]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/bn_gf2m.c
Further comment changes for reformat (master)
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
CommitLineData
1dc920c8
BM
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
6c950e0d
BM
30/* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
1dc920c8
BM
37/* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
73e45b2d 91
fe26d066 92
1dc920c8
BM
93#include <assert.h>
94#include <limits.h>
95#include <stdio.h>
96#include "cryptlib.h"
97#include "bn_lcl.h"
98
b3310161
DSH
99#ifndef OPENSSL_NO_EC2M
100
1dc920c8
BM
101/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
102#define MAX_ITERATIONS 50
103
104static const BN_ULONG SQR_tb[16] =
105 { 0, 1, 4, 5, 16, 17, 20, 21,
106 64, 65, 68, 69, 80, 81, 84, 85 };
107/* Platform-specific macros to accelerate squaring. */
108#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
109#define SQR1(w) \
110 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
111 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
112 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
113 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
114#define SQR0(w) \
115 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
116 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
117 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
118 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
119#endif
120#ifdef THIRTY_TWO_BIT
121#define SQR1(w) \
122 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
124#define SQR0(w) \
125 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
126 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
127#endif
1dc920c8 128
925596f8 129#if !defined(OPENSSL_BN_ASM_GF2m)
1dc920c8
BM
130/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
134 */
1dc920c8
BM
135#ifdef THIRTY_TWO_BIT
136static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
137 {
138 register BN_ULONG h, l, s;
139 BN_ULONG tab[8], top2b = a >> 30;
140 register BN_ULONG a1, a2, a4;
141
142 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
143
144 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
145 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
146
147 s = tab[b & 0x7]; l = s;
148 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
149 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
150 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
151 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
152 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
153 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
154 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
155 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
156 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
157 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
158
159 /* compensate for the top two bits of a */
160
161 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
162 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
163
164 *r1 = h; *r0 = l;
165 }
166#endif
167#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
168static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
169 {
170 register BN_ULONG h, l, s;
171 BN_ULONG tab[16], top3b = a >> 61;
172 register BN_ULONG a1, a2, a4, a8;
173
27b2b78f 174 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
1dc920c8
BM
175
176 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
177 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
178 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
179 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
180
181 s = tab[b & 0xF]; l = s;
182 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
183 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
184 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
185 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
186 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
187 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
188 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
189 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
190 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
191 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
192 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
193 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
194 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
195 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
196 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
197
198 /* compensate for the top three bits of a */
199
200 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
201 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
202 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
203
204 *r1 = h; *r0 = l;
205 }
206#endif
207
208/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
209 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
210 * The caller MUST ensure that the variables have the right amount
211 * of space allocated.
212 */
213static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
214 {
215 BN_ULONG m1, m0;
216 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
217 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
218 bn_GF2m_mul_1x1(r+1, r, a0, b0);
219 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
220 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
221 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
222 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
223 }
925596f8
AP
224#else
225void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
226#endif
1dc920c8
BM
227
228/* Add polynomials a and b and store result in r; r could be a or b, a and b
229 * could be equal; r is the bitwise XOR of a and b.
230 */
231int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
232 {
233 int i;
234 const BIGNUM *at, *bt;
235
e7e5fe47
GT
236 bn_check_top(a);
237 bn_check_top(b);
238
1dc920c8
BM
239 if (a->top < b->top) { at = b; bt = a; }
240 else { at = a; bt = b; }
241
2d9dcd4f
BM
242 if(bn_wexpand(r, at->top) == NULL)
243 return 0;
1dc920c8
BM
244
245 for (i = 0; i < bt->top; i++)
246 {
247 r->d[i] = at->d[i] ^ bt->d[i];
248 }
249 for (; i < at->top; i++)
250 {
251 r->d[i] = at->d[i];
252 }
253
254 r->top = at->top;
d870740c 255 bn_correct_top(r);
1dc920c8
BM
256
257 return 1;
258 }
259
260
c80fd6b2
MC
261/*-
262 * Some functions allow for representation of the irreducible polynomials
1dc920c8
BM
263 * as an int[], say p. The irreducible f(t) is then of the form:
264 * t^p[0] + t^p[1] + ... + t^p[k]
265 * where m = p[0] > p[1] > ... > p[k] = 0.
266 */
267
268
269/* Performs modular reduction of a and store result in r. r could be a. */
c4e7870a 270int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
1dc920c8
BM
271 {
272 int j, k;
273 int n, dN, d0, d1;
274 BN_ULONG zz, *z;
e7e5fe47
GT
275
276 bn_check_top(a);
277
e1064adf 278 if (!p[0])
b6358c89 279 {
e1064adf 280 /* reduction mod 1 => return 0 */
b6358c89
GT
281 BN_zero(r);
282 return 1;
283 }
e1064adf
GT
284
285 /* Since the algorithm does reduction in the r value, if a != r, copy
286 * the contents of a into r so we can do reduction in r.
1dc920c8 287 */
7a8645d1 288 if (a != r)
1dc920c8
BM
289 {
290 if (!bn_wexpand(r, a->top)) return 0;
291 for (j = 0; j < a->top; j++)
292 {
293 r->d[j] = a->d[j];
294 }
295 r->top = a->top;
296 }
297 z = r->d;
298
299 /* start reduction */
300 dN = p[0] / BN_BITS2;
301 for (j = r->top - 1; j > dN;)
302 {
303 zz = z[j];
304 if (z[j] == 0) { j--; continue; }
305 z[j] = 0;
306
e1064adf 307 for (k = 1; p[k] != 0; k++)
1dc920c8
BM
308 {
309 /* reducing component t^p[k] */
310 n = p[0] - p[k];
311 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
312 n /= BN_BITS2;
313 z[j-n] ^= (zz>>d0);
314 if (d0) z[j-n-1] ^= (zz<<d1);
315 }
316
317 /* reducing component t^0 */
318 n = dN;
319 d0 = p[0] % BN_BITS2;
320 d1 = BN_BITS2 - d0;
321 z[j-n] ^= (zz >> d0);
322 if (d0) z[j-n-1] ^= (zz << d1);
323 }
324
325 /* final round of reduction */
326 while (j == dN)
327 {
328
329 d0 = p[0] % BN_BITS2;
330 zz = z[dN] >> d0;
331 if (zz == 0) break;
332 d1 = BN_BITS2 - d0;
333
8228fd89
BM
334 /* clear up the top d1 bits */
335 if (d0)
336 z[dN] = (z[dN] << d1) >> d1;
337 else
338 z[dN] = 0;
1dc920c8
BM
339 z[0] ^= zz; /* reduction t^0 component */
340
e1064adf 341 for (k = 1; p[k] != 0; k++)
1dc920c8 342 {
c237de05
BM
343 BN_ULONG tmp_ulong;
344
1dc920c8
BM
345 /* reducing component t^p[k]*/
346 n = p[k] / BN_BITS2;
347 d0 = p[k] % BN_BITS2;
348 d1 = BN_BITS2 - d0;
349 z[n] ^= (zz << d0);
c237de05
BM
350 tmp_ulong = zz >> d1;
351 if (d0 && tmp_ulong)
352 z[n+1] ^= tmp_ulong;
1dc920c8
BM
353 }
354
355
356 }
357
d870740c 358 bn_correct_top(r);
1dc920c8
BM
359 return 1;
360 }
361
362/* Performs modular reduction of a by p and store result in r. r could be a.
363 *
364 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
365 * function is only provided for convenience; for best performance, use the
366 * BN_GF2m_mod_arr function.
367 */
368int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
369 {
444c3a84 370 int ret = 0;
034688ec 371 int arr[6];
e7e5fe47
GT
372 bn_check_top(a);
373 bn_check_top(p);
034688ec 374 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
8d3cdd5b 375 if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
1dc920c8
BM
376 {
377 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
034688ec 378 return 0;
1dc920c8
BM
379 }
380 ret = BN_GF2m_mod_arr(r, a, arr);
d870740c 381 bn_check_top(r);
1dc920c8
BM
382 return ret;
383 }
384
385
386/* Compute the product of two polynomials a and b, reduce modulo p, and store
387 * the result in r. r could be a or b; a could be b.
388 */
c4e7870a 389int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
1dc920c8
BM
390 {
391 int zlen, i, j, k, ret = 0;
392 BIGNUM *s;
393 BN_ULONG x1, x0, y1, y0, zz[4];
e7e5fe47
GT
394
395 bn_check_top(a);
396 bn_check_top(b);
397
1dc920c8
BM
398 if (a == b)
399 {
400 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
401 }
1dc920c8
BM
402
403 BN_CTX_start(ctx);
404 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
405
7a8645d1 406 zlen = a->top + b->top + 4;
1dc920c8
BM
407 if (!bn_wexpand(s, zlen)) goto err;
408 s->top = zlen;
409
410 for (i = 0; i < zlen; i++) s->d[i] = 0;
411
412 for (j = 0; j < b->top; j += 2)
413 {
414 y0 = b->d[j];
415 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
416 for (i = 0; i < a->top; i += 2)
417 {
418 x0 = a->d[i];
419 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
420 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
421 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
422 }
423 }
424
d870740c 425 bn_correct_top(s);
e1064adf
GT
426 if (BN_GF2m_mod_arr(r, s, p))
427 ret = 1;
d870740c 428 bn_check_top(r);
1dc920c8 429
e7e5fe47 430err:
1dc920c8
BM
431 BN_CTX_end(ctx);
432 return ret;
1dc920c8
BM
433 }
434
435/* Compute the product of two polynomials a and b, reduce modulo p, and store
436 * the result in r. r could be a or b; a could equal b.
437 *
438 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
439 * function is only provided for convenience; for best performance, use the
440 * BN_GF2m_mod_mul_arr function.
441 */
442int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
443 {
444c3a84 444 int ret = 0;
c4e7870a
BM
445 const int max = BN_num_bits(p) + 1;
446 int *arr=NULL;
e7e5fe47
GT
447 bn_check_top(a);
448 bn_check_top(b);
449 bn_check_top(p);
c4e7870a 450 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
e1064adf
GT
451 ret = BN_GF2m_poly2arr(p, arr, max);
452 if (!ret || ret > max)
1dc920c8
BM
453 {
454 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
455 goto err;
456 }
457 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
d870740c 458 bn_check_top(r);
e7e5fe47 459err:
1dc920c8
BM
460 if (arr) OPENSSL_free(arr);
461 return ret;
462 }
463
464
465/* Square a, reduce the result mod p, and store it in a. r could be a. */
c4e7870a 466int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
1dc920c8
BM
467 {
468 int i, ret = 0;
469 BIGNUM *s;
e7e5fe47
GT
470
471 bn_check_top(a);
1dc920c8
BM
472 BN_CTX_start(ctx);
473 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
474 if (!bn_wexpand(s, 2 * a->top)) goto err;
475
476 for (i = a->top - 1; i >= 0; i--)
477 {
478 s->d[2*i+1] = SQR1(a->d[i]);
479 s->d[2*i ] = SQR0(a->d[i]);
480 }
481
482 s->top = 2 * a->top;
d870740c 483 bn_correct_top(s);
1dc920c8 484 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
d870740c 485 bn_check_top(r);
1dc920c8 486 ret = 1;
e7e5fe47 487err:
1dc920c8
BM
488 BN_CTX_end(ctx);
489 return ret;
490 }
491
492/* Square a, reduce the result mod p, and store it in a. r could be a.
493 *
494 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
495 * function is only provided for convenience; for best performance, use the
496 * BN_GF2m_mod_sqr_arr function.
497 */
498int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
499 {
444c3a84 500 int ret = 0;
c4e7870a
BM
501 const int max = BN_num_bits(p) + 1;
502 int *arr=NULL;
e7e5fe47
GT
503
504 bn_check_top(a);
505 bn_check_top(p);
c4e7870a 506 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
e1064adf
GT
507 ret = BN_GF2m_poly2arr(p, arr, max);
508 if (!ret || ret > max)
1dc920c8
BM
509 {
510 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
511 goto err;
512 }
513 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
d870740c 514 bn_check_top(r);
e7e5fe47 515err:
1dc920c8
BM
516 if (arr) OPENSSL_free(arr);
517 return ret;
518 }
519
520
521/* Invert a, reduce modulo p, and store the result in r. r could be a.
522 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
523 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
524 * of Elliptic Curve Cryptography Over Binary Fields".
525 */
526int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
527 {
e166891e 528 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
1dc920c8
BM
529 int ret = 0;
530
e7e5fe47
GT
531 bn_check_top(a);
532 bn_check_top(p);
533
1dc920c8
BM
534 BN_CTX_start(ctx);
535
034688ec
AP
536 if ((b = BN_CTX_get(ctx))==NULL) goto err;
537 if ((c = BN_CTX_get(ctx))==NULL) goto err;
538 if ((u = BN_CTX_get(ctx))==NULL) goto err;
539 if ((v = BN_CTX_get(ctx))==NULL) goto err;
1dc920c8 540
1dc920c8 541 if (!BN_GF2m_mod(u, a, p)) goto err;
1dc920c8
BM
542 if (BN_is_zero(u)) goto err;
543
034688ec 544 if (!BN_copy(v, p)) goto err;
dd83d0f4 545#if 0
034688ec
AP
546 if (!BN_one(b)) goto err;
547
1dc920c8
BM
548 while (1)
549 {
550 while (!BN_is_odd(u))
551 {
8038e7e4 552 if (BN_is_zero(u)) goto err;
1dc920c8
BM
553 if (!BN_rshift1(u, u)) goto err;
554 if (BN_is_odd(b))
555 {
556 if (!BN_GF2m_add(b, b, p)) goto err;
557 }
558 if (!BN_rshift1(b, b)) goto err;
559 }
560
e1064adf 561 if (BN_abs_is_word(u, 1)) break;
1dc920c8
BM
562
563 if (BN_num_bits(u) < BN_num_bits(v))
564 {
565 tmp = u; u = v; v = tmp;
566 tmp = b; b = c; c = tmp;
567 }
568
569 if (!BN_GF2m_add(u, u, v)) goto err;
570 if (!BN_GF2m_add(b, b, c)) goto err;
571 }
034688ec
AP
572#else
573 {
574 int i, ubits = BN_num_bits(u),
575 vbits = BN_num_bits(v), /* v is copy of p */
576 top = p->top;
577 BN_ULONG *udp,*bdp,*vdp,*cdp;
578
579 bn_wexpand(u,top); udp = u->d;
580 for (i=u->top;i<top;i++) udp[i] = 0;
581 u->top = top;
582 bn_wexpand(b,top); bdp = b->d;
583 bdp[0] = 1;
584 for (i=1;i<top;i++) bdp[i] = 0;
585 b->top = top;
586 bn_wexpand(c,top); cdp = c->d;
587 for (i=0;i<top;i++) cdp[i] = 0;
588 c->top = top;
589 vdp = v->d; /* It pays off to "cache" *->d pointers, because
590 * it allows optimizer to be more aggressive.
591 * But we don't have to "cache" p->d, because *p
592 * is declared 'const'... */
593 while (1)
594 {
595 while (ubits && !(udp[0]&1))
596 {
597 BN_ULONG u0,u1,b0,b1,mask;
598
599 u0 = udp[0];
600 b0 = bdp[0];
601 mask = (BN_ULONG)0-(b0&1);
602 b0 ^= p->d[0]&mask;
603 for (i=0;i<top-1;i++)
604 {
605 u1 = udp[i+1];
606 udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
607 u0 = u1;
608 b1 = bdp[i+1]^(p->d[i+1]&mask);
609 bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
610 b0 = b1;
611 }
612 udp[i] = u0>>1;
613 bdp[i] = b0>>1;
614 ubits--;
615 }
1dc920c8 616
034688ec
AP
617 if (ubits<=BN_BITS2 && udp[0]==1) break;
618
619 if (ubits<vbits)
620 {
621 i = ubits; ubits = vbits; vbits = i;
622 tmp = u; u = v; v = tmp;
623 tmp = b; b = c; c = tmp;
624 udp = vdp; vdp = v->d;
625 bdp = cdp; cdp = c->d;
626 }
627 for(i=0;i<top;i++)
628 {
629 udp[i] ^= vdp[i];
630 bdp[i] ^= cdp[i];
631 }
632 if (ubits==vbits)
633 {
d3379de5 634 BN_ULONG ul;
4736eab9
AP
635 int utop = (ubits-1)/BN_BITS2;
636
d3379de5
DSH
637 while ((ul=udp[utop])==0 && utop) utop--;
638 ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
034688ec
AP
639 }
640 }
dd83d0f4 641 bn_correct_top(b);
034688ec
AP
642 }
643#endif
1dc920c8
BM
644
645 if (!BN_copy(r, b)) goto err;
d870740c 646 bn_check_top(r);
1dc920c8
BM
647 ret = 1;
648
e7e5fe47 649err:
0a06ad76
BM
650#ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
651 bn_correct_top(c);
4f201574
BM
652 bn_correct_top(u);
653 bn_correct_top(v);
0a06ad76 654#endif
1dc920c8
BM
655 BN_CTX_end(ctx);
656 return ret;
657 }
658
659/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
660 *
661 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
662 * function is only provided for convenience; for best performance, use the
663 * BN_GF2m_mod_inv function.
664 */
c4e7870a 665int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
1dc920c8
BM
666 {
667 BIGNUM *field;
668 int ret = 0;
669
e7e5fe47 670 bn_check_top(xx);
1dc920c8
BM
671 BN_CTX_start(ctx);
672 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
673 if (!BN_GF2m_arr2poly(p, field)) goto err;
674
675 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
d870740c 676 bn_check_top(r);
1dc920c8 677
e7e5fe47 678err:
1dc920c8
BM
679 BN_CTX_end(ctx);
680 return ret;
681 }
682
683
909abce8 684#ifndef OPENSSL_SUN_GF2M_DIV
1dc920c8
BM
685/* Divide y by x, reduce modulo p, and store the result in r. r could be x
686 * or y, x could equal y.
687 */
688int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
689 {
690 BIGNUM *xinv = NULL;
691 int ret = 0;
e7e5fe47
GT
692
693 bn_check_top(y);
694 bn_check_top(x);
695 bn_check_top(p);
696
1dc920c8
BM
697 BN_CTX_start(ctx);
698 xinv = BN_CTX_get(ctx);
699 if (xinv == NULL) goto err;
700
701 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
702 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
d870740c 703 bn_check_top(r);
1dc920c8
BM
704 ret = 1;
705
e7e5fe47 706err:
1dc920c8
BM
707 BN_CTX_end(ctx);
708 return ret;
709 }
710#else
711/* Divide y by x, reduce modulo p, and store the result in r. r could be x
712 * or y, x could equal y.
713 * Uses algorithm Modular_Division_GF(2^m) from
714 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
715 * the Great Divide".
716 */
717int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
718 {
719 BIGNUM *a, *b, *u, *v;
720 int ret = 0;
721
e7e5fe47
GT
722 bn_check_top(y);
723 bn_check_top(x);
724 bn_check_top(p);
725
1dc920c8
BM
726 BN_CTX_start(ctx);
727
728 a = BN_CTX_get(ctx);
729 b = BN_CTX_get(ctx);
730 u = BN_CTX_get(ctx);
731 v = BN_CTX_get(ctx);
732 if (v == NULL) goto err;
733
734 /* reduce x and y mod p */
735 if (!BN_GF2m_mod(u, y, p)) goto err;
736 if (!BN_GF2m_mod(a, x, p)) goto err;
737 if (!BN_copy(b, p)) goto err;
1dc920c8 738
1dc920c8
BM
739 while (!BN_is_odd(a))
740 {
741 if (!BN_rshift1(a, a)) goto err;
742 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
743 if (!BN_rshift1(u, u)) goto err;
744 }
745
746 do
747 {
748 if (BN_GF2m_cmp(b, a) > 0)
749 {
750 if (!BN_GF2m_add(b, b, a)) goto err;
751 if (!BN_GF2m_add(v, v, u)) goto err;
752 do
753 {
754 if (!BN_rshift1(b, b)) goto err;
755 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
756 if (!BN_rshift1(v, v)) goto err;
757 } while (!BN_is_odd(b));
758 }
e1064adf 759 else if (BN_abs_is_word(a, 1))
1dc920c8
BM
760 break;
761 else
762 {
763 if (!BN_GF2m_add(a, a, b)) goto err;
764 if (!BN_GF2m_add(u, u, v)) goto err;
765 do
766 {
767 if (!BN_rshift1(a, a)) goto err;
768 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
769 if (!BN_rshift1(u, u)) goto err;
770 } while (!BN_is_odd(a));
771 }
772 } while (1);
773
774 if (!BN_copy(r, u)) goto err;
d870740c 775 bn_check_top(r);
1dc920c8
BM
776 ret = 1;
777
e7e5fe47 778err:
1dc920c8
BM
779 BN_CTX_end(ctx);
780 return ret;
781 }
782#endif
783
784/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
785 * or yy, xx could equal yy.
786 *
787 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
788 * function is only provided for convenience; for best performance, use the
789 * BN_GF2m_mod_div function.
790 */
c4e7870a 791int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
1dc920c8
BM
792 {
793 BIGNUM *field;
794 int ret = 0;
795
e7e5fe47
GT
796 bn_check_top(yy);
797 bn_check_top(xx);
798
1dc920c8
BM
799 BN_CTX_start(ctx);
800 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
801 if (!BN_GF2m_arr2poly(p, field)) goto err;
802
803 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
d870740c 804 bn_check_top(r);
1dc920c8 805
e7e5fe47 806err:
1dc920c8
BM
807 BN_CTX_end(ctx);
808 return ret;
809 }
810
811
812/* Compute the bth power of a, reduce modulo p, and store
813 * the result in r. r could be a.
814 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
815 */
c4e7870a 816int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
1dc920c8
BM
817 {
818 int ret = 0, i, n;
819 BIGNUM *u;
e7e5fe47
GT
820
821 bn_check_top(a);
822 bn_check_top(b);
823
1dc920c8 824 if (BN_is_zero(b))
1dc920c8 825 return(BN_one(r));
e1064adf
GT
826
827 if (BN_abs_is_word(b, 1))
828 return (BN_copy(r, a) != NULL);
1dc920c8
BM
829
830 BN_CTX_start(ctx);
831 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
832
833 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
834
835 n = BN_num_bits(b) - 1;
836 for (i = n - 1; i >= 0; i--)
837 {
838 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
839 if (BN_is_bit_set(b, i))
840 {
841 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
842 }
843 }
844 if (!BN_copy(r, u)) goto err;
d870740c 845 bn_check_top(r);
1dc920c8 846 ret = 1;
e7e5fe47 847err:
1dc920c8
BM
848 BN_CTX_end(ctx);
849 return ret;
850 }
851
852/* Compute the bth power of a, reduce modulo p, and store
853 * the result in r. r could be a.
854 *
855 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
856 * function is only provided for convenience; for best performance, use the
857 * BN_GF2m_mod_exp_arr function.
858 */
859int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
860 {
444c3a84 861 int ret = 0;
c4e7870a
BM
862 const int max = BN_num_bits(p) + 1;
863 int *arr=NULL;
e7e5fe47
GT
864 bn_check_top(a);
865 bn_check_top(b);
866 bn_check_top(p);
c4e7870a 867 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
e1064adf
GT
868 ret = BN_GF2m_poly2arr(p, arr, max);
869 if (!ret || ret > max)
1dc920c8
BM
870 {
871 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
872 goto err;
873 }
874 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
d870740c 875 bn_check_top(r);
e7e5fe47 876err:
1dc920c8
BM
877 if (arr) OPENSSL_free(arr);
878 return ret;
879 }
880
881/* Compute the square root of a, reduce modulo p, and store
882 * the result in r. r could be a.
883 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
884 */
c4e7870a 885int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
1dc920c8
BM
886 {
887 int ret = 0;
888 BIGNUM *u;
e1064adf 889
e7e5fe47
GT
890 bn_check_top(a);
891
e1064adf 892 if (!p[0])
b6358c89 893 {
e1064adf 894 /* reduction mod 1 => return 0 */
b6358c89
GT
895 BN_zero(r);
896 return 1;
897 }
e7e5fe47 898
1dc920c8
BM
899 BN_CTX_start(ctx);
900 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
901
1dc920c8
BM
902 if (!BN_set_bit(u, p[0] - 1)) goto err;
903 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
d870740c 904 bn_check_top(r);
1dc920c8 905
e7e5fe47 906err:
1dc920c8
BM
907 BN_CTX_end(ctx);
908 return ret;
909 }
910
911/* Compute the square root of a, reduce modulo p, and store
912 * the result in r. r could be a.
913 *
914 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
915 * function is only provided for convenience; for best performance, use the
916 * BN_GF2m_mod_sqrt_arr function.
917 */
918int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
919 {
444c3a84 920 int ret = 0;
c4e7870a
BM
921 const int max = BN_num_bits(p) + 1;
922 int *arr=NULL;
e7e5fe47
GT
923 bn_check_top(a);
924 bn_check_top(p);
c4e7870a 925 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
e1064adf
GT
926 ret = BN_GF2m_poly2arr(p, arr, max);
927 if (!ret || ret > max)
1dc920c8 928 {
aa4ce731 929 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
1dc920c8
BM
930 goto err;
931 }
932 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
d870740c 933 bn_check_top(r);
e7e5fe47 934err:
1dc920c8
BM
935 if (arr) OPENSSL_free(arr);
936 return ret;
937 }
938
939/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
940 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
941 */
c4e7870a 942int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
1dc920c8 943 {
1a4e245f 944 int ret = 0, count = 0, j;
1dc920c8 945 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
e1064adf 946
e7e5fe47
GT
947 bn_check_top(a_);
948
e1064adf 949 if (!p[0])
b6358c89 950 {
e1064adf 951 /* reduction mod 1 => return 0 */
b6358c89
GT
952 BN_zero(r);
953 return 1;
954 }
e1064adf 955
1dc920c8
BM
956 BN_CTX_start(ctx);
957 a = BN_CTX_get(ctx);
958 z = BN_CTX_get(ctx);
959 w = BN_CTX_get(ctx);
960 if (w == NULL) goto err;
961
962 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
963
964 if (BN_is_zero(a))
965 {
b6358c89
GT
966 BN_zero(r);
967 ret = 1;
1dc920c8
BM
968 goto err;
969 }
970
971 if (p[0] & 0x1) /* m is odd */
972 {
973 /* compute half-trace of a */
974 if (!BN_copy(z, a)) goto err;
821385ad 975 for (j = 1; j <= (p[0] - 1) / 2; j++)
1dc920c8
BM
976 {
977 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
978 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
979 if (!BN_GF2m_add(z, z, a)) goto err;
980 }
981
982 }
983 else /* m is even */
984 {
985 rho = BN_CTX_get(ctx);
986 w2 = BN_CTX_get(ctx);
987 tmp = BN_CTX_get(ctx);
988 if (tmp == NULL) goto err;
989 do
990 {
991 if (!BN_rand(rho, p[0], 0, 0)) goto err;
992 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
b6358c89 993 BN_zero(z);
1dc920c8 994 if (!BN_copy(w, rho)) goto err;
821385ad 995 for (j = 1; j <= p[0] - 1; j++)
1dc920c8
BM
996 {
997 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
998 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
999 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
1000 if (!BN_GF2m_add(z, z, tmp)) goto err;
1001 if (!BN_GF2m_add(w, w2, rho)) goto err;
1002 }
1003 count++;
1004 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1005 if (BN_is_zero(w))
1006 {
1007 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
1008 goto err;
1009 }
1010 }
1011
1012 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1013 if (!BN_GF2m_add(w, z, w)) goto err;
ace3ebd6
GT
1014 if (BN_GF2m_cmp(w, a))
1015 {
1016 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1017 goto err;
1018 }
1dc920c8
BM
1019
1020 if (!BN_copy(r, z)) goto err;
d870740c 1021 bn_check_top(r);
1dc920c8
BM
1022
1023 ret = 1;
1024
e7e5fe47 1025err:
1dc920c8
BM
1026 BN_CTX_end(ctx);
1027 return ret;
1028 }
1029
1030/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1031 *
1032 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1033 * function is only provided for convenience; for best performance, use the
1034 * BN_GF2m_mod_solve_quad_arr function.
1035 */
1036int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1037 {
444c3a84 1038 int ret = 0;
c4e7870a
BM
1039 const int max = BN_num_bits(p) + 1;
1040 int *arr=NULL;
e7e5fe47
GT
1041 bn_check_top(a);
1042 bn_check_top(p);
c4e7870a 1043 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
444c3a84 1044 max)) == NULL) goto err;
e1064adf
GT
1045 ret = BN_GF2m_poly2arr(p, arr, max);
1046 if (!ret || ret > max)
1dc920c8
BM
1047 {
1048 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1049 goto err;
1050 }
1051 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
d870740c 1052 bn_check_top(r);
e7e5fe47 1053err:
1dc920c8
BM
1054 if (arr) OPENSSL_free(arr);
1055 return ret;
1056 }
1057
e1064adf 1058/* Convert the bit-string representation of a polynomial
c4e7870a
BM
1059 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1060 * to the bits with non-zero coefficient. Array is terminated with -1.
1dc920c8 1061 * Up to max elements of the array will be filled. Return value is total
c4e7870a 1062 * number of array elements that would be filled if array was large enough.
1dc920c8 1063 */
c4e7870a 1064int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1dc920c8 1065 {
e1064adf 1066 int i, j, k = 0;
1dc920c8
BM
1067 BN_ULONG mask;
1068
c4e7870a 1069 if (BN_is_zero(a))
e1064adf 1070 return 0;
1dc920c8
BM
1071
1072 for (i = a->top - 1; i >= 0; i--)
1073 {
e1064adf
GT
1074 if (!a->d[i])
1075 /* skip word if a->d[i] == 0 */
1076 continue;
1dc920c8
BM
1077 mask = BN_TBIT;
1078 for (j = BN_BITS2 - 1; j >= 0; j--)
1079 {
1080 if (a->d[i] & mask)
1081 {
1082 if (k < max) p[k] = BN_BITS2 * i + j;
1083 k++;
1084 }
1085 mask >>= 1;
1086 }
1087 }
1088
c4e7870a
BM
1089 if (k < max) {
1090 p[k] = -1;
1091 k++;
1092 }
1093
1dc920c8
BM
1094 return k;
1095 }
1096
1097/* Convert the coefficient array representation of a polynomial to a
c4e7870a 1098 * bit-string. The array must be terminated by -1.
1dc920c8 1099 */
c4e7870a 1100int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1dc920c8
BM
1101 {
1102 int i;
1103
e7e5fe47 1104 bn_check_top(a);
1dc920c8 1105 BN_zero(a);
c4e7870a 1106 for (i = 0; p[i] != -1; i++)
1dc920c8 1107 {
8c5a2bd6
NL
1108 if (BN_set_bit(a, p[i]) == 0)
1109 return 0;
1dc920c8 1110 }
d870740c 1111 bn_check_top(a);
e7e5fe47 1112
1dc920c8
BM
1113 return 1;
1114 }
1115
b3310161 1116#endif