]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/ec/ecp_nistp256.c
modes/modes_lcl.h: make it indent-friendly.
[thirdparty/openssl.git] / crypto / ec / ecp_nistp256.c
CommitLineData
9c37519b
BM
1/* crypto/ec/ecp_nistp256.c */
2/*
3 * Written by Adam Langley (Google) for the OpenSSL project
4 */
5/* Copyright 2011 Google Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 *
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS,
16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 */
20
21/*
22 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
23 *
24 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26 * work which got its smarts from Daniel J. Bernstein's work on the same.
27 */
28
3d520f7c
BM
29#include <openssl/opensslconf.h>
30#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
9c37519b 31
70505bc3 32#ifndef OPENSSL_SYS_VMS
9c37519b 33#include <stdint.h>
70505bc3
RL
34#else
35#include <inttypes.h>
36#endif
37
9c37519b
BM
38#include <string.h>
39#include <openssl/err.h>
40#include "ec_lcl.h"
41
42#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
43 /* even with gcc, the typedef won't work for 32-bit platforms */
44 typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
45 typedef __int128_t int128_t;
46#else
47 #error "Need GCC 3.1 or later to define type uint128_t"
48#endif
49
50typedef uint8_t u8;
51typedef uint32_t u32;
52typedef uint64_t u64;
53typedef int64_t s64;
54
55/* The underlying field.
56 *
57 * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element
58 * of this field into 32 bytes. We call this an felem_bytearray. */
59
60typedef u8 felem_bytearray[32];
61
62/* These are the parameters of P256, taken from FIPS 186-3, page 86. These
63 * values are big-endian. */
64static const felem_bytearray nistp256_curve_params[5] = {
65 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
66 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
67 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
68 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
69 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
70 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
72 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
73 {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
74 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
75 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
76 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
77 {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
78 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
79 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
80 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
81 {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
82 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
83 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
84 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
85};
86
6977c7e2
TH
87/*-
88 * The representation of field elements.
9c37519b
BM
89 * ------------------------------------
90 *
91 * We represent field elements with either four 128-bit values, eight 128-bit
92 * values, or four 64-bit values. The field element represented is:
93 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
94 * or:
95 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
96 *
97 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
98 * apart, but are 128-bits wide, the most significant bits of each limb overlap
99 * with the least significant bits of the next.
100 *
101 * A field element with four limbs is an 'felem'. One with eight limbs is a
102 * 'longfelem'
103 *
104 * A field element with four, 64-bit values is called a 'smallfelem'. Small
105 * values are used as intermediate values before multiplication.
106 */
107
108#define NLIMBS 4
109
110typedef uint128_t limb;
111typedef limb felem[NLIMBS];
112typedef limb longfelem[NLIMBS * 2];
113typedef u64 smallfelem[NLIMBS];
114
115/* This is the value of the prime as four 64-bit words, little-endian. */
116static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
9c37519b
BM
117static const u64 bottom63bits = 0x7ffffffffffffffful;
118
119/* bin32_to_felem takes a little-endian byte array and converts it into felem
120 * form. This assumes that the CPU is little-endian. */
121static void bin32_to_felem(felem out, const u8 in[32])
122 {
123 out[0] = *((u64*) &in[0]);
124 out[1] = *((u64*) &in[8]);
125 out[2] = *((u64*) &in[16]);
126 out[3] = *((u64*) &in[24]);
127 }
128
129/* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
130 * 32 byte array. This assumes that the CPU is little-endian. */
131static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
132 {
133 *((u64*) &out[0]) = in[0];
134 *((u64*) &out[8]) = in[1];
135 *((u64*) &out[16]) = in[2];
136 *((u64*) &out[24]) = in[3];
137 }
138
139/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
140static void flip_endian(u8 *out, const u8 *in, unsigned len)
141 {
142 unsigned i;
143 for (i = 0; i < len; ++i)
144 out[i] = in[len-1-i];
145 }
146
147/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
148static int BN_to_felem(felem out, const BIGNUM *bn)
149 {
150 felem_bytearray b_in;
151 felem_bytearray b_out;
152 unsigned num_bytes;
153
154 /* BN_bn2bin eats leading zeroes */
155 memset(b_out, 0, sizeof b_out);
156 num_bytes = BN_num_bytes(bn);
157 if (num_bytes > sizeof b_out)
158 {
159 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
160 return 0;
161 }
162 if (BN_is_negative(bn))
163 {
164 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
165 return 0;
166 }
167 num_bytes = BN_bn2bin(bn, b_in);
168 flip_endian(b_out, b_in, num_bytes);
169 bin32_to_felem(out, b_out);
170 return 1;
171 }
172
173/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
174static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
175 {
176 felem_bytearray b_in, b_out;
177 smallfelem_to_bin32(b_in, in);
178 flip_endian(b_out, b_in, sizeof b_out);
179 return BN_bin2bn(b_out, sizeof b_out, out);
180 }
181
182
e19d4a99
MC
183/*-
184 * Field operations
185 * ----------------
186 */
9c37519b
BM
187
188static void smallfelem_one(smallfelem out)
189 {
190 out[0] = 1;
191 out[1] = 0;
192 out[2] = 0;
193 out[3] = 0;
194 }
195
196static void smallfelem_assign(smallfelem out, const smallfelem in)
197 {
198 out[0] = in[0];
199 out[1] = in[1];
200 out[2] = in[2];
201 out[3] = in[3];
202 }
203
204static void felem_assign(felem out, const felem in)
205 {
206 out[0] = in[0];
207 out[1] = in[1];
208 out[2] = in[2];
209 out[3] = in[3];
210 }
211
212/* felem_sum sets out = out + in. */
213static void felem_sum(felem out, const felem in)
214 {
215 out[0] += in[0];
216 out[1] += in[1];
217 out[2] += in[2];
218 out[3] += in[3];
219 }
220
221/* felem_small_sum sets out = out + in. */
222static void felem_small_sum(felem out, const smallfelem in)
223 {
224 out[0] += in[0];
225 out[1] += in[1];
226 out[2] += in[2];
227 out[3] += in[3];
228 }
229
230/* felem_scalar sets out = out * scalar */
231static void felem_scalar(felem out, const u64 scalar)
232 {
233 out[0] *= scalar;
234 out[1] *= scalar;
235 out[2] *= scalar;
236 out[3] *= scalar;
237 }
238
239/* longfelem_scalar sets out = out * scalar */
240static void longfelem_scalar(longfelem out, const u64 scalar)
241 {
242 out[0] *= scalar;
243 out[1] *= scalar;
244 out[2] *= scalar;
245 out[3] *= scalar;
246 out[4] *= scalar;
247 out[5] *= scalar;
248 out[6] *= scalar;
249 out[7] *= scalar;
250 }
251
252#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
253#define two105 (((limb)1) << 105)
254#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
255
256/* zero105 is 0 mod p */
257static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
258
6977c7e2
TH
259/*-
260 * smallfelem_neg sets |out| to |-small|
9c37519b
BM
261 * On exit:
262 * out[i] < out[i] + 2^105
263 */
264static void smallfelem_neg(felem out, const smallfelem small)
265 {
266 /* In order to prevent underflow, we subtract from 0 mod p. */
267 out[0] = zero105[0] - small[0];
268 out[1] = zero105[1] - small[1];
269 out[2] = zero105[2] - small[2];
270 out[3] = zero105[3] - small[3];
271 }
272
6977c7e2
TH
273/*-
274 * felem_diff subtracts |in| from |out|
9c37519b
BM
275 * On entry:
276 * in[i] < 2^104
277 * On exit:
278 * out[i] < out[i] + 2^105
279 */
280static void felem_diff(felem out, const felem in)
281 {
282 /* In order to prevent underflow, we add 0 mod p before subtracting. */
283 out[0] += zero105[0];
284 out[1] += zero105[1];
285 out[2] += zero105[2];
286 out[3] += zero105[3];
287
288 out[0] -= in[0];
289 out[1] -= in[1];
290 out[2] -= in[2];
291 out[3] -= in[3];
292 }
293
294#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
295#define two107 (((limb)1) << 107)
296#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
297
298/* zero107 is 0 mod p */
299static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 };
300
6977c7e2
TH
301/*-
302 * An alternative felem_diff for larger inputs |in|
9c37519b
BM
303 * felem_diff_zero107 subtracts |in| from |out|
304 * On entry:
305 * in[i] < 2^106
306 * On exit:
307 * out[i] < out[i] + 2^107
308 */
309static void felem_diff_zero107(felem out, const felem in)
310 {
311 /* In order to prevent underflow, we add 0 mod p before subtracting. */
312 out[0] += zero107[0];
313 out[1] += zero107[1];
314 out[2] += zero107[2];
315 out[3] += zero107[3];
316
317 out[0] -= in[0];
318 out[1] -= in[1];
319 out[2] -= in[2];
320 out[3] -= in[3];
321 }
322
6977c7e2
TH
323/*-
324 * longfelem_diff subtracts |in| from |out|
9c37519b
BM
325 * On entry:
326 * in[i] < 7*2^67
327 * On exit:
328 * out[i] < out[i] + 2^70 + 2^40
329 */
330static void longfelem_diff(longfelem out, const longfelem in)
331 {
332 static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
333 static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
334 static const limb two70 = (((limb)1) << 70);
335 static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
336 static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
337
338 /* add 0 mod p to avoid underflow */
339 out[0] += two70m8p6;
340 out[1] += two70p40;
341 out[2] += two70;
342 out[3] += two70m40m38p6;
343 out[4] += two70m6;
344 out[5] += two70m6;
345 out[6] += two70m6;
346 out[7] += two70m6;
347
348 /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
349 out[0] -= in[0];
350 out[1] -= in[1];
351 out[2] -= in[2];
352 out[3] -= in[3];
353 out[4] -= in[4];
354 out[5] -= in[5];
355 out[6] -= in[6];
356 out[7] -= in[7];
357 }
358
359#define two64m0 (((limb)1) << 64) - 1
360#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
361#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
362#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
363
364/* zero110 is 0 mod p */
365static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
366
6977c7e2
TH
367/*-
368 * felem_shrink converts an felem into a smallfelem. The result isn't quite
9c37519b
BM
369 * minimal as the value may be greater than p.
370 *
371 * On entry:
372 * in[i] < 2^109
373 * On exit:
374 * out[i] < 2^64
375 */
376static void felem_shrink(smallfelem out, const felem in)
377 {
378 felem tmp;
3d520f7c
BM
379 u64 a, b, mask;
380 s64 high, low;
381 static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
382
9c37519b
BM
383 /* Carry 2->3 */
384 tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64));
385 /* tmp[3] < 2^110 */
386
387 tmp[2] = zero110[2] + (u64) in[2];
388 tmp[0] = zero110[0] + in[0];
389 tmp[1] = zero110[1] + in[1];
390 /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
391
392 /* We perform two partial reductions where we eliminate the
393 * high-word of tmp[3]. We don't update the other words till the end.
394 */
3d520f7c 395 a = tmp[3] >> 64; /* a < 2^46 */
9c37519b
BM
396 tmp[3] = (u64) tmp[3];
397 tmp[3] -= a;
398 tmp[3] += ((limb)a) << 32;
399 /* tmp[3] < 2^79 */
400
3d520f7c 401 b = a;
9c37519b
BM
402 a = tmp[3] >> 64; /* a < 2^15 */
403 b += a; /* b < 2^46 + 2^15 < 2^47 */
404 tmp[3] = (u64) tmp[3];
405 tmp[3] -= a;
406 tmp[3] += ((limb)a) << 32;
407 /* tmp[3] < 2^64 + 2^47 */
408
409 /* This adjusts the other two words to complete the two partial
410 * reductions. */
411 tmp[0] += b;
412 tmp[1] -= (((limb)b) << 32);
413
414 /* In order to make space in tmp[3] for the carry from 2 -> 3, we
415 * conditionally subtract kPrime if tmp[3] is large enough. */
3d520f7c 416 high = tmp[3] >> 64;
9c37519b
BM
417 /* As tmp[3] < 2^65, high is either 1 or 0 */
418 high <<= 63;
419 high >>= 63;
6977c7e2
TH
420 /*-
421 * high is:
9c37519b
BM
422 * all ones if the high word of tmp[3] is 1
423 * all zeros if the high word of tmp[3] if 0 */
3d520f7c
BM
424 low = tmp[3];
425 mask = low >> 63;
6977c7e2
TH
426 /*-
427 * mask is:
9c37519b
BM
428 * all ones if the MSB of low is 1
429 * all zeros if the MSB of low if 0 */
430 low &= bottom63bits;
431 low -= kPrime3Test;
432 /* if low was greater than kPrime3Test then the MSB is zero */
433 low = ~low;
434 low >>= 63;
6977c7e2
TH
435 /*-
436 * low is:
9c37519b
BM
437 * all ones if low was > kPrime3Test
438 * all zeros if low was <= kPrime3Test */
439 mask = (mask & low) | high;
440 tmp[0] -= mask & kPrime[0];
441 tmp[1] -= mask & kPrime[1];
442 /* kPrime[2] is zero, so omitted */
443 tmp[3] -= mask & kPrime[3];
444 /* tmp[3] < 2**64 - 2**32 + 1 */
445
446 tmp[1] += ((u64) (tmp[0] >> 64)); tmp[0] = (u64) tmp[0];
447 tmp[2] += ((u64) (tmp[1] >> 64)); tmp[1] = (u64) tmp[1];
448 tmp[3] += ((u64) (tmp[2] >> 64)); tmp[2] = (u64) tmp[2];
449 /* tmp[i] < 2^64 */
450
451 out[0] = tmp[0];
452 out[1] = tmp[1];
453 out[2] = tmp[2];
454 out[3] = tmp[3];
455 }
456
457/* smallfelem_expand converts a smallfelem to an felem */
458static void smallfelem_expand(felem out, const smallfelem in)
459 {
460 out[0] = in[0];
461 out[1] = in[1];
462 out[2] = in[2];
463 out[3] = in[3];
464 }
465
6977c7e2
TH
466/*-
467 * smallfelem_square sets |out| = |small|^2
9c37519b
BM
468 * On entry:
469 * small[i] < 2^64
470 * On exit:
471 * out[i] < 7 * 2^64 < 2^67
472 */
473static void smallfelem_square(longfelem out, const smallfelem small)
474 {
475 limb a;
476 u64 high, low;
477
478 a = ((uint128_t) small[0]) * small[0];
479 low = a;
480 high = a >> 64;
481 out[0] = low;
482 out[1] = high;
483
484 a = ((uint128_t) small[0]) * small[1];
485 low = a;
486 high = a >> 64;
487 out[1] += low;
488 out[1] += low;
489 out[2] = high;
490
491 a = ((uint128_t) small[0]) * small[2];
492 low = a;
493 high = a >> 64;
494 out[2] += low;
495 out[2] *= 2;
496 out[3] = high;
497
498 a = ((uint128_t) small[0]) * small[3];
499 low = a;
500 high = a >> 64;
501 out[3] += low;
502 out[4] = high;
503
504 a = ((uint128_t) small[1]) * small[2];
505 low = a;
506 high = a >> 64;
507 out[3] += low;
508 out[3] *= 2;
509 out[4] += high;
510
511 a = ((uint128_t) small[1]) * small[1];
512 low = a;
513 high = a >> 64;
514 out[2] += low;
515 out[3] += high;
516
517 a = ((uint128_t) small[1]) * small[3];
518 low = a;
519 high = a >> 64;
520 out[4] += low;
521 out[4] *= 2;
522 out[5] = high;
523
524 a = ((uint128_t) small[2]) * small[3];
525 low = a;
526 high = a >> 64;
527 out[5] += low;
528 out[5] *= 2;
529 out[6] = high;
530 out[6] += high;
531
532 a = ((uint128_t) small[2]) * small[2];
533 low = a;
534 high = a >> 64;
535 out[4] += low;
536 out[5] += high;
537
538 a = ((uint128_t) small[3]) * small[3];
539 low = a;
540 high = a >> 64;
541 out[6] += low;
542 out[7] = high;
543 }
544
6977c7e2
TH
545/*-
546 * felem_square sets |out| = |in|^2
9c37519b
BM
547 * On entry:
548 * in[i] < 2^109
549 * On exit:
550 * out[i] < 7 * 2^64 < 2^67
551 */
552static void felem_square(longfelem out, const felem in)
553 {
554 u64 small[4];
555 felem_shrink(small, in);
556 smallfelem_square(out, small);
557 }
558
6977c7e2
TH
559/*-
560 * smallfelem_mul sets |out| = |small1| * |small2|
9c37519b
BM
561 * On entry:
562 * small1[i] < 2^64
563 * small2[i] < 2^64
564 * On exit:
565 * out[i] < 7 * 2^64 < 2^67
566 */
567static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2)
568 {
569 limb a;
570 u64 high, low;
571
572 a = ((uint128_t) small1[0]) * small2[0];
573 low = a;
574 high = a >> 64;
575 out[0] = low;
576 out[1] = high;
577
578
579 a = ((uint128_t) small1[0]) * small2[1];
580 low = a;
581 high = a >> 64;
582 out[1] += low;
583 out[2] = high;
584
585 a = ((uint128_t) small1[1]) * small2[0];
586 low = a;
587 high = a >> 64;
588 out[1] += low;
589 out[2] += high;
590
591
592 a = ((uint128_t) small1[0]) * small2[2];
593 low = a;
594 high = a >> 64;
595 out[2] += low;
596 out[3] = high;
597
598 a = ((uint128_t) small1[1]) * small2[1];
599 low = a;
600 high = a >> 64;
601 out[2] += low;
602 out[3] += high;
603
604 a = ((uint128_t) small1[2]) * small2[0];
605 low = a;
606 high = a >> 64;
607 out[2] += low;
608 out[3] += high;
609
610
611 a = ((uint128_t) small1[0]) * small2[3];
612 low = a;
613 high = a >> 64;
614 out[3] += low;
615 out[4] = high;
616
617 a = ((uint128_t) small1[1]) * small2[2];
618 low = a;
619 high = a >> 64;
620 out[3] += low;
621 out[4] += high;
622
623 a = ((uint128_t) small1[2]) * small2[1];
624 low = a;
625 high = a >> 64;
626 out[3] += low;
627 out[4] += high;
628
629 a = ((uint128_t) small1[3]) * small2[0];
630 low = a;
631 high = a >> 64;
632 out[3] += low;
633 out[4] += high;
634
635
636 a = ((uint128_t) small1[1]) * small2[3];
637 low = a;
638 high = a >> 64;
639 out[4] += low;
640 out[5] = high;
641
642 a = ((uint128_t) small1[2]) * small2[2];
643 low = a;
644 high = a >> 64;
645 out[4] += low;
646 out[5] += high;
647
648 a = ((uint128_t) small1[3]) * small2[1];
649 low = a;
650 high = a >> 64;
651 out[4] += low;
652 out[5] += high;
653
654
655 a = ((uint128_t) small1[2]) * small2[3];
656 low = a;
657 high = a >> 64;
658 out[5] += low;
659 out[6] = high;
660
661 a = ((uint128_t) small1[3]) * small2[2];
662 low = a;
663 high = a >> 64;
664 out[5] += low;
665 out[6] += high;
666
667
668 a = ((uint128_t) small1[3]) * small2[3];
669 low = a;
670 high = a >> 64;
671 out[6] += low;
672 out[7] = high;
673 }
674
6977c7e2
TH
675/*-
676 * felem_mul sets |out| = |in1| * |in2|
9c37519b
BM
677 * On entry:
678 * in1[i] < 2^109
679 * in2[i] < 2^109
680 * On exit:
681 * out[i] < 7 * 2^64 < 2^67
682 */
683static void felem_mul(longfelem out, const felem in1, const felem in2)
684 {
685 smallfelem small1, small2;
686 felem_shrink(small1, in1);
687 felem_shrink(small2, in2);
688 smallfelem_mul(out, small1, small2);
689 }
690
6977c7e2
TH
691/*-
692 * felem_small_mul sets |out| = |small1| * |in2|
9c37519b
BM
693 * On entry:
694 * small1[i] < 2^64
695 * in2[i] < 2^109
696 * On exit:
697 * out[i] < 7 * 2^64 < 2^67
698 */
699static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2)
700 {
701 smallfelem small2;
702 felem_shrink(small2, in2);
703 smallfelem_mul(out, small1, small2);
704 }
705
706#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
707#define two100 (((limb)1) << 100)
708#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
709/* zero100 is 0 mod p */
710static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
711
6977c7e2
TH
712/*-
713 * Internal function for the different flavours of felem_reduce.
9c37519b
BM
714 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
715 * On entry:
716 * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
717 * out[1] >= in[7] + 2^32*in[4]
718 * out[2] >= in[5] + 2^32*in[5]
719 * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
720 * On exit:
721 * out[0] <= out[0] + in[4] + 2^32*in[5]
722 * out[1] <= out[1] + in[5] + 2^33*in[6]
723 * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
724 * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
725 */
726static void felem_reduce_(felem out, const longfelem in)
727 {
728 int128_t c;
729 /* combine common terms from below */
730 c = in[4] + (in[5] << 32);
731 out[0] += c;
732 out[3] -= c;
733
734 c = in[5] - in[7];
735 out[1] += c;
736 out[2] -= c;
737
738 /* the remaining terms */
739 /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
740 out[1] -= (in[4] << 32);
741 out[3] += (in[4] << 32);
742
743 /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
744 out[2] -= (in[5] << 32);
745
746 /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
747 out[0] -= in[6];
748 out[0] -= (in[6] << 32);
749 out[1] += (in[6] << 33);
750 out[2] += (in[6] * 2);
751 out[3] -= (in[6] << 32);
752
753 /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
754 out[0] -= in[7];
755 out[0] -= (in[7] << 32);
756 out[2] += (in[7] << 33);
757 out[3] += (in[7] * 3);
758 }
759
6977c7e2
TH
760/*-
761 * felem_reduce converts a longfelem into an felem.
9c37519b
BM
762 * To be called directly after felem_square or felem_mul.
763 * On entry:
764 * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
765 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
766 * On exit:
767 * out[i] < 2^101
768 */
769static void felem_reduce(felem out, const longfelem in)
770 {
771 out[0] = zero100[0] + in[0];
772 out[1] = zero100[1] + in[1];
773 out[2] = zero100[2] + in[2];
774 out[3] = zero100[3] + in[3];
775
776 felem_reduce_(out, in);
777
6977c7e2
TH
778 /*-
779 * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
9c37519b
BM
780 * out[1] > 2^100 - 2^64 - 7*2^96 > 0
781 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
782 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
783 *
784 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
785 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
786 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
787 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
788 */
789 }
790
6977c7e2
TH
791/*-
792 * felem_reduce_zero105 converts a larger longfelem into an felem.
9c37519b
BM
793 * On entry:
794 * in[0] < 2^71
795 * On exit:
796 * out[i] < 2^106
797 */
798static void felem_reduce_zero105(felem out, const longfelem in)
799 {
800 out[0] = zero105[0] + in[0];
801 out[1] = zero105[1] + in[1];
802 out[2] = zero105[2] + in[2];
803 out[3] = zero105[3] + in[3];
804
805 felem_reduce_(out, in);
806
6977c7e2
TH
807 /*-
808 * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
9c37519b
BM
809 * out[1] > 2^105 - 2^71 - 2^103 > 0
810 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
811 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
812 *
813 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
814 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
815 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
816 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
817 */
818 }
819
820/* subtract_u64 sets *result = *result - v and *carry to one if the subtraction
821 * underflowed. */
822static void subtract_u64(u64* result, u64* carry, u64 v)
823 {
824 uint128_t r = *result;
825 r -= v;
826 *carry = (r >> 64) & 1;
827 *result = (u64) r;
828 }
829
830/* felem_contract converts |in| to its unique, minimal representation.
831 * On entry:
832 * in[i] < 2^109
833 */
834static void felem_contract(smallfelem out, const felem in)
835 {
836 unsigned i;
837 u64 all_equal_so_far = 0, result = 0, carry;
838
839 felem_shrink(out, in);
840 /* small is minimal except that the value might be > p */
841
842 all_equal_so_far--;
843 /* We are doing a constant time test if out >= kPrime. We need to
844 * compare each u64, from most-significant to least significant. For
845 * each one, if all words so far have been equal (m is all ones) then a
846 * non-equal result is the answer. Otherwise we continue. */
3d520f7c
BM
847 for (i = 3; i < 4; i--)
848 {
849 u64 equal;
9c37519b
BM
850 uint128_t a = ((uint128_t) kPrime[i]) - out[i];
851 /* if out[i] > kPrime[i] then a will underflow and the high
852 * 64-bits will all be set. */
853 result |= all_equal_so_far & ((u64) (a >> 64));
854
855 /* if kPrime[i] == out[i] then |equal| will be all zeros and
856 * the decrement will make it all ones. */
3d520f7c 857 equal = kPrime[i] ^ out[i];
9c37519b
BM
858 equal--;
859 equal &= equal << 32;
860 equal &= equal << 16;
861 equal &= equal << 8;
862 equal &= equal << 4;
863 equal &= equal << 2;
864 equal &= equal << 1;
865 equal = ((s64) equal) >> 63;
866
867 all_equal_so_far &= equal;
3d520f7c 868 }
9c37519b
BM
869
870 /* if all_equal_so_far is still all ones then the two values are equal
871 * and so out >= kPrime is true. */
872 result |= all_equal_so_far;
873
874 /* if out >= kPrime then we subtract kPrime. */
875 subtract_u64(&out[0], &carry, result & kPrime[0]);
876 subtract_u64(&out[1], &carry, carry);
877 subtract_u64(&out[2], &carry, carry);
878 subtract_u64(&out[3], &carry, carry);
879
880 subtract_u64(&out[1], &carry, result & kPrime[1]);
881 subtract_u64(&out[2], &carry, carry);
882 subtract_u64(&out[3], &carry, carry);
883
884 subtract_u64(&out[2], &carry, result & kPrime[2]);
885 subtract_u64(&out[3], &carry, carry);
886
887 subtract_u64(&out[3], &carry, result & kPrime[3]);
888 }
889
890static void smallfelem_square_contract(smallfelem out, const smallfelem in)
891 {
892 longfelem longtmp;
893 felem tmp;
894
895 smallfelem_square(longtmp, in);
896 felem_reduce(tmp, longtmp);
897 felem_contract(out, tmp);
898 }
899
900static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2)
901 {
902 longfelem longtmp;
903 felem tmp;
904
905 smallfelem_mul(longtmp, in1, in2);
906 felem_reduce(tmp, longtmp);
907 felem_contract(out, tmp);
908 }
909
6977c7e2
TH
910/*-
911 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
9c37519b
BM
912 * otherwise.
913 * On entry:
914 * small[i] < 2^64
915 */
916static limb smallfelem_is_zero(const smallfelem small)
917 {
918 limb result;
3d520f7c 919 u64 is_p;
9c37519b
BM
920
921 u64 is_zero = small[0] | small[1] | small[2] | small[3];
922 is_zero--;
923 is_zero &= is_zero << 32;
924 is_zero &= is_zero << 16;
925 is_zero &= is_zero << 8;
926 is_zero &= is_zero << 4;
927 is_zero &= is_zero << 2;
928 is_zero &= is_zero << 1;
929 is_zero = ((s64) is_zero) >> 63;
930
3d520f7c
BM
931 is_p = (small[0] ^ kPrime[0]) |
932 (small[1] ^ kPrime[1]) |
933 (small[2] ^ kPrime[2]) |
934 (small[3] ^ kPrime[3]);
9c37519b
BM
935 is_p--;
936 is_p &= is_p << 32;
937 is_p &= is_p << 16;
938 is_p &= is_p << 8;
939 is_p &= is_p << 4;
940 is_p &= is_p << 2;
941 is_p &= is_p << 1;
942 is_p = ((s64) is_p) >> 63;
943
944 is_zero |= is_p;
945
946 result = is_zero;
947 result |= ((limb) is_zero) << 64;
948 return result;
949 }
950
951static int smallfelem_is_zero_int(const smallfelem small)
952 {
953 return (int) (smallfelem_is_zero(small) & ((limb)1));
954 }
955
6977c7e2
TH
956/*-
957 * felem_inv calculates |out| = |in|^{-1}
9c37519b
BM
958 *
959 * Based on Fermat's Little Theorem:
960 * a^p = a (mod p)
961 * a^{p-1} = 1 (mod p)
962 * a^{p-2} = a^{-1} (mod p)
963 */
964static void felem_inv(felem out, const felem in)
965 {
966 felem ftmp, ftmp2;
967 /* each e_I will hold |in|^{2^I - 1} */
968 felem e2, e4, e8, e16, e32, e64;
969 longfelem tmp;
970 unsigned i;
971
972 felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */
973 felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
974 felem_assign(e2, ftmp);
975 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
976 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
977 felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
978 felem_assign(e4, ftmp);
979 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
980 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
981 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
982 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
983 felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
984 felem_assign(e8, ftmp);
985 for (i = 0; i < 8; i++) {
986 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
987 } /* 2^16 - 2^8 */
988 felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
989 felem_assign(e16, ftmp);
990 for (i = 0; i < 16; i++) {
991 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
992 } /* 2^32 - 2^16 */
993 felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
994 felem_assign(e32, ftmp);
995 for (i = 0; i < 32; i++) {
996 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
997 } /* 2^64 - 2^32 */
998 felem_assign(e64, ftmp);
999 felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
1000 for (i = 0; i < 192; i++) {
1001 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
1002 } /* 2^256 - 2^224 + 2^192 */
1003
1004 felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
1005 for (i = 0; i < 16; i++) {
1006 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
1007 } /* 2^80 - 2^16 */
1008 felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
1009 for (i = 0; i < 8; i++) {
1010 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
1011 } /* 2^88 - 2^8 */
1012 felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
1013 for (i = 0; i < 4; i++) {
1014 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
1015 } /* 2^92 - 2^4 */
1016 felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
1017 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
1018 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
1019 felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
1020 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
1021 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
1022 felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
1023
1024 felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1025 }
1026
1027static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1028 {
1029 felem tmp;
1030
1031 smallfelem_expand(tmp, in);
1032 felem_inv(tmp, tmp);
1033 felem_contract(out, tmp);
1034 }
1035
6977c7e2
TH
1036/*-
1037 * Group operations
9c37519b
BM
1038 * ----------------
1039 *
1040 * Building on top of the field operations we have the operations on the
1041 * elliptic curve group itself. Points on the curve are represented in Jacobian
1042 * coordinates */
1043
6977c7e2
TH
1044/*-
1045 * point_double calculates 2*(x_in, y_in, z_in)
9c37519b
BM
1046 *
1047 * The method is taken from:
1048 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1049 *
1050 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1051 * while x_out == y_in is not (maybe this works, but it's not tested). */
1052static void
1053point_double(felem x_out, felem y_out, felem z_out,
1054 const felem x_in, const felem y_in, const felem z_in)
1055 {
1056 longfelem tmp, tmp2;
1057 felem delta, gamma, beta, alpha, ftmp, ftmp2;
1058 smallfelem small1, small2;
1059
1060 felem_assign(ftmp, x_in);
1061 /* ftmp[i] < 2^106 */
1062 felem_assign(ftmp2, x_in);
1063 /* ftmp2[i] < 2^106 */
1064
1065 /* delta = z^2 */
1066 felem_square(tmp, z_in);
1067 felem_reduce(delta, tmp);
1068 /* delta[i] < 2^101 */
1069
1070 /* gamma = y^2 */
1071 felem_square(tmp, y_in);
1072 felem_reduce(gamma, tmp);
1073 /* gamma[i] < 2^101 */
1074 felem_shrink(small1, gamma);
1075
1076 /* beta = x*gamma */
1077 felem_small_mul(tmp, small1, x_in);
1078 felem_reduce(beta, tmp);
1079 /* beta[i] < 2^101 */
1080
1081 /* alpha = 3*(x-delta)*(x+delta) */
1082 felem_diff(ftmp, delta);
1083 /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1084 felem_sum(ftmp2, delta);
1085 /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1086 felem_scalar(ftmp2, 3);
1087 /* ftmp2[i] < 3 * 2^107 < 2^109 */
1088 felem_mul(tmp, ftmp, ftmp2);
1089 felem_reduce(alpha, tmp);
1090 /* alpha[i] < 2^101 */
1091 felem_shrink(small2, alpha);
1092
1093 /* x' = alpha^2 - 8*beta */
1094 smallfelem_square(tmp, small2);
1095 felem_reduce(x_out, tmp);
1096 felem_assign(ftmp, beta);
1097 felem_scalar(ftmp, 8);
1098 /* ftmp[i] < 8 * 2^101 = 2^104 */
1099 felem_diff(x_out, ftmp);
1100 /* x_out[i] < 2^105 + 2^101 < 2^106 */
1101
1102 /* z' = (y + z)^2 - gamma - delta */
1103 felem_sum(delta, gamma);
1104 /* delta[i] < 2^101 + 2^101 = 2^102 */
1105 felem_assign(ftmp, y_in);
1106 felem_sum(ftmp, z_in);
1107 /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1108 felem_square(tmp, ftmp);
1109 felem_reduce(z_out, tmp);
1110 felem_diff(z_out, delta);
1111 /* z_out[i] < 2^105 + 2^101 < 2^106 */
1112
1113 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1114 felem_scalar(beta, 4);
1115 /* beta[i] < 4 * 2^101 = 2^103 */
1116 felem_diff_zero107(beta, x_out);
1117 /* beta[i] < 2^107 + 2^103 < 2^108 */
1118 felem_small_mul(tmp, small2, beta);
1119 /* tmp[i] < 7 * 2^64 < 2^67 */
1120 smallfelem_square(tmp2, small1);
1121 /* tmp2[i] < 7 * 2^64 */
1122 longfelem_scalar(tmp2, 8);
1123 /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1124 longfelem_diff(tmp, tmp2);
1125 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1126 felem_reduce_zero105(y_out, tmp);
1127 /* y_out[i] < 2^106 */
1128 }
1129
1130/* point_double_small is the same as point_double, except that it operates on
1131 * smallfelems */
1132static void
1133point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1134 const smallfelem x_in, const smallfelem y_in, const smallfelem z_in)
1135 {
1136 felem felem_x_out, felem_y_out, felem_z_out;
1137 felem felem_x_in, felem_y_in, felem_z_in;
1138
1139 smallfelem_expand(felem_x_in, x_in);
1140 smallfelem_expand(felem_y_in, y_in);
1141 smallfelem_expand(felem_z_in, z_in);
1142 point_double(felem_x_out, felem_y_out, felem_z_out,
1143 felem_x_in, felem_y_in, felem_z_in);
1144 felem_shrink(x_out, felem_x_out);
1145 felem_shrink(y_out, felem_y_out);
1146 felem_shrink(z_out, felem_z_out);
1147 }
1148
1149/* copy_conditional copies in to out iff mask is all ones. */
1150static void
1151copy_conditional(felem out, const felem in, limb mask)
1152 {
1153 unsigned i;
1154 for (i = 0; i < NLIMBS; ++i)
1155 {
1156 const limb tmp = mask & (in[i] ^ out[i]);
1157 out[i] ^= tmp;
1158 }
1159 }
1160
1161/* copy_small_conditional copies in to out iff mask is all ones. */
1162static void
1163copy_small_conditional(felem out, const smallfelem in, limb mask)
1164 {
1165 unsigned i;
1166 const u64 mask64 = mask;
1167 for (i = 0; i < NLIMBS; ++i)
1168 {
1169 out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1170 }
1171 }
1172
6977c7e2
TH
1173/*-
1174 * point_add calcuates (x1, y1, z1) + (x2, y2, z2)
9c37519b
BM
1175 *
1176 * The method is taken from:
1177 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1178 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1179 *
1180 * This function includes a branch for checking whether the two input points
1181 * are equal, (while not equal to the point at infinity). This case never
1182 * happens during single point multiplication, so there is no timing leak for
1183 * ECDH or ECDSA signing. */
1184static void point_add(felem x3, felem y3, felem z3,
1185 const felem x1, const felem y1, const felem z1,
1186 const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2)
1187 {
1188 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1189 longfelem tmp, tmp2;
1190 smallfelem small1, small2, small3, small4, small5;
1191 limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1192
1193 felem_shrink(small3, z1);
1194
1195 z1_is_zero = smallfelem_is_zero(small3);
1196 z2_is_zero = smallfelem_is_zero(z2);
1197
1198 /* ftmp = z1z1 = z1**2 */
1199 smallfelem_square(tmp, small3);
1200 felem_reduce(ftmp, tmp);
1201 /* ftmp[i] < 2^101 */
1202 felem_shrink(small1, ftmp);
1203
1204 if(!mixed)
1205 {
1206 /* ftmp2 = z2z2 = z2**2 */
1207 smallfelem_square(tmp, z2);
1208 felem_reduce(ftmp2, tmp);
1209 /* ftmp2[i] < 2^101 */
1210 felem_shrink(small2, ftmp2);
1211
1212 felem_shrink(small5, x1);
1213
1214 /* u1 = ftmp3 = x1*z2z2 */
1215 smallfelem_mul(tmp, small5, small2);
1216 felem_reduce(ftmp3, tmp);
1217 /* ftmp3[i] < 2^101 */
1218
1219 /* ftmp5 = z1 + z2 */
1220 felem_assign(ftmp5, z1);
1221 felem_small_sum(ftmp5, z2);
1222 /* ftmp5[i] < 2^107 */
1223
1224 /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1225 felem_square(tmp, ftmp5);
1226 felem_reduce(ftmp5, tmp);
1227 /* ftmp2 = z2z2 + z1z1 */
1228 felem_sum(ftmp2, ftmp);
1229 /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1230 felem_diff(ftmp5, ftmp2);
1231 /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1232
1233 /* ftmp2 = z2 * z2z2 */
1234 smallfelem_mul(tmp, small2, z2);
1235 felem_reduce(ftmp2, tmp);
1236
1237 /* s1 = ftmp2 = y1 * z2**3 */
1238 felem_mul(tmp, y1, ftmp2);
1239 felem_reduce(ftmp6, tmp);
1240 /* ftmp6[i] < 2^101 */
1241 }
1242 else
1243 {
1244 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
1245
1246 /* u1 = ftmp3 = x1*z2z2 */
1247 felem_assign(ftmp3, x1);
1248 /* ftmp3[i] < 2^106 */
1249
1250 /* ftmp5 = 2z1z2 */
1251 felem_assign(ftmp5, z1);
1252 felem_scalar(ftmp5, 2);
1253 /* ftmp5[i] < 2*2^106 = 2^107 */
1254
1255 /* s1 = ftmp2 = y1 * z2**3 */
1256 felem_assign(ftmp6, y1);
1257 /* ftmp6[i] < 2^106 */
1258 }
1259
1260 /* u2 = x2*z1z1 */
1261 smallfelem_mul(tmp, x2, small1);
1262 felem_reduce(ftmp4, tmp);
1263
1264 /* h = ftmp4 = u2 - u1 */
1265 felem_diff_zero107(ftmp4, ftmp3);
1266 /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1267 felem_shrink(small4, ftmp4);
1268
1269 x_equal = smallfelem_is_zero(small4);
1270
1271 /* z_out = ftmp5 * h */
1272 felem_small_mul(tmp, small4, ftmp5);
1273 felem_reduce(z_out, tmp);
1274 /* z_out[i] < 2^101 */
1275
1276 /* ftmp = z1 * z1z1 */
1277 smallfelem_mul(tmp, small1, small3);
1278 felem_reduce(ftmp, tmp);
1279
1280 /* s2 = tmp = y2 * z1**3 */
1281 felem_small_mul(tmp, y2, ftmp);
1282 felem_reduce(ftmp5, tmp);
1283
1284 /* r = ftmp5 = (s2 - s1)*2 */
1285 felem_diff_zero107(ftmp5, ftmp6);
1286 /* ftmp5[i] < 2^107 + 2^107 = 2^108*/
1287 felem_scalar(ftmp5, 2);
1288 /* ftmp5[i] < 2^109 */
1289 felem_shrink(small1, ftmp5);
1290 y_equal = smallfelem_is_zero(small1);
1291
1292 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
1293 {
1294 point_double(x3, y3, z3, x1, y1, z1);
1295 return;
1296 }
1297
1298 /* I = ftmp = (2h)**2 */
1299 felem_assign(ftmp, ftmp4);
1300 felem_scalar(ftmp, 2);
1301 /* ftmp[i] < 2*2^108 = 2^109 */
1302 felem_square(tmp, ftmp);
1303 felem_reduce(ftmp, tmp);
1304
1305 /* J = ftmp2 = h * I */
1306 felem_mul(tmp, ftmp4, ftmp);
1307 felem_reduce(ftmp2, tmp);
1308
1309 /* V = ftmp4 = U1 * I */
1310 felem_mul(tmp, ftmp3, ftmp);
1311 felem_reduce(ftmp4, tmp);
1312
1313 /* x_out = r**2 - J - 2V */
1314 smallfelem_square(tmp, small1);
1315 felem_reduce(x_out, tmp);
1316 felem_assign(ftmp3, ftmp4);
1317 felem_scalar(ftmp4, 2);
1318 felem_sum(ftmp4, ftmp2);
1319 /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1320 felem_diff(x_out, ftmp4);
1321 /* x_out[i] < 2^105 + 2^101 */
1322
1323 /* y_out = r(V-x_out) - 2 * s1 * J */
1324 felem_diff_zero107(ftmp3, x_out);
1325 /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1326 felem_small_mul(tmp, small1, ftmp3);
1327 felem_mul(tmp2, ftmp6, ftmp2);
1328 longfelem_scalar(tmp2, 2);
1329 /* tmp2[i] < 2*2^67 = 2^68 */
1330 longfelem_diff(tmp, tmp2);
1331 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1332 felem_reduce_zero105(y_out, tmp);
1333 /* y_out[i] < 2^106 */
1334
1335 copy_small_conditional(x_out, x2, z1_is_zero);
1336 copy_conditional(x_out, x1, z2_is_zero);
1337 copy_small_conditional(y_out, y2, z1_is_zero);
1338 copy_conditional(y_out, y1, z2_is_zero);
1339 copy_small_conditional(z_out, z2, z1_is_zero);
1340 copy_conditional(z_out, z1, z2_is_zero);
1341 felem_assign(x3, x_out);
1342 felem_assign(y3, y_out);
1343 felem_assign(z3, z_out);
1344 }
1345
1346/* point_add_small is the same as point_add, except that it operates on
1347 * smallfelems */
1348static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1349 smallfelem x1, smallfelem y1, smallfelem z1,
1350 smallfelem x2, smallfelem y2, smallfelem z2)
1351 {
1352 felem felem_x3, felem_y3, felem_z3;
1353 felem felem_x1, felem_y1, felem_z1;
1354 smallfelem_expand(felem_x1, x1);
1355 smallfelem_expand(felem_y1, y1);
1356 smallfelem_expand(felem_z1, z1);
1357 point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2);
1358 felem_shrink(x3, felem_x3);
1359 felem_shrink(y3, felem_y3);
1360 felem_shrink(z3, felem_z3);
1361 }
1362
6977c7e2
TH
1363/*-
1364 * Base point pre computation
9c37519b
BM
1365 * --------------------------
1366 *
1367 * Two different sorts of precomputed tables are used in the following code.
1368 * Each contain various points on the curve, where each point is three field
1369 * elements (x, y, z).
1370 *
1371 * For the base point table, z is usually 1 (0 for the point at infinity).
1372 * This table has 2 * 16 elements, starting with the following:
1373 * index | bits | point
1374 * ------+---------+------------------------------
1375 * 0 | 0 0 0 0 | 0G
1376 * 1 | 0 0 0 1 | 1G
1377 * 2 | 0 0 1 0 | 2^64G
1378 * 3 | 0 0 1 1 | (2^64 + 1)G
1379 * 4 | 0 1 0 0 | 2^128G
1380 * 5 | 0 1 0 1 | (2^128 + 1)G
1381 * 6 | 0 1 1 0 | (2^128 + 2^64)G
1382 * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1383 * 8 | 1 0 0 0 | 2^192G
1384 * 9 | 1 0 0 1 | (2^192 + 1)G
1385 * 10 | 1 0 1 0 | (2^192 + 2^64)G
1386 * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1387 * 12 | 1 1 0 0 | (2^192 + 2^128)G
1388 * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1389 * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1390 * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1391 * followed by a copy of this with each element multiplied by 2^32.
1392 *
1393 * The reason for this is so that we can clock bits into four different
1394 * locations when doing simple scalar multiplies against the base point,
1395 * and then another four locations using the second 16 elements.
1396 *
1397 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1398
1399/* gmul is the table of precomputed base points */
1400static const smallfelem gmul[2][16][3] =
1401{{{{0, 0, 0, 0},
1402 {0, 0, 0, 0},
1403 {0, 0, 0, 0}},
1404 {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247},
1405 {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b},
1406 {1, 0, 0, 0}},
1407 {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5},
1408 {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d},
1409 {1, 0, 0, 0}},
1410 {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f},
1411 {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644},
1412 {1, 0, 0, 0}},
1413 {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67},
1414 {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee},
1415 {1, 0, 0, 0}},
1416 {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff},
1417 {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b},
1418 {1, 0, 0, 0}},
1419 {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8},
1420 {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851},
1421 {1, 0, 0, 0}},
1422 {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea},
1423 {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b},
1424 {1, 0, 0, 0}},
1425 {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276},
1426 {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816},
1427 {1, 0, 0, 0}},
1428 {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad},
1429 {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663},
1430 {1, 0, 0, 0}},
1431 {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d},
1432 {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321},
1433 {1, 0, 0, 0}},
1434 {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287},
1435 {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6},
1436 {1, 0, 0, 0}},
1437 {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466},
1438 {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20},
1439 {1, 0, 0, 0}},
1440 {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9},
1441 {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61},
1442 {1, 0, 0, 0}},
1443 {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a},
1444 {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc},
1445 {1, 0, 0, 0}},
1446 {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c},
1447 {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab},
1448 {1, 0, 0, 0}}},
1449 {{{0, 0, 0, 0},
1450 {0, 0, 0, 0},
1451 {0, 0, 0, 0}},
1452 {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89},
1453 {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624},
1454 {1, 0, 0, 0}},
1455 {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6},
1456 {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1},
1457 {1, 0, 0, 0}},
1458 {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a},
1459 {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593},
1460 {1, 0, 0, 0}},
1461 {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617},
1462 {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7},
1463 {1, 0, 0, 0}},
1464 {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276},
1465 {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a},
1466 {1, 0, 0, 0}},
1467 {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908},
1468 {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e},
1469 {1, 0, 0, 0}},
1470 {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7},
1471 {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec},
1472 {1, 0, 0, 0}},
1473 {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee},
1474 {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6},
1475 {1, 0, 0, 0}},
1476 {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109},
1477 {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5},
1478 {1, 0, 0, 0}},
1479 {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba},
1480 {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44},
1481 {1, 0, 0, 0}},
1482 {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b},
1483 {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc},
1484 {1, 0, 0, 0}},
1485 {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107},
1486 {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387},
1487 {1, 0, 0, 0}},
1488 {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503},
1489 {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be},
1490 {1, 0, 0, 0}},
1491 {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9},
1492 {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a},
1493 {1, 0, 0, 0}},
1494 {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6},
1495 {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81},
1496 {1, 0, 0, 0}}}};
1497
3d520f7c 1498/* select_point selects the |idx|th point from a precomputation table and
9c37519b 1499 * copies it to out. */
3d520f7c 1500static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3])
9c37519b
BM
1501 {
1502 unsigned i, j;
1503 u64 *outlimbs = &out[0][0];
1504 memset(outlimbs, 0, 3 * sizeof(smallfelem));
1505
1506 for (i = 0; i < size; i++)
1507 {
1508 const u64 *inlimbs = (u64*) &pre_comp[i][0][0];
3d520f7c 1509 u64 mask = i ^ idx;
9c37519b
BM
1510 mask |= mask >> 4;
1511 mask |= mask >> 2;
1512 mask |= mask >> 1;
1513 mask &= 1;
1514 mask--;
1515 for (j = 0; j < NLIMBS * 3; j++)
1516 outlimbs[j] |= inlimbs[j] & mask;
1517 }
1518 }
1519
1520/* get_bit returns the |i|th bit in |in| */
1521static char get_bit(const felem_bytearray in, int i)
1522 {
1523 if ((i < 0) || (i >= 256))
1524 return 0;
1525 return (in[i >> 3] >> (i & 7)) & 1;
1526 }
1527
1528/* Interleaved point multiplication using precomputed point multiples:
1529 * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[],
1530 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1531 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1532 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1533static void batch_mul(felem x_out, felem y_out, felem z_out,
1534 const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1535 const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3])
1536 {
1537 int i, skip;
1538 unsigned num, gen_mul = (g_scalar != NULL);
1539 felem nq[3], ftmp;
1540 smallfelem tmp[3];
1541 u64 bits;
1542 u8 sign, digit;
1543
1544 /* set nq to the point at infinity */
1545 memset(nq, 0, 3 * sizeof(felem));
1546
1547 /* Loop over all scalars msb-to-lsb, interleaving additions
1548 * of multiples of the generator (two in each of the last 32 rounds)
1549 * and additions of other points multiples (every 5th round).
1550 */
1551 skip = 1; /* save two point operations in the first round */
1552 for (i = (num_points ? 255 : 31); i >= 0; --i)
1553 {
1554 /* double */
1555 if (!skip)
1556 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1557
1558 /* add multiples of the generator */
1559 if (gen_mul && (i <= 31))
1560 {
1561 /* first, look 32 bits upwards */
1562 bits = get_bit(g_scalar, i + 224) << 3;
1563 bits |= get_bit(g_scalar, i + 160) << 2;
1564 bits |= get_bit(g_scalar, i + 96) << 1;
1565 bits |= get_bit(g_scalar, i + 32);
1566 /* select the point to add, in constant time */
1567 select_point(bits, 16, g_pre_comp[1], tmp);
1568
1569 if (!skip)
1570 {
1571 point_add(nq[0], nq[1], nq[2],
1572 nq[0], nq[1], nq[2],
1573 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1574 }
1575 else
1576 {
1577 smallfelem_expand(nq[0], tmp[0]);
1578 smallfelem_expand(nq[1], tmp[1]);
1579 smallfelem_expand(nq[2], tmp[2]);
1580 skip = 0;
1581 }
1582
1583 /* second, look at the current position */
1584 bits = get_bit(g_scalar, i + 192) << 3;
1585 bits |= get_bit(g_scalar, i + 128) << 2;
1586 bits |= get_bit(g_scalar, i + 64) << 1;
1587 bits |= get_bit(g_scalar, i);
1588 /* select the point to add, in constant time */
1589 select_point(bits, 16, g_pre_comp[0], tmp);
1590 point_add(nq[0], nq[1], nq[2],
1591 nq[0], nq[1], nq[2],
1592 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1593 }
1594
1595 /* do other additions every 5 doublings */
1596 if (num_points && (i % 5 == 0))
1597 {
1598 /* loop over all scalars */
1599 for (num = 0; num < num_points; ++num)
1600 {
1601 bits = get_bit(scalars[num], i + 4) << 5;
1602 bits |= get_bit(scalars[num], i + 3) << 4;
1603 bits |= get_bit(scalars[num], i + 2) << 3;
1604 bits |= get_bit(scalars[num], i + 1) << 2;
1605 bits |= get_bit(scalars[num], i) << 1;
1606 bits |= get_bit(scalars[num], i - 1);
1607 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1608
1609 /* select the point to add or subtract, in constant time */
1610 select_point(digit, 17, pre_comp[num], tmp);
1611 smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative point */
1612 copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1613 felem_contract(tmp[1], ftmp);
1614
1615 if (!skip)
1616 {
1617 point_add(nq[0], nq[1], nq[2],
1618 nq[0], nq[1], nq[2],
1619 mixed, tmp[0], tmp[1], tmp[2]);
1620 }
1621 else
1622 {
1623 smallfelem_expand(nq[0], tmp[0]);
1624 smallfelem_expand(nq[1], tmp[1]);
1625 smallfelem_expand(nq[2], tmp[2]);
1626 skip = 0;
1627 }
1628 }
1629 }
1630 }
1631 felem_assign(x_out, nq[0]);
1632 felem_assign(y_out, nq[1]);
1633 felem_assign(z_out, nq[2]);
1634 }
1635
1636/* Precomputation for the group generator. */
1637typedef struct {
1638 smallfelem g_pre_comp[2][16][3];
1639 int references;
1640} NISTP256_PRE_COMP;
1641
1642const EC_METHOD *EC_GFp_nistp256_method(void)
1643 {
1644 static const EC_METHOD ret = {
1645 EC_FLAGS_DEFAULT_OCT,
1646 NID_X9_62_prime_field,
1647 ec_GFp_nistp256_group_init,
1648 ec_GFp_simple_group_finish,
1649 ec_GFp_simple_group_clear_finish,
1650 ec_GFp_nist_group_copy,
1651 ec_GFp_nistp256_group_set_curve,
1652 ec_GFp_simple_group_get_curve,
1653 ec_GFp_simple_group_get_degree,
1654 ec_GFp_simple_group_check_discriminant,
1655 ec_GFp_simple_point_init,
1656 ec_GFp_simple_point_finish,
1657 ec_GFp_simple_point_clear_finish,
1658 ec_GFp_simple_point_copy,
1659 ec_GFp_simple_point_set_to_infinity,
1660 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1661 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1662 ec_GFp_simple_point_set_affine_coordinates,
1663 ec_GFp_nistp256_point_get_affine_coordinates,
3d520f7c
BM
1664 0 /* point_set_compressed_coordinates */,
1665 0 /* point2oct */,
1666 0 /* oct2point */,
9c37519b
BM
1667 ec_GFp_simple_add,
1668 ec_GFp_simple_dbl,
1669 ec_GFp_simple_invert,
1670 ec_GFp_simple_is_at_infinity,
1671 ec_GFp_simple_is_on_curve,
1672 ec_GFp_simple_cmp,
1673 ec_GFp_simple_make_affine,
1674 ec_GFp_simple_points_make_affine,
1675 ec_GFp_nistp256_points_mul,
1676 ec_GFp_nistp256_precompute_mult,
1677 ec_GFp_nistp256_have_precompute_mult,
1678 ec_GFp_nist_field_mul,
1679 ec_GFp_nist_field_sqr,
1680 0 /* field_div */,
1681 0 /* field_encode */,
1682 0 /* field_decode */,
1683 0 /* field_set_to_one */ };
1684
1685 return &ret;
1686 }
1687
1688/******************************************************************************/
1689/* FUNCTIONS TO MANAGE PRECOMPUTATION
1690 */
1691
1692static NISTP256_PRE_COMP *nistp256_pre_comp_new()
1693 {
1694 NISTP256_PRE_COMP *ret = NULL;
1695 ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1696 if (!ret)
1697 {
1698 ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1699 return ret;
1700 }
1701 memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1702 ret->references = 1;
1703 return ret;
1704 }
1705
1706static void *nistp256_pre_comp_dup(void *src_)
1707 {
1708 NISTP256_PRE_COMP *src = src_;
1709
1710 /* no need to actually copy, these objects never change! */
1711 CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1712
1713 return src_;
1714 }
1715
1716static void nistp256_pre_comp_free(void *pre_)
1717 {
1718 int i;
1719 NISTP256_PRE_COMP *pre = pre_;
1720
1721 if (!pre)
1722 return;
1723
1724 i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1725 if (i > 0)
1726 return;
1727
1728 OPENSSL_free(pre);
1729 }
1730
1731static void nistp256_pre_comp_clear_free(void *pre_)
1732 {
1733 int i;
1734 NISTP256_PRE_COMP *pre = pre_;
1735
1736 if (!pre)
1737 return;
1738
1739 i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1740 if (i > 0)
1741 return;
1742
1743 OPENSSL_cleanse(pre, sizeof *pre);
1744 OPENSSL_free(pre);
1745 }
1746
1747/******************************************************************************/
1748/* OPENSSL EC_METHOD FUNCTIONS
1749 */
1750
1751int ec_GFp_nistp256_group_init(EC_GROUP *group)
1752 {
1753 int ret;
1754 ret = ec_GFp_simple_group_init(group);
1755 group->a_is_minus3 = 1;
1756 return ret;
1757 }
1758
1759int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1760 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1761 {
1762 int ret = 0;
1763 BN_CTX *new_ctx = NULL;
1764 BIGNUM *curve_p, *curve_a, *curve_b;
1765
1766 if (ctx == NULL)
1767 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1768 BN_CTX_start(ctx);
1769 if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1770 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1771 ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1772 BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1773 BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1774 BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1775 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1776 (BN_cmp(curve_b, b)))
1777 {
1778 ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
1779 EC_R_WRONG_CURVE_PARAMETERS);
1780 goto err;
1781 }
1782 group->field_mod_func = BN_nist_mod_256;
1783 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1784err:
1785 BN_CTX_end(ctx);
1786 if (new_ctx != NULL)
1787 BN_CTX_free(new_ctx);
1788 return ret;
1789 }
1790
1791/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1792 * (X', Y') = (X/Z^2, Y/Z^3) */
1793int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1794 const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1795 {
1796 felem z1, z2, x_in, y_in;
1797 smallfelem x_out, y_out;
1798 longfelem tmp;
1799
1800 if (EC_POINT_is_at_infinity(group, point))
1801 {
1802 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1803 EC_R_POINT_AT_INFINITY);
1804 return 0;
1805 }
1806 if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1807 (!BN_to_felem(z1, &point->Z))) return 0;
1808 felem_inv(z2, z1);
1809 felem_square(tmp, z2); felem_reduce(z1, tmp);
1810 felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1811 felem_contract(x_out, x_in);
1812 if (x != NULL)
1813 {
1814 if (!smallfelem_to_BN(x, x_out)) {
1815 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1816 ERR_R_BN_LIB);
1817 return 0;
1818 }
1819 }
1820 felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1821 felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1822 felem_contract(y_out, y_in);
1823 if (y != NULL)
1824 {
3d520f7c
BM
1825 if (!smallfelem_to_BN(y, y_out))
1826 {
1827 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1828 ERR_R_BN_LIB);
1829 return 0;
1830 }
9c37519b
BM
1831 }
1832 return 1;
1833 }
1834
3d520f7c 1835static void make_points_affine(size_t num, smallfelem points[/* num */][3], smallfelem tmp_smallfelems[/* num+1 */])
9c37519b
BM
1836 {
1837 /* Runs in constant time, unless an input is the point at infinity
1838 * (which normally shouldn't happen). */
1839 ec_GFp_nistp_points_make_affine_internal(
1840 num,
1841 points,
1842 sizeof(smallfelem),
1843 tmp_smallfelems,
1844 (void (*)(void *)) smallfelem_one,
1845 (int (*)(const void *)) smallfelem_is_zero_int,
1846 (void (*)(void *, const void *)) smallfelem_assign,
1847 (void (*)(void *, const void *)) smallfelem_square_contract,
1848 (void (*)(void *, const void *, const void *)) smallfelem_mul_contract,
1849 (void (*)(void *, const void *)) smallfelem_inv_contract,
1850 (void (*)(void *, const void *)) smallfelem_assign /* nothing to contract */);
1851 }
1852
1853/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1854 * Result is stored in r (r can equal one of the inputs). */
1855int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
1856 const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1857 const BIGNUM *scalars[], BN_CTX *ctx)
1858 {
1859 int ret = 0;
1860 int j;
1861 int mixed = 0;
1862 BN_CTX *new_ctx = NULL;
1863 BIGNUM *x, *y, *z, *tmp_scalar;
1864 felem_bytearray g_secret;
1865 felem_bytearray *secrets = NULL;
1866 smallfelem (*pre_comp)[17][3] = NULL;
1867 smallfelem *tmp_smallfelems = NULL;
1868 felem_bytearray tmp;
1869 unsigned i, num_bytes;
1870 int have_pre_comp = 0;
1871 size_t num_points = num;
1872 smallfelem x_in, y_in, z_in;
1873 felem x_out, y_out, z_out;
1874 NISTP256_PRE_COMP *pre = NULL;
1875 const smallfelem (*g_pre_comp)[16][3] = NULL;
1876 EC_POINT *generator = NULL;
1877 const EC_POINT *p = NULL;
1878 const BIGNUM *p_scalar = NULL;
1879
1880 if (ctx == NULL)
1881 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1882 BN_CTX_start(ctx);
1883 if (((x = BN_CTX_get(ctx)) == NULL) ||
1884 ((y = BN_CTX_get(ctx)) == NULL) ||
1885 ((z = BN_CTX_get(ctx)) == NULL) ||
1886 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1887 goto err;
1888
1889 if (scalar != NULL)
1890 {
1891 pre = EC_EX_DATA_get_data(group->extra_data,
1892 nistp256_pre_comp_dup, nistp256_pre_comp_free,
1893 nistp256_pre_comp_clear_free);
1894 if (pre)
1895 /* we have precomputation, try to use it */
1896 g_pre_comp = (const smallfelem (*)[16][3]) pre->g_pre_comp;
1897 else
1898 /* try to use the standard precomputation */
1899 g_pre_comp = &gmul[0];
1900 generator = EC_POINT_new(group);
1901 if (generator == NULL)
1902 goto err;
1903 /* get the generator from precomputation */
1904 if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
1905 !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
1906 !smallfelem_to_BN(z, g_pre_comp[0][1][2]))
1907 {
1908 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1909 goto err;
1910 }
1911 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912 generator, x, y, z, ctx))
1913 goto err;
1914 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1915 /* precomputation matches generator */
1916 have_pre_comp = 1;
1917 else
1918 /* we don't have valid precomputation:
1919 * treat the generator as a random point */
1920 num_points++;
1921 }
1922 if (num_points > 0)
1923 {
1924 if (num_points >= 3)
1925 {
1926 /* unless we precompute multiples for just one or two points,
1927 * converting those into affine form is time well spent */
1928 mixed = 1;
1929 }
1930 secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1931 pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
1932 if (mixed)
1933 tmp_smallfelems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
1934 if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL)))
1935 {
1936 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1937 goto err;
1938 }
1939
1940 /* we treat NULL scalars as 0, and NULL points as points at infinity,
1941 * i.e., they contribute nothing to the linear combination */
1942 memset(secrets, 0, num_points * sizeof(felem_bytearray));
1943 memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
1944 for (i = 0; i < num_points; ++i)
1945 {
1946 if (i == num)
1947 /* we didn't have a valid precomputation, so we pick
1948 * the generator */
1949 {
1950 p = EC_GROUP_get0_generator(group);
1951 p_scalar = scalar;
1952 }
1953 else
1954 /* the i^th point */
1955 {
1956 p = points[i];
1957 p_scalar = scalars[i];
1958 }
1959 if ((p_scalar != NULL) && (p != NULL))
1960 {
1961 /* reduce scalar to 0 <= scalar < 2^256 */
1962 if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar)))
1963 {
1964 /* this is an unusual input, and we don't guarantee
1965 * constant-timeness */
1966 if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1967 {
1968 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1969 goto err;
1970 }
1971 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1972 }
1973 else
1974 num_bytes = BN_bn2bin(p_scalar, tmp);
1975 flip_endian(secrets[i], tmp, num_bytes);
1976 /* precompute multiples */
1977 if ((!BN_to_felem(x_out, &p->X)) ||
1978 (!BN_to_felem(y_out, &p->Y)) ||
1979 (!BN_to_felem(z_out, &p->Z))) goto err;
1980 felem_shrink(pre_comp[i][1][0], x_out);
1981 felem_shrink(pre_comp[i][1][1], y_out);
1982 felem_shrink(pre_comp[i][1][2], z_out);
1983 for (j = 2; j <= 16; ++j)
1984 {
1985 if (j & 1)
1986 {
1987 point_add_small(
1988 pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1989 pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1990 pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1991 }
1992 else
1993 {
1994 point_double_small(
1995 pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1996 pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1997 }
1998 }
1999 }
2000 }
2001 if (mixed)
2002 make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2003 }
2004
2005 /* the scalar for the generator */
2006 if ((scalar != NULL) && (have_pre_comp))
2007 {
2008 memset(g_secret, 0, sizeof(g_secret));
2009 /* reduce scalar to 0 <= scalar < 2^256 */
2010 if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar)))
2011 {
2012 /* this is an unusual input, and we don't guarantee
2013 * constant-timeness */
2014 if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
2015 {
2016 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2017 goto err;
2018 }
2019 num_bytes = BN_bn2bin(tmp_scalar, tmp);
2020 }
2021 else
2022 num_bytes = BN_bn2bin(scalar, tmp);
2023 flip_endian(g_secret, tmp, num_bytes);
2024 /* do the multiplication with generator precomputation*/
2025 batch_mul(x_out, y_out, z_out,
2026 (const felem_bytearray (*)) secrets, num_points,
2027 g_secret,
2028 mixed, (const smallfelem (*)[17][3]) pre_comp,
2029 g_pre_comp);
2030 }
2031 else
2032 /* do the multiplication without generator precomputation */
2033 batch_mul(x_out, y_out, z_out,
2034 (const felem_bytearray (*)) secrets, num_points,
2035 NULL, mixed, (const smallfelem (*)[17][3]) pre_comp, NULL);
2036 /* reduce the output to its unique minimal representation */
2037 felem_contract(x_in, x_out);
2038 felem_contract(y_in, y_out);
2039 felem_contract(z_in, z_out);
2040 if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2041 (!smallfelem_to_BN(z, z_in)))
2042 {
2043 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2044 goto err;
2045 }
2046 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2047
2048err:
2049 BN_CTX_end(ctx);
2050 if (generator != NULL)
2051 EC_POINT_free(generator);
2052 if (new_ctx != NULL)
2053 BN_CTX_free(new_ctx);
2054 if (secrets != NULL)
2055 OPENSSL_free(secrets);
2056 if (pre_comp != NULL)
2057 OPENSSL_free(pre_comp);
2058 if (tmp_smallfelems != NULL)
2059 OPENSSL_free(tmp_smallfelems);
2060 return ret;
2061 }
2062
2063int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2064 {
2065 int ret = 0;
2066 NISTP256_PRE_COMP *pre = NULL;
2067 int i, j;
2068 BN_CTX *new_ctx = NULL;
2069 BIGNUM *x, *y;
2070 EC_POINT *generator = NULL;
2071 smallfelem tmp_smallfelems[32];
2072 felem x_tmp, y_tmp, z_tmp;
2073
2074 /* throw away old precomputation */
2075 EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup,
2076 nistp256_pre_comp_free, nistp256_pre_comp_clear_free);
2077 if (ctx == NULL)
2078 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
2079 BN_CTX_start(ctx);
2080 if (((x = BN_CTX_get(ctx)) == NULL) ||
2081 ((y = BN_CTX_get(ctx)) == NULL))
2082 goto err;
2083 /* get the generator */
2084 if (group->generator == NULL) goto err;
2085 generator = EC_POINT_new(group);
2086 if (generator == NULL)
2087 goto err;
2088 BN_bin2bn(nistp256_curve_params[3], sizeof (felem_bytearray), x);
2089 BN_bin2bn(nistp256_curve_params[4], sizeof (felem_bytearray), y);
2090 if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2091 goto err;
2092 if ((pre = nistp256_pre_comp_new()) == NULL)
2093 goto err;
2094 /* if the generator is the standard one, use built-in precomputation */
2095 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2096 {
2097 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2098 ret = 1;
2099 goto err;
2100 }
2101 if ((!BN_to_felem(x_tmp, &group->generator->X)) ||
2102 (!BN_to_felem(y_tmp, &group->generator->Y)) ||
2103 (!BN_to_felem(z_tmp, &group->generator->Z)))
2104 goto err;
2105 felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2106 felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2107 felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2108 /* compute 2^64*G, 2^128*G, 2^192*G for the first table,
2109 * 2^32*G, 2^96*G, 2^160*G, 2^224*G for the second one
2110 */
2111 for (i = 1; i <= 8; i <<= 1)
2112 {
2113 point_double_small(
2114 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2115 pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
2116 for (j = 0; j < 31; ++j)
2117 {
2118 point_double_small(
2119 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2120 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2121 }
2122 if (i == 8)
2123 break;
2124 point_double_small(
2125 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2126 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2127 for (j = 0; j < 31; ++j)
2128 {
2129 point_double_small(
2130 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2131 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
2132 }
2133 }
2134 for (i = 0; i < 2; i++)
2135 {
2136 /* g_pre_comp[i][0] is the point at infinity */
2137 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2138 /* the remaining multiples */
2139 /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2140 point_add_small(
2141 pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2],
2142 pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2143 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2144 /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2145 point_add_small(
2146 pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2],
2147 pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2148 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2149 /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2150 point_add_small(
2151 pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2152 pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2153 pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]);
2154 /* 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */
2155 point_add_small(
2156 pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2],
2157 pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2158 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2159 for (j = 1; j < 8; ++j)
2160 {
2161 /* odd multiples: add G resp. 2^32*G */
2162 point_add_small(
2163 pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], pre->g_pre_comp[i][2*j+1][2],
2164 pre->g_pre_comp[i][2*j][0], pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
2165 pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]);
2166 }
2167 }
2168 make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2169
2170 if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup,
2171 nistp256_pre_comp_free, nistp256_pre_comp_clear_free))
2172 goto err;
2173 ret = 1;
2174 pre = NULL;
2175 err:
2176 BN_CTX_end(ctx);
2177 if (generator != NULL)
2178 EC_POINT_free(generator);
2179 if (new_ctx != NULL)
2180 BN_CTX_free(new_ctx);
2181 if (pre)
2182 nistp256_pre_comp_free(pre);
2183 return ret;
2184 }
2185
2186int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2187 {
2188 if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup,
2189 nistp256_pre_comp_free, nistp256_pre_comp_clear_free)
2190 != NULL)
2191 return 1;
2192 else
2193 return 0;
2194 }
2195#else
2196static void *dummy=&dummy;
2197#endif