]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/bn_gf2m.c
Fix memory leaks and other mistakes on errors
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
CommitLineData
1dc920c8
BM
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
0f113f3e
MC
30/*
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
36 */
6c950e0d 37
1dc920c8
BM
38/* ====================================================================
39 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 *
45 * 1. Redistributions of source code must retain the above copyright
0f113f3e 46 * notice, this list of conditions and the following disclaimer.
1dc920c8
BM
47 *
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in
50 * the documentation and/or other materials provided with the
51 * distribution.
52 *
53 * 3. All advertising materials mentioning features or use of this
54 * software must display the following acknowledgment:
55 * "This product includes software developed by the OpenSSL Project
56 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 *
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 * endorse or promote products derived from this software without
60 * prior written permission. For written permission, please contact
61 * openssl-core@openssl.org.
62 *
63 * 5. Products derived from this software may not be called "OpenSSL"
64 * nor may "OpenSSL" appear in their names without prior written
65 * permission of the OpenSSL Project.
66 *
67 * 6. Redistributions of any form whatsoever must retain the following
68 * acknowledgment:
69 * "This product includes software developed by the OpenSSL Project
70 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 *
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
85 *
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com). This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
89 *
90 */
91
92#include <assert.h>
93#include <limits.h>
94#include <stdio.h>
b39fc560 95#include "internal/cryptlib.h"
1dc920c8
BM
96#include "bn_lcl.h"
97
b3310161
DSH
98#ifndef OPENSSL_NO_EC2M
99
0f113f3e
MC
100/*
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
103 */
104# define MAX_ITERATIONS 50
105
106static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85
108};
1dc920c8 109
1dc920c8 110/* Platform-specific macros to accelerate squaring. */
0f113f3e
MC
111# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
112# define SQR1(w) \
1dc920c8
BM
113 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
114 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
115 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
116 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
0f113f3e 117# define SQR0(w) \
1dc920c8
BM
118 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
119 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
120 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
121 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
0f113f3e
MC
122# endif
123# ifdef THIRTY_TWO_BIT
124# define SQR1(w) \
1dc920c8
BM
125 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
126 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
0f113f3e 127# define SQR0(w) \
1dc920c8
BM
128 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
129 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
0f113f3e 130# endif
1dc920c8 131
0f113f3e
MC
132# if !defined(OPENSSL_BN_ASM_GF2m)
133/*
134 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
135 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
136 * the variables have the right amount of space allocated.
1dc920c8 137 */
0f113f3e
MC
138# ifdef THIRTY_TWO_BIT
139static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
140 const BN_ULONG b)
141{
142 register BN_ULONG h, l, s;
143 BN_ULONG tab[8], top2b = a >> 30;
144 register BN_ULONG a1, a2, a4;
145
146 a1 = a & (0x3FFFFFFF);
147 a2 = a1 << 1;
148 a4 = a2 << 1;
149
150 tab[0] = 0;
151 tab[1] = a1;
152 tab[2] = a2;
153 tab[3] = a1 ^ a2;
154 tab[4] = a4;
155 tab[5] = a1 ^ a4;
156 tab[6] = a2 ^ a4;
157 tab[7] = a1 ^ a2 ^ a4;
158
159 s = tab[b & 0x7];
160 l = s;
161 s = tab[b >> 3 & 0x7];
162 l ^= s << 3;
163 h = s >> 29;
164 s = tab[b >> 6 & 0x7];
165 l ^= s << 6;
166 h ^= s >> 26;
167 s = tab[b >> 9 & 0x7];
168 l ^= s << 9;
169 h ^= s >> 23;
170 s = tab[b >> 12 & 0x7];
171 l ^= s << 12;
172 h ^= s >> 20;
173 s = tab[b >> 15 & 0x7];
174 l ^= s << 15;
175 h ^= s >> 17;
176 s = tab[b >> 18 & 0x7];
177 l ^= s << 18;
178 h ^= s >> 14;
179 s = tab[b >> 21 & 0x7];
180 l ^= s << 21;
181 h ^= s >> 11;
182 s = tab[b >> 24 & 0x7];
183 l ^= s << 24;
184 h ^= s >> 8;
185 s = tab[b >> 27 & 0x7];
186 l ^= s << 27;
187 h ^= s >> 5;
188 s = tab[b >> 30];
189 l ^= s << 30;
190 h ^= s >> 2;
191
192 /* compensate for the top two bits of a */
193
194 if (top2b & 01) {
195 l ^= b << 30;
196 h ^= b >> 2;
197 }
198 if (top2b & 02) {
199 l ^= b << 31;
200 h ^= b >> 1;
201 }
202
203 *r1 = h;
204 *r0 = l;
205}
206# endif
207# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
208static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
209 const BN_ULONG b)
210{
211 register BN_ULONG h, l, s;
212 BN_ULONG tab[16], top3b = a >> 61;
213 register BN_ULONG a1, a2, a4, a8;
214
215 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
216 a2 = a1 << 1;
217 a4 = a2 << 1;
218 a8 = a4 << 1;
219
220 tab[0] = 0;
221 tab[1] = a1;
222 tab[2] = a2;
223 tab[3] = a1 ^ a2;
224 tab[4] = a4;
225 tab[5] = a1 ^ a4;
226 tab[6] = a2 ^ a4;
227 tab[7] = a1 ^ a2 ^ a4;
228 tab[8] = a8;
229 tab[9] = a1 ^ a8;
230 tab[10] = a2 ^ a8;
231 tab[11] = a1 ^ a2 ^ a8;
232 tab[12] = a4 ^ a8;
233 tab[13] = a1 ^ a4 ^ a8;
234 tab[14] = a2 ^ a4 ^ a8;
235 tab[15] = a1 ^ a2 ^ a4 ^ a8;
236
237 s = tab[b & 0xF];
238 l = s;
239 s = tab[b >> 4 & 0xF];
240 l ^= s << 4;
241 h = s >> 60;
242 s = tab[b >> 8 & 0xF];
243 l ^= s << 8;
244 h ^= s >> 56;
245 s = tab[b >> 12 & 0xF];
246 l ^= s << 12;
247 h ^= s >> 52;
248 s = tab[b >> 16 & 0xF];
249 l ^= s << 16;
250 h ^= s >> 48;
251 s = tab[b >> 20 & 0xF];
252 l ^= s << 20;
253 h ^= s >> 44;
254 s = tab[b >> 24 & 0xF];
255 l ^= s << 24;
256 h ^= s >> 40;
257 s = tab[b >> 28 & 0xF];
258 l ^= s << 28;
259 h ^= s >> 36;
260 s = tab[b >> 32 & 0xF];
261 l ^= s << 32;
262 h ^= s >> 32;
263 s = tab[b >> 36 & 0xF];
264 l ^= s << 36;
265 h ^= s >> 28;
266 s = tab[b >> 40 & 0xF];
267 l ^= s << 40;
268 h ^= s >> 24;
269 s = tab[b >> 44 & 0xF];
270 l ^= s << 44;
271 h ^= s >> 20;
272 s = tab[b >> 48 & 0xF];
273 l ^= s << 48;
274 h ^= s >> 16;
275 s = tab[b >> 52 & 0xF];
276 l ^= s << 52;
277 h ^= s >> 12;
278 s = tab[b >> 56 & 0xF];
279 l ^= s << 56;
280 h ^= s >> 8;
281 s = tab[b >> 60];
282 l ^= s << 60;
283 h ^= s >> 4;
284
285 /* compensate for the top three bits of a */
286
287 if (top3b & 01) {
288 l ^= b << 61;
289 h ^= b >> 3;
290 }
291 if (top3b & 02) {
292 l ^= b << 62;
293 h ^= b >> 2;
294 }
295 if (top3b & 04) {
296 l ^= b << 63;
297 h ^= b >> 1;
298 }
299
300 *r1 = h;
301 *r0 = l;
302}
303# endif
304
305/*
306 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
307 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
308 * ensure that the variables have the right amount of space allocated.
1dc920c8 309 */
0f113f3e
MC
310static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
311 const BN_ULONG b1, const BN_ULONG b0)
312{
313 BN_ULONG m1, m0;
314 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
315 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
316 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
317 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
318 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
319 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
320 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
321}
322# else
323void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
324 BN_ULONG b0);
325# endif
326
327/*
328 * Add polynomials a and b and store result in r; r could be a or b, a and b
1dc920c8
BM
329 * could be equal; r is the bitwise XOR of a and b.
330 */
0f113f3e
MC
331int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
332{
333 int i;
334 const BIGNUM *at, *bt;
335
336 bn_check_top(a);
337 bn_check_top(b);
338
339 if (a->top < b->top) {
340 at = b;
341 bt = a;
342 } else {
343 at = a;
344 bt = b;
345 }
346
347 if (bn_wexpand(r, at->top) == NULL)
348 return 0;
349
350 for (i = 0; i < bt->top; i++) {
351 r->d[i] = at->d[i] ^ bt->d[i];
352 }
353 for (; i < at->top; i++) {
354 r->d[i] = at->d[i];
355 }
356
357 r->top = at->top;
358 bn_correct_top(r);
359
360 return 1;
361}
1dc920c8 362
c80fd6b2
MC
363/*-
364 * Some functions allow for representation of the irreducible polynomials
1dc920c8
BM
365 * as an int[], say p. The irreducible f(t) is then of the form:
366 * t^p[0] + t^p[1] + ... + t^p[k]
367 * where m = p[0] > p[1] > ... > p[k] = 0.
368 */
369
1dc920c8 370/* Performs modular reduction of a and store result in r. r could be a. */
c4e7870a 371int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
0f113f3e
MC
372{
373 int j, k;
374 int n, dN, d0, d1;
375 BN_ULONG zz, *z;
376
377 bn_check_top(a);
378
379 if (!p[0]) {
380 /* reduction mod 1 => return 0 */
381 BN_zero(r);
382 return 1;
383 }
384
385 /*
386 * Since the algorithm does reduction in the r value, if a != r, copy the
387 * contents of a into r so we can do reduction in r.
388 */
389 if (a != r) {
390 if (!bn_wexpand(r, a->top))
391 return 0;
392 for (j = 0; j < a->top; j++) {
393 r->d[j] = a->d[j];
394 }
395 r->top = a->top;
396 }
397 z = r->d;
398
399 /* start reduction */
400 dN = p[0] / BN_BITS2;
401 for (j = r->top - 1; j > dN;) {
402 zz = z[j];
403 if (z[j] == 0) {
404 j--;
405 continue;
406 }
407 z[j] = 0;
408
409 for (k = 1; p[k] != 0; k++) {
410 /* reducing component t^p[k] */
411 n = p[0] - p[k];
412 d0 = n % BN_BITS2;
413 d1 = BN_BITS2 - d0;
414 n /= BN_BITS2;
415 z[j - n] ^= (zz >> d0);
416 if (d0)
417 z[j - n - 1] ^= (zz << d1);
418 }
419
420 /* reducing component t^0 */
421 n = dN;
422 d0 = p[0] % BN_BITS2;
423 d1 = BN_BITS2 - d0;
424 z[j - n] ^= (zz >> d0);
425 if (d0)
426 z[j - n - 1] ^= (zz << d1);
427 }
428
429 /* final round of reduction */
430 while (j == dN) {
431
432 d0 = p[0] % BN_BITS2;
433 zz = z[dN] >> d0;
434 if (zz == 0)
435 break;
436 d1 = BN_BITS2 - d0;
437
438 /* clear up the top d1 bits */
439 if (d0)
440 z[dN] = (z[dN] << d1) >> d1;
441 else
442 z[dN] = 0;
443 z[0] ^= zz; /* reduction t^0 component */
444
445 for (k = 1; p[k] != 0; k++) {
446 BN_ULONG tmp_ulong;
447
448 /* reducing component t^p[k] */
449 n = p[k] / BN_BITS2;
450 d0 = p[k] % BN_BITS2;
451 d1 = BN_BITS2 - d0;
452 z[n] ^= (zz << d0);
86e5d1e3 453 if (d0 && (tmp_ulong = zz >> d1))
0f113f3e
MC
454 z[n + 1] ^= tmp_ulong;
455 }
456
457 }
458
459 bn_correct_top(r);
460 return 1;
461}
462
463/*
464 * Performs modular reduction of a by p and store result in r. r could be a.
1dc920c8 465 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
0f113f3e 466 * function is only provided for convenience; for best performance, use the
1dc920c8
BM
467 * BN_GF2m_mod_arr function.
468 */
0f113f3e
MC
469int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
470{
471 int ret = 0;
472 int arr[6];
473 bn_check_top(a);
474 bn_check_top(p);
b6eb9827
DSH
475 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
476 if (!ret || ret > (int)OSSL_NELEM(arr)) {
0f113f3e
MC
477 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
478 return 0;
479 }
480 ret = BN_GF2m_mod_arr(r, a, arr);
481 bn_check_top(r);
482 return ret;
483}
484
485/*
486 * Compute the product of two polynomials a and b, reduce modulo p, and store
1dc920c8
BM
487 * the result in r. r could be a or b; a could be b.
488 */
0f113f3e
MC
489int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
490 const int p[], BN_CTX *ctx)
491{
492 int zlen, i, j, k, ret = 0;
493 BIGNUM *s;
494 BN_ULONG x1, x0, y1, y0, zz[4];
495
496 bn_check_top(a);
497 bn_check_top(b);
498
499 if (a == b) {
500 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
501 }
502
503 BN_CTX_start(ctx);
504 if ((s = BN_CTX_get(ctx)) == NULL)
505 goto err;
506
507 zlen = a->top + b->top + 4;
508 if (!bn_wexpand(s, zlen))
509 goto err;
510 s->top = zlen;
511
512 for (i = 0; i < zlen; i++)
513 s->d[i] = 0;
514
515 for (j = 0; j < b->top; j += 2) {
516 y0 = b->d[j];
517 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
518 for (i = 0; i < a->top; i += 2) {
519 x0 = a->d[i];
520 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
521 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
522 for (k = 0; k < 4; k++)
523 s->d[i + j + k] ^= zz[k];
524 }
525 }
526
527 bn_correct_top(s);
528 if (BN_GF2m_mod_arr(r, s, p))
529 ret = 1;
530 bn_check_top(r);
531
532 err:
533 BN_CTX_end(ctx);
534 return ret;
535}
536
537/*
538 * Compute the product of two polynomials a and b, reduce modulo p, and store
539 * the result in r. r could be a or b; a could equal b. This function calls
540 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
541 * only provided for convenience; for best performance, use the
1dc920c8
BM
542 * BN_GF2m_mod_mul_arr function.
543 */
0f113f3e
MC
544int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
545 const BIGNUM *p, BN_CTX *ctx)
546{
547 int ret = 0;
548 const int max = BN_num_bits(p) + 1;
549 int *arr = NULL;
550 bn_check_top(a);
551 bn_check_top(b);
552 bn_check_top(p);
b4faea50 553 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
0f113f3e
MC
554 goto err;
555 ret = BN_GF2m_poly2arr(p, arr, max);
556 if (!ret || ret > max) {
557 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
558 goto err;
559 }
560 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
561 bn_check_top(r);
562 err:
b548a1f1 563 OPENSSL_free(arr);
0f113f3e
MC
564 return ret;
565}
1dc920c8
BM
566
567/* Square a, reduce the result mod p, and store it in a. r could be a. */
0f113f3e
MC
568int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
569 BN_CTX *ctx)
570{
571 int i, ret = 0;
572 BIGNUM *s;
573
574 bn_check_top(a);
575 BN_CTX_start(ctx);
576 if ((s = BN_CTX_get(ctx)) == NULL)
3f6c7691 577 goto err;
0f113f3e
MC
578 if (!bn_wexpand(s, 2 * a->top))
579 goto err;
580
581 for (i = a->top - 1; i >= 0; i--) {
582 s->d[2 * i + 1] = SQR1(a->d[i]);
583 s->d[2 * i] = SQR0(a->d[i]);
584 }
585
586 s->top = 2 * a->top;
587 bn_correct_top(s);
588 if (!BN_GF2m_mod_arr(r, s, p))
589 goto err;
590 bn_check_top(r);
591 ret = 1;
592 err:
593 BN_CTX_end(ctx);
594 return ret;
595}
596
597/*
598 * Square a, reduce the result mod p, and store it in a. r could be a. This
599 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
600 * wrapper function is only provided for convenience; for best performance,
601 * use the BN_GF2m_mod_sqr_arr function.
1dc920c8 602 */
0f113f3e
MC
603int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
604{
605 int ret = 0;
606 const int max = BN_num_bits(p) + 1;
607 int *arr = NULL;
608
609 bn_check_top(a);
610 bn_check_top(p);
b4faea50 611 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
0f113f3e
MC
612 goto err;
613 ret = BN_GF2m_poly2arr(p, arr, max);
614 if (!ret || ret > max) {
615 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
616 goto err;
617 }
618 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
619 bn_check_top(r);
620 err:
b548a1f1 621 OPENSSL_free(arr);
0f113f3e
MC
622 return ret;
623}
624
625/*
626 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
627 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
628 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
629 * Curve Cryptography Over Binary Fields".
1dc920c8
BM
630 */
631int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
0f113f3e
MC
632{
633 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
634 int ret = 0;
635
636 bn_check_top(a);
637 bn_check_top(p);
638
639 BN_CTX_start(ctx);
640
641 if ((b = BN_CTX_get(ctx)) == NULL)
642 goto err;
643 if ((c = BN_CTX_get(ctx)) == NULL)
644 goto err;
645 if ((u = BN_CTX_get(ctx)) == NULL)
646 goto err;
647 if ((v = BN_CTX_get(ctx)) == NULL)
648 goto err;
649
650 if (!BN_GF2m_mod(u, a, p))
651 goto err;
652 if (BN_is_zero(u))
653 goto err;
654
655 if (!BN_copy(v, p))
656 goto err;
657# if 0
658 if (!BN_one(b))
659 goto err;
660
661 while (1) {
662 while (!BN_is_odd(u)) {
663 if (BN_is_zero(u))
664 goto err;
665 if (!BN_rshift1(u, u))
666 goto err;
667 if (BN_is_odd(b)) {
668 if (!BN_GF2m_add(b, b, p))
669 goto err;
670 }
671 if (!BN_rshift1(b, b))
672 goto err;
673 }
674
675 if (BN_abs_is_word(u, 1))
676 break;
677
678 if (BN_num_bits(u) < BN_num_bits(v)) {
679 tmp = u;
680 u = v;
681 v = tmp;
682 tmp = b;
683 b = c;
684 c = tmp;
685 }
686
687 if (!BN_GF2m_add(u, u, v))
688 goto err;
689 if (!BN_GF2m_add(b, b, c))
690 goto err;
691 }
692# else
693 {
4924b37e
AP
694 int i;
695 int ubits = BN_num_bits(u);
696 int vbits = BN_num_bits(v); /* v is copy of p */
697 int top = p->top;
0f113f3e
MC
698 BN_ULONG *udp, *bdp, *vdp, *cdp;
699
700 bn_wexpand(u, top);
701 udp = u->d;
702 for (i = u->top; i < top; i++)
703 udp[i] = 0;
704 u->top = top;
705 bn_wexpand(b, top);
706 bdp = b->d;
707 bdp[0] = 1;
708 for (i = 1; i < top; i++)
709 bdp[i] = 0;
710 b->top = top;
711 bn_wexpand(c, top);
712 cdp = c->d;
713 for (i = 0; i < top; i++)
714 cdp[i] = 0;
715 c->top = top;
716 vdp = v->d; /* It pays off to "cache" *->d pointers,
717 * because it allows optimizer to be more
718 * aggressive. But we don't have to "cache"
719 * p->d, because *p is declared 'const'... */
720 while (1) {
721 while (ubits && !(udp[0] & 1)) {
722 BN_ULONG u0, u1, b0, b1, mask;
723
724 u0 = udp[0];
725 b0 = bdp[0];
726 mask = (BN_ULONG)0 - (b0 & 1);
727 b0 ^= p->d[0] & mask;
728 for (i = 0; i < top - 1; i++) {
729 u1 = udp[i + 1];
730 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
731 u0 = u1;
732 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
733 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
734 b0 = b1;
735 }
736 udp[i] = u0 >> 1;
737 bdp[i] = b0 >> 1;
738 ubits--;
739 }
740
4924b37e
AP
741 if (ubits <= BN_BITS2) {
742 if (udp[0] == 0) /* poly was reducible */
743 goto err;
744 if (udp[0] == 1)
745 break;
746 }
0f113f3e
MC
747
748 if (ubits < vbits) {
749 i = ubits;
750 ubits = vbits;
751 vbits = i;
752 tmp = u;
753 u = v;
754 v = tmp;
755 tmp = b;
756 b = c;
757 c = tmp;
758 udp = vdp;
759 vdp = v->d;
760 bdp = cdp;
761 cdp = c->d;
762 }
763 for (i = 0; i < top; i++) {
764 udp[i] ^= vdp[i];
765 bdp[i] ^= cdp[i];
766 }
767 if (ubits == vbits) {
768 BN_ULONG ul;
769 int utop = (ubits - 1) / BN_BITS2;
770
771 while ((ul = udp[utop]) == 0 && utop)
772 utop--;
773 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
774 }
775 }
776 bn_correct_top(b);
777 }
778# endif
779
780 if (!BN_copy(r, b))
781 goto err;
782 bn_check_top(r);
783 ret = 1;
784
785 err:
786# ifdef BN_DEBUG /* BN_CTX_end would complain about the
787 * expanded form */
788 bn_correct_top(c);
789 bn_correct_top(u);
790 bn_correct_top(v);
791# endif
792 BN_CTX_end(ctx);
793 return ret;
794}
795
796/*
797 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
798 * This function calls down to the BN_GF2m_mod_inv implementation; this
799 * wrapper function is only provided for convenience; for best performance,
800 * use the BN_GF2m_mod_inv function.
1dc920c8 801 */
0f113f3e
MC
802int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
803 BN_CTX *ctx)
804{
805 BIGNUM *field;
806 int ret = 0;
807
808 bn_check_top(xx);
809 BN_CTX_start(ctx);
810 if ((field = BN_CTX_get(ctx)) == NULL)
811 goto err;
812 if (!BN_GF2m_arr2poly(p, field))
813 goto err;
814
815 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
816 bn_check_top(r);
817
818 err:
819 BN_CTX_end(ctx);
820 return ret;
821}
822
823# ifndef OPENSSL_SUN_GF2M_DIV
824/*
825 * Divide y by x, reduce modulo p, and store the result in r. r could be x
1dc920c8
BM
826 * or y, x could equal y.
827 */
0f113f3e
MC
828int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
829 const BIGNUM *p, BN_CTX *ctx)
830{
831 BIGNUM *xinv = NULL;
832 int ret = 0;
833
834 bn_check_top(y);
835 bn_check_top(x);
836 bn_check_top(p);
837
838 BN_CTX_start(ctx);
839 xinv = BN_CTX_get(ctx);
840 if (xinv == NULL)
841 goto err;
842
843 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
844 goto err;
845 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
846 goto err;
847 bn_check_top(r);
848 ret = 1;
849
850 err:
851 BN_CTX_end(ctx);
852 return ret;
853}
854# else
855/*
856 * Divide y by x, reduce modulo p, and store the result in r. r could be x
857 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
858 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
859 * Great Divide".
1dc920c8 860 */
0f113f3e
MC
861int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
862 const BIGNUM *p, BN_CTX *ctx)
863{
864 BIGNUM *a, *b, *u, *v;
865 int ret = 0;
866
867 bn_check_top(y);
868 bn_check_top(x);
869 bn_check_top(p);
870
871 BN_CTX_start(ctx);
872
873 a = BN_CTX_get(ctx);
874 b = BN_CTX_get(ctx);
875 u = BN_CTX_get(ctx);
876 v = BN_CTX_get(ctx);
877 if (v == NULL)
878 goto err;
879
880 /* reduce x and y mod p */
881 if (!BN_GF2m_mod(u, y, p))
882 goto err;
883 if (!BN_GF2m_mod(a, x, p))
884 goto err;
885 if (!BN_copy(b, p))
886 goto err;
887
888 while (!BN_is_odd(a)) {
889 if (!BN_rshift1(a, a))
890 goto err;
891 if (BN_is_odd(u))
892 if (!BN_GF2m_add(u, u, p))
893 goto err;
894 if (!BN_rshift1(u, u))
895 goto err;
896 }
897
898 do {
899 if (BN_GF2m_cmp(b, a) > 0) {
900 if (!BN_GF2m_add(b, b, a))
901 goto err;
902 if (!BN_GF2m_add(v, v, u))
903 goto err;
904 do {
905 if (!BN_rshift1(b, b))
906 goto err;
907 if (BN_is_odd(v))
908 if (!BN_GF2m_add(v, v, p))
909 goto err;
910 if (!BN_rshift1(v, v))
911 goto err;
912 } while (!BN_is_odd(b));
913 } else if (BN_abs_is_word(a, 1))
914 break;
915 else {
916 if (!BN_GF2m_add(a, a, b))
917 goto err;
918 if (!BN_GF2m_add(u, u, v))
919 goto err;
920 do {
921 if (!BN_rshift1(a, a))
922 goto err;
923 if (BN_is_odd(u))
924 if (!BN_GF2m_add(u, u, p))
925 goto err;
926 if (!BN_rshift1(u, u))
927 goto err;
928 } while (!BN_is_odd(a));
929 }
930 } while (1);
931
932 if (!BN_copy(r, u))
933 goto err;
934 bn_check_top(r);
935 ret = 1;
936
937 err:
938 BN_CTX_end(ctx);
939 return ret;
940}
941# endif
942
943/*
944 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
945 * * or yy, xx could equal yy. This function calls down to the
946 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
947 * convenience; for best performance, use the BN_GF2m_mod_div function.
1dc920c8 948 */
0f113f3e
MC
949int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
950 const int p[], BN_CTX *ctx)
951{
952 BIGNUM *field;
953 int ret = 0;
954
955 bn_check_top(yy);
956 bn_check_top(xx);
957
958 BN_CTX_start(ctx);
959 if ((field = BN_CTX_get(ctx)) == NULL)
960 goto err;
961 if (!BN_GF2m_arr2poly(p, field))
962 goto err;
963
964 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
965 bn_check_top(r);
966
967 err:
968 BN_CTX_end(ctx);
969 return ret;
970}
971
972/*
973 * Compute the bth power of a, reduce modulo p, and store the result in r. r
974 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
975 * P1363.
1dc920c8 976 */
0f113f3e
MC
977int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
978 const int p[], BN_CTX *ctx)
979{
980 int ret = 0, i, n;
981 BIGNUM *u;
982
983 bn_check_top(a);
984 bn_check_top(b);
985
986 if (BN_is_zero(b))
987 return (BN_one(r));
988
989 if (BN_abs_is_word(b, 1))
990 return (BN_copy(r, a) != NULL);
991
992 BN_CTX_start(ctx);
993 if ((u = BN_CTX_get(ctx)) == NULL)
994 goto err;
995
996 if (!BN_GF2m_mod_arr(u, a, p))
997 goto err;
998
999 n = BN_num_bits(b) - 1;
1000 for (i = n - 1; i >= 0; i--) {
1001 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1002 goto err;
1003 if (BN_is_bit_set(b, i)) {
1004 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1005 goto err;
1006 }
1007 }
1008 if (!BN_copy(r, u))
1009 goto err;
1010 bn_check_top(r);
1011 ret = 1;
1012 err:
1013 BN_CTX_end(ctx);
1014 return ret;
1015}
1016
1017/*
1018 * Compute the bth power of a, reduce modulo p, and store the result in r. r
1019 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1020 * implementation; this wrapper function is only provided for convenience;
1021 * for best performance, use the BN_GF2m_mod_exp_arr function.
1dc920c8 1022 */
0f113f3e
MC
1023int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1024 const BIGNUM *p, BN_CTX *ctx)
1025{
1026 int ret = 0;
1027 const int max = BN_num_bits(p) + 1;
1028 int *arr = NULL;
1029 bn_check_top(a);
1030 bn_check_top(b);
1031 bn_check_top(p);
b4faea50 1032 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
0f113f3e
MC
1033 goto err;
1034 ret = BN_GF2m_poly2arr(p, arr, max);
1035 if (!ret || ret > max) {
1036 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1037 goto err;
1038 }
1039 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1040 bn_check_top(r);
1041 err:
b548a1f1 1042 OPENSSL_free(arr);
0f113f3e
MC
1043 return ret;
1044}
1045
1046/*
1047 * Compute the square root of a, reduce modulo p, and store the result in r.
1048 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1dc920c8 1049 */
0f113f3e
MC
1050int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1051 BN_CTX *ctx)
1052{
1053 int ret = 0;
1054 BIGNUM *u;
1055
1056 bn_check_top(a);
1057
1058 if (!p[0]) {
1059 /* reduction mod 1 => return 0 */
1060 BN_zero(r);
1061 return 1;
1062 }
1063
1064 BN_CTX_start(ctx);
1065 if ((u = BN_CTX_get(ctx)) == NULL)
1066 goto err;
1067
1068 if (!BN_set_bit(u, p[0] - 1))
1069 goto err;
1070 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1071 bn_check_top(r);
1072
1073 err:
1074 BN_CTX_end(ctx);
1075 return ret;
1076}
1077
1078/*
1079 * Compute the square root of a, reduce modulo p, and store the result in r.
1080 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1081 * implementation; this wrapper function is only provided for convenience;
1082 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1dc920c8
BM
1083 */
1084int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
0f113f3e
MC
1085{
1086 int ret = 0;
1087 const int max = BN_num_bits(p) + 1;
1088 int *arr = NULL;
1089 bn_check_top(a);
1090 bn_check_top(p);
b4faea50 1091 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
0f113f3e
MC
1092 goto err;
1093 ret = BN_GF2m_poly2arr(p, arr, max);
1094 if (!ret || ret > max) {
1095 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1096 goto err;
1097 }
1098 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1099 bn_check_top(r);
1100 err:
b548a1f1 1101 OPENSSL_free(arr);
0f113f3e
MC
1102 return ret;
1103}
1104
1105/*
1106 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1107 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1dc920c8 1108 */
0f113f3e
MC
1109int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1110 BN_CTX *ctx)
1111{
1112 int ret = 0, count = 0, j;
1113 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1114
1115 bn_check_top(a_);
1116
1117 if (!p[0]) {
1118 /* reduction mod 1 => return 0 */
1119 BN_zero(r);
1120 return 1;
1121 }
1122
1123 BN_CTX_start(ctx);
1124 a = BN_CTX_get(ctx);
1125 z = BN_CTX_get(ctx);
1126 w = BN_CTX_get(ctx);
1127 if (w == NULL)
1128 goto err;
1129
1130 if (!BN_GF2m_mod_arr(a, a_, p))
1131 goto err;
1132
1133 if (BN_is_zero(a)) {
1134 BN_zero(r);
1135 ret = 1;
1136 goto err;
1137 }
1138
1139 if (p[0] & 0x1) { /* m is odd */
1140 /* compute half-trace of a */
1141 if (!BN_copy(z, a))
1142 goto err;
1143 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1144 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1145 goto err;
1146 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1147 goto err;
1148 if (!BN_GF2m_add(z, z, a))
1149 goto err;
1150 }
1151
1152 } else { /* m is even */
1153
1154 rho = BN_CTX_get(ctx);
1155 w2 = BN_CTX_get(ctx);
1156 tmp = BN_CTX_get(ctx);
1157 if (tmp == NULL)
1158 goto err;
1159 do {
1160 if (!BN_rand(rho, p[0], 0, 0))
1161 goto err;
1162 if (!BN_GF2m_mod_arr(rho, rho, p))
1163 goto err;
1164 BN_zero(z);
1165 if (!BN_copy(w, rho))
1166 goto err;
1167 for (j = 1; j <= p[0] - 1; j++) {
1168 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1169 goto err;
1170 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1171 goto err;
1172 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1173 goto err;
1174 if (!BN_GF2m_add(z, z, tmp))
1175 goto err;
1176 if (!BN_GF2m_add(w, w2, rho))
1177 goto err;
1178 }
1179 count++;
1180 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1181 if (BN_is_zero(w)) {
1182 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1183 goto err;
1184 }
1185 }
1186
1187 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1188 goto err;
1189 if (!BN_GF2m_add(w, z, w))
1190 goto err;
1191 if (BN_GF2m_cmp(w, a)) {
1192 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1193 goto err;
1194 }
1195
1196 if (!BN_copy(r, z))
1197 goto err;
1198 bn_check_top(r);
1199
1200 ret = 1;
1201
1202 err:
1203 BN_CTX_end(ctx);
1204 return ret;
1205}
1206
1207/*
1208 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1209 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1210 * implementation; this wrapper function is only provided for convenience;
1211 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1dc920c8 1212 */
0f113f3e
MC
1213int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1214 BN_CTX *ctx)
1215{
1216 int ret = 0;
1217 const int max = BN_num_bits(p) + 1;
1218 int *arr = NULL;
1219 bn_check_top(a);
1220 bn_check_top(p);
b4faea50 1221 if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
0f113f3e
MC
1222 goto err;
1223 ret = BN_GF2m_poly2arr(p, arr, max);
1224 if (!ret || ret > max) {
1225 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1226 goto err;
1227 }
1228 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1229 bn_check_top(r);
1230 err:
b548a1f1 1231 OPENSSL_free(arr);
0f113f3e
MC
1232 return ret;
1233}
1234
1235/*
1236 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1237 * x^i) into an array of integers corresponding to the bits with non-zero
1238 * coefficient. Array is terminated with -1. Up to max elements of the array
1239 * will be filled. Return value is total number of array elements that would
1240 * be filled if array was large enough.
1dc920c8 1241 */
c4e7870a 1242int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
0f113f3e
MC
1243{
1244 int i, j, k = 0;
1245 BN_ULONG mask;
1246
1247 if (BN_is_zero(a))
1248 return 0;
1249
1250 for (i = a->top - 1; i >= 0; i--) {
1251 if (!a->d[i])
1252 /* skip word if a->d[i] == 0 */
1253 continue;
1254 mask = BN_TBIT;
1255 for (j = BN_BITS2 - 1; j >= 0; j--) {
1256 if (a->d[i] & mask) {
1257 if (k < max)
1258 p[k] = BN_BITS2 * i + j;
1259 k++;
1260 }
1261 mask >>= 1;
1262 }
1263 }
1264
1265 if (k < max) {
1266 p[k] = -1;
1267 k++;
1268 }
1269
1270 return k;
1271}
1272
1273/*
1274 * Convert the coefficient array representation of a polynomial to a
c4e7870a 1275 * bit-string. The array must be terminated by -1.
1dc920c8 1276 */
c4e7870a 1277int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
0f113f3e
MC
1278{
1279 int i;
1280
1281 bn_check_top(a);
1282 BN_zero(a);
1283 for (i = 0; p[i] != -1; i++) {
1284 if (BN_set_bit(a, p[i]) == 0)
1285 return 0;
1286 }
1287 bn_check_top(a);
1288
1289 return 1;
1290}
1dc920c8 1291
b3310161 1292#endif