]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/x509v3/v3_addr.c
Enable -Wmissing-variable-declarations and
[thirdparty/openssl.git] / crypto / x509v3 / v3_addr.c
CommitLineData
96ea4ae9
BL
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
0f113f3e 13 * notice, this list of conditions and the following disclaimer.
96ea4ae9
BL
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
a0b76569 64
b39fc560 65#include "internal/cryptlib.h"
96ea4ae9
BL
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
ea46f5e0 69#include <openssl/buffer.h>
96ea4ae9 70#include <openssl/x509v3.h>
df2ee0e2 71#include "ext_dat.h"
96ea4ae9 72
47bbaa5b 73#ifndef OPENSSL_NO_RFC3779
96ea4ae9
BL
74
75/*
76 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
77 */
78
79ASN1_SEQUENCE(IPAddressRange) = {
80 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
81 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
82} ASN1_SEQUENCE_END(IPAddressRange)
83
84ASN1_CHOICE(IPAddressOrRange) = {
85 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
86 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
87} ASN1_CHOICE_END(IPAddressOrRange)
88
89ASN1_CHOICE(IPAddressChoice) = {
90 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
91 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
92} ASN1_CHOICE_END(IPAddressChoice)
93
94ASN1_SEQUENCE(IPAddressFamily) = {
95 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
96 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
97} ASN1_SEQUENCE_END(IPAddressFamily)
98
0f113f3e 99ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
96ea4ae9 100 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
0f113f3e 101 IPAddrBlocks, IPAddressFamily)
df2ee0e2 102static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
96ea4ae9
BL
103
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
107IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
108
109/*
110 * How much buffer space do we need for a raw address?
111 */
c73ad690 112#define ADDR_RAW_BUF_LEN 16
96ea4ae9
BL
113
114/*
115 * What's the address length associated with this AFI?
116 */
117static int length_from_afi(const unsigned afi)
118{
0f113f3e
MC
119 switch (afi) {
120 case IANA_AFI_IPV4:
121 return 4;
122 case IANA_AFI_IPV6:
123 return 16;
124 default:
125 return 0;
126 }
96ea4ae9
BL
127}
128
129/*
130 * Extract the AFI from an IPAddressFamily.
131 */
a0b76569 132unsigned int v3_addr_get_afi(const IPAddressFamily *f)
96ea4ae9 133{
0f113f3e
MC
134 return ((f != NULL &&
135 f->addressFamily != NULL && f->addressFamily->data != NULL)
136 ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
137 : 0);
96ea4ae9
BL
138}
139
140/*
141 * Expand the bitstring form of an address into a raw byte array.
142 * At the moment this is coded for simplicity, not speed.
143 */
be71c372 144static int addr_expand(unsigned char *addr,
0f113f3e
MC
145 const ASN1_BIT_STRING *bs,
146 const int length, const unsigned char fill)
96ea4ae9 147{
0f113f3e
MC
148 if (bs->length < 0 || bs->length > length)
149 return 0;
150 if (bs->length > 0) {
151 memcpy(addr, bs->data, bs->length);
152 if ((bs->flags & 7) != 0) {
153 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
154 if (fill == 0)
155 addr[bs->length - 1] &= ~mask;
156 else
157 addr[bs->length - 1] |= mask;
158 }
96ea4ae9 159 }
0f113f3e
MC
160 memset(addr + bs->length, fill, length - bs->length);
161 return 1;
96ea4ae9
BL
162}
163
164/*
165 * Extract the prefix length from a bitstring.
166 */
c73ad690 167#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
96ea4ae9
BL
168
169/*
170 * i2r handler for one address bitstring.
171 */
172static int i2r_address(BIO *out,
0f113f3e
MC
173 const unsigned afi,
174 const unsigned char fill, const ASN1_BIT_STRING *bs)
96ea4ae9 175{
0f113f3e
MC
176 unsigned char addr[ADDR_RAW_BUF_LEN];
177 int i, n;
96ea4ae9 178
0f113f3e
MC
179 if (bs->length < 0)
180 return 0;
181 switch (afi) {
182 case IANA_AFI_IPV4:
183 if (!addr_expand(addr, bs, 4, fill))
184 return 0;
185 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
186 break;
187 case IANA_AFI_IPV6:
188 if (!addr_expand(addr, bs, 16, fill))
189 return 0;
190 for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
191 n -= 2) ;
192 for (i = 0; i < n; i += 2)
193 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
194 (i < 14 ? ":" : ""));
195 if (i < 16)
196 BIO_puts(out, ":");
197 if (i == 0)
198 BIO_puts(out, ":");
199 break;
200 default:
201 for (i = 0; i < bs->length; i++)
202 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
203 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
204 break;
205 }
206 return 1;
96ea4ae9
BL
207}
208
209/*
210 * i2r handler for a sequence of addresses and ranges.
211 */
212static int i2r_IPAddressOrRanges(BIO *out,
0f113f3e
MC
213 const int indent,
214 const IPAddressOrRanges *aors,
215 const unsigned afi)
96ea4ae9 216{
0f113f3e
MC
217 int i;
218 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
219 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
220 BIO_printf(out, "%*s", indent, "");
221 switch (aor->type) {
222 case IPAddressOrRange_addressPrefix:
223 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
224 return 0;
225 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
226 continue;
227 case IPAddressOrRange_addressRange:
228 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
229 return 0;
230 BIO_puts(out, "-");
231 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
232 return 0;
233 BIO_puts(out, "\n");
234 continue;
235 }
96ea4ae9 236 }
0f113f3e 237 return 1;
96ea4ae9
BL
238}
239
240/*
241 * i2r handler for an IPAddrBlocks extension.
242 */
2e6a7b3e 243static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
0f113f3e 244 void *ext, BIO *out, int indent)
96ea4ae9 245{
0f113f3e
MC
246 const IPAddrBlocks *addr = ext;
247 int i;
248 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
249 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
250 const unsigned int afi = v3_addr_get_afi(f);
251 switch (afi) {
252 case IANA_AFI_IPV4:
253 BIO_printf(out, "%*sIPv4", indent, "");
254 break;
255 case IANA_AFI_IPV6:
256 BIO_printf(out, "%*sIPv6", indent, "");
257 break;
258 default:
259 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
260 break;
261 }
262 if (f->addressFamily->length > 2) {
263 switch (f->addressFamily->data[2]) {
264 case 1:
265 BIO_puts(out, " (Unicast)");
266 break;
267 case 2:
268 BIO_puts(out, " (Multicast)");
269 break;
270 case 3:
271 BIO_puts(out, " (Unicast/Multicast)");
272 break;
273 case 4:
274 BIO_puts(out, " (MPLS)");
275 break;
276 case 64:
277 BIO_puts(out, " (Tunnel)");
278 break;
279 case 65:
280 BIO_puts(out, " (VPLS)");
281 break;
282 case 66:
283 BIO_puts(out, " (BGP MDT)");
284 break;
285 case 128:
286 BIO_puts(out, " (MPLS-labeled VPN)");
287 break;
288 default:
289 BIO_printf(out, " (Unknown SAFI %u)",
290 (unsigned)f->addressFamily->data[2]);
291 break;
292 }
293 }
294 switch (f->ipAddressChoice->type) {
295 case IPAddressChoice_inherit:
296 BIO_puts(out, ": inherit\n");
297 break;
298 case IPAddressChoice_addressesOrRanges:
299 BIO_puts(out, ":\n");
300 if (!i2r_IPAddressOrRanges(out,
301 indent + 2,
302 f->ipAddressChoice->
303 u.addressesOrRanges, afi))
304 return 0;
305 break;
306 }
96ea4ae9 307 }
0f113f3e 308 return 1;
96ea4ae9
BL
309}
310
311/*
312 * Sort comparison function for a sequence of IPAddressOrRange
313 * elements.
be71c372
DSH
314 *
315 * There's no sane answer we can give if addr_expand() fails, and an
316 * assertion failure on externally supplied data is seriously uncool,
317 * so we just arbitrarily declare that if given invalid inputs this
318 * function returns -1. If this messes up your preferred sort order
319 * for garbage input, tough noogies.
96ea4ae9
BL
320 */
321static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
0f113f3e 322 const IPAddressOrRange *b, const int length)
96ea4ae9 323{
0f113f3e
MC
324 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
325 int prefixlen_a = 0, prefixlen_b = 0;
326 int r;
327
328 switch (a->type) {
329 case IPAddressOrRange_addressPrefix:
330 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
331 return -1;
332 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
333 break;
334 case IPAddressOrRange_addressRange:
335 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
336 return -1;
337 prefixlen_a = length * 8;
338 break;
339 }
340
341 switch (b->type) {
342 case IPAddressOrRange_addressPrefix:
343 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
344 return -1;
345 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
346 break;
347 case IPAddressOrRange_addressRange:
348 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
349 return -1;
350 prefixlen_b = length * 8;
351 break;
352 }
353
354 if ((r = memcmp(addr_a, addr_b, length)) != 0)
355 return r;
356 else
357 return prefixlen_a - prefixlen_b;
96ea4ae9
BL
358}
359
360/*
361 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
362 * comparision routines are only allowed two arguments.
363 */
0f113f3e
MC
364static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
365 const IPAddressOrRange *const *b)
96ea4ae9 366{
0f113f3e 367 return IPAddressOrRange_cmp(*a, *b, 4);
96ea4ae9
BL
368}
369
370/*
371 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
372 * comparision routines are only allowed two arguments.
373 */
0f113f3e
MC
374static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
375 const IPAddressOrRange *const *b)
96ea4ae9 376{
0f113f3e 377 return IPAddressOrRange_cmp(*a, *b, 16);
96ea4ae9
BL
378}
379
380/*
381 * Calculate whether a range collapses to a prefix.
382 * See last paragraph of RFC 3779 2.2.3.7.
383 */
384static int range_should_be_prefix(const unsigned char *min,
0f113f3e 385 const unsigned char *max, const int length)
96ea4ae9 386{
0f113f3e
MC
387 unsigned char mask;
388 int i, j;
389
390 OPENSSL_assert(memcmp(min, max, length) <= 0);
391 for (i = 0; i < length && min[i] == max[i]; i++) ;
392 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
393 if (i < j)
394 return -1;
395 if (i > j)
396 return i * 8;
397 mask = min[i] ^ max[i];
398 switch (mask) {
399 case 0x01:
400 j = 7;
401 break;
402 case 0x03:
403 j = 6;
404 break;
405 case 0x07:
406 j = 5;
407 break;
408 case 0x0F:
409 j = 4;
410 break;
411 case 0x1F:
412 j = 3;
413 break;
414 case 0x3F:
415 j = 2;
416 break;
417 case 0x7F:
418 j = 1;
419 break;
420 default:
421 return -1;
422 }
423 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
424 return -1;
425 else
426 return i * 8 + j;
96ea4ae9
BL
427}
428
429/*
430 * Construct a prefix.
431 */
432static int make_addressPrefix(IPAddressOrRange **result,
0f113f3e 433 unsigned char *addr, const int prefixlen)
96ea4ae9 434{
0f113f3e
MC
435 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
436 IPAddressOrRange *aor = IPAddressOrRange_new();
437
438 if (aor == NULL)
439 return 0;
440 aor->type = IPAddressOrRange_addressPrefix;
441 if (aor->u.addressPrefix == NULL &&
442 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
443 goto err;
444 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
445 goto err;
446 aor->u.addressPrefix->flags &= ~7;
447 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
448 if (bitlen > 0) {
449 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
450 aor->u.addressPrefix->flags |= 8 - bitlen;
451 }
96ea4ae9 452
0f113f3e
MC
453 *result = aor;
454 return 1;
96ea4ae9
BL
455
456 err:
0f113f3e
MC
457 IPAddressOrRange_free(aor);
458 return 0;
96ea4ae9
BL
459}
460
461/*
462 * Construct a range. If it can be expressed as a prefix,
463 * return a prefix instead. Doing this here simplifies
464 * the rest of the code considerably.
465 */
466static int make_addressRange(IPAddressOrRange **result,
0f113f3e
MC
467 unsigned char *min,
468 unsigned char *max, const int length)
96ea4ae9 469{
0f113f3e
MC
470 IPAddressOrRange *aor;
471 int i, prefixlen;
472
473 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
474 return make_addressPrefix(result, min, prefixlen);
475
476 if ((aor = IPAddressOrRange_new()) == NULL)
477 return 0;
478 aor->type = IPAddressOrRange_addressRange;
479 OPENSSL_assert(aor->u.addressRange == NULL);
480 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
481 goto err;
482 if (aor->u.addressRange->min == NULL &&
483 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
484 goto err;
485 if (aor->u.addressRange->max == NULL &&
486 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
487 goto err;
488
489 for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
490 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
491 goto err;
492 aor->u.addressRange->min->flags &= ~7;
493 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
494 if (i > 0) {
495 unsigned char b = min[i - 1];
496 int j = 1;
497 while ((b & (0xFFU >> j)) != 0)
498 ++j;
499 aor->u.addressRange->min->flags |= 8 - j;
500 }
96ea4ae9 501
0f113f3e
MC
502 for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
503 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
504 goto err;
505 aor->u.addressRange->max->flags &= ~7;
506 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
507 if (i > 0) {
508 unsigned char b = max[i - 1];
509 int j = 1;
510 while ((b & (0xFFU >> j)) != (0xFFU >> j))
511 ++j;
512 aor->u.addressRange->max->flags |= 8 - j;
513 }
96ea4ae9 514
0f113f3e
MC
515 *result = aor;
516 return 1;
96ea4ae9
BL
517
518 err:
0f113f3e
MC
519 IPAddressOrRange_free(aor);
520 return 0;
96ea4ae9
BL
521}
522
523/*
524 * Construct a new address family or find an existing one.
525 */
526static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
0f113f3e
MC
527 const unsigned afi,
528 const unsigned *safi)
96ea4ae9 529{
0f113f3e
MC
530 IPAddressFamily *f;
531 unsigned char key[3];
537bf438 532 int keylen;
0f113f3e
MC
533 int i;
534
535 key[0] = (afi >> 8) & 0xFF;
536 key[1] = afi & 0xFF;
537 if (safi != NULL) {
538 key[2] = *safi & 0xFF;
539 keylen = 3;
540 } else {
541 keylen = 2;
542 }
543
544 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
545 f = sk_IPAddressFamily_value(addr, i);
546 OPENSSL_assert(f->addressFamily->data != NULL);
547 if (f->addressFamily->length == keylen &&
548 !memcmp(f->addressFamily->data, key, keylen))
549 return f;
550 }
551
552 if ((f = IPAddressFamily_new()) == NULL)
553 goto err;
554 if (f->ipAddressChoice == NULL &&
555 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
556 goto err;
557 if (f->addressFamily == NULL &&
558 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
559 goto err;
560 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
561 goto err;
562 if (!sk_IPAddressFamily_push(addr, f))
563 goto err;
564
565 return f;
96ea4ae9
BL
566
567 err:
0f113f3e
MC
568 IPAddressFamily_free(f);
569 return NULL;
96ea4ae9
BL
570}
571
572/*
573 * Add an inheritance element.
574 */
575int v3_addr_add_inherit(IPAddrBlocks *addr,
0f113f3e 576 const unsigned afi, const unsigned *safi)
96ea4ae9 577{
0f113f3e
MC
578 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
579 if (f == NULL ||
580 f->ipAddressChoice == NULL ||
581 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
582 f->ipAddressChoice->u.addressesOrRanges != NULL))
583 return 0;
584 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
585 f->ipAddressChoice->u.inherit != NULL)
586 return 1;
587 if (f->ipAddressChoice->u.inherit == NULL &&
588 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
589 return 0;
590 f->ipAddressChoice->type = IPAddressChoice_inherit;
96ea4ae9 591 return 1;
96ea4ae9
BL
592}
593
594/*
595 * Construct an IPAddressOrRange sequence, or return an existing one.
596 */
597static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
0f113f3e
MC
598 const unsigned afi,
599 const unsigned *safi)
96ea4ae9 600{
0f113f3e
MC
601 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
602 IPAddressOrRanges *aors = NULL;
603
604 if (f == NULL ||
605 f->ipAddressChoice == NULL ||
606 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
607 f->ipAddressChoice->u.inherit != NULL))
608 return NULL;
609 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
610 aors = f->ipAddressChoice->u.addressesOrRanges;
611 if (aors != NULL)
612 return aors;
613 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
614 return NULL;
615 switch (afi) {
616 case IANA_AFI_IPV4:
617 (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
618 break;
619 case IANA_AFI_IPV6:
620 (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
621 break;
622 }
623 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
624 f->ipAddressChoice->u.addressesOrRanges = aors;
96ea4ae9 625 return aors;
96ea4ae9
BL
626}
627
628/*
629 * Add a prefix.
630 */
631int v3_addr_add_prefix(IPAddrBlocks *addr,
0f113f3e
MC
632 const unsigned afi,
633 const unsigned *safi,
634 unsigned char *a, const int prefixlen)
96ea4ae9 635{
0f113f3e
MC
636 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
637 IPAddressOrRange *aor;
638 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
639 return 0;
640 if (sk_IPAddressOrRange_push(aors, aor))
641 return 1;
642 IPAddressOrRange_free(aor);
96ea4ae9 643 return 0;
96ea4ae9
BL
644}
645
646/*
647 * Add a range.
648 */
649int v3_addr_add_range(IPAddrBlocks *addr,
0f113f3e
MC
650 const unsigned afi,
651 const unsigned *safi,
652 unsigned char *min, unsigned char *max)
96ea4ae9 653{
0f113f3e
MC
654 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655 IPAddressOrRange *aor;
656 int length = length_from_afi(afi);
657 if (aors == NULL)
658 return 0;
659 if (!make_addressRange(&aor, min, max, length))
660 return 0;
661 if (sk_IPAddressOrRange_push(aors, aor))
662 return 1;
663 IPAddressOrRange_free(aor);
96ea4ae9 664 return 0;
96ea4ae9
BL
665}
666
667/*
668 * Extract min and max values from an IPAddressOrRange.
669 */
be71c372 670static int extract_min_max(IPAddressOrRange *aor,
0f113f3e 671 unsigned char *min, unsigned char *max, int length)
96ea4ae9 672{
0f113f3e
MC
673 if (aor == NULL || min == NULL || max == NULL)
674 return 0;
675 switch (aor->type) {
676 case IPAddressOrRange_addressPrefix:
677 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
678 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
679 case IPAddressOrRange_addressRange:
680 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
681 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
682 }
be71c372 683 return 0;
96ea4ae9
BL
684}
685
686/*
687 * Public wrapper for extract_min_max().
688 */
689int v3_addr_get_range(IPAddressOrRange *aor,
0f113f3e
MC
690 const unsigned afi,
691 unsigned char *min,
692 unsigned char *max, const int length)
96ea4ae9 693{
0f113f3e
MC
694 int afi_length = length_from_afi(afi);
695 if (aor == NULL || min == NULL || max == NULL ||
696 afi_length == 0 || length < afi_length ||
697 (aor->type != IPAddressOrRange_addressPrefix &&
698 aor->type != IPAddressOrRange_addressRange) ||
699 !extract_min_max(aor, min, max, afi_length))
700 return 0;
701
702 return afi_length;
96ea4ae9
BL
703}
704
705/*
706 * Sort comparision function for a sequence of IPAddressFamily.
707 *
708 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
709 * the ordering: I can read it as meaning that IPv6 without a SAFI
710 * comes before IPv4 with a SAFI, which seems pretty weird. The
711 * examples in appendix B suggest that the author intended the
712 * null-SAFI rule to apply only within a single AFI, which is what I
713 * would have expected and is what the following code implements.
714 */
0f113f3e
MC
715static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
716 const IPAddressFamily *const *b_)
96ea4ae9 717{
0f113f3e
MC
718 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
719 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
720 int len = ((a->length <= b->length) ? a->length : b->length);
721 int cmp = memcmp(a->data, b->data, len);
722 return cmp ? cmp : a->length - b->length;
96ea4ae9
BL
723}
724
725/*
726 * Check whether an IPAddrBLocks is in canonical form.
727 */
728int v3_addr_is_canonical(IPAddrBlocks *addr)
729{
0f113f3e
MC
730 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
731 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
732 IPAddressOrRanges *aors;
733 int i, j, k;
96ea4ae9
BL
734
735 /*
0f113f3e 736 * Empty extension is cannonical.
96ea4ae9 737 */
0f113f3e
MC
738 if (addr == NULL)
739 return 1;
96ea4ae9
BL
740
741 /*
0f113f3e 742 * Check whether the top-level list is in order.
96ea4ae9 743 */
0f113f3e
MC
744 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
745 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
746 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
747 if (IPAddressFamily_cmp(&a, &b) >= 0)
748 return 0;
96ea4ae9
BL
749 }
750
751 /*
0f113f3e 752 * Top level's ok, now check each address family.
96ea4ae9 753 */
0f113f3e
MC
754 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
755 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
756 int length = length_from_afi(v3_addr_get_afi(f));
757
758 /*
759 * Inheritance is canonical. Anything other than inheritance or
760 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
761 */
762 if (f == NULL || f->ipAddressChoice == NULL)
763 return 0;
764 switch (f->ipAddressChoice->type) {
765 case IPAddressChoice_inherit:
766 continue;
767 case IPAddressChoice_addressesOrRanges:
768 break;
769 default:
770 return 0;
771 }
772
773 /*
774 * It's an IPAddressOrRanges sequence, check it.
775 */
776 aors = f->ipAddressChoice->u.addressesOrRanges;
777 if (sk_IPAddressOrRange_num(aors) == 0)
778 return 0;
779 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
780 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
781 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
782
783 if (!extract_min_max(a, a_min, a_max, length) ||
784 !extract_min_max(b, b_min, b_max, length))
785 return 0;
786
787 /*
788 * Punt misordered list, overlapping start, or inverted range.
789 */
790 if (memcmp(a_min, b_min, length) >= 0 ||
791 memcmp(a_min, a_max, length) > 0 ||
792 memcmp(b_min, b_max, length) > 0)
793 return 0;
794
795 /*
796 * Punt if adjacent or overlapping. Check for adjacency by
797 * subtracting one from b_min first.
798 */
799 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
800 if (memcmp(a_max, b_min, length) >= 0)
801 return 0;
802
803 /*
804 * Check for range that should be expressed as a prefix.
805 */
806 if (a->type == IPAddressOrRange_addressRange &&
807 range_should_be_prefix(a_min, a_max, length) >= 0)
808 return 0;
809 }
810
811 /*
812 * Check range to see if it's inverted or should be a
813 * prefix.
814 */
815 j = sk_IPAddressOrRange_num(aors) - 1;
816 {
817 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
818 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
819 if (!extract_min_max(a, a_min, a_max, length))
820 return 0;
821 if (memcmp(a_min, a_max, length) > 0 ||
822 range_should_be_prefix(a_min, a_max, length) >= 0)
823 return 0;
824 }
825 }
96ea4ae9 826 }
96ea4ae9 827
0f113f3e
MC
828 /*
829 * If we made it through all that, we're happy.
830 */
831 return 1;
96ea4ae9
BL
832}
833
834/*
835 * Whack an IPAddressOrRanges into canonical form.
836 */
837static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
0f113f3e 838 const unsigned afi)
96ea4ae9 839{
0f113f3e 840 int i, j, length = length_from_afi(afi);
96ea4ae9 841
58b75e9c 842 /*
0f113f3e 843 * Sort the IPAddressOrRanges sequence.
58b75e9c 844 */
0f113f3e 845 sk_IPAddressOrRange_sort(aors);
58b75e9c 846
96ea4ae9 847 /*
0f113f3e 848 * Clean up representation issues, punt on duplicates or overlaps.
96ea4ae9 849 */
0f113f3e
MC
850 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
851 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
852 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
853 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
854 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
855
856 if (!extract_min_max(a, a_min, a_max, length) ||
857 !extract_min_max(b, b_min, b_max, length))
858 return 0;
859
860 /*
861 * Punt inverted ranges.
862 */
863 if (memcmp(a_min, a_max, length) > 0 ||
864 memcmp(b_min, b_max, length) > 0)
865 return 0;
866
867 /*
868 * Punt overlaps.
869 */
870 if (memcmp(a_max, b_min, length) >= 0)
871 return 0;
872
873 /*
874 * Merge if a and b are adjacent. We check for
875 * adjacency by subtracting one from b_min first.
876 */
877 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
878 if (memcmp(a_max, b_min, length) == 0) {
879 IPAddressOrRange *merged;
880 if (!make_addressRange(&merged, a_min, b_max, length))
881 return 0;
882 (void)sk_IPAddressOrRange_set(aors, i, merged);
883 (void)sk_IPAddressOrRange_delete(aors, i + 1);
884 IPAddressOrRange_free(a);
885 IPAddressOrRange_free(b);
886 --i;
887 continue;
888 }
889 }
96ea4ae9
BL
890
891 /*
0f113f3e 892 * Check for inverted final range.
96ea4ae9 893 */
0f113f3e
MC
894 j = sk_IPAddressOrRange_num(aors) - 1;
895 {
896 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
897 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
898 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
899 extract_min_max(a, a_min, a_max, length);
900 if (memcmp(a_min, a_max, length) > 0)
901 return 0;
902 }
58b75e9c 903 }
58b75e9c 904
0f113f3e 905 return 1;
96ea4ae9
BL
906}
907
908/*
909 * Whack an IPAddrBlocks extension into canonical form.
910 */
911int v3_addr_canonize(IPAddrBlocks *addr)
912{
0f113f3e
MC
913 int i;
914 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
915 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
916 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
917 !IPAddressOrRanges_canonize(f->ipAddressChoice->
918 u.addressesOrRanges,
919 v3_addr_get_afi(f)))
920 return 0;
921 }
922 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
923 sk_IPAddressFamily_sort(addr);
924 OPENSSL_assert(v3_addr_is_canonical(addr));
925 return 1;
96ea4ae9
BL
926}
927
928/*
929 * v2i handler for the IPAddrBlocks extension.
930 */
2e6a7b3e 931static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
0f113f3e
MC
932 struct v3_ext_ctx *ctx,
933 STACK_OF(CONF_VALUE) *values)
96ea4ae9 934{
0f113f3e
MC
935 static const char v4addr_chars[] = "0123456789.";
936 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
937 IPAddrBlocks *addr = NULL;
938 char *s = NULL, *t;
939 int i;
940
941 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
942 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
943 return NULL;
96ea4ae9
BL
944 }
945
0f113f3e
MC
946 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
947 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
948 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
949 unsigned afi, *safi = NULL, safi_;
4c9b0a03 950 const char *addr_chars = NULL;
0f113f3e
MC
951 int prefixlen, i1, i2, delim, length;
952
953 if (!name_cmp(val->name, "IPv4")) {
954 afi = IANA_AFI_IPV4;
955 } else if (!name_cmp(val->name, "IPv6")) {
956 afi = IANA_AFI_IPV6;
957 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
958 afi = IANA_AFI_IPV4;
959 safi = &safi_;
960 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
961 afi = IANA_AFI_IPV6;
962 safi = &safi_;
963 } else {
964 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
965 X509V3_R_EXTENSION_NAME_ERROR);
966 X509V3_conf_err(val);
967 goto err;
968 }
969
970 switch (afi) {
971 case IANA_AFI_IPV4:
972 addr_chars = v4addr_chars;
973 break;
974 case IANA_AFI_IPV6:
975 addr_chars = v6addr_chars;
976 break;
977 }
978
979 length = length_from_afi(afi);
980
981 /*
982 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
983 * the other input values.
984 */
985 if (safi != NULL) {
986 *safi = strtoul(val->value, &t, 0);
987 t += strspn(t, " \t");
988 if (*safi > 0xFF || *t++ != ':') {
989 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
990 X509V3_conf_err(val);
991 goto err;
992 }
993 t += strspn(t, " \t");
994 s = BUF_strdup(t);
995 } else {
996 s = BUF_strdup(val->value);
997 }
998 if (s == NULL) {
999 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1000 goto err;
1001 }
1002
1003 /*
1004 * Check for inheritance. Not worth additional complexity to
1005 * optimize this (seldom-used) case.
1006 */
86885c28 1007 if (strcmp(s, "inherit") == 0) {
0f113f3e
MC
1008 if (!v3_addr_add_inherit(addr, afi, safi)) {
1009 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1010 X509V3_R_INVALID_INHERITANCE);
1011 X509V3_conf_err(val);
1012 goto err;
1013 }
1014 OPENSSL_free(s);
1015 s = NULL;
1016 continue;
1017 }
1018
1019 i1 = strspn(s, addr_chars);
1020 i2 = i1 + strspn(s + i1, " \t");
1021 delim = s[i2++];
1022 s[i1] = '\0';
1023
1024 if (a2i_ipadd(min, s) != length) {
1025 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1026 X509V3_conf_err(val);
1027 goto err;
1028 }
1029
1030 switch (delim) {
1031 case '/':
1032 prefixlen = (int)strtoul(s + i2, &t, 10);
1033 if (t == s + i2 || *t != '\0') {
1034 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1035 X509V3_R_EXTENSION_VALUE_ERROR);
1036 X509V3_conf_err(val);
1037 goto err;
1038 }
1039 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1040 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1041 goto err;
1042 }
1043 break;
1044 case '-':
1045 i1 = i2 + strspn(s + i2, " \t");
1046 i2 = i1 + strspn(s + i1, addr_chars);
1047 if (i1 == i2 || s[i2] != '\0') {
1048 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1049 X509V3_R_EXTENSION_VALUE_ERROR);
1050 X509V3_conf_err(val);
1051 goto err;
1052 }
1053 if (a2i_ipadd(max, s + i1) != length) {
1054 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1055 X509V3_R_INVALID_IPADDRESS);
1056 X509V3_conf_err(val);
1057 goto err;
1058 }
1059 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1060 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1061 X509V3_R_EXTENSION_VALUE_ERROR);
1062 X509V3_conf_err(val);
1063 goto err;
1064 }
1065 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1066 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1067 goto err;
1068 }
1069 break;
1070 case '\0':
1071 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1072 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1073 goto err;
1074 }
1075 break;
1076 default:
1077 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1078 X509V3_R_EXTENSION_VALUE_ERROR);
1079 X509V3_conf_err(val);
1080 goto err;
1081 }
1082
1083 OPENSSL_free(s);
1084 s = NULL;
96ea4ae9
BL
1085 }
1086
1087 /*
0f113f3e 1088 * Canonize the result, then we're done.
96ea4ae9 1089 */
0f113f3e
MC
1090 if (!v3_addr_canonize(addr))
1091 goto err;
1092 return addr;
96ea4ae9
BL
1093
1094 err:
0f113f3e
MC
1095 OPENSSL_free(s);
1096 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1097 return NULL;
96ea4ae9
BL
1098}
1099
1100/*
1101 * OpenSSL dispatch
1102 */
560b79cb 1103const X509V3_EXT_METHOD v3_addr = {
0f113f3e
MC
1104 NID_sbgp_ipAddrBlock, /* nid */
1105 0, /* flags */
1106 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1107 0, 0, 0, 0, /* old functions, ignored */
1108 0, /* i2s */
1109 0, /* s2i */
1110 0, /* i2v */
1111 v2i_IPAddrBlocks, /* v2i */
1112 i2r_IPAddrBlocks, /* i2r */
1113 0, /* r2i */
1114 NULL /* extension-specific data */
96ea4ae9
BL
1115};
1116
1117/*
1118 * Figure out whether extension sues inheritance.
1119 */
1120int v3_addr_inherits(IPAddrBlocks *addr)
1121{
0f113f3e
MC
1122 int i;
1123 if (addr == NULL)
1124 return 0;
1125 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1126 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1127 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1128 return 1;
1129 }
96ea4ae9 1130 return 0;
96ea4ae9
BL
1131}
1132
1133/*
1134 * Figure out whether parent contains child.
1135 */
1136static int addr_contains(IPAddressOrRanges *parent,
0f113f3e 1137 IPAddressOrRanges *child, int length)
96ea4ae9 1138{
0f113f3e
MC
1139 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1140 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1141 int p, c;
1142
1143 if (child == NULL || parent == child)
1144 return 1;
1145 if (parent == NULL)
1146 return 0;
1147
1148 p = 0;
1149 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1150 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1151 c_min, c_max, length))
1152 return -1;
1153 for (;; p++) {
1154 if (p >= sk_IPAddressOrRange_num(parent))
1155 return 0;
1156 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1157 p_min, p_max, length))
1158 return 0;
1159 if (memcmp(p_max, c_max, length) < 0)
1160 continue;
1161 if (memcmp(p_min, c_min, length) > 0)
1162 return 0;
1163 break;
1164 }
96ea4ae9 1165 }
96ea4ae9 1166
0f113f3e 1167 return 1;
96ea4ae9
BL
1168}
1169
1170/*
1171 * Test whether a is a subset of b.
1172 */
1173int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1174{
0f113f3e
MC
1175 int i;
1176 if (a == NULL || a == b)
1177 return 1;
1178 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1179 return 0;
1180 (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1181 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1182 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1183 int j = sk_IPAddressFamily_find(b, fa);
1184 IPAddressFamily *fb;
1185 fb = sk_IPAddressFamily_value(b, j);
1186 if (fb == NULL)
1187 return 0;
1188 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1189 fa->ipAddressChoice->u.addressesOrRanges,
1190 length_from_afi(v3_addr_get_afi(fb))))
1191 return 0;
1192 }
96ea4ae9 1193 return 1;
96ea4ae9
BL
1194}
1195
1196/*
1197 * Validation error handling via callback.
1198 */
c73ad690 1199#define validation_err(_err_) \
0f113f3e
MC
1200 do { \
1201 if (ctx != NULL) { \
1202 ctx->error = _err_; \
1203 ctx->error_depth = i; \
1204 ctx->current_cert = x; \
1205 ret = ctx->verify_cb(0, ctx); \
1206 } else { \
1207 ret = 0; \
1208 } \
1209 if (!ret) \
1210 goto done; \
96ea4ae9
BL
1211 } while (0)
1212
1213/*
1214 * Core code for RFC 3779 2.3 path validation.
1215 */
1216static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
0f113f3e
MC
1217 STACK_OF(X509) *chain,
1218 IPAddrBlocks *ext)
96ea4ae9 1219{
0f113f3e
MC
1220 IPAddrBlocks *child = NULL;
1221 int i, j, ret = 1;
1222 X509 *x;
1223
1224 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1225 OPENSSL_assert(ctx != NULL || ext != NULL);
1226 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1227
1228 /*
1229 * Figure out where to start. If we don't have an extension to
1230 * check, we're done. Otherwise, check canonical form and
1231 * set up for walking up the chain.
1232 */
1233 if (ext != NULL) {
1234 i = -1;
1235 x = NULL;
1236 } else {
1237 i = 0;
1238 x = sk_X509_value(chain, i);
1239 OPENSSL_assert(x != NULL);
1240 if ((ext = x->rfc3779_addr) == NULL)
1241 goto done;
96ea4ae9 1242 }
0f113f3e
MC
1243 if (!v3_addr_is_canonical(ext))
1244 validation_err(X509_V_ERR_INVALID_EXTENSION);
1245 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1246 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1247 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1248 ERR_R_MALLOC_FAILURE);
1249 ret = 0;
1250 goto done;
1251 }
1252
1253 /*
1254 * Now walk up the chain. No cert may list resources that its
1255 * parent doesn't list.
1256 */
1257 for (i++; i < sk_X509_num(chain); i++) {
1258 x = sk_X509_value(chain, i);
1259 OPENSSL_assert(x != NULL);
1260 if (!v3_addr_is_canonical(x->rfc3779_addr))
1261 validation_err(X509_V_ERR_INVALID_EXTENSION);
1262 if (x->rfc3779_addr == NULL) {
1263 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1264 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1265 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1266 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1267 break;
1268 }
1269 }
1270 continue;
1271 }
1272 (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1273 IPAddressFamily_cmp);
1274 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1275 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1276 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1277 IPAddressFamily *fp =
1278 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1279 if (fp == NULL) {
1280 if (fc->ipAddressChoice->type ==
1281 IPAddressChoice_addressesOrRanges) {
1282 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1283 break;
1284 }
1285 continue;
1286 }
1287 if (fp->ipAddressChoice->type ==
1288 IPAddressChoice_addressesOrRanges) {
1289 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1290 || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1291 fc->ipAddressChoice->u.addressesOrRanges,
1292 length_from_afi(v3_addr_get_afi(fc))))
1293 sk_IPAddressFamily_set(child, j, fp);
1294 else
1295 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1296 }
1297 }
96ea4ae9 1298 }
0f113f3e
MC
1299
1300 /*
1301 * Trust anchor can't inherit.
1302 */
1303 OPENSSL_assert(x != NULL);
1304 if (x->rfc3779_addr != NULL) {
1305 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1306 IPAddressFamily *fp =
1307 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1308 if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1309 && sk_IPAddressFamily_find(child, fp) >= 0)
1310 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1311 }
96ea4ae9 1312 }
96ea4ae9
BL
1313
1314 done:
0f113f3e
MC
1315 sk_IPAddressFamily_free(child);
1316 return ret;
96ea4ae9
BL
1317}
1318
c73ad690 1319#undef validation_err
96ea4ae9
BL
1320
1321/*
1322 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1323 */
1324int v3_addr_validate_path(X509_STORE_CTX *ctx)
1325{
0f113f3e 1326 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
96ea4ae9
BL
1327}
1328
1329/*
1330 * RFC 3779 2.3 path validation of an extension.
1331 * Test whether chain covers extension.
1332 */
1333int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
0f113f3e 1334 IPAddrBlocks *ext, int allow_inheritance)
96ea4ae9 1335{
0f113f3e
MC
1336 if (ext == NULL)
1337 return 1;
1338 if (chain == NULL || sk_X509_num(chain) == 0)
1339 return 0;
1340 if (!allow_inheritance && v3_addr_inherits(ext))
1341 return 0;
1342 return v3_addr_validate_path_internal(NULL, chain, ext);
96ea4ae9 1343}
47bbaa5b
DW
1344
1345#endif /* OPENSSL_NO_RFC3779 */