]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/modes/asm/ghash-x86_64.pl
Add OpenSSL copyright to .pl files
[thirdparty/openssl.git] / crypto / modes / asm / ghash-x86_64.pl
CommitLineData
6aa36e8e
RS
1#! /usr/bin/env perl
2# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
f093794e
AP
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
d364506a 17# March, June 2010
480cd6ab 18#
c3473126 19# The module implements "4-bit" GCM GHASH function and underlying
d364506a
AP
20# single multiplication operation in GF(2^128). "4-bit" means that
21# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
22# function features so called "528B" variant utilizing additional
23# 256+16 bytes of per-key storage [+512 bytes shared table].
24# Performance results are for this streamed GHASH subroutine and are
25# expressed in cycles per processed byte, less is better:
f093794e 26#
d364506a 27# gcc 3.4.x(*) assembler
f093794e 28#
d364506a 29# P4 28.6 14.0 +100%
d52d5ad1
AP
30# Opteron 19.3 7.7 +150%
31# Core2 17.8 8.1(**) +120%
d2e18031
AP
32# Atom 31.6 16.8 +88%
33# VIA Nano 21.8 10.1 +115%
d364506a
AP
34#
35# (*) comparison is not completely fair, because C results are
d52d5ad1
AP
36# for vanilla "256B" implementation, while assembler results
37# are for "528B";-)
d364506a
AP
38# (**) it's mystery [to me] why Core2 result is not same as for
39# Opteron;
f093794e 40
c1f092d1
AP
41# May 2010
42#
d52d5ad1 43# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
c1f092d1
AP
44# See ghash-x86.pl for background information and details about coding
45# techniques.
1aa8a629
AP
46#
47# Special thanks to David Woodhouse <dwmw2@infradead.org> for
48# providing access to a Westmere-based system on behalf of Intel
49# Open Source Technology Centre.
c1f092d1 50
273a8081
AP
51# December 2012
52#
53# Overhaul: aggregate Karatsuba post-processing, improve ILP in
54# reduction_alg9, increase reduction aggregate factor to 4x. As for
55# the latter. ghash-x86.pl discusses that it makes lesser sense to
56# increase aggregate factor. Then why increase here? Critical path
57# consists of 3 independent pclmulqdq instructions, Karatsuba post-
58# processing and reduction. "On top" of this we lay down aggregated
59# multiplication operations, triplets of independent pclmulqdq's. As
60# issue rate for pclmulqdq is limited, it makes lesser sense to
61# aggregate more multiplications than it takes to perform remaining
62# non-multiplication operations. 2x is near-optimal coefficient for
63# contemporary Intel CPUs (therefore modest improvement coefficient),
64# but not for Bulldozer. Latter is because logical SIMD operations
65# are twice as slow in comparison to Intel, so that critical path is
66# longer. A CPU with higher pclmulqdq issue rate would also benefit
67# from higher aggregate factor...
68#
1cf8f57b
AP
69# Westmere 1.78(+13%)
70# Sandy Bridge 1.80(+8%)
71# Ivy Bridge 1.80(+7%)
b4275915 72# Haswell 0.55(+93%) (if system doesn't support AVX)
b3d72949 73# Broadwell 0.45(+110%)(if system doesn't support AVX)
b7f5503f 74# Skylake 0.44(+110%)(if system doesn't support AVX)
1cf8f57b 75# Bulldozer 1.49(+27%)
b59f92e7 76# Silvermont 2.88(+13%)
273a8081 77
1da5d302
AP
78# March 2013
79#
80# ... 8x aggregate factor AVX code path is using reduction algorithm
81# suggested by Shay Gueron[1]. Even though contemporary AVX-capable
82# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
83# sub-optimally in comparison to above mentioned version. But thanks
b4275915 84# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
b7f5503f
AP
85# it performs in 0.41 cycles per byte on Haswell processor, in
86# 0.29 on Broadwell, and in 0.36 on Skylake.
1da5d302
AP
87#
88# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
89
f093794e
AP
90$flavour = shift;
91$output = shift;
92if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
93
94$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
95
96$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
97( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
98( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
99die "can't locate x86_64-xlate.pl";
100
1da5d302
AP
101if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
102 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
d3cdab17 103 $avx = ($1>=2.20) + ($1>=2.22);
1da5d302
AP
104}
105
106if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
107 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
108 $avx = ($1>=2.09) + ($1>=2.10);
109}
110
111if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
112 `ml64 2>&1` =~ /Version ([0-9]+)\./) {
113 $avx = ($1>=10) + ($1>=11);
114}
115
b9749432 116if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9]\.[0-9]+)/) {
a356e488 117 $avx = ($2>=3.0) + ($2>3.0);
ac171925
AP
118}
119
46bf83f0
AP
120open OUT,"| \"$^X\" $xlate $flavour $output";
121*STDOUT=*OUT;
f093794e 122
273a8081
AP
123$do4xaggr=1;
124
f093794e
AP
125# common register layout
126$nlo="%rax";
127$nhi="%rbx";
128$Zlo="%r8";
129$Zhi="%r9";
130$tmp="%r10";
131$rem_4bit = "%r11";
132
f093794e
AP
133$Xi="%rdi";
134$Htbl="%rsi";
135
4f39edbf 136# per-function register layout
f093794e
AP
137$cnt="%rcx";
138$rem="%rdx";
139
d364506a
AP
140sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
141 $r =~ s/%[er]([sd]i)/%\1l/ or
142 $r =~ s/%[er](bp)/%\1l/ or
f093794e 143 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
d364506a
AP
144
145sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
146{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
147 my $arg = pop;
148 $arg = "\$$arg" if ($arg*1 eq $arg);
149 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
150}
c1f092d1 151\f
f093794e
AP
152{ my $N;
153 sub loop() {
154 my $inp = shift;
155
156 $N++;
157$code.=<<___;
158 xor $nlo,$nlo
159 xor $nhi,$nhi
d364506a
AP
160 mov `&LB("$Zlo")`,`&LB("$nlo")`
161 mov `&LB("$Zlo")`,`&LB("$nhi")`
162 shl \$4,`&LB("$nlo")`
f093794e
AP
163 mov \$14,$cnt
164 mov 8($Htbl,$nlo),$Zlo
165 mov ($Htbl,$nlo),$Zhi
d364506a 166 and \$0xf0,`&LB("$nhi")`
f093794e
AP
167 mov $Zlo,$rem
168 jmp .Loop$N
169
170.align 16
171.Loop$N:
172 shr \$4,$Zlo
173 and \$0xf,$rem
174 mov $Zhi,$tmp
d364506a 175 mov ($inp,$cnt),`&LB("$nlo")`
f093794e
AP
176 shr \$4,$Zhi
177 xor 8($Htbl,$nhi),$Zlo
178 shl \$60,$tmp
179 xor ($Htbl,$nhi),$Zhi
d364506a 180 mov `&LB("$nlo")`,`&LB("$nhi")`
f093794e
AP
181 xor ($rem_4bit,$rem,8),$Zhi
182 mov $Zlo,$rem
d364506a 183 shl \$4,`&LB("$nlo")`
f093794e
AP
184 xor $tmp,$Zlo
185 dec $cnt
186 js .Lbreak$N
187
188 shr \$4,$Zlo
189 and \$0xf,$rem
190 mov $Zhi,$tmp
191 shr \$4,$Zhi
192 xor 8($Htbl,$nlo),$Zlo
193 shl \$60,$tmp
194 xor ($Htbl,$nlo),$Zhi
d364506a 195 and \$0xf0,`&LB("$nhi")`
f093794e
AP
196 xor ($rem_4bit,$rem,8),$Zhi
197 mov $Zlo,$rem
198 xor $tmp,$Zlo
199 jmp .Loop$N
200
201.align 16
202.Lbreak$N:
203 shr \$4,$Zlo
204 and \$0xf,$rem
205 mov $Zhi,$tmp
206 shr \$4,$Zhi
207 xor 8($Htbl,$nlo),$Zlo
208 shl \$60,$tmp
209 xor ($Htbl,$nlo),$Zhi
d364506a 210 and \$0xf0,`&LB("$nhi")`
f093794e
AP
211 xor ($rem_4bit,$rem,8),$Zhi
212 mov $Zlo,$rem
213 xor $tmp,$Zlo
214
215 shr \$4,$Zlo
216 and \$0xf,$rem
217 mov $Zhi,$tmp
218 shr \$4,$Zhi
219 xor 8($Htbl,$nhi),$Zlo
220 shl \$60,$tmp
221 xor ($Htbl,$nhi),$Zhi
222 xor $tmp,$Zlo
223 xor ($rem_4bit,$rem,8),$Zhi
224
225 bswap $Zlo
226 bswap $Zhi
227___
228}}
229
230$code=<<___;
231.text
98e143f1 232.extern OPENSSL_ia32cap_P
f093794e
AP
233
234.globl gcm_gmult_4bit
235.type gcm_gmult_4bit,\@function,2
236.align 16
237gcm_gmult_4bit:
238 push %rbx
480cd6ab
AP
239 push %rbp # %rbp and %r12 are pushed exclusively in
240 push %r12 # order to reuse Win64 exception handler...
f093794e
AP
241.Lgmult_prologue:
242
243 movzb 15($Xi),$Zlo
244 lea .Lrem_4bit(%rip),$rem_4bit
245___
246 &loop ($Xi);
247$code.=<<___;
248 mov $Zlo,8($Xi)
249 mov $Zhi,($Xi)
250
480cd6ab
AP
251 mov 16(%rsp),%rbx
252 lea 24(%rsp),%rsp
f093794e
AP
253.Lgmult_epilogue:
254 ret
255.size gcm_gmult_4bit,.-gcm_gmult_4bit
256___
c1f092d1 257\f
f093794e 258# per-function register layout
4f39edbf
AP
259$inp="%rdx";
260$len="%rcx";
d364506a 261$rem_8bit=$rem_4bit;
f093794e
AP
262
263$code.=<<___;
264.globl gcm_ghash_4bit
265.type gcm_ghash_4bit,\@function,4
266.align 16
267gcm_ghash_4bit:
268 push %rbx
269 push %rbp
270 push %r12
d364506a
AP
271 push %r13
272 push %r14
273 push %r15
274 sub \$280,%rsp
f093794e 275.Lghash_prologue:
d364506a
AP
276 mov $inp,%r14 # reassign couple of args
277 mov $len,%r15
f093794e 278___
d364506a
AP
279{ my $inp="%r14";
280 my $dat="%edx";
281 my $len="%r15";
282 my @nhi=("%ebx","%ecx");
283 my @rem=("%r12","%r13");
284 my $Hshr4="%rbp";
285
286 &sub ($Htbl,-128); # size optimization
287 &lea ($Hshr4,"16+128(%rsp)");
288 { my @lo =($nlo,$nhi);
289 my @hi =($Zlo,$Zhi);
290
291 &xor ($dat,$dat);
292 for ($i=0,$j=-2;$i<18;$i++,$j++) {
293 &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
294 &or ($lo[0],$tmp) if ($i>1);
295 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
296 &shr ($lo[1],4) if ($i>0 && $i<17);
297 &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
298 &shr ($hi[1],4) if ($i>0 && $i<17);
299 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
300 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
301 &shl (&LB($dat),4) if ($i>0 && $i<17);
302 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
303 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
304 &shl ($tmp,60) if ($i>0 && $i<17);
305
306 push (@lo,shift(@lo));
307 push (@hi,shift(@hi));
308 }
309 }
310 &add ($Htbl,-128);
311 &mov ($Zlo,"8($Xi)");
312 &mov ($Zhi,"0($Xi)");
313 &add ($len,$inp); # pointer to the end of data
314 &lea ($rem_8bit,".Lrem_8bit(%rip)");
315 &jmp (".Louter_loop");
316
317$code.=".align 16\n.Louter_loop:\n";
318 &xor ($Zhi,"($inp)");
319 &mov ("%rdx","8($inp)");
320 &lea ($inp,"16($inp)");
321 &xor ("%rdx",$Zlo);
322 &mov ("($Xi)",$Zhi);
323 &mov ("8($Xi)","%rdx");
324 &shr ("%rdx",32);
325
326 &xor ($nlo,$nlo);
327 &rol ($dat,8);
328 &mov (&LB($nlo),&LB($dat));
329 &movz ($nhi[0],&LB($dat));
330 &shl (&LB($nlo),4);
331 &shr ($nhi[0],4);
332
333 for ($j=11,$i=0;$i<15;$i++) {
334 &rol ($dat,8);
335 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
336 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
337 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
338 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
339
340 &mov (&LB($nlo),&LB($dat));
341 &xor ($Zlo,$tmp) if ($i>0);
342 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
343
344 &movz ($nhi[1],&LB($dat));
345 &shl (&LB($nlo),4);
346 &movzb ($rem[0],"(%rsp,$nhi[0])");
347
348 &shr ($nhi[1],4) if ($i<14);
349 &and ($nhi[1],0xf0) if ($i==14);
350 &shl ($rem[1],48) if ($i>0);
351 &xor ($rem[0],$Zlo);
352
353 &mov ($tmp,$Zhi);
354 &xor ($Zhi,$rem[1]) if ($i>0);
355 &shr ($Zlo,8);
356
357 &movz ($rem[0],&LB($rem[0]));
358 &mov ($dat,"$j($Xi)") if (--$j%4==0);
359 &shr ($Zhi,8);
360
361 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
362 &shl ($tmp,56);
363 &xor ($Zhi,"($Hshr4,$nhi[0],8)");
364
365 unshift (@nhi,pop(@nhi)); # "rotate" registers
366 unshift (@rem,pop(@rem));
367 }
368 &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
369 &xor ($Zlo,"8($Htbl,$nlo)");
370 &xor ($Zhi,"($Htbl,$nlo)");
371
372 &shl ($rem[1],48);
373 &xor ($Zlo,$tmp);
374
375 &xor ($Zhi,$rem[1]);
376 &movz ($rem[0],&LB($Zlo));
377 &shr ($Zlo,4);
378
379 &mov ($tmp,$Zhi);
380 &shl (&LB($rem[0]),4);
381 &shr ($Zhi,4);
382
383 &xor ($Zlo,"8($Htbl,$nhi[0])");
384 &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
385 &shl ($tmp,60);
386
387 &xor ($Zhi,"($Htbl,$nhi[0])");
388 &xor ($Zlo,$tmp);
389 &shl ($rem[0],48);
390
391 &bswap ($Zlo);
392 &xor ($Zhi,$rem[0]);
393
394 &bswap ($Zhi);
395 &cmp ($inp,$len);
396 &jb (".Louter_loop");
397}
f093794e 398$code.=<<___;
f093794e
AP
399 mov $Zlo,8($Xi)
400 mov $Zhi,($Xi)
401
d364506a
AP
402 lea 280(%rsp),%rsi
403 mov 0(%rsi),%r15
404 mov 8(%rsi),%r14
405 mov 16(%rsi),%r13
406 mov 24(%rsi),%r12
407 mov 32(%rsi),%rbp
408 mov 40(%rsi),%rbx
409 lea 48(%rsi),%rsp
f093794e
AP
410.Lghash_epilogue:
411 ret
412.size gcm_ghash_4bit,.-gcm_ghash_4bit
c1f092d1
AP
413___
414\f
415######################################################################
416# PCLMULQDQ version.
417
418@_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
419 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
420
421($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
422($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
423
424sub clmul64x64_T2 { # minimal register pressure
273a8081 425my ($Xhi,$Xi,$Hkey,$HK)=@_;
f093794e 426
273a8081
AP
427if (!defined($HK)) { $HK = $T2;
428$code.=<<___;
c1f092d1
AP
429 movdqa $Xi,$Xhi #
430 pshufd \$0b01001110,$Xi,$T1
431 pshufd \$0b01001110,$Hkey,$T2
432 pxor $Xi,$T1 #
433 pxor $Hkey,$T2
434___
273a8081
AP
435} else {
436$code.=<<___;
437 movdqa $Xi,$Xhi #
438 pshufd \$0b01001110,$Xi,$T1
439 pxor $Xi,$T1 #
440___
441}
c1f092d1
AP
442$code.=<<___;
443 pclmulqdq \$0x00,$Hkey,$Xi #######
444 pclmulqdq \$0x11,$Hkey,$Xhi #######
273a8081 445 pclmulqdq \$0x00,$HK,$T1 #######
c1f092d1
AP
446 pxor $Xi,$T1 #
447 pxor $Xhi,$T1 #
448
449 movdqa $T1,$T2 #
450 psrldq \$8,$T1
451 pslldq \$8,$T2 #
452 pxor $T1,$Xhi
453 pxor $T2,$Xi #
454___
455}
456
273a8081 457sub reduction_alg9 { # 17/11 times faster than Intel version
c1f092d1
AP
458my ($Xhi,$Xi) = @_;
459
460$code.=<<___;
461 # 1st phase
273a8081
AP
462 movdqa $Xi,$T2 #
463 movdqa $Xi,$T1
464 psllq \$5,$Xi
465 pxor $Xi,$T1 #
c1f092d1
AP
466 psllq \$1,$Xi
467 pxor $T1,$Xi #
c1f092d1 468 psllq \$57,$Xi #
273a8081 469 movdqa $Xi,$T1 #
c1f092d1 470 pslldq \$8,$Xi
273a8081
AP
471 psrldq \$8,$T1 #
472 pxor $T2,$Xi
473 pxor $T1,$Xhi #
c1f092d1
AP
474
475 # 2nd phase
476 movdqa $Xi,$T2
273a8081
AP
477 psrlq \$1,$Xi
478 pxor $T2,$Xhi #
479 pxor $Xi,$T2
c1f092d1
AP
480 psrlq \$5,$Xi
481 pxor $T2,$Xi #
482 psrlq \$1,$Xi #
273a8081 483 pxor $Xhi,$Xi #
c1f092d1
AP
484___
485}
486\f
487{ my ($Htbl,$Xip)=@_4args;
1da5d302 488 my $HK="%xmm6";
c1f092d1
AP
489
490$code.=<<___;
491.globl gcm_init_clmul
492.type gcm_init_clmul,\@abi-omnipotent
493.align 16
494gcm_init_clmul:
1da5d302
AP
495.L_init_clmul:
496___
497$code.=<<___ if ($win64);
498.LSEH_begin_gcm_init_clmul:
499 # I can't trust assembler to use specific encoding:-(
500 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
501 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
502___
503$code.=<<___;
c1f092d1
AP
504 movdqu ($Xip),$Hkey
505 pshufd \$0b01001110,$Hkey,$Hkey # dword swap
506
507 # <<1 twist
508 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
509 movdqa $Hkey,$T1
510 psllq \$1,$Hkey
511 pxor $T3,$T3 #
512 psrlq \$63,$T1
513 pcmpgtd $T2,$T3 # broadcast carry bit
514 pslldq \$8,$T1
515 por $T1,$Hkey # H<<=1
516
517 # magic reduction
518 pand .L0x1c2_polynomial(%rip),$T3
519 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
520
521 # calculate H^2
1da5d302 522 pshufd \$0b01001110,$Hkey,$HK
c1f092d1 523 movdqa $Hkey,$Xi
1da5d302 524 pxor $Hkey,$HK
c1f092d1 525___
1da5d302 526 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK);
c1f092d1
AP
527 &reduction_alg9 ($Xhi,$Xi);
528$code.=<<___;
273a8081
AP
529 pshufd \$0b01001110,$Hkey,$T1
530 pshufd \$0b01001110,$Xi,$T2
531 pxor $Hkey,$T1 # Karatsuba pre-processing
532 movdqu $Hkey,0x00($Htbl) # save H
533 pxor $Xi,$T2 # Karatsuba pre-processing
534 movdqu $Xi,0x10($Htbl) # save H^2
535 palignr \$8,$T1,$T2 # low part is H.lo^H.hi...
536 movdqu $T2,0x20($Htbl) # save Karatsuba "salt"
537___
538if ($do4xaggr) {
1da5d302 539 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3
273a8081
AP
540 &reduction_alg9 ($Xhi,$Xi);
541$code.=<<___;
542 movdqa $Xi,$T3
543___
1da5d302 544 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4
273a8081
AP
545 &reduction_alg9 ($Xhi,$Xi);
546$code.=<<___;
547 pshufd \$0b01001110,$T3,$T1
548 pshufd \$0b01001110,$Xi,$T2
549 pxor $T3,$T1 # Karatsuba pre-processing
550 movdqu $T3,0x30($Htbl) # save H^3
551 pxor $Xi,$T2 # Karatsuba pre-processing
552 movdqu $Xi,0x40($Htbl) # save H^4
1da5d302 553 palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi...
273a8081
AP
554 movdqu $T2,0x50($Htbl) # save Karatsuba "salt"
555___
556}
1da5d302
AP
557$code.=<<___ if ($win64);
558 movaps (%rsp),%xmm6
559 lea 0x18(%rsp),%rsp
560.LSEH_end_gcm_init_clmul:
561___
273a8081 562$code.=<<___;
c1f092d1
AP
563 ret
564.size gcm_init_clmul,.-gcm_init_clmul
565___
566}
567
568{ my ($Xip,$Htbl)=@_4args;
569
570$code.=<<___;
571.globl gcm_gmult_clmul
572.type gcm_gmult_clmul,\@abi-omnipotent
573.align 16
574gcm_gmult_clmul:
1da5d302 575.L_gmult_clmul:
c1f092d1
AP
576 movdqu ($Xip),$Xi
577 movdqa .Lbswap_mask(%rip),$T3
578 movdqu ($Htbl),$Hkey
273a8081 579 movdqu 0x20($Htbl),$T2
c1f092d1
AP
580 pshufb $T3,$Xi
581___
273a8081
AP
582 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
583$code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
584 # experimental alternative. special thing about is that there
585 # no dependency between the two multiplications...
586 mov \$`0xE1<<1`,%eax
053fa39a 587 mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff
273a8081
AP
588 mov \$0x07,%r11d
589 movq %rax,$T1
590 movq %r10,$T2
591 movq %r11,$T3 # borrow $T3
592 pand $Xi,$T3
053fa39a 593 pshufb $T3,$T2 # ($Xi&7)·0xE0
273a8081 594 movq %rax,$T3
053fa39a 595 pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1)
273a8081
AP
596 pxor $Xi,$T2
597 pslldq \$15,$T2
598 paddd $T2,$T2 # <<(64+56+1)
599 pxor $T2,$Xi
600 pclmulqdq \$0x01,$T3,$Xi
601 movdqa .Lbswap_mask(%rip),$T3 # reload $T3
602 psrldq \$1,$T1
603 pxor $T1,$Xhi
604 pslldq \$7,$Xi
605 pxor $Xhi,$Xi
606___
c1f092d1
AP
607$code.=<<___;
608 pshufb $T3,$Xi
609 movdqu $Xi,($Xip)
610 ret
611.size gcm_gmult_clmul,.-gcm_gmult_clmul
612___
613}
614\f
615{ my ($Xip,$Htbl,$inp,$len)=@_4args;
98e143f1
AP
616 my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
617 my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
c1f092d1
AP
618
619$code.=<<___;
620.globl gcm_ghash_clmul
621.type gcm_ghash_clmul,\@abi-omnipotent
273a8081 622.align 32
c1f092d1 623gcm_ghash_clmul:
1da5d302 624.L_ghash_clmul:
c1f092d1
AP
625___
626$code.=<<___ if ($win64);
273a8081 627 lea -0x88(%rsp),%rax
c1f092d1
AP
628.LSEH_begin_gcm_ghash_clmul:
629 # I can't trust assembler to use specific encoding:-(
273a8081
AP
630 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
631 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
632 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
633 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
634 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
635 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
636 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
637 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
638 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
639 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
640 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
c1f092d1
AP
641___
642$code.=<<___;
643 movdqa .Lbswap_mask(%rip),$T3
644
645 movdqu ($Xip),$Xi
646 movdqu ($Htbl),$Hkey
273a8081 647 movdqu 0x20($Htbl),$HK
c1f092d1
AP
648 pshufb $T3,$Xi
649
650 sub \$0x10,$len
651 jz .Lodd_tail
652
273a8081
AP
653 movdqu 0x10($Htbl),$Hkey2
654___
655if ($do4xaggr) {
656my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
657
658$code.=<<___;
98e143f1 659 mov OPENSSL_ia32cap_P+4(%rip),%eax
273a8081
AP
660 cmp \$0x30,$len
661 jb .Lskip4x
662
98e143f1
AP
663 and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE
664 cmp \$`1<<22`,%eax # check for MOVBE without XSAVE
665 je .Lskip4x
666
273a8081 667 sub \$0x30,$len
053fa39a 668 mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff
273a8081
AP
669 movdqu 0x30($Htbl),$Hkey3
670 movdqu 0x40($Htbl),$Hkey4
671
672 #######
673 # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
674 #
675 movdqu 0x30($inp),$Xln
676 movdqu 0x20($inp),$Xl
677 pshufb $T3,$Xln
678 pshufb $T3,$Xl
679 movdqa $Xln,$Xhn
680 pshufd \$0b01001110,$Xln,$Xmn
681 pxor $Xln,$Xmn
682 pclmulqdq \$0x00,$Hkey,$Xln
683 pclmulqdq \$0x11,$Hkey,$Xhn
684 pclmulqdq \$0x00,$HK,$Xmn
685
686 movdqa $Xl,$Xh
687 pshufd \$0b01001110,$Xl,$Xm
688 pxor $Xl,$Xm
689 pclmulqdq \$0x00,$Hkey2,$Xl
690 pclmulqdq \$0x11,$Hkey2,$Xh
273a8081 691 pclmulqdq \$0x10,$HK,$Xm
1cf8f57b 692 xorps $Xl,$Xln
273a8081
AP
693 xorps $Xh,$Xhn
694 movups 0x50($Htbl),$HK
695 xorps $Xm,$Xmn
696
697 movdqu 0x10($inp),$Xl
698 movdqu 0($inp),$T1
699 pshufb $T3,$Xl
700 pshufb $T3,$T1
701 movdqa $Xl,$Xh
702 pshufd \$0b01001110,$Xl,$Xm
703 pxor $T1,$Xi
704 pxor $Xl,$Xm
705 pclmulqdq \$0x00,$Hkey3,$Xl
706 movdqa $Xi,$Xhi
707 pshufd \$0b01001110,$Xi,$T1
708 pxor $Xi,$T1
709 pclmulqdq \$0x11,$Hkey3,$Xh
273a8081 710 pclmulqdq \$0x00,$HK,$Xm
1cf8f57b 711 xorps $Xl,$Xln
273a8081
AP
712 xorps $Xh,$Xhn
713
714 lea 0x40($inp),$inp
715 sub \$0x40,$len
716 jc .Ltail4x
717
718 jmp .Lmod4_loop
719.align 32
720.Lmod4_loop:
721 pclmulqdq \$0x00,$Hkey4,$Xi
722 xorps $Xm,$Xmn
723 movdqu 0x30($inp),$Xl
724 pshufb $T3,$Xl
725 pclmulqdq \$0x11,$Hkey4,$Xhi
726 xorps $Xln,$Xi
727 movdqu 0x20($inp),$Xln
728 movdqa $Xl,$Xh
273a8081 729 pclmulqdq \$0x10,$HK,$T1
1cf8f57b 730 pshufd \$0b01001110,$Xl,$Xm
273a8081
AP
731 xorps $Xhn,$Xhi
732 pxor $Xl,$Xm
733 pshufb $T3,$Xln
734 movups 0x20($Htbl),$HK
273a8081 735 xorps $Xmn,$T1
1cf8f57b 736 pclmulqdq \$0x00,$Hkey,$Xl
273a8081
AP
737 pshufd \$0b01001110,$Xln,$Xmn
738
739 pxor $Xi,$T1 # aggregated Karatsuba post-processing
1cf8f57b 740 movdqa $Xln,$Xhn
273a8081 741 pxor $Xhi,$T1 #
1cf8f57b 742 pxor $Xln,$Xmn
273a8081 743 movdqa $T1,$T2 #
273a8081 744 pclmulqdq \$0x11,$Hkey,$Xh
1cf8f57b 745 pslldq \$8,$T1
273a8081
AP
746 psrldq \$8,$T2 #
747 pxor $T1,$Xi
748 movdqa .L7_mask(%rip),$T1
749 pxor $T2,$Xhi #
750 movq %rax,$T2
751
752 pand $Xi,$T1 # 1st phase
753 pshufb $T1,$T2 #
273a8081 754 pxor $Xi,$T2 #
1cf8f57b 755 pclmulqdq \$0x00,$HK,$Xm
273a8081
AP
756 psllq \$57,$T2 #
757 movdqa $T2,$T1 #
758 pslldq \$8,$T2
759 pclmulqdq \$0x00,$Hkey2,$Xln
760 psrldq \$8,$T1 #
761 pxor $T2,$Xi
762 pxor $T1,$Xhi #
763 movdqu 0($inp),$T1
764
765 movdqa $Xi,$T2 # 2nd phase
766 psrlq \$1,$Xi
767 pclmulqdq \$0x11,$Hkey2,$Xhn
768 xorps $Xl,$Xln
769 movdqu 0x10($inp),$Xl
770 pshufb $T3,$Xl
771 pclmulqdq \$0x10,$HK,$Xmn
772 xorps $Xh,$Xhn
773 movups 0x50($Htbl),$HK
774 pshufb $T3,$T1
775 pxor $T2,$Xhi #
776 pxor $Xi,$T2
777 psrlq \$5,$Xi
778
779 movdqa $Xl,$Xh
780 pxor $Xm,$Xmn
781 pshufd \$0b01001110,$Xl,$Xm
273a8081
AP
782 pxor $T2,$Xi #
783 pxor $T1,$Xhi
1cf8f57b
AP
784 pxor $Xl,$Xm
785 pclmulqdq \$0x00,$Hkey3,$Xl
273a8081 786 psrlq \$1,$Xi #
1cf8f57b
AP
787 pxor $Xhi,$Xi #
788 movdqa $Xi,$Xhi
273a8081
AP
789 pclmulqdq \$0x11,$Hkey3,$Xh
790 xorps $Xl,$Xln
1cf8f57b
AP
791 pshufd \$0b01001110,$Xi,$T1
792 pxor $Xi,$T1
273a8081
AP
793
794 pclmulqdq \$0x00,$HK,$Xm
795 xorps $Xh,$Xhn
796
273a8081
AP
797 lea 0x40($inp),$inp
798 sub \$0x40,$len
799 jnc .Lmod4_loop
800
801.Ltail4x:
802 pclmulqdq \$0x00,$Hkey4,$Xi
273a8081 803 pclmulqdq \$0x11,$Hkey4,$Xhi
273a8081 804 pclmulqdq \$0x10,$HK,$T1
1cf8f57b
AP
805 xorps $Xm,$Xmn
806 xorps $Xln,$Xi
273a8081
AP
807 xorps $Xhn,$Xhi
808 pxor $Xi,$Xhi # aggregated Karatsuba post-processing
809 pxor $Xmn,$T1
810
811 pxor $Xhi,$T1 #
812 pxor $Xi,$Xhi
813
814 movdqa $T1,$T2 #
815 psrldq \$8,$T1
816 pslldq \$8,$T2 #
817 pxor $T1,$Xhi
818 pxor $T2,$Xi #
819___
820 &reduction_alg9($Xhi,$Xi);
821$code.=<<___;
822 add \$0x40,$len
823 jz .Ldone
273a8081 824 movdqu 0x20($Htbl),$HK
28997596
AP
825 sub \$0x10,$len
826 jz .Lodd_tail
273a8081
AP
827.Lskip4x:
828___
829}
830$code.=<<___;
c1f092d1
AP
831 #######
832 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
833 # [(H*Ii+1) + (H*Xi+1)] mod P =
834 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
835 #
836 movdqu ($inp),$T1 # Ii
273a8081 837 movdqu 16($inp),$Xln # Ii+1
c1f092d1 838 pshufb $T3,$T1
273a8081 839 pshufb $T3,$Xln
c1f092d1 840 pxor $T1,$Xi # Ii+Xi
273a8081
AP
841
842 movdqa $Xln,$Xhn
98e143f1
AP
843 pshufd \$0b01001110,$Xln,$Xmn
844 pxor $Xln,$Xmn
273a8081
AP
845 pclmulqdq \$0x00,$Hkey,$Xln
846 pclmulqdq \$0x11,$Hkey,$Xhn
98e143f1 847 pclmulqdq \$0x00,$HK,$Xmn
c1f092d1
AP
848
849 lea 32($inp),$inp # i+=2
98e143f1 850 nop
c1f092d1
AP
851 sub \$0x20,$len
852 jbe .Leven_tail
98e143f1 853 nop
273a8081 854 jmp .Lmod_loop
c1f092d1 855
273a8081 856.align 32
c1f092d1 857.Lmod_loop:
fbf7c44b 858 movdqa $Xi,$Xhi
98e143f1
AP
859 movdqa $Xmn,$T1
860 pshufd \$0b01001110,$Xi,$Xmn #
861 pxor $Xi,$Xmn #
fbf7c44b 862
273a8081
AP
863 pclmulqdq \$0x00,$Hkey2,$Xi
864 pclmulqdq \$0x11,$Hkey2,$Xhi
98e143f1 865 pclmulqdq \$0x10,$HK,$Xmn
273a8081
AP
866
867 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
c1f092d1 868 pxor $Xhn,$Xhi
1cf8f57b 869 movdqu ($inp),$T2 # Ii
98e143f1 870 pxor $Xi,$T1 # aggregated Karatsuba post-processing
1cf8f57b 871 pshufb $T3,$T2
fbf7c44b 872 movdqu 16($inp),$Xln # Ii+1
c1f092d1 873
fbf7c44b 874 pxor $Xhi,$T1
1cf8f57b 875 pxor $T2,$Xhi # "Ii+Xi", consume early
98e143f1 876 pxor $T1,$Xmn
273a8081 877 pshufb $T3,$Xln
98e143f1 878 movdqa $Xmn,$T1 #
273a8081 879 psrldq \$8,$T1
98e143f1 880 pslldq \$8,$Xmn #
273a8081 881 pxor $T1,$Xhi
98e143f1 882 pxor $Xmn,$Xi #
c1f092d1 883
273a8081 884 movdqa $Xln,$Xhn #
c1f092d1 885
273a8081
AP
886 movdqa $Xi,$T2 # 1st phase
887 movdqa $Xi,$T1
888 psllq \$5,$Xi
273a8081 889 pxor $Xi,$T1 #
98e143f1 890 pclmulqdq \$0x00,$Hkey,$Xln #######
c1f092d1
AP
891 psllq \$1,$Xi
892 pxor $T1,$Xi #
c1f092d1 893 psllq \$57,$Xi #
273a8081 894 movdqa $Xi,$T1 #
c1f092d1 895 pslldq \$8,$Xi
273a8081
AP
896 psrldq \$8,$T1 #
897 pxor $T2,$Xi
98e143f1 898 pshufd \$0b01001110,$Xhn,$Xmn
273a8081 899 pxor $T1,$Xhi #
98e143f1 900 pxor $Xhn,$Xmn #
c1f092d1 901
c1f092d1 902 movdqa $Xi,$T2 # 2nd phase
273a8081 903 psrlq \$1,$Xi
1cf8f57b 904 pclmulqdq \$0x11,$Hkey,$Xhn #######
273a8081
AP
905 pxor $T2,$Xhi #
906 pxor $Xi,$T2
c1f092d1
AP
907 psrlq \$5,$Xi
908 pxor $T2,$Xi #
98e143f1 909 lea 32($inp),$inp
c1f092d1 910 psrlq \$1,$Xi #
98e143f1 911 pclmulqdq \$0x00,$HK,$Xmn #######
273a8081 912 pxor $Xhi,$Xi #
c1f092d1 913
c1f092d1
AP
914 sub \$0x20,$len
915 ja .Lmod_loop
916
917.Leven_tail:
fbf7c44b 918 movdqa $Xi,$Xhi
98e143f1
AP
919 movdqa $Xmn,$T1
920 pshufd \$0b01001110,$Xi,$Xmn #
921 pxor $Xi,$Xmn #
fbf7c44b 922
273a8081
AP
923 pclmulqdq \$0x00,$Hkey2,$Xi
924 pclmulqdq \$0x11,$Hkey2,$Xhi
98e143f1 925 pclmulqdq \$0x10,$HK,$Xmn
273a8081
AP
926
927 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
c1f092d1 928 pxor $Xhn,$Xhi
fbf7c44b
AP
929 pxor $Xi,$T1
930 pxor $Xhi,$T1
98e143f1
AP
931 pxor $T1,$Xmn
932 movdqa $Xmn,$T1 #
273a8081 933 psrldq \$8,$T1
98e143f1 934 pslldq \$8,$Xmn #
273a8081 935 pxor $T1,$Xhi
98e143f1 936 pxor $Xmn,$Xi #
c1f092d1
AP
937___
938 &reduction_alg9 ($Xhi,$Xi);
939$code.=<<___;
940 test $len,$len
941 jnz .Ldone
942
943.Lodd_tail:
944 movdqu ($inp),$T1 # Ii
945 pshufb $T3,$T1
946 pxor $T1,$Xi # Ii+Xi
947___
273a8081 948 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi)
c1f092d1
AP
949 &reduction_alg9 ($Xhi,$Xi);
950$code.=<<___;
951.Ldone:
952 pshufb $T3,$Xi
953 movdqu $Xi,($Xip)
954___
955$code.=<<___ if ($win64);
956 movaps (%rsp),%xmm6
957 movaps 0x10(%rsp),%xmm7
958 movaps 0x20(%rsp),%xmm8
959 movaps 0x30(%rsp),%xmm9
960 movaps 0x40(%rsp),%xmm10
273a8081
AP
961 movaps 0x50(%rsp),%xmm11
962 movaps 0x60(%rsp),%xmm12
963 movaps 0x70(%rsp),%xmm13
964 movaps 0x80(%rsp),%xmm14
965 movaps 0x90(%rsp),%xmm15
966 lea 0xa8(%rsp),%rsp
1da5d302 967.LSEH_end_gcm_ghash_clmul:
c1f092d1
AP
968___
969$code.=<<___;
970 ret
c1f092d1
AP
971.size gcm_ghash_clmul,.-gcm_ghash_clmul
972___
973}
1da5d302
AP
974\f
975$code.=<<___;
976.globl gcm_init_avx
977.type gcm_init_avx,\@abi-omnipotent
978.align 32
979gcm_init_avx:
980___
981if ($avx) {
982my ($Htbl,$Xip)=@_4args;
983my $HK="%xmm6";
984
985$code.=<<___ if ($win64);
986.LSEH_begin_gcm_init_avx:
987 # I can't trust assembler to use specific encoding:-(
988 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
989 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
990___
991$code.=<<___;
992 vzeroupper
993
994 vmovdqu ($Xip),$Hkey
995 vpshufd \$0b01001110,$Hkey,$Hkey # dword swap
996
997 # <<1 twist
998 vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
999 vpsrlq \$63,$Hkey,$T1
1000 vpsllq \$1,$Hkey,$Hkey
1001 vpxor $T3,$T3,$T3 #
1002 vpcmpgtd $T2,$T3,$T3 # broadcast carry bit
1003 vpslldq \$8,$T1,$T1
1004 vpor $T1,$Hkey,$Hkey # H<<=1
1005
1006 # magic reduction
1007 vpand .L0x1c2_polynomial(%rip),$T3,$T3
1008 vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial
1009
1010 vpunpckhqdq $Hkey,$Hkey,$HK
1011 vmovdqa $Hkey,$Xi
1012 vpxor $Hkey,$HK,$HK
1013 mov \$4,%r10 # up to H^8
1014 jmp .Linit_start_avx
1015___
1016
1017sub clmul64x64_avx {
1018my ($Xhi,$Xi,$Hkey,$HK)=@_;
1019
1020if (!defined($HK)) { $HK = $T2;
1021$code.=<<___;
1022 vpunpckhqdq $Xi,$Xi,$T1
1023 vpunpckhqdq $Hkey,$Hkey,$T2
1024 vpxor $Xi,$T1,$T1 #
1025 vpxor $Hkey,$T2,$T2
1026___
1027} else {
1028$code.=<<___;
1029 vpunpckhqdq $Xi,$Xi,$T1
1030 vpxor $Xi,$T1,$T1 #
1031___
1032}
1033$code.=<<___;
1034 vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi #######
1035 vpclmulqdq \$0x00,$Hkey,$Xi,$Xi #######
1036 vpclmulqdq \$0x00,$HK,$T1,$T1 #######
1037 vpxor $Xi,$Xhi,$T2 #
1038 vpxor $T2,$T1,$T1 #
1039
1040 vpslldq \$8,$T1,$T2 #
1041 vpsrldq \$8,$T1,$T1
1042 vpxor $T2,$Xi,$Xi #
1043 vpxor $T1,$Xhi,$Xhi
1044___
1045}
1046
1047sub reduction_avx {
1048my ($Xhi,$Xi) = @_;
1049
1050$code.=<<___;
1051 vpsllq \$57,$Xi,$T1 # 1st phase
1052 vpsllq \$62,$Xi,$T2
1053 vpxor $T1,$T2,$T2 #
1054 vpsllq \$63,$Xi,$T1
1055 vpxor $T1,$T2,$T2 #
1056 vpslldq \$8,$T2,$T1 #
1057 vpsrldq \$8,$T2,$T2
1058 vpxor $T1,$Xi,$Xi #
1059 vpxor $T2,$Xhi,$Xhi
1060
1061 vpsrlq \$1,$Xi,$T2 # 2nd phase
1062 vpxor $Xi,$Xhi,$Xhi
1063 vpxor $T2,$Xi,$Xi #
1064 vpsrlq \$5,$T2,$T2
1065 vpxor $T2,$Xi,$Xi #
1066 vpsrlq \$1,$Xi,$Xi #
1067 vpxor $Xhi,$Xi,$Xi #
1068___
1069}
1070
1071$code.=<<___;
1072.align 32
1073.Linit_loop_avx:
1074 vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi...
1075 vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt"
1076___
1077 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7
1078 &reduction_avx ($Xhi,$Xi);
1079$code.=<<___;
1080.Linit_start_avx:
1081 vmovdqa $Xi,$T3
1082___
1083 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8
1084 &reduction_avx ($Xhi,$Xi);
1085$code.=<<___;
1086 vpshufd \$0b01001110,$T3,$T1
1087 vpshufd \$0b01001110,$Xi,$T2
1088 vpxor $T3,$T1,$T1 # Karatsuba pre-processing
1089 vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7
1090 vpxor $Xi,$T2,$T2 # Karatsuba pre-processing
1091 vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8
1092 lea 0x30($Htbl),$Htbl
1093 sub \$1,%r10
1094 jnz .Linit_loop_avx
1095
1096 vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped
1097 vmovdqu $T3,-0x10($Htbl)
1098
1099 vzeroupper
1100___
1101$code.=<<___ if ($win64);
1102 movaps (%rsp),%xmm6
1103 lea 0x18(%rsp),%rsp
1104.LSEH_end_gcm_init_avx:
1105___
1106$code.=<<___;
1107 ret
1108.size gcm_init_avx,.-gcm_init_avx
1109___
1110} else {
1111$code.=<<___;
1112 jmp .L_init_clmul
1113.size gcm_init_avx,.-gcm_init_avx
1114___
1115}
1116
1117$code.=<<___;
1118.globl gcm_gmult_avx
1119.type gcm_gmult_avx,\@abi-omnipotent
1120.align 32
1121gcm_gmult_avx:
1122 jmp .L_gmult_clmul
1123.size gcm_gmult_avx,.-gcm_gmult_avx
1124___
1125\f
1126$code.=<<___;
1127.globl gcm_ghash_avx
1128.type gcm_ghash_avx,\@abi-omnipotent
1129.align 32
1130gcm_ghash_avx:
1131___
1132if ($avx) {
1133my ($Xip,$Htbl,$inp,$len)=@_4args;
1134my ($Xlo,$Xhi,$Xmi,
1135 $Zlo,$Zhi,$Zmi,
1136 $Hkey,$HK,$T1,$T2,
1137 $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
1138
1139$code.=<<___ if ($win64);
1140 lea -0x88(%rsp),%rax
1141.LSEH_begin_gcm_ghash_avx:
1142 # I can't trust assembler to use specific encoding:-(
1143 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
1144 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
1145 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
1146 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
1147 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
1148 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
1149 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
1150 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
1151 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
1152 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
1153 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
1154___
1155$code.=<<___;
1156 vzeroupper
1157
1158 vmovdqu ($Xip),$Xi # load $Xi
1159 lea .L0x1c2_polynomial(%rip),%r10
1160 lea 0x40($Htbl),$Htbl # size optimization
1161 vmovdqu .Lbswap_mask(%rip),$bswap
1162 vpshufb $bswap,$Xi,$Xi
1163 cmp \$0x80,$len
1164 jb .Lshort_avx
1165 sub \$0x80,$len
1166
1167 vmovdqu 0x70($inp),$Ii # I[7]
1168 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1169 vpshufb $bswap,$Ii,$Ii
1170 vmovdqu 0x20-0x40($Htbl),$HK
1171
1172 vpunpckhqdq $Ii,$Ii,$T2
1173 vmovdqu 0x60($inp),$Ij # I[6]
1174 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1175 vpxor $Ii,$T2,$T2
1176 vpshufb $bswap,$Ij,$Ij
1177 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1178 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1179 vpunpckhqdq $Ij,$Ij,$T1
1180 vmovdqu 0x50($inp),$Ii # I[5]
1181 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1182 vpxor $Ij,$T1,$T1
1183
1184 vpshufb $bswap,$Ii,$Ii
1185 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1186 vpunpckhqdq $Ii,$Ii,$T2
1187 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1188 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1189 vpxor $Ii,$T2,$T2
1190 vmovdqu 0x40($inp),$Ij # I[4]
1191 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1192 vmovdqu 0x50-0x40($Htbl),$HK
1193
1194 vpshufb $bswap,$Ij,$Ij
1195 vpxor $Xlo,$Zlo,$Zlo
1196 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1197 vpxor $Xhi,$Zhi,$Zhi
1198 vpunpckhqdq $Ij,$Ij,$T1
1199 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1200 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1201 vpxor $Xmi,$Zmi,$Zmi
1202 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1203 vpxor $Ij,$T1,$T1
1204
1205 vmovdqu 0x30($inp),$Ii # I[3]
1206 vpxor $Zlo,$Xlo,$Xlo
1207 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1208 vpxor $Zhi,$Xhi,$Xhi
1209 vpshufb $bswap,$Ii,$Ii
1210 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1211 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1212 vpxor $Zmi,$Xmi,$Xmi
1213 vpunpckhqdq $Ii,$Ii,$T2
1214 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1215 vmovdqu 0x80-0x40($Htbl),$HK
1216 vpxor $Ii,$T2,$T2
1217
1218 vmovdqu 0x20($inp),$Ij # I[2]
1219 vpxor $Xlo,$Zlo,$Zlo
1220 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1221 vpxor $Xhi,$Zhi,$Zhi
1222 vpshufb $bswap,$Ij,$Ij
1223 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1224 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1225 vpxor $Xmi,$Zmi,$Zmi
1226 vpunpckhqdq $Ij,$Ij,$T1
1227 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1228 vpxor $Ij,$T1,$T1
1229
1230 vmovdqu 0x10($inp),$Ii # I[1]
1231 vpxor $Zlo,$Xlo,$Xlo
1232 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1233 vpxor $Zhi,$Xhi,$Xhi
1234 vpshufb $bswap,$Ii,$Ii
1235 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1236 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1237 vpxor $Zmi,$Xmi,$Xmi
1238 vpunpckhqdq $Ii,$Ii,$T2
1239 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1240 vmovdqu 0xb0-0x40($Htbl),$HK
1241 vpxor $Ii,$T2,$T2
1242
1243 vmovdqu ($inp),$Ij # I[0]
1244 vpxor $Xlo,$Zlo,$Zlo
1245 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1246 vpxor $Xhi,$Zhi,$Zhi
1247 vpshufb $bswap,$Ij,$Ij
1248 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1249 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
1250 vpxor $Xmi,$Zmi,$Zmi
1251 vpclmulqdq \$0x10,$HK,$T2,$Xmi
1252
1253 lea 0x80($inp),$inp
1254 cmp \$0x80,$len
1255 jb .Ltail_avx
1256
1257 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1258 sub \$0x80,$len
1259 jmp .Loop8x_avx
1260
1261.align 32
1262.Loop8x_avx:
1263 vpunpckhqdq $Ij,$Ij,$T1
1264 vmovdqu 0x70($inp),$Ii # I[7]
1265 vpxor $Xlo,$Zlo,$Zlo
1266 vpxor $Ij,$T1,$T1
1267 vpclmulqdq \$0x00,$Hkey,$Ij,$Xi
1268 vpshufb $bswap,$Ii,$Ii
1269 vpxor $Xhi,$Zhi,$Zhi
1270 vpclmulqdq \$0x11,$Hkey,$Ij,$Xo
1271 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1272 vpunpckhqdq $Ii,$Ii,$T2
1273 vpxor $Xmi,$Zmi,$Zmi
1274 vpclmulqdq \$0x00,$HK,$T1,$Tred
1275 vmovdqu 0x20-0x40($Htbl),$HK
1276 vpxor $Ii,$T2,$T2
1277
1278 vmovdqu 0x60($inp),$Ij # I[6]
1279 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1280 vpxor $Zlo,$Xi,$Xi # collect result
1281 vpshufb $bswap,$Ij,$Ij
1282 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1283 vxorps $Zhi,$Xo,$Xo
1284 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1285 vpunpckhqdq $Ij,$Ij,$T1
1286 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1287 vpxor $Zmi,$Tred,$Tred
1288 vxorps $Ij,$T1,$T1
1289
1290 vmovdqu 0x50($inp),$Ii # I[5]
1291 vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing
1292 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1293 vpxor $Xo,$Tred,$Tred
1294 vpslldq \$8,$Tred,$T2
1295 vpxor $Xlo,$Zlo,$Zlo
1296 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1297 vpsrldq \$8,$Tred,$Tred
1298 vpxor $T2, $Xi, $Xi
1299 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1300 vpshufb $bswap,$Ii,$Ii
1301 vxorps $Tred,$Xo, $Xo
1302 vpxor $Xhi,$Zhi,$Zhi
1303 vpunpckhqdq $Ii,$Ii,$T2
1304 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1305 vmovdqu 0x50-0x40($Htbl),$HK
1306 vpxor $Ii,$T2,$T2
1307 vpxor $Xmi,$Zmi,$Zmi
1308
1309 vmovdqu 0x40($inp),$Ij # I[4]
1310 vpalignr \$8,$Xi,$Xi,$Tred # 1st phase
1311 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1312 vpshufb $bswap,$Ij,$Ij
1313 vpxor $Zlo,$Xlo,$Xlo
1314 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1315 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1316 vpunpckhqdq $Ij,$Ij,$T1
1317 vpxor $Zhi,$Xhi,$Xhi
1318 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1319 vxorps $Ij,$T1,$T1
1320 vpxor $Zmi,$Xmi,$Xmi
1321
1322 vmovdqu 0x30($inp),$Ii # I[3]
1323 vpclmulqdq \$0x10,(%r10),$Xi,$Xi
1324 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1325 vpshufb $bswap,$Ii,$Ii
1326 vpxor $Xlo,$Zlo,$Zlo
1327 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1328 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1329 vpunpckhqdq $Ii,$Ii,$T2
1330 vpxor $Xhi,$Zhi,$Zhi
1331 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1332 vmovdqu 0x80-0x40($Htbl),$HK
1333 vpxor $Ii,$T2,$T2
1334 vpxor $Xmi,$Zmi,$Zmi
1335
1336 vmovdqu 0x20($inp),$Ij # I[2]
1337 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1338 vpshufb $bswap,$Ij,$Ij
1339 vpxor $Zlo,$Xlo,$Xlo
1340 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1341 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1342 vpunpckhqdq $Ij,$Ij,$T1
1343 vpxor $Zhi,$Xhi,$Xhi
1344 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1345 vpxor $Ij,$T1,$T1
1346 vpxor $Zmi,$Xmi,$Xmi
1347 vxorps $Tred,$Xi,$Xi
1348
1349 vmovdqu 0x10($inp),$Ii # I[1]
1350 vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase
1351 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1352 vpshufb $bswap,$Ii,$Ii
1353 vpxor $Xlo,$Zlo,$Zlo
1354 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1355 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1356 vpclmulqdq \$0x10,(%r10),$Xi,$Xi
1357 vxorps $Xo,$Tred,$Tred
1358 vpunpckhqdq $Ii,$Ii,$T2
1359 vpxor $Xhi,$Zhi,$Zhi
1360 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1361 vmovdqu 0xb0-0x40($Htbl),$HK
1362 vpxor $Ii,$T2,$T2
1363 vpxor $Xmi,$Zmi,$Zmi
1364
1365 vmovdqu ($inp),$Ij # I[0]
1366 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1367 vpshufb $bswap,$Ij,$Ij
1368 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1369 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
1370 vpxor $Tred,$Ij,$Ij
1371 vpclmulqdq \$0x10,$HK, $T2,$Xmi
1372 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1373
1374 lea 0x80($inp),$inp
1375 sub \$0x80,$len
1376 jnc .Loop8x_avx
1377
1378 add \$0x80,$len
1379 jmp .Ltail_no_xor_avx
1380
1381.align 32
1382.Lshort_avx:
1383 vmovdqu -0x10($inp,$len),$Ii # very last word
1384 lea ($inp,$len),$inp
1385 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1386 vmovdqu 0x20-0x40($Htbl),$HK
1387 vpshufb $bswap,$Ii,$Ij
1388
1389 vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo,
1390 vmovdqa $Xhi,$Zhi # $Zhi and
1391 vmovdqa $Xmi,$Zmi # $Zmi
1392 sub \$0x10,$len
1393 jz .Ltail_avx
1394
1395 vpunpckhqdq $Ij,$Ij,$T1
1396 vpxor $Xlo,$Zlo,$Zlo
1397 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1398 vpxor $Ij,$T1,$T1
1399 vmovdqu -0x20($inp),$Ii
1400 vpxor $Xhi,$Zhi,$Zhi
1401 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1402 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1403 vpshufb $bswap,$Ii,$Ij
1404 vpxor $Xmi,$Zmi,$Zmi
1405 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1406 vpsrldq \$8,$HK,$HK
1407 sub \$0x10,$len
1408 jz .Ltail_avx
1409
1410 vpunpckhqdq $Ij,$Ij,$T1
1411 vpxor $Xlo,$Zlo,$Zlo
1412 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1413 vpxor $Ij,$T1,$T1
1414 vmovdqu -0x30($inp),$Ii
1415 vpxor $Xhi,$Zhi,$Zhi
1416 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1417 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1418 vpshufb $bswap,$Ii,$Ij
1419 vpxor $Xmi,$Zmi,$Zmi
1420 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1421 vmovdqu 0x50-0x40($Htbl),$HK
1422 sub \$0x10,$len
1423 jz .Ltail_avx
1424
1425 vpunpckhqdq $Ij,$Ij,$T1
1426 vpxor $Xlo,$Zlo,$Zlo
1427 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1428 vpxor $Ij,$T1,$T1
1429 vmovdqu -0x40($inp),$Ii
1430 vpxor $Xhi,$Zhi,$Zhi
1431 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1432 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1433 vpshufb $bswap,$Ii,$Ij
1434 vpxor $Xmi,$Zmi,$Zmi
1435 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1436 vpsrldq \$8,$HK,$HK
1437 sub \$0x10,$len
1438 jz .Ltail_avx
1439
1440 vpunpckhqdq $Ij,$Ij,$T1
1441 vpxor $Xlo,$Zlo,$Zlo
1442 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1443 vpxor $Ij,$T1,$T1
1444 vmovdqu -0x50($inp),$Ii
1445 vpxor $Xhi,$Zhi,$Zhi
1446 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1447 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1448 vpshufb $bswap,$Ii,$Ij
1449 vpxor $Xmi,$Zmi,$Zmi
1450 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1451 vmovdqu 0x80-0x40($Htbl),$HK
1452 sub \$0x10,$len
1453 jz .Ltail_avx
1454
1455 vpunpckhqdq $Ij,$Ij,$T1
1456 vpxor $Xlo,$Zlo,$Zlo
1457 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1458 vpxor $Ij,$T1,$T1
1459 vmovdqu -0x60($inp),$Ii
1460 vpxor $Xhi,$Zhi,$Zhi
1461 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1462 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1463 vpshufb $bswap,$Ii,$Ij
1464 vpxor $Xmi,$Zmi,$Zmi
1465 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1466 vpsrldq \$8,$HK,$HK
1467 sub \$0x10,$len
1468 jz .Ltail_avx
1469
1470 vpunpckhqdq $Ij,$Ij,$T1
1471 vpxor $Xlo,$Zlo,$Zlo
1472 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1473 vpxor $Ij,$T1,$T1
1474 vmovdqu -0x70($inp),$Ii
1475 vpxor $Xhi,$Zhi,$Zhi
1476 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1477 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1478 vpshufb $bswap,$Ii,$Ij
1479 vpxor $Xmi,$Zmi,$Zmi
1480 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1481 vmovq 0xb8-0x40($Htbl),$HK
1482 sub \$0x10,$len
1483 jmp .Ltail_avx
c1f092d1 1484
1da5d302
AP
1485.align 32
1486.Ltail_avx:
1487 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1488.Ltail_no_xor_avx:
1489 vpunpckhqdq $Ij,$Ij,$T1
1490 vpxor $Xlo,$Zlo,$Zlo
1491 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1492 vpxor $Ij,$T1,$T1
1493 vpxor $Xhi,$Zhi,$Zhi
1494 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1495 vpxor $Xmi,$Zmi,$Zmi
1496 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1497
1498 vmovdqu (%r10),$Tred
1499
1500 vpxor $Xlo,$Zlo,$Xi
1501 vpxor $Xhi,$Zhi,$Xo
1502 vpxor $Xmi,$Zmi,$Zmi
1503
1504 vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing
1505 vpxor $Xo, $Zmi,$Zmi
1506 vpslldq \$8, $Zmi,$T2
1507 vpsrldq \$8, $Zmi,$Zmi
1508 vpxor $T2, $Xi, $Xi
1509 vpxor $Zmi,$Xo, $Xo
1510
1511 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase
1512 vpalignr \$8,$Xi,$Xi,$Xi
1513 vpxor $T2,$Xi,$Xi
1514
1515 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase
1516 vpalignr \$8,$Xi,$Xi,$Xi
1517 vpxor $Xo,$Xi,$Xi
1518 vpxor $T2,$Xi,$Xi
1519
1520 cmp \$0,$len
1521 jne .Lshort_avx
1522
1523 vpshufb $bswap,$Xi,$Xi
1524 vmovdqu $Xi,($Xip)
1525 vzeroupper
1526___
1527$code.=<<___ if ($win64);
1528 movaps (%rsp),%xmm6
1529 movaps 0x10(%rsp),%xmm7
1530 movaps 0x20(%rsp),%xmm8
1531 movaps 0x30(%rsp),%xmm9
1532 movaps 0x40(%rsp),%xmm10
1533 movaps 0x50(%rsp),%xmm11
1534 movaps 0x60(%rsp),%xmm12
1535 movaps 0x70(%rsp),%xmm13
1536 movaps 0x80(%rsp),%xmm14
1537 movaps 0x90(%rsp),%xmm15
1538 lea 0xa8(%rsp),%rsp
1539.LSEH_end_gcm_ghash_avx:
1540___
1541$code.=<<___;
1542 ret
1543.size gcm_ghash_avx,.-gcm_ghash_avx
1544___
1545} else {
1546$code.=<<___;
1547 jmp .L_ghash_clmul
1548.size gcm_ghash_avx,.-gcm_ghash_avx
1549___
1550}
1551\f
c1f092d1
AP
1552$code.=<<___;
1553.align 64
1554.Lbswap_mask:
1555 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
1556.L0x1c2_polynomial:
1557 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
273a8081
AP
1558.L7_mask:
1559 .long 7,0,7,0
1560.L7_mask_poly:
1561 .long 7,0,`0xE1<<1`,0
f093794e 1562.align 64
c1f092d1 1563.type .Lrem_4bit,\@object
f093794e
AP
1564.Lrem_4bit:
1565 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
1566 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
1567 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
1568 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
d364506a
AP
1569.type .Lrem_8bit,\@object
1570.Lrem_8bit:
1571 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
1572 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
1573 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
1574 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
1575 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
1576 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
1577 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
1578 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
1579 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
1580 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
1581 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
1582 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
1583 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
1584 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
1585 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
1586 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
1587 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
1588 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
1589 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
1590 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
1591 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
1592 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
1593 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
1594 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
1595 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
1596 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
1597 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
1598 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
1599 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
1600 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
1601 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
1602 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
1603
f093794e
AP
1604.asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1605.align 64
1606___
c1f092d1 1607\f
f093794e
AP
1608# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1609# CONTEXT *context,DISPATCHER_CONTEXT *disp)
1610if ($win64) {
1611$rec="%rcx";
1612$frame="%rdx";
1613$context="%r8";
1614$disp="%r9";
1615
1616$code.=<<___;
1617.extern __imp_RtlVirtualUnwind
1618.type se_handler,\@abi-omnipotent
1619.align 16
1620se_handler:
1621 push %rsi
1622 push %rdi
1623 push %rbx
1624 push %rbp
1625 push %r12
1626 push %r13
1627 push %r14
1628 push %r15
1629 pushfq
1630 sub \$64,%rsp
1631
1632 mov 120($context),%rax # pull context->Rax
1633 mov 248($context),%rbx # pull context->Rip
1634
1635 mov 8($disp),%rsi # disp->ImageBase
1636 mov 56($disp),%r11 # disp->HandlerData
1637
1638 mov 0(%r11),%r10d # HandlerData[0]
1639 lea (%rsi,%r10),%r10 # prologue label
1640 cmp %r10,%rbx # context->Rip<prologue label
1641 jb .Lin_prologue
1642
1643 mov 152($context),%rax # pull context->Rsp
1644
1645 mov 4(%r11),%r10d # HandlerData[1]
1646 lea (%rsi,%r10),%r10 # epilogue label
1647 cmp %r10,%rbx # context->Rip>=epilogue label
1648 jae .Lin_prologue
1649
480cd6ab 1650 lea 24(%rax),%rax # adjust "rsp"
f093794e
AP
1651
1652 mov -8(%rax),%rbx
1653 mov -16(%rax),%rbp
1654 mov -24(%rax),%r12
1655 mov %rbx,144($context) # restore context->Rbx
1656 mov %rbp,160($context) # restore context->Rbp
1657 mov %r12,216($context) # restore context->R12
1658
1659.Lin_prologue:
1660 mov 8(%rax),%rdi
1661 mov 16(%rax),%rsi
1662 mov %rax,152($context) # restore context->Rsp
1663 mov %rsi,168($context) # restore context->Rsi
1664 mov %rdi,176($context) # restore context->Rdi
1665
1666 mov 40($disp),%rdi # disp->ContextRecord
1667 mov $context,%rsi # context
1668 mov \$`1232/8`,%ecx # sizeof(CONTEXT)
1669 .long 0xa548f3fc # cld; rep movsq
1670
1671 mov $disp,%rsi
1672 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1673 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1674 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1675 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1676 mov 40(%rsi),%r10 # disp->ContextRecord
1677 lea 56(%rsi),%r11 # &disp->HandlerData
1678 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1679 mov %r10,32(%rsp) # arg5
1680 mov %r11,40(%rsp) # arg6
1681 mov %r12,48(%rsp) # arg7
1682 mov %rcx,56(%rsp) # arg8, (NULL)
1683 call *__imp_RtlVirtualUnwind(%rip)
1684
1685 mov \$1,%eax # ExceptionContinueSearch
1686 add \$64,%rsp
1687 popfq
1688 pop %r15
1689 pop %r14
1690 pop %r13
1691 pop %r12
1692 pop %rbp
1693 pop %rbx
1694 pop %rdi
1695 pop %rsi
1696 ret
1697.size se_handler,.-se_handler
1698
1699.section .pdata
1700.align 4
1701 .rva .LSEH_begin_gcm_gmult_4bit
1702 .rva .LSEH_end_gcm_gmult_4bit
1703 .rva .LSEH_info_gcm_gmult_4bit
1704
1705 .rva .LSEH_begin_gcm_ghash_4bit
1706 .rva .LSEH_end_gcm_ghash_4bit
1707 .rva .LSEH_info_gcm_ghash_4bit
1708
1da5d302
AP
1709 .rva .LSEH_begin_gcm_init_clmul
1710 .rva .LSEH_end_gcm_init_clmul
1711 .rva .LSEH_info_gcm_init_clmul
1712
c1f092d1
AP
1713 .rva .LSEH_begin_gcm_ghash_clmul
1714 .rva .LSEH_end_gcm_ghash_clmul
1715 .rva .LSEH_info_gcm_ghash_clmul
1da5d302
AP
1716___
1717$code.=<<___ if ($avx);
1718 .rva .LSEH_begin_gcm_init_avx
1719 .rva .LSEH_end_gcm_init_avx
1720 .rva .LSEH_info_gcm_init_clmul
c1f092d1 1721
1da5d302
AP
1722 .rva .LSEH_begin_gcm_ghash_avx
1723 .rva .LSEH_end_gcm_ghash_avx
1724 .rva .LSEH_info_gcm_ghash_clmul
1725___
1726$code.=<<___;
f093794e
AP
1727.section .xdata
1728.align 8
1729.LSEH_info_gcm_gmult_4bit:
1730 .byte 9,0,0,0
1731 .rva se_handler
1732 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
1733.LSEH_info_gcm_ghash_4bit:
1734 .byte 9,0,0,0
1735 .rva se_handler
1736 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
1da5d302
AP
1737.LSEH_info_gcm_init_clmul:
1738 .byte 0x01,0x08,0x03,0x00
1739 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
1740 .byte 0x04,0x22,0x00,0x00 #sub rsp,0x18
c1f092d1 1741.LSEH_info_gcm_ghash_clmul:
273a8081
AP
1742 .byte 0x01,0x33,0x16,0x00
1743 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15
1744 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14
1745 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13
1746 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12
1747 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11
1748 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
1749 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
1750 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
1751 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
1752 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
1da5d302 1753 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8
f093794e
AP
1754___
1755}
c1f092d1 1756\f
f093794e
AP
1757$code =~ s/\`([^\`]*)\`/eval($1)/gem;
1758
1759print $code;
1760
1761close STDOUT;