]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
hw/block/pflash_cfi: fix off-by-one error
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
53a5960a 40#if defined(CONFIG_USER_ONLY)
a9c94277 41#include "qemu.h"
432d268c 42#else /* !CONFIG_USER_ONLY */
741da0d3
PB
43#include "hw/hw.h"
44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
9c607668 47#include "sysemu/numa.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
741da0d3 49#include "exec/address-spaces.h"
9c17d615 50#include "sysemu/xen-mapcache.h"
0ab8ed18 51#include "trace-root.h"
d3a5038c 52
e2fa71f5
DDAG
53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54#include <fcntl.h>
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
a0be0c58
YZ
121uintptr_t qemu_host_page_size;
122intptr_t qemu_host_page_mask;
a0be0c58 123
20bccb82
PM
124bool set_preferred_target_page_bits(int bits)
125{
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131#ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139#endif
140 return true;
141}
142
e2eef170 143#if !defined(CONFIG_USER_ONLY)
4346ae3e 144
20bccb82
PM
145static void finalize_target_page_bits(void)
146{
147#ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152#endif
153}
154
1db8abb1
PB
155typedef struct PhysPageEntry PhysPageEntry;
156
157struct PhysPageEntry {
9736e55b 158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 159 uint32_t skip : 6;
9736e55b 160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 161 uint32_t ptr : 26;
1db8abb1
PB
162};
163
8b795765
MT
164#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
03f49957 166/* Size of the L2 (and L3, etc) page tables. */
57271d63 167#define ADDR_SPACE_BITS 64
03f49957 168
026736ce 169#define P_L2_BITS 9
03f49957
PB
170#define P_L2_SIZE (1 << P_L2_BITS)
171
172#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 175
53cb28cb 176typedef struct PhysPageMap {
79e2b9ae
PB
177 struct rcu_head rcu;
178
53cb28cb
MA
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185} PhysPageMap;
186
1db8abb1 187struct AddressSpaceDispatch {
729633c2 188 MemoryRegionSection *mru_section;
1db8abb1
PB
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
53cb28cb 193 PhysPageMap map;
1db8abb1
PB
194};
195
90260c6c
JK
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
16620684 199 FlatView *fv;
90260c6c 200 hwaddr base;
2615fabd 201 uint16_t sub_section[];
90260c6c
JK
202} subpage_t;
203
b41aac4f
LPF
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
5312bd8b 208
e2eef170 209static void io_mem_init(void);
62152b8a 210static void memory_map_init(void);
09daed84 211static void tcg_commit(MemoryListener *listener);
e2eef170 212
1ec9b909 213static MemoryRegion io_mem_watch;
32857f4d
PM
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
8deaf12c
GH
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
6658ffb8 235#endif
fd6ce8f6 236
6d9a1304 237#if !defined(CONFIG_USER_ONLY)
d6f2ea22 238
53cb28cb 239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 240{
101420b8 241 static unsigned alloc_hint = 16;
53cb28cb 242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 246 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 247 }
f7bf5461
AK
248}
249
db94604b 250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
251{
252 unsigned i;
8b795765 253 uint32_t ret;
db94604b
PB
254 PhysPageEntry e;
255 PhysPageEntry *p;
f7bf5461 256
53cb28cb 257 ret = map->nodes_nb++;
db94604b 258 p = map->nodes[ret];
f7bf5461 259 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 260 assert(ret != map->nodes_nb_alloc);
db94604b
PB
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 264 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 265 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 266 }
f7bf5461 267 return ret;
d6f2ea22
AK
268}
269
53cb28cb
MA
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 272 int level)
f7bf5461
AK
273{
274 PhysPageEntry *p;
03f49957 275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 276
9736e55b 277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 278 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 279 }
db94604b 280 p = map->nodes[lp->ptr];
03f49957 281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 282
03f49957 283 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 284 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 285 lp->skip = 0;
c19e8800 286 lp->ptr = leaf;
07f07b31
AK
287 *index += step;
288 *nb -= step;
2999097b 289 } else {
53cb28cb 290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
291 }
292 ++lp;
f7bf5461
AK
293 }
294}
295
ac1970fb 296static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 297 hwaddr index, hwaddr nb,
2999097b 298 uint16_t leaf)
f7bf5461 299{
2999097b 300 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 302
53cb28cb 303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
304}
305
b35ba30f
MT
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
efee678d 309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
efee678d 329 phys_page_compact(&p[i], nodes);
b35ba30f
MT
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
8629d3fc 359void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 360{
b35ba30f 361 if (d->phys_map.skip) {
efee678d 362 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
363 }
364}
365
29cb533d
FZ
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
258dfaaa 372 return int128_gethi(section->size) ||
29cb533d 373 range_covers_byte(section->offset_within_address_space,
258dfaaa 374 int128_getlo(section->size), addr);
29cb533d
FZ
375}
376
003a0cf2 377static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 378{
003a0cf2
PX
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
97115a8d 382 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 383 int i;
f1f6e3b8 384
9736e55b 385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 387 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 388 }
9affd6fc 389 p = nodes[lp.ptr];
03f49957 390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 391 }
b35ba30f 392
29cb533d 393 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
f3705d53
AK
398}
399
e5548617
BS
400bool memory_region_is_unassigned(MemoryRegion *mr)
401{
2a8e7499 402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 403 && mr != &io_mem_watch;
fd6ce8f6 404}
149f54b5 405
79e2b9ae 406/* Called from RCU critical section */
c7086b4a 407static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
408 hwaddr addr,
409 bool resolve_subpage)
9f029603 410{
729633c2 411 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
412 subpage_t *subpage;
413
07c114bb
PB
414 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
415 !section_covers_addr(section, addr)) {
003a0cf2 416 section = phys_page_find(d, addr);
07c114bb 417 atomic_set(&d->mru_section, section);
729633c2 418 }
90260c6c
JK
419 if (resolve_subpage && section->mr->subpage) {
420 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 421 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
422 }
423 return section;
9f029603
JK
424}
425
79e2b9ae 426/* Called from RCU critical section */
90260c6c 427static MemoryRegionSection *
c7086b4a 428address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 429 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
430{
431 MemoryRegionSection *section;
965eb2fc 432 MemoryRegion *mr;
a87f3954 433 Int128 diff;
149f54b5 434
c7086b4a 435 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
436 /* Compute offset within MemoryRegionSection */
437 addr -= section->offset_within_address_space;
438
439 /* Compute offset within MemoryRegion */
440 *xlat = addr + section->offset_within_region;
441
965eb2fc 442 mr = section->mr;
b242e0e0
PB
443
444 /* MMIO registers can be expected to perform full-width accesses based only
445 * on their address, without considering adjacent registers that could
446 * decode to completely different MemoryRegions. When such registers
447 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
448 * regions overlap wildly. For this reason we cannot clamp the accesses
449 * here.
450 *
451 * If the length is small (as is the case for address_space_ldl/stl),
452 * everything works fine. If the incoming length is large, however,
453 * the caller really has to do the clamping through memory_access_size.
454 */
965eb2fc 455 if (memory_region_is_ram(mr)) {
e4a511f8 456 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
457 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
458 }
149f54b5
PB
459 return section;
460}
90260c6c 461
d5e5fafd
PX
462/**
463 * flatview_do_translate - translate an address in FlatView
464 *
465 * @fv: the flat view that we want to translate on
466 * @addr: the address to be translated in above address space
467 * @xlat: the translated address offset within memory region. It
468 * cannot be @NULL.
469 * @plen_out: valid read/write length of the translated address. It
470 * can be @NULL when we don't care about it.
471 * @page_mask_out: page mask for the translated address. This
472 * should only be meaningful for IOMMU translated
473 * addresses, since there may be huge pages that this bit
474 * would tell. It can be @NULL if we don't care about it.
475 * @is_write: whether the translation operation is for write
476 * @is_mmio: whether this can be MMIO, set true if it can
477 *
478 * This function is called from RCU critical section
479 */
16620684
AK
480static MemoryRegionSection flatview_do_translate(FlatView *fv,
481 hwaddr addr,
482 hwaddr *xlat,
d5e5fafd
PX
483 hwaddr *plen_out,
484 hwaddr *page_mask_out,
16620684
AK
485 bool is_write,
486 bool is_mmio,
487 AddressSpace **target_as)
052c8fa9 488{
a764040c 489 IOMMUTLBEntry iotlb;
052c8fa9 490 MemoryRegionSection *section;
3df9d748 491 IOMMUMemoryRegion *iommu_mr;
1221a474 492 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
493 hwaddr page_mask = (hwaddr)(-1);
494 hwaddr plen = (hwaddr)(-1);
495
496 if (plen_out) {
497 plen = *plen_out;
498 }
052c8fa9
JW
499
500 for (;;) {
16620684
AK
501 section = address_space_translate_internal(
502 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 503 &plen, is_mmio);
052c8fa9 504
3df9d748
AK
505 iommu_mr = memory_region_get_iommu(section->mr);
506 if (!iommu_mr) {
052c8fa9
JW
507 break;
508 }
1221a474 509 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 510
1221a474
AK
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO);
a764040c
PX
513 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
514 | (addr & iotlb.addr_mask));
d5e5fafd
PX
515 page_mask &= iotlb.addr_mask;
516 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 517 if (!(iotlb.perm & (1 << is_write))) {
a764040c 518 goto translate_fail;
052c8fa9
JW
519 }
520
16620684 521 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 522 *target_as = iotlb.target_as;
052c8fa9
JW
523 }
524
a764040c
PX
525 *xlat = addr;
526
d5e5fafd
PX
527 if (page_mask == (hwaddr)(-1)) {
528 /* Not behind an IOMMU, use default page size. */
529 page_mask = ~TARGET_PAGE_MASK;
530 }
531
532 if (page_mask_out) {
533 *page_mask_out = page_mask;
534 }
535
536 if (plen_out) {
537 *plen_out = plen;
538 }
539
a764040c
PX
540 return *section;
541
542translate_fail:
543 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
544}
545
546/* Called from RCU critical section */
a764040c
PX
547IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
548 bool is_write)
90260c6c 549{
a764040c 550 MemoryRegionSection section;
076a93d7 551 hwaddr xlat, page_mask;
30951157 552
076a93d7
PX
553 /*
554 * This can never be MMIO, and we don't really care about plen,
555 * but page mask.
556 */
557 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
558 NULL, &page_mask, is_write, false, &as);
30951157 559
a764040c
PX
560 /* Illegal translation */
561 if (section.mr == &io_mem_unassigned) {
562 goto iotlb_fail;
563 }
30951157 564
a764040c
PX
565 /* Convert memory region offset into address space offset */
566 xlat += section.offset_within_address_space -
567 section.offset_within_region;
568
a764040c 569 return (IOMMUTLBEntry) {
e76bb18f 570 .target_as = as,
076a93d7
PX
571 .iova = addr & ~page_mask,
572 .translated_addr = xlat & ~page_mask,
573 .addr_mask = page_mask,
a764040c
PX
574 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
575 .perm = IOMMU_RW,
576 };
577
578iotlb_fail:
579 return (IOMMUTLBEntry) {0};
580}
581
582/* Called from RCU critical section */
16620684
AK
583MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
584 hwaddr *plen, bool is_write)
a764040c
PX
585{
586 MemoryRegion *mr;
587 MemoryRegionSection section;
16620684 588 AddressSpace *as = NULL;
a764040c
PX
589
590 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
591 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
592 is_write, true, &as);
a764040c
PX
593 mr = section.mr;
594
fe680d0d 595 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 596 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 597 *plen = MIN(page, *plen);
a87f3954
PB
598 }
599
30951157 600 return mr;
90260c6c
JK
601}
602
79e2b9ae 603/* Called from RCU critical section */
90260c6c 604MemoryRegionSection *
d7898cda 605address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 606 hwaddr *xlat, hwaddr *plen)
90260c6c 607{
30951157 608 MemoryRegionSection *section;
f35e44e7 609 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
610
611 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 612
3df9d748 613 assert(!memory_region_is_iommu(section->mr));
30951157 614 return section;
90260c6c 615}
5b6dd868 616#endif
fd6ce8f6 617
b170fce3 618#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
619
620static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 621{
259186a7 622 CPUState *cpu = opaque;
a513fe19 623
5b6dd868
BS
624 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
625 version_id is increased. */
259186a7 626 cpu->interrupt_request &= ~0x01;
d10eb08f 627 tlb_flush(cpu);
5b6dd868
BS
628
629 return 0;
a513fe19 630}
7501267e 631
6c3bff0e
PD
632static int cpu_common_pre_load(void *opaque)
633{
634 CPUState *cpu = opaque;
635
adee6424 636 cpu->exception_index = -1;
6c3bff0e
PD
637
638 return 0;
639}
640
641static bool cpu_common_exception_index_needed(void *opaque)
642{
643 CPUState *cpu = opaque;
644
adee6424 645 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
646}
647
648static const VMStateDescription vmstate_cpu_common_exception_index = {
649 .name = "cpu_common/exception_index",
650 .version_id = 1,
651 .minimum_version_id = 1,
5cd8cada 652 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
653 .fields = (VMStateField[]) {
654 VMSTATE_INT32(exception_index, CPUState),
655 VMSTATE_END_OF_LIST()
656 }
657};
658
bac05aa9
AS
659static bool cpu_common_crash_occurred_needed(void *opaque)
660{
661 CPUState *cpu = opaque;
662
663 return cpu->crash_occurred;
664}
665
666static const VMStateDescription vmstate_cpu_common_crash_occurred = {
667 .name = "cpu_common/crash_occurred",
668 .version_id = 1,
669 .minimum_version_id = 1,
670 .needed = cpu_common_crash_occurred_needed,
671 .fields = (VMStateField[]) {
672 VMSTATE_BOOL(crash_occurred, CPUState),
673 VMSTATE_END_OF_LIST()
674 }
675};
676
1a1562f5 677const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
678 .name = "cpu_common",
679 .version_id = 1,
680 .minimum_version_id = 1,
6c3bff0e 681 .pre_load = cpu_common_pre_load,
5b6dd868 682 .post_load = cpu_common_post_load,
35d08458 683 .fields = (VMStateField[]) {
259186a7
AF
684 VMSTATE_UINT32(halted, CPUState),
685 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 686 VMSTATE_END_OF_LIST()
6c3bff0e 687 },
5cd8cada
JQ
688 .subsections = (const VMStateDescription*[]) {
689 &vmstate_cpu_common_exception_index,
bac05aa9 690 &vmstate_cpu_common_crash_occurred,
5cd8cada 691 NULL
5b6dd868
BS
692 }
693};
1a1562f5 694
5b6dd868 695#endif
ea041c0e 696
38d8f5c8 697CPUState *qemu_get_cpu(int index)
ea041c0e 698{
bdc44640 699 CPUState *cpu;
ea041c0e 700
bdc44640 701 CPU_FOREACH(cpu) {
55e5c285 702 if (cpu->cpu_index == index) {
bdc44640 703 return cpu;
55e5c285 704 }
ea041c0e 705 }
5b6dd868 706
bdc44640 707 return NULL;
ea041c0e
FB
708}
709
09daed84 710#if !defined(CONFIG_USER_ONLY)
56943e8c 711void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 712{
12ebc9a7
PM
713 CPUAddressSpace *newas;
714
715 /* Target code should have set num_ases before calling us */
716 assert(asidx < cpu->num_ases);
717
56943e8c
PM
718 if (asidx == 0) {
719 /* address space 0 gets the convenience alias */
720 cpu->as = as;
721 }
722
12ebc9a7
PM
723 /* KVM cannot currently support multiple address spaces. */
724 assert(asidx == 0 || !kvm_enabled());
09daed84 725
12ebc9a7
PM
726 if (!cpu->cpu_ases) {
727 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 728 }
32857f4d 729
12ebc9a7
PM
730 newas = &cpu->cpu_ases[asidx];
731 newas->cpu = cpu;
732 newas->as = as;
56943e8c 733 if (tcg_enabled()) {
12ebc9a7
PM
734 newas->tcg_as_listener.commit = tcg_commit;
735 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 736 }
09daed84 737}
651a5bc0
PM
738
739AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
740{
741 /* Return the AddressSpace corresponding to the specified index */
742 return cpu->cpu_ases[asidx].as;
743}
09daed84
EI
744#endif
745
7bbc124e 746void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 747{
9dfeca7c
BR
748 CPUClass *cc = CPU_GET_CLASS(cpu);
749
267f685b 750 cpu_list_remove(cpu);
9dfeca7c
BR
751
752 if (cc->vmsd != NULL) {
753 vmstate_unregister(NULL, cc->vmsd, cpu);
754 }
755 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
756 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
757 }
1c59eb39
BR
758}
759
c7e002c5
FZ
760Property cpu_common_props[] = {
761#ifndef CONFIG_USER_ONLY
762 /* Create a memory property for softmmu CPU object,
763 * so users can wire up its memory. (This can't go in qom/cpu.c
764 * because that file is compiled only once for both user-mode
765 * and system builds.) The default if no link is set up is to use
766 * the system address space.
767 */
768 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
769 MemoryRegion *),
770#endif
771 DEFINE_PROP_END_OF_LIST(),
772};
773
39e329e3 774void cpu_exec_initfn(CPUState *cpu)
ea041c0e 775{
56943e8c 776 cpu->as = NULL;
12ebc9a7 777 cpu->num_ases = 0;
56943e8c 778
291135b5 779#ifndef CONFIG_USER_ONLY
291135b5 780 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
781 cpu->memory = system_memory;
782 object_ref(OBJECT(cpu->memory));
291135b5 783#endif
39e329e3
LV
784}
785
ce5b1bbf 786void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 787{
55c3ceef 788 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 789 static bool tcg_target_initialized;
291135b5 790
267f685b 791 cpu_list_add(cpu);
1bc7e522 792
2dda6354
EC
793 if (tcg_enabled() && !tcg_target_initialized) {
794 tcg_target_initialized = true;
55c3ceef
RH
795 cc->tcg_initialize();
796 }
797
1bc7e522 798#ifndef CONFIG_USER_ONLY
e0d47944 799 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 800 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 801 }
b170fce3 802 if (cc->vmsd != NULL) {
741da0d3 803 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 804 }
741da0d3 805#endif
ea041c0e
FB
806}
807
406bc339 808#if defined(CONFIG_USER_ONLY)
00b941e5 809static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 810{
406bc339
PK
811 mmap_lock();
812 tb_lock();
813 tb_invalidate_phys_page_range(pc, pc + 1, 0);
814 tb_unlock();
815 mmap_unlock();
816}
817#else
818static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
819{
820 MemTxAttrs attrs;
821 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
822 int asidx = cpu_asidx_from_attrs(cpu, attrs);
823 if (phys != -1) {
824 /* Locks grabbed by tb_invalidate_phys_addr */
825 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
826 phys | (pc & ~TARGET_PAGE_MASK));
827 }
1e7855a5 828}
406bc339 829#endif
d720b93d 830
c527ee8f 831#if defined(CONFIG_USER_ONLY)
75a34036 832void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
833
834{
835}
836
3ee887e8
PM
837int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
838 int flags)
839{
840 return -ENOSYS;
841}
842
843void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
844{
845}
846
75a34036 847int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
848 int flags, CPUWatchpoint **watchpoint)
849{
850 return -ENOSYS;
851}
852#else
6658ffb8 853/* Add a watchpoint. */
75a34036 854int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 855 int flags, CPUWatchpoint **watchpoint)
6658ffb8 856{
c0ce998e 857 CPUWatchpoint *wp;
6658ffb8 858
05068c0d 859 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 860 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
861 error_report("tried to set invalid watchpoint at %"
862 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
863 return -EINVAL;
864 }
7267c094 865 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
866
867 wp->vaddr = addr;
05068c0d 868 wp->len = len;
a1d1bb31
AL
869 wp->flags = flags;
870
2dc9f411 871 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
872 if (flags & BP_GDB) {
873 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
874 } else {
875 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
876 }
6658ffb8 877
31b030d4 878 tlb_flush_page(cpu, addr);
a1d1bb31
AL
879
880 if (watchpoint)
881 *watchpoint = wp;
882 return 0;
6658ffb8
PB
883}
884
a1d1bb31 885/* Remove a specific watchpoint. */
75a34036 886int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 887 int flags)
6658ffb8 888{
a1d1bb31 889 CPUWatchpoint *wp;
6658ffb8 890
ff4700b0 891 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 892 if (addr == wp->vaddr && len == wp->len
6e140f28 893 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 894 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
895 return 0;
896 }
897 }
a1d1bb31 898 return -ENOENT;
6658ffb8
PB
899}
900
a1d1bb31 901/* Remove a specific watchpoint by reference. */
75a34036 902void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 903{
ff4700b0 904 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 905
31b030d4 906 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 907
7267c094 908 g_free(watchpoint);
a1d1bb31
AL
909}
910
911/* Remove all matching watchpoints. */
75a34036 912void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 913{
c0ce998e 914 CPUWatchpoint *wp, *next;
a1d1bb31 915
ff4700b0 916 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
917 if (wp->flags & mask) {
918 cpu_watchpoint_remove_by_ref(cpu, wp);
919 }
c0ce998e 920 }
7d03f82f 921}
05068c0d
PM
922
923/* Return true if this watchpoint address matches the specified
924 * access (ie the address range covered by the watchpoint overlaps
925 * partially or completely with the address range covered by the
926 * access).
927 */
928static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
929 vaddr addr,
930 vaddr len)
931{
932 /* We know the lengths are non-zero, but a little caution is
933 * required to avoid errors in the case where the range ends
934 * exactly at the top of the address space and so addr + len
935 * wraps round to zero.
936 */
937 vaddr wpend = wp->vaddr + wp->len - 1;
938 vaddr addrend = addr + len - 1;
939
940 return !(addr > wpend || wp->vaddr > addrend);
941}
942
c527ee8f 943#endif
7d03f82f 944
a1d1bb31 945/* Add a breakpoint. */
b3310ab3 946int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 947 CPUBreakpoint **breakpoint)
4c3a88a2 948{
c0ce998e 949 CPUBreakpoint *bp;
3b46e624 950
7267c094 951 bp = g_malloc(sizeof(*bp));
4c3a88a2 952
a1d1bb31
AL
953 bp->pc = pc;
954 bp->flags = flags;
955
2dc9f411 956 /* keep all GDB-injected breakpoints in front */
00b941e5 957 if (flags & BP_GDB) {
f0c3c505 958 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 959 } else {
f0c3c505 960 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 961 }
3b46e624 962
f0c3c505 963 breakpoint_invalidate(cpu, pc);
a1d1bb31 964
00b941e5 965 if (breakpoint) {
a1d1bb31 966 *breakpoint = bp;
00b941e5 967 }
4c3a88a2 968 return 0;
4c3a88a2
FB
969}
970
a1d1bb31 971/* Remove a specific breakpoint. */
b3310ab3 972int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 973{
a1d1bb31
AL
974 CPUBreakpoint *bp;
975
f0c3c505 976 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 977 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 978 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
979 return 0;
980 }
7d03f82f 981 }
a1d1bb31 982 return -ENOENT;
7d03f82f
EI
983}
984
a1d1bb31 985/* Remove a specific breakpoint by reference. */
b3310ab3 986void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 987{
f0c3c505
AF
988 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
989
990 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 991
7267c094 992 g_free(breakpoint);
a1d1bb31
AL
993}
994
995/* Remove all matching breakpoints. */
b3310ab3 996void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 997{
c0ce998e 998 CPUBreakpoint *bp, *next;
a1d1bb31 999
f0c3c505 1000 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1001 if (bp->flags & mask) {
1002 cpu_breakpoint_remove_by_ref(cpu, bp);
1003 }
c0ce998e 1004 }
4c3a88a2
FB
1005}
1006
c33a346e
FB
1007/* enable or disable single step mode. EXCP_DEBUG is returned by the
1008 CPU loop after each instruction */
3825b28f 1009void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1010{
ed2803da
AF
1011 if (cpu->singlestep_enabled != enabled) {
1012 cpu->singlestep_enabled = enabled;
1013 if (kvm_enabled()) {
38e478ec 1014 kvm_update_guest_debug(cpu, 0);
ed2803da 1015 } else {
ccbb4d44 1016 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1017 /* XXX: only flush what is necessary */
bbd77c18 1018 tb_flush(cpu);
e22a25c9 1019 }
c33a346e 1020 }
c33a346e
FB
1021}
1022
a47dddd7 1023void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1024{
1025 va_list ap;
493ae1f0 1026 va_list ap2;
7501267e
FB
1027
1028 va_start(ap, fmt);
493ae1f0 1029 va_copy(ap2, ap);
7501267e
FB
1030 fprintf(stderr, "qemu: fatal: ");
1031 vfprintf(stderr, fmt, ap);
1032 fprintf(stderr, "\n");
878096ee 1033 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1034 if (qemu_log_separate()) {
1ee73216 1035 qemu_log_lock();
93fcfe39
AL
1036 qemu_log("qemu: fatal: ");
1037 qemu_log_vprintf(fmt, ap2);
1038 qemu_log("\n");
a0762859 1039 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1040 qemu_log_flush();
1ee73216 1041 qemu_log_unlock();
93fcfe39 1042 qemu_log_close();
924edcae 1043 }
493ae1f0 1044 va_end(ap2);
f9373291 1045 va_end(ap);
7615936e 1046 replay_finish();
fd052bf6
RV
1047#if defined(CONFIG_USER_ONLY)
1048 {
1049 struct sigaction act;
1050 sigfillset(&act.sa_mask);
1051 act.sa_handler = SIG_DFL;
1052 sigaction(SIGABRT, &act, NULL);
1053 }
1054#endif
7501267e
FB
1055 abort();
1056}
1057
0124311e 1058#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1059/* Called from RCU critical section */
041603fe
PB
1060static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1061{
1062 RAMBlock *block;
1063
43771539 1064 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1065 if (block && addr - block->offset < block->max_length) {
68851b98 1066 return block;
041603fe 1067 }
99e15582 1068 RAMBLOCK_FOREACH(block) {
9b8424d5 1069 if (addr - block->offset < block->max_length) {
041603fe
PB
1070 goto found;
1071 }
1072 }
1073
1074 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1075 abort();
1076
1077found:
43771539
PB
1078 /* It is safe to write mru_block outside the iothread lock. This
1079 * is what happens:
1080 *
1081 * mru_block = xxx
1082 * rcu_read_unlock()
1083 * xxx removed from list
1084 * rcu_read_lock()
1085 * read mru_block
1086 * mru_block = NULL;
1087 * call_rcu(reclaim_ramblock, xxx);
1088 * rcu_read_unlock()
1089 *
1090 * atomic_rcu_set is not needed here. The block was already published
1091 * when it was placed into the list. Here we're just making an extra
1092 * copy of the pointer.
1093 */
041603fe
PB
1094 ram_list.mru_block = block;
1095 return block;
1096}
1097
a2f4d5be 1098static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1099{
9a13565d 1100 CPUState *cpu;
041603fe 1101 ram_addr_t start1;
a2f4d5be
JQ
1102 RAMBlock *block;
1103 ram_addr_t end;
1104
1105 end = TARGET_PAGE_ALIGN(start + length);
1106 start &= TARGET_PAGE_MASK;
d24981d3 1107
0dc3f44a 1108 rcu_read_lock();
041603fe
PB
1109 block = qemu_get_ram_block(start);
1110 assert(block == qemu_get_ram_block(end - 1));
1240be24 1111 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1112 CPU_FOREACH(cpu) {
1113 tlb_reset_dirty(cpu, start1, length);
1114 }
0dc3f44a 1115 rcu_read_unlock();
d24981d3
JQ
1116}
1117
5579c7f3 1118/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1119bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1120 ram_addr_t length,
1121 unsigned client)
1ccde1cb 1122{
5b82b703 1123 DirtyMemoryBlocks *blocks;
03eebc9e 1124 unsigned long end, page;
5b82b703 1125 bool dirty = false;
03eebc9e
SH
1126
1127 if (length == 0) {
1128 return false;
1129 }
f23db169 1130
03eebc9e
SH
1131 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1132 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1133
1134 rcu_read_lock();
1135
1136 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1137
1138 while (page < end) {
1139 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1140 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1141 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1142
1143 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1144 offset, num);
1145 page += num;
1146 }
1147
1148 rcu_read_unlock();
03eebc9e
SH
1149
1150 if (dirty && tcg_enabled()) {
a2f4d5be 1151 tlb_reset_dirty_range_all(start, length);
5579c7f3 1152 }
03eebc9e
SH
1153
1154 return dirty;
1ccde1cb
FB
1155}
1156
8deaf12c
GH
1157DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1158 (ram_addr_t start, ram_addr_t length, unsigned client)
1159{
1160 DirtyMemoryBlocks *blocks;
1161 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1162 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1163 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1164 DirtyBitmapSnapshot *snap;
1165 unsigned long page, end, dest;
1166
1167 snap = g_malloc0(sizeof(*snap) +
1168 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1169 snap->start = first;
1170 snap->end = last;
1171
1172 page = first >> TARGET_PAGE_BITS;
1173 end = last >> TARGET_PAGE_BITS;
1174 dest = 0;
1175
1176 rcu_read_lock();
1177
1178 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1179
1180 while (page < end) {
1181 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1182 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1183 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1184
1185 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1186 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1187 offset >>= BITS_PER_LEVEL;
1188
1189 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1190 blocks->blocks[idx] + offset,
1191 num);
1192 page += num;
1193 dest += num >> BITS_PER_LEVEL;
1194 }
1195
1196 rcu_read_unlock();
1197
1198 if (tcg_enabled()) {
1199 tlb_reset_dirty_range_all(start, length);
1200 }
1201
1202 return snap;
1203}
1204
1205bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1206 ram_addr_t start,
1207 ram_addr_t length)
1208{
1209 unsigned long page, end;
1210
1211 assert(start >= snap->start);
1212 assert(start + length <= snap->end);
1213
1214 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1215 page = (start - snap->start) >> TARGET_PAGE_BITS;
1216
1217 while (page < end) {
1218 if (test_bit(page, snap->dirty)) {
1219 return true;
1220 }
1221 page++;
1222 }
1223 return false;
1224}
1225
79e2b9ae 1226/* Called from RCU critical section */
bb0e627a 1227hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1228 MemoryRegionSection *section,
1229 target_ulong vaddr,
1230 hwaddr paddr, hwaddr xlat,
1231 int prot,
1232 target_ulong *address)
e5548617 1233{
a8170e5e 1234 hwaddr iotlb;
e5548617
BS
1235 CPUWatchpoint *wp;
1236
cc5bea60 1237 if (memory_region_is_ram(section->mr)) {
e5548617 1238 /* Normal RAM. */
e4e69794 1239 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1240 if (!section->readonly) {
b41aac4f 1241 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1242 } else {
b41aac4f 1243 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1244 }
1245 } else {
0b8e2c10
PM
1246 AddressSpaceDispatch *d;
1247
16620684 1248 d = flatview_to_dispatch(section->fv);
0b8e2c10 1249 iotlb = section - d->map.sections;
149f54b5 1250 iotlb += xlat;
e5548617
BS
1251 }
1252
1253 /* Make accesses to pages with watchpoints go via the
1254 watchpoint trap routines. */
ff4700b0 1255 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1256 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1257 /* Avoid trapping reads of pages with a write breakpoint. */
1258 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1259 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1260 *address |= TLB_MMIO;
1261 break;
1262 }
1263 }
1264 }
1265
1266 return iotlb;
1267}
9fa3e853
FB
1268#endif /* defined(CONFIG_USER_ONLY) */
1269
e2eef170 1270#if !defined(CONFIG_USER_ONLY)
8da3ff18 1271
c227f099 1272static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1273 uint16_t section);
16620684 1274static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1275
a2b257d6
IM
1276static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1277 qemu_anon_ram_alloc;
91138037
MA
1278
1279/*
1280 * Set a custom physical guest memory alloator.
1281 * Accelerators with unusual needs may need this. Hopefully, we can
1282 * get rid of it eventually.
1283 */
a2b257d6 1284void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1285{
1286 phys_mem_alloc = alloc;
1287}
1288
53cb28cb
MA
1289static uint16_t phys_section_add(PhysPageMap *map,
1290 MemoryRegionSection *section)
5312bd8b 1291{
68f3f65b
PB
1292 /* The physical section number is ORed with a page-aligned
1293 * pointer to produce the iotlb entries. Thus it should
1294 * never overflow into the page-aligned value.
1295 */
53cb28cb 1296 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1297
53cb28cb
MA
1298 if (map->sections_nb == map->sections_nb_alloc) {
1299 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1300 map->sections = g_renew(MemoryRegionSection, map->sections,
1301 map->sections_nb_alloc);
5312bd8b 1302 }
53cb28cb 1303 map->sections[map->sections_nb] = *section;
dfde4e6e 1304 memory_region_ref(section->mr);
53cb28cb 1305 return map->sections_nb++;
5312bd8b
AK
1306}
1307
058bc4b5
PB
1308static void phys_section_destroy(MemoryRegion *mr)
1309{
55b4e80b
DS
1310 bool have_sub_page = mr->subpage;
1311
dfde4e6e
PB
1312 memory_region_unref(mr);
1313
55b4e80b 1314 if (have_sub_page) {
058bc4b5 1315 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1316 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1317 g_free(subpage);
1318 }
1319}
1320
6092666e 1321static void phys_sections_free(PhysPageMap *map)
5312bd8b 1322{
9affd6fc
PB
1323 while (map->sections_nb > 0) {
1324 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1325 phys_section_destroy(section->mr);
1326 }
9affd6fc
PB
1327 g_free(map->sections);
1328 g_free(map->nodes);
5312bd8b
AK
1329}
1330
9950322a 1331static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1332{
9950322a 1333 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1334 subpage_t *subpage;
a8170e5e 1335 hwaddr base = section->offset_within_address_space
0f0cb164 1336 & TARGET_PAGE_MASK;
003a0cf2 1337 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1338 MemoryRegionSection subsection = {
1339 .offset_within_address_space = base,
052e87b0 1340 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1341 };
a8170e5e 1342 hwaddr start, end;
0f0cb164 1343
f3705d53 1344 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1345
f3705d53 1346 if (!(existing->mr->subpage)) {
16620684
AK
1347 subpage = subpage_init(fv, base);
1348 subsection.fv = fv;
0f0cb164 1349 subsection.mr = &subpage->iomem;
ac1970fb 1350 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1351 phys_section_add(&d->map, &subsection));
0f0cb164 1352 } else {
f3705d53 1353 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1354 }
1355 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1356 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1357 subpage_register(subpage, start, end,
1358 phys_section_add(&d->map, section));
0f0cb164
AK
1359}
1360
1361
9950322a 1362static void register_multipage(FlatView *fv,
052e87b0 1363 MemoryRegionSection *section)
33417e70 1364{
9950322a 1365 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1366 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1367 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1368 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1369 TARGET_PAGE_BITS));
dd81124b 1370
733d5ef5
PB
1371 assert(num_pages);
1372 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1373}
1374
8629d3fc 1375void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1376{
99b9cc06 1377 MemoryRegionSection now = *section, remain = *section;
052e87b0 1378 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1379
733d5ef5
PB
1380 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1381 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1382 - now.offset_within_address_space;
1383
052e87b0 1384 now.size = int128_min(int128_make64(left), now.size);
9950322a 1385 register_subpage(fv, &now);
733d5ef5 1386 } else {
052e87b0 1387 now.size = int128_zero();
733d5ef5 1388 }
052e87b0
PB
1389 while (int128_ne(remain.size, now.size)) {
1390 remain.size = int128_sub(remain.size, now.size);
1391 remain.offset_within_address_space += int128_get64(now.size);
1392 remain.offset_within_region += int128_get64(now.size);
69b67646 1393 now = remain;
052e87b0 1394 if (int128_lt(remain.size, page_size)) {
9950322a 1395 register_subpage(fv, &now);
88266249 1396 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1397 now.size = page_size;
9950322a 1398 register_subpage(fv, &now);
69b67646 1399 } else {
052e87b0 1400 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1401 register_multipage(fv, &now);
69b67646 1402 }
0f0cb164
AK
1403 }
1404}
1405
62a2744c
SY
1406void qemu_flush_coalesced_mmio_buffer(void)
1407{
1408 if (kvm_enabled())
1409 kvm_flush_coalesced_mmio_buffer();
1410}
1411
b2a8658e
UD
1412void qemu_mutex_lock_ramlist(void)
1413{
1414 qemu_mutex_lock(&ram_list.mutex);
1415}
1416
1417void qemu_mutex_unlock_ramlist(void)
1418{
1419 qemu_mutex_unlock(&ram_list.mutex);
1420}
1421
be9b23c4
PX
1422void ram_block_dump(Monitor *mon)
1423{
1424 RAMBlock *block;
1425 char *psize;
1426
1427 rcu_read_lock();
1428 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1429 "Block Name", "PSize", "Offset", "Used", "Total");
1430 RAMBLOCK_FOREACH(block) {
1431 psize = size_to_str(block->page_size);
1432 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1433 " 0x%016" PRIx64 "\n", block->idstr, psize,
1434 (uint64_t)block->offset,
1435 (uint64_t)block->used_length,
1436 (uint64_t)block->max_length);
1437 g_free(psize);
1438 }
1439 rcu_read_unlock();
1440}
1441
9c607668
AK
1442#ifdef __linux__
1443/*
1444 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1445 * may or may not name the same files / on the same filesystem now as
1446 * when we actually open and map them. Iterate over the file
1447 * descriptors instead, and use qemu_fd_getpagesize().
1448 */
1449static int find_max_supported_pagesize(Object *obj, void *opaque)
1450{
1451 char *mem_path;
1452 long *hpsize_min = opaque;
1453
1454 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1455 mem_path = object_property_get_str(obj, "mem-path", NULL);
1456 if (mem_path) {
1457 long hpsize = qemu_mempath_getpagesize(mem_path);
bb8d4bb3 1458 g_free(mem_path);
9c607668
AK
1459 if (hpsize < *hpsize_min) {
1460 *hpsize_min = hpsize;
1461 }
1462 } else {
1463 *hpsize_min = getpagesize();
1464 }
1465 }
1466
1467 return 0;
1468}
1469
1470long qemu_getrampagesize(void)
1471{
1472 long hpsize = LONG_MAX;
1473 long mainrampagesize;
1474 Object *memdev_root;
1475
1476 if (mem_path) {
1477 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1478 } else {
1479 mainrampagesize = getpagesize();
1480 }
1481
1482 /* it's possible we have memory-backend objects with
1483 * hugepage-backed RAM. these may get mapped into system
1484 * address space via -numa parameters or memory hotplug
1485 * hooks. we want to take these into account, but we
1486 * also want to make sure these supported hugepage
1487 * sizes are applicable across the entire range of memory
1488 * we may boot from, so we take the min across all
1489 * backends, and assume normal pages in cases where a
1490 * backend isn't backed by hugepages.
1491 */
1492 memdev_root = object_resolve_path("/objects", NULL);
1493 if (memdev_root) {
1494 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1495 }
1496 if (hpsize == LONG_MAX) {
1497 /* No additional memory regions found ==> Report main RAM page size */
1498 return mainrampagesize;
1499 }
1500
1501 /* If NUMA is disabled or the NUMA nodes are not backed with a
1502 * memory-backend, then there is at least one node using "normal" RAM,
1503 * so if its page size is smaller we have got to report that size instead.
1504 */
1505 if (hpsize > mainrampagesize &&
1506 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1507 static bool warned;
1508 if (!warned) {
1509 error_report("Huge page support disabled (n/a for main memory).");
1510 warned = true;
1511 }
1512 return mainrampagesize;
1513 }
1514
1515 return hpsize;
1516}
1517#else
1518long qemu_getrampagesize(void)
1519{
1520 return getpagesize();
1521}
1522#endif
1523
e1e84ba0 1524#ifdef __linux__
d6af99c9
HZ
1525static int64_t get_file_size(int fd)
1526{
1527 int64_t size = lseek(fd, 0, SEEK_END);
1528 if (size < 0) {
1529 return -errno;
1530 }
1531 return size;
1532}
1533
8d37b030
MAL
1534static int file_ram_open(const char *path,
1535 const char *region_name,
1536 bool *created,
1537 Error **errp)
c902760f
MT
1538{
1539 char *filename;
8ca761f6
PF
1540 char *sanitized_name;
1541 char *c;
5c3ece79 1542 int fd = -1;
c902760f 1543
8d37b030 1544 *created = false;
fd97fd44
MA
1545 for (;;) {
1546 fd = open(path, O_RDWR);
1547 if (fd >= 0) {
1548 /* @path names an existing file, use it */
1549 break;
8d31d6b6 1550 }
fd97fd44
MA
1551 if (errno == ENOENT) {
1552 /* @path names a file that doesn't exist, create it */
1553 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1554 if (fd >= 0) {
8d37b030 1555 *created = true;
fd97fd44
MA
1556 break;
1557 }
1558 } else if (errno == EISDIR) {
1559 /* @path names a directory, create a file there */
1560 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1561 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1562 for (c = sanitized_name; *c != '\0'; c++) {
1563 if (*c == '/') {
1564 *c = '_';
1565 }
1566 }
8ca761f6 1567
fd97fd44
MA
1568 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1569 sanitized_name);
1570 g_free(sanitized_name);
8d31d6b6 1571
fd97fd44
MA
1572 fd = mkstemp(filename);
1573 if (fd >= 0) {
1574 unlink(filename);
1575 g_free(filename);
1576 break;
1577 }
1578 g_free(filename);
8d31d6b6 1579 }
fd97fd44
MA
1580 if (errno != EEXIST && errno != EINTR) {
1581 error_setg_errno(errp, errno,
1582 "can't open backing store %s for guest RAM",
1583 path);
8d37b030 1584 return -1;
fd97fd44
MA
1585 }
1586 /*
1587 * Try again on EINTR and EEXIST. The latter happens when
1588 * something else creates the file between our two open().
1589 */
8d31d6b6 1590 }
c902760f 1591
8d37b030
MAL
1592 return fd;
1593}
1594
1595static void *file_ram_alloc(RAMBlock *block,
1596 ram_addr_t memory,
1597 int fd,
1598 bool truncate,
1599 Error **errp)
1600{
1601 void *area;
1602
863e9621 1603 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1604 block->mr->align = block->page_size;
1605#if defined(__s390x__)
1606 if (kvm_enabled()) {
1607 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1608 }
1609#endif
fd97fd44 1610
863e9621 1611 if (memory < block->page_size) {
fd97fd44 1612 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1613 "or larger than page size 0x%zx",
1614 memory, block->page_size);
8d37b030 1615 return NULL;
1775f111
HZ
1616 }
1617
863e9621 1618 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1619
1620 /*
1621 * ftruncate is not supported by hugetlbfs in older
1622 * hosts, so don't bother bailing out on errors.
1623 * If anything goes wrong with it under other filesystems,
1624 * mmap will fail.
d6af99c9
HZ
1625 *
1626 * Do not truncate the non-empty backend file to avoid corrupting
1627 * the existing data in the file. Disabling shrinking is not
1628 * enough. For example, the current vNVDIMM implementation stores
1629 * the guest NVDIMM labels at the end of the backend file. If the
1630 * backend file is later extended, QEMU will not be able to find
1631 * those labels. Therefore, extending the non-empty backend file
1632 * is disabled as well.
c902760f 1633 */
8d37b030 1634 if (truncate && ftruncate(fd, memory)) {
9742bf26 1635 perror("ftruncate");
7f56e740 1636 }
c902760f 1637
d2f39add
DD
1638 area = qemu_ram_mmap(fd, memory, block->mr->align,
1639 block->flags & RAM_SHARED);
c902760f 1640 if (area == MAP_FAILED) {
7f56e740 1641 error_setg_errno(errp, errno,
fd97fd44 1642 "unable to map backing store for guest RAM");
8d37b030 1643 return NULL;
c902760f 1644 }
ef36fa14
MT
1645
1646 if (mem_prealloc) {
1e356fc1 1647 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1648 if (errp && *errp) {
8d37b030
MAL
1649 qemu_ram_munmap(area, memory);
1650 return NULL;
056b68af 1651 }
ef36fa14
MT
1652 }
1653
04b16653 1654 block->fd = fd;
c902760f
MT
1655 return area;
1656}
1657#endif
1658
0dc3f44a 1659/* Called with the ramlist lock held. */
d17b5288 1660static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1661{
1662 RAMBlock *block, *next_block;
3e837b2c 1663 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1664
49cd9ac6
SH
1665 assert(size != 0); /* it would hand out same offset multiple times */
1666
0dc3f44a 1667 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1668 return 0;
0d53d9fe 1669 }
04b16653 1670
99e15582 1671 RAMBLOCK_FOREACH(block) {
f15fbc4b 1672 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1673
62be4e3a 1674 end = block->offset + block->max_length;
04b16653 1675
99e15582 1676 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1677 if (next_block->offset >= end) {
1678 next = MIN(next, next_block->offset);
1679 }
1680 }
1681 if (next - end >= size && next - end < mingap) {
3e837b2c 1682 offset = end;
04b16653
AW
1683 mingap = next - end;
1684 }
1685 }
3e837b2c
AW
1686
1687 if (offset == RAM_ADDR_MAX) {
1688 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1689 (uint64_t)size);
1690 abort();
1691 }
1692
04b16653
AW
1693 return offset;
1694}
1695
b8c48993 1696unsigned long last_ram_page(void)
d17b5288
AW
1697{
1698 RAMBlock *block;
1699 ram_addr_t last = 0;
1700
0dc3f44a 1701 rcu_read_lock();
99e15582 1702 RAMBLOCK_FOREACH(block) {
62be4e3a 1703 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1704 }
0dc3f44a 1705 rcu_read_unlock();
b8c48993 1706 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1707}
1708
ddb97f1d
JB
1709static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1710{
1711 int ret;
ddb97f1d
JB
1712
1713 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1714 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1715 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1716 if (ret) {
1717 perror("qemu_madvise");
1718 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1719 "but dump_guest_core=off specified\n");
1720 }
1721 }
1722}
1723
422148d3
DDAG
1724const char *qemu_ram_get_idstr(RAMBlock *rb)
1725{
1726 return rb->idstr;
1727}
1728
463a4ac2
DDAG
1729bool qemu_ram_is_shared(RAMBlock *rb)
1730{
1731 return rb->flags & RAM_SHARED;
1732}
1733
ae3a7047 1734/* Called with iothread lock held. */
fa53a0e5 1735void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1736{
fa53a0e5 1737 RAMBlock *block;
20cfe881 1738
c5705a77
AK
1739 assert(new_block);
1740 assert(!new_block->idstr[0]);
84b89d78 1741
09e5ab63
AL
1742 if (dev) {
1743 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1744 if (id) {
1745 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1746 g_free(id);
84b89d78
CM
1747 }
1748 }
1749 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1750
ab0a9956 1751 rcu_read_lock();
99e15582 1752 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1753 if (block != new_block &&
1754 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1755 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1756 new_block->idstr);
1757 abort();
1758 }
1759 }
0dc3f44a 1760 rcu_read_unlock();
c5705a77
AK
1761}
1762
ae3a7047 1763/* Called with iothread lock held. */
fa53a0e5 1764void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1765{
ae3a7047
MD
1766 /* FIXME: arch_init.c assumes that this is not called throughout
1767 * migration. Ignore the problem since hot-unplug during migration
1768 * does not work anyway.
1769 */
20cfe881
HT
1770 if (block) {
1771 memset(block->idstr, 0, sizeof(block->idstr));
1772 }
1773}
1774
863e9621
DDAG
1775size_t qemu_ram_pagesize(RAMBlock *rb)
1776{
1777 return rb->page_size;
1778}
1779
67f11b5c
DDAG
1780/* Returns the largest size of page in use */
1781size_t qemu_ram_pagesize_largest(void)
1782{
1783 RAMBlock *block;
1784 size_t largest = 0;
1785
99e15582 1786 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1787 largest = MAX(largest, qemu_ram_pagesize(block));
1788 }
1789
1790 return largest;
1791}
1792
8490fc78
LC
1793static int memory_try_enable_merging(void *addr, size_t len)
1794{
75cc7f01 1795 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1796 /* disabled by the user */
1797 return 0;
1798 }
1799
1800 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1801}
1802
62be4e3a
MT
1803/* Only legal before guest might have detected the memory size: e.g. on
1804 * incoming migration, or right after reset.
1805 *
1806 * As memory core doesn't know how is memory accessed, it is up to
1807 * resize callback to update device state and/or add assertions to detect
1808 * misuse, if necessary.
1809 */
fa53a0e5 1810int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1811{
62be4e3a
MT
1812 assert(block);
1813
4ed023ce 1814 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1815
62be4e3a
MT
1816 if (block->used_length == newsize) {
1817 return 0;
1818 }
1819
1820 if (!(block->flags & RAM_RESIZEABLE)) {
1821 error_setg_errno(errp, EINVAL,
1822 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1823 " in != 0x" RAM_ADDR_FMT, block->idstr,
1824 newsize, block->used_length);
1825 return -EINVAL;
1826 }
1827
1828 if (block->max_length < newsize) {
1829 error_setg_errno(errp, EINVAL,
1830 "Length too large: %s: 0x" RAM_ADDR_FMT
1831 " > 0x" RAM_ADDR_FMT, block->idstr,
1832 newsize, block->max_length);
1833 return -EINVAL;
1834 }
1835
1836 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1837 block->used_length = newsize;
58d2707e
PB
1838 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1839 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1840 memory_region_set_size(block->mr, newsize);
1841 if (block->resized) {
1842 block->resized(block->idstr, newsize, block->host);
1843 }
1844 return 0;
1845}
1846
5b82b703
SH
1847/* Called with ram_list.mutex held */
1848static void dirty_memory_extend(ram_addr_t old_ram_size,
1849 ram_addr_t new_ram_size)
1850{
1851 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1852 DIRTY_MEMORY_BLOCK_SIZE);
1853 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1854 DIRTY_MEMORY_BLOCK_SIZE);
1855 int i;
1856
1857 /* Only need to extend if block count increased */
1858 if (new_num_blocks <= old_num_blocks) {
1859 return;
1860 }
1861
1862 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1863 DirtyMemoryBlocks *old_blocks;
1864 DirtyMemoryBlocks *new_blocks;
1865 int j;
1866
1867 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1868 new_blocks = g_malloc(sizeof(*new_blocks) +
1869 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1870
1871 if (old_num_blocks) {
1872 memcpy(new_blocks->blocks, old_blocks->blocks,
1873 old_num_blocks * sizeof(old_blocks->blocks[0]));
1874 }
1875
1876 for (j = old_num_blocks; j < new_num_blocks; j++) {
1877 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1878 }
1879
1880 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1881
1882 if (old_blocks) {
1883 g_free_rcu(old_blocks, rcu);
1884 }
1885 }
1886}
1887
528f46af 1888static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1889{
e1c57ab8 1890 RAMBlock *block;
0d53d9fe 1891 RAMBlock *last_block = NULL;
2152f5ca 1892 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1893 Error *err = NULL;
2152f5ca 1894
b8c48993 1895 old_ram_size = last_ram_page();
c5705a77 1896
b2a8658e 1897 qemu_mutex_lock_ramlist();
9b8424d5 1898 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1899
1900 if (!new_block->host) {
1901 if (xen_enabled()) {
9b8424d5 1902 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1903 new_block->mr, &err);
1904 if (err) {
1905 error_propagate(errp, err);
1906 qemu_mutex_unlock_ramlist();
39c350ee 1907 return;
37aa7a0e 1908 }
e1c57ab8 1909 } else {
9b8424d5 1910 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1911 &new_block->mr->align);
39228250 1912 if (!new_block->host) {
ef701d7b
HT
1913 error_setg_errno(errp, errno,
1914 "cannot set up guest memory '%s'",
1915 memory_region_name(new_block->mr));
1916 qemu_mutex_unlock_ramlist();
39c350ee 1917 return;
39228250 1918 }
9b8424d5 1919 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1920 }
c902760f 1921 }
94a6b54f 1922
dd631697
LZ
1923 new_ram_size = MAX(old_ram_size,
1924 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1925 if (new_ram_size > old_ram_size) {
5b82b703 1926 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1927 }
0d53d9fe
MD
1928 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1929 * QLIST (which has an RCU-friendly variant) does not have insertion at
1930 * tail, so save the last element in last_block.
1931 */
99e15582 1932 RAMBLOCK_FOREACH(block) {
0d53d9fe 1933 last_block = block;
9b8424d5 1934 if (block->max_length < new_block->max_length) {
abb26d63
PB
1935 break;
1936 }
1937 }
1938 if (block) {
0dc3f44a 1939 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1940 } else if (last_block) {
0dc3f44a 1941 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1942 } else { /* list is empty */
0dc3f44a 1943 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1944 }
0d6d3c87 1945 ram_list.mru_block = NULL;
94a6b54f 1946
0dc3f44a
MD
1947 /* Write list before version */
1948 smp_wmb();
f798b07f 1949 ram_list.version++;
b2a8658e 1950 qemu_mutex_unlock_ramlist();
f798b07f 1951
9b8424d5 1952 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1953 new_block->used_length,
1954 DIRTY_CLIENTS_ALL);
94a6b54f 1955
a904c911
PB
1956 if (new_block->host) {
1957 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1958 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1959 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1960 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1961 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1962 }
94a6b54f 1963}
e9a1ab19 1964
0b183fc8 1965#ifdef __linux__
38b3362d
MAL
1966RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1967 bool share, int fd,
1968 Error **errp)
e1c57ab8
PB
1969{
1970 RAMBlock *new_block;
ef701d7b 1971 Error *local_err = NULL;
8d37b030 1972 int64_t file_size;
e1c57ab8
PB
1973
1974 if (xen_enabled()) {
7f56e740 1975 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1976 return NULL;
e1c57ab8
PB
1977 }
1978
e45e7ae2
MAL
1979 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1980 error_setg(errp,
1981 "host lacks kvm mmu notifiers, -mem-path unsupported");
1982 return NULL;
1983 }
1984
e1c57ab8
PB
1985 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1986 /*
1987 * file_ram_alloc() needs to allocate just like
1988 * phys_mem_alloc, but we haven't bothered to provide
1989 * a hook there.
1990 */
7f56e740
PB
1991 error_setg(errp,
1992 "-mem-path not supported with this accelerator");
528f46af 1993 return NULL;
e1c57ab8
PB
1994 }
1995
4ed023ce 1996 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
1997 file_size = get_file_size(fd);
1998 if (file_size > 0 && file_size < size) {
1999 error_setg(errp, "backing store %s size 0x%" PRIx64
2000 " does not match 'size' option 0x" RAM_ADDR_FMT,
2001 mem_path, file_size, size);
8d37b030
MAL
2002 return NULL;
2003 }
2004
e1c57ab8
PB
2005 new_block = g_malloc0(sizeof(*new_block));
2006 new_block->mr = mr;
9b8424d5
MT
2007 new_block->used_length = size;
2008 new_block->max_length = size;
dbcb8981 2009 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2010 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2011 if (!new_block->host) {
2012 g_free(new_block);
528f46af 2013 return NULL;
7f56e740
PB
2014 }
2015
528f46af 2016 ram_block_add(new_block, &local_err);
ef701d7b
HT
2017 if (local_err) {
2018 g_free(new_block);
2019 error_propagate(errp, local_err);
528f46af 2020 return NULL;
ef701d7b 2021 }
528f46af 2022 return new_block;
38b3362d
MAL
2023
2024}
2025
2026
2027RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2028 bool share, const char *mem_path,
2029 Error **errp)
2030{
2031 int fd;
2032 bool created;
2033 RAMBlock *block;
2034
2035 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2036 if (fd < 0) {
2037 return NULL;
2038 }
2039
2040 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2041 if (!block) {
2042 if (created) {
2043 unlink(mem_path);
2044 }
2045 close(fd);
2046 return NULL;
2047 }
2048
2049 return block;
e1c57ab8 2050}
0b183fc8 2051#endif
e1c57ab8 2052
62be4e3a 2053static
528f46af
FZ
2054RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2055 void (*resized)(const char*,
2056 uint64_t length,
2057 void *host),
2058 void *host, bool resizeable,
2059 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2060{
2061 RAMBlock *new_block;
ef701d7b 2062 Error *local_err = NULL;
e1c57ab8 2063
4ed023ce
DDAG
2064 size = HOST_PAGE_ALIGN(size);
2065 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2066 new_block = g_malloc0(sizeof(*new_block));
2067 new_block->mr = mr;
62be4e3a 2068 new_block->resized = resized;
9b8424d5
MT
2069 new_block->used_length = size;
2070 new_block->max_length = max_size;
62be4e3a 2071 assert(max_size >= size);
e1c57ab8 2072 new_block->fd = -1;
863e9621 2073 new_block->page_size = getpagesize();
e1c57ab8
PB
2074 new_block->host = host;
2075 if (host) {
7bd4f430 2076 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2077 }
62be4e3a
MT
2078 if (resizeable) {
2079 new_block->flags |= RAM_RESIZEABLE;
2080 }
528f46af 2081 ram_block_add(new_block, &local_err);
ef701d7b
HT
2082 if (local_err) {
2083 g_free(new_block);
2084 error_propagate(errp, local_err);
528f46af 2085 return NULL;
ef701d7b 2086 }
528f46af 2087 return new_block;
e1c57ab8
PB
2088}
2089
528f46af 2090RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2091 MemoryRegion *mr, Error **errp)
2092{
2093 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2094}
2095
528f46af 2096RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2097{
62be4e3a
MT
2098 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2099}
2100
528f46af 2101RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2102 void (*resized)(const char*,
2103 uint64_t length,
2104 void *host),
2105 MemoryRegion *mr, Error **errp)
2106{
2107 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2108}
2109
43771539
PB
2110static void reclaim_ramblock(RAMBlock *block)
2111{
2112 if (block->flags & RAM_PREALLOC) {
2113 ;
2114 } else if (xen_enabled()) {
2115 xen_invalidate_map_cache_entry(block->host);
2116#ifndef _WIN32
2117 } else if (block->fd >= 0) {
2f3a2bb1 2118 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2119 close(block->fd);
2120#endif
2121 } else {
2122 qemu_anon_ram_free(block->host, block->max_length);
2123 }
2124 g_free(block);
2125}
2126
f1060c55 2127void qemu_ram_free(RAMBlock *block)
e9a1ab19 2128{
85bc2a15
MAL
2129 if (!block) {
2130 return;
2131 }
2132
0987d735
PB
2133 if (block->host) {
2134 ram_block_notify_remove(block->host, block->max_length);
2135 }
2136
b2a8658e 2137 qemu_mutex_lock_ramlist();
f1060c55
FZ
2138 QLIST_REMOVE_RCU(block, next);
2139 ram_list.mru_block = NULL;
2140 /* Write list before version */
2141 smp_wmb();
2142 ram_list.version++;
2143 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2144 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2145}
2146
cd19cfa2
HY
2147#ifndef _WIN32
2148void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2149{
2150 RAMBlock *block;
2151 ram_addr_t offset;
2152 int flags;
2153 void *area, *vaddr;
2154
99e15582 2155 RAMBLOCK_FOREACH(block) {
cd19cfa2 2156 offset = addr - block->offset;
9b8424d5 2157 if (offset < block->max_length) {
1240be24 2158 vaddr = ramblock_ptr(block, offset);
7bd4f430 2159 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2160 ;
dfeaf2ab
MA
2161 } else if (xen_enabled()) {
2162 abort();
cd19cfa2
HY
2163 } else {
2164 flags = MAP_FIXED;
3435f395 2165 if (block->fd >= 0) {
dbcb8981
PB
2166 flags |= (block->flags & RAM_SHARED ?
2167 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2168 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2169 flags, block->fd, offset);
cd19cfa2 2170 } else {
2eb9fbaa
MA
2171 /*
2172 * Remap needs to match alloc. Accelerators that
2173 * set phys_mem_alloc never remap. If they did,
2174 * we'd need a remap hook here.
2175 */
2176 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2177
cd19cfa2
HY
2178 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2179 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2180 flags, -1, 0);
cd19cfa2
HY
2181 }
2182 if (area != vaddr) {
f15fbc4b
AP
2183 fprintf(stderr, "Could not remap addr: "
2184 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2185 length, addr);
2186 exit(1);
2187 }
8490fc78 2188 memory_try_enable_merging(vaddr, length);
ddb97f1d 2189 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2190 }
cd19cfa2
HY
2191 }
2192 }
2193}
2194#endif /* !_WIN32 */
2195
1b5ec234 2196/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2197 * This should not be used for general purpose DMA. Use address_space_map
2198 * or address_space_rw instead. For local memory (e.g. video ram) that the
2199 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2200 *
49b24afc 2201 * Called within RCU critical section.
1b5ec234 2202 */
0878d0e1 2203void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2204{
3655cb9c
GA
2205 RAMBlock *block = ram_block;
2206
2207 if (block == NULL) {
2208 block = qemu_get_ram_block(addr);
0878d0e1 2209 addr -= block->offset;
3655cb9c 2210 }
ae3a7047
MD
2211
2212 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2213 /* We need to check if the requested address is in the RAM
2214 * because we don't want to map the entire memory in QEMU.
2215 * In that case just map until the end of the page.
2216 */
2217 if (block->offset == 0) {
1ff7c598 2218 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2219 }
ae3a7047 2220
1ff7c598 2221 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2222 }
0878d0e1 2223 return ramblock_ptr(block, addr);
dc828ca1
PB
2224}
2225
0878d0e1 2226/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2227 * but takes a size argument.
0dc3f44a 2228 *
e81bcda5 2229 * Called within RCU critical section.
ae3a7047 2230 */
3655cb9c 2231static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2232 hwaddr *size, bool lock)
38bee5dc 2233{
3655cb9c 2234 RAMBlock *block = ram_block;
8ab934f9
SS
2235 if (*size == 0) {
2236 return NULL;
2237 }
e81bcda5 2238
3655cb9c
GA
2239 if (block == NULL) {
2240 block = qemu_get_ram_block(addr);
0878d0e1 2241 addr -= block->offset;
3655cb9c 2242 }
0878d0e1 2243 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2244
2245 if (xen_enabled() && block->host == NULL) {
2246 /* We need to check if the requested address is in the RAM
2247 * because we don't want to map the entire memory in QEMU.
2248 * In that case just map the requested area.
2249 */
2250 if (block->offset == 0) {
f5aa69bd 2251 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2252 }
2253
f5aa69bd 2254 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2255 }
e81bcda5 2256
0878d0e1 2257 return ramblock_ptr(block, addr);
38bee5dc
SS
2258}
2259
422148d3
DDAG
2260/*
2261 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2262 * in that RAMBlock.
2263 *
2264 * ptr: Host pointer to look up
2265 * round_offset: If true round the result offset down to a page boundary
2266 * *ram_addr: set to result ram_addr
2267 * *offset: set to result offset within the RAMBlock
2268 *
2269 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2270 *
2271 * By the time this function returns, the returned pointer is not protected
2272 * by RCU anymore. If the caller is not within an RCU critical section and
2273 * does not hold the iothread lock, it must have other means of protecting the
2274 * pointer, such as a reference to the region that includes the incoming
2275 * ram_addr_t.
2276 */
422148d3 2277RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2278 ram_addr_t *offset)
5579c7f3 2279{
94a6b54f
PB
2280 RAMBlock *block;
2281 uint8_t *host = ptr;
2282
868bb33f 2283 if (xen_enabled()) {
f615f396 2284 ram_addr_t ram_addr;
0dc3f44a 2285 rcu_read_lock();
f615f396
PB
2286 ram_addr = xen_ram_addr_from_mapcache(ptr);
2287 block = qemu_get_ram_block(ram_addr);
422148d3 2288 if (block) {
d6b6aec4 2289 *offset = ram_addr - block->offset;
422148d3 2290 }
0dc3f44a 2291 rcu_read_unlock();
422148d3 2292 return block;
712c2b41
SS
2293 }
2294
0dc3f44a
MD
2295 rcu_read_lock();
2296 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2297 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2298 goto found;
2299 }
2300
99e15582 2301 RAMBLOCK_FOREACH(block) {
432d268c
JN
2302 /* This case append when the block is not mapped. */
2303 if (block->host == NULL) {
2304 continue;
2305 }
9b8424d5 2306 if (host - block->host < block->max_length) {
23887b79 2307 goto found;
f471a17e 2308 }
94a6b54f 2309 }
432d268c 2310
0dc3f44a 2311 rcu_read_unlock();
1b5ec234 2312 return NULL;
23887b79
PB
2313
2314found:
422148d3
DDAG
2315 *offset = (host - block->host);
2316 if (round_offset) {
2317 *offset &= TARGET_PAGE_MASK;
2318 }
0dc3f44a 2319 rcu_read_unlock();
422148d3
DDAG
2320 return block;
2321}
2322
e3dd7493
DDAG
2323/*
2324 * Finds the named RAMBlock
2325 *
2326 * name: The name of RAMBlock to find
2327 *
2328 * Returns: RAMBlock (or NULL if not found)
2329 */
2330RAMBlock *qemu_ram_block_by_name(const char *name)
2331{
2332 RAMBlock *block;
2333
99e15582 2334 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2335 if (!strcmp(name, block->idstr)) {
2336 return block;
2337 }
2338 }
2339
2340 return NULL;
2341}
2342
422148d3
DDAG
2343/* Some of the softmmu routines need to translate from a host pointer
2344 (typically a TLB entry) back to a ram offset. */
07bdaa41 2345ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2346{
2347 RAMBlock *block;
f615f396 2348 ram_addr_t offset;
422148d3 2349
f615f396 2350 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2351 if (!block) {
07bdaa41 2352 return RAM_ADDR_INVALID;
422148d3
DDAG
2353 }
2354
07bdaa41 2355 return block->offset + offset;
e890261f 2356}
f471a17e 2357
27266271
PM
2358/* Called within RCU critical section. */
2359void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2360 CPUState *cpu,
2361 vaddr mem_vaddr,
2362 ram_addr_t ram_addr,
2363 unsigned size)
2364{
2365 ndi->cpu = cpu;
2366 ndi->ram_addr = ram_addr;
2367 ndi->mem_vaddr = mem_vaddr;
2368 ndi->size = size;
2369 ndi->locked = false;
ba051fb5 2370
5aa1ef71 2371 assert(tcg_enabled());
52159192 2372 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2373 ndi->locked = true;
ba051fb5 2374 tb_lock();
0e0df1e2 2375 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2376 }
27266271
PM
2377}
2378
2379/* Called within RCU critical section. */
2380void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2381{
2382 if (ndi->locked) {
2383 tb_unlock();
2384 }
2385
2386 /* Set both VGA and migration bits for simplicity and to remove
2387 * the notdirty callback faster.
2388 */
2389 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2390 DIRTY_CLIENTS_NOCODE);
2391 /* we remove the notdirty callback only if the code has been
2392 flushed */
2393 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2394 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2395 }
2396}
2397
2398/* Called within RCU critical section. */
2399static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2400 uint64_t val, unsigned size)
2401{
2402 NotDirtyInfo ndi;
2403
2404 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2405 ram_addr, size);
2406
0e0df1e2
AK
2407 switch (size) {
2408 case 1:
0878d0e1 2409 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2410 break;
2411 case 2:
0878d0e1 2412 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2413 break;
2414 case 4:
0878d0e1 2415 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2416 break;
ad52878f
AB
2417 case 8:
2418 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2419 break;
0e0df1e2
AK
2420 default:
2421 abort();
3a7d929e 2422 }
27266271 2423 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2424}
2425
b018ddf6
PB
2426static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2427 unsigned size, bool is_write)
2428{
2429 return is_write;
2430}
2431
0e0df1e2 2432static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2433 .write = notdirty_mem_write,
b018ddf6 2434 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2435 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2436 .valid = {
2437 .min_access_size = 1,
2438 .max_access_size = 8,
2439 .unaligned = false,
2440 },
2441 .impl = {
2442 .min_access_size = 1,
2443 .max_access_size = 8,
2444 .unaligned = false,
2445 },
1ccde1cb
FB
2446};
2447
0f459d16 2448/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2449static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2450{
93afeade 2451 CPUState *cpu = current_cpu;
568496c0 2452 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2453 target_ulong vaddr;
a1d1bb31 2454 CPUWatchpoint *wp;
0f459d16 2455
5aa1ef71 2456 assert(tcg_enabled());
ff4700b0 2457 if (cpu->watchpoint_hit) {
06d55cc1
AL
2458 /* We re-entered the check after replacing the TB. Now raise
2459 * the debug interrupt so that is will trigger after the
2460 * current instruction. */
93afeade 2461 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2462 return;
2463 }
93afeade 2464 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2465 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2466 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2467 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2468 && (wp->flags & flags)) {
08225676
PM
2469 if (flags == BP_MEM_READ) {
2470 wp->flags |= BP_WATCHPOINT_HIT_READ;
2471 } else {
2472 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2473 }
2474 wp->hitaddr = vaddr;
66b9b43c 2475 wp->hitattrs = attrs;
ff4700b0 2476 if (!cpu->watchpoint_hit) {
568496c0
SF
2477 if (wp->flags & BP_CPU &&
2478 !cc->debug_check_watchpoint(cpu, wp)) {
2479 wp->flags &= ~BP_WATCHPOINT_HIT;
2480 continue;
2481 }
ff4700b0 2482 cpu->watchpoint_hit = wp;
a5e99826 2483
8d04fb55
JK
2484 /* Both tb_lock and iothread_mutex will be reset when
2485 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2486 * back into the cpu_exec main loop.
a5e99826
FK
2487 */
2488 tb_lock();
239c51a5 2489 tb_check_watchpoint(cpu);
6e140f28 2490 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2491 cpu->exception_index = EXCP_DEBUG;
5638d180 2492 cpu_loop_exit(cpu);
6e140f28 2493 } else {
9b990ee5
RH
2494 /* Force execution of one insn next time. */
2495 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2496 cpu_loop_exit_noexc(cpu);
6e140f28 2497 }
06d55cc1 2498 }
6e140f28
AL
2499 } else {
2500 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2501 }
2502 }
2503}
2504
6658ffb8
PB
2505/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2506 so these check for a hit then pass through to the normal out-of-line
2507 phys routines. */
66b9b43c
PM
2508static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2509 unsigned size, MemTxAttrs attrs)
6658ffb8 2510{
66b9b43c
PM
2511 MemTxResult res;
2512 uint64_t data;
79ed0416
PM
2513 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2514 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2515
2516 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2517 switch (size) {
66b9b43c 2518 case 1:
79ed0416 2519 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2520 break;
2521 case 2:
79ed0416 2522 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2523 break;
2524 case 4:
79ed0416 2525 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2526 break;
306526b5
PB
2527 case 8:
2528 data = address_space_ldq(as, addr, attrs, &res);
2529 break;
1ec9b909
AK
2530 default: abort();
2531 }
66b9b43c
PM
2532 *pdata = data;
2533 return res;
6658ffb8
PB
2534}
2535
66b9b43c
PM
2536static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2537 uint64_t val, unsigned size,
2538 MemTxAttrs attrs)
6658ffb8 2539{
66b9b43c 2540 MemTxResult res;
79ed0416
PM
2541 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2542 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2543
2544 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2545 switch (size) {
67364150 2546 case 1:
79ed0416 2547 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2548 break;
2549 case 2:
79ed0416 2550 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2551 break;
2552 case 4:
79ed0416 2553 address_space_stl(as, addr, val, attrs, &res);
67364150 2554 break;
306526b5
PB
2555 case 8:
2556 address_space_stq(as, addr, val, attrs, &res);
2557 break;
1ec9b909
AK
2558 default: abort();
2559 }
66b9b43c 2560 return res;
6658ffb8
PB
2561}
2562
1ec9b909 2563static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2564 .read_with_attrs = watch_mem_read,
2565 .write_with_attrs = watch_mem_write,
1ec9b909 2566 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2567 .valid = {
2568 .min_access_size = 1,
2569 .max_access_size = 8,
2570 .unaligned = false,
2571 },
2572 .impl = {
2573 .min_access_size = 1,
2574 .max_access_size = 8,
2575 .unaligned = false,
2576 },
6658ffb8 2577};
6658ffb8 2578
f77c2312
PB
2579static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2580 MemTxAttrs attrs, uint8_t *buf, int len);
16620684
AK
2581static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2582 const uint8_t *buf, int len);
2583static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2584 bool is_write);
2585
f25a49e0
PM
2586static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2587 unsigned len, MemTxAttrs attrs)
db7b5426 2588{
acc9d80b 2589 subpage_t *subpage = opaque;
ff6cff75 2590 uint8_t buf[8];
5c9eb028 2591 MemTxResult res;
791af8c8 2592
db7b5426 2593#if defined(DEBUG_SUBPAGE)
016e9d62 2594 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2595 subpage, len, addr);
db7b5426 2596#endif
16620684 2597 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2598 if (res) {
2599 return res;
f25a49e0 2600 }
acc9d80b
JK
2601 switch (len) {
2602 case 1:
f25a49e0
PM
2603 *data = ldub_p(buf);
2604 return MEMTX_OK;
acc9d80b 2605 case 2:
f25a49e0
PM
2606 *data = lduw_p(buf);
2607 return MEMTX_OK;
acc9d80b 2608 case 4:
f25a49e0
PM
2609 *data = ldl_p(buf);
2610 return MEMTX_OK;
ff6cff75 2611 case 8:
f25a49e0
PM
2612 *data = ldq_p(buf);
2613 return MEMTX_OK;
acc9d80b
JK
2614 default:
2615 abort();
2616 }
db7b5426
BS
2617}
2618
f25a49e0
PM
2619static MemTxResult subpage_write(void *opaque, hwaddr addr,
2620 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2621{
acc9d80b 2622 subpage_t *subpage = opaque;
ff6cff75 2623 uint8_t buf[8];
acc9d80b 2624
db7b5426 2625#if defined(DEBUG_SUBPAGE)
016e9d62 2626 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2627 " value %"PRIx64"\n",
2628 __func__, subpage, len, addr, value);
db7b5426 2629#endif
acc9d80b
JK
2630 switch (len) {
2631 case 1:
2632 stb_p(buf, value);
2633 break;
2634 case 2:
2635 stw_p(buf, value);
2636 break;
2637 case 4:
2638 stl_p(buf, value);
2639 break;
ff6cff75
PB
2640 case 8:
2641 stq_p(buf, value);
2642 break;
acc9d80b
JK
2643 default:
2644 abort();
2645 }
16620684 2646 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2647}
2648
c353e4cc 2649static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2650 unsigned len, bool is_write)
c353e4cc 2651{
acc9d80b 2652 subpage_t *subpage = opaque;
c353e4cc 2653#if defined(DEBUG_SUBPAGE)
016e9d62 2654 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2655 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2656#endif
2657
16620684
AK
2658 return flatview_access_valid(subpage->fv, addr + subpage->base,
2659 len, is_write);
c353e4cc
PB
2660}
2661
70c68e44 2662static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2663 .read_with_attrs = subpage_read,
2664 .write_with_attrs = subpage_write,
ff6cff75
PB
2665 .impl.min_access_size = 1,
2666 .impl.max_access_size = 8,
2667 .valid.min_access_size = 1,
2668 .valid.max_access_size = 8,
c353e4cc 2669 .valid.accepts = subpage_accepts,
70c68e44 2670 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2671};
2672
c227f099 2673static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2674 uint16_t section)
db7b5426
BS
2675{
2676 int idx, eidx;
2677
2678 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2679 return -1;
2680 idx = SUBPAGE_IDX(start);
2681 eidx = SUBPAGE_IDX(end);
2682#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2683 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2684 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2685#endif
db7b5426 2686 for (; idx <= eidx; idx++) {
5312bd8b 2687 mmio->sub_section[idx] = section;
db7b5426
BS
2688 }
2689
2690 return 0;
2691}
2692
16620684 2693static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2694{
c227f099 2695 subpage_t *mmio;
db7b5426 2696
2615fabd 2697 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2698 mmio->fv = fv;
1eec614b 2699 mmio->base = base;
2c9b15ca 2700 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2701 NULL, TARGET_PAGE_SIZE);
b3b00c78 2702 mmio->iomem.subpage = true;
db7b5426 2703#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2704 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2705 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2706#endif
b41aac4f 2707 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2708
2709 return mmio;
2710}
2711
16620684 2712static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2713{
16620684 2714 assert(fv);
5312bd8b 2715 MemoryRegionSection section = {
16620684 2716 .fv = fv,
5312bd8b
AK
2717 .mr = mr,
2718 .offset_within_address_space = 0,
2719 .offset_within_region = 0,
052e87b0 2720 .size = int128_2_64(),
5312bd8b
AK
2721 };
2722
53cb28cb 2723 return phys_section_add(map, &section);
5312bd8b
AK
2724}
2725
a54c87b6 2726MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2727{
a54c87b6
PM
2728 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2729 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2730 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2731 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2732
2733 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2734}
2735
e9179ce1
AK
2736static void io_mem_init(void)
2737{
1f6245e5 2738 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2739 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2740 NULL, UINT64_MAX);
8d04fb55
JK
2741
2742 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2743 * which can be called without the iothread mutex.
2744 */
2c9b15ca 2745 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2746 NULL, UINT64_MAX);
8d04fb55
JK
2747 memory_region_clear_global_locking(&io_mem_notdirty);
2748
2c9b15ca 2749 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2750 NULL, UINT64_MAX);
e9179ce1
AK
2751}
2752
8629d3fc 2753AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2754{
53cb28cb
MA
2755 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2756 uint16_t n;
2757
16620684 2758 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2759 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2760 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2761 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2762 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2763 assert(n == PHYS_SECTION_ROM);
16620684 2764 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2765 assert(n == PHYS_SECTION_WATCH);
00752703 2766
9736e55b 2767 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2768
2769 return d;
00752703
PB
2770}
2771
66a6df1d 2772void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2773{
2774 phys_sections_free(&d->map);
2775 g_free(d);
2776}
2777
1d71148e 2778static void tcg_commit(MemoryListener *listener)
50c1e149 2779{
32857f4d
PM
2780 CPUAddressSpace *cpuas;
2781 AddressSpaceDispatch *d;
117712c3
AK
2782
2783 /* since each CPU stores ram addresses in its TLB cache, we must
2784 reset the modified entries */
32857f4d
PM
2785 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2786 cpu_reloading_memory_map();
2787 /* The CPU and TLB are protected by the iothread lock.
2788 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2789 * may have split the RCU critical section.
2790 */
66a6df1d 2791 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2792 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2793 tlb_flush(cpuas->cpu);
50c1e149
AK
2794}
2795
62152b8a
AK
2796static void memory_map_init(void)
2797{
7267c094 2798 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2799
57271d63 2800 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2801 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2802
7267c094 2803 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2804 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2805 65536);
7dca8043 2806 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2807}
2808
2809MemoryRegion *get_system_memory(void)
2810{
2811 return system_memory;
2812}
2813
309cb471
AK
2814MemoryRegion *get_system_io(void)
2815{
2816 return system_io;
2817}
2818
e2eef170
PB
2819#endif /* !defined(CONFIG_USER_ONLY) */
2820
13eb76e0
FB
2821/* physical memory access (slow version, mainly for debug) */
2822#if defined(CONFIG_USER_ONLY)
f17ec444 2823int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2824 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2825{
2826 int l, flags;
2827 target_ulong page;
53a5960a 2828 void * p;
13eb76e0
FB
2829
2830 while (len > 0) {
2831 page = addr & TARGET_PAGE_MASK;
2832 l = (page + TARGET_PAGE_SIZE) - addr;
2833 if (l > len)
2834 l = len;
2835 flags = page_get_flags(page);
2836 if (!(flags & PAGE_VALID))
a68fe89c 2837 return -1;
13eb76e0
FB
2838 if (is_write) {
2839 if (!(flags & PAGE_WRITE))
a68fe89c 2840 return -1;
579a97f7 2841 /* XXX: this code should not depend on lock_user */
72fb7daa 2842 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2843 return -1;
72fb7daa
AJ
2844 memcpy(p, buf, l);
2845 unlock_user(p, addr, l);
13eb76e0
FB
2846 } else {
2847 if (!(flags & PAGE_READ))
a68fe89c 2848 return -1;
579a97f7 2849 /* XXX: this code should not depend on lock_user */
72fb7daa 2850 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2851 return -1;
72fb7daa 2852 memcpy(buf, p, l);
5b257578 2853 unlock_user(p, addr, 0);
13eb76e0
FB
2854 }
2855 len -= l;
2856 buf += l;
2857 addr += l;
2858 }
a68fe89c 2859 return 0;
13eb76e0 2860}
8df1cd07 2861
13eb76e0 2862#else
51d7a9eb 2863
845b6214 2864static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2865 hwaddr length)
51d7a9eb 2866{
e87f7778 2867 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2868 addr += memory_region_get_ram_addr(mr);
2869
e87f7778
PB
2870 /* No early return if dirty_log_mask is or becomes 0, because
2871 * cpu_physical_memory_set_dirty_range will still call
2872 * xen_modified_memory.
2873 */
2874 if (dirty_log_mask) {
2875 dirty_log_mask =
2876 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2877 }
2878 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2879 assert(tcg_enabled());
ba051fb5 2880 tb_lock();
e87f7778 2881 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2882 tb_unlock();
e87f7778 2883 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2884 }
e87f7778 2885 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2886}
2887
23326164 2888static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2889{
e1622f4b 2890 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2891
2892 /* Regions are assumed to support 1-4 byte accesses unless
2893 otherwise specified. */
23326164
RH
2894 if (access_size_max == 0) {
2895 access_size_max = 4;
2896 }
2897
2898 /* Bound the maximum access by the alignment of the address. */
2899 if (!mr->ops->impl.unaligned) {
2900 unsigned align_size_max = addr & -addr;
2901 if (align_size_max != 0 && align_size_max < access_size_max) {
2902 access_size_max = align_size_max;
2903 }
82f2563f 2904 }
23326164
RH
2905
2906 /* Don't attempt accesses larger than the maximum. */
2907 if (l > access_size_max) {
2908 l = access_size_max;
82f2563f 2909 }
6554f5c0 2910 l = pow2floor(l);
23326164
RH
2911
2912 return l;
82f2563f
PB
2913}
2914
4840f10e 2915static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2916{
4840f10e
JK
2917 bool unlocked = !qemu_mutex_iothread_locked();
2918 bool release_lock = false;
2919
2920 if (unlocked && mr->global_locking) {
2921 qemu_mutex_lock_iothread();
2922 unlocked = false;
2923 release_lock = true;
2924 }
125b3806 2925 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2926 if (unlocked) {
2927 qemu_mutex_lock_iothread();
2928 }
125b3806 2929 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2930 if (unlocked) {
2931 qemu_mutex_unlock_iothread();
2932 }
125b3806 2933 }
4840f10e
JK
2934
2935 return release_lock;
125b3806
PB
2936}
2937
a203ac70 2938/* Called within RCU critical section. */
16620684
AK
2939static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2940 MemTxAttrs attrs,
2941 const uint8_t *buf,
2942 int len, hwaddr addr1,
2943 hwaddr l, MemoryRegion *mr)
13eb76e0 2944{
13eb76e0 2945 uint8_t *ptr;
791af8c8 2946 uint64_t val;
3b643495 2947 MemTxResult result = MEMTX_OK;
4840f10e 2948 bool release_lock = false;
3b46e624 2949
a203ac70 2950 for (;;) {
eb7eeb88
PB
2951 if (!memory_access_is_direct(mr, true)) {
2952 release_lock |= prepare_mmio_access(mr);
2953 l = memory_access_size(mr, l, addr1);
2954 /* XXX: could force current_cpu to NULL to avoid
2955 potential bugs */
2956 switch (l) {
2957 case 8:
2958 /* 64 bit write access */
2959 val = ldq_p(buf);
2960 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2961 attrs);
2962 break;
2963 case 4:
2964 /* 32 bit write access */
6da67de6 2965 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2966 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2967 attrs);
2968 break;
2969 case 2:
2970 /* 16 bit write access */
2971 val = lduw_p(buf);
2972 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2973 attrs);
2974 break;
2975 case 1:
2976 /* 8 bit write access */
2977 val = ldub_p(buf);
2978 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2979 attrs);
2980 break;
2981 default:
2982 abort();
13eb76e0
FB
2983 }
2984 } else {
eb7eeb88 2985 /* RAM case */
f5aa69bd 2986 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
2987 memcpy(ptr, buf, l);
2988 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2989 }
4840f10e
JK
2990
2991 if (release_lock) {
2992 qemu_mutex_unlock_iothread();
2993 release_lock = false;
2994 }
2995
13eb76e0
FB
2996 len -= l;
2997 buf += l;
2998 addr += l;
a203ac70
PB
2999
3000 if (!len) {
3001 break;
3002 }
3003
3004 l = len;
16620684 3005 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 3006 }
fd8aaa76 3007
3b643495 3008 return result;
13eb76e0 3009}
8df1cd07 3010
df04d1f1 3011/* Called from RCU critical section. */
16620684
AK
3012static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3013 const uint8_t *buf, int len)
ac1970fb 3014{
eb7eeb88 3015 hwaddr l;
eb7eeb88
PB
3016 hwaddr addr1;
3017 MemoryRegion *mr;
3018 MemTxResult result = MEMTX_OK;
eb7eeb88 3019
df04d1f1
PB
3020 l = len;
3021 mr = flatview_translate(fv, addr, &addr1, &l, true);
3022 result = flatview_write_continue(fv, addr, attrs, buf, len,
3023 addr1, l, mr);
a203ac70
PB
3024
3025 return result;
3026}
3027
3028/* Called within RCU critical section. */
16620684
AK
3029MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3030 MemTxAttrs attrs, uint8_t *buf,
3031 int len, hwaddr addr1, hwaddr l,
3032 MemoryRegion *mr)
a203ac70
PB
3033{
3034 uint8_t *ptr;
3035 uint64_t val;
3036 MemTxResult result = MEMTX_OK;
3037 bool release_lock = false;
eb7eeb88 3038
a203ac70 3039 for (;;) {
eb7eeb88
PB
3040 if (!memory_access_is_direct(mr, false)) {
3041 /* I/O case */
3042 release_lock |= prepare_mmio_access(mr);
3043 l = memory_access_size(mr, l, addr1);
3044 switch (l) {
3045 case 8:
3046 /* 64 bit read access */
3047 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3048 attrs);
3049 stq_p(buf, val);
3050 break;
3051 case 4:
3052 /* 32 bit read access */
3053 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3054 attrs);
3055 stl_p(buf, val);
3056 break;
3057 case 2:
3058 /* 16 bit read access */
3059 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3060 attrs);
3061 stw_p(buf, val);
3062 break;
3063 case 1:
3064 /* 8 bit read access */
3065 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3066 attrs);
3067 stb_p(buf, val);
3068 break;
3069 default:
3070 abort();
3071 }
3072 } else {
3073 /* RAM case */
f5aa69bd 3074 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3075 memcpy(buf, ptr, l);
3076 }
3077
3078 if (release_lock) {
3079 qemu_mutex_unlock_iothread();
3080 release_lock = false;
3081 }
3082
3083 len -= l;
3084 buf += l;
3085 addr += l;
a203ac70
PB
3086
3087 if (!len) {
3088 break;
3089 }
3090
3091 l = len;
16620684 3092 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3093 }
3094
3095 return result;
3096}
3097
f77c2312
PB
3098/* Called from RCU critical section. */
3099static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3100 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3101{
3102 hwaddr l;
3103 hwaddr addr1;
3104 MemoryRegion *mr;
eb7eeb88 3105
f77c2312
PB
3106 l = len;
3107 mr = flatview_translate(fv, addr, &addr1, &l, false);
3108 return flatview_read_continue(fv, addr, attrs, buf, len,
3109 addr1, l, mr);
ac1970fb
AK
3110}
3111
f77c2312
PB
3112MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3113 MemTxAttrs attrs, uint8_t *buf, int len)
3114{
3115 MemTxResult result = MEMTX_OK;
3116 FlatView *fv;
3117
3118 if (len > 0) {
3119 rcu_read_lock();
3120 fv = address_space_to_flatview(as);
3121 result = flatview_read(fv, addr, attrs, buf, len);
3122 rcu_read_unlock();
3123 }
3124
3125 return result;
3126}
3127
df04d1f1
PB
3128MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3129 MemTxAttrs attrs,
3130 const uint8_t *buf, int len)
3131{
3132 MemTxResult result = MEMTX_OK;
3133 FlatView *fv;
3134
3135 if (len > 0) {
3136 rcu_read_lock();
3137 fv = address_space_to_flatview(as);
3138 result = flatview_write(fv, addr, attrs, buf, len);
3139 rcu_read_unlock();
3140 }
3141
3142 return result;
3143}
3144
aedaf01f
PB
3145MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3146 uint8_t *buf, int len, bool is_write)
3147{
3148 if (is_write) {
3149 return address_space_write(as, addr, attrs, buf, len);
3150 } else {
3151 return address_space_read_full(as, addr, attrs, buf, len);
3152 }
3153}
3154
a8170e5e 3155void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3156 int len, int is_write)
3157{
5c9eb028
PM
3158 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3159 buf, len, is_write);
ac1970fb
AK
3160}
3161
582b55a9
AG
3162enum write_rom_type {
3163 WRITE_DATA,
3164 FLUSH_CACHE,
3165};
3166
2a221651 3167static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3168 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3169{
149f54b5 3170 hwaddr l;
d0ecd2aa 3171 uint8_t *ptr;
149f54b5 3172 hwaddr addr1;
5c8a00ce 3173 MemoryRegion *mr;
3b46e624 3174
41063e1e 3175 rcu_read_lock();
d0ecd2aa 3176 while (len > 0) {
149f54b5 3177 l = len;
2a221651 3178 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3179
5c8a00ce
PB
3180 if (!(memory_region_is_ram(mr) ||
3181 memory_region_is_romd(mr))) {
b242e0e0 3182 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3183 } else {
d0ecd2aa 3184 /* ROM/RAM case */
0878d0e1 3185 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3186 switch (type) {
3187 case WRITE_DATA:
3188 memcpy(ptr, buf, l);
845b6214 3189 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3190 break;
3191 case FLUSH_CACHE:
3192 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3193 break;
3194 }
d0ecd2aa
FB
3195 }
3196 len -= l;
3197 buf += l;
3198 addr += l;
3199 }
41063e1e 3200 rcu_read_unlock();
d0ecd2aa
FB
3201}
3202
582b55a9 3203/* used for ROM loading : can write in RAM and ROM */
2a221651 3204void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3205 const uint8_t *buf, int len)
3206{
2a221651 3207 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3208}
3209
3210void cpu_flush_icache_range(hwaddr start, int len)
3211{
3212 /*
3213 * This function should do the same thing as an icache flush that was
3214 * triggered from within the guest. For TCG we are always cache coherent,
3215 * so there is no need to flush anything. For KVM / Xen we need to flush
3216 * the host's instruction cache at least.
3217 */
3218 if (tcg_enabled()) {
3219 return;
3220 }
3221
2a221651
EI
3222 cpu_physical_memory_write_rom_internal(&address_space_memory,
3223 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3224}
3225
6d16c2f8 3226typedef struct {
d3e71559 3227 MemoryRegion *mr;
6d16c2f8 3228 void *buffer;
a8170e5e
AK
3229 hwaddr addr;
3230 hwaddr len;
c2cba0ff 3231 bool in_use;
6d16c2f8
AL
3232} BounceBuffer;
3233
3234static BounceBuffer bounce;
3235
ba223c29 3236typedef struct MapClient {
e95205e1 3237 QEMUBH *bh;
72cf2d4f 3238 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3239} MapClient;
3240
38e047b5 3241QemuMutex map_client_list_lock;
72cf2d4f
BS
3242static QLIST_HEAD(map_client_list, MapClient) map_client_list
3243 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3244
e95205e1
FZ
3245static void cpu_unregister_map_client_do(MapClient *client)
3246{
3247 QLIST_REMOVE(client, link);
3248 g_free(client);
3249}
3250
33b6c2ed
FZ
3251static void cpu_notify_map_clients_locked(void)
3252{
3253 MapClient *client;
3254
3255 while (!QLIST_EMPTY(&map_client_list)) {
3256 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3257 qemu_bh_schedule(client->bh);
3258 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3259 }
3260}
3261
e95205e1 3262void cpu_register_map_client(QEMUBH *bh)
ba223c29 3263{
7267c094 3264 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3265
38e047b5 3266 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3267 client->bh = bh;
72cf2d4f 3268 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3269 if (!atomic_read(&bounce.in_use)) {
3270 cpu_notify_map_clients_locked();
3271 }
38e047b5 3272 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3273}
3274
38e047b5 3275void cpu_exec_init_all(void)
ba223c29 3276{
38e047b5 3277 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3278 /* The data structures we set up here depend on knowing the page size,
3279 * so no more changes can be made after this point.
3280 * In an ideal world, nothing we did before we had finished the
3281 * machine setup would care about the target page size, and we could
3282 * do this much later, rather than requiring board models to state
3283 * up front what their requirements are.
3284 */
3285 finalize_target_page_bits();
38e047b5 3286 io_mem_init();
680a4783 3287 memory_map_init();
38e047b5 3288 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3289}
3290
e95205e1 3291void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3292{
3293 MapClient *client;
3294
e95205e1
FZ
3295 qemu_mutex_lock(&map_client_list_lock);
3296 QLIST_FOREACH(client, &map_client_list, link) {
3297 if (client->bh == bh) {
3298 cpu_unregister_map_client_do(client);
3299 break;
3300 }
ba223c29 3301 }
e95205e1 3302 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3303}
3304
3305static void cpu_notify_map_clients(void)
3306{
38e047b5 3307 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3308 cpu_notify_map_clients_locked();
38e047b5 3309 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3310}
3311
16620684
AK
3312static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3313 bool is_write)
51644ab7 3314{
5c8a00ce 3315 MemoryRegion *mr;
51644ab7
PB
3316 hwaddr l, xlat;
3317
3318 while (len > 0) {
3319 l = len;
16620684 3320 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3321 if (!memory_access_is_direct(mr, is_write)) {
3322 l = memory_access_size(mr, l, addr);
3323 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
3324 return false;
3325 }
3326 }
3327
3328 len -= l;
3329 addr += l;
3330 }
3331 return true;
3332}
3333
16620684
AK
3334bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3335 int len, bool is_write)
3336{
fa876bc9
PB
3337 FlatView *fv;
3338 bool result;
3339
3340 rcu_read_lock();
3341 fv = address_space_to_flatview(as);
3342 result = flatview_access_valid(fv, addr, len, is_write);
3343 rcu_read_unlock();
3344 return result;
16620684
AK
3345}
3346
715c31ec 3347static hwaddr
16620684
AK
3348flatview_extend_translation(FlatView *fv, hwaddr addr,
3349 hwaddr target_len,
715c31ec
PB
3350 MemoryRegion *mr, hwaddr base, hwaddr len,
3351 bool is_write)
3352{
3353 hwaddr done = 0;
3354 hwaddr xlat;
3355 MemoryRegion *this_mr;
3356
3357 for (;;) {
3358 target_len -= len;
3359 addr += len;
3360 done += len;
3361 if (target_len == 0) {
3362 return done;
3363 }
3364
3365 len = target_len;
16620684
AK
3366 this_mr = flatview_translate(fv, addr, &xlat,
3367 &len, is_write);
715c31ec
PB
3368 if (this_mr != mr || xlat != base + done) {
3369 return done;
3370 }
3371 }
3372}
3373
6d16c2f8
AL
3374/* Map a physical memory region into a host virtual address.
3375 * May map a subset of the requested range, given by and returned in *plen.
3376 * May return NULL if resources needed to perform the mapping are exhausted.
3377 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3378 * Use cpu_register_map_client() to know when retrying the map operation is
3379 * likely to succeed.
6d16c2f8 3380 */
ac1970fb 3381void *address_space_map(AddressSpace *as,
a8170e5e
AK
3382 hwaddr addr,
3383 hwaddr *plen,
ac1970fb 3384 bool is_write)
6d16c2f8 3385{
a8170e5e 3386 hwaddr len = *plen;
715c31ec
PB
3387 hwaddr l, xlat;
3388 MemoryRegion *mr;
e81bcda5 3389 void *ptr;
a7f4d8a1 3390 FlatView *fv;
6d16c2f8 3391
e3127ae0
PB
3392 if (len == 0) {
3393 return NULL;
3394 }
38bee5dc 3395
e3127ae0 3396 l = len;
41063e1e 3397 rcu_read_lock();
a7f4d8a1 3398 fv = address_space_to_flatview(as);
16620684 3399 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3400
e3127ae0 3401 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3402 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3403 rcu_read_unlock();
e3127ae0 3404 return NULL;
6d16c2f8 3405 }
e85d9db5
KW
3406 /* Avoid unbounded allocations */
3407 l = MIN(l, TARGET_PAGE_SIZE);
3408 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3409 bounce.addr = addr;
3410 bounce.len = l;
d3e71559
PB
3411
3412 memory_region_ref(mr);
3413 bounce.mr = mr;
e3127ae0 3414 if (!is_write) {
16620684 3415 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3416 bounce.buffer, l);
8ab934f9 3417 }
6d16c2f8 3418
41063e1e 3419 rcu_read_unlock();
e3127ae0
PB
3420 *plen = l;
3421 return bounce.buffer;
3422 }
3423
e3127ae0 3424
d3e71559 3425 memory_region_ref(mr);
16620684
AK
3426 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3427 l, is_write);
f5aa69bd 3428 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3429 rcu_read_unlock();
3430
3431 return ptr;
6d16c2f8
AL
3432}
3433
ac1970fb 3434/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3435 * Will also mark the memory as dirty if is_write == 1. access_len gives
3436 * the amount of memory that was actually read or written by the caller.
3437 */
a8170e5e
AK
3438void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3439 int is_write, hwaddr access_len)
6d16c2f8
AL
3440{
3441 if (buffer != bounce.buffer) {
d3e71559
PB
3442 MemoryRegion *mr;
3443 ram_addr_t addr1;
3444
07bdaa41 3445 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3446 assert(mr != NULL);
6d16c2f8 3447 if (is_write) {
845b6214 3448 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3449 }
868bb33f 3450 if (xen_enabled()) {
e41d7c69 3451 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3452 }
d3e71559 3453 memory_region_unref(mr);
6d16c2f8
AL
3454 return;
3455 }
3456 if (is_write) {
5c9eb028
PM
3457 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3458 bounce.buffer, access_len);
6d16c2f8 3459 }
f8a83245 3460 qemu_vfree(bounce.buffer);
6d16c2f8 3461 bounce.buffer = NULL;
d3e71559 3462 memory_region_unref(bounce.mr);
c2cba0ff 3463 atomic_mb_set(&bounce.in_use, false);
ba223c29 3464 cpu_notify_map_clients();
6d16c2f8 3465}
d0ecd2aa 3466
a8170e5e
AK
3467void *cpu_physical_memory_map(hwaddr addr,
3468 hwaddr *plen,
ac1970fb
AK
3469 int is_write)
3470{
3471 return address_space_map(&address_space_memory, addr, plen, is_write);
3472}
3473
a8170e5e
AK
3474void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3475 int is_write, hwaddr access_len)
ac1970fb
AK
3476{
3477 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3478}
3479
0ce265ff
PB
3480#define ARG1_DECL AddressSpace *as
3481#define ARG1 as
3482#define SUFFIX
3483#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3484#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3485#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3486#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3487#define RCU_READ_LOCK(...) rcu_read_lock()
3488#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3489#include "memory_ldst.inc.c"
1e78bcc1 3490
1f4e496e
PB
3491int64_t address_space_cache_init(MemoryRegionCache *cache,
3492 AddressSpace *as,
3493 hwaddr addr,
3494 hwaddr len,
3495 bool is_write)
3496{
90c4fe5f
PB
3497 cache->len = len;
3498 cache->as = as;
3499 cache->xlat = addr;
3500 return len;
1f4e496e
PB
3501}
3502
3503void address_space_cache_invalidate(MemoryRegionCache *cache,
3504 hwaddr addr,
3505 hwaddr access_len)
3506{
1f4e496e
PB
3507}
3508
3509void address_space_cache_destroy(MemoryRegionCache *cache)
3510{
90c4fe5f 3511 cache->as = NULL;
1f4e496e
PB
3512}
3513
3514#define ARG1_DECL MemoryRegionCache *cache
3515#define ARG1 cache
3516#define SUFFIX _cached
90c4fe5f
PB
3517#define TRANSLATE(addr, ...) \
3518 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3519#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3520#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3521#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3522#define RCU_READ_LOCK() rcu_read_lock()
3523#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3524#include "memory_ldst.inc.c"
3525
5e2972fd 3526/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3527int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3528 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3529{
3530 int l;
a8170e5e 3531 hwaddr phys_addr;
9b3c35e0 3532 target_ulong page;
13eb76e0 3533
79ca7a1b 3534 cpu_synchronize_state(cpu);
13eb76e0 3535 while (len > 0) {
5232e4c7
PM
3536 int asidx;
3537 MemTxAttrs attrs;
3538
13eb76e0 3539 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3540 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3541 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3542 /* if no physical page mapped, return an error */
3543 if (phys_addr == -1)
3544 return -1;
3545 l = (page + TARGET_PAGE_SIZE) - addr;
3546 if (l > len)
3547 l = len;
5e2972fd 3548 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3549 if (is_write) {
5232e4c7
PM
3550 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3551 phys_addr, buf, l);
2e38847b 3552 } else {
5232e4c7
PM
3553 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3554 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3555 buf, l, 0);
2e38847b 3556 }
13eb76e0
FB
3557 len -= l;
3558 buf += l;
3559 addr += l;
3560 }
3561 return 0;
3562}
038629a6
DDAG
3563
3564/*
3565 * Allows code that needs to deal with migration bitmaps etc to still be built
3566 * target independent.
3567 */
20afaed9 3568size_t qemu_target_page_size(void)
038629a6 3569{
20afaed9 3570 return TARGET_PAGE_SIZE;
038629a6
DDAG
3571}
3572
46d702b1
JQ
3573int qemu_target_page_bits(void)
3574{
3575 return TARGET_PAGE_BITS;
3576}
3577
3578int qemu_target_page_bits_min(void)
3579{
3580 return TARGET_PAGE_BITS_MIN;
3581}
a68fe89c 3582#endif
13eb76e0 3583
8e4a424b
BS
3584/*
3585 * A helper function for the _utterly broken_ virtio device model to find out if
3586 * it's running on a big endian machine. Don't do this at home kids!
3587 */
98ed8ecf
GK
3588bool target_words_bigendian(void);
3589bool target_words_bigendian(void)
8e4a424b
BS
3590{
3591#if defined(TARGET_WORDS_BIGENDIAN)
3592 return true;
3593#else
3594 return false;
3595#endif
3596}
3597
76f35538 3598#ifndef CONFIG_USER_ONLY
a8170e5e 3599bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3600{
5c8a00ce 3601 MemoryRegion*mr;
149f54b5 3602 hwaddr l = 1;
41063e1e 3603 bool res;
76f35538 3604
41063e1e 3605 rcu_read_lock();
5c8a00ce
PB
3606 mr = address_space_translate(&address_space_memory,
3607 phys_addr, &phys_addr, &l, false);
76f35538 3608
41063e1e
PB
3609 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3610 rcu_read_unlock();
3611 return res;
76f35538 3612}
bd2fa51f 3613
e3807054 3614int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3615{
3616 RAMBlock *block;
e3807054 3617 int ret = 0;
bd2fa51f 3618
0dc3f44a 3619 rcu_read_lock();
99e15582 3620 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3621 ret = func(block->idstr, block->host, block->offset,
3622 block->used_length, opaque);
3623 if (ret) {
3624 break;
3625 }
bd2fa51f 3626 }
0dc3f44a 3627 rcu_read_unlock();
e3807054 3628 return ret;
bd2fa51f 3629}
d3a5038c
DDAG
3630
3631/*
3632 * Unmap pages of memory from start to start+length such that
3633 * they a) read as 0, b) Trigger whatever fault mechanism
3634 * the OS provides for postcopy.
3635 * The pages must be unmapped by the end of the function.
3636 * Returns: 0 on success, none-0 on failure
3637 *
3638 */
3639int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3640{
3641 int ret = -1;
3642
3643 uint8_t *host_startaddr = rb->host + start;
3644
3645 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3646 error_report("ram_block_discard_range: Unaligned start address: %p",
3647 host_startaddr);
3648 goto err;
3649 }
3650
3651 if ((start + length) <= rb->used_length) {
3652 uint8_t *host_endaddr = host_startaddr + length;
3653 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3654 error_report("ram_block_discard_range: Unaligned end address: %p",
3655 host_endaddr);
3656 goto err;
3657 }
3658
3659 errno = ENOTSUP; /* If we are missing MADVISE etc */
3660
e2fa71f5 3661 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3662#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3663 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3664 * freeing the page.
3665 */
3666 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3667#endif
e2fa71f5
DDAG
3668 } else {
3669 /* Huge page case - unfortunately it can't do DONTNEED, but
3670 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3671 * huge page file.
3672 */
3673#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3674 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3675 start, length);
3676#endif
3677 }
d3a5038c
DDAG
3678 if (ret) {
3679 ret = -errno;
3680 error_report("ram_block_discard_range: Failed to discard range "
3681 "%s:%" PRIx64 " +%zx (%d)",
3682 rb->idstr, start, length, ret);
3683 }
3684 } else {
3685 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3686 "/%zx/" RAM_ADDR_FMT")",
3687 rb->idstr, start, length, rb->used_length);
3688 }
3689
3690err:
3691 return ret;
3692}
3693
ec3f8c99 3694#endif
a0be0c58
YZ
3695
3696void page_size_init(void)
3697{
3698 /* NOTE: we can always suppose that qemu_host_page_size >=
3699 TARGET_PAGE_SIZE */
a0be0c58
YZ
3700 if (qemu_host_page_size == 0) {
3701 qemu_host_page_size = qemu_real_host_page_size;
3702 }
3703 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3704 qemu_host_page_size = TARGET_PAGE_SIZE;
3705 }
3706 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3707}
5e8fd947
AK
3708
3709#if !defined(CONFIG_USER_ONLY)
3710
3711static void mtree_print_phys_entries(fprintf_function mon, void *f,
3712 int start, int end, int skip, int ptr)
3713{
3714 if (start == end - 1) {
3715 mon(f, "\t%3d ", start);
3716 } else {
3717 mon(f, "\t%3d..%-3d ", start, end - 1);
3718 }
3719 mon(f, " skip=%d ", skip);
3720 if (ptr == PHYS_MAP_NODE_NIL) {
3721 mon(f, " ptr=NIL");
3722 } else if (!skip) {
3723 mon(f, " ptr=#%d", ptr);
3724 } else {
3725 mon(f, " ptr=[%d]", ptr);
3726 }
3727 mon(f, "\n");
3728}
3729
3730#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3731 int128_sub((size), int128_one())) : 0)
3732
3733void mtree_print_dispatch(fprintf_function mon, void *f,
3734 AddressSpaceDispatch *d, MemoryRegion *root)
3735{
3736 int i;
3737
3738 mon(f, " Dispatch\n");
3739 mon(f, " Physical sections\n");
3740
3741 for (i = 0; i < d->map.sections_nb; ++i) {
3742 MemoryRegionSection *s = d->map.sections + i;
3743 const char *names[] = { " [unassigned]", " [not dirty]",
3744 " [ROM]", " [watch]" };
3745
3746 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3747 i,
3748 s->offset_within_address_space,
3749 s->offset_within_address_space + MR_SIZE(s->mr->size),
3750 s->mr->name ? s->mr->name : "(noname)",
3751 i < ARRAY_SIZE(names) ? names[i] : "",
3752 s->mr == root ? " [ROOT]" : "",
3753 s == d->mru_section ? " [MRU]" : "",
3754 s->mr->is_iommu ? " [iommu]" : "");
3755
3756 if (s->mr->alias) {
3757 mon(f, " alias=%s", s->mr->alias->name ?
3758 s->mr->alias->name : "noname");
3759 }
3760 mon(f, "\n");
3761 }
3762
3763 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3764 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3765 for (i = 0; i < d->map.nodes_nb; ++i) {
3766 int j, jprev;
3767 PhysPageEntry prev;
3768 Node *n = d->map.nodes + i;
3769
3770 mon(f, " [%d]\n", i);
3771
3772 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3773 PhysPageEntry *pe = *n + j;
3774
3775 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3776 continue;
3777 }
3778
3779 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3780
3781 jprev = j;
3782 prev = *pe;
3783 }
3784
3785 if (jprev != ARRAY_SIZE(*n)) {
3786 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3787 }
3788 }
3789}
3790
3791#endif