]> git.ipfire.org Git - thirdparty/openssl.git/blame - doc/man3/OPENSSL_malloc.pod
Various typo
[thirdparty/openssl.git] / doc / man3 / OPENSSL_malloc.pod
CommitLineData
bbd86bf5
RS
1=pod
2
3=head1 NAME
4
5OPENSSL_malloc_init,
6OPENSSL_malloc, OPENSSL_zalloc, OPENSSL_realloc, OPENSSL_free,
eae02924 7OPENSSL_clear_realloc, OPENSSL_clear_free, OPENSSL_cleanse,
bbd86bf5
RS
8CRYPTO_malloc, CRYPTO_zalloc, CRYPTO_realloc, CRYPTO_free,
9OPENSSL_strdup, OPENSSL_strndup,
10OPENSSL_memdup, OPENSSL_strlcpy, OPENSSL_strlcat,
14f051a0 11OPENSSL_hexstr2buf, OPENSSL_buf2hexstr, OPENSSL_hexchar2int,
c952780c
RS
12CRYPTO_strdup, CRYPTO_strndup,
13OPENSSL_mem_debug_push, OPENSSL_mem_debug_pop,
14CRYPTO_mem_debug_push, CRYPTO_mem_debug_pop,
bbd86bf5
RS
15CRYPTO_clear_realloc, CRYPTO_clear_free,
16CRYPTO_get_mem_functions, CRYPTO_set_mem_functions,
0e598a3d 17CRYPTO_get_alloc_counts,
bbd86bf5 18CRYPTO_set_mem_debug, CRYPTO_mem_ctrl,
20626cfd 19CRYPTO_mem_leaks, CRYPTO_mem_leaks_fp, CRYPTO_mem_leaks_cb,
a68d8c7b
RS
20OPENSSL_MALLOC_FAILURES,
21OPENSSL_MALLOC_FD
22- Memory allocation functions
bbd86bf5
RS
23
24=head1 SYNOPSIS
25
26 #include <openssl/crypto.h>
27
28 int OPENSSL_malloc_init(void)
29
30 void *OPENSSL_malloc(size_t num)
31 void *OPENSSL_zalloc(size_t num)
32 void *OPENSSL_realloc(void *addr, size_t num)
33 void OPENSSL_free(void *addr)
34 char *OPENSSL_strdup(const char *str)
35 char *OPENSSL_strndup(const char *str, size_t s)
c952780c
RS
36 size_t OPENSSL_strlcat(char *dst, const char *src, size_t size);
37 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t size);
38 void *OPENSSL_memdup(void *data, size_t s)
bbd86bf5
RS
39 void *OPENSSL_clear_realloc(void *p, size_t old_len, size_t num)
40 void OPENSSL_clear_free(void *str, size_t num)
41 void OPENSSL_cleanse(void *ptr, size_t len);
42
14f051a0
RS
43 unsigned char *OPENSSL_hexstr2buf(const char *str, long *len);
44 char *OPENSSL_buf2hexstr(const unsigned char *buffer, long len);
45 int OPENSSL_hexchar2int(unsigned char c);
46
bbd86bf5
RS
47 void *CRYPTO_malloc(size_t num, const char *file, int line)
48 void *CRYPTO_zalloc(size_t num, const char *file, int line)
49 void *CRYPTO_realloc(void *p, size_t num, const char *file, int line)
fa9bb620 50 void CRYPTO_free(void *str, const char *, int)
bbd86bf5
RS
51 char *CRYPTO_strdup(const char *p, const char *file, int line)
52 char *CRYPTO_strndup(const char *p, size_t num, const char *file, int line)
e9b77246
BB
53 void *CRYPTO_clear_realloc(void *p, size_t old_len, size_t num,
54 const char *file, int line)
fa9bb620 55 void CRYPTO_clear_free(void *str, size_t num, const char *, int)
bbd86bf5
RS
56
57 void CRYPTO_get_mem_functions(
58 void *(**m)(size_t, const char *, int),
59 void *(**r)(void *, size_t, const char *, int),
fa9bb620 60 void (**f)(void *, const char *, int))
bbd86bf5
RS
61 int CRYPTO_set_mem_functions(
62 void *(*m)(size_t, const char *, int),
63 void *(*r)(void *, size_t, const char *, int),
fa9bb620 64 void (*f)(void *, const char *, int))
bbd86bf5 65
0e598a3d
RS
66 void CRYPTO_get_alloc_counts(int *m, int *r, int *f)
67
bbd86bf5
RS
68 int CRYPTO_set_mem_debug(int onoff)
69
a68d8c7b
RS
70 env OPENSSL_MALLOC_FAILURES=... <application>
71 env OPENSSL_MALLOC_FD=... <application>
72
c2e27310 73 int CRYPTO_mem_ctrl(int mode);
bbd86bf5
RS
74
75 int OPENSSL_mem_debug_push(const char *info)
c952780c 76 int OPENSSL_mem_debug_pop(void);
bbd86bf5
RS
77
78 int CRYPTO_mem_debug_push(const char *info, const char *file, int line);
c952780c 79 int CRYPTO_mem_debug_pop(void);
bbd86bf5
RS
80
81 void CRYPTO_mem_leaks(BIO *b);
c952780c 82 void CRYPTO_mem_leaks_fp(FILE *fp);
20626cfd
RL
83 void CRYPTO_mem_leaks_cb(int (*cb)(const char *str, size_t len, void *u),
84 void *u);
bbd86bf5
RS
85
86=head1 DESCRIPTION
87
88OpenSSL memory allocation is handled by the B<OPENSSL_xxx> API. These are
89generally macro's that add the standard C B<__FILE__> and B<__LINE__>
90parameters and call a lower-level B<CRYPTO_xxx> API.
91Some functions do not add those parameters, but exist for consistency.
92
93OPENSSL_malloc_init() sets the lower-level memory allocation functions
94to their default implementation.
95It is generally not necessary to call this, except perhaps in certain
96shared-library situations.
97
98OPENSSL_malloc(), OPENSSL_realloc(), and OPENSSL_free() are like the
99C malloc(), realloc(), and free() functions.
100OPENSSL_zalloc() calls memset() to zero the memory before returning.
101
102OPENSSL_clear_realloc() and OPENSSL_clear_free() should be used
103when the buffer at B<addr> holds sensitive information.
91a61513 104The old buffer is filled with zero's by calling OPENSSL_cleanse()
bbd86bf5
RS
105before ultimately calling OPENSSL_free().
106
91a61513
JW
107OPENSSL_cleanse() fills B<ptr> of size B<len> with a string of 0's.
108Use OPENSSL_cleanse() with care if the memory is a mapping of a file.
1bc74519
RS
109If the storage controller uses write compression, then its possible
110that sensitive tail bytes will survive zeroization because the block of
6b4a77f5 111zeros will be compressed. If the storage controller uses wear leveling,
1bc74519 112then the old sensitive data will not be overwritten; rather, a block of
91a61513
JW
1130's will be written at a new physical location.
114
bbd86bf5
RS
115OPENSSL_strdup(), OPENSSL_strndup() and OPENSSL_memdup() are like the
116equivalent C functions, except that memory is allocated by calling the
9d22666e 117OPENSSL_malloc() and should be released by calling OPENSSL_free().
bbd86bf5
RS
118
119OPENSSL_strlcpy(),
120OPENSSL_strlcat() and OPENSSL_strnlen() are equivalents of the common C
121library functions and are provided for portability.
122
14f051a0
RS
123OPENSSL_hexstr2buf() parses B<str> as a hex string and returns a
124pointer to the parsed value. The memory is allocated by calling
125OPENSSL_malloc() and should be released by calling OPENSSL_free().
126If B<len> is not NULL, it is filled in with the output length.
127Colons between two-character hex "bytes" are ignored.
128An odd number of hex digits is an error.
129
130OPENSSL_buf2hexstr() takes the specified buffer and length, and returns
131a hex string for value, or NULL on error.
01238aec 132B<Buffer> cannot be NULL; if B<len> is 0 an empty string is returned.
14f051a0
RS
133
134OPENSSL_hexchar2int() converts a character to the hexadecimal equivalent,
135or returns -1 on error.
136
bbd86bf5 137If no allocations have been done, it is possible to "swap out" the default
fa9bb620
RL
138implementations for OPENSSL_malloc(), OPENSSL_realloc and OPENSSL_free()
139and replace them with alternate versions (hooks).
140CRYPTO_get_mem_functions() function fills in the given arguments with the
141function pointers for the current implementations.
142With CRYPTO_set_mem_functions(), you can specify a different set of functions.
bbd86bf5
RS
143If any of B<m>, B<r>, or B<f> are NULL, then the function is not changed.
144
145The default implementation can include some debugging capability (if enabled
146at build-time).
147This adds some overhead by keeping a list of all memory allocations, and
148removes items from the list when they are free'd.
149This is most useful for identifying memory leaks.
00bb5504
RS
150CRYPTO_set_mem_debug() turns this tracking on and off. In order to have
151any effect, is must be called before any of the allocation functions
152(e.g., CRYPTO_malloc()) are called, and is therefore normally one of the
153first lines of main() in an application.
c2e27310
VD
154CRYPTO_mem_ctrl() provides fine-grained control of memory leak tracking.
155To enable tracking call CRYPTO_mem_ctrl() with a B<mode> argument of
156the B<CRYPTO_MEM_CHECK_ON>.
157To disable tracking call CRYPTO_mem_ctrl() with a B<mode> argument of
158the B<CRYPTO_MEM_CHECK_OFF>.
bbd86bf5
RS
159
160While checking memory, it can be useful to store additional context
161about what is being done.
162For example, identifying the field names when parsing a complicated
163data structure.
164OPENSSL_mem_debug_push() (which calls CRYPTO_mem_debug_push())
165attachs an identifying string to the allocation stack.
166This must be a global or other static string; it is not copied.
167OPENSSL_mem_debug_pop() removes identifying state from the stack.
168
169At the end of the program, calling CRYPTO_mem_leaks() or
c2e27310 170CRYPTO_mem_leaks_fp() will report all "leaked" memory, writing it
4e482ae6
DSH
171to the specified BIO B<b> or FILE B<fp>. These functions return 1 if
172there are no leaks, 0 if there are leaks and -1 if an error occurred.
bbd86bf5 173
20626cfd
RL
174CRYPTO_mem_leaks_cb() does the same as CRYPTO_mem_leaks(), but instead
175of writing to a given BIO, the callback function is called for each
176output string with the string, length, and userdata B<u> as the callback
177parameters.
178
0e598a3d
RS
179If the library is built with the C<crypto-mdebug> option, then one
180function, CRYPTO_get_alloc_counts(), and two additional environment
181variables, B<OPENSSL_MALLOC_FAILURES> and B<OPENSSL_MALLOC_FD>,
182are available.
183
184The function CRYPTO_get_alloc_counts() fills in the number of times
185each of CRYPTO_malloc(), CRYPTO_realloc(), and CRYPTO_free() have been
186called, into the values pointed to by B<mcount>, B<rcount>, and B<fcount>,
187respectively. If a pointer is NULL, then the corresponding count is not stored.
188
189The variable
190B<OPENSSL_MALLOC_FAILURES> controls how often allocations should fail.
191It is a set of fields separated by semicolons, which each field is a count
192(defaulting to zero) and an optional atsign and percentage (defaulting
193to 100). If the count is zero, then it lasts forever. For example,
194C<100;@25> or C<100@0;0@25> means the first 100 allocations pass, then all
195other allocations (until the program exits or crashes) have a 25% chance of
196failing.
197
198If the variable B<OPENSSL_MALLOC_FD> is parsed as a positive integer, then
199it is taken as an open file descriptor, and a record of all allocations is
200written to that descriptor. If an allocation will fail, and the platform
201supports it, then a backtrace will be written to the descriptor. This can
202be useful because a malloc may fail but not be checked, and problems will
203only occur later. The following example in classic shell syntax shows how
204to use this (will not work on all platforms):
205
206 OPENSSL_MALLOC_FAILURES='200;@10'
207 export OPENSSL_MALLOC_FAILURES
208 OPENSSL_MALLOC_FD=3
209 export OPENSSL_MALLOC_FD
210 ...app invocation... 3>/tmp/log$$
211
212
bbd86bf5
RS
213=head1 RETURN VALUES
214
215OPENSSL_malloc_init(), OPENSSL_free(), OPENSSL_clear_free()
4e482ae6 216CRYPTO_free(), CRYPTO_clear_free() and CRYPTO_get_mem_functions()
bbd86bf5
RS
217return no value.
218
4e482ae6
DSH
219CRYPTO_mem_leaks() and CRYPTO_mem_leaks_fp() return 1 if there
220are no leaks, 0 if there are leaks and -1 if an error occurred.
221
bbd86bf5
RS
222OPENSSL_malloc(), OPENSSL_zalloc(), OPENSSL_realloc(),
223OPENSSL_clear_realloc(),
224CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_realloc(),
225CRYPTO_clear_realloc(),
14f051a0 226OPENSSL_buf2hexstr(), OPENSSL_hexstr2buf(),
bbd86bf5
RS
227OPENSSL_strdup(), and OPENSSL_strndup()
228return a pointer to allocated memory or NULL on error.
229
230CRYPTO_set_mem_functions() and CRYPTO_set_mem_debug()
231return 1 on success or 0 on failure (almost
232always because allocations have already happened).
233
60250017 234CRYPTO_mem_ctrl() returns -1 if an error occurred, otherwise the
0a522854 235previous value of the mode.
bbd86bf5
RS
236
237OPENSSL_mem_debug_push() and OPENSSL_mem_debug_pop()
238return 1 on success or 0 on failure.
239
fa9bb620
RL
240=head1 NOTES
241
242While it's permitted to swap out only a few and not all the functions
243with CRYPTO_set_mem_functions(), it's recommended to swap them all out
244at once. I<This applies specially if OpenSSL was built with the
245configuration option> C<crypto-mdebug> I<enabled. In case, swapping out
246only, say, the malloc() implementation is outright dangerous.>
247
e2f92610
RS
248=head1 COPYRIGHT
249
250Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
251
252Licensed under the OpenSSL license (the "License"). You may not use
253this file except in compliance with the License. You can obtain a copy
254in the file LICENSE in the source distribution or at
255L<https://www.openssl.org/source/license.html>.
256
257=cut