Normalization routine: handles carry bits and gets bignum qwords to normalized
204# 2^52 representation.
c781eb1c
AM
205#
206# Uses %r8-14,%e[bcd]x
207sub amm52x20_x1_norm {
208my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
209$code.=<<___;
210 # Put accumulator to low qword in R0
f87b4c4e
AM
211 vpbroadcastq $_acc, $T0
212 vpblendd \$3, $T0, $_R0, $_R0
c781eb1c
AM
213
214 # Extract "carries" (12 high bits) from each QW of R0..R2
215 # Save them to LSB of QWs in T0..T2
216 vpsrlq \$52, $_R0, $T0
217 vpsrlq \$52, $_R0h, $T0h
218 vpsrlq \$52, $_R1, $T1
219 vpsrlq \$52, $_R1h, $T1h
220 vpsrlq \$52, $_R2, $T2
221
222 # "Shift left" T0..T2 by 1 QW
223 valignq \$3, $T1h, $T2, $T2
224 valignq \$3, $T1, $T1h, $T1h
225 valignq \$3, $T0h, $T1, $T1
226 valignq \$3, $T0, $T0h, $T0h
f87b4c4e 227 valignq \$3, .Lzeros(%rip), $T0, $T0
c781eb1c
AM
228
229 # Drop "carries" from R0..R2 QWs
f87b4c4e
AM
230 vpandq .Lmask52x4(%rip), $_R0, $_R0
231 vpandq .Lmask52x4(%rip), $_R0h, $_R0h
232 vpandq .Lmask52x4(%rip), $_R1, $_R1
233 vpandq .Lmask52x4(%rip), $_R1h, $_R1h
234 vpandq .Lmask52x4(%rip), $_R2, $_R2
c781eb1c
AM
235
236 # Sum R0..R2 with corresponding adjusted carries
237 vpaddq $T0, $_R0, $_R0
238 vpaddq $T0h, $_R0h, $_R0h
239 vpaddq $T1, $_R1, $_R1
240 vpaddq $T1h, $_R1h, $_R1h
241 vpaddq $T2, $_R2, $_R2
242
243 # Now handle carry bits from this addition
244 # Get mask of QWs which 52-bit parts overflow...
f87b4c4e
AM
245 vpcmpuq \$6, .Lmask52x4(%rip), $_R0, %k1 # OP=nle (i.e. gt)
246 vpcmpuq \$6, .Lmask52x4(%rip), $_R0h, %k2
247 vpcmpuq \$6, .Lmask52x4(%rip), $_R1, %k3
248 vpcmpuq \$6, .Lmask52x4(%rip), $_R1h, %k4
249 vpcmpuq \$6, .Lmask52x4(%rip), $_R2, %k5
c781eb1c
AM
250 kmovb %k1, %r14d # k1
251 kmovb %k2, %r13d # k1h
252 kmovb %k3, %r12d # k2
253 kmovb %k4, %r11d # k2h
254 kmovb %k5, %r10d # k3
255
256 # ...or saturated
f87b4c4e
AM
257 vpcmpuq \$0, .Lmask52x4(%rip), $_R0, %k1 # OP=eq
258 vpcmpuq \$0, .Lmask52x4(%rip), $_R0h, %k2
259 vpcmpuq \$0, .Lmask52x4(%rip), $_R1, %k3
260 vpcmpuq \$0, .Lmask52x4(%rip), $_R1h, %k4
261 vpcmpuq \$0, .Lmask52x4(%rip), $_R2, %k5
c781eb1c
AM
262 kmovb %k1, %r9d # k4
263 kmovb %k2, %r8d # k4h
264 kmovb %k3, %ebx # k5
265 kmovb %k4, %ecx # k5h
266 kmovb %k5, %edx # k6
267
268 # Get mask of QWs where carries shall be propagated to.
269 # Merge 4-bit masks to 8-bit values to use add with carry.
270 shl \$4, %r13b
271 or %r13b, %r14b
272 shl \$4, %r11b
273 or %r11b, %r12b
274
275 add %r14b, %r14b
276 adc %r12b, %r12b
277 adc %r10b, %r10b
278
279 shl \$4, %r8b
280 or %r8b,%r9b
281 shl \$4, %cl
282 or %cl, %bl
283
284 add %r9b, %r14b
285 adc %bl, %r12b
286 adc %dl, %r10b
287
288 xor %r9b, %r14b
289 xor %bl, %r12b
290 xor %dl, %r10b
291
292 kmovb %r14d, %k1
293 shr \$4, %r14b
294 kmovb %r14d, %k2
295 kmovb %r12d, %k3
296 shr \$4, %r12b
297 kmovb %r12d, %k4
298 kmovb %r10d, %k5
299
300 # Add carries according to the obtained mask
f87b4c4e
AM
301 vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
302 vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
303 vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
304 vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
305 vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
306
307 vpandq .Lmask52x4(%rip), $_R0, $_R0
308 vpandq .Lmask52x4(%rip), $_R0h, $_R0h
309 vpandq .Lmask52x4(%rip), $_R1, $_R1
310 vpandq .Lmask52x4(%rip), $_R1h, $_R1h
311 vpandq .Lmask52x4(%rip), $_R2, $_R2
c781eb1c
AM
312___
313}
314
315$code.=<<___;
316.text
317
f87b4c4e
AM
318.globl ossl_rsaz_amm52x20_x1_ifma256
319.type ossl_rsaz_amm52x20_x1_ifma256,\@function,5
c781eb1c 320.align 32
f87b4c4e 321ossl_rsaz_amm52x20_x1_ifma256:
c781eb1c
AM
322.cfi_startproc
323 endbranch
324 push %rbx
325.cfi_push %rbx
326 push %rbp
327.cfi_push %rbp
328 push %r12
329.cfi_push %r12
330 push %r13
331.cfi_push %r13
332 push %r14
333.cfi_push %r14
334 push %r15
335.cfi_push %r15
f87b4c4e 336.Lossl_rsaz_amm52x20_x1_ifma256_body:
c781eb1c
AM
337
338 # Zeroing accumulators
339 vpxord $zero, $zero, $zero
340 vmovdqa64 $zero, $R0_0
341 vmovdqa64 $zero, $R0_0h
342 vmovdqa64 $zero, $R1_0
343 vmovdqa64 $zero, $R1_0h
344 vmovdqa64 $zero, $R2_0
345
346 xorl $acc0_0_low, $acc0_0_low
347
348 movq $b, $b_ptr # backup address of b
349 movq \$0xfffffffffffff, $mask52 # 52-bit mask
350
351 # Loop over 20 digits unrolled by 4
352 mov \$5, $iter
353
354.align 32
355.Lloop5:
356___
357 foreach my $idx (0..3) {
358 &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
359 }
360$code.=<<___;
361 lea `4*8`($b_ptr), $b_ptr
362 dec $iter
363 jne .Lloop5
c781eb1c
AM
364___
365 &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
366$code.=<<___;
367
f87b4c4e
AM
368 vmovdqu64 $R0_0, `0*32`($res)
369 vmovdqu64 $R0_0h, `1*32`($res)
370 vmovdqu64 $R1_0, `2*32`($res)
371 vmovdqu64 $R1_0h, `3*32`($res)
372 vmovdqu64 $R2_0, `4*32`($res)
c781eb1c
AM
373
374 vzeroupper
375 mov 0(%rsp),%r15
376.cfi_restore %r15
377 mov 8(%rsp),%r14
378.cfi_restore %r14
379 mov 16(%rsp),%r13
380.cfi_restore %r13
381 mov 24(%rsp),%r12
382.cfi_restore %r12
383 mov 32(%rsp),%rbp
384.cfi_restore %rbp
385 mov 40(%rsp),%rbx
386.cfi_restore %rbx
387 lea 48(%rsp),%rsp
388.cfi_adjust_cfa_offset -48
f87b4c4e 389.Lossl_rsaz_amm52x20_x1_ifma256_epilogue:
c781eb1c
AM
390 ret
391.cfi_endproc
f87b4c4e 392.size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
c781eb1c
AM
393___
394
395$code.=<<___;
396.data
397.align 32
398.Lmask52x4:
399 .quad 0xfffffffffffff
400 .quad 0xfffffffffffff
401 .quad 0xfffffffffffff
402 .quad 0xfffffffffffff
403___
404
405###############################################################################
406# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
407#
f87b4c4e 408# See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
c781eb1c
AM
409# Montgomery Multiplication algorithm and function input parameters description.
410#
411# This function does two AMMs for two independent inputs, hence dual.
412#
f87b4c4e
AM
413# void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG out[2][20],
414# const BN_ULONG a[2][20],
415# const BN_ULONG b[2][20],
416# const BN_ULONG m[2][20],
417# const BN_ULONG k0[2]);
c781eb1c
AM
418###############################################################################
419
420$code.=<<___;
421.text
422
f87b4c4e
AM
423.globl ossl_rsaz_amm52x20_x2_ifma256
424.type ossl_rsaz_amm52x20_x2_ifma256,\@function,5
c781eb1c 425.align 32
f87b4c4e 426ossl_rsaz_amm52x20_x2_ifma256:
c781eb1c
AM
427.cfi_startproc
428 endbranch
429 push %rbx
430.cfi_push %rbx
431 push %rbp
432.cfi_push %rbp
433 push %r12
434.cfi_push %r12
435 push %r13
436.cfi_push %r13
437 push %r14
438.cfi_push %r14
439 push %r15
440.cfi_push %r15
f87b4c4e 441.Lossl_rsaz_amm52x20_x2_ifma256_body:
c781eb1c
AM
442
443 # Zeroing accumulators
444 vpxord $zero, $zero, $zero
445 vmovdqa64 $zero, $R0_0
446 vmovdqa64 $zero, $R0_0h
447 vmovdqa64 $zero, $R1_0
448 vmovdqa64 $zero, $R1_0h
449 vmovdqa64 $zero, $R2_0
450 vmovdqa64 $zero, $R0_1
451 vmovdqa64 $zero, $R0_1h
452 vmovdqa64 $zero, $R1_1
453 vmovdqa64 $zero, $R1_1h
454 vmovdqa64 $zero, $R2_1
455
456 xorl $acc0_0_low, $acc0_0_low
457 xorl $acc0_1_low, $acc0_1_low
458
459 movq $b, $b_ptr # backup address of b
460 movq \$0xfffffffffffff, $mask52 # 52-bit mask
461
462 mov \$20, $iter
463
464.align 32
465.Lloop20:
466___
467 &amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
468 # 20*8 = offset of the next dimension in two-dimension array
469 &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
470$code.=<<___;
471 lea 8($b_ptr), $b_ptr
472 dec $iter
473 jne .Lloop20
c781eb1c
AM
474___
475 &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
476 &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
477$code.=<<___;
478
f87b4c4e
AM
479 vmovdqu64 $R0_0, `0*32`($res)
480 vmovdqu64 $R0_0h, `1*32`($res)
481 vmovdqu64 $R1_0, `2*32`($res)
482 vmovdqu64 $R1_0h, `3*32`($res)
483 vmovdqu64 $R2_0, `4*32`($res)
c781eb1c 484
f87b4c4e
AM
485 vmovdqu64 $R0_1, `5*32`($res)
486 vmovdqu64 $R0_1h, `6*32`($res)
487 vmovdqu64 $R1_1, `7*32`($res)
488 vmovdqu64 $R1_1h, `8*32`($res)
489 vmovdqu64 $R2_1, `9*32`($res)
c781eb1c
AM
490
491 vzeroupper
492 mov 0(%rsp),%r15
493.cfi_restore %r15
494 mov 8(%rsp),%r14
495.cfi_restore %r14
496 mov 16(%rsp),%r13
497.cfi_restore %r13
498 mov 24(%rsp),%r12
499.cfi_restore %r12
500 mov 32(%rsp),%rbp
501.cfi_restore %rbp
502 mov 40(%rsp),%rbx
503.cfi_restore %rbx
504 lea 48(%rsp),%rsp
505.cfi_adjust_cfa_offset -48
f87b4c4e 506.Lossl_rsaz_amm52x20_x2_ifma256_epilogue:
c781eb1c
AM
507 ret
508.cfi_endproc
f87b4c4e 509.size ossl_rsaz_amm52x20_x2_ifma256, .-ossl_rsaz_amm52x20_x2_ifma256
c781eb1c
AM
510___
511}
512
513###############################################################################
514# Constant time extraction from the precomputed table of powers base^i, where
515# i = 0..2^EXP_WIN_SIZE-1
516#
f87b4c4e
AM
517# The input |red_table| contains precomputations for two independent base values.
518# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
c781eb1c 519#
f87b4c4e 520# Extracted value (output) is 2 20 digit numbers in 2^52 radix.
c781eb1c 521#
190c029e
P
522# void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
523# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
f87b4c4e 524# int red_table_idx1, int red_table_idx2);
c781eb1c
AM
525#
526# EXP_WIN_SIZE = 5
527###############################################################################
528{
529# input parameters
f87b4c4e
AM
530my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
531 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
c781eb1c 532
f87b4c4e
AM
533my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
534my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
535my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
536
537my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
538my $t0xmm = $t0;
539$t0xmm =~ s/%y/%x/;
c781eb1c
AM
540
541$code.=<<___;
542.text
543
544.align 32
190c029e 545.globl ossl_extract_multiplier_2x20_win5
f87b4c4e 546.type ossl_extract_multiplier_2x20_win5,\@abi-omnipotent
190c029e 547ossl_extract_multiplier_2x20_win5:
c781eb1c
AM
548.cfi_startproc
549 endbranch
c781eb1c 550 vmovdqa64 .Lones(%rip), $ones # broadcast ones
f87b4c4e
AM
551 vpbroadcastq $red_tbl_idx1, $idx1
552 vpbroadcastq $red_tbl_idx2, $idx2
c781eb1c
AM
553 leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
554
f87b4c4e
AM
555 # zeroing t0..n, cur_idx
556 vpxor $t0xmm, $t0xmm, $t0xmm
557 vmovdqa64 $t0, $cur_idx
558___
559foreach (1..9) {
560 $code.="vmovdqa64 $t0, $t[$_] \n";
561}
562$code.=<<___;
c781eb1c
AM
563
564.align 32
565.Lloop:
f87b4c4e
AM
566 vpcmpq \$0, $cur_idx, $idx1, %k1 # mask of (idx1 == cur_idx)
567 vpcmpq \$0, $cur_idx, $idx2, %k2 # mask of (idx2 == cur_idx)
568___
569foreach (0..9) {
570 my $mask = $_<5?"%k1":"%k2";
571$code.=<<___;
572 vmovdqu64 `${_}*32`($red_tbl), $tmp # load data from red_tbl
573 vpblendmq $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
574___
575}
576$code.=<<___;
577 vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
578 addq \$`2*20*8`, $red_tbl
c781eb1c
AM
579 cmpq $red_tbl, %rax
580 jne .Lloop
f87b4c4e
AM
581___
582# store t0..n
583foreach (0..9) {
584 $code.="vmovdqu64 $t[$_], `${_}*32`($out) \n";
585}
586$code.=<<___;
c781eb1c
AM
587 ret
588.cfi_endproc
190c029e 589.size ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
c781eb1c
AM
590___
591$code.=<<___;
592.data
593.align 32
594.Lones:
595 .quad 1,1,1,1
f87b4c4e
AM
596.Lzeros:
597 .quad 0,0,0,0
c781eb1c
AM
598___
599}
600
601if ($win64) {
602$rec="%rcx";
603$frame="%rdx";
604$context="%r8";
605$disp="%r9";
606
f87b4c4e 607$code.=<<___;
c781eb1c
AM
608.extern __imp_RtlVirtualUnwind
609.type rsaz_def_handler,\@abi-omnipotent
610.align 16
611rsaz_def_handler:
612 push %rsi
613 push %rdi
614 push %rbx
615 push %rbp
616 push %r12
617 push %r13
618 push %r14
619 push %r15
620 pushfq
621 sub \$64,%rsp
622
623 mov 120($context),%rax # pull context->Rax
624 mov 248($context),%rbx # pull context->Rip
625
626 mov 8($disp),%rsi # disp->ImageBase
627 mov 56($disp),%r11 # disp->HandlerData
628
629 mov 0(%r11),%r10d # HandlerData[0]
630 lea (%rsi,%r10),%r10 # prologue label
631 cmp %r10,%rbx # context->Rip<.Lprologue
632 jb .Lcommon_seh_tail
633
634 mov 152($context),%rax # pull context->Rsp
635
636 mov 4(%r11),%r10d # HandlerData[1]
637 lea (%rsi,%r10),%r10 # epilogue label
638 cmp %r10,%rbx # context->Rip>=.Lepilogue
639 jae .Lcommon_seh_tail
640
641 lea 48(%rax),%rax
642
643 mov -8(%rax),%rbx
644 mov -16(%rax),%rbp
645 mov -24(%rax),%r12
646 mov -32(%rax),%r13
647 mov -40(%rax),%r14
648 mov -48(%rax),%r15
649 mov %rbx,144($context) # restore context->Rbx
650 mov %rbp,160($context) # restore context->Rbp
651 mov %r12,216($context) # restore context->R12
652 mov %r13,224($context) # restore context->R13
653 mov %r14,232($context) # restore context->R14
654 mov %r15,240($context) # restore context->R14
655
656.Lcommon_seh_tail:
657 mov 8(%rax),%rdi
658 mov 16(%rax),%rsi
659 mov %rax,152($context) # restore context->Rsp
660 mov %rsi,168($context) # restore context->Rsi
661 mov %rdi,176($context) # restore context->Rdi
662
663 mov 40($disp),%rdi # disp->ContextRecord
664 mov $context,%rsi # context
665 mov \$154,%ecx # sizeof(CONTEXT)
666 .long 0xa548f3fc # cld; rep movsq
667
668 mov $disp,%rsi
669 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
670 mov 8(%rsi),%rdx # arg2, disp->ImageBase
671 mov 0(%rsi),%r8 # arg3, disp->ControlPc
672 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
673 mov 40(%rsi),%r10 # disp->ContextRecord
674 lea 56(%rsi),%r11 # &disp->HandlerData
675 lea 24(%rsi),%r12 # &disp->EstablisherFrame
676 mov %r10,32(%rsp) # arg5
677 mov %r11,40(%rsp) # arg6
678 mov %r12,48(%rsp) # arg7
679 mov %rcx,56(%rsp) # arg8, (NULL)
680 call *__imp_RtlVirtualUnwind(%rip)
681
682 mov \$1,%eax # ExceptionContinueSearch
683 add \$64,%rsp
684 popfq
685 pop %r15
686 pop %r14
687 pop %r13
688 pop %r12
689 pop %rbp
690 pop %rbx
691 pop %rdi
692 pop %rsi
693 ret
694.size rsaz_def_handler,.-rsaz_def_handler
695
696.section .pdata
697.align 4
f87b4c4e
AM
698 .rva .LSEH_begin_ossl_rsaz_amm52x20_x1_ifma256
699 .rva .LSEH_end_ossl_rsaz_amm52x20_x1_ifma256
700 .rva .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256
c781eb1c 701
f87b4c4e
AM
702 .rva .LSEH_begin_ossl_rsaz_amm52x20_x2_ifma256
703 .rva .LSEH_end_ossl_rsaz_amm52x20_x2_ifma256
704 .rva .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256
b238e78f 705
c781eb1c
AM
706.section .xdata
707.align 8
f87b4c4e 708.LSEH_info_ossl_rsaz_amm52x20_x1_ifma256:
c781eb1c
AM
709 .byte 9,0,0,0
710 .rva rsaz_def_handler
f87b4c4e
AM
711 .rva .Lossl_rsaz_amm52x20_x1_ifma256_body,.Lossl_rsaz_amm52x20_x1_ifma256_epilogue
712.LSEH_info_ossl_rsaz_amm52x20_x2_ifma256:
b238e78f
AM
713 .byte 9,0,0,0
714 .rva rsaz_def_handler
f87b4c4e 715 .rva .Lossl_rsaz_amm52x20_x2_ifma256_body,.Lossl_rsaz_amm52x20_x2_ifma256_epilogue
c781eb1c
AM
716___
717}
718}}} else {{{ # fallback for old assembler
719$code.=<<___;
720.text
721
e475d9a4
P
722.globl ossl_rsaz_avx512ifma_eligible
723.type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
724ossl_rsaz_avx512ifma_eligible:
c781eb1c
AM
725 xor %eax,%eax
726 ret
e475d9a4 727.size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
c781eb1c 728
f87b4c4e
AM
729.globl ossl_rsaz_amm52x20_x1_ifma256
730.globl ossl_rsaz_amm52x20_x2_ifma256
190c029e 731.globl ossl_extract_multiplier_2x20_win5
f87b4c4e
AM
732.type ossl_rsaz_amm52x20_x1_ifma256,\@abi-omnipotent
733ossl_rsaz_amm52x20_x1_ifma256:
734ossl_rsaz_amm52x20_x2_ifma256:
190c029e 735ossl_extract_multiplier_2x20_win5:
c781eb1c
AM
736 .byte 0x0f,0x0b # ud2
737 ret
f87b4c4e 738.size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
c781eb1c
AM
739___
740}}}
741
742$code =~ s/\`([^\`]*)\`/eval $1/gem;
743print $code;
744close STDOUT or die "error closing STDOUT: $!";