]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/threads_pthread.c
Extend create_accept_stream test
[thirdparty/openssl.git] / crypto / threads_pthread.c
CommitLineData
b1322259 1/*
0c679f55 2 * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
71a04cfc 3 *
0e9725bc 4 * Licensed under the Apache License 2.0 (the "License"). You may not use
b1322259
RS
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
71a04cfc
AG
8 */
9
9750b4d3
RB
10/* We need to use the OPENSSL_fork_*() deprecated APIs */
11#define OPENSSL_SUPPRESS_DEPRECATED
12
71a04cfc 13#include <openssl/crypto.h>
d0e1a0ae 14#include <crypto/cryptlib.h>
2cb068fb 15#include <crypto/sparse_array.h>
5f8dd0f8 16#include "internal/cryptlib.h"
2cb068fb 17#include "internal/threads_common.h"
d0e1a0ae
NH
18#include "internal/rcu.h"
19#include "rcu_internal.h"
71a04cfc 20
3bcac460
NH
21#if defined(__clang__) && defined(__has_feature)
22# if __has_feature(thread_sanitizer)
23# define __SANITIZE_THREAD__
24# endif
25#endif
26
27#if defined(__SANITIZE_THREAD__)
28# include <sanitizer/tsan_interface.h>
29# define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
30__tsan_mutex_post_unlock((x), 0)
31
32# define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
33__tsan_mutex_post_lock((x), 0, 0)
34#else
35# define TSAN_FAKE_UNLOCK(x)
36# define TSAN_FAKE_LOCK(x)
37#endif
38
d6dda392
VK
39#if defined(__sun)
40# include <atomic.h>
41#endif
42
d39de479
KK
43#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
44/*
45 * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
46 * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
47 * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
48 * All of this makes impossible to use __atomic_is_lock_free here.
49 *
50 * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
51 */
81f39349 52# define BROKEN_CLANG_ATOMICS
d39de479
KK
53#endif
54
71a04cfc
AG
55#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
56
84952925
DMSP
57# if defined(OPENSSL_SYS_UNIX)
58# include <sys/types.h>
59# include <unistd.h>
81f39349 60# endif
84952925 61
0d407456
RB
62# include <assert.h>
63
7408d587
NH
64/*
65 * The Non-Stop KLT thread model currently seems broken in its rwlock
66 * implementation
67 */
68# if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_)
ec93a292
DK
69# define USE_RWLOCK
70# endif
2accf3f7 71
a02077d4
RL
72/*
73 * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
74 * other compilers.
75
76 * Unfortunately, we can't do that with some "generic type", because there's no
77 * guarantee that the chosen generic type is large enough to cover all cases.
78 * Therefore, we implement fallbacks for each applicable type, with composed
79 * names that include the type they handle.
80 *
81 * (an anecdote: we previously tried to use |void *| as the generic type, with
82 * the thought that the pointer itself is the largest type. However, this is
83 * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
84 *
85 * All applicable ATOMIC_ macros take the intended type as first parameter, so
86 * they can map to the correct fallback function. In the GNU/clang case, that
87 * parameter is simply ignored.
88 */
89
90/*
91 * Internal types used with the ATOMIC_ macros, to make it possible to compose
92 * fallback function names.
93 */
94typedef void *pvoid;
a02077d4
RL
95
96# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
97 && !defined(USE_ATOMIC_FALLBACKS)
a6f512a1 98# define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
a02077d4
RL
99# define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
100# define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
81f39349 101# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
81f39349 102# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
81f39349 103# else
d0e1a0ae
NH
104static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
105
a02077d4 106# define IMPL_fallback_atomic_load_n(t) \
36ba4192 107 static ossl_inline t fallback_atomic_load_n_##t(t *p) \
a02077d4
RL
108 { \
109 t ret; \
110 \
111 pthread_mutex_lock(&atomic_sim_lock); \
112 ret = *p; \
113 pthread_mutex_unlock(&atomic_sim_lock); \
114 return ret; \
115 }
ce6b2f98 116IMPL_fallback_atomic_load_n(uint32_t)
a02077d4
RL
117IMPL_fallback_atomic_load_n(uint64_t)
118IMPL_fallback_atomic_load_n(pvoid)
119
120# define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
121
122# define IMPL_fallback_atomic_store_n(t) \
36ba4192 123 static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
a02077d4
RL
124 { \
125 t ret; \
126 \
127 pthread_mutex_lock(&atomic_sim_lock); \
128 ret = *p; \
129 *p = v; \
130 pthread_mutex_unlock(&atomic_sim_lock); \
131 return ret; \
132 }
ce6b2f98 133IMPL_fallback_atomic_store_n(uint32_t)
d0e1a0ae 134
a02077d4 135# define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
d0e1a0ae 136
a02077d4 137# define IMPL_fallback_atomic_store(t) \
36ba4192 138 static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
a02077d4
RL
139 { \
140 pthread_mutex_lock(&atomic_sim_lock); \
141 *p = *v; \
142 pthread_mutex_unlock(&atomic_sim_lock); \
143 }
a02077d4
RL
144IMPL_fallback_atomic_store(pvoid)
145
146# define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
147
a02077d4
RL
148/*
149 * The fallbacks that follow don't need any per type implementation, as
150 * they are designed for uint64_t only. If there comes a time when multiple
151 * types need to be covered, it's relatively easy to refactor them the same
152 * way as the fallbacks above.
153 */
d0e1a0ae 154
36ba4192 155static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
d0e1a0ae
NH
156{
157 uint64_t ret;
158
159 pthread_mutex_lock(&atomic_sim_lock);
160 *p += v;
161 ret = *p;
162 pthread_mutex_unlock(&atomic_sim_lock);
163 return ret;
164}
165
81f39349 166# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
d0e1a0ae 167
36ba4192 168static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
d0e1a0ae
NH
169{
170 uint64_t ret;
171
172 pthread_mutex_lock(&atomic_sim_lock);
173 *p -= v;
174 ret = *p;
175 pthread_mutex_unlock(&atomic_sim_lock);
176 return ret;
177}
178
81f39349 179# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
81f39349 180# endif
d0e1a0ae 181
d0e1a0ae
NH
182/*
183 * This is the core of an rcu lock. It tracks the readers and writers for the
184 * current quiescence point for a given lock. Users is the 64 bit value that
185 * stores the READERS/ID as defined above
186 *
187 */
188struct rcu_qp {
189 uint64_t users;
190};
191
192struct thread_qp {
193 struct rcu_qp *qp;
194 unsigned int depth;
195 CRYPTO_RCU_LOCK *lock;
196};
197
81f39349 198# define MAX_QPS 10
d0e1a0ae
NH
199/*
200 * This is the per thread tracking data
201 * that is assigned to each thread participating
202 * in an rcu qp
203 *
204 * qp points to the qp that it last acquired
205 *
206 */
207struct rcu_thr_data {
208 struct thread_qp thread_qps[MAX_QPS];
209};
210
211/*
212 * This is the internal version of a CRYPTO_RCU_LOCK
213 * it is cast from CRYPTO_RCU_LOCK
214 */
215struct rcu_lock_st {
216 /* Callbacks to call for next ossl_synchronize_rcu */
217 struct rcu_cb_item *cb_items;
218
24d16d3a
NH
219 /* The context we are being created against */
220 OSSL_LIB_CTX *ctx;
221
d0e1a0ae
NH
222 /* Array of quiescent points for synchronization */
223 struct rcu_qp *qp_group;
224
7097d2e0
AD
225 /* rcu generation counter for in-order retirement */
226 uint32_t id_ctr;
227
d0e1a0ae 228 /* Number of elements in qp_group array */
ce6b2f98 229 uint32_t group_count;
d0e1a0ae
NH
230
231 /* Index of the current qp in the qp_group array */
ce6b2f98 232 uint32_t reader_idx;
d0e1a0ae
NH
233
234 /* value of the next id_ctr value to be retired */
235 uint32_t next_to_retire;
236
237 /* index of the next free rcu_qp in the qp_group */
ce6b2f98 238 uint32_t current_alloc_idx;
d0e1a0ae
NH
239
240 /* number of qp's in qp_group array currently being retired */
241 uint32_t writers_alloced;
242
243 /* lock protecting write side operations */
244 pthread_mutex_t write_lock;
245
246 /* lock protecting updates to writers_alloced/current_alloc_idx */
247 pthread_mutex_t alloc_lock;
248
249 /* signal to wake threads waiting on alloc_lock */
250 pthread_cond_t alloc_signal;
251
252 /* lock to enforce in-order retirement */
253 pthread_mutex_t prior_lock;
254
255 /* signal to wake threads waiting on prior_lock */
256 pthread_cond_t prior_signal;
257};
258
d0e1a0ae
NH
259/* Read side acquisition of the current qp */
260static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
261{
ce6b2f98 262 uint32_t qp_idx;
d0e1a0ae
NH
263
264 /* get the current qp index */
265 for (;;) {
a532f230
BE
266 qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
267
d0e1a0ae
NH
268 /*
269 * Notes on use of __ATOMIC_ACQUIRE
270 * We need to ensure the following:
271 * 1) That subsequent operations aren't optimized by hoisting them above
272 * this operation. Specifically, we don't want the below re-load of
273 * qp_idx to get optimized away
274 * 2) We want to ensure that any updating of reader_idx on the write side
275 * of the lock is flushed from a local cpu cache so that we see any
276 * updates prior to the load. This is a non-issue on cache coherent
277 * systems like x86, but is relevant on other arches
d0e1a0ae 278 */
5949918f
BE
279 ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
280 __ATOMIC_ACQUIRE);
d0e1a0ae
NH
281
282 /* if the idx hasn't changed, we're good, else try again */
9f4d8c63 283 if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
5949918f 284 __ATOMIC_RELAXED))
d0e1a0ae
NH
285 break;
286
5949918f
BE
287 ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
288 __ATOMIC_RELAXED);
d0e1a0ae
NH
289 }
290
291 return &lock->qp_group[qp_idx];
292}
293
24d16d3a
NH
294static void ossl_rcu_free_local_data(void *arg)
295{
296 OSSL_LIB_CTX *ctx = arg;
2cb068fb 297 struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx);
f7252d73 298
2cb068fb 299 CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx, NULL);
24d16d3a
NH
300 OPENSSL_free(data);
301}
302
d0e1a0ae
NH
303void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
304{
305 struct rcu_thr_data *data;
306 int i, available_qp = -1;
307
308 /*
309 * we're going to access current_qp here so ask the
310 * processor to fetch it
311 */
2cb068fb 312 data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
d0e1a0ae
NH
313
314 if (data == NULL) {
315 data = OPENSSL_zalloc(sizeof(*data));
316 OPENSSL_assert(data != NULL);
2cb068fb 317 CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, data);
24d16d3a 318 ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
d0e1a0ae
NH
319 }
320
321 for (i = 0; i < MAX_QPS; i++) {
322 if (data->thread_qps[i].qp == NULL && available_qp == -1)
323 available_qp = i;
324 /* If we have a hold on this lock already, we're good */
325 if (data->thread_qps[i].lock == lock) {
326 data->thread_qps[i].depth++;
327 return;
328 }
329 }
330
331 /*
332 * if we get here, then we don't have a hold on this lock yet
333 */
334 assert(available_qp != -1);
335
336 data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
337 data->thread_qps[available_qp].depth = 1;
338 data->thread_qps[available_qp].lock = lock;
339}
340
341void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
342{
343 int i;
2cb068fb 344 struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
d0e1a0ae
NH
345 uint64_t ret;
346
347 assert(data != NULL);
348
349 for (i = 0; i < MAX_QPS; i++) {
350 if (data->thread_qps[i].lock == lock) {
351 /*
5949918f
BE
352 * we have to use __ATOMIC_RELEASE here
353 * to ensure that all preceding read instructions complete
354 * before the decrement is visible to ossl_synchronize_rcu
d0e1a0ae
NH
355 */
356 data->thread_qps[i].depth--;
357 if (data->thread_qps[i].depth == 0) {
9f4d8c63 358 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
5949918f 359 (uint64_t)1, __ATOMIC_RELEASE);
d0e1a0ae
NH
360 OPENSSL_assert(ret != UINT64_MAX);
361 data->thread_qps[i].qp = NULL;
362 data->thread_qps[i].lock = NULL;
363 }
364 return;
365 }
366 }
367 /*
39fe3e5d
DP
368 * If we get here, we're trying to unlock a lock that we never acquired -
369 * that's fatal.
d0e1a0ae
NH
370 */
371 assert(0);
372}
373
374/*
375 * Write side allocation routine to get the current qp
376 * and replace it with a new one
377 */
5949918f 378static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
d0e1a0ae 379{
ce6b2f98 380 uint32_t current_idx;
d0e1a0ae
NH
381
382 pthread_mutex_lock(&lock->alloc_lock);
383
384 /*
385 * we need at least one qp to be available with one
386 * left over, so that readers can start working on
387 * one that isn't yet being waited on
388 */
389 while (lock->group_count - lock->writers_alloced < 2)
390 /* we have to wait for one to be free */
391 pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
392
393 current_idx = lock->current_alloc_idx;
394
395 /* Allocate the qp */
396 lock->writers_alloced++;
397
398 /* increment the allocation index */
399 lock->current_alloc_idx =
400 (lock->current_alloc_idx + 1) % lock->group_count;
401
5949918f 402 *curr_id = lock->id_ctr;
d0e1a0ae
NH
403 lock->id_ctr++;
404
ce6b2f98 405 ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
5949918f 406 __ATOMIC_RELAXED);
d0e1a0ae 407
4a1a7fe5
BE
408 /*
409 * this should make sure that the new value of reader_idx is visible in
410 * get_hold_current_qp, directly after incrementing the users count
411 */
412 ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
413 __ATOMIC_RELEASE);
414
d0e1a0ae
NH
415 /* wake up any waiters */
416 pthread_cond_signal(&lock->alloc_signal);
417 pthread_mutex_unlock(&lock->alloc_lock);
418 return &lock->qp_group[current_idx];
419}
420
421static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
422{
423 pthread_mutex_lock(&lock->alloc_lock);
424 lock->writers_alloced--;
425 pthread_cond_signal(&lock->alloc_signal);
426 pthread_mutex_unlock(&lock->alloc_lock);
427}
428
429static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
7097d2e0 430 uint32_t count)
d0e1a0ae
NH
431{
432 struct rcu_qp *new =
433 OPENSSL_zalloc(sizeof(*new) * count);
434
435 lock->group_count = count;
436 return new;
437}
438
439void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
440{
441 pthread_mutex_lock(&lock->write_lock);
3bcac460 442 TSAN_FAKE_UNLOCK(&lock->write_lock);
d0e1a0ae
NH
443}
444
445void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
446{
3bcac460 447 TSAN_FAKE_LOCK(&lock->write_lock);
d0e1a0ae
NH
448 pthread_mutex_unlock(&lock->write_lock);
449}
450
451void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
452{
453 struct rcu_qp *qp;
454 uint64_t count;
5949918f 455 uint32_t curr_id;
d0e1a0ae
NH
456 struct rcu_cb_item *cb_items, *tmpcb;
457
3bcac460
NH
458 pthread_mutex_lock(&lock->write_lock);
459 cb_items = lock->cb_items;
460 lock->cb_items = NULL;
461 pthread_mutex_unlock(&lock->write_lock);
d0e1a0ae 462
5949918f
BE
463 qp = update_qp(lock, &curr_id);
464
465 /* retire in order */
466 pthread_mutex_lock(&lock->prior_lock);
467 while (lock->next_to_retire != curr_id)
468 pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
d0e1a0ae
NH
469
470 /*
471 * wait for the reader count to reach zero
472 * Note the use of __ATOMIC_ACQUIRE here to ensure that any
5949918f 473 * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
d0e1a0ae 474 * is visible prior to our read
5949918f 475 * however this is likely just necessary to silence a tsan warning
a532f230
BE
476 * because the read side should not do any write operation
477 * outside the atomic itself
d0e1a0ae
NH
478 */
479 do {
a02077d4 480 count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
5949918f 481 } while (count != (uint64_t)0);
d0e1a0ae 482
6e7be995
BE
483 lock->next_to_retire++;
484 pthread_cond_broadcast(&lock->prior_signal);
485 pthread_mutex_unlock(&lock->prior_lock);
486
d0e1a0ae
NH
487 retire_qp(lock, qp);
488
489 /* handle any callbacks that we have */
490 while (cb_items != NULL) {
491 tmpcb = cb_items;
492 cb_items = cb_items->next;
493 tmpcb->fn(tmpcb->data);
494 OPENSSL_free(tmpcb);
495 }
496}
497
7d284560
NH
498/*
499 * Note: This call assumes its made under the protection of
500 * ossl_rcu_write_lock
501 */
d0e1a0ae
NH
502int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
503{
504 struct rcu_cb_item *new =
505 OPENSSL_zalloc(sizeof(*new));
506
507 if (new == NULL)
508 return 0;
509
510 new->data = data;
511 new->fn = cb;
7d284560
NH
512
513 new->next = lock->cb_items;
514 lock->cb_items = new;
d0e1a0ae
NH
515
516 return 1;
517}
518
519void *ossl_rcu_uptr_deref(void **p)
520{
a02077d4 521 return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
d0e1a0ae
NH
522}
523
524void ossl_rcu_assign_uptr(void **p, void **v)
525{
a02077d4 526 ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
d0e1a0ae
NH
527}
528
24d16d3a 529CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
d0e1a0ae
NH
530{
531 struct rcu_lock_st *new;
532
25f8e2c1 533 /*
a532f230 534 * We need a minimum of 2 qp's
25f8e2c1 535 */
a532f230
BE
536 if (num_writers < 2)
537 num_writers = 2;
d0e1a0ae 538
24d16d3a
NH
539 ctx = ossl_lib_ctx_get_concrete(ctx);
540 if (ctx == NULL)
541 return 0;
542
d0e1a0ae
NH
543 new = OPENSSL_zalloc(sizeof(*new));
544 if (new == NULL)
545 return NULL;
546
24d16d3a 547 new->ctx = ctx;
d0e1a0ae
NH
548 pthread_mutex_init(&new->write_lock, NULL);
549 pthread_mutex_init(&new->prior_lock, NULL);
550 pthread_mutex_init(&new->alloc_lock, NULL);
551 pthread_cond_init(&new->prior_signal, NULL);
552 pthread_cond_init(&new->alloc_signal, NULL);
25f8e2c1
NH
553
554 new->qp_group = allocate_new_qp_group(new, num_writers);
d0e1a0ae
NH
555 if (new->qp_group == NULL) {
556 OPENSSL_free(new);
557 new = NULL;
558 }
25f8e2c1 559
d0e1a0ae
NH
560 return new;
561}
562
563void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
564{
565 struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
566
567 if (lock == NULL)
568 return;
569
570 /* make sure we're synchronized */
571 ossl_synchronize_rcu(rlock);
572
573 OPENSSL_free(rlock->qp_group);
574 /* There should only be a single qp left now */
575 OPENSSL_free(rlock);
576}
577
71a04cfc
AG
578CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
579{
ec93a292 580# ifdef USE_RWLOCK
7de2b9c4
RS
581 CRYPTO_RWLOCK *lock;
582
d0e1a0ae 583 if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
7de2b9c4 584 /* Don't set error, to avoid recursion blowup. */
71a04cfc
AG
585 return NULL;
586
0b2fc928
F
587 if (pthread_rwlock_init(lock, NULL) != 0) {
588 OPENSSL_free(lock);
71a04cfc 589 return NULL;
0b2fc928 590 }
ec93a292
DK
591# else
592 pthread_mutexattr_t attr;
7de2b9c4
RS
593 CRYPTO_RWLOCK *lock;
594
d0e1a0ae 595 if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
7de2b9c4 596 /* Don't set error, to avoid recursion blowup. */
2accf3f7
DK
597 return NULL;
598
e60147fe
RS
599 /*
600 * We don't use recursive mutexes, but try to catch errors if we do.
601 */
2accf3f7 602 pthread_mutexattr_init(&attr);
6870c1e7
RB
603# if !defined (__TANDEM) && !defined (_SPT_MODEL_)
604# if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
e60147fe 605 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
6870c1e7
RB
606# endif
607# else
608 /* The SPT Thread Library does not define MUTEX attributes. */
e60147fe 609# endif
5d5eed44 610
2accf3f7
DK
611 if (pthread_mutex_init(lock, &attr) != 0) {
612 pthread_mutexattr_destroy(&attr);
613 OPENSSL_free(lock);
614 return NULL;
615 }
5d5eed44 616
2accf3f7 617 pthread_mutexattr_destroy(&attr);
ec93a292 618# endif
71a04cfc
AG
619
620 return lock;
621}
622
cd3f8c1b 623__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
71a04cfc 624{
ec93a292 625# ifdef USE_RWLOCK
606de509 626 if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0))
71a04cfc 627 return 0;
ec93a292 628# else
e60147fe
RS
629 if (pthread_mutex_lock(lock) != 0) {
630 assert(errno != EDEADLK && errno != EBUSY);
2accf3f7 631 return 0;
e60147fe 632 }
ec93a292 633# endif
71a04cfc
AG
634
635 return 1;
636}
637
cd3f8c1b 638__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
71a04cfc 639{
ec93a292 640# ifdef USE_RWLOCK
606de509 641 if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0))
71a04cfc 642 return 0;
ec93a292 643# else
e60147fe
RS
644 if (pthread_mutex_lock(lock) != 0) {
645 assert(errno != EDEADLK && errno != EBUSY);
2accf3f7 646 return 0;
e60147fe 647 }
ec93a292 648# endif
71a04cfc
AG
649
650 return 1;
651}
652
653int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
654{
ec93a292 655# ifdef USE_RWLOCK
71a04cfc
AG
656 if (pthread_rwlock_unlock(lock) != 0)
657 return 0;
ec93a292 658# else
e60147fe
RS
659 if (pthread_mutex_unlock(lock) != 0) {
660 assert(errno != EPERM);
2accf3f7 661 return 0;
e60147fe 662 }
ec93a292 663# endif
71a04cfc
AG
664
665 return 1;
666}
667
668void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
669{
670 if (lock == NULL)
671 return;
672
ec93a292 673# ifdef USE_RWLOCK
71a04cfc 674 pthread_rwlock_destroy(lock);
ec93a292 675# else
2accf3f7 676 pthread_mutex_destroy(lock);
ec93a292 677# endif
71a04cfc
AG
678 OPENSSL_free(lock);
679
680 return;
681}
682
683int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
684{
685 if (pthread_once(once, init) != 0)
686 return 0;
687
688 return 1;
689}
690
691int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
692{
693 if (pthread_key_create(key, cleanup) != 0)
694 return 0;
695
696 return 1;
697}
698
699void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
700{
701 return pthread_getspecific(*key);
702}
703
704int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
705{
706 if (pthread_setspecific(*key, val) != 0)
707 return 0;
708
709 return 1;
710}
711
712int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
713{
714 if (pthread_key_delete(*key) != 0)
715 return 0;
716
717 return 1;
718}
719
720CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
721{
722 return pthread_self();
723}
724
725int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
726{
727 return pthread_equal(a, b);
728}
729
730int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
731{
d39de479 732# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
1beca676
RL
733 if (__atomic_is_lock_free(sizeof(*val), val)) {
734 *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
735 return 1;
736 }
d6dda392
VK
737# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
738 /* This will work for all future Solaris versions. */
739 if (ret != NULL) {
740 *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
741 return 1;
742 }
1beca676 743# endif
d5e742de 744 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
71a04cfc
AG
745 return 0;
746
747 *val += amount;
748 *ret = *val;
749
750 if (!CRYPTO_THREAD_unlock(lock))
751 return 0;
71a04cfc
AG
752
753 return 1;
754}
755
16beec98
GV
756int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
757 CRYPTO_RWLOCK *lock)
758{
759# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
760 if (__atomic_is_lock_free(sizeof(*val), val)) {
761 *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
762 return 1;
763 }
764# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
765 /* This will work for all future Solaris versions. */
766 if (ret != NULL) {
767 *ret = atomic_add_64_nv(val, op);
768 return 1;
769 }
770# endif
771 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
772 return 0;
773 *val += op;
774 *ret = *val;
775
776 if (!CRYPTO_THREAD_unlock(lock))
777 return 0;
778
779 return 1;
780}
781
782int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
783 CRYPTO_RWLOCK *lock)
784{
785# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
786 if (__atomic_is_lock_free(sizeof(*val), val)) {
787 *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
788 return 1;
789 }
790# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
791 /* This will work for all future Solaris versions. */
792 if (ret != NULL) {
793 *ret = atomic_and_64_nv(val, op);
794 return 1;
795 }
796# endif
797 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
798 return 0;
799 *val &= op;
800 *ret = *val;
801
802 if (!CRYPTO_THREAD_unlock(lock))
803 return 0;
804
805 return 1;
806}
807
d5e742de
MC
808int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
809 CRYPTO_RWLOCK *lock)
810{
d39de479 811# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
d5e742de
MC
812 if (__atomic_is_lock_free(sizeof(*val), val)) {
813 *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
814 return 1;
815 }
816# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
817 /* This will work for all future Solaris versions. */
818 if (ret != NULL) {
819 *ret = atomic_or_64_nv(val, op);
820 return 1;
821 }
822# endif
823 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
824 return 0;
825 *val |= op;
826 *ret = *val;
827
828 if (!CRYPTO_THREAD_unlock(lock))
829 return 0;
830
831 return 1;
832}
833
834int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
835{
3240427a 836# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
d5e742de
MC
837 if (__atomic_is_lock_free(sizeof(*val), val)) {
838 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
839 return 1;
840 }
841# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
842 /* This will work for all future Solaris versions. */
843 if (ret != NULL) {
844 *ret = atomic_or_64_nv(val, 0);
845 return 1;
846 }
847# endif
848 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
849 return 0;
850 *ret = *val;
851 if (!CRYPTO_THREAD_unlock(lock))
852 return 0;
853
854 return 1;
855}
629b408c 856
7e45ac68
NH
857int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
858{
3240427a 859# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
7e45ac68
NH
860 if (__atomic_is_lock_free(sizeof(*dst), dst)) {
861 __atomic_store(dst, &val, __ATOMIC_RELEASE);
862 return 1;
863 }
864# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
865 /* This will work for all future Solaris versions. */
4c04a198 866 if (dst != NULL) {
7e45ac68
NH
867 atomic_swap_64(dst, val);
868 return 1;
869 }
870# endif
3190f5c0 871 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
7e45ac68
NH
872 return 0;
873 *dst = val;
874 if (!CRYPTO_THREAD_unlock(lock))
875 return 0;
876
877 return 1;
878}
879
629b408c
HL
880int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
881{
3240427a 882# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
629b408c
HL
883 if (__atomic_is_lock_free(sizeof(*val), val)) {
884 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
885 return 1;
886 }
887# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
888 /* This will work for all future Solaris versions. */
889 if (ret != NULL) {
ce6b2f98 890 *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
629b408c
HL
891 return 1;
892 }
893# endif
894 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
895 return 0;
896 *ret = *val;
897 if (!CRYPTO_THREAD_unlock(lock))
898 return 0;
899
900 return 1;
901}
902
f844f9eb 903# ifndef FIPS_MODULE
2915fe19
RS
904int openssl_init_fork_handlers(void)
905{
59795962 906 return 1;
2915fe19 907}
f844f9eb 908# endif /* FIPS_MODULE */
84952925
DMSP
909
910int openssl_get_fork_id(void)
911{
912 return getpid();
913}
71a04cfc 914#endif