]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/ec/ecp_nistp521.c
Update copyright year
[thirdparty/openssl.git] / crypto / ec / ecp_nistp521.c
CommitLineData
3e00b4c9 1/*
8020d79b 2 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
aa6bb135 3 *
a7f182b7 4 * Licensed under the Apache License 2.0 (the "License"). You may not use
aa6bb135
RS
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
3e00b4c9 8 */
aa6bb135 9
3e00b4c9
BM
10/* Copyright 2011 Google Inc.
11 *
12 * Licensed under the Apache License, Version 2.0 (the "License");
13 *
14 * you may not use this file except in compliance with the License.
15 * You may obtain a copy of the License at
16 *
17 * http://www.apache.org/licenses/LICENSE-2.0
18 *
19 * Unless required by applicable law or agreed to in writing, software
20 * distributed under the License is distributed on an "AS IS" BASIS,
21 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22 * See the License for the specific language governing permissions and
23 * limitations under the License.
24 */
25
579422c8
P
26/*
27 * ECDSA low level APIs are deprecated for public use, but still ok for
28 * internal use.
29 */
30#include "internal/deprecated.h"
31
3e00b4c9
BM
32/*
33 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34 *
35 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37 * work which got its smarts from Daniel J. Bernstein's work on the same.
38 */
39
74a011eb 40#include <openssl/e_os2.h>
3e00b4c9 41
705536e2
RS
42#include <string.h>
43#include <openssl/err.h>
44#include "ec_local.h"
3e00b4c9 45
705536e2 46#if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
3e00b4c9 47 /* even with gcc, the typedef won't work for 32-bit platforms */
0f113f3e
MC
48typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
49 * platforms */
705536e2
RS
50#else
51# error "Your compiler doesn't appear to support 128-bit integer types"
52#endif
3e00b4c9
BM
53
54typedef uint8_t u8;
55typedef uint64_t u64;
3e00b4c9 56
0f113f3e 57/*
aa97970c 58 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
0f113f3e
MC
59 * element of this field into 66 bytes where the most significant byte
60 * contains only a single bit. We call this an felem_bytearray.
61 */
3e00b4c9
BM
62
63typedef u8 felem_bytearray[66];
64
0f113f3e
MC
65/*
66 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
67 * These values are big-endian.
68 */
69static const felem_bytearray nistp521_curve_params[5] = {
70 {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
71 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
77 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78 0xff, 0xff},
79 {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
80 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
86 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
87 0xff, 0xfc},
88 {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
89 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
90 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
91 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
92 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
93 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
94 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
95 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
96 0x3f, 0x00},
97 {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
98 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
99 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
100 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
101 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
102 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
103 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
104 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
105 0xbd, 0x66},
106 {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
107 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
108 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
109 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
110 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
111 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
112 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
113 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
114 0x66, 0x50}
115};
3e00b4c9 116
1d97c843
TH
117/*-
118 * The representation of field elements.
3e00b4c9
BM
119 * ------------------------------------
120 *
121 * We represent field elements with nine values. These values are either 64 or
122 * 128 bits and the field element represented is:
123 * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p)
124 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
125 * 58 bits apart, but are greater than 58 bits in length, the most significant
126 * bits of each limb overlap with the least significant bits of the next.
127 *
128 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
129 * 'largefelem' */
130
705536e2 131#define NLIMBS 9
3e00b4c9
BM
132
133typedef uint64_t limb;
77286fe3 134typedef limb limb_aX __attribute((__aligned__(1)));
3e00b4c9
BM
135typedef limb felem[NLIMBS];
136typedef uint128_t largefelem[NLIMBS];
137
138static const limb bottom57bits = 0x1ffffffffffffff;
139static const limb bottom58bits = 0x3ffffffffffffff;
140
0f113f3e
MC
141/*
142 * bin66_to_felem takes a little-endian byte array and converts it into felem
143 * form. This assumes that the CPU is little-endian.
144 */
3e00b4c9 145static void bin66_to_felem(felem out, const u8 in[66])
0f113f3e
MC
146{
147 out[0] = (*((limb *) & in[0])) & bottom58bits;
77286fe3
BE
148 out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
149 out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
150 out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
151 out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
152 out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
153 out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
154 out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
155 out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
0f113f3e
MC
156}
157
158/*
aa97970c 159 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
0f113f3e
MC
160 * array. This assumes that the CPU is little-endian.
161 */
3e00b4c9 162static void felem_to_bin66(u8 out[66], const felem in)
0f113f3e
MC
163{
164 memset(out, 0, 66);
165 (*((limb *) & out[0])) = in[0];
77286fe3
BE
166 (*((limb_aX *) & out[7])) |= in[1] << 2;
167 (*((limb_aX *) & out[14])) |= in[2] << 4;
168 (*((limb_aX *) & out[21])) |= in[3] << 6;
169 (*((limb_aX *) & out[29])) = in[4];
170 (*((limb_aX *) & out[36])) |= in[5] << 2;
171 (*((limb_aX *) & out[43])) |= in[6] << 4;
172 (*((limb_aX *) & out[50])) |= in[7] << 6;
173 (*((limb_aX *) & out[58])) = in[8];
0f113f3e 174}
3e00b4c9 175
3e00b4c9
BM
176/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
177static int BN_to_felem(felem out, const BIGNUM *bn)
0f113f3e 178{
0f113f3e 179 felem_bytearray b_out;
e0b660c2 180 int num_bytes;
0f113f3e 181
e0b660c2 182 if (BN_is_negative(bn)) {
9311d0c4 183 ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
0f113f3e
MC
184 return 0;
185 }
e0b660c2
NT
186 num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
187 if (num_bytes < 0) {
9311d0c4 188 ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
0f113f3e
MC
189 return 0;
190 }
0f113f3e
MC
191 bin66_to_felem(out, b_out);
192 return 1;
193}
3e00b4c9
BM
194
195/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
196static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
0f113f3e 197{
e0b660c2
NT
198 felem_bytearray b_out;
199 felem_to_bin66(b_out, in);
200 return BN_lebin2bn(b_out, sizeof(b_out), out);
0f113f3e 201}
3e00b4c9 202
3a83462d
MC
203/*-
204 * Field operations
205 * ----------------
206 */
3e00b4c9
BM
207
208static void felem_one(felem out)
0f113f3e
MC
209{
210 out[0] = 1;
211 out[1] = 0;
212 out[2] = 0;
213 out[3] = 0;
214 out[4] = 0;
215 out[5] = 0;
216 out[6] = 0;
217 out[7] = 0;
218 out[8] = 0;
219}
3e00b4c9
BM
220
221static void felem_assign(felem out, const felem in)
0f113f3e
MC
222{
223 out[0] = in[0];
224 out[1] = in[1];
225 out[2] = in[2];
226 out[3] = in[3];
227 out[4] = in[4];
228 out[5] = in[5];
229 out[6] = in[6];
230 out[7] = in[7];
231 out[8] = in[8];
232}
3e00b4c9
BM
233
234/* felem_sum64 sets out = out + in. */
235static void felem_sum64(felem out, const felem in)
0f113f3e
MC
236{
237 out[0] += in[0];
238 out[1] += in[1];
239 out[2] += in[2];
240 out[3] += in[3];
241 out[4] += in[4];
242 out[5] += in[5];
243 out[6] += in[6];
244 out[7] += in[7];
245 out[8] += in[8];
246}
3e00b4c9
BM
247
248/* felem_scalar sets out = in * scalar */
249static void felem_scalar(felem out, const felem in, limb scalar)
0f113f3e
MC
250{
251 out[0] = in[0] * scalar;
252 out[1] = in[1] * scalar;
253 out[2] = in[2] * scalar;
254 out[3] = in[3] * scalar;
255 out[4] = in[4] * scalar;
256 out[5] = in[5] * scalar;
257 out[6] = in[6] * scalar;
258 out[7] = in[7] * scalar;
259 out[8] = in[8] * scalar;
260}
3e00b4c9
BM
261
262/* felem_scalar64 sets out = out * scalar */
263static void felem_scalar64(felem out, limb scalar)
0f113f3e
MC
264{
265 out[0] *= scalar;
266 out[1] *= scalar;
267 out[2] *= scalar;
268 out[3] *= scalar;
269 out[4] *= scalar;
270 out[5] *= scalar;
271 out[6] *= scalar;
272 out[7] *= scalar;
273 out[8] *= scalar;
274}
3e00b4c9
BM
275
276/* felem_scalar128 sets out = out * scalar */
277static void felem_scalar128(largefelem out, limb scalar)
0f113f3e
MC
278{
279 out[0] *= scalar;
280 out[1] *= scalar;
281 out[2] *= scalar;
282 out[3] *= scalar;
283 out[4] *= scalar;
284 out[5] *= scalar;
285 out[6] *= scalar;
286 out[7] *= scalar;
287 out[8] *= scalar;
288}
3e00b4c9 289
1d97c843
TH
290/*-
291 * felem_neg sets |out| to |-in|
3e00b4c9
BM
292 * On entry:
293 * in[i] < 2^59 + 2^14
294 * On exit:
295 * out[i] < 2^62
296 */
297static void felem_neg(felem out, const felem in)
0f113f3e
MC
298{
299 /* In order to prevent underflow, we subtract from 0 mod p. */
300 static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
301 static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
302
303 out[0] = two62m3 - in[0];
304 out[1] = two62m2 - in[1];
305 out[2] = two62m2 - in[2];
306 out[3] = two62m2 - in[3];
307 out[4] = two62m2 - in[4];
308 out[5] = two62m2 - in[5];
309 out[6] = two62m2 - in[6];
310 out[7] = two62m2 - in[7];
311 out[8] = two62m2 - in[8];
312}
3e00b4c9 313
1d97c843
TH
314/*-
315 * felem_diff64 subtracts |in| from |out|
3e00b4c9
BM
316 * On entry:
317 * in[i] < 2^59 + 2^14
318 * On exit:
319 * out[i] < out[i] + 2^62
320 */
321static void felem_diff64(felem out, const felem in)
0f113f3e
MC
322{
323 /*
324 * In order to prevent underflow, we add 0 mod p before subtracting.
325 */
326 static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
327 static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
328
329 out[0] += two62m3 - in[0];
330 out[1] += two62m2 - in[1];
331 out[2] += two62m2 - in[2];
332 out[3] += two62m2 - in[3];
333 out[4] += two62m2 - in[4];
334 out[5] += two62m2 - in[5];
335 out[6] += two62m2 - in[6];
336 out[7] += two62m2 - in[7];
337 out[8] += two62m2 - in[8];
338}
3e00b4c9 339
1d97c843
TH
340/*-
341 * felem_diff_128_64 subtracts |in| from |out|
3e00b4c9
BM
342 * On entry:
343 * in[i] < 2^62 + 2^17
344 * On exit:
345 * out[i] < out[i] + 2^63
346 */
347static void felem_diff_128_64(largefelem out, const felem in)
0f113f3e
MC
348{
349 /*
13fbce17
MC
350 * In order to prevent underflow, we add 64p mod p (which is equivalent
351 * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
352 * digit number with all bits set to 1. See "The representation of field
353 * elements" comment above for a description of how limbs are used to
354 * represent a number. 64p is represented with 8 limbs containing a number
355 * with 58 bits set and one limb with a number with 57 bits set.
0f113f3e 356 */
13fbce17
MC
357 static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
358 static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
0f113f3e
MC
359
360 out[0] += two63m6 - in[0];
361 out[1] += two63m5 - in[1];
362 out[2] += two63m5 - in[2];
363 out[3] += two63m5 - in[3];
364 out[4] += two63m5 - in[4];
365 out[5] += two63m5 - in[5];
366 out[6] += two63m5 - in[6];
367 out[7] += two63m5 - in[7];
368 out[8] += two63m5 - in[8];
369}
3e00b4c9 370
1d97c843
TH
371/*-
372 * felem_diff_128_64 subtracts |in| from |out|
3e00b4c9
BM
373 * On entry:
374 * in[i] < 2^126
375 * On exit:
376 * out[i] < out[i] + 2^127 - 2^69
377 */
378static void felem_diff128(largefelem out, const largefelem in)
0f113f3e
MC
379{
380 /*
381 * In order to prevent underflow, we add 0 mod p before subtracting.
382 */
383 static const uint128_t two127m70 =
384 (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
385 static const uint128_t two127m69 =
386 (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
387
388 out[0] += (two127m70 - in[0]);
389 out[1] += (two127m69 - in[1]);
390 out[2] += (two127m69 - in[2]);
391 out[3] += (two127m69 - in[3]);
392 out[4] += (two127m69 - in[4]);
393 out[5] += (two127m69 - in[5]);
394 out[6] += (two127m69 - in[6]);
395 out[7] += (two127m69 - in[7]);
396 out[8] += (two127m69 - in[8]);
397}
3e00b4c9 398
1d97c843
TH
399/*-
400 * felem_square sets |out| = |in|^2
3e00b4c9
BM
401 * On entry:
402 * in[i] < 2^62
403 * On exit:
404 * out[i] < 17 * max(in[i]) * max(in[i])
405 */
406static void felem_square(largefelem out, const felem in)
0f113f3e
MC
407{
408 felem inx2, inx4;
409 felem_scalar(inx2, in, 2);
410 felem_scalar(inx4, in, 4);
411
35a1cc90
MC
412 /*-
413 * We have many cases were we want to do
414 * in[x] * in[y] +
415 * in[y] * in[x]
416 * This is obviously just
417 * 2 * in[x] * in[y]
418 * However, rather than do the doubling on the 128 bit result, we
419 * double one of the inputs to the multiplication by reading from
420 * |inx2|
421 */
0f113f3e
MC
422
423 out[0] = ((uint128_t) in[0]) * in[0];
424 out[1] = ((uint128_t) in[0]) * inx2[1];
425 out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
426 out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
427 out[4] = ((uint128_t) in[0]) * inx2[4] +
4eb504ae 428 ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
0f113f3e 429 out[5] = ((uint128_t) in[0]) * inx2[5] +
4eb504ae 430 ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
0f113f3e 431 out[6] = ((uint128_t) in[0]) * inx2[6] +
4eb504ae
AP
432 ((uint128_t) in[1]) * inx2[5] +
433 ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
0f113f3e 434 out[7] = ((uint128_t) in[0]) * inx2[7] +
4eb504ae
AP
435 ((uint128_t) in[1]) * inx2[6] +
436 ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
0f113f3e 437 out[8] = ((uint128_t) in[0]) * inx2[8] +
4eb504ae
AP
438 ((uint128_t) in[1]) * inx2[7] +
439 ((uint128_t) in[2]) * inx2[6] +
440 ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
0f113f3e
MC
441
442 /*
443 * The remaining limbs fall above 2^521, with the first falling at 2^522.
444 * They correspond to locations one bit up from the limbs produced above
445 * so we would have to multiply by two to align them. Again, rather than
446 * operate on the 128-bit result, we double one of the inputs to the
447 * multiplication. If we want to double for both this reason, and the
448 * reason above, then we end up multiplying by four.
449 */
450
451 /* 9 */
452 out[0] += ((uint128_t) in[1]) * inx4[8] +
4eb504ae
AP
453 ((uint128_t) in[2]) * inx4[7] +
454 ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
0f113f3e
MC
455
456 /* 10 */
457 out[1] += ((uint128_t) in[2]) * inx4[8] +
4eb504ae
AP
458 ((uint128_t) in[3]) * inx4[7] +
459 ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
0f113f3e
MC
460
461 /* 11 */
462 out[2] += ((uint128_t) in[3]) * inx4[8] +
4eb504ae 463 ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
0f113f3e
MC
464
465 /* 12 */
466 out[3] += ((uint128_t) in[4]) * inx4[8] +
4eb504ae 467 ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
0f113f3e
MC
468
469 /* 13 */
470 out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
471
472 /* 14 */
473 out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
474
475 /* 15 */
476 out[6] += ((uint128_t) in[7]) * inx4[8];
477
478 /* 16 */
479 out[7] += ((uint128_t) in[8]) * inx2[8];
480}
3e00b4c9 481
1d97c843
TH
482/*-
483 * felem_mul sets |out| = |in1| * |in2|
3e00b4c9
BM
484 * On entry:
485 * in1[i] < 2^64
486 * in2[i] < 2^63
487 * On exit:
488 * out[i] < 17 * max(in1[i]) * max(in2[i])
489 */
490static void felem_mul(largefelem out, const felem in1, const felem in2)
0f113f3e
MC
491{
492 felem in2x2;
493 felem_scalar(in2x2, in2, 2);
494
495 out[0] = ((uint128_t) in1[0]) * in2[0];
496
4eb504ae
AP
497 out[1] = ((uint128_t) in1[0]) * in2[1] +
498 ((uint128_t) in1[1]) * in2[0];
0f113f3e
MC
499
500 out[2] = ((uint128_t) in1[0]) * in2[2] +
4eb504ae
AP
501 ((uint128_t) in1[1]) * in2[1] +
502 ((uint128_t) in1[2]) * in2[0];
0f113f3e
MC
503
504 out[3] = ((uint128_t) in1[0]) * in2[3] +
4eb504ae
AP
505 ((uint128_t) in1[1]) * in2[2] +
506 ((uint128_t) in1[2]) * in2[1] +
507 ((uint128_t) in1[3]) * in2[0];
0f113f3e
MC
508
509 out[4] = ((uint128_t) in1[0]) * in2[4] +
4eb504ae
AP
510 ((uint128_t) in1[1]) * in2[3] +
511 ((uint128_t) in1[2]) * in2[2] +
512 ((uint128_t) in1[3]) * in2[1] +
513 ((uint128_t) in1[4]) * in2[0];
0f113f3e
MC
514
515 out[5] = ((uint128_t) in1[0]) * in2[5] +
4eb504ae
AP
516 ((uint128_t) in1[1]) * in2[4] +
517 ((uint128_t) in1[2]) * in2[3] +
518 ((uint128_t) in1[3]) * in2[2] +
519 ((uint128_t) in1[4]) * in2[1] +
520 ((uint128_t) in1[5]) * in2[0];
0f113f3e
MC
521
522 out[6] = ((uint128_t) in1[0]) * in2[6] +
4eb504ae
AP
523 ((uint128_t) in1[1]) * in2[5] +
524 ((uint128_t) in1[2]) * in2[4] +
525 ((uint128_t) in1[3]) * in2[3] +
526 ((uint128_t) in1[4]) * in2[2] +
527 ((uint128_t) in1[5]) * in2[1] +
528 ((uint128_t) in1[6]) * in2[0];
0f113f3e
MC
529
530 out[7] = ((uint128_t) in1[0]) * in2[7] +
4eb504ae
AP
531 ((uint128_t) in1[1]) * in2[6] +
532 ((uint128_t) in1[2]) * in2[5] +
533 ((uint128_t) in1[3]) * in2[4] +
534 ((uint128_t) in1[4]) * in2[3] +
535 ((uint128_t) in1[5]) * in2[2] +
536 ((uint128_t) in1[6]) * in2[1] +
537 ((uint128_t) in1[7]) * in2[0];
0f113f3e
MC
538
539 out[8] = ((uint128_t) in1[0]) * in2[8] +
4eb504ae
AP
540 ((uint128_t) in1[1]) * in2[7] +
541 ((uint128_t) in1[2]) * in2[6] +
542 ((uint128_t) in1[3]) * in2[5] +
543 ((uint128_t) in1[4]) * in2[4] +
544 ((uint128_t) in1[5]) * in2[3] +
545 ((uint128_t) in1[6]) * in2[2] +
546 ((uint128_t) in1[7]) * in2[1] +
547 ((uint128_t) in1[8]) * in2[0];
0f113f3e
MC
548
549 /* See comment in felem_square about the use of in2x2 here */
550
551 out[0] += ((uint128_t) in1[1]) * in2x2[8] +
4eb504ae
AP
552 ((uint128_t) in1[2]) * in2x2[7] +
553 ((uint128_t) in1[3]) * in2x2[6] +
554 ((uint128_t) in1[4]) * in2x2[5] +
555 ((uint128_t) in1[5]) * in2x2[4] +
556 ((uint128_t) in1[6]) * in2x2[3] +
557 ((uint128_t) in1[7]) * in2x2[2] +
558 ((uint128_t) in1[8]) * in2x2[1];
0f113f3e
MC
559
560 out[1] += ((uint128_t) in1[2]) * in2x2[8] +
4eb504ae
AP
561 ((uint128_t) in1[3]) * in2x2[7] +
562 ((uint128_t) in1[4]) * in2x2[6] +
563 ((uint128_t) in1[5]) * in2x2[5] +
564 ((uint128_t) in1[6]) * in2x2[4] +
565 ((uint128_t) in1[7]) * in2x2[3] +
566 ((uint128_t) in1[8]) * in2x2[2];
0f113f3e
MC
567
568 out[2] += ((uint128_t) in1[3]) * in2x2[8] +
4eb504ae
AP
569 ((uint128_t) in1[4]) * in2x2[7] +
570 ((uint128_t) in1[5]) * in2x2[6] +
571 ((uint128_t) in1[6]) * in2x2[5] +
572 ((uint128_t) in1[7]) * in2x2[4] +
573 ((uint128_t) in1[8]) * in2x2[3];
0f113f3e
MC
574
575 out[3] += ((uint128_t) in1[4]) * in2x2[8] +
4eb504ae
AP
576 ((uint128_t) in1[5]) * in2x2[7] +
577 ((uint128_t) in1[6]) * in2x2[6] +
578 ((uint128_t) in1[7]) * in2x2[5] +
579 ((uint128_t) in1[8]) * in2x2[4];
0f113f3e
MC
580
581 out[4] += ((uint128_t) in1[5]) * in2x2[8] +
4eb504ae
AP
582 ((uint128_t) in1[6]) * in2x2[7] +
583 ((uint128_t) in1[7]) * in2x2[6] +
584 ((uint128_t) in1[8]) * in2x2[5];
0f113f3e
MC
585
586 out[5] += ((uint128_t) in1[6]) * in2x2[8] +
4eb504ae
AP
587 ((uint128_t) in1[7]) * in2x2[7] +
588 ((uint128_t) in1[8]) * in2x2[6];
0f113f3e
MC
589
590 out[6] += ((uint128_t) in1[7]) * in2x2[8] +
4eb504ae 591 ((uint128_t) in1[8]) * in2x2[7];
0f113f3e
MC
592
593 out[7] += ((uint128_t) in1[8]) * in2x2[8];
594}
3e00b4c9
BM
595
596static const limb bottom52bits = 0xfffffffffffff;
597
1d97c843
TH
598/*-
599 * felem_reduce converts a largefelem to an felem.
3e00b4c9
BM
600 * On entry:
601 * in[i] < 2^128
602 * On exit:
603 * out[i] < 2^59 + 2^14
604 */
605static void felem_reduce(felem out, const largefelem in)
0f113f3e
MC
606{
607 u64 overflow1, overflow2;
608
609 out[0] = ((limb) in[0]) & bottom58bits;
610 out[1] = ((limb) in[1]) & bottom58bits;
611 out[2] = ((limb) in[2]) & bottom58bits;
612 out[3] = ((limb) in[3]) & bottom58bits;
613 out[4] = ((limb) in[4]) & bottom58bits;
614 out[5] = ((limb) in[5]) & bottom58bits;
615 out[6] = ((limb) in[6]) & bottom58bits;
616 out[7] = ((limb) in[7]) & bottom58bits;
617 out[8] = ((limb) in[8]) & bottom58bits;
618
619 /* out[i] < 2^58 */
620
621 out[1] += ((limb) in[0]) >> 58;
622 out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
35a1cc90
MC
623 /*-
624 * out[1] < 2^58 + 2^6 + 2^58
625 * = 2^59 + 2^6
626 */
0f113f3e
MC
627 out[2] += ((limb) (in[0] >> 64)) >> 52;
628
629 out[2] += ((limb) in[1]) >> 58;
630 out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
631 out[3] += ((limb) (in[1] >> 64)) >> 52;
632
633 out[3] += ((limb) in[2]) >> 58;
634 out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
635 out[4] += ((limb) (in[2] >> 64)) >> 52;
636
637 out[4] += ((limb) in[3]) >> 58;
638 out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
639 out[5] += ((limb) (in[3] >> 64)) >> 52;
640
641 out[5] += ((limb) in[4]) >> 58;
642 out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
643 out[6] += ((limb) (in[4] >> 64)) >> 52;
644
645 out[6] += ((limb) in[5]) >> 58;
646 out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
647 out[7] += ((limb) (in[5] >> 64)) >> 52;
648
649 out[7] += ((limb) in[6]) >> 58;
650 out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
651 out[8] += ((limb) (in[6] >> 64)) >> 52;
652
653 out[8] += ((limb) in[7]) >> 58;
654 out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
35a1cc90
MC
655 /*-
656 * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
657 * < 2^59 + 2^13
658 */
0f113f3e
MC
659 overflow1 = ((limb) (in[7] >> 64)) >> 52;
660
661 overflow1 += ((limb) in[8]) >> 58;
662 overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
663 overflow2 = ((limb) (in[8] >> 64)) >> 52;
664
665 overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
666 overflow2 <<= 1; /* overflow2 < 2^13 */
667
668 out[0] += overflow1; /* out[0] < 2^60 */
669 out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
670
671 out[1] += out[0] >> 58;
672 out[0] &= bottom58bits;
35a1cc90
MC
673 /*-
674 * out[0] < 2^58
675 * out[1] < 2^59 + 2^6 + 2^13 + 2^2
676 * < 2^59 + 2^14
677 */
0f113f3e 678}
3e00b4c9
BM
679
680static void felem_square_reduce(felem out, const felem in)
0f113f3e
MC
681{
682 largefelem tmp;
683 felem_square(tmp, in);
684 felem_reduce(out, tmp);
685}
3e00b4c9
BM
686
687static void felem_mul_reduce(felem out, const felem in1, const felem in2)
0f113f3e
MC
688{
689 largefelem tmp;
690 felem_mul(tmp, in1, in2);
691 felem_reduce(out, tmp);
692}
3e00b4c9 693
1d97c843
TH
694/*-
695 * felem_inv calculates |out| = |in|^{-1}
3e00b4c9
BM
696 *
697 * Based on Fermat's Little Theorem:
698 * a^p = a (mod p)
699 * a^{p-1} = 1 (mod p)
700 * a^{p-2} = a^{-1} (mod p)
701 */
702static void felem_inv(felem out, const felem in)
0f113f3e
MC
703{
704 felem ftmp, ftmp2, ftmp3, ftmp4;
705 largefelem tmp;
706 unsigned i;
707
708 felem_square(tmp, in);
709 felem_reduce(ftmp, tmp); /* 2^1 */
710 felem_mul(tmp, in, ftmp);
711 felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
712 felem_assign(ftmp2, ftmp);
713 felem_square(tmp, ftmp);
714 felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
715 felem_mul(tmp, in, ftmp);
716 felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
717 felem_square(tmp, ftmp);
718 felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
719
720 felem_square(tmp, ftmp2);
721 felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
722 felem_square(tmp, ftmp3);
723 felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
724 felem_mul(tmp, ftmp3, ftmp2);
725 felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
726
727 felem_assign(ftmp2, ftmp3);
728 felem_square(tmp, ftmp3);
729 felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
730 felem_square(tmp, ftmp3);
731 felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
732 felem_square(tmp, ftmp3);
733 felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
734 felem_square(tmp, ftmp3);
735 felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
736 felem_assign(ftmp4, ftmp3);
737 felem_mul(tmp, ftmp3, ftmp);
738 felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
739 felem_square(tmp, ftmp4);
740 felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
741 felem_mul(tmp, ftmp3, ftmp2);
742 felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
743 felem_assign(ftmp2, ftmp3);
744
745 for (i = 0; i < 8; i++) {
746 felem_square(tmp, ftmp3);
747 felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
748 }
749 felem_mul(tmp, ftmp3, ftmp2);
750 felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
751 felem_assign(ftmp2, ftmp3);
752
753 for (i = 0; i < 16; i++) {
754 felem_square(tmp, ftmp3);
755 felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
756 }
757 felem_mul(tmp, ftmp3, ftmp2);
758 felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
759 felem_assign(ftmp2, ftmp3);
760
761 for (i = 0; i < 32; i++) {
762 felem_square(tmp, ftmp3);
763 felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
764 }
765 felem_mul(tmp, ftmp3, ftmp2);
766 felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
767 felem_assign(ftmp2, ftmp3);
768
769 for (i = 0; i < 64; i++) {
770 felem_square(tmp, ftmp3);
771 felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
772 }
773 felem_mul(tmp, ftmp3, ftmp2);
774 felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
775 felem_assign(ftmp2, ftmp3);
776
777 for (i = 0; i < 128; i++) {
778 felem_square(tmp, ftmp3);
779 felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
780 }
781 felem_mul(tmp, ftmp3, ftmp2);
782 felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
783 felem_assign(ftmp2, ftmp3);
784
785 for (i = 0; i < 256; i++) {
786 felem_square(tmp, ftmp3);
787 felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
788 }
789 felem_mul(tmp, ftmp3, ftmp2);
790 felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
791
792 for (i = 0; i < 9; i++) {
793 felem_square(tmp, ftmp3);
794 felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
795 }
796 felem_mul(tmp, ftmp3, ftmp4);
797 felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */
798 felem_mul(tmp, ftmp3, in);
799 felem_reduce(out, tmp); /* 2^512 - 3 */
3e00b4c9
BM
800}
801
802/* This is 2^521-1, expressed as an felem */
0f113f3e
MC
803static const felem kPrime = {
804 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
805 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
806 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
807};
3e00b4c9 808
1d97c843
TH
809/*-
810 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
3e00b4c9
BM
811 * otherwise.
812 * On entry:
813 * in[i] < 2^59 + 2^14
814 */
815static limb felem_is_zero(const felem in)
0f113f3e
MC
816{
817 felem ftmp;
818 limb is_zero, is_p;
819 felem_assign(ftmp, in);
820
821 ftmp[0] += ftmp[8] >> 57;
822 ftmp[8] &= bottom57bits;
823 /* ftmp[8] < 2^57 */
824 ftmp[1] += ftmp[0] >> 58;
825 ftmp[0] &= bottom58bits;
826 ftmp[2] += ftmp[1] >> 58;
827 ftmp[1] &= bottom58bits;
828 ftmp[3] += ftmp[2] >> 58;
829 ftmp[2] &= bottom58bits;
830 ftmp[4] += ftmp[3] >> 58;
831 ftmp[3] &= bottom58bits;
832 ftmp[5] += ftmp[4] >> 58;
833 ftmp[4] &= bottom58bits;
834 ftmp[6] += ftmp[5] >> 58;
835 ftmp[5] &= bottom58bits;
836 ftmp[7] += ftmp[6] >> 58;
837 ftmp[6] &= bottom58bits;
838 ftmp[8] += ftmp[7] >> 58;
839 ftmp[7] &= bottom58bits;
840 /* ftmp[8] < 2^57 + 4 */
841
842 /*
843 * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
844 * than our bound for ftmp[8]. Therefore we only have to check if the
845 * zero is zero or 2^521-1.
846 */
847
848 is_zero = 0;
849 is_zero |= ftmp[0];
850 is_zero |= ftmp[1];
851 is_zero |= ftmp[2];
852 is_zero |= ftmp[3];
853 is_zero |= ftmp[4];
854 is_zero |= ftmp[5];
855 is_zero |= ftmp[6];
856 is_zero |= ftmp[7];
857 is_zero |= ftmp[8];
858
859 is_zero--;
860 /*
861 * We know that ftmp[i] < 2^63, therefore the only way that the top bit
862 * can be set is if is_zero was 0 before the decrement.
863 */
8af7e94d 864 is_zero = 0 - (is_zero >> 63);
0f113f3e
MC
865
866 is_p = ftmp[0] ^ kPrime[0];
867 is_p |= ftmp[1] ^ kPrime[1];
868 is_p |= ftmp[2] ^ kPrime[2];
869 is_p |= ftmp[3] ^ kPrime[3];
870 is_p |= ftmp[4] ^ kPrime[4];
871 is_p |= ftmp[5] ^ kPrime[5];
872 is_p |= ftmp[6] ^ kPrime[6];
873 is_p |= ftmp[7] ^ kPrime[7];
874 is_p |= ftmp[8] ^ kPrime[8];
875
876 is_p--;
8af7e94d 877 is_p = 0 - (is_p >> 63);
0f113f3e
MC
878
879 is_zero |= is_p;
880 return is_zero;
881}
3e00b4c9 882
c55b786a 883static int felem_is_zero_int(const void *in)
0f113f3e
MC
884{
885 return (int)(felem_is_zero(in) & ((limb) 1));
886}
3e00b4c9 887
1d97c843
TH
888/*-
889 * felem_contract converts |in| to its unique, minimal representation.
3e00b4c9
BM
890 * On entry:
891 * in[i] < 2^59 + 2^14
892 */
893static void felem_contract(felem out, const felem in)
0f113f3e
MC
894{
895 limb is_p, is_greater, sign;
896 static const limb two58 = ((limb) 1) << 58;
897
898 felem_assign(out, in);
899
900 out[0] += out[8] >> 57;
901 out[8] &= bottom57bits;
902 /* out[8] < 2^57 */
903 out[1] += out[0] >> 58;
904 out[0] &= bottom58bits;
905 out[2] += out[1] >> 58;
906 out[1] &= bottom58bits;
907 out[3] += out[2] >> 58;
908 out[2] &= bottom58bits;
909 out[4] += out[3] >> 58;
910 out[3] &= bottom58bits;
911 out[5] += out[4] >> 58;
912 out[4] &= bottom58bits;
913 out[6] += out[5] >> 58;
914 out[5] &= bottom58bits;
915 out[7] += out[6] >> 58;
916 out[6] &= bottom58bits;
917 out[8] += out[7] >> 58;
918 out[7] &= bottom58bits;
919 /* out[8] < 2^57 + 4 */
920
921 /*
922 * If the value is greater than 2^521-1 then we have to subtract 2^521-1
923 * out. See the comments in felem_is_zero regarding why we don't test for
924 * other multiples of the prime.
925 */
926
927 /*
928 * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
929 */
930
931 is_p = out[0] ^ kPrime[0];
932 is_p |= out[1] ^ kPrime[1];
933 is_p |= out[2] ^ kPrime[2];
934 is_p |= out[3] ^ kPrime[3];
935 is_p |= out[4] ^ kPrime[4];
936 is_p |= out[5] ^ kPrime[5];
937 is_p |= out[6] ^ kPrime[6];
938 is_p |= out[7] ^ kPrime[7];
939 is_p |= out[8] ^ kPrime[8];
940
941 is_p--;
942 is_p &= is_p << 32;
943 is_p &= is_p << 16;
944 is_p &= is_p << 8;
945 is_p &= is_p << 4;
946 is_p &= is_p << 2;
947 is_p &= is_p << 1;
8af7e94d 948 is_p = 0 - (is_p >> 63);
0f113f3e
MC
949 is_p = ~is_p;
950
951 /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
952
953 out[0] &= is_p;
954 out[1] &= is_p;
955 out[2] &= is_p;
956 out[3] &= is_p;
957 out[4] &= is_p;
958 out[5] &= is_p;
959 out[6] &= is_p;
960 out[7] &= is_p;
961 out[8] &= is_p;
962
963 /*
964 * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
965 * 57 is greater than zero as (2^521-1) + x >= 2^522
966 */
967 is_greater = out[8] >> 57;
968 is_greater |= is_greater << 32;
969 is_greater |= is_greater << 16;
970 is_greater |= is_greater << 8;
971 is_greater |= is_greater << 4;
972 is_greater |= is_greater << 2;
973 is_greater |= is_greater << 1;
8af7e94d 974 is_greater = 0 - (is_greater >> 63);
0f113f3e
MC
975
976 out[0] -= kPrime[0] & is_greater;
977 out[1] -= kPrime[1] & is_greater;
978 out[2] -= kPrime[2] & is_greater;
979 out[3] -= kPrime[3] & is_greater;
980 out[4] -= kPrime[4] & is_greater;
981 out[5] -= kPrime[5] & is_greater;
982 out[6] -= kPrime[6] & is_greater;
983 out[7] -= kPrime[7] & is_greater;
984 out[8] -= kPrime[8] & is_greater;
985
986 /* Eliminate negative coefficients */
987 sign = -(out[0] >> 63);
988 out[0] += (two58 & sign);
989 out[1] -= (1 & sign);
990 sign = -(out[1] >> 63);
991 out[1] += (two58 & sign);
992 out[2] -= (1 & sign);
993 sign = -(out[2] >> 63);
994 out[2] += (two58 & sign);
995 out[3] -= (1 & sign);
996 sign = -(out[3] >> 63);
997 out[3] += (two58 & sign);
998 out[4] -= (1 & sign);
999 sign = -(out[4] >> 63);
1000 out[4] += (two58 & sign);
1001 out[5] -= (1 & sign);
1002 sign = -(out[0] >> 63);
1003 out[5] += (two58 & sign);
1004 out[6] -= (1 & sign);
1005 sign = -(out[6] >> 63);
1006 out[6] += (two58 & sign);
1007 out[7] -= (1 & sign);
1008 sign = -(out[7] >> 63);
1009 out[7] += (two58 & sign);
1010 out[8] -= (1 & sign);
1011 sign = -(out[5] >> 63);
1012 out[5] += (two58 & sign);
1013 out[6] -= (1 & sign);
1014 sign = -(out[6] >> 63);
1015 out[6] += (two58 & sign);
1016 out[7] -= (1 & sign);
1017 sign = -(out[7] >> 63);
1018 out[7] += (two58 & sign);
1019 out[8] -= (1 & sign);
1020}
3e00b4c9 1021
1d97c843
TH
1022/*-
1023 * Group operations
3e00b4c9
BM
1024 * ----------------
1025 *
1026 * Building on top of the field operations we have the operations on the
1027 * elliptic curve group itself. Points on the curve are represented in Jacobian
1028 * coordinates */
1029
1d97c843 1030/*-
0d4fb843 1031 * point_double calculates 2*(x_in, y_in, z_in)
3e00b4c9
BM
1032 *
1033 * The method is taken from:
1034 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1035 *
1036 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1037 * while x_out == y_in is not (maybe this works, but it's not tested). */
1038static void
1039point_double(felem x_out, felem y_out, felem z_out,
0f113f3e
MC
1040 const felem x_in, const felem y_in, const felem z_in)
1041{
1042 largefelem tmp, tmp2;
1043 felem delta, gamma, beta, alpha, ftmp, ftmp2;
1044
1045 felem_assign(ftmp, x_in);
1046 felem_assign(ftmp2, x_in);
1047
1048 /* delta = z^2 */
1049 felem_square(tmp, z_in);
1050 felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
1051
1052 /* gamma = y^2 */
1053 felem_square(tmp, y_in);
1054 felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
1055
1056 /* beta = x*gamma */
1057 felem_mul(tmp, x_in, gamma);
1058 felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
1059
1060 /* alpha = 3*(x-delta)*(x+delta) */
1061 felem_diff64(ftmp, delta);
1062 /* ftmp[i] < 2^61 */
1063 felem_sum64(ftmp2, delta);
1064 /* ftmp2[i] < 2^60 + 2^15 */
1065 felem_scalar64(ftmp2, 3);
1066 /* ftmp2[i] < 3*2^60 + 3*2^15 */
1067 felem_mul(tmp, ftmp, ftmp2);
50e735f9
MC
1068 /*-
1069 * tmp[i] < 17(3*2^121 + 3*2^76)
1070 * = 61*2^121 + 61*2^76
1071 * < 64*2^121 + 64*2^76
1072 * = 2^127 + 2^82
1073 * < 2^128
1074 */
0f113f3e
MC
1075 felem_reduce(alpha, tmp);
1076
1077 /* x' = alpha^2 - 8*beta */
1078 felem_square(tmp, alpha);
1079 /*
1080 * tmp[i] < 17*2^120 < 2^125
1081 */
1082 felem_assign(ftmp, beta);
1083 felem_scalar64(ftmp, 8);
1084 /* ftmp[i] < 2^62 + 2^17 */
1085 felem_diff_128_64(tmp, ftmp);
1086 /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1087 felem_reduce(x_out, tmp);
1088
1089 /* z' = (y + z)^2 - gamma - delta */
1090 felem_sum64(delta, gamma);
1091 /* delta[i] < 2^60 + 2^15 */
1092 felem_assign(ftmp, y_in);
1093 felem_sum64(ftmp, z_in);
1094 /* ftmp[i] < 2^60 + 2^15 */
1095 felem_square(tmp, ftmp);
1096 /*
1097 * tmp[i] < 17(2^122) < 2^127
1098 */
1099 felem_diff_128_64(tmp, delta);
1100 /* tmp[i] < 2^127 + 2^63 */
1101 felem_reduce(z_out, tmp);
1102
1103 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1104 felem_scalar64(beta, 4);
1105 /* beta[i] < 2^61 + 2^16 */
1106 felem_diff64(beta, x_out);
1107 /* beta[i] < 2^61 + 2^60 + 2^16 */
1108 felem_mul(tmp, alpha, beta);
50e735f9
MC
1109 /*-
1110 * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1111 * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1112 * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1113 * < 2^128
1114 */
0f113f3e 1115 felem_square(tmp2, gamma);
50e735f9
MC
1116 /*-
1117 * tmp2[i] < 17*(2^59 + 2^14)^2
1118 * = 17*(2^118 + 2^74 + 2^28)
1119 */
0f113f3e 1120 felem_scalar128(tmp2, 8);
50e735f9
MC
1121 /*-
1122 * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1123 * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1124 * < 2^126
1125 */
0f113f3e 1126 felem_diff128(tmp, tmp2);
50e735f9
MC
1127 /*-
1128 * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1129 * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1130 * 2^74 + 2^69 + 2^34 + 2^30
1131 * < 2^128
1132 */
0f113f3e
MC
1133 felem_reduce(y_out, tmp);
1134}
3e00b4c9
BM
1135
1136/* copy_conditional copies in to out iff mask is all ones. */
0f113f3e
MC
1137static void copy_conditional(felem out, const felem in, limb mask)
1138{
1139 unsigned i;
1140 for (i = 0; i < NLIMBS; ++i) {
1141 const limb tmp = mask & (in[i] ^ out[i]);
1142 out[i] ^= tmp;
1143 }
1144}
3e00b4c9 1145
1d97c843 1146/*-
0d4fb843 1147 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
3e00b4c9
BM
1148 *
1149 * The method is taken from
1150 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1151 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1152 *
1153 * This function includes a branch for checking whether the two input points
2dbfa844
AL
1154 * are equal (while not equal to the point at infinity). See comment below
1155 * on constant-time.
1156 */
3e00b4c9 1157static void point_add(felem x3, felem y3, felem z3,
0f113f3e
MC
1158 const felem x1, const felem y1, const felem z1,
1159 const int mixed, const felem x2, const felem y2,
1160 const felem z2)
1161{
1162 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1163 largefelem tmp, tmp2;
1164 limb x_equal, y_equal, z1_is_zero, z2_is_zero;
0164bf81 1165 limb points_equal;
0f113f3e
MC
1166
1167 z1_is_zero = felem_is_zero(z1);
1168 z2_is_zero = felem_is_zero(z2);
1169
1170 /* ftmp = z1z1 = z1**2 */
1171 felem_square(tmp, z1);
1172 felem_reduce(ftmp, tmp);
1173
1174 if (!mixed) {
1175 /* ftmp2 = z2z2 = z2**2 */
1176 felem_square(tmp, z2);
1177 felem_reduce(ftmp2, tmp);
1178
1179 /* u1 = ftmp3 = x1*z2z2 */
1180 felem_mul(tmp, x1, ftmp2);
1181 felem_reduce(ftmp3, tmp);
1182
1183 /* ftmp5 = z1 + z2 */
1184 felem_assign(ftmp5, z1);
1185 felem_sum64(ftmp5, z2);
1186 /* ftmp5[i] < 2^61 */
1187
1188 /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1189 felem_square(tmp, ftmp5);
1190 /* tmp[i] < 17*2^122 */
1191 felem_diff_128_64(tmp, ftmp);
1192 /* tmp[i] < 17*2^122 + 2^63 */
1193 felem_diff_128_64(tmp, ftmp2);
1194 /* tmp[i] < 17*2^122 + 2^64 */
1195 felem_reduce(ftmp5, tmp);
1196
1197 /* ftmp2 = z2 * z2z2 */
1198 felem_mul(tmp, ftmp2, z2);
1199 felem_reduce(ftmp2, tmp);
1200
1201 /* s1 = ftmp6 = y1 * z2**3 */
1202 felem_mul(tmp, y1, ftmp2);
1203 felem_reduce(ftmp6, tmp);
1204 } else {
1205 /*
1206 * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1207 */
1208
1209 /* u1 = ftmp3 = x1*z2z2 */
1210 felem_assign(ftmp3, x1);
1211
1212 /* ftmp5 = 2*z1z2 */
1213 felem_scalar(ftmp5, z1, 2);
1214
1215 /* s1 = ftmp6 = y1 * z2**3 */
1216 felem_assign(ftmp6, y1);
1217 }
1218
1219 /* u2 = x2*z1z1 */
1220 felem_mul(tmp, x2, ftmp);
1221 /* tmp[i] < 17*2^120 */
1222
1223 /* h = ftmp4 = u2 - u1 */
1224 felem_diff_128_64(tmp, ftmp3);
1225 /* tmp[i] < 17*2^120 + 2^63 */
1226 felem_reduce(ftmp4, tmp);
1227
1228 x_equal = felem_is_zero(ftmp4);
1229
1230 /* z_out = ftmp5 * h */
1231 felem_mul(tmp, ftmp5, ftmp4);
1232 felem_reduce(z_out, tmp);
1233
1234 /* ftmp = z1 * z1z1 */
1235 felem_mul(tmp, ftmp, z1);
1236 felem_reduce(ftmp, tmp);
1237
1238 /* s2 = tmp = y2 * z1**3 */
1239 felem_mul(tmp, y2, ftmp);
1240 /* tmp[i] < 17*2^120 */
1241
1242 /* r = ftmp5 = (s2 - s1)*2 */
1243 felem_diff_128_64(tmp, ftmp6);
1244 /* tmp[i] < 17*2^120 + 2^63 */
1245 felem_reduce(ftmp5, tmp);
1246 y_equal = felem_is_zero(ftmp5);
1247 felem_scalar64(ftmp5, 2);
1248 /* ftmp5[i] < 2^61 */
1249
0164bf81
NT
1250 /*
1251 * The formulae are incorrect if the points are equal, in affine coordinates
1252 * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1253 * happens.
1254 *
1255 * We use bitwise operations to avoid potential side-channels introduced by
1256 * the short-circuiting behaviour of boolean operators.
1257 *
1258 * The special case of either point being the point at infinity (z1 and/or
1259 * z2 are zero), is handled separately later on in this function, so we
1260 * avoid jumping to point_double here in those special cases.
1261 *
1262 * Notice the comment below on the implications of this branching for timing
1263 * leaks and why it is considered practically irrelevant.
1264 */
1265 points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1266
1267 if (points_equal) {
2dbfa844
AL
1268 /*
1269 * This is obviously not constant-time but it will almost-never happen
1270 * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1271 * where the intermediate value gets very close to the group order.
32ab57cb
SL
1272 * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1273 * for the scalar, it's possible for the intermediate value to be a small
2dbfa844
AL
1274 * negative multiple of the base point, and for the final signed digit
1275 * to be the same value. We believe that this only occurs for the scalar
1276 * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1277 * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1278 * 71e913863f7, in that case the penultimate intermediate is -9G and
1279 * the final digit is also -9G. Since this only happens for a single
c2969ff6 1280 * scalar, the timing leak is irrelevant. (Any attacker who wanted to
2dbfa844
AL
1281 * check whether a secret scalar was that exact value, can already do
1282 * so.)
1283 */
0f113f3e
MC
1284 point_double(x3, y3, z3, x1, y1, z1);
1285 return;
1286 }
1287
1288 /* I = ftmp = (2h)**2 */
1289 felem_assign(ftmp, ftmp4);
1290 felem_scalar64(ftmp, 2);
1291 /* ftmp[i] < 2^61 */
1292 felem_square(tmp, ftmp);
1293 /* tmp[i] < 17*2^122 */
1294 felem_reduce(ftmp, tmp);
1295
1296 /* J = ftmp2 = h * I */
1297 felem_mul(tmp, ftmp4, ftmp);
1298 felem_reduce(ftmp2, tmp);
1299
1300 /* V = ftmp4 = U1 * I */
1301 felem_mul(tmp, ftmp3, ftmp);
1302 felem_reduce(ftmp4, tmp);
1303
1304 /* x_out = r**2 - J - 2V */
1305 felem_square(tmp, ftmp5);
1306 /* tmp[i] < 17*2^122 */
1307 felem_diff_128_64(tmp, ftmp2);
1308 /* tmp[i] < 17*2^122 + 2^63 */
1309 felem_assign(ftmp3, ftmp4);
1310 felem_scalar64(ftmp4, 2);
1311 /* ftmp4[i] < 2^61 */
1312 felem_diff_128_64(tmp, ftmp4);
1313 /* tmp[i] < 17*2^122 + 2^64 */
1314 felem_reduce(x_out, tmp);
1315
1316 /* y_out = r(V-x_out) - 2 * s1 * J */
1317 felem_diff64(ftmp3, x_out);
1318 /*
1319 * ftmp3[i] < 2^60 + 2^60 = 2^61
1320 */
1321 felem_mul(tmp, ftmp5, ftmp3);
1322 /* tmp[i] < 17*2^122 */
1323 felem_mul(tmp2, ftmp6, ftmp2);
1324 /* tmp2[i] < 17*2^120 */
1325 felem_scalar128(tmp2, 2);
1326 /* tmp2[i] < 17*2^121 */
1327 felem_diff128(tmp, tmp2);
1328 /*-
1329 * tmp[i] < 2^127 - 2^69 + 17*2^122
1330 * = 2^126 - 2^122 - 2^6 - 2^2 - 1
1331 * < 2^127
1332 */
1333 felem_reduce(y_out, tmp);
1334
1335 copy_conditional(x_out, x2, z1_is_zero);
1336 copy_conditional(x_out, x1, z2_is_zero);
1337 copy_conditional(y_out, y2, z1_is_zero);
1338 copy_conditional(y_out, y1, z2_is_zero);
1339 copy_conditional(z_out, z2, z1_is_zero);
1340 copy_conditional(z_out, z1, z2_is_zero);
1341 felem_assign(x3, x_out);
1342 felem_assign(y3, y_out);
1343 felem_assign(z3, z_out);
1344}
3e00b4c9 1345
1d97c843
TH
1346/*-
1347 * Base point pre computation
3e00b4c9
BM
1348 * --------------------------
1349 *
1350 * Two different sorts of precomputed tables are used in the following code.
1351 * Each contain various points on the curve, where each point is three field
1352 * elements (x, y, z).
1353 *
1354 * For the base point table, z is usually 1 (0 for the point at infinity).
1355 * This table has 16 elements:
1356 * index | bits | point
1357 * ------+---------+------------------------------
1358 * 0 | 0 0 0 0 | 0G
1359 * 1 | 0 0 0 1 | 1G
1360 * 2 | 0 0 1 0 | 2^130G
1361 * 3 | 0 0 1 1 | (2^130 + 1)G
1362 * 4 | 0 1 0 0 | 2^260G
1363 * 5 | 0 1 0 1 | (2^260 + 1)G
1364 * 6 | 0 1 1 0 | (2^260 + 2^130)G
1365 * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1366 * 8 | 1 0 0 0 | 2^390G
1367 * 9 | 1 0 0 1 | (2^390 + 1)G
1368 * 10 | 1 0 1 0 | (2^390 + 2^130)G
1369 * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1370 * 12 | 1 1 0 0 | (2^390 + 2^260)G
1371 * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1372 * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1373 * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1374 *
1375 * The reason for this is so that we can clock bits into four different
1376 * locations when doing simple scalar multiplies against the base point.
1377 *
1378 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1379
1380/* gmul is the table of precomputed base points */
4eb504ae
AP
1381static const felem gmul[16][3] = {
1382{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1383 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1384 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
0f113f3e
MC
1385{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1386 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1387 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1388 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1389 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1390 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1391 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1392{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1393 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1394 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1395 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1396 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1397 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1398 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1399{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1400 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1401 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1402 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1403 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1404 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1405 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1406{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1407 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1408 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1409 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1410 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1411 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1412 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1413{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1414 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1415 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1416 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1417 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1418 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1419 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1420{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1421 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1422 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1423 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1424 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1425 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1426 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1427{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1428 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1429 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1430 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1431 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1432 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1433 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1434{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1435 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1436 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1437 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1438 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1439 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1440 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1442 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1443 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1444 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1445 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1446 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1447 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1449 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1450 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1451 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1452 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1453 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1454 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1456 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1457 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1458 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1459 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1460 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1461 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1463 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1464 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1465 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1466 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1467 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1468 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1470 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1471 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1472 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1473 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1474 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1475 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1477 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1478 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1479 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1480 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1481 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1482 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1484 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1485 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1486 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1487 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1488 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1489 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1490};
1491
1492/*
1493 * select_point selects the |idx|th point from a precomputation table and
1494 * copies it to out.
1495 */
b853717f 1496 /* pre_comp below is of the size provided in |size| */
0f113f3e
MC
1497static void select_point(const limb idx, unsigned int size,
1498 const felem pre_comp[][3], felem out[3])
1499{
1500 unsigned i, j;
1501 limb *outlimbs = &out[0][0];
16f8d4eb 1502
88f4c6f3 1503 memset(out, 0, sizeof(*out) * 3);
0f113f3e
MC
1504
1505 for (i = 0; i < size; i++) {
1506 const limb *inlimbs = &pre_comp[i][0][0];
1507 limb mask = i ^ idx;
1508 mask |= mask >> 4;
1509 mask |= mask >> 2;
1510 mask |= mask >> 1;
1511 mask &= 1;
1512 mask--;
1513 for (j = 0; j < NLIMBS * 3; j++)
1514 outlimbs[j] |= inlimbs[j] & mask;
1515 }
1516}
3e00b4c9
BM
1517
1518/* get_bit returns the |i|th bit in |in| */
1519static char get_bit(const felem_bytearray in, int i)
0f113f3e
MC
1520{
1521 if (i < 0)
1522 return 0;
1523 return (in[i >> 3] >> (i & 7)) & 1;
1524}
3e00b4c9 1525
0f113f3e
MC
1526/*
1527 * Interleaved point multiplication using precomputed point multiples: The
1528 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1529 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1530 * generator, using certain (large) precomputed multiples in g_pre_comp.
1531 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1532 */
1533static void batch_mul(felem x_out, felem y_out, felem z_out,
1534 const felem_bytearray scalars[],
1535 const unsigned num_points, const u8 *g_scalar,
1536 const int mixed, const felem pre_comp[][17][3],
1537 const felem g_pre_comp[16][3])
1538{
1539 int i, skip;
1540 unsigned num, gen_mul = (g_scalar != NULL);
1541 felem nq[3], tmp[4];
1542 limb bits;
1543 u8 sign, digit;
1544
1545 /* set nq to the point at infinity */
16f8d4eb 1546 memset(nq, 0, sizeof(nq));
0f113f3e
MC
1547
1548 /*
1549 * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1550 * of the generator (last quarter of rounds) and additions of other
1551 * points multiples (every 5th round).
1552 */
1553 skip = 1; /* save two point operations in the first
1554 * round */
1555 for (i = (num_points ? 520 : 130); i >= 0; --i) {
1556 /* double */
1557 if (!skip)
1558 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1559
1560 /* add multiples of the generator */
1561 if (gen_mul && (i <= 130)) {
1562 bits = get_bit(g_scalar, i + 390) << 3;
1563 if (i < 130) {
1564 bits |= get_bit(g_scalar, i + 260) << 2;
1565 bits |= get_bit(g_scalar, i + 130) << 1;
1566 bits |= get_bit(g_scalar, i);
1567 }
1568 /* select the point to add, in constant time */
1569 select_point(bits, 16, g_pre_comp, tmp);
1570 if (!skip) {
1571 /* The 1 argument below is for "mixed" */
1572 point_add(nq[0], nq[1], nq[2],
1573 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1574 } else {
1575 memcpy(nq, tmp, 3 * sizeof(felem));
1576 skip = 0;
1577 }
1578 }
1579
1580 /* do other additions every 5 doublings */
1581 if (num_points && (i % 5 == 0)) {
1582 /* loop over all scalars */
1583 for (num = 0; num < num_points; ++num) {
1584 bits = get_bit(scalars[num], i + 4) << 5;
1585 bits |= get_bit(scalars[num], i + 3) << 4;
1586 bits |= get_bit(scalars[num], i + 2) << 3;
1587 bits |= get_bit(scalars[num], i + 1) << 2;
1588 bits |= get_bit(scalars[num], i) << 1;
1589 bits |= get_bit(scalars[num], i - 1);
32ab57cb 1590 ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
0f113f3e
MC
1591
1592 /*
1593 * select the point to add or subtract, in constant time
1594 */
1595 select_point(digit, 17, pre_comp[num], tmp);
1596 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1597 * point */
1598 copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1599
1600 if (!skip) {
1601 point_add(nq[0], nq[1], nq[2],
1602 nq[0], nq[1], nq[2],
1603 mixed, tmp[0], tmp[1], tmp[2]);
1604 } else {
1605 memcpy(nq, tmp, 3 * sizeof(felem));
1606 skip = 0;
1607 }
1608 }
1609 }
1610 }
1611 felem_assign(x_out, nq[0]);
1612 felem_assign(y_out, nq[1]);
1613 felem_assign(z_out, nq[2]);
1614}
3e00b4c9
BM
1615
1616/* Precomputation for the group generator. */
126d6864 1617struct nistp521_pre_comp_st {
0f113f3e 1618 felem g_pre_comp[16][3];
2f545ae4 1619 CRYPTO_REF_COUNT references;
9b398ef2 1620 CRYPTO_RWLOCK *lock;
3aef36ff 1621};
3e00b4c9
BM
1622
1623const EC_METHOD *EC_GFp_nistp521_method(void)
0f113f3e
MC
1624{
1625 static const EC_METHOD ret = {
1626 EC_FLAGS_DEFAULT_OCT,
1627 NID_X9_62_prime_field,
32ab57cb
SL
1628 ossl_ec_GFp_nistp521_group_init,
1629 ossl_ec_GFp_simple_group_finish,
1630 ossl_ec_GFp_simple_group_clear_finish,
1631 ossl_ec_GFp_nist_group_copy,
1632 ossl_ec_GFp_nistp521_group_set_curve,
1633 ossl_ec_GFp_simple_group_get_curve,
1634 ossl_ec_GFp_simple_group_get_degree,
1635 ossl_ec_group_simple_order_bits,
1636 ossl_ec_GFp_simple_group_check_discriminant,
1637 ossl_ec_GFp_simple_point_init,
1638 ossl_ec_GFp_simple_point_finish,
1639 ossl_ec_GFp_simple_point_clear_finish,
1640 ossl_ec_GFp_simple_point_copy,
1641 ossl_ec_GFp_simple_point_set_to_infinity,
1642 ossl_ec_GFp_simple_point_set_affine_coordinates,
1643 ossl_ec_GFp_nistp521_point_get_affine_coordinates,
0f113f3e
MC
1644 0 /* point_set_compressed_coordinates */ ,
1645 0 /* point2oct */ ,
1646 0 /* oct2point */ ,
32ab57cb
SL
1647 ossl_ec_GFp_simple_add,
1648 ossl_ec_GFp_simple_dbl,
1649 ossl_ec_GFp_simple_invert,
1650 ossl_ec_GFp_simple_is_at_infinity,
1651 ossl_ec_GFp_simple_is_on_curve,
1652 ossl_ec_GFp_simple_cmp,
1653 ossl_ec_GFp_simple_make_affine,
1654 ossl_ec_GFp_simple_points_make_affine,
1655 ossl_ec_GFp_nistp521_points_mul,
1656 ossl_ec_GFp_nistp521_precompute_mult,
1657 ossl_ec_GFp_nistp521_have_precompute_mult,
1658 ossl_ec_GFp_nist_field_mul,
1659 ossl_ec_GFp_nist_field_sqr,
0f113f3e 1660 0 /* field_div */ ,
32ab57cb 1661 ossl_ec_GFp_simple_field_inv,
0f113f3e
MC
1662 0 /* field_encode */ ,
1663 0 /* field_decode */ ,
9ff9bccc 1664 0, /* field_set_to_one */
32ab57cb
SL
1665 ossl_ec_key_simple_priv2oct,
1666 ossl_ec_key_simple_oct2priv,
9ff9bccc 1667 0, /* set private */
32ab57cb
SL
1668 ossl_ec_key_simple_generate_key,
1669 ossl_ec_key_simple_check_key,
1670 ossl_ec_key_simple_generate_public_key,
9ff9bccc
DSH
1671 0, /* keycopy */
1672 0, /* keyfinish */
32ab57cb
SL
1673 ossl_ecdh_simple_compute_key,
1674 ossl_ecdsa_simple_sign_setup,
1675 ossl_ecdsa_simple_sign_sig,
1676 ossl_ecdsa_simple_verify_sig,
f667820c 1677 0, /* field_inverse_mod_ord */
37124360
NT
1678 0, /* blind_coordinates */
1679 0, /* ladder_pre */
1680 0, /* ladder_step */
1681 0 /* ladder_post */
0f113f3e
MC
1682 };
1683
1684 return &ret;
1685}
3e00b4c9
BM
1686
1687/******************************************************************************/
0f113f3e
MC
1688/*
1689 * FUNCTIONS TO MANAGE PRECOMPUTATION
3e00b4c9
BM
1690 */
1691
3f5abab9 1692static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
0f113f3e 1693{
b51bce94 1694 NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
b4faea50 1695
90945fa3 1696 if (ret == NULL) {
9311d0c4 1697 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
0f113f3e
MC
1698 return ret;
1699 }
9b398ef2 1700
0f113f3e 1701 ret->references = 1;
9b398ef2
AG
1702
1703 ret->lock = CRYPTO_THREAD_lock_new();
1704 if (ret->lock == NULL) {
9311d0c4 1705 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
9b398ef2
AG
1706 OPENSSL_free(ret);
1707 return NULL;
1708 }
0f113f3e
MC
1709 return ret;
1710}
3e00b4c9 1711
3aef36ff 1712NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
0f113f3e 1713{
9b398ef2 1714 int i;
3aef36ff 1715 if (p != NULL)
2f545ae4 1716 CRYPTO_UP_REF(&p->references, &i, p->lock);
3aef36ff 1717 return p;
0f113f3e 1718}
3e00b4c9 1719
3aef36ff 1720void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
0f113f3e 1721{
9b398ef2
AG
1722 int i;
1723
1724 if (p == NULL)
1725 return;
1726
2f545ae4 1727 CRYPTO_DOWN_REF(&p->references, &i, p->lock);
9b398ef2
AG
1728 REF_PRINT_COUNT("EC_nistp521", x);
1729 if (i > 0)
0f113f3e 1730 return;
9b398ef2
AG
1731 REF_ASSERT_ISNT(i < 0);
1732
1733 CRYPTO_THREAD_lock_free(p->lock);
3aef36ff 1734 OPENSSL_free(p);
0f113f3e 1735}
3e00b4c9
BM
1736
1737/******************************************************************************/
0f113f3e
MC
1738/*
1739 * OPENSSL EC_METHOD FUNCTIONS
3e00b4c9
BM
1740 */
1741
32ab57cb 1742int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
0f113f3e
MC
1743{
1744 int ret;
32ab57cb 1745 ret = ossl_ec_GFp_simple_group_init(group);
0f113f3e
MC
1746 group->a_is_minus3 = 1;
1747 return ret;
1748}
3e00b4c9 1749
32ab57cb
SL
1750int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1751 const BIGNUM *a, const BIGNUM *b,
1752 BN_CTX *ctx)
0f113f3e
MC
1753{
1754 int ret = 0;
0f113f3e 1755 BIGNUM *curve_p, *curve_a, *curve_b;
f844f9eb 1756#ifndef FIPS_MODULE
a9612d6c 1757 BN_CTX *new_ctx = NULL;
0f113f3e
MC
1758
1759 if (ctx == NULL)
a6482df0 1760 ctx = new_ctx = BN_CTX_new();
a9612d6c
MC
1761#endif
1762 if (ctx == NULL)
1763 return 0;
1764
0f113f3e 1765 BN_CTX_start(ctx);
edea42c6
PY
1766 curve_p = BN_CTX_get(ctx);
1767 curve_a = BN_CTX_get(ctx);
1768 curve_b = BN_CTX_get(ctx);
1769 if (curve_b == NULL)
0f113f3e
MC
1770 goto err;
1771 BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1772 BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1773 BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1774 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
9311d0c4 1775 ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
0f113f3e
MC
1776 goto err;
1777 }
1778 group->field_mod_func = BN_nist_mod_521;
32ab57cb 1779 ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
0f113f3e
MC
1780 err:
1781 BN_CTX_end(ctx);
f844f9eb 1782#ifndef FIPS_MODULE
23a1d5e9 1783 BN_CTX_free(new_ctx);
a9612d6c 1784#endif
0f113f3e
MC
1785 return ret;
1786}
1787
1788/*
1789 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1790 * (X/Z^2, Y/Z^3)
1791 */
32ab57cb
SL
1792int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1793 const EC_POINT *point,
1794 BIGNUM *x, BIGNUM *y,
1795 BN_CTX *ctx)
0f113f3e
MC
1796{
1797 felem z1, z2, x_in, y_in, x_out, y_out;
1798 largefelem tmp;
1799
1800 if (EC_POINT_is_at_infinity(group, point)) {
9311d0c4 1801 ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
0f113f3e
MC
1802 return 0;
1803 }
ace8f546
AP
1804 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1805 (!BN_to_felem(z1, point->Z)))
0f113f3e
MC
1806 return 0;
1807 felem_inv(z2, z1);
1808 felem_square(tmp, z2);
1809 felem_reduce(z1, tmp);
1810 felem_mul(tmp, x_in, z1);
1811 felem_reduce(x_in, tmp);
1812 felem_contract(x_out, x_in);
1813 if (x != NULL) {
1814 if (!felem_to_BN(x, x_out)) {
9311d0c4 1815 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
0f113f3e
MC
1816 return 0;
1817 }
1818 }
1819 felem_mul(tmp, z1, z2);
1820 felem_reduce(z1, tmp);
1821 felem_mul(tmp, y_in, z1);
1822 felem_reduce(y_in, tmp);
1823 felem_contract(y_out, y_in);
1824 if (y != NULL) {
1825 if (!felem_to_BN(y, y_out)) {
9311d0c4 1826 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
0f113f3e
MC
1827 return 0;
1828 }
1829 }
1830 return 1;
1831}
3e00b4c9 1832
b853717f 1833/* points below is of size |num|, and tmp_felems is of size |num+1/ */
0f113f3e
MC
1834static void make_points_affine(size_t num, felem points[][3],
1835 felem tmp_felems[])
1836{
1837 /*
1838 * Runs in constant time, unless an input is the point at infinity (which
1839 * normally shouldn't happen).
1840 */
32ab57cb
SL
1841 ossl_ec_GFp_nistp_points_make_affine_internal(num,
1842 points,
1843 sizeof(felem),
1844 tmp_felems,
1845 (void (*)(void *))felem_one,
1846 felem_is_zero_int,
1847 (void (*)(void *, const void *))
1848 felem_assign,
1849 (void (*)(void *, const void *))
1850 felem_square_reduce, (void (*)
1851 (void *,
1852 const void
1853 *,
1854 const void
1855 *))
1856 felem_mul_reduce,
1857 (void (*)(void *, const void *))
1858 felem_inv,
1859 (void (*)(void *, const void *))
1860 felem_contract);
0f113f3e
MC
1861}
1862
1863/*
1864 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1865 * values Result is stored in r (r can equal one of the inputs).
1866 */
32ab57cb
SL
1867int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1868 const BIGNUM *scalar, size_t num,
1869 const EC_POINT *points[],
1870 const BIGNUM *scalars[], BN_CTX *ctx)
0f113f3e
MC
1871{
1872 int ret = 0;
1873 int j;
1874 int mixed = 0;
0f113f3e
MC
1875 BIGNUM *x, *y, *z, *tmp_scalar;
1876 felem_bytearray g_secret;
1877 felem_bytearray *secrets = NULL;
16f8d4eb 1878 felem (*pre_comp)[17][3] = NULL;
0f113f3e 1879 felem *tmp_felems = NULL;
e0b660c2
NT
1880 unsigned i;
1881 int num_bytes;
0f113f3e
MC
1882 int have_pre_comp = 0;
1883 size_t num_points = num;
1884 felem x_in, y_in, z_in, x_out, y_out, z_out;
1885 NISTP521_PRE_COMP *pre = NULL;
1886 felem(*g_pre_comp)[3] = NULL;
1887 EC_POINT *generator = NULL;
1888 const EC_POINT *p = NULL;
1889 const BIGNUM *p_scalar = NULL;
1890
0f113f3e 1891 BN_CTX_start(ctx);
edea42c6
PY
1892 x = BN_CTX_get(ctx);
1893 y = BN_CTX_get(ctx);
1894 z = BN_CTX_get(ctx);
1895 tmp_scalar = BN_CTX_get(ctx);
1896 if (tmp_scalar == NULL)
0f113f3e
MC
1897 goto err;
1898
1899 if (scalar != NULL) {
3aef36ff 1900 pre = group->pre_comp.nistp521;
0f113f3e
MC
1901 if (pre)
1902 /* we have precomputation, try to use it */
1903 g_pre_comp = &pre->g_pre_comp[0];
1904 else
1905 /* try to use the standard precomputation */
1906 g_pre_comp = (felem(*)[3]) gmul;
1907 generator = EC_POINT_new(group);
1908 if (generator == NULL)
1909 goto err;
1910 /* get the generator from precomputation */
1911 if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1912 !felem_to_BN(y, g_pre_comp[1][1]) ||
1913 !felem_to_BN(z, g_pre_comp[1][2])) {
9311d0c4 1914 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
0f113f3e
MC
1915 goto err;
1916 }
32ab57cb
SL
1917 if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1918 generator,
1919 x, y, z, ctx))
0f113f3e
MC
1920 goto err;
1921 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1922 /* precomputation matches generator */
1923 have_pre_comp = 1;
1924 else
1925 /*
1926 * we don't have valid precomputation: treat the generator as a
1927 * random point
1928 */
1929 num_points++;
1930 }
1931
1932 if (num_points > 0) {
1933 if (num_points >= 2) {
1934 /*
1935 * unless we precompute multiples for just one point, converting
1936 * those into affine form is time well spent
1937 */
1938 mixed = 1;
1939 }
b51bce94
RS
1940 secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1941 pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
0f113f3e
MC
1942 if (mixed)
1943 tmp_felems =
88f4c6f3 1944 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
0f113f3e
MC
1945 if ((secrets == NULL) || (pre_comp == NULL)
1946 || (mixed && (tmp_felems == NULL))) {
9311d0c4 1947 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
0f113f3e
MC
1948 goto err;
1949 }
1950
1951 /*
1952 * we treat NULL scalars as 0, and NULL points as points at infinity,
1953 * i.e., they contribute nothing to the linear combination
1954 */
0f113f3e 1955 for (i = 0; i < num_points; ++i) {
4fe2ee3a 1956 if (i == num) {
0f113f3e
MC
1957 /*
1958 * we didn't have a valid precomputation, so we pick the
1959 * generator
1960 */
0f113f3e
MC
1961 p = EC_GROUP_get0_generator(group);
1962 p_scalar = scalar;
4fe2ee3a 1963 } else {
0f113f3e 1964 /* the i^th point */
0f113f3e
MC
1965 p = points[i];
1966 p_scalar = scalars[i];
1967 }
1968 if ((p_scalar != NULL) && (p != NULL)) {
1969 /* reduce scalar to 0 <= scalar < 2^521 */
1970 if ((BN_num_bits(p_scalar) > 521)
1971 || (BN_is_negative(p_scalar))) {
1972 /*
1973 * this is an unusual input, and we don't guarantee
1974 * constant-timeness
1975 */
ace8f546 1976 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
9311d0c4 1977 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
0f113f3e
MC
1978 goto err;
1979 }
e0b660c2
NT
1980 num_bytes = BN_bn2lebinpad(tmp_scalar,
1981 secrets[i], sizeof(secrets[i]));
1982 } else {
1983 num_bytes = BN_bn2lebinpad(p_scalar,
1984 secrets[i], sizeof(secrets[i]));
1985 }
1986 if (num_bytes < 0) {
9311d0c4 1987 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
e0b660c2
NT
1988 goto err;
1989 }
0f113f3e 1990 /* precompute multiples */
ace8f546
AP
1991 if ((!BN_to_felem(x_out, p->X)) ||
1992 (!BN_to_felem(y_out, p->Y)) ||
1993 (!BN_to_felem(z_out, p->Z)))
0f113f3e
MC
1994 goto err;
1995 memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1996 memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1997 memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1998 for (j = 2; j <= 16; ++j) {
1999 if (j & 1) {
2000 point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2001 pre_comp[i][j][2], pre_comp[i][1][0],
2002 pre_comp[i][1][1], pre_comp[i][1][2], 0,
2003 pre_comp[i][j - 1][0],
2004 pre_comp[i][j - 1][1],
2005 pre_comp[i][j - 1][2]);
2006 } else {
2007 point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2008 pre_comp[i][j][2], pre_comp[i][j / 2][0],
2009 pre_comp[i][j / 2][1],
2010 pre_comp[i][j / 2][2]);
2011 }
2012 }
2013 }
2014 }
2015 if (mixed)
2016 make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2017 }
2018
2019 /* the scalar for the generator */
2020 if ((scalar != NULL) && (have_pre_comp)) {
2021 memset(g_secret, 0, sizeof(g_secret));
2022 /* reduce scalar to 0 <= scalar < 2^521 */
2023 if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2024 /*
2025 * this is an unusual input, and we don't guarantee
2026 * constant-timeness
2027 */
ace8f546 2028 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
9311d0c4 2029 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
0f113f3e
MC
2030 goto err;
2031 }
e0b660c2 2032 num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
4fe2ee3a 2033 } else {
e0b660c2 2034 num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
4fe2ee3a 2035 }
0f113f3e
MC
2036 /* do the multiplication with generator precomputation */
2037 batch_mul(x_out, y_out, z_out,
2038 (const felem_bytearray(*))secrets, num_points,
2039 g_secret,
2040 mixed, (const felem(*)[17][3])pre_comp,
2041 (const felem(*)[3])g_pre_comp);
4fe2ee3a 2042 } else {
0f113f3e
MC
2043 /* do the multiplication without generator precomputation */
2044 batch_mul(x_out, y_out, z_out,
2045 (const felem_bytearray(*))secrets, num_points,
2046 NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
4fe2ee3a 2047 }
0f113f3e
MC
2048 /* reduce the output to its unique minimal representation */
2049 felem_contract(x_in, x_out);
2050 felem_contract(y_in, y_out);
2051 felem_contract(z_in, z_out);
2052 if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2053 (!felem_to_BN(z, z_in))) {
9311d0c4 2054 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
0f113f3e
MC
2055 goto err;
2056 }
32ab57cb
SL
2057 ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2058 ctx);
0f113f3e
MC
2059
2060 err:
2061 BN_CTX_end(ctx);
8fdc3734 2062 EC_POINT_free(generator);
b548a1f1
RS
2063 OPENSSL_free(secrets);
2064 OPENSSL_free(pre_comp);
2065 OPENSSL_free(tmp_felems);
0f113f3e
MC
2066 return ret;
2067}
3e00b4c9 2068
32ab57cb 2069int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
0f113f3e
MC
2070{
2071 int ret = 0;
2072 NISTP521_PRE_COMP *pre = NULL;
2073 int i, j;
0f113f3e
MC
2074 BIGNUM *x, *y;
2075 EC_POINT *generator = NULL;
2076 felem tmp_felems[16];
f844f9eb 2077#ifndef FIPS_MODULE
a9612d6c
MC
2078 BN_CTX *new_ctx = NULL;
2079#endif
0f113f3e
MC
2080
2081 /* throw away old precomputation */
2c52ac9b 2082 EC_pre_comp_free(group);
a9612d6c 2083
f844f9eb 2084#ifndef FIPS_MODULE
0f113f3e 2085 if (ctx == NULL)
a6482df0 2086 ctx = new_ctx = BN_CTX_new();
a9612d6c
MC
2087#endif
2088 if (ctx == NULL)
2089 return 0;
2090
0f113f3e 2091 BN_CTX_start(ctx);
edea42c6
PY
2092 x = BN_CTX_get(ctx);
2093 y = BN_CTX_get(ctx);
2094 if (y == NULL)
0f113f3e
MC
2095 goto err;
2096 /* get the generator */
2097 if (group->generator == NULL)
2098 goto err;
2099 generator = EC_POINT_new(group);
2100 if (generator == NULL)
2101 goto err;
2102 BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2103 BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
9cc570d4 2104 if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
0f113f3e
MC
2105 goto err;
2106 if ((pre = nistp521_pre_comp_new()) == NULL)
2107 goto err;
2108 /*
2109 * if the generator is the standard one, use built-in precomputation
2110 */
2111 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2112 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
615614c8 2113 goto done;
0f113f3e 2114 }
ace8f546
AP
2115 if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2116 (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2117 (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
0f113f3e
MC
2118 goto err;
2119 /* compute 2^130*G, 2^260*G, 2^390*G */
2120 for (i = 1; i <= 4; i <<= 1) {
2121 point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2122 pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2123 pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2124 for (j = 0; j < 129; ++j) {
2125 point_double(pre->g_pre_comp[2 * i][0],
2126 pre->g_pre_comp[2 * i][1],
2127 pre->g_pre_comp[2 * i][2],
2128 pre->g_pre_comp[2 * i][0],
2129 pre->g_pre_comp[2 * i][1],
2130 pre->g_pre_comp[2 * i][2]);
2131 }
2132 }
2133 /* g_pre_comp[0] is the point at infinity */
2134 memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2135 /* the remaining multiples */
2136 /* 2^130*G + 2^260*G */
2137 point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2138 pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2139 pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2140 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2141 pre->g_pre_comp[2][2]);
2142 /* 2^130*G + 2^390*G */
2143 point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2144 pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2145 pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2146 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2147 pre->g_pre_comp[2][2]);
2148 /* 2^260*G + 2^390*G */
2149 point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2150 pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2151 pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2152 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2153 pre->g_pre_comp[4][2]);
2154 /* 2^130*G + 2^260*G + 2^390*G */
2155 point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2156 pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2157 pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2158 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2159 pre->g_pre_comp[2][2]);
2160 for (i = 1; i < 8; ++i) {
2161 /* odd multiples: add G */
2162 point_add(pre->g_pre_comp[2 * i + 1][0],
2163 pre->g_pre_comp[2 * i + 1][1],
2164 pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2165 pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2166 pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2167 pre->g_pre_comp[1][2]);
2168 }
2169 make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2170
615614c8 2171 done:
3aef36ff 2172 SETPRECOMP(group, nistp521, pre);
0f113f3e
MC
2173 ret = 1;
2174 pre = NULL;
3e00b4c9 2175 err:
0f113f3e 2176 BN_CTX_end(ctx);
8fdc3734 2177 EC_POINT_free(generator);
f844f9eb 2178#ifndef FIPS_MODULE
23a1d5e9 2179 BN_CTX_free(new_ctx);
a9612d6c 2180#endif
3aef36ff 2181 EC_nistp521_pre_comp_free(pre);
0f113f3e
MC
2182 return ret;
2183}
3e00b4c9 2184
32ab57cb 2185int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
0f113f3e 2186{
126d6864 2187 return HAVEPRECOMP(group, nistp521);
0f113f3e 2188}