]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/ec/ec_mult.c
add support for elliptic curves over binary fields
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
CommitLineData
65e81670
BM
1/* crypto/ec/ec_mult.c */
2/* ====================================================================
2c8d0dcc 3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
65e81670
BM
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
7793f30e
BM
55/* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
58 * and contributed to the OpenSSL project.
59 */
65e81670 60
48fe4d62
BM
61#include <openssl/err.h>
62
65e81670 63#include "ec_lcl.h"
48fe4d62
BM
64
65
e3a4f8b8 66/* TODO: optional precomputation of multiples of the generator */
48fe4d62
BM
67
68
f916052e 69
3ba1f111
BM
70/*
71 * wNAF-based interleaving multi-exponentation method
b19941ab 72 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>)
3ba1f111
BM
73 */
74
75
2c8d0dcc 76/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
3ba1f111
BM
77 * This is an array r[] of values that are either zero or odd with an
78 * absolute value less than 2^w satisfying
79 * scalar = \sum_j r[j]*2^j
2c8d0dcc
BM
80 * where at most one of any w+1 consecutive digits is non-zero
81 * with the exception that the most significant digit may be only
82 * w-1 zeros away from that next non-zero digit.
3ba1f111 83 */
2c8d0dcc 84static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
3ba1f111 85 {
2c8d0dcc 86 int window_val;
3ba1f111
BM
87 int ok = 0;
88 signed char *r = NULL;
89 int sign = 1;
90 int bit, next_bit, mask;
e71adb85 91 size_t len = 0, j;
3ba1f111 92
c78515f5 93 if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
3ba1f111
BM
94 {
95 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
96 goto err;
97 }
98 bit = 1 << w; /* at most 128 */
99 next_bit = bit << 1; /* at most 256 */
100 mask = next_bit - 1; /* at most 255 */
101
2c8d0dcc 102 if (scalar->neg)
3ba1f111
BM
103 {
104 sign = -1;
3ba1f111
BM
105 }
106
2c8d0dcc
BM
107 len = BN_num_bits(scalar);
108 r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation */
3ba1f111
BM
109 if (r == NULL) goto err;
110
2c8d0dcc
BM
111 if (scalar->d == NULL || scalar->top == 0)
112 {
113 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
114 goto err;
115 }
116 window_val = scalar->d[0] & mask;
3ba1f111 117 j = 0;
2c8d0dcc 118 while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
3ba1f111 119 {
2c8d0dcc 120 int digit = 0;
3ba1f111 121
2c8d0dcc
BM
122 /* 0 <= window_val <= 2^(w+1) */
123
124 if (window_val & 1)
3ba1f111 125 {
2c8d0dcc
BM
126 /* 0 < window_val < 2^(w+1) */
127
128 if (window_val & bit)
3ba1f111 129 {
2c8d0dcc
BM
130 digit = window_val - next_bit; /* -2^w < digit < 0 */
131
132#if 1 /* modified wNAF */
133 if (j + w + 1 >= len)
134 {
135 /* special case for generating modified wNAFs:
136 * no new bits will be added into window_val,
137 * so using a positive digit here will decrease
138 * the total length of the representation */
139
140 digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
141 }
142#endif
3ba1f111 143 }
2c8d0dcc 144 else
3ba1f111 145 {
2c8d0dcc 146 digit = window_val; /* 0 < digit < 2^w */
3ba1f111 147 }
2c8d0dcc
BM
148
149 if (digit <= -bit || digit >= bit || !(digit & 1))
3ba1f111 150 {
2c8d0dcc
BM
151 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
152 goto err;
3ba1f111
BM
153 }
154
2c8d0dcc
BM
155 window_val -= digit;
156
157 /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
158 * for modified window NAFs, it may also be 2^w
159 */
160 if (window_val != 0 && window_val != next_bit && window_val != bit)
3ba1f111
BM
161 {
162 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
163 goto err;
164 }
165 }
166
2c8d0dcc
BM
167 r[j++] = sign * digit;
168
169 window_val >>= 1;
170 window_val += bit * BN_is_bit_set(scalar, j + w);
171
172 if (window_val > next_bit)
3ba1f111
BM
173 {
174 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
175 goto err;
176 }
3ba1f111
BM
177 }
178
2c8d0dcc 179 if (j > len + 1)
3ba1f111
BM
180 {
181 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
182 goto err;
183 }
184 len = j;
185 ok = 1;
186
187 err:
3ba1f111
BM
188 if (!ok)
189 {
190 OPENSSL_free(r);
191 r = NULL;
192 }
193 if (ok)
194 *ret_len = len;
195 return r;
196 }
197
198
c05940ed
BM
199/* TODO: table should be optimised for the wNAF-based implementation,
200 * sometimes smaller windows will give better performance
201 * (thus the boundaries should be increased)
202 */
3ba1f111
BM
203#define EC_window_bits_for_scalar_size(b) \
204 ((b) >= 2000 ? 6 : \
205 (b) >= 800 ? 5 : \
206 (b) >= 300 ? 4 : \
207 (b) >= 70 ? 3 : \
208 (b) >= 20 ? 2 : \
209 1)
210
211/* Compute
212 * \sum scalars[i]*points[i],
213 * also including
214 * scalar*generator
215 * in the addition if scalar != NULL
216 */
7793f30e 217int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
3ba1f111
BM
218 size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
219 {
220 BN_CTX *new_ctx = NULL;
221 EC_POINT *generator = NULL;
222 EC_POINT *tmp = NULL;
223 size_t totalnum;
224 size_t i, j;
225 int k;
226 int r_is_inverted = 0;
227 int r_is_at_infinity = 1;
228 size_t *wsize = NULL; /* individual window sizes */
c78515f5 229 signed char **wNAF = NULL; /* individual wNAFs */
3ba1f111
BM
230 size_t *wNAF_len = NULL;
231 size_t max_len = 0;
3ba1f111
BM
232 size_t num_val;
233 EC_POINT **val = NULL; /* precomputation */
234 EC_POINT **v;
235 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
236 int ret = 0;
237
238 if (scalar != NULL)
239 {
240 generator = EC_GROUP_get0_generator(group);
241 if (generator == NULL)
242 {
7793f30e 243 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
3ba1f111
BM
244 return 0;
245 }
246 }
247
248 for (i = 0; i < num; i++)
249 {
250 if (group->meth != points[i]->meth)
251 {
7793f30e 252 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
3ba1f111
BM
253 return 0;
254 }
255 }
256
257 totalnum = num + (scalar != NULL);
258
259 wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
260 wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
d009bcbf 261 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]);
3ba1f111
BM
262 if (wNAF != NULL)
263 {
264 wNAF[0] = NULL; /* preliminary pivot */
265 }
266 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL) goto err;
267
268 /* num_val := total number of points to precompute */
269 num_val = 0;
270 for (i = 0; i < totalnum; i++)
271 {
272 size_t bits;
273
274 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
275 wsize[i] = EC_window_bits_for_scalar_size(bits);
276 num_val += 1u << (wsize[i] - 1);
277 }
278
279 /* all precomputed points go into a single array 'val',
280 * 'val_sub[i]' is a pointer to the subarray for the i-th point */
281 val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
282 if (val == NULL) goto err;
283 val[num_val] = NULL; /* pivot element */
284
285 val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
286 if (val_sub == NULL) goto err;
287
288 /* allocate points for precomputation */
289 v = val;
290 for (i = 0; i < totalnum; i++)
291 {
292 val_sub[i] = v;
293 for (j = 0; j < (1u << (wsize[i] - 1)); j++)
294 {
295 *v = EC_POINT_new(group);
296 if (*v == NULL) goto err;
297 v++;
298 }
299 }
300 if (!(v == val + num_val))
301 {
7793f30e 302 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
3ba1f111
BM
303 goto err;
304 }
305
306 if (ctx == NULL)
307 {
308 ctx = new_ctx = BN_CTX_new();
309 if (ctx == NULL)
310 goto err;
311 }
312
313 tmp = EC_POINT_new(group);
314 if (tmp == NULL) goto err;
315
316 /* prepare precomputed values:
317 * val_sub[i][0] := points[i]
318 * val_sub[i][1] := 3 * points[i]
319 * val_sub[i][2] := 5 * points[i]
320 * ...
321 */
322 for (i = 0; i < totalnum; i++)
323 {
324 if (i < num)
325 {
326 if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
327 }
328 else
329 {
330 if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
331 }
332
333 if (wsize[i] > 1)
334 {
335 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
336 for (j = 1; j < (1u << (wsize[i] - 1)); j++)
337 {
338 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
339 }
340 }
341
342 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
2c8d0dcc 343 wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
3ba1f111
BM
344 if (wNAF[i] == NULL) goto err;
345 if (wNAF_len[i] > max_len)
346 max_len = wNAF_len[i];
347 }
348
349#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
350 if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
351#endif
352
353 r_is_at_infinity = 1;
354
355 for (k = max_len - 1; k >= 0; k--)
356 {
357 if (!r_is_at_infinity)
358 {
359 if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
360 }
361
362 for (i = 0; i < totalnum; i++)
363 {
b77fcddb 364 if (wNAF_len[i] > (size_t)k)
3ba1f111
BM
365 {
366 int digit = wNAF[i][k];
367 int is_neg;
368
369 if (digit)
370 {
371 is_neg = digit < 0;
372
373 if (is_neg)
374 digit = -digit;
375
376 if (is_neg != r_is_inverted)
377 {
378 if (!r_is_at_infinity)
379 {
380 if (!EC_POINT_invert(group, r, ctx)) goto err;
381 }
382 r_is_inverted = !r_is_inverted;
383 }
384
385 /* digit > 0 */
386
387 if (r_is_at_infinity)
388 {
389 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
390 r_is_at_infinity = 0;
391 }
392 else
393 {
394 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
395 }
396 }
397 }
398 }
399 }
400
401 if (r_is_at_infinity)
402 {
403 if (!EC_POINT_set_to_infinity(group, r)) goto err;
404 }
405 else
406 {
407 if (r_is_inverted)
408 if (!EC_POINT_invert(group, r, ctx)) goto err;
409 }
410
411 ret = 1;
412
413 err:
414 if (new_ctx != NULL)
415 BN_CTX_free(new_ctx);
416 if (tmp != NULL)
417 EC_POINT_free(tmp);
418 if (wsize != NULL)
419 OPENSSL_free(wsize);
420 if (wNAF_len != NULL)
421 OPENSSL_free(wNAF_len);
422 if (wNAF != NULL)
423 {
424 signed char **w;
425
426 for (w = wNAF; *w != NULL; w++)
427 OPENSSL_free(*w);
428
429 OPENSSL_free(wNAF);
430 }
431 if (val != NULL)
432 {
433 for (v = val; *v != NULL; v++)
434 EC_POINT_clear_free(*v);
435
436 OPENSSL_free(val);
437 }
438 if (val_sub != NULL)
439 {
440 OPENSSL_free(val_sub);
441 }
442 return ret;
443 }
444
38374911 445
7793f30e
BM
446/* Generic multiplication method.
447 * If group->meth does not provide a multiplication method, default to ec_wNAF_mul;
448 * otherwise use the group->meth's multiplication.
449 */
450int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
451 size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
452 {
453 if (group->meth->mul == 0)
454 return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
455 else
456 return group->meth->mul(group, r, scalar, num, points, scalars, ctx);
457 }
458
459
38374911
BM
460int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
461 {
462 const EC_POINT *points[1];
463 const BIGNUM *scalars[1];
464
465 points[0] = point;
466 scalars[0] = p_scalar;
467
468 return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx);
469 }
470
471
7793f30e 472int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
38374911
BM
473 {
474 const EC_POINT *generator;
475 BN_CTX *new_ctx = NULL;
476 BIGNUM *order;
477 int ret = 0;
478
479 generator = EC_GROUP_get0_generator(group);
480 if (generator == NULL)
481 {
7793f30e 482 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
38374911
BM
483 return 0;
484 }
485
486 if (ctx == NULL)
487 {
488 ctx = new_ctx = BN_CTX_new();
489 if (ctx == NULL)
490 return 0;
491 }
492
493 BN_CTX_start(ctx);
494 order = BN_CTX_get(ctx);
495 if (order == NULL) goto err;
496
497 if (!EC_GROUP_get_order(group, order, ctx)) return 0;
498 if (BN_is_zero(order))
499 {
7793f30e 500 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
38374911
BM
501 goto err;
502 }
503
504 /* TODO */
505
506 ret = 1;
507
508 err:
509 BN_CTX_end(ctx);
510 if (new_ctx != NULL)
511 BN_CTX_free(new_ctx);
512 return ret;
513 }
7793f30e
BM
514
515
516/* Generic multiplicaiton precomputation method.
517 * If group->meth does not provide a multiplication method, default to ec_wNAF_mul and do its
518 * precomputation; otherwise use the group->meth's precomputation if it exists.
519 */
520int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
521 {
522 if (group->meth->mul == 0)
523 return ec_wNAF_precompute_mult(group, ctx);
524 else if (group->meth->precompute_mult != 0)
525 return group->meth->precompute_mult(group, ctx);
526 else
527 return 1;
528 }