]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/bn_lcl.h
Fix unused variable warning
[thirdparty/openssl.git] / crypto / bn / bn_lcl.h
CommitLineData
d02b48c6 1/* crypto/bn/bn_lcl.h */
58964a49 2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
d02b48c6
RE
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
dc434bbc
BM
58/* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
d02b48c6
RE
111
112#ifndef HEADER_BN_LCL_H
113#define HEADER_BN_LCL_H
114
85bcf27c 115#include "internal/bn_int.h"
d02b48c6
RE
116
117#ifdef __cplusplus
118extern "C" {
119#endif
120
02a62d1a
MC
121/* Bignum consistency macros
122 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
123 * bignum data after direct manipulations on the data. There is also an
124 * "internal" macro, bn_check_top(), for verifying that there are no leading
125 * zeroes. Unfortunately, some auditing is required due to the fact that
126 * bn_fix_top() has become an overabused duct-tape because bignum data is
127 * occasionally passed around in an inconsistent state. So the following
128 * changes have been made to sort this out;
129 * - bn_fix_top()s implementation has been moved to bn_correct_top()
130 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
131 * bn_check_top() is as before.
132 * - if BN_DEBUG *is* defined;
133 * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
134 * consistent. (ed: only if BN_DEBUG_RAND is defined)
135 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
136 * The idea is to have debug builds flag up inconsistent bignums when they
137 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
138 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
139 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
140 * was not appropriate, we convert it permanently to bn_check_top() and track
141 * down the cause of the bug. Eventually, no internal code should be using the
142 * bn_fix_top() macro. External applications and libraries should try this with
143 * their own code too, both in terms of building against the openssl headers
144 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
145 * defined. This not only improves external code, it provides more test
146 * coverage for openssl's own code.
147 */
148
149#ifdef BN_DEBUG
150
151/* We only need assert() when debugging */
152#include <assert.h>
153
154#ifdef BN_DEBUG_RAND
155/* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */
156#ifndef RAND_pseudo_bytes
157int RAND_pseudo_bytes(unsigned char *buf,int num);
158#define BN_DEBUG_TRIX
159#endif
160#define bn_pollute(a) \
161 do { \
162 const BIGNUM *_bnum1 = (a); \
163 if(_bnum1->top < _bnum1->dmax) { \
164 unsigned char _tmp_char; \
165 /* We cast away const without the compiler knowing, any \
166 * *genuinely* constant variables that aren't mutable \
167 * wouldn't be constructed with top!=dmax. */ \
168 BN_ULONG *_not_const; \
169 memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \
170 RAND_pseudo_bytes(&_tmp_char, 1); \
171 memset((unsigned char *)(_not_const + _bnum1->top), _tmp_char, \
172 (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG)); \
173 } \
174 } while(0)
175#ifdef BN_DEBUG_TRIX
176#undef RAND_pseudo_bytes
177#endif
178#else
179#define bn_pollute(a)
180#endif
181#define bn_check_top(a) \
182 do { \
183 const BIGNUM *_bnum2 = (a); \
184 if (_bnum2 != NULL) { \
185 assert((_bnum2->top == 0) || \
186 (_bnum2->d[_bnum2->top - 1] != 0)); \
187 bn_pollute(_bnum2); \
188 } \
189 } while(0)
190
191#define bn_fix_top(a) bn_check_top(a)
192
193#define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
194#define bn_wcheck_size(bn, words) \
195 do { \
196 const BIGNUM *_bnum2 = (bn); \
9669d2e1
EK
197 assert((words) <= (_bnum2)->dmax && (words) >= (_bnum2)->top); \
198 /* avoid unused variable warning with NDEBUG */ \
199 (void)(_bnum2); \
02a62d1a
MC
200 } while(0)
201
202#else /* !BN_DEBUG */
203
204#define bn_pollute(a)
205#define bn_check_top(a)
206#define bn_fix_top(a) bn_correct_top(a)
207#define bn_check_size(bn, bits)
208#define bn_wcheck_size(bn, words)
209
210#endif
211
212
213BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
214BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
215void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
216BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
217BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num);
218BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num);
219
dc434bbc 220
19391879
MC
221struct bignum_st
222 {
223 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
224 int top; /* Index of last used d +1. */
225 /* The next are internal book keeping for bn_expand. */
226 int dmax; /* Size of the d array. */
227 int neg; /* one if the number is negative */
228 int flags;
229 };
230
231/* Used for montgomery multiplication */
232struct bn_mont_ctx_st
233 {
234 int ri; /* number of bits in R */
235 BIGNUM RR; /* used to convert to montgomery form */
236 BIGNUM N; /* The modulus */
237 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
238 * (Ni is only stored for bignum algorithm) */
239 BN_ULONG n0[2];/* least significant word(s) of Ni;
240 (type changed with 0.9.9, was "BN_ULONG n0;" before) */
241 int flags;
242 };
243
244/* Used for reciprocal division/mod functions
245 * It cannot be shared between threads
246 */
247struct bn_recp_ctx_st
248 {
249 BIGNUM N; /* the divisor */
250 BIGNUM Nr; /* the reciprocal */
251 int num_bits;
252 int shift;
253 int flags;
254 };
255
256/* Used for slow "generation" functions. */
257struct bn_gencb_st
258 {
259 unsigned int ver; /* To handle binary (in)compatibility */
260 void *arg; /* callback-specific data */
261 union
262 {
263 /* if(ver==1) - handles old style callbacks */
264 void (*cb_1)(int, int, void *);
265 /* if(ver==2) - new callback style */
266 int (*cb_2)(int, int, BN_GENCB *);
267 } cb;
268 };
269
270
dc434bbc
BM
271/*
272 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
273 *
274 *
275 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
276 * the number of multiplications is a constant plus on average
277 *
278 * 2^(w-1) + (b-w)/(w+1);
279 *
280 * here 2^(w-1) is for precomputing the table (we actually need
281 * entries only for windows that have the lowest bit set), and
282 * (b-w)/(w+1) is an approximation for the expected number of
283 * w-bit windows, not counting the first one.
284 *
285 * Thus we should use
286 *
287 * w >= 6 if b > 671
288 * w = 5 if 671 > b > 239
289 * w = 4 if 239 > b > 79
290 * w = 3 if 79 > b > 23
291 * w <= 2 if 23 > b
292 *
293 * (with draws in between). Very small exponents are often selected
294 * with low Hamming weight, so we use w = 1 for b <= 23.
295 */
296#if 1
297#define BN_window_bits_for_exponent_size(b) \
298 ((b) > 671 ? 6 : \
299 (b) > 239 ? 5 : \
300 (b) > 79 ? 4 : \
301 (b) > 23 ? 3 : 1)
302#else
303/* Old SSLeay/OpenSSL table.
304 * Maximum window size was 5, so this table differs for b==1024;
305 * but it coincides for other interesting values (b==160, b==512).
306 */
307#define BN_window_bits_for_exponent_size(b) \
308 ((b) > 255 ? 5 : \
309 (b) > 127 ? 4 : \
310 (b) > 17 ? 3 : 1)
311#endif
312
313
314
46a64376
BM
315/* BN_mod_exp_mont_conttime is based on the assumption that the
316 * L1 data cache line width of the target processor is at least
317 * the following value.
318 */
319#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
320#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
321
322/* Window sizes optimized for fixed window size modular exponentiation
323 * algorithm (BN_mod_exp_mont_consttime).
324 *
325 * To achieve the security goals of BN_mode_exp_mont_consttime, the
326 * maximum size of the window must not exceed
327 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
328 *
329 * Window size thresholds are defined for cache line sizes of 32 and 64,
330 * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A
331 * window size of 7 should only be used on processors that have a 128
332 * byte or greater cache line size.
333 */
334#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
335
336# define BN_window_bits_for_ctime_exponent_size(b) \
337 ((b) > 937 ? 6 : \
338 (b) > 306 ? 5 : \
339 (b) > 89 ? 4 : \
340 (b) > 22 ? 3 : 1)
341# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
342
343#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
344
345# define BN_window_bits_for_ctime_exponent_size(b) \
346 ((b) > 306 ? 5 : \
347 (b) > 89 ? 4 : \
348 (b) > 22 ? 3 : 1)
349# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
350
351#endif
352
353
dfeab068
RE
354/* Pentium pro 16,16,16,32,64 */
355/* Alpha 16,16,16,16.64 */
27eb622b
DSH
356#define BN_MULL_SIZE_NORMAL (16) /* 32 */
357#define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */
358#define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */
359#define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */
360#define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */
dfeab068 361
8d00f342
AP
362/* 2011-02-22 SMS.
363 * In various places, a size_t variable or a type cast to size_t was
364 * used to perform integer-only operations on pointers. This failed on
365 * VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t is
366 * still only 32 bits. What's needed in these cases is an integer type
367 * with the same size as a pointer, which size_t is not certain to be.
368 * The only fix here is VMS-specific.
369 */
370#if defined(OPENSSL_SYS_VMS)
371# if __INITIAL_POINTER_SIZE == 64
372# define PTR_SIZE_INT long long
373# else /* __INITIAL_POINTER_SIZE == 64 */
374# define PTR_SIZE_INT int
375# endif /* __INITIAL_POINTER_SIZE == 64 [else] */
376#elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
377# define PTR_SIZE_INT size_t
378#endif /* defined(OPENSSL_SYS_VMS) [else] */
379
cf1b7d96 380#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
fb81ac5e
AP
381/*
382 * BN_UMULT_HIGH section.
383 *
384 * No, I'm not trying to overwhelm you when stating that the
385 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
386 * you to be impressed when I say that if the compiler doesn't
387 * support 2*N integer type, then you have to replace every N*N
388 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
389 * and additions which unavoidably results in severe performance
390 * penalties. Of course provided that the hardware is capable of
391 * producing 2*N result... That's when you normally start
392 * considering assembler implementation. However! It should be
393 * pointed out that some CPUs (most notably Alpha, PowerPC and
394 * upcoming IA-64 family:-) provide *separate* instruction
395 * calculating the upper half of the product placing the result
396 * into a general purpose register. Now *if* the compiler supports
397 * inline assembler, then it's not impossible to implement the
398 * "bignum" routines (and have the compiler optimize 'em)
399 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
400 * macro is about:-)
401 *
402 * <appro@fy.chalmers.se>
403 */
404# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
405# if defined(__DECC)
406# include <c_asm.h>
407# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
4f385652 408# elif defined(__GNUC__) && __GNUC__>=2
fb81ac5e
AP
409# define BN_UMULT_HIGH(a,b) ({ \
410 register BN_ULONG ret; \
411 asm ("umulh %1,%2,%0" \
412 : "=r"(ret) \
413 : "r"(a), "r"(b)); \
414 ret; })
415# endif /* compiler */
416# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
4f385652 417# if defined(__GNUC__) && __GNUC__>=2
fb81ac5e
AP
418# define BN_UMULT_HIGH(a,b) ({ \
419 register BN_ULONG ret; \
420 asm ("mulhdu %0,%1,%2" \
421 : "=r"(ret) \
422 : "r"(a), "r"(b)); \
423 ret; })
424# endif /* compiler */
122396f2
AP
425# elif (defined(__x86_64) || defined(__x86_64__)) && \
426 (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
4f385652 427# if defined(__GNUC__) && __GNUC__>=2
2f98abbc
AP
428# define BN_UMULT_HIGH(a,b) ({ \
429 register BN_ULONG ret,discard; \
430 asm ("mulq %3" \
431 : "=a"(discard),"=d"(ret) \
432 : "a"(a), "g"(b) \
433 : "cc"); \
434 ret; })
435# define BN_UMULT_LOHI(low,high,a,b) \
436 asm ("mulq %3" \
437 : "=a"(low),"=d"(high) \
438 : "a"(a),"g"(b) \
439 : "cc");
440# endif
11de71b0
AP
441# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
442# if defined(_MSC_VER) && _MSC_VER>=1400
443 unsigned __int64 __umulh (unsigned __int64 a,unsigned __int64 b);
444 unsigned __int64 _umul128 (unsigned __int64 a,unsigned __int64 b,
445 unsigned __int64 *h);
446# pragma intrinsic(__umulh,_umul128)
447# define BN_UMULT_HIGH(a,b) __umulh((a),(b))
448# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
449# endif
4f385652
AP
450# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
451# if defined(__GNUC__) && __GNUC__>=2
a58fdc7a
AP
452# if __GNUC__>=4 && __GNUC_MINOR__>=4 /* "h" constraint is no more since 4.4 */
453# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
454# define BN_UMULT_LOHI(low,high,a,b) ({ \
455 __uint128_t ret=(__uint128_t)(a)*(b); \
456 (high)=ret>>64; (low)=ret; })
457# else
458# define BN_UMULT_HIGH(a,b) ({ \
4f385652
AP
459 register BN_ULONG ret; \
460 asm ("dmultu %1,%2" \
461 : "=h"(ret) \
462 : "r"(a), "r"(b) : "l"); \
463 ret; })
a58fdc7a 464# define BN_UMULT_LOHI(low,high,a,b)\
4f385652
AP
465 asm ("dmultu %2,%3" \
466 : "=l"(low),"=h"(high) \
467 : "r"(a), "r"(b));
a58fdc7a 468# endif
4f385652 469# endif
039081b8
AP
470# elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
471# if defined(__GNUC__) && __GNUC__>=2
472# define BN_UMULT_HIGH(a,b) ({ \
473 register BN_ULONG ret; \
474 asm ("umulh %0,%1,%2" \
475 : "=r"(ret) \
476 : "r"(a), "r"(b)); \
477 ret; })
478# endif
fb81ac5e 479# endif /* cpu */
cf1b7d96 480#endif /* OPENSSL_NO_ASM */
fb81ac5e 481
d02b48c6
RE
482/*************************************************************
483 * Using the long long type
484 */
485#define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
486#define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
487
a8aa764d 488#ifdef BN_DEBUG_RAND
19b8d06a
BM
489#define bn_clear_top2max(a) \
490 { \
90a617e0 491 int ind = (a)->dmax - (a)->top; \
19b8d06a 492 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
90a617e0 493 for (; ind != 0; ind--) \
19b8d06a
BM
494 *(++ftl) = 0x0; \
495 }
a8aa764d
GT
496#else
497#define bn_clear_top2max(a)
498#endif
19b8d06a 499
d02b48c6
RE
500#ifdef BN_LLONG
501#define mul_add(r,a,w,c) { \
502 BN_ULLONG t; \
503 t=(BN_ULLONG)w * (a) + (r) + (c); \
58964a49 504 (r)= Lw(t); \
d02b48c6
RE
505 (c)= Hw(t); \
506 }
507
508#define mul(r,a,w,c) { \
509 BN_ULLONG t; \
510 t=(BN_ULLONG)w * (a) + (c); \
58964a49 511 (r)= Lw(t); \
d02b48c6
RE
512 (c)= Hw(t); \
513 }
514
fb81ac5e
AP
515#define sqr(r0,r1,a) { \
516 BN_ULLONG t; \
517 t=(BN_ULLONG)(a)*(a); \
518 (r0)=Lw(t); \
aff0825c 519 (r1)=Hw(t); \
fb81ac5e
AP
520 }
521
11de71b0
AP
522#elif defined(BN_UMULT_LOHI)
523#define mul_add(r,a,w,c) { \
524 BN_ULONG high,low,ret,tmp=(a); \
525 ret = (r); \
526 BN_UMULT_LOHI(low,high,w,tmp); \
527 ret += (c); \
528 (c) = (ret<(c))?1:0; \
529 (c) += high; \
530 ret += low; \
531 (c) += (ret<low)?1:0; \
532 (r) = ret; \
533 }
534
535#define mul(r,a,w,c) { \
536 BN_ULONG high,low,ret,ta=(a); \
537 BN_UMULT_LOHI(low,high,w,ta); \
538 ret = low + (c); \
539 (c) = high; \
540 (c) += (ret<low)?1:0; \
541 (r) = ret; \
542 }
543
544#define sqr(r0,r1,a) { \
545 BN_ULONG tmp=(a); \
546 BN_UMULT_LOHI(r0,r1,tmp,tmp); \
547 }
548
fb81ac5e
AP
549#elif defined(BN_UMULT_HIGH)
550#define mul_add(r,a,w,c) { \
551 BN_ULONG high,low,ret,tmp=(a); \
552 ret = (r); \
553 high= BN_UMULT_HIGH(w,tmp); \
554 ret += (c); \
555 low = (w) * tmp; \
556 (c) = (ret<(c))?1:0; \
557 (c) += high; \
558 ret += low; \
559 (c) += (ret<low)?1:0; \
560 (r) = ret; \
561 }
562
563#define mul(r,a,w,c) { \
564 BN_ULONG high,low,ret,ta=(a); \
565 low = (w) * ta; \
566 high= BN_UMULT_HIGH(w,ta); \
567 ret = low + (c); \
568 (c) = high; \
569 (c) += (ret<low)?1:0; \
570 (r) = ret; \
571 }
572
573#define sqr(r0,r1,a) { \
574 BN_ULONG tmp=(a); \
575 (r0) = tmp * tmp; \
576 (r1) = BN_UMULT_HIGH(tmp,tmp); \
577 }
578
d02b48c6
RE
579#else
580/*************************************************************
581 * No long long type
582 */
583
584#define LBITS(a) ((a)&BN_MASK2l)
585#define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
2f98abbc 586#define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
d02b48c6
RE
587
588#define LLBITS(a) ((a)&BN_MASKl)
589#define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
590#define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
591
592#define mul64(l,h,bl,bh) \
593 { \
594 BN_ULONG m,m1,lt,ht; \
595 \
596 lt=l; \
597 ht=h; \
598 m =(bh)*(lt); \
599 lt=(bl)*(lt); \
600 m1=(bl)*(ht); \
601 ht =(bh)*(ht); \
316bfb77 602 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
d02b48c6
RE
603 ht+=HBITS(m); \
604 m1=L2HBITS(m); \
58964a49 605 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
d02b48c6
RE
606 (l)=lt; \
607 (h)=ht; \
608 }
609
610#define sqr64(lo,ho,in) \
611 { \
612 BN_ULONG l,h,m; \
613 \
614 h=(in); \
615 l=LBITS(h); \
616 h=HBITS(h); \
617 m =(l)*(h); \
618 l*=l; \
619 h*=h; \
620 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
621 m =(m&BN_MASK2l)<<(BN_BITS4+1); \
58964a49 622 l=(l+m)&BN_MASK2; if (l < m) h++; \
d02b48c6
RE
623 (lo)=l; \
624 (ho)=h; \
625 }
626
627#define mul_add(r,a,bl,bh,c) { \
628 BN_ULONG l,h; \
629 \
630 h= (a); \
631 l=LBITS(h); \
632 h=HBITS(h); \
633 mul64(l,h,(bl),(bh)); \
634 \
635 /* non-multiply part */ \
58964a49 636 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
d02b48c6 637 (c)=(r); \
58964a49 638 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
d02b48c6 639 (c)=h&BN_MASK2; \
58964a49 640 (r)=l; \
d02b48c6
RE
641 }
642
643#define mul(r,a,bl,bh,c) { \
644 BN_ULONG l,h; \
645 \
646 h= (a); \
647 l=LBITS(h); \
648 h=HBITS(h); \
649 mul64(l,h,(bl),(bh)); \
650 \
651 /* non-multiply part */ \
652 l+=(c); if ((l&BN_MASK2) < (c)) h++; \
653 (c)=h&BN_MASK2; \
654 (r)=l&BN_MASK2; \
655 }
775c63fc 656#endif /* !BN_LLONG */
d02b48c6 657
19391879
MC
658void BN_init(BIGNUM *a);
659void BN_RECP_CTX_init(BN_RECP_CTX *recp);
660void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
661
fb92ba64
UM
662void bn_mul_normal(BN_ULONG *r,BN_ULONG *a,int na,BN_ULONG *b,int nb);
663void bn_mul_comba8(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
664void bn_mul_comba4(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
cbd48ba6
RL
665void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
666void bn_sqr_comba8(BN_ULONG *r,const BN_ULONG *a);
667void bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a);
668int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n);
52a1bab2
UM
669int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
670 int cl, int dl);
6343829a
GT
671void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
672 int dna,int dnb,BN_ULONG *t);
673void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,
674 int n,int tna,int tnb,BN_ULONG *t);
675void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
676void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
677void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
678 BN_ULONG *t);
679void bn_mul_high(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,BN_ULONG *l,int n2,
680 BN_ULONG *t);
d5c21afd 681BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
6343829a
GT
682 int cl, int dl);
683BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
684 int cl, int dl);
685int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num);
58964a49 686
879bd6e3
DSH
687BIGNUM *int_bn_mod_inverse(BIGNUM *in,
688 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, int *noinv);
689
e46a059e
FLM
690int bn_probable_prime_dh(BIGNUM *rnd, int bits,
691 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
982c42cb
FLM
692int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx);
693int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx);
e46a059e 694
d02b48c6
RE
695#ifdef __cplusplus
696}
697#endif
698
699#endif