]> git.ipfire.org Git - thirdparty/glibc.git/blame - elf/rtld.c
Wed Jul 3 16:29:41 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu>
[thirdparty/glibc.git] / elf / rtld.c
CommitLineData
d66e34cd 1/* Run time dynamic linker.
948c3e72 2Copyright (C) 1995, 1996 Free Software Foundation, Inc.
d66e34cd
RM
3This file is part of the GNU C Library.
4
5The GNU C Library is free software; you can redistribute it and/or
6modify it under the terms of the GNU Library General Public License as
7published by the Free Software Foundation; either version 2 of the
8License, or (at your option) any later version.
9
10The GNU C Library is distributed in the hope that it will be useful,
11but WITHOUT ANY WARRANTY; without even the implied warranty of
12MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13Library General Public License for more details.
14
15You should have received a copy of the GNU Library General Public
16License along with the GNU C Library; see the file COPYING.LIB. If
17not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18Cambridge, MA 02139, USA. */
19
20#include <link.h>
21#include "dynamic-link.h"
22#include <stddef.h>
23#include <stdlib.h>
24#include <unistd.h>
21ee7166 25#include "../stdio-common/_itoa.h"
d66e34cd
RM
26
27
28#ifdef RTLD_START
29RTLD_START
30#else
31#error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
32#endif
33
34/* System-specific function to do initial startup for the dynamic linker.
35 After this, file access calls and getenv must work. This is responsible
36 for setting _dl_secure if we need to be secure (e.g. setuid),
37 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
266180eb
RM
38extern ElfW(Addr) _dl_sysdep_start (void **start_argptr,
39 void (*dl_main) (const ElfW(Phdr) *phdr,
40 ElfW(Half) phent,
41 ElfW(Addr) *user_entry));
4cb20290 42extern void _dl_sysdep_start_cleanup (void);
d66e34cd
RM
43
44int _dl_secure;
45int _dl_argc;
46char **_dl_argv;
4cb20290 47const char *_dl_rpath;
d66e34cd 48
266180eb
RM
49static void dl_main (const ElfW(Phdr) *phdr,
50 ElfW(Half) phent,
51 ElfW(Addr) *user_entry);
d66e34cd 52
ee188d55 53struct link_map _dl_rtld_map;
86d2c878 54
266180eb 55ElfW(Addr)
d66e34cd
RM
56_dl_start (void *arg)
57{
86d2c878 58 struct link_map bootstrap_map;
d66e34cd
RM
59
60 /* Figure out the run-time load address of the dynamic linker itself. */
86d2c878 61 bootstrap_map.l_addr = elf_machine_load_address ();
d66e34cd
RM
62
63 /* Read our own dynamic section and fill in the info array.
64 Conveniently, the first element of the GOT contains the
65 offset of _DYNAMIC relative to the run-time load address. */
86d2c878
RM
66 bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + *elf_machine_got ();
67 elf_get_dynamic_info (bootstrap_map.l_ld, bootstrap_map.l_info);
d66e34cd
RM
68
69#ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
86d2c878 70 ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
d66e34cd
RM
71#endif
72
73 /* Relocate ourselves so we can do normal function calls and
74 data access using the global offset table. */
421f82e5 75
86d2c878 76 ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0, NULL);
421f82e5 77
d66e34cd
RM
78
79 /* Now life is sane; we can call functions and access global data.
80 Set up to use the operating system facilities, and find out from
81 the operating system's program loader where to find the program
82 header table in core. */
83
86d2c878
RM
84
85 /* Transfer data about ourselves to the permanent link_map structure. */
ee188d55
RM
86 _dl_rtld_map.l_addr = bootstrap_map.l_addr;
87 _dl_rtld_map.l_ld = bootstrap_map.l_ld;
88 memcpy (_dl_rtld_map.l_info, bootstrap_map.l_info,
89 sizeof _dl_rtld_map.l_info);
90 _dl_setup_hash (&_dl_rtld_map);
86d2c878 91
4cb20290
RM
92 /* Cache the DT_RPATH stored in ld.so itself; this will be
93 the default search path. */
ee188d55
RM
94 _dl_rpath = (void *) (_dl_rtld_map.l_addr +
95 _dl_rtld_map.l_info[DT_STRTAB]->d_un.d_ptr +
96 _dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
d66e34cd
RM
97
98 /* Call the OS-dependent function to set up life so we can do things like
99 file access. It will call `dl_main' (below) to do all the real work
100 of the dynamic linker, and then unwind our frame and run the user
101 entry point on the same stack we entered on. */
8d6468d0 102 return _dl_sysdep_start (arg, &dl_main);
d66e34cd
RM
103}
104
105
106/* Now life is peachy; we can do all normal operations.
107 On to the real work. */
108
109void _start (void);
110
91f62ce6 111unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
a1a9d215 112
d66e34cd 113static void
266180eb
RM
114dl_main (const ElfW(Phdr) *phdr,
115 ElfW(Half) phent,
116 ElfW(Addr) *user_entry)
d66e34cd 117{
266180eb 118 const ElfW(Phdr) *ph;
efec1d0c 119 struct link_map *l;
0200214b
RM
120 int lazy;
121 int list_only = 0;
d66e34cd 122
266180eb 123 if (*user_entry == (ElfW(Addr)) &_start)
0200214b
RM
124 {
125 /* Ho ho. We are not the program interpreter! We are the program
126 itself! This means someone ran ld.so as a command. Well, that
127 might be convenient to do sometimes. We support it by
128 interpreting the args like this:
129
130 ld.so PROGRAM ARGS...
131
132 The first argument is the name of a file containing an ELF
133 executable we will load and run with the following arguments.
134 To simplify life here, PROGRAM is searched for using the
135 normal rules for shared objects, rather than $PATH or anything
136 like that. We just load it and use its entry point; we don't
137 pay attention to its PT_INTERP command (we are the interpreter
138 ourselves). This is an easy way to test a new ld.so before
139 installing it. */
140 if (_dl_argc < 2)
141 _dl_sysdep_fatal ("\
6a76c115 142Usage: ld.so [--list] EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
d66e34cd
RM
143You have invoked `ld.so', the helper program for shared library executables.\n\
144This program usually lives in the file `/lib/ld.so', and special directives\n\
145in executable files using ELF shared libraries tell the system's program\n\
146loader to load the helper program from this file. This helper program loads\n\
147the shared libraries needed by the program executable, prepares the program\n\
148to run, and runs it. You may invoke this helper program directly from the\n\
149command line to load and run an ELF executable file; this is like executing\n\
150that file itself, but always uses this helper program from the file you\n\
151specified, instead of the helper program file specified in the executable\n\
152file you run. This is mostly of use for maintainers to test new versions\n\
5bf62f2d 153of this helper program; chances are you did not intend to run this program.\n",
0200214b 154 NULL);
421f82e5 155
ffee1316
RM
156 /* Note the place where the dynamic linker actually came from. */
157 _dl_rtld_map.l_name = _dl_argv[0];
6a76c115 158
0200214b
RM
159 if (! strcmp (_dl_argv[1], "--list"))
160 {
161 list_only = 1;
6a76c115
RM
162
163 ++_dl_skip_args;
421f82e5
RM
164 --_dl_argc;
165 ++_dl_argv;
421f82e5 166 }
d66e34cd 167
0200214b
RM
168 ++_dl_skip_args;
169 --_dl_argc;
170 ++_dl_argv;
91f62ce6 171
ba79d61b 172 l = _dl_map_object (NULL, _dl_argv[0], lt_library);
0200214b
RM
173 phdr = l->l_phdr;
174 phent = l->l_phnum;
175 l->l_name = (char *) "";
176 *user_entry = l->l_entry;
177 }
178 else
179 {
180 /* Create a link_map for the executable itself.
181 This will be what dlopen on "" returns. */
ba79d61b 182 l = _dl_new_object ((char *) "", "", lt_library);
0200214b
RM
183 l->l_phdr = phdr;
184 l->l_phnum = phent;
0200214b
RM
185 l->l_entry = *user_entry;
186 }
187
188 if (l != _dl_loaded)
189 {
190 /* GDB assumes that the first element on the chain is the
191 link_map for the executable itself, and always skips it.
192 Make sure the first one is indeed that one. */
193 l->l_prev->l_next = l->l_next;
194 if (l->l_next)
195 l->l_next->l_prev = l->l_prev;
196 l->l_prev = NULL;
197 l->l_next = _dl_loaded;
198 _dl_loaded->l_prev = l;
199 _dl_loaded = l;
200 }
201
202 /* Scan the program header table for the dynamic section. */
203 for (ph = phdr; ph < &phdr[phent]; ++ph)
204 switch (ph->p_type)
205 {
206 case PT_DYNAMIC:
207 /* This tells us where to find the dynamic section,
208 which tells us everything we need to do. */
209 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
210 break;
211 case PT_INTERP:
212 /* This "interpreter segment" was used by the program loader to
213 find the program interpreter, which is this program itself, the
214 dynamic linker. We note what name finds us, so that a future
215 dlopen call or DT_NEEDED entry, for something that wants to link
216 against the dynamic linker as a shared library, will know that
217 the shared object is already loaded. */
ffee1316 218 _dl_rtld_map.l_libname = (const char *) l->l_addr + ph->p_vaddr;
0200214b
RM
219 break;
220 }
ffee1316
RM
221 if (! _dl_rtld_map.l_libname && _dl_rtld_map.l_name)
222 /* We were invoked directly, so the program might not have a PT_INTERP. */
223 _dl_rtld_map.l_libname = _dl_rtld_map.l_name;
224 else
225 assert (_dl_rtld_map.l_libname); /* How else did we get here? */
0200214b
RM
226
227 /* Extract the contents of the dynamic section for easy access. */
228 elf_get_dynamic_info (l->l_ld, l->l_info);
229 if (l->l_info[DT_HASH])
230 /* Set up our cache of pointers into the hash table. */
231 _dl_setup_hash (l);
232
0200214b
RM
233 /* Put the link_map for ourselves on the chain so it can be found by
234 name. */
ffee1316
RM
235 if (! _dl_rtld_map.l_name)
236 /* If not invoked directly, the dynamic linker shared object file was
237 found by the PT_INTERP name. */
238 _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname;
ba79d61b 239 _dl_rtld_map.l_type = lt_library;
0200214b
RM
240 while (l->l_next)
241 l = l->l_next;
ee188d55
RM
242 l->l_next = &_dl_rtld_map;
243 _dl_rtld_map.l_prev = l;
0200214b 244
efec1d0c
RM
245 /* Load all the libraries specified by DT_NEEDED entries. */
246 _dl_map_object_deps (l);
d66e34cd 247
f332db02
RM
248 /* We are done mapping things, so close the zero-fill descriptor. */
249 __close (_dl_zerofd);
250 _dl_zerofd = -1;
251
f9496a7b
RM
252 /* Remove _dl_rtld_map from the chain. */
253 _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next;
254 if (_dl_rtld_map.l_next)
255 _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev;
256
257 if (_dl_rtld_map.l_opencount)
0200214b 258 {
f9496a7b
RM
259 /* Some DT_NEEDED entry referred to the interpreter object itself, so
260 put it back in the list of visible objects. We insert it into the
261 chain in symbol search order because gdb uses the chain's order as
262 its symbol search order. */
263 unsigned int i = 1;
264 while (l->l_searchlist[i] != &_dl_rtld_map)
265 ++i;
266 _dl_rtld_map.l_prev = l->l_searchlist[i - 1];
267 _dl_rtld_map.l_next = (i + 1 < l->l_nsearchlist ?
268 l->l_searchlist[i + 1] : NULL);
269 assert (_dl_rtld_map.l_prev->l_next == _dl_rtld_map.l_next);
270 _dl_rtld_map.l_prev->l_next = &_dl_rtld_map;
4d02a5b1 271 if (_dl_rtld_map.l_next)
f9496a7b
RM
272 {
273 assert (_dl_rtld_map.l_next->l_prev == _dl_rtld_map.l_prev);
274 _dl_rtld_map.l_next->l_prev = &_dl_rtld_map;
275 }
0200214b 276 }
d66e34cd 277
0200214b
RM
278 if (list_only)
279 {
280 /* We were run just to list the shared libraries. It is
281 important that we do this before real relocation, because the
282 functions we call below for output may no longer work properly
283 after relocation. */
1a3a58fd 284
0200214b 285 int i;
fd861379 286
0200214b
RM
287 if (! _dl_loaded->l_info[DT_NEEDED])
288 _dl_sysdep_message ("\t", "statically linked\n", NULL);
289 else
290 for (l = _dl_loaded->l_next; l; l = l->l_next)
291 {
292 char buf[20], *bp;
293 buf[sizeof buf - 1] = '\0';
294 bp = _itoa (l->l_addr, &buf[sizeof buf - 1], 16, 0);
295 while (&buf[sizeof buf - 1] - bp < sizeof l->l_addr * 2)
296 *--bp = '0';
297 _dl_sysdep_message ("\t", l->l_libname, " => ", l->l_name,
298 " (0x", bp, ")\n", NULL);
299 }
1a3a58fd 300
0200214b
RM
301 for (i = 1; i < _dl_argc; ++i)
302 {
266180eb 303 const ElfW(Sym) *ref = NULL;
ba79d61b
RM
304 ElfW(Addr) loadbase = _dl_lookup_symbol (_dl_argv[i], &ref,
305 &_dl_default_scope[2],
306 "argument", 0, 0);
0200214b
RM
307 char buf[20], *bp;
308 buf[sizeof buf - 1] = '\0';
309 bp = _itoa (ref->st_value, &buf[sizeof buf - 1], 16, 0);
310 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
311 *--bp = '0';
312 _dl_sysdep_message (_dl_argv[i], " found at 0x", bp, NULL);
313 buf[sizeof buf - 1] = '\0';
314 bp = _itoa (loadbase, &buf[sizeof buf - 1], 16, 0);
315 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
316 *--bp = '0';
317 _dl_sysdep_message (" in object at 0x", bp, "\n", NULL);
1a3a58fd 318 }
d66e34cd 319
0200214b
RM
320 _exit (0);
321 }
86d2c878 322
0200214b
RM
323 lazy = !_dl_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
324
ba79d61b
RM
325 {
326 /* Now we have all the objects loaded. Relocate them all except for
327 the dynamic linker itself. We do this in reverse order so that copy
328 relocs of earlier objects overwrite the data written by later
329 objects. We do not re-relocate the dynamic linker itself in this
330 loop because that could result in the GOT entries for functions we
331 call being changed, and that would break us. It is safe to relocate
332 the dynamic linker out of order because it has no copy relocs (we
333 know that because it is self-contained). */
334
335 l = _dl_loaded;
336 while (l->l_next)
337 l = l->l_next;
338 do
339 {
340 if (l != &_dl_rtld_map)
341 {
342 _dl_relocate_object (l, _dl_object_relocation_scope (l), lazy);
343 *_dl_global_scope_end = NULL;
344 }
345 l = l->l_prev;
346 } while (l);
347
348 /* Do any necessary cleanups for the startup OS interface code.
349 We do these now so that no calls are made after rtld re-relocation
350 which might be resolved to different functions than we expect.
351 We cannot do this before relocating the other objects because
352 _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
353 _dl_sysdep_start_cleanup ();
354
355 if (_dl_rtld_map.l_opencount > 0)
356 /* There was an explicit ref to the dynamic linker as a shared lib.
357 Re-relocate ourselves with user-controlled symbol definitions. */
358 _dl_relocate_object (&_dl_rtld_map, &_dl_default_scope[2], 0);
359 }
0200214b 360
4d6acc61
RM
361 {
362 /* Initialize _r_debug. */
363 struct r_debug *r = _dl_debug_initialize (_dl_rtld_map.l_addr);
364
365 l = _dl_loaded;
366 if (l->l_info[DT_DEBUG])
367 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
368 with the run-time address of the r_debug structure */
369 l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
370
d746b89c
RM
371 /* Fill in the pointer in the dynamic linker's own dynamic section, in
372 case you run gdb on the dynamic linker directly. */
373 if (_dl_rtld_map.l_info[DT_DEBUG])
374 _dl_rtld_map.l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
375
4d6acc61
RM
376 /* Notify the debugger that all objects are now mapped in. */
377 r->r_state = RT_ADD;
378 _dl_debug_state ();
379 }
0200214b 380
ee188d55 381 if (_dl_rtld_map.l_info[DT_INIT])
0200214b
RM
382 {
383 /* Call the initializer for the compatibility version of the
384 dynamic linker. There is no additional initialization
385 required for the ABI-compliant dynamic linker. */
86d2c878 386
ee188d55
RM
387 (*(void (*) (void)) (_dl_rtld_map.l_addr +
388 _dl_rtld_map.l_info[DT_INIT]->d_un.d_ptr)) ();
0200214b
RM
389
390 /* Clear the field so a future dlopen won't run it again. */
ee188d55 391 _dl_rtld_map.l_info[DT_INIT] = NULL;
421f82e5 392 }
d66e34cd
RM
393
394 /* Once we return, _dl_sysdep_start will invoke
395 the DT_INIT functions and then *USER_ENTRY. */
396}