]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/ec/ecp_nistz256.c
For all assembler scripts where it matters, recognise clang > 9.x
[thirdparty/openssl.git] / crypto / ec / ecp_nistz256.c
CommitLineData
aa6bb135 1/*
48e82c8e 2 * Copyright 2014-2019 The OpenSSL Project Authors. All Rights Reserved.
dcf6e50f 3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
eb791696 4 * Copyright (c) 2015, CloudFlare, Inc.
aa6bb135
RS
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
dcf6e50f 10 *
eb791696 11 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
dcf6e50f
RS
12 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13 * (2) University of Haifa, Israel
eb791696 14 * (3) CloudFlare, Inc.
dcf6e50f
RS
15 *
16 * Reference:
17 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18 * 256 Bit Primes"
aa6bb135
RS
19 */
20
4d3fa06f
AP
21#include <string.h>
22
b39fc560 23#include "internal/cryptlib.h"
0c994d54 24#include "crypto/bn.h"
b5acbf91 25#include "ec_local.h"
cd420b0b 26#include "internal/refcount.h"
4d3fa06f
AP
27
28#if BN_BITS2 != 64
58d47cf0 29# define TOBN(hi,lo) lo,hi
4d3fa06f 30#else
58d47cf0 31# define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
4d3fa06f
AP
32#endif
33
34#if defined(__GNUC__)
58d47cf0 35# define ALIGN32 __attribute((aligned(32)))
4d3fa06f 36#elif defined(_MSC_VER)
58d47cf0 37# define ALIGN32 __declspec(align(32))
4d3fa06f
AP
38#else
39# define ALIGN32
40#endif
41
58d47cf0
AP
42#define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
43#define P256_LIMBS (256/BN_BITS2)
4d3fa06f
AP
44
45typedef unsigned short u16;
46
47typedef struct {
48 BN_ULONG X[P256_LIMBS];
49 BN_ULONG Y[P256_LIMBS];
50 BN_ULONG Z[P256_LIMBS];
51} P256_POINT;
52
53typedef struct {
54 BN_ULONG X[P256_LIMBS];
55 BN_ULONG Y[P256_LIMBS];
56} P256_POINT_AFFINE;
57
58typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
59
60/* structure for precomputed multiples of the generator */
3aef36ff 61struct nistz256_pre_comp_st {
4d3fa06f
AP
62 const EC_GROUP *group; /* Parent EC_GROUP object */
63 size_t w; /* Window size */
20728adc
AP
64 /*
65 * Constant time access to the X and Y coordinates of the pre-computed,
4d3fa06f 66 * generator multiplies, in the Montgomery domain. Pre-calculated
20728adc
AP
67 * multiplies are stored in affine form.
68 */
4d3fa06f
AP
69 PRECOMP256_ROW *precomp;
70 void *precomp_storage;
2f545ae4 71 CRYPTO_REF_COUNT references;
9b398ef2 72 CRYPTO_RWLOCK *lock;
3aef36ff 73};
4d3fa06f
AP
74
75/* Functions implemented in assembly */
b62b2454
AP
76/*
77 * Most of below mentioned functions *preserve* the property of inputs
78 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
79 * inputs are fully reduced, then output is too. Note that reverse is
80 * not true, in sense that given partially reduced inputs output can be
81 * either, not unlikely reduced. And "most" in first sentence refers to
82 * the fact that given the calculations flow one can tolerate that
83 * addition, 1st function below, produces partially reduced result *if*
84 * multiplications by 2 and 3, which customarily use addition, fully
85 * reduce it. This effectively gives two options: a) addition produces
86 * fully reduced result [as long as inputs are, just like remaining
87 * functions]; b) addition is allowed to produce partially reduced
88 * result, but multiplications by 2 and 3 perform additional reduction
89 * step. Choice between the two can be platform-specific, but it was a)
90 * in all cases so far...
91 */
92/* Modular add: res = a+b mod P */
93void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
94 const BN_ULONG a[P256_LIMBS],
95 const BN_ULONG b[P256_LIMBS]);
4d3fa06f
AP
96/* Modular mul by 2: res = 2*a mod P */
97void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
98 const BN_ULONG a[P256_LIMBS]);
4d3fa06f
AP
99/* Modular mul by 3: res = 3*a mod P */
100void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
101 const BN_ULONG a[P256_LIMBS]);
b62b2454
AP
102
103/* Modular div by 2: res = a/2 mod P */
104void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
105 const BN_ULONG a[P256_LIMBS]);
20728adc 106/* Modular sub: res = a-b mod P */
4d3fa06f
AP
107void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
108 const BN_ULONG a[P256_LIMBS],
109 const BN_ULONG b[P256_LIMBS]);
20728adc 110/* Modular neg: res = -a mod P */
4d3fa06f
AP
111void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
112/* Montgomery mul: res = a*b*2^-256 mod P */
113void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
114 const BN_ULONG a[P256_LIMBS],
115 const BN_ULONG b[P256_LIMBS]);
116/* Montgomery sqr: res = a*a*2^-256 mod P */
117void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
118 const BN_ULONG a[P256_LIMBS]);
119/* Convert a number from Montgomery domain, by multiplying with 1 */
120void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
121 const BN_ULONG in[P256_LIMBS]);
122/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
123void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
124 const BN_ULONG in[P256_LIMBS]);
125/* Functions that perform constant time access to the precomputed tables */
58d47cf0 126void ecp_nistz256_scatter_w5(P256_POINT *val,
49b05c7d 127 const P256_POINT *in_t, int idx);
20728adc 128void ecp_nistz256_gather_w5(P256_POINT *val,
49b05c7d 129 const P256_POINT *in_t, int idx);
58d47cf0 130void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
49b05c7d 131 const P256_POINT_AFFINE *in_t, int idx);
58d47cf0 132void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
49b05c7d 133 const P256_POINT_AFFINE *in_t, int idx);
4d3fa06f
AP
134
135/* One converted into the Montgomery domain */
136static const BN_ULONG ONE[P256_LIMBS] = {
137 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
138 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
139};
140
3aef36ff 141static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
4d3fa06f
AP
142
143/* Precomputed tables for the default generator */
3ff08e1d 144extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
4d3fa06f
AP
145
146/* Recode window to a signed digit, see ecp_nistputil.c for details */
147static unsigned int _booth_recode_w5(unsigned int in)
148{
149 unsigned int s, d;
150
151 s = ~((in >> 5) - 1);
152 d = (1 << 6) - in - 1;
153 d = (d & s) | (in & ~s);
154 d = (d >> 1) + (d & 1);
155
156 return (d << 1) + (s & 1);
157}
158
159static unsigned int _booth_recode_w7(unsigned int in)
160{
161 unsigned int s, d;
162
163 s = ~((in >> 7) - 1);
164 d = (1 << 8) - in - 1;
165 d = (d & s) | (in & ~s);
166 d = (d >> 1) + (d & 1);
167
168 return (d << 1) + (s & 1);
169}
170
171static void copy_conditional(BN_ULONG dst[P256_LIMBS],
172 const BN_ULONG src[P256_LIMBS], BN_ULONG move)
173{
5afc296a 174 BN_ULONG mask1 = 0-move;
4d3fa06f
AP
175 BN_ULONG mask2 = ~mask1;
176
177 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
178 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
179 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
180 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
181 if (P256_LIMBS == 8) {
182 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
183 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
184 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
185 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
186 }
187}
188
189static BN_ULONG is_zero(BN_ULONG in)
190{
191 in |= (0 - in);
192 in = ~in;
4d3fa06f
AP
193 in >>= BN_BITS2 - 1;
194 return in;
195}
196
197static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
198 const BN_ULONG b[P256_LIMBS])
199{
200 BN_ULONG res;
201
202 res = a[0] ^ b[0];
203 res |= a[1] ^ b[1];
204 res |= a[2] ^ b[2];
205 res |= a[3] ^ b[3];
206 if (P256_LIMBS == 8) {
207 res |= a[4] ^ b[4];
208 res |= a[5] ^ b[5];
209 res |= a[6] ^ b[6];
210 res |= a[7] ^ b[7];
211 }
212
213 return is_zero(res);
214}
215
2e929e53 216static BN_ULONG is_one(const BIGNUM *z)
4d3fa06f 217{
2e929e53
AP
218 BN_ULONG res = 0;
219 BN_ULONG *a = bn_get_words(z);
220
221 if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
222 res = a[0] ^ ONE[0];
223 res |= a[1] ^ ONE[1];
224 res |= a[2] ^ ONE[2];
225 res |= a[3] ^ ONE[3];
226 if (P256_LIMBS == 8) {
227 res |= a[4] ^ ONE[4];
228 res |= a[5] ^ ONE[5];
229 res |= a[6] ^ ONE[6];
230 /*
231 * no check for a[7] (being zero) on 32-bit platforms,
232 * because value of "one" takes only 7 limbs.
233 */
234 }
235 res = is_zero(res);
4d3fa06f
AP
236 }
237
2e929e53 238 return res;
4d3fa06f
AP
239}
240
f3b3d7f0
RS
241/*
242 * For reference, this macro is used only when new ecp_nistz256 assembly
243 * module is being developed. For example, configure with
244 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
245 * performing simplest arithmetic operations on 256-bit vectors. Then
246 * work on implementation of higher-level functions performing point
247 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
248 * and never define it again. (The correct macro denoting presence of
249 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
250 */
4d3fa06f 251#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
58d47cf0
AP
252void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
253void ecp_nistz256_point_add(P256_POINT *r,
254 const P256_POINT *a, const P256_POINT *b);
255void ecp_nistz256_point_add_affine(P256_POINT *r,
256 const P256_POINT *a,
257 const P256_POINT_AFFINE *b);
4d3fa06f
AP
258#else
259/* Point double: r = 2*a */
58d47cf0 260static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
4d3fa06f
AP
261{
262 BN_ULONG S[P256_LIMBS];
263 BN_ULONG M[P256_LIMBS];
264 BN_ULONG Zsqr[P256_LIMBS];
265 BN_ULONG tmp0[P256_LIMBS];
266
267 const BN_ULONG *in_x = a->X;
268 const BN_ULONG *in_y = a->Y;
269 const BN_ULONG *in_z = a->Z;
270
271 BN_ULONG *res_x = r->X;
272 BN_ULONG *res_y = r->Y;
273 BN_ULONG *res_z = r->Z;
274
275 ecp_nistz256_mul_by_2(S, in_y);
276
277 ecp_nistz256_sqr_mont(Zsqr, in_z);
278
279 ecp_nistz256_sqr_mont(S, S);
280
281 ecp_nistz256_mul_mont(res_z, in_z, in_y);
282 ecp_nistz256_mul_by_2(res_z, res_z);
283
284 ecp_nistz256_add(M, in_x, Zsqr);
285 ecp_nistz256_sub(Zsqr, in_x, Zsqr);
286
287 ecp_nistz256_sqr_mont(res_y, S);
288 ecp_nistz256_div_by_2(res_y, res_y);
289
290 ecp_nistz256_mul_mont(M, M, Zsqr);
291 ecp_nistz256_mul_by_3(M, M);
292
293 ecp_nistz256_mul_mont(S, S, in_x);
294 ecp_nistz256_mul_by_2(tmp0, S);
295
296 ecp_nistz256_sqr_mont(res_x, M);
297
298 ecp_nistz256_sub(res_x, res_x, tmp0);
299 ecp_nistz256_sub(S, S, res_x);
300
301 ecp_nistz256_mul_mont(S, S, M);
302 ecp_nistz256_sub(res_y, S, res_y);
303}
304
305/* Point addition: r = a+b */
20728adc
AP
306static void ecp_nistz256_point_add(P256_POINT *r,
307 const P256_POINT *a, const P256_POINT *b)
4d3fa06f
AP
308{
309 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
310 BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
311 BN_ULONG Z1sqr[P256_LIMBS];
312 BN_ULONG Z2sqr[P256_LIMBS];
313 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
314 BN_ULONG Hsqr[P256_LIMBS];
315 BN_ULONG Rsqr[P256_LIMBS];
316 BN_ULONG Hcub[P256_LIMBS];
317
318 BN_ULONG res_x[P256_LIMBS];
319 BN_ULONG res_y[P256_LIMBS];
320 BN_ULONG res_z[P256_LIMBS];
321
322 BN_ULONG in1infty, in2infty;
323
324 const BN_ULONG *in1_x = a->X;
325 const BN_ULONG *in1_y = a->Y;
326 const BN_ULONG *in1_z = a->Z;
327
328 const BN_ULONG *in2_x = b->X;
329 const BN_ULONG *in2_y = b->Y;
330 const BN_ULONG *in2_z = b->Z;
331
e3057a57
AP
332 /*
333 * Infinity in encoded as (,,0)
334 */
335 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
4d3fa06f 336 if (P256_LIMBS == 8)
e3057a57 337 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
4d3fa06f 338
e3057a57 339 in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
4d3fa06f 340 if (P256_LIMBS == 8)
e3057a57 341 in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
4d3fa06f
AP
342
343 in1infty = is_zero(in1infty);
344 in2infty = is_zero(in2infty);
345
346 ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
347 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
348
349 ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
350 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
351
352 ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
353 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
354 ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
355
356 ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
357 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
358 ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
359
20728adc 360 /*
38be93f6
BE
361 * The formulae are incorrect if the points are equal so we check for
362 * this and do doubling if this happens.
363 *
364 * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
365 * that are bound to the affine coordinates (xi, yi) by the following
366 * equations:
367 * - xi = Xi / (Zi)^2
368 * - y1 = Yi / (Zi)^3
369 *
370 * For the sake of optimization, the algorithm operates over
371 * intermediate variables U1, U2 and S1, S2 that are derived from
372 * the projective coordinates:
373 * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
374 * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
375 *
376 * It is easy to prove that is_equal(U1, U2) implies that the affine
377 * x-coordinates are equal, or either point is at infinity.
378 * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
379 * equal, or either point is at infinity.
380 *
381 * The special case of either point being the point at infinity (Z1 or Z2
382 * is zero), is handled separately later on in this function, so we avoid
383 * jumping to point_double here in those special cases.
384 *
385 * When both points are inverse of each other, we know that the affine
386 * x-coordinates are equal, and the y-coordinates have different sign.
387 * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
388 * will equal 0, thus the result is infinity, if we simply let this
389 * function continue normally.
390 *
391 * We use bitwise operations to avoid potential side-channels introduced by
392 * the short-circuiting behaviour of boolean operators.
20728adc 393 */
38be93f6
BE
394 if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
395 /*
396 * This is obviously not constant-time but it should never happen during
397 * single point multiplication, so there is no timing leak for ECDH or
398 * ECDSA signing.
399 */
400 ecp_nistz256_point_double(r, a);
401 return;
4d3fa06f
AP
402 }
403
404 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
405 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
406 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
407 ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
408 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
409
410 ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
411 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
412
413 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
414 ecp_nistz256_sub(res_x, res_x, Hcub);
415
416 ecp_nistz256_sub(res_y, U2, res_x);
417
418 ecp_nistz256_mul_mont(S2, S1, Hcub);
419 ecp_nistz256_mul_mont(res_y, R, res_y);
420 ecp_nistz256_sub(res_y, res_y, S2);
421
422 copy_conditional(res_x, in2_x, in1infty);
423 copy_conditional(res_y, in2_y, in1infty);
424 copy_conditional(res_z, in2_z, in1infty);
425
426 copy_conditional(res_x, in1_x, in2infty);
427 copy_conditional(res_y, in1_y, in2infty);
428 copy_conditional(res_z, in1_z, in2infty);
429
430 memcpy(r->X, res_x, sizeof(res_x));
431 memcpy(r->Y, res_y, sizeof(res_y));
432 memcpy(r->Z, res_z, sizeof(res_z));
433}
434
435/* Point addition when b is known to be affine: r = a+b */
58d47cf0
AP
436static void ecp_nistz256_point_add_affine(P256_POINT *r,
437 const P256_POINT *a,
438 const P256_POINT_AFFINE *b)
4d3fa06f
AP
439{
440 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
441 BN_ULONG Z1sqr[P256_LIMBS];
442 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
443 BN_ULONG Hsqr[P256_LIMBS];
444 BN_ULONG Rsqr[P256_LIMBS];
445 BN_ULONG Hcub[P256_LIMBS];
446
447 BN_ULONG res_x[P256_LIMBS];
448 BN_ULONG res_y[P256_LIMBS];
449 BN_ULONG res_z[P256_LIMBS];
450
451 BN_ULONG in1infty, in2infty;
452
453 const BN_ULONG *in1_x = a->X;
454 const BN_ULONG *in1_y = a->Y;
455 const BN_ULONG *in1_z = a->Z;
456
457 const BN_ULONG *in2_x = b->X;
458 const BN_ULONG *in2_y = b->Y;
459
20728adc 460 /*
e3057a57 461 * Infinity in encoded as (,,0)
20728adc 462 */
e3057a57 463 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
4d3fa06f 464 if (P256_LIMBS == 8)
e3057a57 465 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
4d3fa06f 466
e3057a57
AP
467 /*
468 * In affine representation we encode infinity as (0,0), which is
469 * not on the curve, so it is OK
470 */
58d47cf0
AP
471 in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
472 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
4d3fa06f 473 if (P256_LIMBS == 8)
58d47cf0
AP
474 in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
475 in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
4d3fa06f
AP
476
477 in1infty = is_zero(in1infty);
478 in2infty = is_zero(in2infty);
479
480 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
481
482 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
483 ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
484
485 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
486
487 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
488
489 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
490 ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
491
492 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
493 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
494 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
495
496 ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
497 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
498
499 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
500 ecp_nistz256_sub(res_x, res_x, Hcub);
501 ecp_nistz256_sub(H, U2, res_x);
502
503 ecp_nistz256_mul_mont(S2, in1_y, Hcub);
504 ecp_nistz256_mul_mont(H, H, R);
505 ecp_nistz256_sub(res_y, H, S2);
506
507 copy_conditional(res_x, in2_x, in1infty);
508 copy_conditional(res_x, in1_x, in2infty);
509
510 copy_conditional(res_y, in2_y, in1infty);
511 copy_conditional(res_y, in1_y, in2infty);
512
513 copy_conditional(res_z, ONE, in1infty);
514 copy_conditional(res_z, in1_z, in2infty);
515
516 memcpy(r->X, res_x, sizeof(res_x));
517 memcpy(r->Y, res_y, sizeof(res_y));
518 memcpy(r->Z, res_z, sizeof(res_z));
519}
520#endif
521
522/* r = in^-1 mod p */
523static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
524 const BN_ULONG in[P256_LIMBS])
525{
20728adc
AP
526 /*
527 * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
528 * ffffffff ffffffff We use FLT and used poly-2 as exponent
529 */
4d3fa06f
AP
530 BN_ULONG p2[P256_LIMBS];
531 BN_ULONG p4[P256_LIMBS];
532 BN_ULONG p8[P256_LIMBS];
533 BN_ULONG p16[P256_LIMBS];
534 BN_ULONG p32[P256_LIMBS];
535 BN_ULONG res[P256_LIMBS];
536 int i;
537
538 ecp_nistz256_sqr_mont(res, in);
539 ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
540
541 ecp_nistz256_sqr_mont(res, p2);
542 ecp_nistz256_sqr_mont(res, res);
543 ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
544
545 ecp_nistz256_sqr_mont(res, p4);
546 ecp_nistz256_sqr_mont(res, res);
547 ecp_nistz256_sqr_mont(res, res);
548 ecp_nistz256_sqr_mont(res, res);
549 ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
550
551 ecp_nistz256_sqr_mont(res, p8);
552 for (i = 0; i < 7; i++)
553 ecp_nistz256_sqr_mont(res, res);
554 ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
555
556 ecp_nistz256_sqr_mont(res, p16);
557 for (i = 0; i < 15; i++)
558 ecp_nistz256_sqr_mont(res, res);
559 ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
560
561 ecp_nistz256_sqr_mont(res, p32);
562 for (i = 0; i < 31; i++)
563 ecp_nistz256_sqr_mont(res, res);
564 ecp_nistz256_mul_mont(res, res, in);
565
566 for (i = 0; i < 32 * 4; i++)
567 ecp_nistz256_sqr_mont(res, res);
568 ecp_nistz256_mul_mont(res, res, p32);
569
570 for (i = 0; i < 32; i++)
571 ecp_nistz256_sqr_mont(res, res);
572 ecp_nistz256_mul_mont(res, res, p32);
573
574 for (i = 0; i < 16; i++)
575 ecp_nistz256_sqr_mont(res, res);
576 ecp_nistz256_mul_mont(res, res, p16);
577
578 for (i = 0; i < 8; i++)
579 ecp_nistz256_sqr_mont(res, res);
580 ecp_nistz256_mul_mont(res, res, p8);
581
582 ecp_nistz256_sqr_mont(res, res);
583 ecp_nistz256_sqr_mont(res, res);
584 ecp_nistz256_sqr_mont(res, res);
585 ecp_nistz256_sqr_mont(res, res);
586 ecp_nistz256_mul_mont(res, res, p4);
587
588 ecp_nistz256_sqr_mont(res, res);
589 ecp_nistz256_sqr_mont(res, res);
590 ecp_nistz256_mul_mont(res, res, p2);
591
592 ecp_nistz256_sqr_mont(res, res);
593 ecp_nistz256_sqr_mont(res, res);
594 ecp_nistz256_mul_mont(res, res, in);
595
596 memcpy(r, res, sizeof(res));
597}
598
20728adc
AP
599/*
600 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
601 * returns one if it fits. Otherwise it returns zero.
602 */
5956b110
EK
603__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
604 const BIGNUM *in)
4d3fa06f 605{
5784a521 606 return bn_copy_words(out, in, P256_LIMBS);
4d3fa06f
AP
607}
608
609/* r = sum(scalar[i]*point[i]) */
5956b110
EK
610__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
611 P256_POINT *r,
612 const BIGNUM **scalar,
613 const EC_POINT **point,
614 size_t num, BN_CTX *ctx)
4d3fa06f 615{
5afc296a 616 size_t i;
a4d5269e 617 int j, ret = 0;
49b05c7d 618 unsigned int idx;
4d3fa06f
AP
619 unsigned char (*p_str)[33] = NULL;
620 const unsigned int window_size = 5;
621 const unsigned int mask = (1 << (window_size + 1)) - 1;
622 unsigned int wvalue;
20728adc 623 P256_POINT *temp; /* place for 5 temporary points */
4d3fa06f 624 const BIGNUM **scalars = NULL;
20728adc 625 P256_POINT (*table)[16] = NULL;
4d3fa06f
AP
626 void *table_storage = NULL;
627
5afc296a
AP
628 if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
629 || (table_storage =
630 OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
4d3fa06f
AP
631 || (p_str =
632 OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
633 || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
be07ae9b 634 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
4d3fa06f 635 goto err;
4d3fa06f
AP
636 }
637
3ff08e1d 638 table = (void *)ALIGNPTR(table_storage, 64);
20728adc 639 temp = (P256_POINT *)(table + num);
3ff08e1d 640
4d3fa06f
AP
641 for (i = 0; i < num; i++) {
642 P256_POINT *row = table[i];
643
c028254b 644 /* This is an unusual input, we don't guarantee constant-timeness. */
4d3fa06f
AP
645 if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
646 BIGNUM *mod;
647
648 if ((mod = BN_CTX_get(ctx)) == NULL)
649 goto err;
5784a521 650 if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
be07ae9b 651 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
4d3fa06f
AP
652 goto err;
653 }
654 scalars[i] = mod;
655 } else
656 scalars[i] = scalar[i];
657
5784a521
MC
658 for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
659 BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
4d3fa06f 660
5afc296a
AP
661 p_str[i][j + 0] = (unsigned char)d;
662 p_str[i][j + 1] = (unsigned char)(d >> 8);
663 p_str[i][j + 2] = (unsigned char)(d >> 16);
664 p_str[i][j + 3] = (unsigned char)(d >>= 24);
4d3fa06f
AP
665 if (BN_BYTES == 8) {
666 d >>= 8;
5afc296a
AP
667 p_str[i][j + 4] = (unsigned char)d;
668 p_str[i][j + 5] = (unsigned char)(d >> 8);
669 p_str[i][j + 6] = (unsigned char)(d >> 16);
670 p_str[i][j + 7] = (unsigned char)(d >> 24);
4d3fa06f
AP
671 }
672 }
673 for (; j < 33; j++)
674 p_str[i][j] = 0;
675
5784a521
MC
676 if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
677 || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
678 || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
58d47cf0
AP
679 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
680 EC_R_COORDINATES_OUT_OF_RANGE);
4d3fa06f
AP
681 goto err;
682 }
683
20728adc 684 /*
dccd20d1
F
685 * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
686 * is not stored. All other values are actually stored with an offset
687 * of -1 in table.
3ff08e1d
AP
688 */
689
690 ecp_nistz256_scatter_w5 (row, &temp[0], 1);
691 ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
692 ecp_nistz256_scatter_w5 (row, &temp[1], 2);
693 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
694 ecp_nistz256_scatter_w5 (row, &temp[2], 3);
695 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
696 ecp_nistz256_scatter_w5 (row, &temp[1], 4);
697 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
698 ecp_nistz256_scatter_w5 (row, &temp[2], 6);
699 ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
700 ecp_nistz256_scatter_w5 (row, &temp[3], 5);
701 ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
702 ecp_nistz256_scatter_w5 (row, &temp[4], 7);
703 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
704 ecp_nistz256_scatter_w5 (row, &temp[1], 8);
705 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
706 ecp_nistz256_scatter_w5 (row, &temp[2], 12);
707 ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
708 ecp_nistz256_scatter_w5 (row, &temp[3], 10);
709 ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
710 ecp_nistz256_scatter_w5 (row, &temp[4], 14);
711 ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
712 ecp_nistz256_scatter_w5 (row, &temp[2], 13);
713 ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
714 ecp_nistz256_scatter_w5 (row, &temp[3], 11);
715 ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
716 ecp_nistz256_scatter_w5 (row, &temp[4], 15);
717 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
718 ecp_nistz256_scatter_w5 (row, &temp[2], 9);
719 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
720 ecp_nistz256_scatter_w5 (row, &temp[1], 16);
4d3fa06f
AP
721 }
722
49b05c7d 723 idx = 255;
4d3fa06f 724
49b05c7d
RS
725 wvalue = p_str[0][(idx - 1) / 8];
726 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
4d3fa06f 727
3ff08e1d
AP
728 /*
729 * We gather to temp[0], because we know it's position relative
730 * to table
731 */
732 ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
733 memcpy(r, &temp[0], sizeof(temp[0]));
4d3fa06f 734
49b05c7d
RS
735 while (idx >= 5) {
736 for (i = (idx == 255 ? 1 : 0); i < num; i++) {
737 unsigned int off = (idx - 1) / 8;
4d3fa06f
AP
738
739 wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
49b05c7d 740 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
4d3fa06f
AP
741
742 wvalue = _booth_recode_w5(wvalue);
743
3ff08e1d 744 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
4d3fa06f 745
3ff08e1d
AP
746 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
747 copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
4d3fa06f 748
3ff08e1d 749 ecp_nistz256_point_add(r, r, &temp[0]);
4d3fa06f
AP
750 }
751
49b05c7d 752 idx -= window_size;
4d3fa06f
AP
753
754 ecp_nistz256_point_double(r, r);
755 ecp_nistz256_point_double(r, r);
756 ecp_nistz256_point_double(r, r);
757 ecp_nistz256_point_double(r, r);
758 ecp_nistz256_point_double(r, r);
759 }
760
761 /* Final window */
762 for (i = 0; i < num; i++) {
763 wvalue = p_str[i][0];
764 wvalue = (wvalue << 1) & mask;
765
766 wvalue = _booth_recode_w5(wvalue);
767
3ff08e1d 768 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
4d3fa06f 769
3ff08e1d
AP
770 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
771 copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
4d3fa06f 772
3ff08e1d 773 ecp_nistz256_point_add(r, r, &temp[0]);
4d3fa06f
AP
774 }
775
a4d5269e 776 ret = 1;
58d47cf0 777 err:
b548a1f1
RS
778 OPENSSL_free(table_storage);
779 OPENSSL_free(p_str);
780 OPENSSL_free(scalars);
a4d5269e 781 return ret;
4d3fa06f
AP
782}
783
784/* Coordinates of G, for which we have precomputed tables */
f44903a4 785static const BN_ULONG def_xG[P256_LIMBS] = {
4d3fa06f
AP
786 TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
787 TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
788};
789
f44903a4 790static const BN_ULONG def_yG[P256_LIMBS] = {
4d3fa06f
AP
791 TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
792 TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
793};
794
20728adc
AP
795/*
796 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
797 * generator.
798 */
58d47cf0 799static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
4d3fa06f 800{
5784a521
MC
801 return (bn_get_top(generator->X) == P256_LIMBS) &&
802 (bn_get_top(generator->Y) == P256_LIMBS) &&
5784a521
MC
803 is_equal(bn_get_words(generator->X), def_xG) &&
804 is_equal(bn_get_words(generator->Y), def_yG) &&
2e929e53 805 is_one(generator->Z);
4d3fa06f
AP
806}
807
5956b110 808__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
4d3fa06f 809{
20728adc
AP
810 /*
811 * We precompute a table for a Booth encoded exponent (wNAF) based
4d3fa06f 812 * computation. Each table holds 64 values for safe access, with an
20728adc
AP
813 * implicit value of infinity at index zero. We use window of size 7, and
814 * therefore require ceil(256/7) = 37 tables.
815 */
be2e334f 816 const BIGNUM *order;
4d3fa06f
AP
817 EC_POINT *P = NULL, *T = NULL;
818 const EC_POINT *generator;
3aef36ff 819 NISTZ256_PRE_COMP *pre_comp;
53dd4ddf 820 BN_CTX *new_ctx = NULL;
4d3fa06f
AP
821 int i, j, k, ret = 0;
822 size_t w;
823
824 PRECOMP256_ROW *preComputedTable = NULL;
825 unsigned char *precomp_storage = NULL;
826
3aef36ff 827 /* if there is an old NISTZ256_PRE_COMP object, throw it away */
2c52ac9b 828 EC_pre_comp_free(group);
4d3fa06f
AP
829 generator = EC_GROUP_get0_generator(group);
830 if (generator == NULL) {
be07ae9b 831 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
4d3fa06f
AP
832 return 0;
833 }
834
835 if (ecp_nistz256_is_affine_G(generator)) {
20728adc
AP
836 /*
837 * No need to calculate tables for the standard generator because we
838 * have them statically.
839 */
4d3fa06f
AP
840 return 1;
841 }
842
be07ae9b 843 if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
4d3fa06f
AP
844 return 0;
845
846 if (ctx == NULL) {
53dd4ddf 847 ctx = new_ctx = BN_CTX_new();
4d3fa06f
AP
848 if (ctx == NULL)
849 goto err;
850 }
851
852 BN_CTX_start(ctx);
4d3fa06f 853
be2e334f 854 order = EC_GROUP_get0_order(group);
4d3fa06f
AP
855 if (order == NULL)
856 goto err;
857
4d3fa06f 858 if (BN_is_zero(order)) {
be07ae9b 859 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
4d3fa06f
AP
860 goto err;
861 }
862
863 w = 7;
864
865 if ((precomp_storage =
866 OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
be07ae9b 867 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
4d3fa06f 868 goto err;
4d3fa06f
AP
869 }
870
3ff08e1d
AP
871 preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
872
4d3fa06f
AP
873 P = EC_POINT_new(group);
874 T = EC_POINT_new(group);
53dd4ddf
EK
875 if (P == NULL || T == NULL)
876 goto err;
4d3fa06f 877
20728adc
AP
878 /*
879 * The zero entry is implicitly infinity, and we skip it, storing other
880 * values with -1 offset.
881 */
53dd4ddf
EK
882 if (!EC_POINT_copy(T, generator))
883 goto err;
4d3fa06f
AP
884
885 for (k = 0; k < 64; k++) {
53dd4ddf
EK
886 if (!EC_POINT_copy(P, T))
887 goto err;
4d3fa06f 888 for (j = 0; j < 37; j++) {
3ff08e1d 889 P256_POINT_AFFINE temp;
20728adc 890 /*
6038354c 891 * It would be faster to use EC_POINTs_make_affine and
20728adc
AP
892 * make multiple points affine at the same time.
893 */
6038354c
EK
894 if (!EC_POINT_make_affine(group, P, ctx))
895 goto err;
896 if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
897 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
898 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
899 EC_R_COORDINATES_OUT_OF_RANGE);
900 goto err;
901 }
3ff08e1d 902 ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
6038354c
EK
903 for (i = 0; i < 7; i++) {
904 if (!EC_POINT_dbl(group, P, P, ctx))
905 goto err;
906 }
4d3fa06f 907 }
6038354c
EK
908 if (!EC_POINT_add(group, T, T, generator, ctx))
909 goto err;
4d3fa06f
AP
910 }
911
912 pre_comp->group = group;
913 pre_comp->w = w;
914 pre_comp->precomp = preComputedTable;
915 pre_comp->precomp_storage = precomp_storage;
4d3fa06f 916 precomp_storage = NULL;
3aef36ff 917 SETPRECOMP(group, nistz256, pre_comp);
4d3fa06f 918 pre_comp = NULL;
4d3fa06f
AP
919 ret = 1;
920
58d47cf0 921 err:
c8a9fa69 922 BN_CTX_end(ctx);
53dd4ddf
EK
923 BN_CTX_free(new_ctx);
924
3aef36ff 925 EC_nistz256_pre_comp_free(pre_comp);
b548a1f1 926 OPENSSL_free(precomp_storage);
8fdc3734
RS
927 EC_POINT_free(P);
928 EC_POINT_free(T);
4d3fa06f
AP
929 return ret;
930}
931
932/*
933 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
934 * code processing 4 points in parallel, corresponding serial operation
935 * is several times slower, because it uses 29x29=58-bit multiplication
936 * as opposite to 64x64=128-bit in integer-only scalar case. As result
937 * it doesn't provide *significant* performance improvement. Note that
938 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
939 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
940 */
941#if defined(ECP_NISTZ256_AVX2)
3ff08e1d 942# if !(defined(__x86_64) || defined(__x86_64__) || \
eb791696 943 defined(_M_AMD64) || defined(_M_X64)) || \
4d3fa06f
AP
944 !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
945# undef ECP_NISTZ256_AVX2
946# else
947/* Constant time access, loading four values, from four consecutive tables */
58d47cf0
AP
948void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
949 int index0, int index1, int index2,
950 int index3);
4d3fa06f
AP
951void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
952void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
953void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
954 const void *Bx4);
955void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
956 const void *Bx4);
957void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
958void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
959void ecp_nistz256_avx2_set1(void *RESULTx4);
960int ecp_nistz_avx2_eligible(void);
961
962static void booth_recode_w7(unsigned char *sign,
963 unsigned char *digit, unsigned char in)
964{
965 unsigned char s, d;
966
967 s = ~((in >> 7) - 1);
968 d = (1 << 8) - in - 1;
969 d = (d & s) | (in & ~s);
970 d = (d >> 1) + (d & 1);
971
972 *sign = s & 1;
973 *digit = d;
974}
975
20728adc
AP
976/*
977 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
4d3fa06f 978 * precomputed table. It does 4 affine point additions in parallel,
20728adc
AP
979 * significantly speeding up point multiplication for a fixed value.
980 */
58d47cf0 981static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
4d3fa06f 982 unsigned char p_str[33],
58d47cf0 983 const P256_POINT_AFFINE(*preComputedTable)[64])
4d3fa06f
AP
984{
985 const unsigned int window_size = 7;
986 const unsigned int mask = (1 << (window_size + 1)) - 1;
987 unsigned int wvalue;
988 /* Using 4 windows at a time */
989 unsigned char sign0, digit0;
990 unsigned char sign1, digit1;
991 unsigned char sign2, digit2;
992 unsigned char sign3, digit3;
49b05c7d 993 unsigned int idx = 0;
4d3fa06f
AP
994 BN_ULONG tmp[P256_LIMBS];
995 int i;
996
997 ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
998 ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
3ff08e1d
AP
999 ALIGN32 P256_POINT_AFFINE point_arr[4];
1000 ALIGN32 P256_POINT res_point_arr[4];
4d3fa06f
AP
1001
1002 /* Initial four windows */
1003 wvalue = *((u16 *) & p_str[0]);
1004 wvalue = (wvalue << 1) & mask;
49b05c7d 1005 idx += window_size;
4d3fa06f 1006 booth_recode_w7(&sign0, &digit0, wvalue);
49b05c7d
RS
1007 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1008 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1009 idx += window_size;
4d3fa06f 1010 booth_recode_w7(&sign1, &digit1, wvalue);
49b05c7d
RS
1011 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1012 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1013 idx += window_size;
4d3fa06f 1014 booth_recode_w7(&sign2, &digit2, wvalue);
49b05c7d
RS
1015 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1016 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1017 idx += window_size;
4d3fa06f
AP
1018 booth_recode_w7(&sign3, &digit3, wvalue);
1019
3ff08e1d 1020 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
4d3fa06f
AP
1021 digit0, digit1, digit2, digit3);
1022
1023 ecp_nistz256_neg(tmp, point_arr[0].Y);
1024 copy_conditional(point_arr[0].Y, tmp, sign0);
1025 ecp_nistz256_neg(tmp, point_arr[1].Y);
1026 copy_conditional(point_arr[1].Y, tmp, sign1);
1027 ecp_nistz256_neg(tmp, point_arr[2].Y);
1028 copy_conditional(point_arr[2].Y, tmp, sign2);
1029 ecp_nistz256_neg(tmp, point_arr[3].Y);
1030 copy_conditional(point_arr[3].Y, tmp, sign3);
1031
1032 ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
1033 ecp_nistz256_avx2_to_mont(aX4, aX4);
1034 ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
1035 ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
1036
49b05c7d
RS
1037 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1038 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1039 idx += window_size;
4d3fa06f 1040 booth_recode_w7(&sign0, &digit0, wvalue);
49b05c7d
RS
1041 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1042 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1043 idx += window_size;
4d3fa06f 1044 booth_recode_w7(&sign1, &digit1, wvalue);
49b05c7d
RS
1045 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1046 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1047 idx += window_size;
4d3fa06f 1048 booth_recode_w7(&sign2, &digit2, wvalue);
49b05c7d
RS
1049 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1050 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1051 idx += window_size;
4d3fa06f
AP
1052 booth_recode_w7(&sign3, &digit3, wvalue);
1053
3ff08e1d 1054 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
4d3fa06f
AP
1055 digit0, digit1, digit2, digit3);
1056
1057 ecp_nistz256_neg(tmp, point_arr[0].Y);
1058 copy_conditional(point_arr[0].Y, tmp, sign0);
1059 ecp_nistz256_neg(tmp, point_arr[1].Y);
1060 copy_conditional(point_arr[1].Y, tmp, sign1);
1061 ecp_nistz256_neg(tmp, point_arr[2].Y);
1062 copy_conditional(point_arr[2].Y, tmp, sign2);
1063 ecp_nistz256_neg(tmp, point_arr[3].Y);
1064 copy_conditional(point_arr[3].Y, tmp, sign3);
1065
1066 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1067 ecp_nistz256_avx2_to_mont(bX4, bX4);
1068 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1069 /* Optimized when both inputs are affine */
1070 ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
1071
1072 for (i = 2; i < 9; i++) {
49b05c7d
RS
1073 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1074 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1075 idx += window_size;
4d3fa06f 1076 booth_recode_w7(&sign0, &digit0, wvalue);
49b05c7d
RS
1077 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1078 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1079 idx += window_size;
4d3fa06f 1080 booth_recode_w7(&sign1, &digit1, wvalue);
49b05c7d
RS
1081 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1082 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1083 idx += window_size;
4d3fa06f 1084 booth_recode_w7(&sign2, &digit2, wvalue);
49b05c7d
RS
1085 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1086 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1087 idx += window_size;
4d3fa06f
AP
1088 booth_recode_w7(&sign3, &digit3, wvalue);
1089
3ff08e1d 1090 ecp_nistz256_avx2_multi_gather_w7(point_arr,
4d3fa06f
AP
1091 preComputedTable[4 * i],
1092 digit0, digit1, digit2, digit3);
1093
1094 ecp_nistz256_neg(tmp, point_arr[0].Y);
1095 copy_conditional(point_arr[0].Y, tmp, sign0);
1096 ecp_nistz256_neg(tmp, point_arr[1].Y);
1097 copy_conditional(point_arr[1].Y, tmp, sign1);
1098 ecp_nistz256_neg(tmp, point_arr[2].Y);
1099 copy_conditional(point_arr[2].Y, tmp, sign2);
1100 ecp_nistz256_neg(tmp, point_arr[3].Y);
1101 copy_conditional(point_arr[3].Y, tmp, sign3);
1102
1103 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1104 ecp_nistz256_avx2_to_mont(bX4, bX4);
1105 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1106
1107 ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
1108 }
1109
1110 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
1111 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
1112 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
1113
1114 ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
1115 /* Last window is performed serially */
49b05c7d
RS
1116 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1117 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
4d3fa06f 1118 booth_recode_w7(&sign0, &digit0, wvalue);
58d47cf0
AP
1119 ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
1120 preComputedTable[36], digit0);
4d3fa06f
AP
1121 ecp_nistz256_neg(tmp, r->Y);
1122 copy_conditional(r->Y, tmp, sign0);
1123 memcpy(r->Z, ONE, sizeof(ONE));
1124 /* Sum the four windows */
1125 ecp_nistz256_point_add(r, r, &res_point_arr[0]);
1126 ecp_nistz256_point_add(r, r, &res_point_arr[1]);
1127 ecp_nistz256_point_add(r, r, &res_point_arr[2]);
1128 ecp_nistz256_point_add(r, r, &res_point_arr[3]);
1129}
1130# endif
1131#endif
1132
5956b110
EK
1133__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
1134 const P256_POINT_AFFINE *in,
1135 BN_CTX *ctx)
4d3fa06f 1136{
4d3fa06f
AP
1137 int ret = 0;
1138
8fc4aeb9
AP
1139 if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
1140 && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
1141 && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
1142 out->Z_is_one = 1;
4d3fa06f
AP
1143
1144 return ret;
1145}
1146
1147/* r = scalar*G + sum(scalars[i]*points[i]) */
5956b110
EK
1148__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
1149 EC_POINT *r,
1150 const BIGNUM *scalar,
1151 size_t num,
1152 const EC_POINT *points[],
1153 const BIGNUM *scalars[], BN_CTX *ctx)
4d3fa06f
AP
1154{
1155 int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
1156 unsigned char p_str[33] = { 0 };
1157 const PRECOMP256_ROW *preComputedTable = NULL;
3aef36ff 1158 const NISTZ256_PRE_COMP *pre_comp = NULL;
4d3fa06f 1159 const EC_POINT *generator = NULL;
a4d5269e
EK
1160 const BIGNUM **new_scalars = NULL;
1161 const EC_POINT **new_points = NULL;
49b05c7d 1162 unsigned int idx = 0;
4d3fa06f
AP
1163 const unsigned int window_size = 7;
1164 const unsigned int mask = (1 << (window_size + 1)) - 1;
1165 unsigned int wvalue;
1166 ALIGN32 union {
1167 P256_POINT p;
1168 P256_POINT_AFFINE a;
1169 } t, p;
1170 BIGNUM *tmp_scalar;
1171
58d47cf0 1172 if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
3ff08e1d
AP
1173 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1174 return 0;
1175 }
1176
e22d2199 1177 BN_CTX_start(ctx);
4d3fa06f
AP
1178
1179 if (scalar) {
1180 generator = EC_GROUP_get0_generator(group);
1181 if (generator == NULL) {
be07ae9b 1182 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
4d3fa06f
AP
1183 goto err;
1184 }
1185
1186 /* look if we can use precomputed multiples of generator */
3aef36ff 1187 pre_comp = group->pre_comp.nistz256;
4d3fa06f
AP
1188
1189 if (pre_comp) {
20728adc
AP
1190 /*
1191 * If there is a precomputed table for the generator, check that
1192 * it was generated with the same generator.
1193 */
4d3fa06f
AP
1194 EC_POINT *pre_comp_generator = EC_POINT_new(group);
1195 if (pre_comp_generator == NULL)
1196 goto err;
1197
8fc4aeb9 1198 ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
3ff08e1d 1199 if (!ecp_nistz256_set_from_affine(pre_comp_generator,
8fc4aeb9 1200 group, &p.a, ctx)) {
e22d2199 1201 EC_POINT_free(pre_comp_generator);
4d3fa06f 1202 goto err;
e22d2199 1203 }
4d3fa06f
AP
1204
1205 if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1206 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1207
1208 EC_POINT_free(pre_comp_generator);
1209 }
1210
1211 if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
20728adc
AP
1212 /*
1213 * If there is no precomputed data, but the generator is the
1214 * default, a hardcoded table of precomputed data is used. This
1215 * is because applications, such as Apache, do not use
1216 * EC_KEY_precompute_mult.
1217 */
3ff08e1d 1218 preComputedTable = ecp_nistz256_precomputed;
4d3fa06f
AP
1219 }
1220
1221 if (preComputedTable) {
1222 if ((BN_num_bits(scalar) > 256)
1223 || BN_is_negative(scalar)) {
1224 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1225 goto err;
1226
5784a521 1227 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
be07ae9b 1228 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
4d3fa06f
AP
1229 goto err;
1230 }
1231 scalar = tmp_scalar;
1232 }
1233
5784a521
MC
1234 for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1235 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
4d3fa06f 1236
5afc296a
AP
1237 p_str[i + 0] = (unsigned char)d;
1238 p_str[i + 1] = (unsigned char)(d >> 8);
1239 p_str[i + 2] = (unsigned char)(d >> 16);
1240 p_str[i + 3] = (unsigned char)(d >>= 24);
4d3fa06f
AP
1241 if (BN_BYTES == 8) {
1242 d >>= 8;
5afc296a
AP
1243 p_str[i + 4] = (unsigned char)d;
1244 p_str[i + 5] = (unsigned char)(d >> 8);
1245 p_str[i + 6] = (unsigned char)(d >> 16);
1246 p_str[i + 7] = (unsigned char)(d >> 24);
4d3fa06f
AP
1247 }
1248 }
1249
1250 for (; i < 33; i++)
1251 p_str[i] = 0;
1252
1253#if defined(ECP_NISTZ256_AVX2)
1254 if (ecp_nistz_avx2_eligible()) {
1255 ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
1256 } else
1257#endif
1258 {
e3057a57
AP
1259 BN_ULONG infty;
1260
4d3fa06f
AP
1261 /* First window */
1262 wvalue = (p_str[0] << 1) & mask;
49b05c7d 1263 idx += window_size;
4d3fa06f
AP
1264
1265 wvalue = _booth_recode_w7(wvalue);
1266
58d47cf0
AP
1267 ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1268 wvalue >> 1);
4d3fa06f
AP
1269
1270 ecp_nistz256_neg(p.p.Z, p.p.Y);
1271 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1272
e3057a57
AP
1273 /*
1274 * Since affine infinity is encoded as (0,0) and
1275 * Jacobian ias (,,0), we need to harmonize them
1276 * by assigning "one" or zero to Z.
1277 */
1278 infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1279 p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1280 if (P256_LIMBS == 8)
1281 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1282 p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1283
1284 infty = 0 - is_zero(infty);
1285 infty = ~infty;
1286
1287 p.p.Z[0] = ONE[0] & infty;
1288 p.p.Z[1] = ONE[1] & infty;
1289 p.p.Z[2] = ONE[2] & infty;
1290 p.p.Z[3] = ONE[3] & infty;
1291 if (P256_LIMBS == 8) {
1292 p.p.Z[4] = ONE[4] & infty;
1293 p.p.Z[5] = ONE[5] & infty;
1294 p.p.Z[6] = ONE[6] & infty;
1295 p.p.Z[7] = ONE[7] & infty;
1296 }
4d3fa06f
AP
1297
1298 for (i = 1; i < 37; i++) {
49b05c7d 1299 unsigned int off = (idx - 1) / 8;
4d3fa06f 1300 wvalue = p_str[off] | p_str[off + 1] << 8;
49b05c7d
RS
1301 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1302 idx += window_size;
4d3fa06f
AP
1303
1304 wvalue = _booth_recode_w7(wvalue);
1305
3ff08e1d 1306 ecp_nistz256_gather_w7(&t.a,
4d3fa06f
AP
1307 preComputedTable[i], wvalue >> 1);
1308
1309 ecp_nistz256_neg(t.p.Z, t.a.Y);
1310 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1311
1312 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1313 }
1314 }
1315 } else {
1316 p_is_infinity = 1;
1317 no_precomp_for_generator = 1;
1318 }
1319 } else
1320 p_is_infinity = 1;
1321
1322 if (no_precomp_for_generator) {
20728adc
AP
1323 /*
1324 * Without a precomputed table for the generator, it has to be
1325 * handled like a normal point.
1326 */
4d3fa06f 1327 new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
90945fa3 1328 if (new_scalars == NULL) {
be07ae9b 1329 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
e22d2199 1330 goto err;
4d3fa06f
AP
1331 }
1332
1333 new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
90945fa3 1334 if (new_points == NULL) {
be07ae9b 1335 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
e22d2199 1336 goto err;
4d3fa06f
AP
1337 }
1338
1339 memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1340 new_scalars[num] = scalar;
1341 memcpy(new_points, points, num * sizeof(EC_POINT *));
1342 new_points[num] = generator;
1343
1344 scalars = new_scalars;
1345 points = new_points;
1346 num++;
1347 }
1348
1349 if (num) {
1350 P256_POINT *out = &t.p;
1351 if (p_is_infinity)
1352 out = &p.p;
1353
a4d5269e
EK
1354 if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1355 goto err;
4d3fa06f
AP
1356
1357 if (!p_is_infinity)
1358 ecp_nistz256_point_add(&p.p, &p.p, out);
1359 }
1360
c028254b 1361 /* Not constant-time, but we're only operating on the public output. */
e22d2199
EK
1362 if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1363 !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1364 !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1365 goto err;
1366 }
2e929e53 1367 r->Z_is_one = is_one(r->Z) & 1;
4d3fa06f
AP
1368
1369 ret = 1;
1370
e22d2199 1371err:
7b953da4 1372 BN_CTX_end(ctx);
b548a1f1
RS
1373 OPENSSL_free(new_points);
1374 OPENSSL_free(new_scalars);
4d3fa06f
AP
1375 return ret;
1376}
1377
5956b110
EK
1378__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1379 const EC_POINT *point,
1380 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
4d3fa06f
AP
1381{
1382 BN_ULONG z_inv2[P256_LIMBS];
1383 BN_ULONG z_inv3[P256_LIMBS];
1384 BN_ULONG x_aff[P256_LIMBS];
1385 BN_ULONG y_aff[P256_LIMBS];
1386 BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
e22d2199 1387 BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
4d3fa06f
AP
1388
1389 if (EC_POINT_is_at_infinity(group, point)) {
be07ae9b 1390 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
4d3fa06f
AP
1391 return 0;
1392 }
1393
5784a521
MC
1394 if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1395 !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1396 !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
be07ae9b 1397 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
4d3fa06f
AP
1398 return 0;
1399 }
1400
1401 ecp_nistz256_mod_inverse(z_inv3, point_z);
1402 ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1403 ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1404
1405 if (x != NULL) {
e22d2199
EK
1406 ecp_nistz256_from_mont(x_ret, x_aff);
1407 if (!bn_set_words(x, x_ret, P256_LIMBS))
1408 return 0;
4d3fa06f
AP
1409 }
1410
1411 if (y != NULL) {
1412 ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1413 ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
e22d2199
EK
1414 ecp_nistz256_from_mont(y_ret, y_aff);
1415 if (!bn_set_words(y, y_ret, P256_LIMBS))
1416 return 0;
4d3fa06f
AP
1417 }
1418
1419 return 1;
1420}
1421
3aef36ff 1422static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
4d3fa06f 1423{
3aef36ff 1424 NISTZ256_PRE_COMP *ret = NULL;
4d3fa06f
AP
1425
1426 if (!group)
1427 return NULL;
1428
3aef36ff 1429 ret = OPENSSL_zalloc(sizeof(*ret));
4d3fa06f 1430
90945fa3 1431 if (ret == NULL) {
be07ae9b 1432 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
4d3fa06f
AP
1433 return ret;
1434 }
1435
1436 ret->group = group;
1437 ret->w = 6; /* default */
4d3fa06f 1438 ret->references = 1;
9b398ef2
AG
1439
1440 ret->lock = CRYPTO_THREAD_lock_new();
1441 if (ret->lock == NULL) {
1442 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1443 OPENSSL_free(ret);
1444 return NULL;
1445 }
4d3fa06f
AP
1446 return ret;
1447}
1448
3aef36ff 1449NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
4d3fa06f 1450{
9b398ef2 1451 int i;
3aef36ff 1452 if (p != NULL)
2f545ae4 1453 CRYPTO_UP_REF(&p->references, &i, p->lock);
3aef36ff 1454 return p;
4d3fa06f
AP
1455}
1456
3aef36ff 1457void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
4d3fa06f 1458{
9b398ef2
AG
1459 int i;
1460
1461 if (pre == NULL)
4d3fa06f 1462 return;
9b398ef2 1463
2f545ae4 1464 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
9b398ef2
AG
1465 REF_PRINT_COUNT("EC_nistz256", x);
1466 if (i > 0)
1467 return;
1468 REF_ASSERT_ISNT(i < 0);
1469
b548a1f1 1470 OPENSSL_free(pre->precomp_storage);
9b398ef2 1471 CRYPTO_THREAD_lock_free(pre->lock);
4d3fa06f
AP
1472 OPENSSL_free(pre);
1473}
1474
4d3fa06f 1475
58d47cf0 1476static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
4d3fa06f
AP
1477{
1478 /* There is a hard-coded table for the default generator. */
1479 const EC_POINT *generator = EC_GROUP_get0_generator(group);
3aef36ff 1480
4d3fa06f
AP
1481 if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1482 /* There is a hard-coded table for the default generator. */
1483 return 1;
1484 }
1485
3aef36ff 1486 return HAVEPRECOMP(group, nistz256);
4d3fa06f
AP
1487}
1488
eb791696
AP
1489#if defined(__x86_64) || defined(__x86_64__) || \
1490 defined(_M_AMD64) || defined(_M_X64) || \
ab4f2026
AP
1491 defined(__powerpc64__) || defined(_ARCH_PP64) || \
1492 defined(__aarch64__)
eb791696
AP
1493/*
1494 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1495 */
1496void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1497 const BN_ULONG a[P256_LIMBS],
1498 const BN_ULONG b[P256_LIMBS]);
1499void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1500 const BN_ULONG a[P256_LIMBS],
1501 int rep);
1502
1503static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
792546eb 1504 const BIGNUM *x, BN_CTX *ctx)
eb791696
AP
1505{
1506 /* RR = 2^512 mod ord(p256) */
10bc3409
AP
1507 static const BN_ULONG RR[P256_LIMBS] = {
1508 TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1509 TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1510 };
eb791696 1511 /* The constant 1 (unlike ONE that is one in Montgomery representation) */
10bc3409
AP
1512 static const BN_ULONG one[P256_LIMBS] = {
1513 TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1514 };
eb791696
AP
1515 /*
1516 * We don't use entry 0 in the table, so we omit it and address
1517 * with -1 offset.
1518 */
1519 BN_ULONG table[15][P256_LIMBS];
1520 BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1521 int i, ret = 0;
8e403a79
TS
1522 enum {
1523 i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
1524 i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
1525 };
eb791696
AP
1526
1527 /*
1528 * Catch allocation failure early.
1529 */
1530 if (bn_wexpand(r, P256_LIMBS) == NULL) {
1531 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1532 goto err;
1533 }
1534
1535 if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1536 BIGNUM *tmp;
1537
1538 if ((tmp = BN_CTX_get(ctx)) == NULL
1539 || !BN_nnmod(tmp, x, group->order, ctx)) {
1540 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1541 goto err;
1542 }
1543 x = tmp;
1544 }
1545
1546 if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1547 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
1548 goto err;
1549 }
1550
1551 ecp_nistz256_ord_mul_mont(table[0], t, RR);
10bc3409
AP
1552#if 0
1553 /*
1554 * Original sparse-then-fixed-window algorithm, retained for reference.
1555 */
eb791696
AP
1556 for (i = 2; i < 16; i += 2) {
1557 ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1558 ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1559 }
1560
1561 /*
1562 * The top 128bit of the exponent are highly redudndant, so we
1563 * perform an optimized flow
1564 */
1565 ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
1566 ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
1567
1568 ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
1569 ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
1570
1571 ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
1572 ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
1573
1574 ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
1575 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
1576
1577 ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
1578 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
1579
1580 /*
10bc3409 1581 * The bottom 128 bit of the exponent are processed with fixed 4-bit window
eb791696
AP
1582 */
1583 for(i = 0; i < 32; i++) {
10bc3409
AP
1584 /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1585 * split into nibbles */
1586 static const unsigned char expLo[32] = {
1587 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1588 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1589 };
1590
eb791696
AP
1591 ecp_nistz256_ord_sqr_mont(out, out, 4);
1592 /* The exponent is public, no need in constant-time access */
1593 ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1594 }
10bc3409
AP
1595#else
1596 /*
1597 * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1598 *
1599 * Even though this code path spares 12 squarings, 4.5%, and 13
1600 * multiplications, 25%, on grand scale sign operation is not that
1601 * much faster, not more that 2%...
1602 */
10bc3409
AP
1603
1604 /* pre-calculate powers */
1605 ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1606
1607 ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1608
1609 ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1610
1611 ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1612
1613 ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1614
1615 ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1616
1617 ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1618 ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1619
1620 ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1621
1622 ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1623
1624 ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1625
1626 ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1627 ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1628
1629 ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1630 ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1631
1632 ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1633 ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1634
1635 /* calculations */
1636 ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1637 ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1638
1639 for (i = 0; i < 27; i++) {
1640 static const struct { unsigned char p, i; } chain[27] = {
1641 { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
1642 { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
1643 { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
1644 { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
1645 { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
1646 { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
1647 { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
1648 { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
1649 { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
1650 };
1651
1652 ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1653 ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1654 }
1655#endif
eb791696
AP
1656 ecp_nistz256_ord_mul_mont(out, out, one);
1657
1658 /*
1659 * Can't fail, but check return code to be consistent anyway.
1660 */
1661 if (!bn_set_words(r, out, P256_LIMBS))
1662 goto err;
1663
1664 ret = 1;
1665err:
1666 return ret;
1667}
1668#else
1669# define ecp_nistz256_inv_mod_ord NULL
1670#endif
1671
4d3fa06f
AP
1672const EC_METHOD *EC_GFp_nistz256_method(void)
1673{
1674 static const EC_METHOD ret = {
1675 EC_FLAGS_DEFAULT_OCT,
1676 NID_X9_62_prime_field,
1677 ec_GFp_mont_group_init,
1678 ec_GFp_mont_group_finish,
1679 ec_GFp_mont_group_clear_finish,
1680 ec_GFp_mont_group_copy,
1681 ec_GFp_mont_group_set_curve,
1682 ec_GFp_simple_group_get_curve,
1683 ec_GFp_simple_group_get_degree,
9ff9bccc 1684 ec_group_simple_order_bits,
4d3fa06f
AP
1685 ec_GFp_simple_group_check_discriminant,
1686 ec_GFp_simple_point_init,
1687 ec_GFp_simple_point_finish,
1688 ec_GFp_simple_point_clear_finish,
1689 ec_GFp_simple_point_copy,
1690 ec_GFp_simple_point_set_to_infinity,
1691 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1692 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1693 ec_GFp_simple_point_set_affine_coordinates,
1694 ecp_nistz256_get_affine,
1695 0, 0, 0,
1696 ec_GFp_simple_add,
1697 ec_GFp_simple_dbl,
1698 ec_GFp_simple_invert,
1699 ec_GFp_simple_is_at_infinity,
1700 ec_GFp_simple_is_on_curve,
1701 ec_GFp_simple_cmp,
1702 ec_GFp_simple_make_affine,
1703 ec_GFp_simple_points_make_affine,
1704 ecp_nistz256_points_mul, /* mul */
1705 ecp_nistz256_mult_precompute, /* precompute_mult */
1706 ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1707 ec_GFp_mont_field_mul,
1708 ec_GFp_mont_field_sqr,
1709 0, /* field_div */
48e82c8e 1710 ec_GFp_mont_field_inv,
4d3fa06f
AP
1711 ec_GFp_mont_field_encode,
1712 ec_GFp_mont_field_decode,
9ff9bccc
DSH
1713 ec_GFp_mont_field_set_to_one,
1714 ec_key_simple_priv2oct,
1715 ec_key_simple_oct2priv,
1716 0, /* set private */
1717 ec_key_simple_generate_key,
1718 ec_key_simple_check_key,
1719 ec_key_simple_generate_public_key,
1720 0, /* keycopy */
1721 0, /* keyfinish */
eb791696 1722 ecdh_simple_compute_key,
f667820c 1723 ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
37124360
NT
1724 0, /* blind_coordinates */
1725 0, /* ladder_pre */
1726 0, /* ladder_step */
1727 0 /* ladder_post */
4d3fa06f
AP
1728 };
1729
1730 return &ret;
1731}