]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
numa: move numa global variable have_numa_distance into MachineState
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3 45#include "exec/memory.h"
df43d49c 46#include "exec/ioport.h"
741da0d3 47#include "sysemu/dma.h"
b58c5c2d 48#include "sysemu/hostmem.h"
79ca7a1b 49#include "sysemu/hw_accel.h"
741da0d3 50#include "exec/address-spaces.h"
9c17d615 51#include "sysemu/xen-mapcache.h"
0ab8ed18 52#include "trace-root.h"
d3a5038c 53
e2fa71f5 54#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
e2eef170 93#endif
9fa3e853 94
20bccb82
PM
95#ifdef TARGET_PAGE_BITS_VARY
96int target_page_bits;
97bool target_page_bits_decided;
98#endif
99
f481ee2d
PB
100CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
6a00d601
FB
102/* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
f240eb6f 104__thread CPUState *current_cpu;
2e70f6ef 105/* 0 = Do not count executed instructions.
bf20dc07 106 1 = Precise instruction counting.
2e70f6ef 107 2 = Adaptive rate instruction counting. */
5708fc66 108int use_icount;
6a00d601 109
a0be0c58
YZ
110uintptr_t qemu_host_page_size;
111intptr_t qemu_host_page_mask;
a0be0c58 112
20bccb82
PM
113bool set_preferred_target_page_bits(int bits)
114{
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120#ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128#endif
129 return true;
130}
131
e2eef170 132#if !defined(CONFIG_USER_ONLY)
4346ae3e 133
20bccb82
PM
134static void finalize_target_page_bits(void)
135{
136#ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141#endif
142}
143
1db8abb1
PB
144typedef struct PhysPageEntry PhysPageEntry;
145
146struct PhysPageEntry {
9736e55b 147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 148 uint32_t skip : 6;
9736e55b 149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 150 uint32_t ptr : 26;
1db8abb1
PB
151};
152
8b795765
MT
153#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
03f49957 155/* Size of the L2 (and L3, etc) page tables. */
57271d63 156#define ADDR_SPACE_BITS 64
03f49957 157
026736ce 158#define P_L2_BITS 9
03f49957
PB
159#define P_L2_SIZE (1 << P_L2_BITS)
160
161#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 164
53cb28cb 165typedef struct PhysPageMap {
79e2b9ae
PB
166 struct rcu_head rcu;
167
53cb28cb
MA
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174} PhysPageMap;
175
1db8abb1 176struct AddressSpaceDispatch {
729633c2 177 MemoryRegionSection *mru_section;
1db8abb1
PB
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
53cb28cb 182 PhysPageMap map;
1db8abb1
PB
183};
184
90260c6c
JK
185#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186typedef struct subpage_t {
187 MemoryRegion iomem;
16620684 188 FlatView *fv;
90260c6c 189 hwaddr base;
2615fabd 190 uint16_t sub_section[];
90260c6c
JK
191} subpage_t;
192
b41aac4f
LPF
193#define PHYS_SECTION_UNASSIGNED 0
194#define PHYS_SECTION_NOTDIRTY 1
195#define PHYS_SECTION_ROM 2
196#define PHYS_SECTION_WATCH 3
5312bd8b 197
e2eef170 198static void io_mem_init(void);
62152b8a 199static void memory_map_init(void);
9458a9a1 200static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 201static void tcg_commit(MemoryListener *listener);
e2eef170 202
1ec9b909 203static MemoryRegion io_mem_watch;
32857f4d
PM
204
205/**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217};
218
8deaf12c
GH
219struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223};
224
6658ffb8 225#endif
fd6ce8f6 226
6d9a1304 227#if !defined(CONFIG_USER_ONLY)
d6f2ea22 228
53cb28cb 229static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 230{
101420b8 231 static unsigned alloc_hint = 16;
53cb28cb 232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 236 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 237 }
f7bf5461
AK
238}
239
db94604b 240static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
241{
242 unsigned i;
8b795765 243 uint32_t ret;
db94604b
PB
244 PhysPageEntry e;
245 PhysPageEntry *p;
f7bf5461 246
53cb28cb 247 ret = map->nodes_nb++;
db94604b 248 p = map->nodes[ret];
f7bf5461 249 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 250 assert(ret != map->nodes_nb_alloc);
db94604b
PB
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 254 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 255 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 256 }
f7bf5461 257 return ret;
d6f2ea22
AK
258}
259
53cb28cb
MA
260static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 262 int level)
f7bf5461
AK
263{
264 PhysPageEntry *p;
03f49957 265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 266
9736e55b 267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 268 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 269 }
db94604b 270 p = map->nodes[lp->ptr];
03f49957 271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 272
03f49957 273 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 274 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 275 lp->skip = 0;
c19e8800 276 lp->ptr = leaf;
07f07b31
AK
277 *index += step;
278 *nb -= step;
2999097b 279 } else {
53cb28cb 280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
281 }
282 ++lp;
f7bf5461
AK
283 }
284}
285
ac1970fb 286static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 287 hwaddr index, hwaddr nb,
2999097b 288 uint16_t leaf)
f7bf5461 289{
2999097b 290 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 292
53cb28cb 293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
294}
295
b35ba30f
MT
296/* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
efee678d 299static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
300{
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
efee678d 319 phys_page_compact(&p[i], nodes);
b35ba30f
MT
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347}
348
8629d3fc 349void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 350{
b35ba30f 351 if (d->phys_map.skip) {
efee678d 352 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
353 }
354}
355
29cb533d
FZ
356static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358{
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
258dfaaa 362 return int128_gethi(section->size) ||
29cb533d 363 range_covers_byte(section->offset_within_address_space,
258dfaaa 364 int128_getlo(section->size), addr);
29cb533d
FZ
365}
366
003a0cf2 367static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 368{
003a0cf2
PX
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
97115a8d 372 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 373 int i;
f1f6e3b8 374
9736e55b 375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 377 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 378 }
9affd6fc 379 p = nodes[lp.ptr];
03f49957 380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 381 }
b35ba30f 382
29cb533d 383 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
f3705d53
AK
388}
389
79e2b9ae 390/* Called from RCU critical section */
c7086b4a 391static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
392 hwaddr addr,
393 bool resolve_subpage)
9f029603 394{
729633c2 395 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
396 subpage_t *subpage;
397
07c114bb
PB
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
003a0cf2 400 section = phys_page_find(d, addr);
07c114bb 401 atomic_set(&d->mru_section, section);
729633c2 402 }
90260c6c
JK
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
406 }
407 return section;
9f029603
JK
408}
409
79e2b9ae 410/* Called from RCU critical section */
90260c6c 411static MemoryRegionSection *
c7086b4a 412address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 413 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
414{
415 MemoryRegionSection *section;
965eb2fc 416 MemoryRegion *mr;
a87f3954 417 Int128 diff;
149f54b5 418
c7086b4a 419 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
965eb2fc 426 mr = section->mr;
b242e0e0
PB
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
965eb2fc 439 if (memory_region_is_ram(mr)) {
e4a511f8 440 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
149f54b5
PB
443 return section;
444}
90260c6c 445
a411c84b
PB
446/**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
2f7b009c 463 * @attrs: transaction attributes
a411c84b
PB
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
2f7b009c
PM
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
a411c84b
PB
476{
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517}
518
d5e5fafd
PX
519/**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 534 * @target_as: the address space targeted by the IOMMU
49e14aa8 535 * @attrs: memory transaction attributes
d5e5fafd
PX
536 *
537 * This function is called from RCU critical section
538 */
16620684
AK
539static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
d5e5fafd
PX
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
16620684
AK
544 bool is_write,
545 bool is_mmio,
49e14aa8
PM
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
052c8fa9 548{
052c8fa9 549 MemoryRegionSection *section;
3df9d748 550 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
551 hwaddr plen = (hwaddr)(-1);
552
ad2804d9
PB
553 if (!plen_out) {
554 plen_out = &plen;
d5e5fafd 555 }
052c8fa9 556
a411c84b
PB
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
052c8fa9 560
a411c84b
PB
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
2f7b009c 566 target_as, attrs);
052c8fa9 567 }
d5e5fafd 568 if (page_mask_out) {
a411c84b
PB
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
571 }
572
a764040c 573 return *section;
052c8fa9
JW
574}
575
576/* Called from RCU critical section */
a764040c 577IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 578 bool is_write, MemTxAttrs attrs)
90260c6c 579{
a764040c 580 MemoryRegionSection section;
076a93d7 581 hwaddr xlat, page_mask;
30951157 582
076a93d7
PX
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
30951157 590
a764040c
PX
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
30951157 595
a764040c
PX
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
a764040c 600 return (IOMMUTLBEntry) {
e76bb18f 601 .target_as = as,
076a93d7
PX
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
a764040c
PX
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611}
612
613/* Called from RCU critical section */
16620684 614MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
a764040c
PX
617{
618 MemoryRegion *mr;
619 MemoryRegionSection section;
16620684 620 AddressSpace *as = NULL;
a764040c
PX
621
622 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 624 is_write, true, &as, attrs);
a764040c
PX
625 mr = section.mr;
626
fe680d0d 627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 629 *plen = MIN(page, *plen);
a87f3954
PB
630 }
631
30951157 632 return mr;
90260c6c
JK
633}
634
1f871c5e
PM
635typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641} TCGIOMMUNotifier;
642
643static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644{
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657}
658
659static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662{
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704}
705
706static void tcg_iommu_free_notifier_list(CPUState *cpu)
707{
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 715 g_free(notifier);
1f871c5e
PM
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718}
719
79e2b9ae 720/* Called from RCU critical section */
90260c6c 721MemoryRegionSection *
d7898cda 722address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
90260c6c 725{
30951157 726 MemoryRegionSection *section;
1f871c5e
PM
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
f35e44e7 731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 732
1f871c5e
PM
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
30951157 768
3df9d748 769 assert(!memory_region_is_iommu(section->mr));
1f871c5e 770 *xlat = addr;
30951157 771 return section;
1f871c5e
PM
772
773translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 775}
5b6dd868 776#endif
fd6ce8f6 777
b170fce3 778#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
779
780static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 781{
259186a7 782 CPUState *cpu = opaque;
a513fe19 783
5b6dd868
BS
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
259186a7 786 cpu->interrupt_request &= ~0x01;
d10eb08f 787 tlb_flush(cpu);
5b6dd868 788
15a356c4
PD
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
5b6dd868 796 return 0;
a513fe19 797}
7501267e 798
6c3bff0e
PD
799static int cpu_common_pre_load(void *opaque)
800{
801 CPUState *cpu = opaque;
802
adee6424 803 cpu->exception_index = -1;
6c3bff0e
PD
804
805 return 0;
806}
807
808static bool cpu_common_exception_index_needed(void *opaque)
809{
810 CPUState *cpu = opaque;
811
adee6424 812 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
813}
814
815static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
5cd8cada 819 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824};
825
bac05aa9
AS
826static bool cpu_common_crash_occurred_needed(void *opaque)
827{
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831}
832
833static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842};
843
1a1562f5 844const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
6c3bff0e 848 .pre_load = cpu_common_pre_load,
5b6dd868 849 .post_load = cpu_common_post_load,
35d08458 850 .fields = (VMStateField[]) {
259186a7
AF
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 853 VMSTATE_END_OF_LIST()
6c3bff0e 854 },
5cd8cada
JQ
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
bac05aa9 857 &vmstate_cpu_common_crash_occurred,
5cd8cada 858 NULL
5b6dd868
BS
859 }
860};
1a1562f5 861
5b6dd868 862#endif
ea041c0e 863
38d8f5c8 864CPUState *qemu_get_cpu(int index)
ea041c0e 865{
bdc44640 866 CPUState *cpu;
ea041c0e 867
bdc44640 868 CPU_FOREACH(cpu) {
55e5c285 869 if (cpu->cpu_index == index) {
bdc44640 870 return cpu;
55e5c285 871 }
ea041c0e 872 }
5b6dd868 873
bdc44640 874 return NULL;
ea041c0e
FB
875}
876
09daed84 877#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
878void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
09daed84 880{
12ebc9a7 881 CPUAddressSpace *newas;
80ceb07a 882 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 883 char *as_name;
80ceb07a
PX
884
885 assert(mr);
87a621d8
PX
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
12ebc9a7
PM
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
56943e8c
PM
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
12ebc9a7
PM
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
09daed84 900
12ebc9a7
PM
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 903 }
32857f4d 904
12ebc9a7
PM
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
56943e8c 908 if (tcg_enabled()) {
9458a9a1 909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 912 }
09daed84 913}
651a5bc0
PM
914
915AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916{
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919}
09daed84
EI
920#endif
921
7bbc124e 922void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 923{
9dfeca7c
BR
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
267f685b 926 cpu_list_remove(cpu);
9dfeca7c
BR
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
1f871c5e
PM
934#ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936#endif
1c59eb39
BR
937}
938
c7e002c5
FZ
939Property cpu_common_props[] = {
940#ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
2e5b09fd 942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949#endif
950 DEFINE_PROP_END_OF_LIST(),
951};
952
39e329e3 953void cpu_exec_initfn(CPUState *cpu)
ea041c0e 954{
56943e8c 955 cpu->as = NULL;
12ebc9a7 956 cpu->num_ases = 0;
56943e8c 957
291135b5 958#ifndef CONFIG_USER_ONLY
291135b5 959 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
291135b5 962#endif
39e329e3
LV
963}
964
ce5b1bbf 965void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 966{
55c3ceef 967 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 968 static bool tcg_target_initialized;
291135b5 969
267f685b 970 cpu_list_add(cpu);
1bc7e522 971
2dda6354
EC
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
55c3ceef
RH
974 cc->tcg_initialize();
975 }
5005e253 976 tlb_init(cpu);
55c3ceef 977
1bc7e522 978#ifndef CONFIG_USER_ONLY
e0d47944 979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 981 }
b170fce3 982 if (cc->vmsd != NULL) {
741da0d3 983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 984 }
1f871c5e 985
5601be3b 986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 987#endif
ea041c0e
FB
988}
989
c1c8cfe5 990const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
991{
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
c1c8cfe5 997 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
2278b939
IM
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015}
1016
c40d4792 1017#if defined(CONFIG_USER_ONLY)
8bca9a03 1018void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1019{
406bc339 1020 mmap_lock();
8bca9a03 1021 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1022 mmap_unlock();
1023}
8bca9a03
PB
1024
1025static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026{
1027 tb_invalidate_phys_addr(pc);
1028}
406bc339 1029#else
8bca9a03
PB
1030void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031{
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
c40d4792
PB
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
8bca9a03
PB
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1046 }
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1049 rcu_read_unlock();
1050}
1051
406bc339
PK
1052static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1053{
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1061 }
1e7855a5 1062}
406bc339 1063#endif
d720b93d 1064
c527ee8f 1065#if defined(CONFIG_USER_ONLY)
75a34036 1066void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1067
1068{
1069}
1070
3ee887e8
PM
1071int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1072 int flags)
1073{
1074 return -ENOSYS;
1075}
1076
1077void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1078{
1079}
1080
75a34036 1081int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1082 int flags, CPUWatchpoint **watchpoint)
1083{
1084 return -ENOSYS;
1085}
1086#else
6658ffb8 1087/* Add a watchpoint. */
75a34036 1088int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1089 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1090{
c0ce998e 1091 CPUWatchpoint *wp;
6658ffb8 1092
05068c0d 1093 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1094 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1095 error_report("tried to set invalid watchpoint at %"
1096 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1097 return -EINVAL;
1098 }
7267c094 1099 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1100
1101 wp->vaddr = addr;
05068c0d 1102 wp->len = len;
a1d1bb31
AL
1103 wp->flags = flags;
1104
2dc9f411 1105 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1106 if (flags & BP_GDB) {
1107 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1108 } else {
1109 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1110 }
6658ffb8 1111
31b030d4 1112 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1113
1114 if (watchpoint)
1115 *watchpoint = wp;
1116 return 0;
6658ffb8
PB
1117}
1118
a1d1bb31 1119/* Remove a specific watchpoint. */
75a34036 1120int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1121 int flags)
6658ffb8 1122{
a1d1bb31 1123 CPUWatchpoint *wp;
6658ffb8 1124
ff4700b0 1125 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1126 if (addr == wp->vaddr && len == wp->len
6e140f28 1127 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1128 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1129 return 0;
1130 }
1131 }
a1d1bb31 1132 return -ENOENT;
6658ffb8
PB
1133}
1134
a1d1bb31 1135/* Remove a specific watchpoint by reference. */
75a34036 1136void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1137{
ff4700b0 1138 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1139
31b030d4 1140 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1141
7267c094 1142 g_free(watchpoint);
a1d1bb31
AL
1143}
1144
1145/* Remove all matching watchpoints. */
75a34036 1146void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1147{
c0ce998e 1148 CPUWatchpoint *wp, *next;
a1d1bb31 1149
ff4700b0 1150 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1151 if (wp->flags & mask) {
1152 cpu_watchpoint_remove_by_ref(cpu, wp);
1153 }
c0ce998e 1154 }
7d03f82f 1155}
05068c0d
PM
1156
1157/* Return true if this watchpoint address matches the specified
1158 * access (ie the address range covered by the watchpoint overlaps
1159 * partially or completely with the address range covered by the
1160 * access).
1161 */
1162static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1163 vaddr addr,
1164 vaddr len)
1165{
1166 /* We know the lengths are non-zero, but a little caution is
1167 * required to avoid errors in the case where the range ends
1168 * exactly at the top of the address space and so addr + len
1169 * wraps round to zero.
1170 */
1171 vaddr wpend = wp->vaddr + wp->len - 1;
1172 vaddr addrend = addr + len - 1;
1173
1174 return !(addr > wpend || wp->vaddr > addrend);
1175}
1176
c527ee8f 1177#endif
7d03f82f 1178
a1d1bb31 1179/* Add a breakpoint. */
b3310ab3 1180int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1181 CPUBreakpoint **breakpoint)
4c3a88a2 1182{
c0ce998e 1183 CPUBreakpoint *bp;
3b46e624 1184
7267c094 1185 bp = g_malloc(sizeof(*bp));
4c3a88a2 1186
a1d1bb31
AL
1187 bp->pc = pc;
1188 bp->flags = flags;
1189
2dc9f411 1190 /* keep all GDB-injected breakpoints in front */
00b941e5 1191 if (flags & BP_GDB) {
f0c3c505 1192 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1193 } else {
f0c3c505 1194 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1195 }
3b46e624 1196
f0c3c505 1197 breakpoint_invalidate(cpu, pc);
a1d1bb31 1198
00b941e5 1199 if (breakpoint) {
a1d1bb31 1200 *breakpoint = bp;
00b941e5 1201 }
4c3a88a2 1202 return 0;
4c3a88a2
FB
1203}
1204
a1d1bb31 1205/* Remove a specific breakpoint. */
b3310ab3 1206int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1207{
a1d1bb31
AL
1208 CPUBreakpoint *bp;
1209
f0c3c505 1210 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1211 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1212 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1213 return 0;
1214 }
7d03f82f 1215 }
a1d1bb31 1216 return -ENOENT;
7d03f82f
EI
1217}
1218
a1d1bb31 1219/* Remove a specific breakpoint by reference. */
b3310ab3 1220void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1221{
f0c3c505
AF
1222 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1223
1224 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1225
7267c094 1226 g_free(breakpoint);
a1d1bb31
AL
1227}
1228
1229/* Remove all matching breakpoints. */
b3310ab3 1230void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1231{
c0ce998e 1232 CPUBreakpoint *bp, *next;
a1d1bb31 1233
f0c3c505 1234 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1235 if (bp->flags & mask) {
1236 cpu_breakpoint_remove_by_ref(cpu, bp);
1237 }
c0ce998e 1238 }
4c3a88a2
FB
1239}
1240
c33a346e
FB
1241/* enable or disable single step mode. EXCP_DEBUG is returned by the
1242 CPU loop after each instruction */
3825b28f 1243void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1244{
ed2803da
AF
1245 if (cpu->singlestep_enabled != enabled) {
1246 cpu->singlestep_enabled = enabled;
1247 if (kvm_enabled()) {
38e478ec 1248 kvm_update_guest_debug(cpu, 0);
ed2803da 1249 } else {
ccbb4d44 1250 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1251 /* XXX: only flush what is necessary */
bbd77c18 1252 tb_flush(cpu);
e22a25c9 1253 }
c33a346e 1254 }
c33a346e
FB
1255}
1256
a47dddd7 1257void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1258{
1259 va_list ap;
493ae1f0 1260 va_list ap2;
7501267e
FB
1261
1262 va_start(ap, fmt);
493ae1f0 1263 va_copy(ap2, ap);
7501267e
FB
1264 fprintf(stderr, "qemu: fatal: ");
1265 vfprintf(stderr, fmt, ap);
1266 fprintf(stderr, "\n");
90c84c56 1267 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1268 if (qemu_log_separate()) {
1ee73216 1269 qemu_log_lock();
93fcfe39
AL
1270 qemu_log("qemu: fatal: ");
1271 qemu_log_vprintf(fmt, ap2);
1272 qemu_log("\n");
a0762859 1273 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1274 qemu_log_flush();
1ee73216 1275 qemu_log_unlock();
93fcfe39 1276 qemu_log_close();
924edcae 1277 }
493ae1f0 1278 va_end(ap2);
f9373291 1279 va_end(ap);
7615936e 1280 replay_finish();
fd052bf6
RV
1281#if defined(CONFIG_USER_ONLY)
1282 {
1283 struct sigaction act;
1284 sigfillset(&act.sa_mask);
1285 act.sa_handler = SIG_DFL;
8347c185 1286 act.sa_flags = 0;
fd052bf6
RV
1287 sigaction(SIGABRT, &act, NULL);
1288 }
1289#endif
7501267e
FB
1290 abort();
1291}
1292
0124311e 1293#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1294/* Called from RCU critical section */
041603fe
PB
1295static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1296{
1297 RAMBlock *block;
1298
43771539 1299 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1300 if (block && addr - block->offset < block->max_length) {
68851b98 1301 return block;
041603fe 1302 }
99e15582 1303 RAMBLOCK_FOREACH(block) {
9b8424d5 1304 if (addr - block->offset < block->max_length) {
041603fe
PB
1305 goto found;
1306 }
1307 }
1308
1309 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1310 abort();
1311
1312found:
43771539
PB
1313 /* It is safe to write mru_block outside the iothread lock. This
1314 * is what happens:
1315 *
1316 * mru_block = xxx
1317 * rcu_read_unlock()
1318 * xxx removed from list
1319 * rcu_read_lock()
1320 * read mru_block
1321 * mru_block = NULL;
1322 * call_rcu(reclaim_ramblock, xxx);
1323 * rcu_read_unlock()
1324 *
1325 * atomic_rcu_set is not needed here. The block was already published
1326 * when it was placed into the list. Here we're just making an extra
1327 * copy of the pointer.
1328 */
041603fe
PB
1329 ram_list.mru_block = block;
1330 return block;
1331}
1332
a2f4d5be 1333static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1334{
9a13565d 1335 CPUState *cpu;
041603fe 1336 ram_addr_t start1;
a2f4d5be
JQ
1337 RAMBlock *block;
1338 ram_addr_t end;
1339
f28d0dfd 1340 assert(tcg_enabled());
a2f4d5be
JQ
1341 end = TARGET_PAGE_ALIGN(start + length);
1342 start &= TARGET_PAGE_MASK;
d24981d3 1343
0dc3f44a 1344 rcu_read_lock();
041603fe
PB
1345 block = qemu_get_ram_block(start);
1346 assert(block == qemu_get_ram_block(end - 1));
1240be24 1347 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1348 CPU_FOREACH(cpu) {
1349 tlb_reset_dirty(cpu, start1, length);
1350 }
0dc3f44a 1351 rcu_read_unlock();
d24981d3
JQ
1352}
1353
5579c7f3 1354/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1355bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1356 ram_addr_t length,
1357 unsigned client)
1ccde1cb 1358{
5b82b703 1359 DirtyMemoryBlocks *blocks;
03eebc9e 1360 unsigned long end, page;
5b82b703 1361 bool dirty = false;
077874e0
PX
1362 RAMBlock *ramblock;
1363 uint64_t mr_offset, mr_size;
03eebc9e
SH
1364
1365 if (length == 0) {
1366 return false;
1367 }
f23db169 1368
03eebc9e
SH
1369 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1370 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1371
1372 rcu_read_lock();
1373
1374 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
077874e0
PX
1375 ramblock = qemu_get_ram_block(start);
1376 /* Range sanity check on the ramblock */
1377 assert(start >= ramblock->offset &&
1378 start + length <= ramblock->offset + ramblock->used_length);
5b82b703
SH
1379
1380 while (page < end) {
1381 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1382 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1383 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1384
1385 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1386 offset, num);
1387 page += num;
1388 }
1389
077874e0
PX
1390 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1391 mr_size = (end - page) << TARGET_PAGE_BITS;
1392 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1393
5b82b703 1394 rcu_read_unlock();
03eebc9e
SH
1395
1396 if (dirty && tcg_enabled()) {
a2f4d5be 1397 tlb_reset_dirty_range_all(start, length);
5579c7f3 1398 }
03eebc9e
SH
1399
1400 return dirty;
1ccde1cb
FB
1401}
1402
8deaf12c 1403DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1404 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1405{
1406 DirtyMemoryBlocks *blocks;
5dea4079 1407 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1408 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1409 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1410 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1411 DirtyBitmapSnapshot *snap;
1412 unsigned long page, end, dest;
1413
1414 snap = g_malloc0(sizeof(*snap) +
1415 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1416 snap->start = first;
1417 snap->end = last;
1418
1419 page = first >> TARGET_PAGE_BITS;
1420 end = last >> TARGET_PAGE_BITS;
1421 dest = 0;
1422
1423 rcu_read_lock();
1424
1425 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1426
1427 while (page < end) {
1428 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1429 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1430 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1431
1432 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1433 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1434 offset >>= BITS_PER_LEVEL;
1435
1436 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1437 blocks->blocks[idx] + offset,
1438 num);
1439 page += num;
1440 dest += num >> BITS_PER_LEVEL;
1441 }
1442
1443 rcu_read_unlock();
1444
1445 if (tcg_enabled()) {
1446 tlb_reset_dirty_range_all(start, length);
1447 }
1448
077874e0
PX
1449 memory_region_clear_dirty_bitmap(mr, offset, length);
1450
8deaf12c
GH
1451 return snap;
1452}
1453
1454bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1455 ram_addr_t start,
1456 ram_addr_t length)
1457{
1458 unsigned long page, end;
1459
1460 assert(start >= snap->start);
1461 assert(start + length <= snap->end);
1462
1463 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1464 page = (start - snap->start) >> TARGET_PAGE_BITS;
1465
1466 while (page < end) {
1467 if (test_bit(page, snap->dirty)) {
1468 return true;
1469 }
1470 page++;
1471 }
1472 return false;
1473}
1474
79e2b9ae 1475/* Called from RCU critical section */
bb0e627a 1476hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1477 MemoryRegionSection *section,
1478 target_ulong vaddr,
1479 hwaddr paddr, hwaddr xlat,
1480 int prot,
1481 target_ulong *address)
e5548617 1482{
a8170e5e 1483 hwaddr iotlb;
e5548617
BS
1484 CPUWatchpoint *wp;
1485
cc5bea60 1486 if (memory_region_is_ram(section->mr)) {
e5548617 1487 /* Normal RAM. */
e4e69794 1488 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1489 if (!section->readonly) {
b41aac4f 1490 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1491 } else {
b41aac4f 1492 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1493 }
1494 } else {
0b8e2c10
PM
1495 AddressSpaceDispatch *d;
1496
16620684 1497 d = flatview_to_dispatch(section->fv);
0b8e2c10 1498 iotlb = section - d->map.sections;
149f54b5 1499 iotlb += xlat;
e5548617
BS
1500 }
1501
1502 /* Make accesses to pages with watchpoints go via the
1503 watchpoint trap routines. */
ff4700b0 1504 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1505 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1506 /* Avoid trapping reads of pages with a write breakpoint. */
1507 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1508 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1509 *address |= TLB_MMIO;
1510 break;
1511 }
1512 }
1513 }
1514
1515 return iotlb;
1516}
9fa3e853
FB
1517#endif /* defined(CONFIG_USER_ONLY) */
1518
e2eef170 1519#if !defined(CONFIG_USER_ONLY)
8da3ff18 1520
c227f099 1521static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1522 uint16_t section);
16620684 1523static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1524
06329cce 1525static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1526 qemu_anon_ram_alloc;
91138037
MA
1527
1528/*
1529 * Set a custom physical guest memory alloator.
1530 * Accelerators with unusual needs may need this. Hopefully, we can
1531 * get rid of it eventually.
1532 */
06329cce 1533void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1534{
1535 phys_mem_alloc = alloc;
1536}
1537
53cb28cb
MA
1538static uint16_t phys_section_add(PhysPageMap *map,
1539 MemoryRegionSection *section)
5312bd8b 1540{
68f3f65b
PB
1541 /* The physical section number is ORed with a page-aligned
1542 * pointer to produce the iotlb entries. Thus it should
1543 * never overflow into the page-aligned value.
1544 */
53cb28cb 1545 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1546
53cb28cb
MA
1547 if (map->sections_nb == map->sections_nb_alloc) {
1548 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1549 map->sections = g_renew(MemoryRegionSection, map->sections,
1550 map->sections_nb_alloc);
5312bd8b 1551 }
53cb28cb 1552 map->sections[map->sections_nb] = *section;
dfde4e6e 1553 memory_region_ref(section->mr);
53cb28cb 1554 return map->sections_nb++;
5312bd8b
AK
1555}
1556
058bc4b5
PB
1557static void phys_section_destroy(MemoryRegion *mr)
1558{
55b4e80b
DS
1559 bool have_sub_page = mr->subpage;
1560
dfde4e6e
PB
1561 memory_region_unref(mr);
1562
55b4e80b 1563 if (have_sub_page) {
058bc4b5 1564 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1565 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1566 g_free(subpage);
1567 }
1568}
1569
6092666e 1570static void phys_sections_free(PhysPageMap *map)
5312bd8b 1571{
9affd6fc
PB
1572 while (map->sections_nb > 0) {
1573 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1574 phys_section_destroy(section->mr);
1575 }
9affd6fc
PB
1576 g_free(map->sections);
1577 g_free(map->nodes);
5312bd8b
AK
1578}
1579
9950322a 1580static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1581{
9950322a 1582 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1583 subpage_t *subpage;
a8170e5e 1584 hwaddr base = section->offset_within_address_space
0f0cb164 1585 & TARGET_PAGE_MASK;
003a0cf2 1586 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1587 MemoryRegionSection subsection = {
1588 .offset_within_address_space = base,
052e87b0 1589 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1590 };
a8170e5e 1591 hwaddr start, end;
0f0cb164 1592
f3705d53 1593 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1594
f3705d53 1595 if (!(existing->mr->subpage)) {
16620684
AK
1596 subpage = subpage_init(fv, base);
1597 subsection.fv = fv;
0f0cb164 1598 subsection.mr = &subpage->iomem;
ac1970fb 1599 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1600 phys_section_add(&d->map, &subsection));
0f0cb164 1601 } else {
f3705d53 1602 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1603 }
1604 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1605 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1606 subpage_register(subpage, start, end,
1607 phys_section_add(&d->map, section));
0f0cb164
AK
1608}
1609
1610
9950322a 1611static void register_multipage(FlatView *fv,
052e87b0 1612 MemoryRegionSection *section)
33417e70 1613{
9950322a 1614 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1615 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1616 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1617 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1618 TARGET_PAGE_BITS));
dd81124b 1619
733d5ef5
PB
1620 assert(num_pages);
1621 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1622}
1623
494d1997
WY
1624/*
1625 * The range in *section* may look like this:
1626 *
1627 * |s|PPPPPPP|s|
1628 *
1629 * where s stands for subpage and P for page.
1630 */
8629d3fc 1631void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1632{
494d1997 1633 MemoryRegionSection remain = *section;
052e87b0 1634 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1635
494d1997
WY
1636 /* register first subpage */
1637 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1638 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1639 - remain.offset_within_address_space;
733d5ef5 1640
494d1997 1641 MemoryRegionSection now = remain;
052e87b0 1642 now.size = int128_min(int128_make64(left), now.size);
9950322a 1643 register_subpage(fv, &now);
494d1997
WY
1644 if (int128_eq(remain.size, now.size)) {
1645 return;
1646 }
052e87b0
PB
1647 remain.size = int128_sub(remain.size, now.size);
1648 remain.offset_within_address_space += int128_get64(now.size);
1649 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1650 }
1651
1652 /* register whole pages */
1653 if (int128_ge(remain.size, page_size)) {
1654 MemoryRegionSection now = remain;
1655 now.size = int128_and(now.size, int128_neg(page_size));
1656 register_multipage(fv, &now);
1657 if (int128_eq(remain.size, now.size)) {
1658 return;
69b67646 1659 }
494d1997
WY
1660 remain.size = int128_sub(remain.size, now.size);
1661 remain.offset_within_address_space += int128_get64(now.size);
1662 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1663 }
494d1997
WY
1664
1665 /* register last subpage */
1666 register_subpage(fv, &remain);
0f0cb164
AK
1667}
1668
62a2744c
SY
1669void qemu_flush_coalesced_mmio_buffer(void)
1670{
1671 if (kvm_enabled())
1672 kvm_flush_coalesced_mmio_buffer();
1673}
1674
b2a8658e
UD
1675void qemu_mutex_lock_ramlist(void)
1676{
1677 qemu_mutex_lock(&ram_list.mutex);
1678}
1679
1680void qemu_mutex_unlock_ramlist(void)
1681{
1682 qemu_mutex_unlock(&ram_list.mutex);
1683}
1684
be9b23c4
PX
1685void ram_block_dump(Monitor *mon)
1686{
1687 RAMBlock *block;
1688 char *psize;
1689
1690 rcu_read_lock();
1691 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1692 "Block Name", "PSize", "Offset", "Used", "Total");
1693 RAMBLOCK_FOREACH(block) {
1694 psize = size_to_str(block->page_size);
1695 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1696 " 0x%016" PRIx64 "\n", block->idstr, psize,
1697 (uint64_t)block->offset,
1698 (uint64_t)block->used_length,
1699 (uint64_t)block->max_length);
1700 g_free(psize);
1701 }
1702 rcu_read_unlock();
1703}
1704
9c607668
AK
1705#ifdef __linux__
1706/*
1707 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1708 * may or may not name the same files / on the same filesystem now as
1709 * when we actually open and map them. Iterate over the file
1710 * descriptors instead, and use qemu_fd_getpagesize().
1711 */
905b7ee4 1712static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1713{
9c607668
AK
1714 long *hpsize_min = opaque;
1715
1716 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1717 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1718 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1719
7d5489e6 1720 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1721 *hpsize_min = hpsize;
9c607668
AK
1722 }
1723 }
1724
1725 return 0;
1726}
1727
905b7ee4
DH
1728static int find_max_backend_pagesize(Object *obj, void *opaque)
1729{
1730 long *hpsize_max = opaque;
1731
1732 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1733 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1734 long hpsize = host_memory_backend_pagesize(backend);
1735
1736 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1737 *hpsize_max = hpsize;
1738 }
1739 }
1740
1741 return 0;
1742}
1743
1744/*
1745 * TODO: We assume right now that all mapped host memory backends are
1746 * used as RAM, however some might be used for different purposes.
1747 */
1748long qemu_minrampagesize(void)
9c607668
AK
1749{
1750 long hpsize = LONG_MAX;
1751 long mainrampagesize;
1752 Object *memdev_root;
aa570207 1753 MachineState *ms = MACHINE(qdev_get_machine());
9c607668 1754
0de6e2a3 1755 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1756
1757 /* it's possible we have memory-backend objects with
1758 * hugepage-backed RAM. these may get mapped into system
1759 * address space via -numa parameters or memory hotplug
1760 * hooks. we want to take these into account, but we
1761 * also want to make sure these supported hugepage
1762 * sizes are applicable across the entire range of memory
1763 * we may boot from, so we take the min across all
1764 * backends, and assume normal pages in cases where a
1765 * backend isn't backed by hugepages.
1766 */
1767 memdev_root = object_resolve_path("/objects", NULL);
1768 if (memdev_root) {
905b7ee4 1769 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1770 }
1771 if (hpsize == LONG_MAX) {
1772 /* No additional memory regions found ==> Report main RAM page size */
1773 return mainrampagesize;
1774 }
1775
1776 /* If NUMA is disabled or the NUMA nodes are not backed with a
1777 * memory-backend, then there is at least one node using "normal" RAM,
1778 * so if its page size is smaller we have got to report that size instead.
1779 */
1780 if (hpsize > mainrampagesize &&
aa570207
TX
1781 (ms->numa_state == NULL ||
1782 ms->numa_state->num_nodes == 0 ||
1783 numa_info[0].node_memdev == NULL)) {
9c607668
AK
1784 static bool warned;
1785 if (!warned) {
1786 error_report("Huge page support disabled (n/a for main memory).");
1787 warned = true;
1788 }
1789 return mainrampagesize;
1790 }
1791
1792 return hpsize;
1793}
905b7ee4
DH
1794
1795long qemu_maxrampagesize(void)
1796{
1797 long pagesize = qemu_mempath_getpagesize(mem_path);
1798 Object *memdev_root = object_resolve_path("/objects", NULL);
1799
1800 if (memdev_root) {
1801 object_child_foreach(memdev_root, find_max_backend_pagesize,
1802 &pagesize);
1803 }
1804 return pagesize;
1805}
9c607668 1806#else
905b7ee4
DH
1807long qemu_minrampagesize(void)
1808{
1809 return getpagesize();
1810}
1811long qemu_maxrampagesize(void)
9c607668
AK
1812{
1813 return getpagesize();
1814}
1815#endif
1816
d5dbde46 1817#ifdef CONFIG_POSIX
d6af99c9
HZ
1818static int64_t get_file_size(int fd)
1819{
1820 int64_t size = lseek(fd, 0, SEEK_END);
1821 if (size < 0) {
1822 return -errno;
1823 }
1824 return size;
1825}
1826
8d37b030
MAL
1827static int file_ram_open(const char *path,
1828 const char *region_name,
1829 bool *created,
1830 Error **errp)
c902760f
MT
1831{
1832 char *filename;
8ca761f6
PF
1833 char *sanitized_name;
1834 char *c;
5c3ece79 1835 int fd = -1;
c902760f 1836
8d37b030 1837 *created = false;
fd97fd44
MA
1838 for (;;) {
1839 fd = open(path, O_RDWR);
1840 if (fd >= 0) {
1841 /* @path names an existing file, use it */
1842 break;
8d31d6b6 1843 }
fd97fd44
MA
1844 if (errno == ENOENT) {
1845 /* @path names a file that doesn't exist, create it */
1846 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1847 if (fd >= 0) {
8d37b030 1848 *created = true;
fd97fd44
MA
1849 break;
1850 }
1851 } else if (errno == EISDIR) {
1852 /* @path names a directory, create a file there */
1853 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1854 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1855 for (c = sanitized_name; *c != '\0'; c++) {
1856 if (*c == '/') {
1857 *c = '_';
1858 }
1859 }
8ca761f6 1860
fd97fd44
MA
1861 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1862 sanitized_name);
1863 g_free(sanitized_name);
8d31d6b6 1864
fd97fd44
MA
1865 fd = mkstemp(filename);
1866 if (fd >= 0) {
1867 unlink(filename);
1868 g_free(filename);
1869 break;
1870 }
1871 g_free(filename);
8d31d6b6 1872 }
fd97fd44
MA
1873 if (errno != EEXIST && errno != EINTR) {
1874 error_setg_errno(errp, errno,
1875 "can't open backing store %s for guest RAM",
1876 path);
8d37b030 1877 return -1;
fd97fd44
MA
1878 }
1879 /*
1880 * Try again on EINTR and EEXIST. The latter happens when
1881 * something else creates the file between our two open().
1882 */
8d31d6b6 1883 }
c902760f 1884
8d37b030
MAL
1885 return fd;
1886}
1887
1888static void *file_ram_alloc(RAMBlock *block,
1889 ram_addr_t memory,
1890 int fd,
1891 bool truncate,
1892 Error **errp)
1893{
5cc8767d 1894 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1895 void *area;
1896
863e9621 1897 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1898 if (block->mr->align % block->page_size) {
1899 error_setg(errp, "alignment 0x%" PRIx64
1900 " must be multiples of page size 0x%zx",
1901 block->mr->align, block->page_size);
1902 return NULL;
61362b71
DH
1903 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1904 error_setg(errp, "alignment 0x%" PRIx64
1905 " must be a power of two", block->mr->align);
1906 return NULL;
98376843
HZ
1907 }
1908 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1909#if defined(__s390x__)
1910 if (kvm_enabled()) {
1911 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1912 }
1913#endif
fd97fd44 1914
863e9621 1915 if (memory < block->page_size) {
fd97fd44 1916 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1917 "or larger than page size 0x%zx",
1918 memory, block->page_size);
8d37b030 1919 return NULL;
1775f111
HZ
1920 }
1921
863e9621 1922 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1923
1924 /*
1925 * ftruncate is not supported by hugetlbfs in older
1926 * hosts, so don't bother bailing out on errors.
1927 * If anything goes wrong with it under other filesystems,
1928 * mmap will fail.
d6af99c9
HZ
1929 *
1930 * Do not truncate the non-empty backend file to avoid corrupting
1931 * the existing data in the file. Disabling shrinking is not
1932 * enough. For example, the current vNVDIMM implementation stores
1933 * the guest NVDIMM labels at the end of the backend file. If the
1934 * backend file is later extended, QEMU will not be able to find
1935 * those labels. Therefore, extending the non-empty backend file
1936 * is disabled as well.
c902760f 1937 */
8d37b030 1938 if (truncate && ftruncate(fd, memory)) {
9742bf26 1939 perror("ftruncate");
7f56e740 1940 }
c902760f 1941
d2f39add 1942 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1943 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1944 if (area == MAP_FAILED) {
7f56e740 1945 error_setg_errno(errp, errno,
fd97fd44 1946 "unable to map backing store for guest RAM");
8d37b030 1947 return NULL;
c902760f 1948 }
ef36fa14
MT
1949
1950 if (mem_prealloc) {
5cc8767d 1951 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
056b68af 1952 if (errp && *errp) {
53adb9d4 1953 qemu_ram_munmap(fd, area, memory);
8d37b030 1954 return NULL;
056b68af 1955 }
ef36fa14
MT
1956 }
1957
04b16653 1958 block->fd = fd;
c902760f
MT
1959 return area;
1960}
1961#endif
1962
154cc9ea
DDAG
1963/* Allocate space within the ram_addr_t space that governs the
1964 * dirty bitmaps.
1965 * Called with the ramlist lock held.
1966 */
d17b5288 1967static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1968{
1969 RAMBlock *block, *next_block;
3e837b2c 1970 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1971
49cd9ac6
SH
1972 assert(size != 0); /* it would hand out same offset multiple times */
1973
0dc3f44a 1974 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1975 return 0;
0d53d9fe 1976 }
04b16653 1977
99e15582 1978 RAMBLOCK_FOREACH(block) {
154cc9ea 1979 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1980
801110ab
DDAG
1981 /* Align blocks to start on a 'long' in the bitmap
1982 * which makes the bitmap sync'ing take the fast path.
1983 */
154cc9ea 1984 candidate = block->offset + block->max_length;
801110ab 1985 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1986
154cc9ea
DDAG
1987 /* Search for the closest following block
1988 * and find the gap.
1989 */
99e15582 1990 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1991 if (next_block->offset >= candidate) {
04b16653
AW
1992 next = MIN(next, next_block->offset);
1993 }
1994 }
154cc9ea
DDAG
1995
1996 /* If it fits remember our place and remember the size
1997 * of gap, but keep going so that we might find a smaller
1998 * gap to fill so avoiding fragmentation.
1999 */
2000 if (next - candidate >= size && next - candidate < mingap) {
2001 offset = candidate;
2002 mingap = next - candidate;
04b16653 2003 }
154cc9ea
DDAG
2004
2005 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 2006 }
3e837b2c
AW
2007
2008 if (offset == RAM_ADDR_MAX) {
2009 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2010 (uint64_t)size);
2011 abort();
2012 }
2013
154cc9ea
DDAG
2014 trace_find_ram_offset(size, offset);
2015
04b16653
AW
2016 return offset;
2017}
2018
c136180c 2019static unsigned long last_ram_page(void)
d17b5288
AW
2020{
2021 RAMBlock *block;
2022 ram_addr_t last = 0;
2023
0dc3f44a 2024 rcu_read_lock();
99e15582 2025 RAMBLOCK_FOREACH(block) {
62be4e3a 2026 last = MAX(last, block->offset + block->max_length);
0d53d9fe 2027 }
0dc3f44a 2028 rcu_read_unlock();
b8c48993 2029 return last >> TARGET_PAGE_BITS;
d17b5288
AW
2030}
2031
ddb97f1d
JB
2032static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2033{
2034 int ret;
ddb97f1d
JB
2035
2036 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 2037 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
2038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2039 if (ret) {
2040 perror("qemu_madvise");
2041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2042 "but dump_guest_core=off specified\n");
2043 }
2044 }
2045}
2046
422148d3
DDAG
2047const char *qemu_ram_get_idstr(RAMBlock *rb)
2048{
2049 return rb->idstr;
2050}
2051
754cb9c0
YK
2052void *qemu_ram_get_host_addr(RAMBlock *rb)
2053{
2054 return rb->host;
2055}
2056
2057ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2058{
2059 return rb->offset;
2060}
2061
2062ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2063{
2064 return rb->used_length;
2065}
2066
463a4ac2
DDAG
2067bool qemu_ram_is_shared(RAMBlock *rb)
2068{
2069 return rb->flags & RAM_SHARED;
2070}
2071
2ce16640
DDAG
2072/* Note: Only set at the start of postcopy */
2073bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2074{
2075 return rb->flags & RAM_UF_ZEROPAGE;
2076}
2077
2078void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2079{
2080 rb->flags |= RAM_UF_ZEROPAGE;
2081}
2082
b895de50
CLG
2083bool qemu_ram_is_migratable(RAMBlock *rb)
2084{
2085 return rb->flags & RAM_MIGRATABLE;
2086}
2087
2088void qemu_ram_set_migratable(RAMBlock *rb)
2089{
2090 rb->flags |= RAM_MIGRATABLE;
2091}
2092
2093void qemu_ram_unset_migratable(RAMBlock *rb)
2094{
2095 rb->flags &= ~RAM_MIGRATABLE;
2096}
2097
ae3a7047 2098/* Called with iothread lock held. */
fa53a0e5 2099void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2100{
fa53a0e5 2101 RAMBlock *block;
20cfe881 2102
c5705a77
AK
2103 assert(new_block);
2104 assert(!new_block->idstr[0]);
84b89d78 2105
09e5ab63
AL
2106 if (dev) {
2107 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2108 if (id) {
2109 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2110 g_free(id);
84b89d78
CM
2111 }
2112 }
2113 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2114
ab0a9956 2115 rcu_read_lock();
99e15582 2116 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2117 if (block != new_block &&
2118 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2119 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2120 new_block->idstr);
2121 abort();
2122 }
2123 }
0dc3f44a 2124 rcu_read_unlock();
c5705a77
AK
2125}
2126
ae3a7047 2127/* Called with iothread lock held. */
fa53a0e5 2128void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2129{
ae3a7047
MD
2130 /* FIXME: arch_init.c assumes that this is not called throughout
2131 * migration. Ignore the problem since hot-unplug during migration
2132 * does not work anyway.
2133 */
20cfe881
HT
2134 if (block) {
2135 memset(block->idstr, 0, sizeof(block->idstr));
2136 }
2137}
2138
863e9621
DDAG
2139size_t qemu_ram_pagesize(RAMBlock *rb)
2140{
2141 return rb->page_size;
2142}
2143
67f11b5c
DDAG
2144/* Returns the largest size of page in use */
2145size_t qemu_ram_pagesize_largest(void)
2146{
2147 RAMBlock *block;
2148 size_t largest = 0;
2149
99e15582 2150 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2151 largest = MAX(largest, qemu_ram_pagesize(block));
2152 }
2153
2154 return largest;
2155}
2156
8490fc78
LC
2157static int memory_try_enable_merging(void *addr, size_t len)
2158{
75cc7f01 2159 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2160 /* disabled by the user */
2161 return 0;
2162 }
2163
2164 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2165}
2166
62be4e3a
MT
2167/* Only legal before guest might have detected the memory size: e.g. on
2168 * incoming migration, or right after reset.
2169 *
2170 * As memory core doesn't know how is memory accessed, it is up to
2171 * resize callback to update device state and/or add assertions to detect
2172 * misuse, if necessary.
2173 */
fa53a0e5 2174int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2175{
62be4e3a
MT
2176 assert(block);
2177
4ed023ce 2178 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2179
62be4e3a
MT
2180 if (block->used_length == newsize) {
2181 return 0;
2182 }
2183
2184 if (!(block->flags & RAM_RESIZEABLE)) {
2185 error_setg_errno(errp, EINVAL,
2186 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2187 " in != 0x" RAM_ADDR_FMT, block->idstr,
2188 newsize, block->used_length);
2189 return -EINVAL;
2190 }
2191
2192 if (block->max_length < newsize) {
2193 error_setg_errno(errp, EINVAL,
2194 "Length too large: %s: 0x" RAM_ADDR_FMT
2195 " > 0x" RAM_ADDR_FMT, block->idstr,
2196 newsize, block->max_length);
2197 return -EINVAL;
2198 }
2199
2200 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2201 block->used_length = newsize;
58d2707e
PB
2202 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2203 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2204 memory_region_set_size(block->mr, newsize);
2205 if (block->resized) {
2206 block->resized(block->idstr, newsize, block->host);
2207 }
2208 return 0;
2209}
2210
5b82b703
SH
2211/* Called with ram_list.mutex held */
2212static void dirty_memory_extend(ram_addr_t old_ram_size,
2213 ram_addr_t new_ram_size)
2214{
2215 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2216 DIRTY_MEMORY_BLOCK_SIZE);
2217 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2218 DIRTY_MEMORY_BLOCK_SIZE);
2219 int i;
2220
2221 /* Only need to extend if block count increased */
2222 if (new_num_blocks <= old_num_blocks) {
2223 return;
2224 }
2225
2226 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2227 DirtyMemoryBlocks *old_blocks;
2228 DirtyMemoryBlocks *new_blocks;
2229 int j;
2230
2231 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2232 new_blocks = g_malloc(sizeof(*new_blocks) +
2233 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2234
2235 if (old_num_blocks) {
2236 memcpy(new_blocks->blocks, old_blocks->blocks,
2237 old_num_blocks * sizeof(old_blocks->blocks[0]));
2238 }
2239
2240 for (j = old_num_blocks; j < new_num_blocks; j++) {
2241 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2242 }
2243
2244 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2245
2246 if (old_blocks) {
2247 g_free_rcu(old_blocks, rcu);
2248 }
2249 }
2250}
2251
06329cce 2252static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2253{
e1c57ab8 2254 RAMBlock *block;
0d53d9fe 2255 RAMBlock *last_block = NULL;
2152f5ca 2256 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2257 Error *err = NULL;
2152f5ca 2258
b8c48993 2259 old_ram_size = last_ram_page();
c5705a77 2260
b2a8658e 2261 qemu_mutex_lock_ramlist();
9b8424d5 2262 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2263
2264 if (!new_block->host) {
2265 if (xen_enabled()) {
9b8424d5 2266 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2267 new_block->mr, &err);
2268 if (err) {
2269 error_propagate(errp, err);
2270 qemu_mutex_unlock_ramlist();
39c350ee 2271 return;
37aa7a0e 2272 }
e1c57ab8 2273 } else {
9b8424d5 2274 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2275 &new_block->mr->align, shared);
39228250 2276 if (!new_block->host) {
ef701d7b
HT
2277 error_setg_errno(errp, errno,
2278 "cannot set up guest memory '%s'",
2279 memory_region_name(new_block->mr));
2280 qemu_mutex_unlock_ramlist();
39c350ee 2281 return;
39228250 2282 }
9b8424d5 2283 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2284 }
c902760f 2285 }
94a6b54f 2286
dd631697
LZ
2287 new_ram_size = MAX(old_ram_size,
2288 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2289 if (new_ram_size > old_ram_size) {
5b82b703 2290 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2291 }
0d53d9fe
MD
2292 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2293 * QLIST (which has an RCU-friendly variant) does not have insertion at
2294 * tail, so save the last element in last_block.
2295 */
99e15582 2296 RAMBLOCK_FOREACH(block) {
0d53d9fe 2297 last_block = block;
9b8424d5 2298 if (block->max_length < new_block->max_length) {
abb26d63
PB
2299 break;
2300 }
2301 }
2302 if (block) {
0dc3f44a 2303 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2304 } else if (last_block) {
0dc3f44a 2305 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2306 } else { /* list is empty */
0dc3f44a 2307 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2308 }
0d6d3c87 2309 ram_list.mru_block = NULL;
94a6b54f 2310
0dc3f44a
MD
2311 /* Write list before version */
2312 smp_wmb();
f798b07f 2313 ram_list.version++;
b2a8658e 2314 qemu_mutex_unlock_ramlist();
f798b07f 2315
9b8424d5 2316 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2317 new_block->used_length,
2318 DIRTY_CLIENTS_ALL);
94a6b54f 2319
a904c911
PB
2320 if (new_block->host) {
2321 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2322 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2323 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2324 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2325 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2326 }
94a6b54f 2327}
e9a1ab19 2328
d5dbde46 2329#ifdef CONFIG_POSIX
38b3362d 2330RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2331 uint32_t ram_flags, int fd,
38b3362d 2332 Error **errp)
e1c57ab8
PB
2333{
2334 RAMBlock *new_block;
ef701d7b 2335 Error *local_err = NULL;
8d37b030 2336 int64_t file_size;
e1c57ab8 2337
a4de8552
JH
2338 /* Just support these ram flags by now. */
2339 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2340
e1c57ab8 2341 if (xen_enabled()) {
7f56e740 2342 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2343 return NULL;
e1c57ab8
PB
2344 }
2345
e45e7ae2
MAL
2346 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2347 error_setg(errp,
2348 "host lacks kvm mmu notifiers, -mem-path unsupported");
2349 return NULL;
2350 }
2351
e1c57ab8
PB
2352 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2353 /*
2354 * file_ram_alloc() needs to allocate just like
2355 * phys_mem_alloc, but we haven't bothered to provide
2356 * a hook there.
2357 */
7f56e740
PB
2358 error_setg(errp,
2359 "-mem-path not supported with this accelerator");
528f46af 2360 return NULL;
e1c57ab8
PB
2361 }
2362
4ed023ce 2363 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2364 file_size = get_file_size(fd);
2365 if (file_size > 0 && file_size < size) {
2366 error_setg(errp, "backing store %s size 0x%" PRIx64
2367 " does not match 'size' option 0x" RAM_ADDR_FMT,
2368 mem_path, file_size, size);
8d37b030
MAL
2369 return NULL;
2370 }
2371
e1c57ab8
PB
2372 new_block = g_malloc0(sizeof(*new_block));
2373 new_block->mr = mr;
9b8424d5
MT
2374 new_block->used_length = size;
2375 new_block->max_length = size;
cbfc0171 2376 new_block->flags = ram_flags;
8d37b030 2377 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2378 if (!new_block->host) {
2379 g_free(new_block);
528f46af 2380 return NULL;
7f56e740
PB
2381 }
2382
cbfc0171 2383 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2384 if (local_err) {
2385 g_free(new_block);
2386 error_propagate(errp, local_err);
528f46af 2387 return NULL;
ef701d7b 2388 }
528f46af 2389 return new_block;
38b3362d
MAL
2390
2391}
2392
2393
2394RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2395 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2396 Error **errp)
2397{
2398 int fd;
2399 bool created;
2400 RAMBlock *block;
2401
2402 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2403 if (fd < 0) {
2404 return NULL;
2405 }
2406
cbfc0171 2407 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2408 if (!block) {
2409 if (created) {
2410 unlink(mem_path);
2411 }
2412 close(fd);
2413 return NULL;
2414 }
2415
2416 return block;
e1c57ab8 2417}
0b183fc8 2418#endif
e1c57ab8 2419
62be4e3a 2420static
528f46af
FZ
2421RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2422 void (*resized)(const char*,
2423 uint64_t length,
2424 void *host),
06329cce 2425 void *host, bool resizeable, bool share,
528f46af 2426 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2427{
2428 RAMBlock *new_block;
ef701d7b 2429 Error *local_err = NULL;
e1c57ab8 2430
4ed023ce
DDAG
2431 size = HOST_PAGE_ALIGN(size);
2432 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2433 new_block = g_malloc0(sizeof(*new_block));
2434 new_block->mr = mr;
62be4e3a 2435 new_block->resized = resized;
9b8424d5
MT
2436 new_block->used_length = size;
2437 new_block->max_length = max_size;
62be4e3a 2438 assert(max_size >= size);
e1c57ab8 2439 new_block->fd = -1;
863e9621 2440 new_block->page_size = getpagesize();
e1c57ab8
PB
2441 new_block->host = host;
2442 if (host) {
7bd4f430 2443 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2444 }
62be4e3a
MT
2445 if (resizeable) {
2446 new_block->flags |= RAM_RESIZEABLE;
2447 }
06329cce 2448 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2449 if (local_err) {
2450 g_free(new_block);
2451 error_propagate(errp, local_err);
528f46af 2452 return NULL;
ef701d7b 2453 }
528f46af 2454 return new_block;
e1c57ab8
PB
2455}
2456
528f46af 2457RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2458 MemoryRegion *mr, Error **errp)
2459{
06329cce
MA
2460 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2461 false, mr, errp);
62be4e3a
MT
2462}
2463
06329cce
MA
2464RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2465 MemoryRegion *mr, Error **errp)
6977dfe6 2466{
06329cce
MA
2467 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2468 share, mr, errp);
62be4e3a
MT
2469}
2470
528f46af 2471RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2472 void (*resized)(const char*,
2473 uint64_t length,
2474 void *host),
2475 MemoryRegion *mr, Error **errp)
2476{
06329cce
MA
2477 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2478 false, mr, errp);
6977dfe6
YT
2479}
2480
43771539
PB
2481static void reclaim_ramblock(RAMBlock *block)
2482{
2483 if (block->flags & RAM_PREALLOC) {
2484 ;
2485 } else if (xen_enabled()) {
2486 xen_invalidate_map_cache_entry(block->host);
2487#ifndef _WIN32
2488 } else if (block->fd >= 0) {
53adb9d4 2489 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2490 close(block->fd);
2491#endif
2492 } else {
2493 qemu_anon_ram_free(block->host, block->max_length);
2494 }
2495 g_free(block);
2496}
2497
f1060c55 2498void qemu_ram_free(RAMBlock *block)
e9a1ab19 2499{
85bc2a15
MAL
2500 if (!block) {
2501 return;
2502 }
2503
0987d735
PB
2504 if (block->host) {
2505 ram_block_notify_remove(block->host, block->max_length);
2506 }
2507
b2a8658e 2508 qemu_mutex_lock_ramlist();
f1060c55
FZ
2509 QLIST_REMOVE_RCU(block, next);
2510 ram_list.mru_block = NULL;
2511 /* Write list before version */
2512 smp_wmb();
2513 ram_list.version++;
2514 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2515 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2516}
2517
cd19cfa2
HY
2518#ifndef _WIN32
2519void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2520{
2521 RAMBlock *block;
2522 ram_addr_t offset;
2523 int flags;
2524 void *area, *vaddr;
2525
99e15582 2526 RAMBLOCK_FOREACH(block) {
cd19cfa2 2527 offset = addr - block->offset;
9b8424d5 2528 if (offset < block->max_length) {
1240be24 2529 vaddr = ramblock_ptr(block, offset);
7bd4f430 2530 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2531 ;
dfeaf2ab
MA
2532 } else if (xen_enabled()) {
2533 abort();
cd19cfa2
HY
2534 } else {
2535 flags = MAP_FIXED;
3435f395 2536 if (block->fd >= 0) {
dbcb8981
PB
2537 flags |= (block->flags & RAM_SHARED ?
2538 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2539 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2540 flags, block->fd, offset);
cd19cfa2 2541 } else {
2eb9fbaa
MA
2542 /*
2543 * Remap needs to match alloc. Accelerators that
2544 * set phys_mem_alloc never remap. If they did,
2545 * we'd need a remap hook here.
2546 */
2547 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2548
cd19cfa2
HY
2549 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2550 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2551 flags, -1, 0);
cd19cfa2
HY
2552 }
2553 if (area != vaddr) {
493d89bf
AF
2554 error_report("Could not remap addr: "
2555 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2556 length, addr);
cd19cfa2
HY
2557 exit(1);
2558 }
8490fc78 2559 memory_try_enable_merging(vaddr, length);
ddb97f1d 2560 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2561 }
cd19cfa2
HY
2562 }
2563 }
2564}
2565#endif /* !_WIN32 */
2566
1b5ec234 2567/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2568 * This should not be used for general purpose DMA. Use address_space_map
2569 * or address_space_rw instead. For local memory (e.g. video ram) that the
2570 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2571 *
49b24afc 2572 * Called within RCU critical section.
1b5ec234 2573 */
0878d0e1 2574void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2575{
3655cb9c
GA
2576 RAMBlock *block = ram_block;
2577
2578 if (block == NULL) {
2579 block = qemu_get_ram_block(addr);
0878d0e1 2580 addr -= block->offset;
3655cb9c 2581 }
ae3a7047
MD
2582
2583 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2584 /* We need to check if the requested address is in the RAM
2585 * because we don't want to map the entire memory in QEMU.
2586 * In that case just map until the end of the page.
2587 */
2588 if (block->offset == 0) {
1ff7c598 2589 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2590 }
ae3a7047 2591
1ff7c598 2592 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2593 }
0878d0e1 2594 return ramblock_ptr(block, addr);
dc828ca1
PB
2595}
2596
0878d0e1 2597/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2598 * but takes a size argument.
0dc3f44a 2599 *
e81bcda5 2600 * Called within RCU critical section.
ae3a7047 2601 */
3655cb9c 2602static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2603 hwaddr *size, bool lock)
38bee5dc 2604{
3655cb9c 2605 RAMBlock *block = ram_block;
8ab934f9
SS
2606 if (*size == 0) {
2607 return NULL;
2608 }
e81bcda5 2609
3655cb9c
GA
2610 if (block == NULL) {
2611 block = qemu_get_ram_block(addr);
0878d0e1 2612 addr -= block->offset;
3655cb9c 2613 }
0878d0e1 2614 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2615
2616 if (xen_enabled() && block->host == NULL) {
2617 /* We need to check if the requested address is in the RAM
2618 * because we don't want to map the entire memory in QEMU.
2619 * In that case just map the requested area.
2620 */
2621 if (block->offset == 0) {
f5aa69bd 2622 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2623 }
2624
f5aa69bd 2625 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2626 }
e81bcda5 2627
0878d0e1 2628 return ramblock_ptr(block, addr);
38bee5dc
SS
2629}
2630
f90bb71b
DDAG
2631/* Return the offset of a hostpointer within a ramblock */
2632ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2633{
2634 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2635 assert((uintptr_t)host >= (uintptr_t)rb->host);
2636 assert(res < rb->max_length);
2637
2638 return res;
2639}
2640
422148d3
DDAG
2641/*
2642 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2643 * in that RAMBlock.
2644 *
2645 * ptr: Host pointer to look up
2646 * round_offset: If true round the result offset down to a page boundary
2647 * *ram_addr: set to result ram_addr
2648 * *offset: set to result offset within the RAMBlock
2649 *
2650 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2651 *
2652 * By the time this function returns, the returned pointer is not protected
2653 * by RCU anymore. If the caller is not within an RCU critical section and
2654 * does not hold the iothread lock, it must have other means of protecting the
2655 * pointer, such as a reference to the region that includes the incoming
2656 * ram_addr_t.
2657 */
422148d3 2658RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2659 ram_addr_t *offset)
5579c7f3 2660{
94a6b54f
PB
2661 RAMBlock *block;
2662 uint8_t *host = ptr;
2663
868bb33f 2664 if (xen_enabled()) {
f615f396 2665 ram_addr_t ram_addr;
0dc3f44a 2666 rcu_read_lock();
f615f396
PB
2667 ram_addr = xen_ram_addr_from_mapcache(ptr);
2668 block = qemu_get_ram_block(ram_addr);
422148d3 2669 if (block) {
d6b6aec4 2670 *offset = ram_addr - block->offset;
422148d3 2671 }
0dc3f44a 2672 rcu_read_unlock();
422148d3 2673 return block;
712c2b41
SS
2674 }
2675
0dc3f44a
MD
2676 rcu_read_lock();
2677 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2678 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2679 goto found;
2680 }
2681
99e15582 2682 RAMBLOCK_FOREACH(block) {
432d268c
JN
2683 /* This case append when the block is not mapped. */
2684 if (block->host == NULL) {
2685 continue;
2686 }
9b8424d5 2687 if (host - block->host < block->max_length) {
23887b79 2688 goto found;
f471a17e 2689 }
94a6b54f 2690 }
432d268c 2691
0dc3f44a 2692 rcu_read_unlock();
1b5ec234 2693 return NULL;
23887b79
PB
2694
2695found:
422148d3
DDAG
2696 *offset = (host - block->host);
2697 if (round_offset) {
2698 *offset &= TARGET_PAGE_MASK;
2699 }
0dc3f44a 2700 rcu_read_unlock();
422148d3
DDAG
2701 return block;
2702}
2703
e3dd7493
DDAG
2704/*
2705 * Finds the named RAMBlock
2706 *
2707 * name: The name of RAMBlock to find
2708 *
2709 * Returns: RAMBlock (or NULL if not found)
2710 */
2711RAMBlock *qemu_ram_block_by_name(const char *name)
2712{
2713 RAMBlock *block;
2714
99e15582 2715 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2716 if (!strcmp(name, block->idstr)) {
2717 return block;
2718 }
2719 }
2720
2721 return NULL;
2722}
2723
422148d3
DDAG
2724/* Some of the softmmu routines need to translate from a host pointer
2725 (typically a TLB entry) back to a ram offset. */
07bdaa41 2726ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2727{
2728 RAMBlock *block;
f615f396 2729 ram_addr_t offset;
422148d3 2730
f615f396 2731 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2732 if (!block) {
07bdaa41 2733 return RAM_ADDR_INVALID;
422148d3
DDAG
2734 }
2735
07bdaa41 2736 return block->offset + offset;
e890261f 2737}
f471a17e 2738
27266271
PM
2739/* Called within RCU critical section. */
2740void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2741 CPUState *cpu,
2742 vaddr mem_vaddr,
2743 ram_addr_t ram_addr,
2744 unsigned size)
2745{
2746 ndi->cpu = cpu;
2747 ndi->ram_addr = ram_addr;
2748 ndi->mem_vaddr = mem_vaddr;
2749 ndi->size = size;
0ac20318 2750 ndi->pages = NULL;
ba051fb5 2751
5aa1ef71 2752 assert(tcg_enabled());
52159192 2753 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2754 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2755 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2756 }
27266271
PM
2757}
2758
2759/* Called within RCU critical section. */
2760void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2761{
0ac20318 2762 if (ndi->pages) {
f28d0dfd 2763 assert(tcg_enabled());
0ac20318
EC
2764 page_collection_unlock(ndi->pages);
2765 ndi->pages = NULL;
27266271
PM
2766 }
2767
2768 /* Set both VGA and migration bits for simplicity and to remove
2769 * the notdirty callback faster.
2770 */
2771 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2772 DIRTY_CLIENTS_NOCODE);
2773 /* we remove the notdirty callback only if the code has been
2774 flushed */
2775 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2776 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2777 }
2778}
2779
2780/* Called within RCU critical section. */
2781static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2782 uint64_t val, unsigned size)
2783{
2784 NotDirtyInfo ndi;
2785
2786 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2787 ram_addr, size);
2788
6d3ede54 2789 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2790 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2791}
2792
b018ddf6 2793static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2794 unsigned size, bool is_write,
2795 MemTxAttrs attrs)
b018ddf6
PB
2796{
2797 return is_write;
2798}
2799
0e0df1e2 2800static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2801 .write = notdirty_mem_write,
b018ddf6 2802 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2803 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2804 .valid = {
2805 .min_access_size = 1,
2806 .max_access_size = 8,
2807 .unaligned = false,
2808 },
2809 .impl = {
2810 .min_access_size = 1,
2811 .max_access_size = 8,
2812 .unaligned = false,
2813 },
1ccde1cb
FB
2814};
2815
0f459d16 2816/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2817static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2818{
93afeade 2819 CPUState *cpu = current_cpu;
568496c0 2820 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2821 target_ulong vaddr;
a1d1bb31 2822 CPUWatchpoint *wp;
0f459d16 2823
5aa1ef71 2824 assert(tcg_enabled());
ff4700b0 2825 if (cpu->watchpoint_hit) {
06d55cc1
AL
2826 /* We re-entered the check after replacing the TB. Now raise
2827 * the debug interrupt so that is will trigger after the
2828 * current instruction. */
93afeade 2829 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2830 return;
2831 }
93afeade 2832 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2833 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2834 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2835 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2836 && (wp->flags & flags)) {
08225676
PM
2837 if (flags == BP_MEM_READ) {
2838 wp->flags |= BP_WATCHPOINT_HIT_READ;
2839 } else {
2840 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2841 }
2842 wp->hitaddr = vaddr;
66b9b43c 2843 wp->hitattrs = attrs;
ff4700b0 2844 if (!cpu->watchpoint_hit) {
568496c0
SF
2845 if (wp->flags & BP_CPU &&
2846 !cc->debug_check_watchpoint(cpu, wp)) {
2847 wp->flags &= ~BP_WATCHPOINT_HIT;
2848 continue;
2849 }
ff4700b0 2850 cpu->watchpoint_hit = wp;
a5e99826 2851
0ac20318 2852 mmap_lock();
239c51a5 2853 tb_check_watchpoint(cpu);
6e140f28 2854 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2855 cpu->exception_index = EXCP_DEBUG;
0ac20318 2856 mmap_unlock();
5638d180 2857 cpu_loop_exit(cpu);
6e140f28 2858 } else {
9b990ee5
RH
2859 /* Force execution of one insn next time. */
2860 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2861 mmap_unlock();
6886b980 2862 cpu_loop_exit_noexc(cpu);
6e140f28 2863 }
06d55cc1 2864 }
6e140f28
AL
2865 } else {
2866 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2867 }
2868 }
2869}
2870
6658ffb8
PB
2871/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2872 so these check for a hit then pass through to the normal out-of-line
2873 phys routines. */
66b9b43c
PM
2874static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2875 unsigned size, MemTxAttrs attrs)
6658ffb8 2876{
66b9b43c
PM
2877 MemTxResult res;
2878 uint64_t data;
79ed0416
PM
2879 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2880 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2881
2882 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2883 switch (size) {
66b9b43c 2884 case 1:
79ed0416 2885 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2886 break;
2887 case 2:
79ed0416 2888 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2889 break;
2890 case 4:
79ed0416 2891 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2892 break;
306526b5
PB
2893 case 8:
2894 data = address_space_ldq(as, addr, attrs, &res);
2895 break;
1ec9b909
AK
2896 default: abort();
2897 }
66b9b43c
PM
2898 *pdata = data;
2899 return res;
6658ffb8
PB
2900}
2901
66b9b43c
PM
2902static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2903 uint64_t val, unsigned size,
2904 MemTxAttrs attrs)
6658ffb8 2905{
66b9b43c 2906 MemTxResult res;
79ed0416
PM
2907 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2908 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2909
2910 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2911 switch (size) {
67364150 2912 case 1:
79ed0416 2913 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2914 break;
2915 case 2:
79ed0416 2916 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2917 break;
2918 case 4:
79ed0416 2919 address_space_stl(as, addr, val, attrs, &res);
67364150 2920 break;
306526b5
PB
2921 case 8:
2922 address_space_stq(as, addr, val, attrs, &res);
2923 break;
1ec9b909
AK
2924 default: abort();
2925 }
66b9b43c 2926 return res;
6658ffb8
PB
2927}
2928
1ec9b909 2929static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2930 .read_with_attrs = watch_mem_read,
2931 .write_with_attrs = watch_mem_write,
1ec9b909 2932 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2933 .valid = {
2934 .min_access_size = 1,
2935 .max_access_size = 8,
2936 .unaligned = false,
2937 },
2938 .impl = {
2939 .min_access_size = 1,
2940 .max_access_size = 8,
2941 .unaligned = false,
2942 },
6658ffb8 2943};
6658ffb8 2944
b2a44fca 2945static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2946 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2947static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2948 const uint8_t *buf, hwaddr len);
2949static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2950 bool is_write, MemTxAttrs attrs);
16620684 2951
f25a49e0
PM
2952static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2953 unsigned len, MemTxAttrs attrs)
db7b5426 2954{
acc9d80b 2955 subpage_t *subpage = opaque;
ff6cff75 2956 uint8_t buf[8];
5c9eb028 2957 MemTxResult res;
791af8c8 2958
db7b5426 2959#if defined(DEBUG_SUBPAGE)
016e9d62 2960 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2961 subpage, len, addr);
db7b5426 2962#endif
16620684 2963 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2964 if (res) {
2965 return res;
f25a49e0 2966 }
6d3ede54
PM
2967 *data = ldn_p(buf, len);
2968 return MEMTX_OK;
db7b5426
BS
2969}
2970
f25a49e0
PM
2971static MemTxResult subpage_write(void *opaque, hwaddr addr,
2972 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2973{
acc9d80b 2974 subpage_t *subpage = opaque;
ff6cff75 2975 uint8_t buf[8];
acc9d80b 2976
db7b5426 2977#if defined(DEBUG_SUBPAGE)
016e9d62 2978 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2979 " value %"PRIx64"\n",
2980 __func__, subpage, len, addr, value);
db7b5426 2981#endif
6d3ede54 2982 stn_p(buf, len, value);
16620684 2983 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2984}
2985
c353e4cc 2986static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2987 unsigned len, bool is_write,
2988 MemTxAttrs attrs)
c353e4cc 2989{
acc9d80b 2990 subpage_t *subpage = opaque;
c353e4cc 2991#if defined(DEBUG_SUBPAGE)
016e9d62 2992 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2993 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2994#endif
2995
16620684 2996 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2997 len, is_write, attrs);
c353e4cc
PB
2998}
2999
70c68e44 3000static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
3001 .read_with_attrs = subpage_read,
3002 .write_with_attrs = subpage_write,
ff6cff75
PB
3003 .impl.min_access_size = 1,
3004 .impl.max_access_size = 8,
3005 .valid.min_access_size = 1,
3006 .valid.max_access_size = 8,
c353e4cc 3007 .valid.accepts = subpage_accepts,
70c68e44 3008 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3009};
3010
c227f099 3011static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3012 uint16_t section)
db7b5426
BS
3013{
3014 int idx, eidx;
3015
3016 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3017 return -1;
3018 idx = SUBPAGE_IDX(start);
3019 eidx = SUBPAGE_IDX(end);
3020#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3021 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3022 __func__, mmio, start, end, idx, eidx, section);
db7b5426 3023#endif
db7b5426 3024 for (; idx <= eidx; idx++) {
5312bd8b 3025 mmio->sub_section[idx] = section;
db7b5426
BS
3026 }
3027
3028 return 0;
3029}
3030
16620684 3031static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 3032{
c227f099 3033 subpage_t *mmio;
db7b5426 3034
2615fabd 3035 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 3036 mmio->fv = fv;
1eec614b 3037 mmio->base = base;
2c9b15ca 3038 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 3039 NULL, TARGET_PAGE_SIZE);
b3b00c78 3040 mmio->iomem.subpage = true;
db7b5426 3041#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3042 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3043 mmio, base, TARGET_PAGE_SIZE);
db7b5426 3044#endif
b41aac4f 3045 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
3046
3047 return mmio;
3048}
3049
16620684 3050static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 3051{
16620684 3052 assert(fv);
5312bd8b 3053 MemoryRegionSection section = {
16620684 3054 .fv = fv,
5312bd8b
AK
3055 .mr = mr,
3056 .offset_within_address_space = 0,
3057 .offset_within_region = 0,
052e87b0 3058 .size = int128_2_64(),
5312bd8b
AK
3059 };
3060
53cb28cb 3061 return phys_section_add(map, &section);
5312bd8b
AK
3062}
3063
8af36743
PM
3064static void readonly_mem_write(void *opaque, hwaddr addr,
3065 uint64_t val, unsigned size)
3066{
3067 /* Ignore any write to ROM. */
3068}
3069
3070static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3071 unsigned size, bool is_write,
3072 MemTxAttrs attrs)
8af36743
PM
3073{
3074 return is_write;
3075}
3076
3077/* This will only be used for writes, because reads are special cased
3078 * to directly access the underlying host ram.
3079 */
3080static const MemoryRegionOps readonly_mem_ops = {
3081 .write = readonly_mem_write,
3082 .valid.accepts = readonly_mem_accepts,
3083 .endianness = DEVICE_NATIVE_ENDIAN,
3084 .valid = {
3085 .min_access_size = 1,
3086 .max_access_size = 8,
3087 .unaligned = false,
3088 },
3089 .impl = {
3090 .min_access_size = 1,
3091 .max_access_size = 8,
3092 .unaligned = false,
3093 },
3094};
3095
2d54f194
PM
3096MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3097 hwaddr index, MemTxAttrs attrs)
aa102231 3098{
a54c87b6
PM
3099 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3100 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3101 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3102 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3103
2d54f194 3104 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3105}
3106
e9179ce1
AK
3107static void io_mem_init(void)
3108{
8af36743
PM
3109 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3110 NULL, NULL, UINT64_MAX);
2c9b15ca 3111 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3112 NULL, UINT64_MAX);
8d04fb55
JK
3113
3114 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3115 * which can be called without the iothread mutex.
3116 */
2c9b15ca 3117 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3118 NULL, UINT64_MAX);
8d04fb55
JK
3119 memory_region_clear_global_locking(&io_mem_notdirty);
3120
2c9b15ca 3121 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3122 NULL, UINT64_MAX);
e9179ce1
AK
3123}
3124
8629d3fc 3125AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3126{
53cb28cb
MA
3127 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3128 uint16_t n;
3129
16620684 3130 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3131 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3132 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3133 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3134 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3135 assert(n == PHYS_SECTION_ROM);
16620684 3136 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3137 assert(n == PHYS_SECTION_WATCH);
00752703 3138
9736e55b 3139 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3140
3141 return d;
00752703
PB
3142}
3143
66a6df1d 3144void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3145{
3146 phys_sections_free(&d->map);
3147 g_free(d);
3148}
3149
9458a9a1
PB
3150static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3151{
3152}
3153
3154static void tcg_log_global_after_sync(MemoryListener *listener)
3155{
3156 CPUAddressSpace *cpuas;
3157
3158 /* Wait for the CPU to end the current TB. This avoids the following
3159 * incorrect race:
3160 *
3161 * vCPU migration
3162 * ---------------------- -------------------------
3163 * TLB check -> slow path
3164 * notdirty_mem_write
3165 * write to RAM
3166 * mark dirty
3167 * clear dirty flag
3168 * TLB check -> fast path
3169 * read memory
3170 * write to RAM
3171 *
3172 * by pushing the migration thread's memory read after the vCPU thread has
3173 * written the memory.
3174 */
3175 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3176 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3177}
3178
1d71148e 3179static void tcg_commit(MemoryListener *listener)
50c1e149 3180{
32857f4d
PM
3181 CPUAddressSpace *cpuas;
3182 AddressSpaceDispatch *d;
117712c3 3183
f28d0dfd 3184 assert(tcg_enabled());
117712c3
AK
3185 /* since each CPU stores ram addresses in its TLB cache, we must
3186 reset the modified entries */
32857f4d
PM
3187 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3188 cpu_reloading_memory_map();
3189 /* The CPU and TLB are protected by the iothread lock.
3190 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3191 * may have split the RCU critical section.
3192 */
66a6df1d 3193 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3194 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3195 tlb_flush(cpuas->cpu);
50c1e149
AK
3196}
3197
62152b8a
AK
3198static void memory_map_init(void)
3199{
7267c094 3200 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3201
57271d63 3202 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3203 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3204
7267c094 3205 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3206 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3207 65536);
7dca8043 3208 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3209}
3210
3211MemoryRegion *get_system_memory(void)
3212{
3213 return system_memory;
3214}
3215
309cb471
AK
3216MemoryRegion *get_system_io(void)
3217{
3218 return system_io;
3219}
3220
e2eef170
PB
3221#endif /* !defined(CONFIG_USER_ONLY) */
3222
13eb76e0
FB
3223/* physical memory access (slow version, mainly for debug) */
3224#if defined(CONFIG_USER_ONLY)
f17ec444 3225int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3226 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3227{
0c249ff7
LZ
3228 int flags;
3229 target_ulong l, page;
53a5960a 3230 void * p;
13eb76e0
FB
3231
3232 while (len > 0) {
3233 page = addr & TARGET_PAGE_MASK;
3234 l = (page + TARGET_PAGE_SIZE) - addr;
3235 if (l > len)
3236 l = len;
3237 flags = page_get_flags(page);
3238 if (!(flags & PAGE_VALID))
a68fe89c 3239 return -1;
13eb76e0
FB
3240 if (is_write) {
3241 if (!(flags & PAGE_WRITE))
a68fe89c 3242 return -1;
579a97f7 3243 /* XXX: this code should not depend on lock_user */
72fb7daa 3244 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3245 return -1;
72fb7daa
AJ
3246 memcpy(p, buf, l);
3247 unlock_user(p, addr, l);
13eb76e0
FB
3248 } else {
3249 if (!(flags & PAGE_READ))
a68fe89c 3250 return -1;
579a97f7 3251 /* XXX: this code should not depend on lock_user */
72fb7daa 3252 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3253 return -1;
72fb7daa 3254 memcpy(buf, p, l);
5b257578 3255 unlock_user(p, addr, 0);
13eb76e0
FB
3256 }
3257 len -= l;
3258 buf += l;
3259 addr += l;
3260 }
a68fe89c 3261 return 0;
13eb76e0 3262}
8df1cd07 3263
13eb76e0 3264#else
51d7a9eb 3265
845b6214 3266static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3267 hwaddr length)
51d7a9eb 3268{
e87f7778 3269 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3270 addr += memory_region_get_ram_addr(mr);
3271
e87f7778
PB
3272 /* No early return if dirty_log_mask is or becomes 0, because
3273 * cpu_physical_memory_set_dirty_range will still call
3274 * xen_modified_memory.
3275 */
3276 if (dirty_log_mask) {
3277 dirty_log_mask =
3278 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3279 }
3280 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3281 assert(tcg_enabled());
e87f7778
PB
3282 tb_invalidate_phys_range(addr, addr + length);
3283 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3284 }
e87f7778 3285 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3286}
3287
047be4ed
SH
3288void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3289{
3290 /*
3291 * In principle this function would work on other memory region types too,
3292 * but the ROM device use case is the only one where this operation is
3293 * necessary. Other memory regions should use the
3294 * address_space_read/write() APIs.
3295 */
3296 assert(memory_region_is_romd(mr));
3297
3298 invalidate_and_set_dirty(mr, addr, size);
3299}
3300
23326164 3301static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3302{
e1622f4b 3303 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3304
3305 /* Regions are assumed to support 1-4 byte accesses unless
3306 otherwise specified. */
23326164
RH
3307 if (access_size_max == 0) {
3308 access_size_max = 4;
3309 }
3310
3311 /* Bound the maximum access by the alignment of the address. */
3312 if (!mr->ops->impl.unaligned) {
3313 unsigned align_size_max = addr & -addr;
3314 if (align_size_max != 0 && align_size_max < access_size_max) {
3315 access_size_max = align_size_max;
3316 }
82f2563f 3317 }
23326164
RH
3318
3319 /* Don't attempt accesses larger than the maximum. */
3320 if (l > access_size_max) {
3321 l = access_size_max;
82f2563f 3322 }
6554f5c0 3323 l = pow2floor(l);
23326164
RH
3324
3325 return l;
82f2563f
PB
3326}
3327
4840f10e 3328static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3329{
4840f10e
JK
3330 bool unlocked = !qemu_mutex_iothread_locked();
3331 bool release_lock = false;
3332
3333 if (unlocked && mr->global_locking) {
3334 qemu_mutex_lock_iothread();
3335 unlocked = false;
3336 release_lock = true;
3337 }
125b3806 3338 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3339 if (unlocked) {
3340 qemu_mutex_lock_iothread();
3341 }
125b3806 3342 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3343 if (unlocked) {
3344 qemu_mutex_unlock_iothread();
3345 }
125b3806 3346 }
4840f10e
JK
3347
3348 return release_lock;
125b3806
PB
3349}
3350
a203ac70 3351/* Called within RCU critical section. */
16620684
AK
3352static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3353 MemTxAttrs attrs,
3354 const uint8_t *buf,
0c249ff7 3355 hwaddr len, hwaddr addr1,
16620684 3356 hwaddr l, MemoryRegion *mr)
13eb76e0 3357{
13eb76e0 3358 uint8_t *ptr;
791af8c8 3359 uint64_t val;
3b643495 3360 MemTxResult result = MEMTX_OK;
4840f10e 3361 bool release_lock = false;
3b46e624 3362
a203ac70 3363 for (;;) {
eb7eeb88
PB
3364 if (!memory_access_is_direct(mr, true)) {
3365 release_lock |= prepare_mmio_access(mr);
3366 l = memory_access_size(mr, l, addr1);
3367 /* XXX: could force current_cpu to NULL to avoid
3368 potential bugs */
6d3ede54
PM
3369 val = ldn_p(buf, l);
3370 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3371 } else {
eb7eeb88 3372 /* RAM case */
f5aa69bd 3373 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3374 memcpy(ptr, buf, l);
3375 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3376 }
4840f10e
JK
3377
3378 if (release_lock) {
3379 qemu_mutex_unlock_iothread();
3380 release_lock = false;
3381 }
3382
13eb76e0
FB
3383 len -= l;
3384 buf += l;
3385 addr += l;
a203ac70
PB
3386
3387 if (!len) {
3388 break;
3389 }
3390
3391 l = len;
efa99a2f 3392 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3393 }
fd8aaa76 3394
3b643495 3395 return result;
13eb76e0 3396}
8df1cd07 3397
4c6ebbb3 3398/* Called from RCU critical section. */
16620684 3399static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3400 const uint8_t *buf, hwaddr len)
ac1970fb 3401{
eb7eeb88 3402 hwaddr l;
eb7eeb88
PB
3403 hwaddr addr1;
3404 MemoryRegion *mr;
3405 MemTxResult result = MEMTX_OK;
eb7eeb88 3406
4c6ebbb3 3407 l = len;
efa99a2f 3408 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3409 result = flatview_write_continue(fv, addr, attrs, buf, len,
3410 addr1, l, mr);
a203ac70
PB
3411
3412 return result;
3413}
3414
3415/* Called within RCU critical section. */
16620684
AK
3416MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3417 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3418 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3419 MemoryRegion *mr)
a203ac70
PB
3420{
3421 uint8_t *ptr;
3422 uint64_t val;
3423 MemTxResult result = MEMTX_OK;
3424 bool release_lock = false;
eb7eeb88 3425
a203ac70 3426 for (;;) {
eb7eeb88
PB
3427 if (!memory_access_is_direct(mr, false)) {
3428 /* I/O case */
3429 release_lock |= prepare_mmio_access(mr);
3430 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3431 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3432 stn_p(buf, l, val);
eb7eeb88
PB
3433 } else {
3434 /* RAM case */
f5aa69bd 3435 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3436 memcpy(buf, ptr, l);
3437 }
3438
3439 if (release_lock) {
3440 qemu_mutex_unlock_iothread();
3441 release_lock = false;
3442 }
3443
3444 len -= l;
3445 buf += l;
3446 addr += l;
a203ac70
PB
3447
3448 if (!len) {
3449 break;
3450 }
3451
3452 l = len;
efa99a2f 3453 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3454 }
3455
3456 return result;
3457}
3458
b2a44fca
PB
3459/* Called from RCU critical section. */
3460static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3461 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3462{
3463 hwaddr l;
3464 hwaddr addr1;
3465 MemoryRegion *mr;
eb7eeb88 3466
b2a44fca 3467 l = len;
efa99a2f 3468 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3469 return flatview_read_continue(fv, addr, attrs, buf, len,
3470 addr1, l, mr);
ac1970fb
AK
3471}
3472
b2a44fca 3473MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3474 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3475{
3476 MemTxResult result = MEMTX_OK;
3477 FlatView *fv;
3478
3479 if (len > 0) {
3480 rcu_read_lock();
3481 fv = address_space_to_flatview(as);
3482 result = flatview_read(fv, addr, attrs, buf, len);
3483 rcu_read_unlock();
3484 }
3485
3486 return result;
3487}
3488
4c6ebbb3
PB
3489MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3490 MemTxAttrs attrs,
0c249ff7 3491 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3492{
3493 MemTxResult result = MEMTX_OK;
3494 FlatView *fv;
3495
3496 if (len > 0) {
3497 rcu_read_lock();
3498 fv = address_space_to_flatview(as);
3499 result = flatview_write(fv, addr, attrs, buf, len);
3500 rcu_read_unlock();
3501 }
3502
3503 return result;
3504}
3505
db84fd97 3506MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3507 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3508{
3509 if (is_write) {
3510 return address_space_write(as, addr, attrs, buf, len);
3511 } else {
3512 return address_space_read_full(as, addr, attrs, buf, len);
3513 }
3514}
3515
a8170e5e 3516void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3517 hwaddr len, int is_write)
ac1970fb 3518{
5c9eb028
PM
3519 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3520 buf, len, is_write);
ac1970fb
AK
3521}
3522
582b55a9
AG
3523enum write_rom_type {
3524 WRITE_DATA,
3525 FLUSH_CACHE,
3526};
3527
75693e14
PM
3528static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3529 hwaddr addr,
3530 MemTxAttrs attrs,
3531 const uint8_t *buf,
0c249ff7 3532 hwaddr len,
75693e14 3533 enum write_rom_type type)
d0ecd2aa 3534{
149f54b5 3535 hwaddr l;
d0ecd2aa 3536 uint8_t *ptr;
149f54b5 3537 hwaddr addr1;
5c8a00ce 3538 MemoryRegion *mr;
3b46e624 3539
41063e1e 3540 rcu_read_lock();
d0ecd2aa 3541 while (len > 0) {
149f54b5 3542 l = len;
75693e14 3543 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3544
5c8a00ce
PB
3545 if (!(memory_region_is_ram(mr) ||
3546 memory_region_is_romd(mr))) {
b242e0e0 3547 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3548 } else {
d0ecd2aa 3549 /* ROM/RAM case */
0878d0e1 3550 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3551 switch (type) {
3552 case WRITE_DATA:
3553 memcpy(ptr, buf, l);
845b6214 3554 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3555 break;
3556 case FLUSH_CACHE:
3557 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3558 break;
3559 }
d0ecd2aa
FB
3560 }
3561 len -= l;
3562 buf += l;
3563 addr += l;
3564 }
41063e1e 3565 rcu_read_unlock();
75693e14 3566 return MEMTX_OK;
d0ecd2aa
FB
3567}
3568
582b55a9 3569/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3570MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3571 MemTxAttrs attrs,
0c249ff7 3572 const uint8_t *buf, hwaddr len)
582b55a9 3573{
3c8133f9
PM
3574 return address_space_write_rom_internal(as, addr, attrs,
3575 buf, len, WRITE_DATA);
582b55a9
AG
3576}
3577
0c249ff7 3578void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3579{
3580 /*
3581 * This function should do the same thing as an icache flush that was
3582 * triggered from within the guest. For TCG we are always cache coherent,
3583 * so there is no need to flush anything. For KVM / Xen we need to flush
3584 * the host's instruction cache at least.
3585 */
3586 if (tcg_enabled()) {
3587 return;
3588 }
3589
75693e14
PM
3590 address_space_write_rom_internal(&address_space_memory,
3591 start, MEMTXATTRS_UNSPECIFIED,
3592 NULL, len, FLUSH_CACHE);
582b55a9
AG
3593}
3594
6d16c2f8 3595typedef struct {
d3e71559 3596 MemoryRegion *mr;
6d16c2f8 3597 void *buffer;
a8170e5e
AK
3598 hwaddr addr;
3599 hwaddr len;
c2cba0ff 3600 bool in_use;
6d16c2f8
AL
3601} BounceBuffer;
3602
3603static BounceBuffer bounce;
3604
ba223c29 3605typedef struct MapClient {
e95205e1 3606 QEMUBH *bh;
72cf2d4f 3607 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3608} MapClient;
3609
38e047b5 3610QemuMutex map_client_list_lock;
b58deb34 3611static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3612 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3613
e95205e1
FZ
3614static void cpu_unregister_map_client_do(MapClient *client)
3615{
3616 QLIST_REMOVE(client, link);
3617 g_free(client);
3618}
3619
33b6c2ed
FZ
3620static void cpu_notify_map_clients_locked(void)
3621{
3622 MapClient *client;
3623
3624 while (!QLIST_EMPTY(&map_client_list)) {
3625 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3626 qemu_bh_schedule(client->bh);
3627 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3628 }
3629}
3630
e95205e1 3631void cpu_register_map_client(QEMUBH *bh)
ba223c29 3632{
7267c094 3633 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3634
38e047b5 3635 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3636 client->bh = bh;
72cf2d4f 3637 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3638 if (!atomic_read(&bounce.in_use)) {
3639 cpu_notify_map_clients_locked();
3640 }
38e047b5 3641 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3642}
3643
38e047b5 3644void cpu_exec_init_all(void)
ba223c29 3645{
38e047b5 3646 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3647 /* The data structures we set up here depend on knowing the page size,
3648 * so no more changes can be made after this point.
3649 * In an ideal world, nothing we did before we had finished the
3650 * machine setup would care about the target page size, and we could
3651 * do this much later, rather than requiring board models to state
3652 * up front what their requirements are.
3653 */
3654 finalize_target_page_bits();
38e047b5 3655 io_mem_init();
680a4783 3656 memory_map_init();
38e047b5 3657 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3658}
3659
e95205e1 3660void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3661{
3662 MapClient *client;
3663
e95205e1
FZ
3664 qemu_mutex_lock(&map_client_list_lock);
3665 QLIST_FOREACH(client, &map_client_list, link) {
3666 if (client->bh == bh) {
3667 cpu_unregister_map_client_do(client);
3668 break;
3669 }
ba223c29 3670 }
e95205e1 3671 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3672}
3673
3674static void cpu_notify_map_clients(void)
3675{
38e047b5 3676 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3677 cpu_notify_map_clients_locked();
38e047b5 3678 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3679}
3680
0c249ff7 3681static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3682 bool is_write, MemTxAttrs attrs)
51644ab7 3683{
5c8a00ce 3684 MemoryRegion *mr;
51644ab7
PB
3685 hwaddr l, xlat;
3686
3687 while (len > 0) {
3688 l = len;
efa99a2f 3689 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3690 if (!memory_access_is_direct(mr, is_write)) {
3691 l = memory_access_size(mr, l, addr);
eace72b7 3692 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3693 return false;
3694 }
3695 }
3696
3697 len -= l;
3698 addr += l;
3699 }
3700 return true;
3701}
3702
16620684 3703bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3704 hwaddr len, bool is_write,
fddffa42 3705 MemTxAttrs attrs)
16620684 3706{
11e732a5
PB
3707 FlatView *fv;
3708 bool result;
3709
3710 rcu_read_lock();
3711 fv = address_space_to_flatview(as);
eace72b7 3712 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3713 rcu_read_unlock();
3714 return result;
16620684
AK
3715}
3716
715c31ec 3717static hwaddr
16620684 3718flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3719 hwaddr target_len,
3720 MemoryRegion *mr, hwaddr base, hwaddr len,
3721 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3722{
3723 hwaddr done = 0;
3724 hwaddr xlat;
3725 MemoryRegion *this_mr;
3726
3727 for (;;) {
3728 target_len -= len;
3729 addr += len;
3730 done += len;
3731 if (target_len == 0) {
3732 return done;
3733 }
3734
3735 len = target_len;
16620684 3736 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3737 &len, is_write, attrs);
715c31ec
PB
3738 if (this_mr != mr || xlat != base + done) {
3739 return done;
3740 }
3741 }
3742}
3743
6d16c2f8
AL
3744/* Map a physical memory region into a host virtual address.
3745 * May map a subset of the requested range, given by and returned in *plen.
3746 * May return NULL if resources needed to perform the mapping are exhausted.
3747 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3748 * Use cpu_register_map_client() to know when retrying the map operation is
3749 * likely to succeed.
6d16c2f8 3750 */
ac1970fb 3751void *address_space_map(AddressSpace *as,
a8170e5e
AK
3752 hwaddr addr,
3753 hwaddr *plen,
f26404fb
PM
3754 bool is_write,
3755 MemTxAttrs attrs)
6d16c2f8 3756{
a8170e5e 3757 hwaddr len = *plen;
715c31ec
PB
3758 hwaddr l, xlat;
3759 MemoryRegion *mr;
e81bcda5 3760 void *ptr;
ad0c60fa 3761 FlatView *fv;
6d16c2f8 3762
e3127ae0
PB
3763 if (len == 0) {
3764 return NULL;
3765 }
38bee5dc 3766
e3127ae0 3767 l = len;
41063e1e 3768 rcu_read_lock();
ad0c60fa 3769 fv = address_space_to_flatview(as);
efa99a2f 3770 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3771
e3127ae0 3772 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3773 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3774 rcu_read_unlock();
e3127ae0 3775 return NULL;
6d16c2f8 3776 }
e85d9db5
KW
3777 /* Avoid unbounded allocations */
3778 l = MIN(l, TARGET_PAGE_SIZE);
3779 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3780 bounce.addr = addr;
3781 bounce.len = l;
d3e71559
PB
3782
3783 memory_region_ref(mr);
3784 bounce.mr = mr;
e3127ae0 3785 if (!is_write) {
16620684 3786 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3787 bounce.buffer, l);
8ab934f9 3788 }
6d16c2f8 3789
41063e1e 3790 rcu_read_unlock();
e3127ae0
PB
3791 *plen = l;
3792 return bounce.buffer;
3793 }
3794
e3127ae0 3795
d3e71559 3796 memory_region_ref(mr);
16620684 3797 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3798 l, is_write, attrs);
f5aa69bd 3799 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3800 rcu_read_unlock();
3801
3802 return ptr;
6d16c2f8
AL
3803}
3804
ac1970fb 3805/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3806 * Will also mark the memory as dirty if is_write == 1. access_len gives
3807 * the amount of memory that was actually read or written by the caller.
3808 */
a8170e5e
AK
3809void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3810 int is_write, hwaddr access_len)
6d16c2f8
AL
3811{
3812 if (buffer != bounce.buffer) {
d3e71559
PB
3813 MemoryRegion *mr;
3814 ram_addr_t addr1;
3815
07bdaa41 3816 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3817 assert(mr != NULL);
6d16c2f8 3818 if (is_write) {
845b6214 3819 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3820 }
868bb33f 3821 if (xen_enabled()) {
e41d7c69 3822 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3823 }
d3e71559 3824 memory_region_unref(mr);
6d16c2f8
AL
3825 return;
3826 }
3827 if (is_write) {
5c9eb028
PM
3828 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3829 bounce.buffer, access_len);
6d16c2f8 3830 }
f8a83245 3831 qemu_vfree(bounce.buffer);
6d16c2f8 3832 bounce.buffer = NULL;
d3e71559 3833 memory_region_unref(bounce.mr);
c2cba0ff 3834 atomic_mb_set(&bounce.in_use, false);
ba223c29 3835 cpu_notify_map_clients();
6d16c2f8 3836}
d0ecd2aa 3837
a8170e5e
AK
3838void *cpu_physical_memory_map(hwaddr addr,
3839 hwaddr *plen,
ac1970fb
AK
3840 int is_write)
3841{
f26404fb
PM
3842 return address_space_map(&address_space_memory, addr, plen, is_write,
3843 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3844}
3845
a8170e5e
AK
3846void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3847 int is_write, hwaddr access_len)
ac1970fb
AK
3848{
3849 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3850}
3851
0ce265ff
PB
3852#define ARG1_DECL AddressSpace *as
3853#define ARG1 as
3854#define SUFFIX
3855#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3856#define RCU_READ_LOCK(...) rcu_read_lock()
3857#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3858#include "memory_ldst.inc.c"
1e78bcc1 3859
1f4e496e
PB
3860int64_t address_space_cache_init(MemoryRegionCache *cache,
3861 AddressSpace *as,
3862 hwaddr addr,
3863 hwaddr len,
3864 bool is_write)
3865{
48564041
PB
3866 AddressSpaceDispatch *d;
3867 hwaddr l;
3868 MemoryRegion *mr;
3869
3870 assert(len > 0);
3871
3872 l = len;
3873 cache->fv = address_space_get_flatview(as);
3874 d = flatview_to_dispatch(cache->fv);
3875 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3876
3877 mr = cache->mrs.mr;
3878 memory_region_ref(mr);
3879 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3880 /* We don't care about the memory attributes here as we're only
3881 * doing this if we found actual RAM, which behaves the same
3882 * regardless of attributes; so UNSPECIFIED is fine.
3883 */
48564041 3884 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3885 cache->xlat, l, is_write,
3886 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3887 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3888 } else {
3889 cache->ptr = NULL;
3890 }
3891
3892 cache->len = l;
3893 cache->is_write = is_write;
3894 return l;
1f4e496e
PB
3895}
3896
3897void address_space_cache_invalidate(MemoryRegionCache *cache,
3898 hwaddr addr,
3899 hwaddr access_len)
3900{
48564041
PB
3901 assert(cache->is_write);
3902 if (likely(cache->ptr)) {
3903 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3904 }
1f4e496e
PB
3905}
3906
3907void address_space_cache_destroy(MemoryRegionCache *cache)
3908{
48564041
PB
3909 if (!cache->mrs.mr) {
3910 return;
3911 }
3912
3913 if (xen_enabled()) {
3914 xen_invalidate_map_cache_entry(cache->ptr);
3915 }
3916 memory_region_unref(cache->mrs.mr);
3917 flatview_unref(cache->fv);
3918 cache->mrs.mr = NULL;
3919 cache->fv = NULL;
3920}
3921
3922/* Called from RCU critical section. This function has the same
3923 * semantics as address_space_translate, but it only works on a
3924 * predefined range of a MemoryRegion that was mapped with
3925 * address_space_cache_init.
3926 */
3927static inline MemoryRegion *address_space_translate_cached(
3928 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3929 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3930{
3931 MemoryRegionSection section;
3932 MemoryRegion *mr;
3933 IOMMUMemoryRegion *iommu_mr;
3934 AddressSpace *target_as;
3935
3936 assert(!cache->ptr);
3937 *xlat = addr + cache->xlat;
3938
3939 mr = cache->mrs.mr;
3940 iommu_mr = memory_region_get_iommu(mr);
3941 if (!iommu_mr) {
3942 /* MMIO region. */
3943 return mr;
3944 }
3945
3946 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3947 NULL, is_write, true,
2f7b009c 3948 &target_as, attrs);
48564041
PB
3949 return section.mr;
3950}
3951
3952/* Called from RCU critical section. address_space_read_cached uses this
3953 * out of line function when the target is an MMIO or IOMMU region.
3954 */
3955void
3956address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3957 void *buf, hwaddr len)
48564041
PB
3958{
3959 hwaddr addr1, l;
3960 MemoryRegion *mr;
3961
3962 l = len;
bc6b1cec
PM
3963 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3964 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3965 flatview_read_continue(cache->fv,
3966 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3967 addr1, l, mr);
3968}
3969
3970/* Called from RCU critical section. address_space_write_cached uses this
3971 * out of line function when the target is an MMIO or IOMMU region.
3972 */
3973void
3974address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3975 const void *buf, hwaddr len)
48564041
PB
3976{
3977 hwaddr addr1, l;
3978 MemoryRegion *mr;
3979
3980 l = len;
bc6b1cec
PM
3981 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3982 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3983 flatview_write_continue(cache->fv,
3984 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3985 addr1, l, mr);
1f4e496e
PB
3986}
3987
3988#define ARG1_DECL MemoryRegionCache *cache
3989#define ARG1 cache
48564041
PB
3990#define SUFFIX _cached_slow
3991#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3992#define RCU_READ_LOCK() ((void)0)
3993#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3994#include "memory_ldst.inc.c"
3995
5e2972fd 3996/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3997int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3998 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3999{
a8170e5e 4000 hwaddr phys_addr;
0c249ff7 4001 target_ulong l, page;
13eb76e0 4002
79ca7a1b 4003 cpu_synchronize_state(cpu);
13eb76e0 4004 while (len > 0) {
5232e4c7
PM
4005 int asidx;
4006 MemTxAttrs attrs;
4007
13eb76e0 4008 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
4009 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
4010 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
4011 /* if no physical page mapped, return an error */
4012 if (phys_addr == -1)
4013 return -1;
4014 l = (page + TARGET_PAGE_SIZE) - addr;
4015 if (l > len)
4016 l = len;
5e2972fd 4017 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 4018 if (is_write) {
3c8133f9 4019 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 4020 attrs, buf, l);
2e38847b 4021 } else {
5232e4c7 4022 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 4023 attrs, buf, l, 0);
2e38847b 4024 }
13eb76e0
FB
4025 len -= l;
4026 buf += l;
4027 addr += l;
4028 }
4029 return 0;
4030}
038629a6
DDAG
4031
4032/*
4033 * Allows code that needs to deal with migration bitmaps etc to still be built
4034 * target independent.
4035 */
20afaed9 4036size_t qemu_target_page_size(void)
038629a6 4037{
20afaed9 4038 return TARGET_PAGE_SIZE;
038629a6
DDAG
4039}
4040
46d702b1
JQ
4041int qemu_target_page_bits(void)
4042{
4043 return TARGET_PAGE_BITS;
4044}
4045
4046int qemu_target_page_bits_min(void)
4047{
4048 return TARGET_PAGE_BITS_MIN;
4049}
a68fe89c 4050#endif
13eb76e0 4051
98ed8ecf 4052bool target_words_bigendian(void)
8e4a424b
BS
4053{
4054#if defined(TARGET_WORDS_BIGENDIAN)
4055 return true;
4056#else
4057 return false;
4058#endif
4059}
4060
76f35538 4061#ifndef CONFIG_USER_ONLY
a8170e5e 4062bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 4063{
5c8a00ce 4064 MemoryRegion*mr;
149f54b5 4065 hwaddr l = 1;
41063e1e 4066 bool res;
76f35538 4067
41063e1e 4068 rcu_read_lock();
5c8a00ce 4069 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
4070 phys_addr, &phys_addr, &l, false,
4071 MEMTXATTRS_UNSPECIFIED);
76f35538 4072
41063e1e
PB
4073 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4074 rcu_read_unlock();
4075 return res;
76f35538 4076}
bd2fa51f 4077
e3807054 4078int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
4079{
4080 RAMBlock *block;
e3807054 4081 int ret = 0;
bd2fa51f 4082
0dc3f44a 4083 rcu_read_lock();
99e15582 4084 RAMBLOCK_FOREACH(block) {
754cb9c0 4085 ret = func(block, opaque);
e3807054
DDAG
4086 if (ret) {
4087 break;
4088 }
bd2fa51f 4089 }
0dc3f44a 4090 rcu_read_unlock();
e3807054 4091 return ret;
bd2fa51f 4092}
d3a5038c
DDAG
4093
4094/*
4095 * Unmap pages of memory from start to start+length such that
4096 * they a) read as 0, b) Trigger whatever fault mechanism
4097 * the OS provides for postcopy.
4098 * The pages must be unmapped by the end of the function.
4099 * Returns: 0 on success, none-0 on failure
4100 *
4101 */
4102int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4103{
4104 int ret = -1;
4105
4106 uint8_t *host_startaddr = rb->host + start;
4107
4108 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4109 error_report("ram_block_discard_range: Unaligned start address: %p",
4110 host_startaddr);
4111 goto err;
4112 }
4113
4114 if ((start + length) <= rb->used_length) {
db144f70 4115 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4116 uint8_t *host_endaddr = host_startaddr + length;
4117 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4118 error_report("ram_block_discard_range: Unaligned end address: %p",
4119 host_endaddr);
4120 goto err;
4121 }
4122
4123 errno = ENOTSUP; /* If we are missing MADVISE etc */
4124
db144f70
DDAG
4125 /* The logic here is messy;
4126 * madvise DONTNEED fails for hugepages
4127 * fallocate works on hugepages and shmem
4128 */
4129 need_madvise = (rb->page_size == qemu_host_page_size);
4130 need_fallocate = rb->fd != -1;
4131 if (need_fallocate) {
4132 /* For a file, this causes the area of the file to be zero'd
4133 * if read, and for hugetlbfs also causes it to be unmapped
4134 * so a userfault will trigger.
e2fa71f5
DDAG
4135 */
4136#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4137 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4138 start, length);
db144f70
DDAG
4139 if (ret) {
4140 ret = -errno;
4141 error_report("ram_block_discard_range: Failed to fallocate "
4142 "%s:%" PRIx64 " +%zx (%d)",
4143 rb->idstr, start, length, ret);
4144 goto err;
4145 }
4146#else
4147 ret = -ENOSYS;
4148 error_report("ram_block_discard_range: fallocate not available/file"
4149 "%s:%" PRIx64 " +%zx (%d)",
4150 rb->idstr, start, length, ret);
4151 goto err;
e2fa71f5
DDAG
4152#endif
4153 }
db144f70
DDAG
4154 if (need_madvise) {
4155 /* For normal RAM this causes it to be unmapped,
4156 * for shared memory it causes the local mapping to disappear
4157 * and to fall back on the file contents (which we just
4158 * fallocate'd away).
4159 */
4160#if defined(CONFIG_MADVISE)
4161 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4162 if (ret) {
4163 ret = -errno;
4164 error_report("ram_block_discard_range: Failed to discard range "
4165 "%s:%" PRIx64 " +%zx (%d)",
4166 rb->idstr, start, length, ret);
4167 goto err;
4168 }
4169#else
4170 ret = -ENOSYS;
4171 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4172 "%s:%" PRIx64 " +%zx (%d)",
4173 rb->idstr, start, length, ret);
db144f70
DDAG
4174 goto err;
4175#endif
d3a5038c 4176 }
db144f70
DDAG
4177 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4178 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4179 } else {
4180 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4181 "/%zx/" RAM_ADDR_FMT")",
4182 rb->idstr, start, length, rb->used_length);
4183 }
4184
4185err:
4186 return ret;
4187}
4188
a4de8552
JH
4189bool ramblock_is_pmem(RAMBlock *rb)
4190{
4191 return rb->flags & RAM_PMEM;
4192}
4193
ec3f8c99 4194#endif
a0be0c58
YZ
4195
4196void page_size_init(void)
4197{
4198 /* NOTE: we can always suppose that qemu_host_page_size >=
4199 TARGET_PAGE_SIZE */
a0be0c58
YZ
4200 if (qemu_host_page_size == 0) {
4201 qemu_host_page_size = qemu_real_host_page_size;
4202 }
4203 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4204 qemu_host_page_size = TARGET_PAGE_SIZE;
4205 }
4206 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4207}
5e8fd947
AK
4208
4209#if !defined(CONFIG_USER_ONLY)
4210
b6b71cb5 4211static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4212{
4213 if (start == end - 1) {
b6b71cb5 4214 qemu_printf("\t%3d ", start);
5e8fd947 4215 } else {
b6b71cb5 4216 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4217 }
b6b71cb5 4218 qemu_printf(" skip=%d ", skip);
5e8fd947 4219 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4220 qemu_printf(" ptr=NIL");
5e8fd947 4221 } else if (!skip) {
b6b71cb5 4222 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4223 } else {
b6b71cb5 4224 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4225 }
b6b71cb5 4226 qemu_printf("\n");
5e8fd947
AK
4227}
4228
4229#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4230 int128_sub((size), int128_one())) : 0)
4231
b6b71cb5 4232void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4233{
4234 int i;
4235
b6b71cb5
MA
4236 qemu_printf(" Dispatch\n");
4237 qemu_printf(" Physical sections\n");
5e8fd947
AK
4238
4239 for (i = 0; i < d->map.sections_nb; ++i) {
4240 MemoryRegionSection *s = d->map.sections + i;
4241 const char *names[] = { " [unassigned]", " [not dirty]",
4242 " [ROM]", " [watch]" };
4243
b6b71cb5
MA
4244 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4245 " %s%s%s%s%s",
5e8fd947
AK
4246 i,
4247 s->offset_within_address_space,
4248 s->offset_within_address_space + MR_SIZE(s->mr->size),
4249 s->mr->name ? s->mr->name : "(noname)",
4250 i < ARRAY_SIZE(names) ? names[i] : "",
4251 s->mr == root ? " [ROOT]" : "",
4252 s == d->mru_section ? " [MRU]" : "",
4253 s->mr->is_iommu ? " [iommu]" : "");
4254
4255 if (s->mr->alias) {
b6b71cb5 4256 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4257 s->mr->alias->name : "noname");
4258 }
b6b71cb5 4259 qemu_printf("\n");
5e8fd947
AK
4260 }
4261
b6b71cb5 4262 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4263 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4264 for (i = 0; i < d->map.nodes_nb; ++i) {
4265 int j, jprev;
4266 PhysPageEntry prev;
4267 Node *n = d->map.nodes + i;
4268
b6b71cb5 4269 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4270
4271 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4272 PhysPageEntry *pe = *n + j;
4273
4274 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4275 continue;
4276 }
4277
b6b71cb5 4278 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4279
4280 jprev = j;
4281 prev = *pe;
4282 }
4283
4284 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4285 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4286 }
4287 }
4288}
4289
4290#endif