]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
tcg: Remove TCGV_EQUAL*
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
53a5960a 40#if defined(CONFIG_USER_ONLY)
a9c94277 41#include "qemu.h"
432d268c 42#else /* !CONFIG_USER_ONLY */
741da0d3
PB
43#include "hw/hw.h"
44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
9c607668 47#include "sysemu/numa.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
741da0d3 49#include "exec/address-spaces.h"
9c17d615 50#include "sysemu/xen-mapcache.h"
0ab8ed18 51#include "trace-root.h"
d3a5038c 52
e2fa71f5
DDAG
53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54#include <fcntl.h>
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
a0be0c58
YZ
121uintptr_t qemu_host_page_size;
122intptr_t qemu_host_page_mask;
a0be0c58 123
20bccb82
PM
124bool set_preferred_target_page_bits(int bits)
125{
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131#ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139#endif
140 return true;
141}
142
e2eef170 143#if !defined(CONFIG_USER_ONLY)
4346ae3e 144
20bccb82
PM
145static void finalize_target_page_bits(void)
146{
147#ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152#endif
153}
154
1db8abb1
PB
155typedef struct PhysPageEntry PhysPageEntry;
156
157struct PhysPageEntry {
9736e55b 158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 159 uint32_t skip : 6;
9736e55b 160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 161 uint32_t ptr : 26;
1db8abb1
PB
162};
163
8b795765
MT
164#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
03f49957 166/* Size of the L2 (and L3, etc) page tables. */
57271d63 167#define ADDR_SPACE_BITS 64
03f49957 168
026736ce 169#define P_L2_BITS 9
03f49957
PB
170#define P_L2_SIZE (1 << P_L2_BITS)
171
172#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 175
53cb28cb 176typedef struct PhysPageMap {
79e2b9ae
PB
177 struct rcu_head rcu;
178
53cb28cb
MA
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185} PhysPageMap;
186
1db8abb1 187struct AddressSpaceDispatch {
729633c2 188 MemoryRegionSection *mru_section;
1db8abb1
PB
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
53cb28cb 193 PhysPageMap map;
1db8abb1
PB
194};
195
90260c6c
JK
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
16620684 199 FlatView *fv;
90260c6c 200 hwaddr base;
2615fabd 201 uint16_t sub_section[];
90260c6c
JK
202} subpage_t;
203
b41aac4f
LPF
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
5312bd8b 208
e2eef170 209static void io_mem_init(void);
62152b8a 210static void memory_map_init(void);
09daed84 211static void tcg_commit(MemoryListener *listener);
e2eef170 212
1ec9b909 213static MemoryRegion io_mem_watch;
32857f4d
PM
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
8deaf12c
GH
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
6658ffb8 235#endif
fd6ce8f6 236
6d9a1304 237#if !defined(CONFIG_USER_ONLY)
d6f2ea22 238
53cb28cb 239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 240{
101420b8 241 static unsigned alloc_hint = 16;
53cb28cb 242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 246 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 247 }
f7bf5461
AK
248}
249
db94604b 250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
251{
252 unsigned i;
8b795765 253 uint32_t ret;
db94604b
PB
254 PhysPageEntry e;
255 PhysPageEntry *p;
f7bf5461 256
53cb28cb 257 ret = map->nodes_nb++;
db94604b 258 p = map->nodes[ret];
f7bf5461 259 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 260 assert(ret != map->nodes_nb_alloc);
db94604b
PB
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 264 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 265 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 266 }
f7bf5461 267 return ret;
d6f2ea22
AK
268}
269
53cb28cb
MA
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 272 int level)
f7bf5461
AK
273{
274 PhysPageEntry *p;
03f49957 275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 276
9736e55b 277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 278 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 279 }
db94604b 280 p = map->nodes[lp->ptr];
03f49957 281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 282
03f49957 283 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 284 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 285 lp->skip = 0;
c19e8800 286 lp->ptr = leaf;
07f07b31
AK
287 *index += step;
288 *nb -= step;
2999097b 289 } else {
53cb28cb 290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
291 }
292 ++lp;
f7bf5461
AK
293 }
294}
295
ac1970fb 296static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 297 hwaddr index, hwaddr nb,
2999097b 298 uint16_t leaf)
f7bf5461 299{
2999097b 300 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 302
53cb28cb 303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
304}
305
b35ba30f
MT
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
efee678d 309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
efee678d 329 phys_page_compact(&p[i], nodes);
b35ba30f
MT
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
8629d3fc 359void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 360{
b35ba30f 361 if (d->phys_map.skip) {
efee678d 362 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
363 }
364}
365
29cb533d
FZ
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
258dfaaa 372 return int128_gethi(section->size) ||
29cb533d 373 range_covers_byte(section->offset_within_address_space,
258dfaaa 374 int128_getlo(section->size), addr);
29cb533d
FZ
375}
376
003a0cf2 377static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 378{
003a0cf2
PX
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
97115a8d 382 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 383 int i;
f1f6e3b8 384
9736e55b 385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 387 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 388 }
9affd6fc 389 p = nodes[lp.ptr];
03f49957 390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 391 }
b35ba30f 392
29cb533d 393 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
f3705d53
AK
398}
399
e5548617
BS
400bool memory_region_is_unassigned(MemoryRegion *mr)
401{
2a8e7499 402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 403 && mr != &io_mem_watch;
fd6ce8f6 404}
149f54b5 405
79e2b9ae 406/* Called from RCU critical section */
c7086b4a 407static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
408 hwaddr addr,
409 bool resolve_subpage)
9f029603 410{
729633c2 411 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 412 subpage_t *subpage;
729633c2 413 bool update;
90260c6c 414
729633c2
FZ
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
003a0cf2 419 section = phys_page_find(d, addr);
729633c2
FZ
420 update = true;
421 }
90260c6c
JK
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 425 }
729633c2
FZ
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
90260c6c 429 return section;
9f029603
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433static MemoryRegionSection *
c7086b4a 434address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 435 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
436{
437 MemoryRegionSection *section;
965eb2fc 438 MemoryRegion *mr;
a87f3954 439 Int128 diff;
149f54b5 440
c7086b4a 441 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
965eb2fc 448 mr = section->mr;
b242e0e0
PB
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
965eb2fc 461 if (memory_region_is_ram(mr)) {
e4a511f8 462 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
149f54b5
PB
465 return section;
466}
90260c6c 467
d5e5fafd
PX
468/**
469 * flatview_do_translate - translate an address in FlatView
470 *
471 * @fv: the flat view that we want to translate on
472 * @addr: the address to be translated in above address space
473 * @xlat: the translated address offset within memory region. It
474 * cannot be @NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * can be @NULL when we don't care about it.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be @NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 *
484 * This function is called from RCU critical section
485 */
16620684
AK
486static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
d5e5fafd
PX
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
16620684
AK
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as)
052c8fa9 494{
a764040c 495 IOMMUTLBEntry iotlb;
052c8fa9 496 MemoryRegionSection *section;
3df9d748 497 IOMMUMemoryRegion *iommu_mr;
1221a474 498 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
499 hwaddr page_mask = (hwaddr)(-1);
500 hwaddr plen = (hwaddr)(-1);
501
502 if (plen_out) {
503 plen = *plen_out;
504 }
052c8fa9
JW
505
506 for (;;) {
16620684
AK
507 section = address_space_translate_internal(
508 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 509 &plen, is_mmio);
052c8fa9 510
3df9d748
AK
511 iommu_mr = memory_region_get_iommu(section->mr);
512 if (!iommu_mr) {
052c8fa9
JW
513 break;
514 }
1221a474 515 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 516
1221a474
AK
517 iotlb = imrc->translate(iommu_mr, addr, is_write ?
518 IOMMU_WO : IOMMU_RO);
a764040c
PX
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
d5e5fafd
PX
521 page_mask &= iotlb.addr_mask;
522 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 523 if (!(iotlb.perm & (1 << is_write))) {
a764040c 524 goto translate_fail;
052c8fa9
JW
525 }
526
16620684 527 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 528 *target_as = iotlb.target_as;
052c8fa9
JW
529 }
530
a764040c
PX
531 *xlat = addr;
532
d5e5fafd
PX
533 if (page_mask == (hwaddr)(-1)) {
534 /* Not behind an IOMMU, use default page size. */
535 page_mask = ~TARGET_PAGE_MASK;
536 }
537
538 if (page_mask_out) {
539 *page_mask_out = page_mask;
540 }
541
542 if (plen_out) {
543 *plen_out = plen;
544 }
545
a764040c
PX
546 return *section;
547
548translate_fail:
549 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
550}
551
552/* Called from RCU critical section */
a764040c
PX
553IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
554 bool is_write)
90260c6c 555{
a764040c 556 MemoryRegionSection section;
076a93d7 557 hwaddr xlat, page_mask;
30951157 558
076a93d7
PX
559 /*
560 * This can never be MMIO, and we don't really care about plen,
561 * but page mask.
562 */
563 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
564 NULL, &page_mask, is_write, false, &as);
30951157 565
a764040c
PX
566 /* Illegal translation */
567 if (section.mr == &io_mem_unassigned) {
568 goto iotlb_fail;
569 }
30951157 570
a764040c
PX
571 /* Convert memory region offset into address space offset */
572 xlat += section.offset_within_address_space -
573 section.offset_within_region;
574
a764040c 575 return (IOMMUTLBEntry) {
e76bb18f 576 .target_as = as,
076a93d7
PX
577 .iova = addr & ~page_mask,
578 .translated_addr = xlat & ~page_mask,
579 .addr_mask = page_mask,
a764040c
PX
580 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
581 .perm = IOMMU_RW,
582 };
583
584iotlb_fail:
585 return (IOMMUTLBEntry) {0};
586}
587
588/* Called from RCU critical section */
16620684
AK
589MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
590 hwaddr *plen, bool is_write)
a764040c
PX
591{
592 MemoryRegion *mr;
593 MemoryRegionSection section;
16620684 594 AddressSpace *as = NULL;
a764040c
PX
595
596 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
597 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
598 is_write, true, &as);
a764040c
PX
599 mr = section.mr;
600
fe680d0d 601 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 602 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 603 *plen = MIN(page, *plen);
a87f3954
PB
604 }
605
30951157 606 return mr;
90260c6c
JK
607}
608
79e2b9ae 609/* Called from RCU critical section */
90260c6c 610MemoryRegionSection *
d7898cda 611address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 612 hwaddr *xlat, hwaddr *plen)
90260c6c 613{
30951157 614 MemoryRegionSection *section;
f35e44e7 615 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
616
617 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 618
3df9d748 619 assert(!memory_region_is_iommu(section->mr));
30951157 620 return section;
90260c6c 621}
5b6dd868 622#endif
fd6ce8f6 623
b170fce3 624#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
625
626static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 627{
259186a7 628 CPUState *cpu = opaque;
a513fe19 629
5b6dd868
BS
630 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
631 version_id is increased. */
259186a7 632 cpu->interrupt_request &= ~0x01;
d10eb08f 633 tlb_flush(cpu);
5b6dd868
BS
634
635 return 0;
a513fe19 636}
7501267e 637
6c3bff0e
PD
638static int cpu_common_pre_load(void *opaque)
639{
640 CPUState *cpu = opaque;
641
adee6424 642 cpu->exception_index = -1;
6c3bff0e
PD
643
644 return 0;
645}
646
647static bool cpu_common_exception_index_needed(void *opaque)
648{
649 CPUState *cpu = opaque;
650
adee6424 651 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
652}
653
654static const VMStateDescription vmstate_cpu_common_exception_index = {
655 .name = "cpu_common/exception_index",
656 .version_id = 1,
657 .minimum_version_id = 1,
5cd8cada 658 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
659 .fields = (VMStateField[]) {
660 VMSTATE_INT32(exception_index, CPUState),
661 VMSTATE_END_OF_LIST()
662 }
663};
664
bac05aa9
AS
665static bool cpu_common_crash_occurred_needed(void *opaque)
666{
667 CPUState *cpu = opaque;
668
669 return cpu->crash_occurred;
670}
671
672static const VMStateDescription vmstate_cpu_common_crash_occurred = {
673 .name = "cpu_common/crash_occurred",
674 .version_id = 1,
675 .minimum_version_id = 1,
676 .needed = cpu_common_crash_occurred_needed,
677 .fields = (VMStateField[]) {
678 VMSTATE_BOOL(crash_occurred, CPUState),
679 VMSTATE_END_OF_LIST()
680 }
681};
682
1a1562f5 683const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
684 .name = "cpu_common",
685 .version_id = 1,
686 .minimum_version_id = 1,
6c3bff0e 687 .pre_load = cpu_common_pre_load,
5b6dd868 688 .post_load = cpu_common_post_load,
35d08458 689 .fields = (VMStateField[]) {
259186a7
AF
690 VMSTATE_UINT32(halted, CPUState),
691 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 692 VMSTATE_END_OF_LIST()
6c3bff0e 693 },
5cd8cada
JQ
694 .subsections = (const VMStateDescription*[]) {
695 &vmstate_cpu_common_exception_index,
bac05aa9 696 &vmstate_cpu_common_crash_occurred,
5cd8cada 697 NULL
5b6dd868
BS
698 }
699};
1a1562f5 700
5b6dd868 701#endif
ea041c0e 702
38d8f5c8 703CPUState *qemu_get_cpu(int index)
ea041c0e 704{
bdc44640 705 CPUState *cpu;
ea041c0e 706
bdc44640 707 CPU_FOREACH(cpu) {
55e5c285 708 if (cpu->cpu_index == index) {
bdc44640 709 return cpu;
55e5c285 710 }
ea041c0e 711 }
5b6dd868 712
bdc44640 713 return NULL;
ea041c0e
FB
714}
715
09daed84 716#if !defined(CONFIG_USER_ONLY)
56943e8c 717void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 718{
12ebc9a7
PM
719 CPUAddressSpace *newas;
720
721 /* Target code should have set num_ases before calling us */
722 assert(asidx < cpu->num_ases);
723
56943e8c
PM
724 if (asidx == 0) {
725 /* address space 0 gets the convenience alias */
726 cpu->as = as;
727 }
728
12ebc9a7
PM
729 /* KVM cannot currently support multiple address spaces. */
730 assert(asidx == 0 || !kvm_enabled());
09daed84 731
12ebc9a7
PM
732 if (!cpu->cpu_ases) {
733 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 734 }
32857f4d 735
12ebc9a7
PM
736 newas = &cpu->cpu_ases[asidx];
737 newas->cpu = cpu;
738 newas->as = as;
56943e8c 739 if (tcg_enabled()) {
12ebc9a7
PM
740 newas->tcg_as_listener.commit = tcg_commit;
741 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 742 }
09daed84 743}
651a5bc0
PM
744
745AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
746{
747 /* Return the AddressSpace corresponding to the specified index */
748 return cpu->cpu_ases[asidx].as;
749}
09daed84
EI
750#endif
751
7bbc124e 752void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 753{
9dfeca7c
BR
754 CPUClass *cc = CPU_GET_CLASS(cpu);
755
267f685b 756 cpu_list_remove(cpu);
9dfeca7c
BR
757
758 if (cc->vmsd != NULL) {
759 vmstate_unregister(NULL, cc->vmsd, cpu);
760 }
761 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
762 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
763 }
1c59eb39
BR
764}
765
c7e002c5
FZ
766Property cpu_common_props[] = {
767#ifndef CONFIG_USER_ONLY
768 /* Create a memory property for softmmu CPU object,
769 * so users can wire up its memory. (This can't go in qom/cpu.c
770 * because that file is compiled only once for both user-mode
771 * and system builds.) The default if no link is set up is to use
772 * the system address space.
773 */
774 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
775 MemoryRegion *),
776#endif
777 DEFINE_PROP_END_OF_LIST(),
778};
779
39e329e3 780void cpu_exec_initfn(CPUState *cpu)
ea041c0e 781{
56943e8c 782 cpu->as = NULL;
12ebc9a7 783 cpu->num_ases = 0;
56943e8c 784
291135b5 785#ifndef CONFIG_USER_ONLY
291135b5 786 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
787 cpu->memory = system_memory;
788 object_ref(OBJECT(cpu->memory));
291135b5 789#endif
39e329e3
LV
790}
791
ce5b1bbf 792void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
793{
794 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 795
267f685b 796 cpu_list_add(cpu);
1bc7e522
IM
797
798#ifndef CONFIG_USER_ONLY
e0d47944 799 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 800 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 801 }
b170fce3 802 if (cc->vmsd != NULL) {
741da0d3 803 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 804 }
741da0d3 805#endif
ea041c0e
FB
806}
807
406bc339 808#if defined(CONFIG_USER_ONLY)
00b941e5 809static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 810{
406bc339
PK
811 mmap_lock();
812 tb_lock();
813 tb_invalidate_phys_page_range(pc, pc + 1, 0);
814 tb_unlock();
815 mmap_unlock();
816}
817#else
818static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
819{
820 MemTxAttrs attrs;
821 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
822 int asidx = cpu_asidx_from_attrs(cpu, attrs);
823 if (phys != -1) {
824 /* Locks grabbed by tb_invalidate_phys_addr */
825 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
826 phys | (pc & ~TARGET_PAGE_MASK));
827 }
1e7855a5 828}
406bc339 829#endif
d720b93d 830
c527ee8f 831#if defined(CONFIG_USER_ONLY)
75a34036 832void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
833
834{
835}
836
3ee887e8
PM
837int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
838 int flags)
839{
840 return -ENOSYS;
841}
842
843void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
844{
845}
846
75a34036 847int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
848 int flags, CPUWatchpoint **watchpoint)
849{
850 return -ENOSYS;
851}
852#else
6658ffb8 853/* Add a watchpoint. */
75a34036 854int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 855 int flags, CPUWatchpoint **watchpoint)
6658ffb8 856{
c0ce998e 857 CPUWatchpoint *wp;
6658ffb8 858
05068c0d 859 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 860 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
861 error_report("tried to set invalid watchpoint at %"
862 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
863 return -EINVAL;
864 }
7267c094 865 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
866
867 wp->vaddr = addr;
05068c0d 868 wp->len = len;
a1d1bb31
AL
869 wp->flags = flags;
870
2dc9f411 871 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
872 if (flags & BP_GDB) {
873 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
874 } else {
875 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
876 }
6658ffb8 877
31b030d4 878 tlb_flush_page(cpu, addr);
a1d1bb31
AL
879
880 if (watchpoint)
881 *watchpoint = wp;
882 return 0;
6658ffb8
PB
883}
884
a1d1bb31 885/* Remove a specific watchpoint. */
75a34036 886int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 887 int flags)
6658ffb8 888{
a1d1bb31 889 CPUWatchpoint *wp;
6658ffb8 890
ff4700b0 891 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 892 if (addr == wp->vaddr && len == wp->len
6e140f28 893 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 894 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
895 return 0;
896 }
897 }
a1d1bb31 898 return -ENOENT;
6658ffb8
PB
899}
900
a1d1bb31 901/* Remove a specific watchpoint by reference. */
75a34036 902void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 903{
ff4700b0 904 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 905
31b030d4 906 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 907
7267c094 908 g_free(watchpoint);
a1d1bb31
AL
909}
910
911/* Remove all matching watchpoints. */
75a34036 912void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 913{
c0ce998e 914 CPUWatchpoint *wp, *next;
a1d1bb31 915
ff4700b0 916 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
917 if (wp->flags & mask) {
918 cpu_watchpoint_remove_by_ref(cpu, wp);
919 }
c0ce998e 920 }
7d03f82f 921}
05068c0d
PM
922
923/* Return true if this watchpoint address matches the specified
924 * access (ie the address range covered by the watchpoint overlaps
925 * partially or completely with the address range covered by the
926 * access).
927 */
928static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
929 vaddr addr,
930 vaddr len)
931{
932 /* We know the lengths are non-zero, but a little caution is
933 * required to avoid errors in the case where the range ends
934 * exactly at the top of the address space and so addr + len
935 * wraps round to zero.
936 */
937 vaddr wpend = wp->vaddr + wp->len - 1;
938 vaddr addrend = addr + len - 1;
939
940 return !(addr > wpend || wp->vaddr > addrend);
941}
942
c527ee8f 943#endif
7d03f82f 944
a1d1bb31 945/* Add a breakpoint. */
b3310ab3 946int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 947 CPUBreakpoint **breakpoint)
4c3a88a2 948{
c0ce998e 949 CPUBreakpoint *bp;
3b46e624 950
7267c094 951 bp = g_malloc(sizeof(*bp));
4c3a88a2 952
a1d1bb31
AL
953 bp->pc = pc;
954 bp->flags = flags;
955
2dc9f411 956 /* keep all GDB-injected breakpoints in front */
00b941e5 957 if (flags & BP_GDB) {
f0c3c505 958 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 959 } else {
f0c3c505 960 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 961 }
3b46e624 962
f0c3c505 963 breakpoint_invalidate(cpu, pc);
a1d1bb31 964
00b941e5 965 if (breakpoint) {
a1d1bb31 966 *breakpoint = bp;
00b941e5 967 }
4c3a88a2 968 return 0;
4c3a88a2
FB
969}
970
a1d1bb31 971/* Remove a specific breakpoint. */
b3310ab3 972int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 973{
a1d1bb31
AL
974 CPUBreakpoint *bp;
975
f0c3c505 976 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 977 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 978 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
979 return 0;
980 }
7d03f82f 981 }
a1d1bb31 982 return -ENOENT;
7d03f82f
EI
983}
984
a1d1bb31 985/* Remove a specific breakpoint by reference. */
b3310ab3 986void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 987{
f0c3c505
AF
988 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
989
990 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 991
7267c094 992 g_free(breakpoint);
a1d1bb31
AL
993}
994
995/* Remove all matching breakpoints. */
b3310ab3 996void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 997{
c0ce998e 998 CPUBreakpoint *bp, *next;
a1d1bb31 999
f0c3c505 1000 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1001 if (bp->flags & mask) {
1002 cpu_breakpoint_remove_by_ref(cpu, bp);
1003 }
c0ce998e 1004 }
4c3a88a2
FB
1005}
1006
c33a346e
FB
1007/* enable or disable single step mode. EXCP_DEBUG is returned by the
1008 CPU loop after each instruction */
3825b28f 1009void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1010{
ed2803da
AF
1011 if (cpu->singlestep_enabled != enabled) {
1012 cpu->singlestep_enabled = enabled;
1013 if (kvm_enabled()) {
38e478ec 1014 kvm_update_guest_debug(cpu, 0);
ed2803da 1015 } else {
ccbb4d44 1016 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1017 /* XXX: only flush what is necessary */
bbd77c18 1018 tb_flush(cpu);
e22a25c9 1019 }
c33a346e 1020 }
c33a346e
FB
1021}
1022
a47dddd7 1023void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1024{
1025 va_list ap;
493ae1f0 1026 va_list ap2;
7501267e
FB
1027
1028 va_start(ap, fmt);
493ae1f0 1029 va_copy(ap2, ap);
7501267e
FB
1030 fprintf(stderr, "qemu: fatal: ");
1031 vfprintf(stderr, fmt, ap);
1032 fprintf(stderr, "\n");
878096ee 1033 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1034 if (qemu_log_separate()) {
1ee73216 1035 qemu_log_lock();
93fcfe39
AL
1036 qemu_log("qemu: fatal: ");
1037 qemu_log_vprintf(fmt, ap2);
1038 qemu_log("\n");
a0762859 1039 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1040 qemu_log_flush();
1ee73216 1041 qemu_log_unlock();
93fcfe39 1042 qemu_log_close();
924edcae 1043 }
493ae1f0 1044 va_end(ap2);
f9373291 1045 va_end(ap);
7615936e 1046 replay_finish();
fd052bf6
RV
1047#if defined(CONFIG_USER_ONLY)
1048 {
1049 struct sigaction act;
1050 sigfillset(&act.sa_mask);
1051 act.sa_handler = SIG_DFL;
1052 sigaction(SIGABRT, &act, NULL);
1053 }
1054#endif
7501267e
FB
1055 abort();
1056}
1057
0124311e 1058#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1059/* Called from RCU critical section */
041603fe
PB
1060static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1061{
1062 RAMBlock *block;
1063
43771539 1064 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1065 if (block && addr - block->offset < block->max_length) {
68851b98 1066 return block;
041603fe 1067 }
99e15582 1068 RAMBLOCK_FOREACH(block) {
9b8424d5 1069 if (addr - block->offset < block->max_length) {
041603fe
PB
1070 goto found;
1071 }
1072 }
1073
1074 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1075 abort();
1076
1077found:
43771539
PB
1078 /* It is safe to write mru_block outside the iothread lock. This
1079 * is what happens:
1080 *
1081 * mru_block = xxx
1082 * rcu_read_unlock()
1083 * xxx removed from list
1084 * rcu_read_lock()
1085 * read mru_block
1086 * mru_block = NULL;
1087 * call_rcu(reclaim_ramblock, xxx);
1088 * rcu_read_unlock()
1089 *
1090 * atomic_rcu_set is not needed here. The block was already published
1091 * when it was placed into the list. Here we're just making an extra
1092 * copy of the pointer.
1093 */
041603fe
PB
1094 ram_list.mru_block = block;
1095 return block;
1096}
1097
a2f4d5be 1098static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1099{
9a13565d 1100 CPUState *cpu;
041603fe 1101 ram_addr_t start1;
a2f4d5be
JQ
1102 RAMBlock *block;
1103 ram_addr_t end;
1104
1105 end = TARGET_PAGE_ALIGN(start + length);
1106 start &= TARGET_PAGE_MASK;
d24981d3 1107
0dc3f44a 1108 rcu_read_lock();
041603fe
PB
1109 block = qemu_get_ram_block(start);
1110 assert(block == qemu_get_ram_block(end - 1));
1240be24 1111 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1112 CPU_FOREACH(cpu) {
1113 tlb_reset_dirty(cpu, start1, length);
1114 }
0dc3f44a 1115 rcu_read_unlock();
d24981d3
JQ
1116}
1117
5579c7f3 1118/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1119bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1120 ram_addr_t length,
1121 unsigned client)
1ccde1cb 1122{
5b82b703 1123 DirtyMemoryBlocks *blocks;
03eebc9e 1124 unsigned long end, page;
5b82b703 1125 bool dirty = false;
03eebc9e
SH
1126
1127 if (length == 0) {
1128 return false;
1129 }
f23db169 1130
03eebc9e
SH
1131 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1132 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1133
1134 rcu_read_lock();
1135
1136 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1137
1138 while (page < end) {
1139 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1140 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1141 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1142
1143 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1144 offset, num);
1145 page += num;
1146 }
1147
1148 rcu_read_unlock();
03eebc9e
SH
1149
1150 if (dirty && tcg_enabled()) {
a2f4d5be 1151 tlb_reset_dirty_range_all(start, length);
5579c7f3 1152 }
03eebc9e
SH
1153
1154 return dirty;
1ccde1cb
FB
1155}
1156
8deaf12c
GH
1157DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1158 (ram_addr_t start, ram_addr_t length, unsigned client)
1159{
1160 DirtyMemoryBlocks *blocks;
1161 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1162 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1163 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1164 DirtyBitmapSnapshot *snap;
1165 unsigned long page, end, dest;
1166
1167 snap = g_malloc0(sizeof(*snap) +
1168 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1169 snap->start = first;
1170 snap->end = last;
1171
1172 page = first >> TARGET_PAGE_BITS;
1173 end = last >> TARGET_PAGE_BITS;
1174 dest = 0;
1175
1176 rcu_read_lock();
1177
1178 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1179
1180 while (page < end) {
1181 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1182 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1183 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1184
1185 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1186 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1187 offset >>= BITS_PER_LEVEL;
1188
1189 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1190 blocks->blocks[idx] + offset,
1191 num);
1192 page += num;
1193 dest += num >> BITS_PER_LEVEL;
1194 }
1195
1196 rcu_read_unlock();
1197
1198 if (tcg_enabled()) {
1199 tlb_reset_dirty_range_all(start, length);
1200 }
1201
1202 return snap;
1203}
1204
1205bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1206 ram_addr_t start,
1207 ram_addr_t length)
1208{
1209 unsigned long page, end;
1210
1211 assert(start >= snap->start);
1212 assert(start + length <= snap->end);
1213
1214 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1215 page = (start - snap->start) >> TARGET_PAGE_BITS;
1216
1217 while (page < end) {
1218 if (test_bit(page, snap->dirty)) {
1219 return true;
1220 }
1221 page++;
1222 }
1223 return false;
1224}
1225
79e2b9ae 1226/* Called from RCU critical section */
bb0e627a 1227hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1228 MemoryRegionSection *section,
1229 target_ulong vaddr,
1230 hwaddr paddr, hwaddr xlat,
1231 int prot,
1232 target_ulong *address)
e5548617 1233{
a8170e5e 1234 hwaddr iotlb;
e5548617
BS
1235 CPUWatchpoint *wp;
1236
cc5bea60 1237 if (memory_region_is_ram(section->mr)) {
e5548617 1238 /* Normal RAM. */
e4e69794 1239 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1240 if (!section->readonly) {
b41aac4f 1241 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1242 } else {
b41aac4f 1243 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1244 }
1245 } else {
0b8e2c10
PM
1246 AddressSpaceDispatch *d;
1247
16620684 1248 d = flatview_to_dispatch(section->fv);
0b8e2c10 1249 iotlb = section - d->map.sections;
149f54b5 1250 iotlb += xlat;
e5548617
BS
1251 }
1252
1253 /* Make accesses to pages with watchpoints go via the
1254 watchpoint trap routines. */
ff4700b0 1255 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1256 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1257 /* Avoid trapping reads of pages with a write breakpoint. */
1258 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1259 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1260 *address |= TLB_MMIO;
1261 break;
1262 }
1263 }
1264 }
1265
1266 return iotlb;
1267}
9fa3e853
FB
1268#endif /* defined(CONFIG_USER_ONLY) */
1269
e2eef170 1270#if !defined(CONFIG_USER_ONLY)
8da3ff18 1271
c227f099 1272static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1273 uint16_t section);
16620684 1274static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1275
a2b257d6
IM
1276static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1277 qemu_anon_ram_alloc;
91138037
MA
1278
1279/*
1280 * Set a custom physical guest memory alloator.
1281 * Accelerators with unusual needs may need this. Hopefully, we can
1282 * get rid of it eventually.
1283 */
a2b257d6 1284void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1285{
1286 phys_mem_alloc = alloc;
1287}
1288
53cb28cb
MA
1289static uint16_t phys_section_add(PhysPageMap *map,
1290 MemoryRegionSection *section)
5312bd8b 1291{
68f3f65b
PB
1292 /* The physical section number is ORed with a page-aligned
1293 * pointer to produce the iotlb entries. Thus it should
1294 * never overflow into the page-aligned value.
1295 */
53cb28cb 1296 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1297
53cb28cb
MA
1298 if (map->sections_nb == map->sections_nb_alloc) {
1299 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1300 map->sections = g_renew(MemoryRegionSection, map->sections,
1301 map->sections_nb_alloc);
5312bd8b 1302 }
53cb28cb 1303 map->sections[map->sections_nb] = *section;
dfde4e6e 1304 memory_region_ref(section->mr);
53cb28cb 1305 return map->sections_nb++;
5312bd8b
AK
1306}
1307
058bc4b5
PB
1308static void phys_section_destroy(MemoryRegion *mr)
1309{
55b4e80b
DS
1310 bool have_sub_page = mr->subpage;
1311
dfde4e6e
PB
1312 memory_region_unref(mr);
1313
55b4e80b 1314 if (have_sub_page) {
058bc4b5 1315 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1316 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1317 g_free(subpage);
1318 }
1319}
1320
6092666e 1321static void phys_sections_free(PhysPageMap *map)
5312bd8b 1322{
9affd6fc
PB
1323 while (map->sections_nb > 0) {
1324 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1325 phys_section_destroy(section->mr);
1326 }
9affd6fc
PB
1327 g_free(map->sections);
1328 g_free(map->nodes);
5312bd8b
AK
1329}
1330
9950322a 1331static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1332{
9950322a 1333 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1334 subpage_t *subpage;
a8170e5e 1335 hwaddr base = section->offset_within_address_space
0f0cb164 1336 & TARGET_PAGE_MASK;
003a0cf2 1337 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1338 MemoryRegionSection subsection = {
1339 .offset_within_address_space = base,
052e87b0 1340 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1341 };
a8170e5e 1342 hwaddr start, end;
0f0cb164 1343
f3705d53 1344 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1345
f3705d53 1346 if (!(existing->mr->subpage)) {
16620684
AK
1347 subpage = subpage_init(fv, base);
1348 subsection.fv = fv;
0f0cb164 1349 subsection.mr = &subpage->iomem;
ac1970fb 1350 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1351 phys_section_add(&d->map, &subsection));
0f0cb164 1352 } else {
f3705d53 1353 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1354 }
1355 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1356 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1357 subpage_register(subpage, start, end,
1358 phys_section_add(&d->map, section));
0f0cb164
AK
1359}
1360
1361
9950322a 1362static void register_multipage(FlatView *fv,
052e87b0 1363 MemoryRegionSection *section)
33417e70 1364{
9950322a 1365 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1366 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1367 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1368 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1369 TARGET_PAGE_BITS));
dd81124b 1370
733d5ef5
PB
1371 assert(num_pages);
1372 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1373}
1374
8629d3fc 1375void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1376{
99b9cc06 1377 MemoryRegionSection now = *section, remain = *section;
052e87b0 1378 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1379
733d5ef5
PB
1380 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1381 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1382 - now.offset_within_address_space;
1383
052e87b0 1384 now.size = int128_min(int128_make64(left), now.size);
9950322a 1385 register_subpage(fv, &now);
733d5ef5 1386 } else {
052e87b0 1387 now.size = int128_zero();
733d5ef5 1388 }
052e87b0
PB
1389 while (int128_ne(remain.size, now.size)) {
1390 remain.size = int128_sub(remain.size, now.size);
1391 remain.offset_within_address_space += int128_get64(now.size);
1392 remain.offset_within_region += int128_get64(now.size);
69b67646 1393 now = remain;
052e87b0 1394 if (int128_lt(remain.size, page_size)) {
9950322a 1395 register_subpage(fv, &now);
88266249 1396 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1397 now.size = page_size;
9950322a 1398 register_subpage(fv, &now);
69b67646 1399 } else {
052e87b0 1400 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1401 register_multipage(fv, &now);
69b67646 1402 }
0f0cb164
AK
1403 }
1404}
1405
62a2744c
SY
1406void qemu_flush_coalesced_mmio_buffer(void)
1407{
1408 if (kvm_enabled())
1409 kvm_flush_coalesced_mmio_buffer();
1410}
1411
b2a8658e
UD
1412void qemu_mutex_lock_ramlist(void)
1413{
1414 qemu_mutex_lock(&ram_list.mutex);
1415}
1416
1417void qemu_mutex_unlock_ramlist(void)
1418{
1419 qemu_mutex_unlock(&ram_list.mutex);
1420}
1421
be9b23c4
PX
1422void ram_block_dump(Monitor *mon)
1423{
1424 RAMBlock *block;
1425 char *psize;
1426
1427 rcu_read_lock();
1428 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1429 "Block Name", "PSize", "Offset", "Used", "Total");
1430 RAMBLOCK_FOREACH(block) {
1431 psize = size_to_str(block->page_size);
1432 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1433 " 0x%016" PRIx64 "\n", block->idstr, psize,
1434 (uint64_t)block->offset,
1435 (uint64_t)block->used_length,
1436 (uint64_t)block->max_length);
1437 g_free(psize);
1438 }
1439 rcu_read_unlock();
1440}
1441
9c607668
AK
1442#ifdef __linux__
1443/*
1444 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1445 * may or may not name the same files / on the same filesystem now as
1446 * when we actually open and map them. Iterate over the file
1447 * descriptors instead, and use qemu_fd_getpagesize().
1448 */
1449static int find_max_supported_pagesize(Object *obj, void *opaque)
1450{
1451 char *mem_path;
1452 long *hpsize_min = opaque;
1453
1454 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1455 mem_path = object_property_get_str(obj, "mem-path", NULL);
1456 if (mem_path) {
1457 long hpsize = qemu_mempath_getpagesize(mem_path);
1458 if (hpsize < *hpsize_min) {
1459 *hpsize_min = hpsize;
1460 }
1461 } else {
1462 *hpsize_min = getpagesize();
1463 }
1464 }
1465
1466 return 0;
1467}
1468
1469long qemu_getrampagesize(void)
1470{
1471 long hpsize = LONG_MAX;
1472 long mainrampagesize;
1473 Object *memdev_root;
1474
1475 if (mem_path) {
1476 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1477 } else {
1478 mainrampagesize = getpagesize();
1479 }
1480
1481 /* it's possible we have memory-backend objects with
1482 * hugepage-backed RAM. these may get mapped into system
1483 * address space via -numa parameters or memory hotplug
1484 * hooks. we want to take these into account, but we
1485 * also want to make sure these supported hugepage
1486 * sizes are applicable across the entire range of memory
1487 * we may boot from, so we take the min across all
1488 * backends, and assume normal pages in cases where a
1489 * backend isn't backed by hugepages.
1490 */
1491 memdev_root = object_resolve_path("/objects", NULL);
1492 if (memdev_root) {
1493 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1494 }
1495 if (hpsize == LONG_MAX) {
1496 /* No additional memory regions found ==> Report main RAM page size */
1497 return mainrampagesize;
1498 }
1499
1500 /* If NUMA is disabled or the NUMA nodes are not backed with a
1501 * memory-backend, then there is at least one node using "normal" RAM,
1502 * so if its page size is smaller we have got to report that size instead.
1503 */
1504 if (hpsize > mainrampagesize &&
1505 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1506 static bool warned;
1507 if (!warned) {
1508 error_report("Huge page support disabled (n/a for main memory).");
1509 warned = true;
1510 }
1511 return mainrampagesize;
1512 }
1513
1514 return hpsize;
1515}
1516#else
1517long qemu_getrampagesize(void)
1518{
1519 return getpagesize();
1520}
1521#endif
1522
e1e84ba0 1523#ifdef __linux__
d6af99c9
HZ
1524static int64_t get_file_size(int fd)
1525{
1526 int64_t size = lseek(fd, 0, SEEK_END);
1527 if (size < 0) {
1528 return -errno;
1529 }
1530 return size;
1531}
1532
8d37b030
MAL
1533static int file_ram_open(const char *path,
1534 const char *region_name,
1535 bool *created,
1536 Error **errp)
c902760f
MT
1537{
1538 char *filename;
8ca761f6
PF
1539 char *sanitized_name;
1540 char *c;
5c3ece79 1541 int fd = -1;
c902760f 1542
8d37b030 1543 *created = false;
fd97fd44
MA
1544 for (;;) {
1545 fd = open(path, O_RDWR);
1546 if (fd >= 0) {
1547 /* @path names an existing file, use it */
1548 break;
8d31d6b6 1549 }
fd97fd44
MA
1550 if (errno == ENOENT) {
1551 /* @path names a file that doesn't exist, create it */
1552 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1553 if (fd >= 0) {
8d37b030 1554 *created = true;
fd97fd44
MA
1555 break;
1556 }
1557 } else if (errno == EISDIR) {
1558 /* @path names a directory, create a file there */
1559 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1560 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1561 for (c = sanitized_name; *c != '\0'; c++) {
1562 if (*c == '/') {
1563 *c = '_';
1564 }
1565 }
8ca761f6 1566
fd97fd44
MA
1567 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1568 sanitized_name);
1569 g_free(sanitized_name);
8d31d6b6 1570
fd97fd44
MA
1571 fd = mkstemp(filename);
1572 if (fd >= 0) {
1573 unlink(filename);
1574 g_free(filename);
1575 break;
1576 }
1577 g_free(filename);
8d31d6b6 1578 }
fd97fd44
MA
1579 if (errno != EEXIST && errno != EINTR) {
1580 error_setg_errno(errp, errno,
1581 "can't open backing store %s for guest RAM",
1582 path);
8d37b030 1583 return -1;
fd97fd44
MA
1584 }
1585 /*
1586 * Try again on EINTR and EEXIST. The latter happens when
1587 * something else creates the file between our two open().
1588 */
8d31d6b6 1589 }
c902760f 1590
8d37b030
MAL
1591 return fd;
1592}
1593
1594static void *file_ram_alloc(RAMBlock *block,
1595 ram_addr_t memory,
1596 int fd,
1597 bool truncate,
1598 Error **errp)
1599{
1600 void *area;
1601
863e9621 1602 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1603 block->mr->align = block->page_size;
1604#if defined(__s390x__)
1605 if (kvm_enabled()) {
1606 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1607 }
1608#endif
fd97fd44 1609
863e9621 1610 if (memory < block->page_size) {
fd97fd44 1611 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1612 "or larger than page size 0x%zx",
1613 memory, block->page_size);
8d37b030 1614 return NULL;
1775f111
HZ
1615 }
1616
863e9621 1617 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1618
1619 /*
1620 * ftruncate is not supported by hugetlbfs in older
1621 * hosts, so don't bother bailing out on errors.
1622 * If anything goes wrong with it under other filesystems,
1623 * mmap will fail.
d6af99c9
HZ
1624 *
1625 * Do not truncate the non-empty backend file to avoid corrupting
1626 * the existing data in the file. Disabling shrinking is not
1627 * enough. For example, the current vNVDIMM implementation stores
1628 * the guest NVDIMM labels at the end of the backend file. If the
1629 * backend file is later extended, QEMU will not be able to find
1630 * those labels. Therefore, extending the non-empty backend file
1631 * is disabled as well.
c902760f 1632 */
8d37b030 1633 if (truncate && ftruncate(fd, memory)) {
9742bf26 1634 perror("ftruncate");
7f56e740 1635 }
c902760f 1636
d2f39add
DD
1637 area = qemu_ram_mmap(fd, memory, block->mr->align,
1638 block->flags & RAM_SHARED);
c902760f 1639 if (area == MAP_FAILED) {
7f56e740 1640 error_setg_errno(errp, errno,
fd97fd44 1641 "unable to map backing store for guest RAM");
8d37b030 1642 return NULL;
c902760f 1643 }
ef36fa14
MT
1644
1645 if (mem_prealloc) {
1e356fc1 1646 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1647 if (errp && *errp) {
8d37b030
MAL
1648 qemu_ram_munmap(area, memory);
1649 return NULL;
056b68af 1650 }
ef36fa14
MT
1651 }
1652
04b16653 1653 block->fd = fd;
c902760f
MT
1654 return area;
1655}
1656#endif
1657
0dc3f44a 1658/* Called with the ramlist lock held. */
d17b5288 1659static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1660{
1661 RAMBlock *block, *next_block;
3e837b2c 1662 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1663
49cd9ac6
SH
1664 assert(size != 0); /* it would hand out same offset multiple times */
1665
0dc3f44a 1666 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1667 return 0;
0d53d9fe 1668 }
04b16653 1669
99e15582 1670 RAMBLOCK_FOREACH(block) {
f15fbc4b 1671 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1672
62be4e3a 1673 end = block->offset + block->max_length;
04b16653 1674
99e15582 1675 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1676 if (next_block->offset >= end) {
1677 next = MIN(next, next_block->offset);
1678 }
1679 }
1680 if (next - end >= size && next - end < mingap) {
3e837b2c 1681 offset = end;
04b16653
AW
1682 mingap = next - end;
1683 }
1684 }
3e837b2c
AW
1685
1686 if (offset == RAM_ADDR_MAX) {
1687 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1688 (uint64_t)size);
1689 abort();
1690 }
1691
04b16653
AW
1692 return offset;
1693}
1694
b8c48993 1695unsigned long last_ram_page(void)
d17b5288
AW
1696{
1697 RAMBlock *block;
1698 ram_addr_t last = 0;
1699
0dc3f44a 1700 rcu_read_lock();
99e15582 1701 RAMBLOCK_FOREACH(block) {
62be4e3a 1702 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1703 }
0dc3f44a 1704 rcu_read_unlock();
b8c48993 1705 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1706}
1707
ddb97f1d
JB
1708static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1709{
1710 int ret;
ddb97f1d
JB
1711
1712 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1713 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1714 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1715 if (ret) {
1716 perror("qemu_madvise");
1717 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1718 "but dump_guest_core=off specified\n");
1719 }
1720 }
1721}
1722
422148d3
DDAG
1723const char *qemu_ram_get_idstr(RAMBlock *rb)
1724{
1725 return rb->idstr;
1726}
1727
463a4ac2
DDAG
1728bool qemu_ram_is_shared(RAMBlock *rb)
1729{
1730 return rb->flags & RAM_SHARED;
1731}
1732
ae3a7047 1733/* Called with iothread lock held. */
fa53a0e5 1734void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1735{
fa53a0e5 1736 RAMBlock *block;
20cfe881 1737
c5705a77
AK
1738 assert(new_block);
1739 assert(!new_block->idstr[0]);
84b89d78 1740
09e5ab63
AL
1741 if (dev) {
1742 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1743 if (id) {
1744 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1745 g_free(id);
84b89d78
CM
1746 }
1747 }
1748 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1749
ab0a9956 1750 rcu_read_lock();
99e15582 1751 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1752 if (block != new_block &&
1753 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1754 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1755 new_block->idstr);
1756 abort();
1757 }
1758 }
0dc3f44a 1759 rcu_read_unlock();
c5705a77
AK
1760}
1761
ae3a7047 1762/* Called with iothread lock held. */
fa53a0e5 1763void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1764{
ae3a7047
MD
1765 /* FIXME: arch_init.c assumes that this is not called throughout
1766 * migration. Ignore the problem since hot-unplug during migration
1767 * does not work anyway.
1768 */
20cfe881
HT
1769 if (block) {
1770 memset(block->idstr, 0, sizeof(block->idstr));
1771 }
1772}
1773
863e9621
DDAG
1774size_t qemu_ram_pagesize(RAMBlock *rb)
1775{
1776 return rb->page_size;
1777}
1778
67f11b5c
DDAG
1779/* Returns the largest size of page in use */
1780size_t qemu_ram_pagesize_largest(void)
1781{
1782 RAMBlock *block;
1783 size_t largest = 0;
1784
99e15582 1785 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1786 largest = MAX(largest, qemu_ram_pagesize(block));
1787 }
1788
1789 return largest;
1790}
1791
8490fc78
LC
1792static int memory_try_enable_merging(void *addr, size_t len)
1793{
75cc7f01 1794 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1795 /* disabled by the user */
1796 return 0;
1797 }
1798
1799 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1800}
1801
62be4e3a
MT
1802/* Only legal before guest might have detected the memory size: e.g. on
1803 * incoming migration, or right after reset.
1804 *
1805 * As memory core doesn't know how is memory accessed, it is up to
1806 * resize callback to update device state and/or add assertions to detect
1807 * misuse, if necessary.
1808 */
fa53a0e5 1809int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1810{
62be4e3a
MT
1811 assert(block);
1812
4ed023ce 1813 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1814
62be4e3a
MT
1815 if (block->used_length == newsize) {
1816 return 0;
1817 }
1818
1819 if (!(block->flags & RAM_RESIZEABLE)) {
1820 error_setg_errno(errp, EINVAL,
1821 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1822 " in != 0x" RAM_ADDR_FMT, block->idstr,
1823 newsize, block->used_length);
1824 return -EINVAL;
1825 }
1826
1827 if (block->max_length < newsize) {
1828 error_setg_errno(errp, EINVAL,
1829 "Length too large: %s: 0x" RAM_ADDR_FMT
1830 " > 0x" RAM_ADDR_FMT, block->idstr,
1831 newsize, block->max_length);
1832 return -EINVAL;
1833 }
1834
1835 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1836 block->used_length = newsize;
58d2707e
PB
1837 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1838 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1839 memory_region_set_size(block->mr, newsize);
1840 if (block->resized) {
1841 block->resized(block->idstr, newsize, block->host);
1842 }
1843 return 0;
1844}
1845
5b82b703
SH
1846/* Called with ram_list.mutex held */
1847static void dirty_memory_extend(ram_addr_t old_ram_size,
1848 ram_addr_t new_ram_size)
1849{
1850 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1851 DIRTY_MEMORY_BLOCK_SIZE);
1852 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1853 DIRTY_MEMORY_BLOCK_SIZE);
1854 int i;
1855
1856 /* Only need to extend if block count increased */
1857 if (new_num_blocks <= old_num_blocks) {
1858 return;
1859 }
1860
1861 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1862 DirtyMemoryBlocks *old_blocks;
1863 DirtyMemoryBlocks *new_blocks;
1864 int j;
1865
1866 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1867 new_blocks = g_malloc(sizeof(*new_blocks) +
1868 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1869
1870 if (old_num_blocks) {
1871 memcpy(new_blocks->blocks, old_blocks->blocks,
1872 old_num_blocks * sizeof(old_blocks->blocks[0]));
1873 }
1874
1875 for (j = old_num_blocks; j < new_num_blocks; j++) {
1876 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1877 }
1878
1879 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1880
1881 if (old_blocks) {
1882 g_free_rcu(old_blocks, rcu);
1883 }
1884 }
1885}
1886
528f46af 1887static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1888{
e1c57ab8 1889 RAMBlock *block;
0d53d9fe 1890 RAMBlock *last_block = NULL;
2152f5ca 1891 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1892 Error *err = NULL;
2152f5ca 1893
b8c48993 1894 old_ram_size = last_ram_page();
c5705a77 1895
b2a8658e 1896 qemu_mutex_lock_ramlist();
9b8424d5 1897 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1898
1899 if (!new_block->host) {
1900 if (xen_enabled()) {
9b8424d5 1901 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1902 new_block->mr, &err);
1903 if (err) {
1904 error_propagate(errp, err);
1905 qemu_mutex_unlock_ramlist();
39c350ee 1906 return;
37aa7a0e 1907 }
e1c57ab8 1908 } else {
9b8424d5 1909 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1910 &new_block->mr->align);
39228250 1911 if (!new_block->host) {
ef701d7b
HT
1912 error_setg_errno(errp, errno,
1913 "cannot set up guest memory '%s'",
1914 memory_region_name(new_block->mr));
1915 qemu_mutex_unlock_ramlist();
39c350ee 1916 return;
39228250 1917 }
9b8424d5 1918 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1919 }
c902760f 1920 }
94a6b54f 1921
dd631697
LZ
1922 new_ram_size = MAX(old_ram_size,
1923 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1924 if (new_ram_size > old_ram_size) {
5b82b703 1925 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1926 }
0d53d9fe
MD
1927 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1928 * QLIST (which has an RCU-friendly variant) does not have insertion at
1929 * tail, so save the last element in last_block.
1930 */
99e15582 1931 RAMBLOCK_FOREACH(block) {
0d53d9fe 1932 last_block = block;
9b8424d5 1933 if (block->max_length < new_block->max_length) {
abb26d63
PB
1934 break;
1935 }
1936 }
1937 if (block) {
0dc3f44a 1938 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1939 } else if (last_block) {
0dc3f44a 1940 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1941 } else { /* list is empty */
0dc3f44a 1942 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1943 }
0d6d3c87 1944 ram_list.mru_block = NULL;
94a6b54f 1945
0dc3f44a
MD
1946 /* Write list before version */
1947 smp_wmb();
f798b07f 1948 ram_list.version++;
b2a8658e 1949 qemu_mutex_unlock_ramlist();
f798b07f 1950
9b8424d5 1951 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1952 new_block->used_length,
1953 DIRTY_CLIENTS_ALL);
94a6b54f 1954
a904c911
PB
1955 if (new_block->host) {
1956 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1957 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1958 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1959 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1960 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1961 }
94a6b54f 1962}
e9a1ab19 1963
0b183fc8 1964#ifdef __linux__
38b3362d
MAL
1965RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1966 bool share, int fd,
1967 Error **errp)
e1c57ab8
PB
1968{
1969 RAMBlock *new_block;
ef701d7b 1970 Error *local_err = NULL;
8d37b030 1971 int64_t file_size;
e1c57ab8
PB
1972
1973 if (xen_enabled()) {
7f56e740 1974 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1975 return NULL;
e1c57ab8
PB
1976 }
1977
e45e7ae2
MAL
1978 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1979 error_setg(errp,
1980 "host lacks kvm mmu notifiers, -mem-path unsupported");
1981 return NULL;
1982 }
1983
e1c57ab8
PB
1984 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1985 /*
1986 * file_ram_alloc() needs to allocate just like
1987 * phys_mem_alloc, but we haven't bothered to provide
1988 * a hook there.
1989 */
7f56e740
PB
1990 error_setg(errp,
1991 "-mem-path not supported with this accelerator");
528f46af 1992 return NULL;
e1c57ab8
PB
1993 }
1994
4ed023ce 1995 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
1996 file_size = get_file_size(fd);
1997 if (file_size > 0 && file_size < size) {
1998 error_setg(errp, "backing store %s size 0x%" PRIx64
1999 " does not match 'size' option 0x" RAM_ADDR_FMT,
2000 mem_path, file_size, size);
8d37b030
MAL
2001 return NULL;
2002 }
2003
e1c57ab8
PB
2004 new_block = g_malloc0(sizeof(*new_block));
2005 new_block->mr = mr;
9b8424d5
MT
2006 new_block->used_length = size;
2007 new_block->max_length = size;
dbcb8981 2008 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2009 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2010 if (!new_block->host) {
2011 g_free(new_block);
528f46af 2012 return NULL;
7f56e740
PB
2013 }
2014
528f46af 2015 ram_block_add(new_block, &local_err);
ef701d7b
HT
2016 if (local_err) {
2017 g_free(new_block);
2018 error_propagate(errp, local_err);
528f46af 2019 return NULL;
ef701d7b 2020 }
528f46af 2021 return new_block;
38b3362d
MAL
2022
2023}
2024
2025
2026RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2027 bool share, const char *mem_path,
2028 Error **errp)
2029{
2030 int fd;
2031 bool created;
2032 RAMBlock *block;
2033
2034 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2035 if (fd < 0) {
2036 return NULL;
2037 }
2038
2039 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2040 if (!block) {
2041 if (created) {
2042 unlink(mem_path);
2043 }
2044 close(fd);
2045 return NULL;
2046 }
2047
2048 return block;
e1c57ab8 2049}
0b183fc8 2050#endif
e1c57ab8 2051
62be4e3a 2052static
528f46af
FZ
2053RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2054 void (*resized)(const char*,
2055 uint64_t length,
2056 void *host),
2057 void *host, bool resizeable,
2058 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2059{
2060 RAMBlock *new_block;
ef701d7b 2061 Error *local_err = NULL;
e1c57ab8 2062
4ed023ce
DDAG
2063 size = HOST_PAGE_ALIGN(size);
2064 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2065 new_block = g_malloc0(sizeof(*new_block));
2066 new_block->mr = mr;
62be4e3a 2067 new_block->resized = resized;
9b8424d5
MT
2068 new_block->used_length = size;
2069 new_block->max_length = max_size;
62be4e3a 2070 assert(max_size >= size);
e1c57ab8 2071 new_block->fd = -1;
863e9621 2072 new_block->page_size = getpagesize();
e1c57ab8
PB
2073 new_block->host = host;
2074 if (host) {
7bd4f430 2075 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2076 }
62be4e3a
MT
2077 if (resizeable) {
2078 new_block->flags |= RAM_RESIZEABLE;
2079 }
528f46af 2080 ram_block_add(new_block, &local_err);
ef701d7b
HT
2081 if (local_err) {
2082 g_free(new_block);
2083 error_propagate(errp, local_err);
528f46af 2084 return NULL;
ef701d7b 2085 }
528f46af 2086 return new_block;
e1c57ab8
PB
2087}
2088
528f46af 2089RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2090 MemoryRegion *mr, Error **errp)
2091{
2092 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2093}
2094
528f46af 2095RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2096{
62be4e3a
MT
2097 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2098}
2099
528f46af 2100RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2101 void (*resized)(const char*,
2102 uint64_t length,
2103 void *host),
2104 MemoryRegion *mr, Error **errp)
2105{
2106 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2107}
2108
43771539
PB
2109static void reclaim_ramblock(RAMBlock *block)
2110{
2111 if (block->flags & RAM_PREALLOC) {
2112 ;
2113 } else if (xen_enabled()) {
2114 xen_invalidate_map_cache_entry(block->host);
2115#ifndef _WIN32
2116 } else if (block->fd >= 0) {
2f3a2bb1 2117 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2118 close(block->fd);
2119#endif
2120 } else {
2121 qemu_anon_ram_free(block->host, block->max_length);
2122 }
2123 g_free(block);
2124}
2125
f1060c55 2126void qemu_ram_free(RAMBlock *block)
e9a1ab19 2127{
85bc2a15
MAL
2128 if (!block) {
2129 return;
2130 }
2131
0987d735
PB
2132 if (block->host) {
2133 ram_block_notify_remove(block->host, block->max_length);
2134 }
2135
b2a8658e 2136 qemu_mutex_lock_ramlist();
f1060c55
FZ
2137 QLIST_REMOVE_RCU(block, next);
2138 ram_list.mru_block = NULL;
2139 /* Write list before version */
2140 smp_wmb();
2141 ram_list.version++;
2142 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2143 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2144}
2145
cd19cfa2
HY
2146#ifndef _WIN32
2147void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2148{
2149 RAMBlock *block;
2150 ram_addr_t offset;
2151 int flags;
2152 void *area, *vaddr;
2153
99e15582 2154 RAMBLOCK_FOREACH(block) {
cd19cfa2 2155 offset = addr - block->offset;
9b8424d5 2156 if (offset < block->max_length) {
1240be24 2157 vaddr = ramblock_ptr(block, offset);
7bd4f430 2158 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2159 ;
dfeaf2ab
MA
2160 } else if (xen_enabled()) {
2161 abort();
cd19cfa2
HY
2162 } else {
2163 flags = MAP_FIXED;
3435f395 2164 if (block->fd >= 0) {
dbcb8981
PB
2165 flags |= (block->flags & RAM_SHARED ?
2166 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2167 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2168 flags, block->fd, offset);
cd19cfa2 2169 } else {
2eb9fbaa
MA
2170 /*
2171 * Remap needs to match alloc. Accelerators that
2172 * set phys_mem_alloc never remap. If they did,
2173 * we'd need a remap hook here.
2174 */
2175 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2176
cd19cfa2
HY
2177 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2178 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2179 flags, -1, 0);
cd19cfa2
HY
2180 }
2181 if (area != vaddr) {
f15fbc4b
AP
2182 fprintf(stderr, "Could not remap addr: "
2183 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2184 length, addr);
2185 exit(1);
2186 }
8490fc78 2187 memory_try_enable_merging(vaddr, length);
ddb97f1d 2188 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2189 }
cd19cfa2
HY
2190 }
2191 }
2192}
2193#endif /* !_WIN32 */
2194
1b5ec234 2195/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2196 * This should not be used for general purpose DMA. Use address_space_map
2197 * or address_space_rw instead. For local memory (e.g. video ram) that the
2198 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2199 *
49b24afc 2200 * Called within RCU critical section.
1b5ec234 2201 */
0878d0e1 2202void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2203{
3655cb9c
GA
2204 RAMBlock *block = ram_block;
2205
2206 if (block == NULL) {
2207 block = qemu_get_ram_block(addr);
0878d0e1 2208 addr -= block->offset;
3655cb9c 2209 }
ae3a7047
MD
2210
2211 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2212 /* We need to check if the requested address is in the RAM
2213 * because we don't want to map the entire memory in QEMU.
2214 * In that case just map until the end of the page.
2215 */
2216 if (block->offset == 0) {
1ff7c598 2217 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2218 }
ae3a7047 2219
1ff7c598 2220 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2221 }
0878d0e1 2222 return ramblock_ptr(block, addr);
dc828ca1
PB
2223}
2224
0878d0e1 2225/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2226 * but takes a size argument.
0dc3f44a 2227 *
e81bcda5 2228 * Called within RCU critical section.
ae3a7047 2229 */
3655cb9c 2230static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2231 hwaddr *size, bool lock)
38bee5dc 2232{
3655cb9c 2233 RAMBlock *block = ram_block;
8ab934f9
SS
2234 if (*size == 0) {
2235 return NULL;
2236 }
e81bcda5 2237
3655cb9c
GA
2238 if (block == NULL) {
2239 block = qemu_get_ram_block(addr);
0878d0e1 2240 addr -= block->offset;
3655cb9c 2241 }
0878d0e1 2242 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2243
2244 if (xen_enabled() && block->host == NULL) {
2245 /* We need to check if the requested address is in the RAM
2246 * because we don't want to map the entire memory in QEMU.
2247 * In that case just map the requested area.
2248 */
2249 if (block->offset == 0) {
f5aa69bd 2250 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2251 }
2252
f5aa69bd 2253 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2254 }
e81bcda5 2255
0878d0e1 2256 return ramblock_ptr(block, addr);
38bee5dc
SS
2257}
2258
422148d3
DDAG
2259/*
2260 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2261 * in that RAMBlock.
2262 *
2263 * ptr: Host pointer to look up
2264 * round_offset: If true round the result offset down to a page boundary
2265 * *ram_addr: set to result ram_addr
2266 * *offset: set to result offset within the RAMBlock
2267 *
2268 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2269 *
2270 * By the time this function returns, the returned pointer is not protected
2271 * by RCU anymore. If the caller is not within an RCU critical section and
2272 * does not hold the iothread lock, it must have other means of protecting the
2273 * pointer, such as a reference to the region that includes the incoming
2274 * ram_addr_t.
2275 */
422148d3 2276RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2277 ram_addr_t *offset)
5579c7f3 2278{
94a6b54f
PB
2279 RAMBlock *block;
2280 uint8_t *host = ptr;
2281
868bb33f 2282 if (xen_enabled()) {
f615f396 2283 ram_addr_t ram_addr;
0dc3f44a 2284 rcu_read_lock();
f615f396
PB
2285 ram_addr = xen_ram_addr_from_mapcache(ptr);
2286 block = qemu_get_ram_block(ram_addr);
422148d3 2287 if (block) {
d6b6aec4 2288 *offset = ram_addr - block->offset;
422148d3 2289 }
0dc3f44a 2290 rcu_read_unlock();
422148d3 2291 return block;
712c2b41
SS
2292 }
2293
0dc3f44a
MD
2294 rcu_read_lock();
2295 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2296 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2297 goto found;
2298 }
2299
99e15582 2300 RAMBLOCK_FOREACH(block) {
432d268c
JN
2301 /* This case append when the block is not mapped. */
2302 if (block->host == NULL) {
2303 continue;
2304 }
9b8424d5 2305 if (host - block->host < block->max_length) {
23887b79 2306 goto found;
f471a17e 2307 }
94a6b54f 2308 }
432d268c 2309
0dc3f44a 2310 rcu_read_unlock();
1b5ec234 2311 return NULL;
23887b79
PB
2312
2313found:
422148d3
DDAG
2314 *offset = (host - block->host);
2315 if (round_offset) {
2316 *offset &= TARGET_PAGE_MASK;
2317 }
0dc3f44a 2318 rcu_read_unlock();
422148d3
DDAG
2319 return block;
2320}
2321
e3dd7493
DDAG
2322/*
2323 * Finds the named RAMBlock
2324 *
2325 * name: The name of RAMBlock to find
2326 *
2327 * Returns: RAMBlock (or NULL if not found)
2328 */
2329RAMBlock *qemu_ram_block_by_name(const char *name)
2330{
2331 RAMBlock *block;
2332
99e15582 2333 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2334 if (!strcmp(name, block->idstr)) {
2335 return block;
2336 }
2337 }
2338
2339 return NULL;
2340}
2341
422148d3
DDAG
2342/* Some of the softmmu routines need to translate from a host pointer
2343 (typically a TLB entry) back to a ram offset. */
07bdaa41 2344ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2345{
2346 RAMBlock *block;
f615f396 2347 ram_addr_t offset;
422148d3 2348
f615f396 2349 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2350 if (!block) {
07bdaa41 2351 return RAM_ADDR_INVALID;
422148d3
DDAG
2352 }
2353
07bdaa41 2354 return block->offset + offset;
e890261f 2355}
f471a17e 2356
49b24afc 2357/* Called within RCU critical section. */
a8170e5e 2358static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2359 uint64_t val, unsigned size)
9fa3e853 2360{
ba051fb5
AB
2361 bool locked = false;
2362
5aa1ef71 2363 assert(tcg_enabled());
52159192 2364 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2365 locked = true;
2366 tb_lock();
0e0df1e2 2367 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2368 }
0e0df1e2
AK
2369 switch (size) {
2370 case 1:
0878d0e1 2371 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2372 break;
2373 case 2:
0878d0e1 2374 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2375 break;
2376 case 4:
0878d0e1 2377 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2378 break;
ad52878f
AB
2379 case 8:
2380 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2381 break;
0e0df1e2
AK
2382 default:
2383 abort();
3a7d929e 2384 }
ba051fb5
AB
2385
2386 if (locked) {
2387 tb_unlock();
2388 }
2389
58d2707e
PB
2390 /* Set both VGA and migration bits for simplicity and to remove
2391 * the notdirty callback faster.
2392 */
2393 cpu_physical_memory_set_dirty_range(ram_addr, size,
2394 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2395 /* we remove the notdirty callback only if the code has been
2396 flushed */
a2cd8c85 2397 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2398 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2399 }
9fa3e853
FB
2400}
2401
b018ddf6
PB
2402static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2403 unsigned size, bool is_write)
2404{
2405 return is_write;
2406}
2407
0e0df1e2 2408static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2409 .write = notdirty_mem_write,
b018ddf6 2410 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2411 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2412 .valid = {
2413 .min_access_size = 1,
2414 .max_access_size = 8,
2415 .unaligned = false,
2416 },
2417 .impl = {
2418 .min_access_size = 1,
2419 .max_access_size = 8,
2420 .unaligned = false,
2421 },
1ccde1cb
FB
2422};
2423
0f459d16 2424/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2425static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2426{
93afeade 2427 CPUState *cpu = current_cpu;
568496c0 2428 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2429 CPUArchState *env = cpu->env_ptr;
06d55cc1 2430 target_ulong pc, cs_base;
0f459d16 2431 target_ulong vaddr;
a1d1bb31 2432 CPUWatchpoint *wp;
89fee74a 2433 uint32_t cpu_flags;
0f459d16 2434
5aa1ef71 2435 assert(tcg_enabled());
ff4700b0 2436 if (cpu->watchpoint_hit) {
06d55cc1
AL
2437 /* We re-entered the check after replacing the TB. Now raise
2438 * the debug interrupt so that is will trigger after the
2439 * current instruction. */
93afeade 2440 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2441 return;
2442 }
93afeade 2443 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2444 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2445 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2446 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2447 && (wp->flags & flags)) {
08225676
PM
2448 if (flags == BP_MEM_READ) {
2449 wp->flags |= BP_WATCHPOINT_HIT_READ;
2450 } else {
2451 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2452 }
2453 wp->hitaddr = vaddr;
66b9b43c 2454 wp->hitattrs = attrs;
ff4700b0 2455 if (!cpu->watchpoint_hit) {
568496c0
SF
2456 if (wp->flags & BP_CPU &&
2457 !cc->debug_check_watchpoint(cpu, wp)) {
2458 wp->flags &= ~BP_WATCHPOINT_HIT;
2459 continue;
2460 }
ff4700b0 2461 cpu->watchpoint_hit = wp;
a5e99826 2462
8d04fb55
JK
2463 /* Both tb_lock and iothread_mutex will be reset when
2464 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2465 * back into the cpu_exec main loop.
a5e99826
FK
2466 */
2467 tb_lock();
239c51a5 2468 tb_check_watchpoint(cpu);
6e140f28 2469 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2470 cpu->exception_index = EXCP_DEBUG;
5638d180 2471 cpu_loop_exit(cpu);
6e140f28
AL
2472 } else {
2473 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2474 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2475 cpu_loop_exit_noexc(cpu);
6e140f28 2476 }
06d55cc1 2477 }
6e140f28
AL
2478 } else {
2479 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2480 }
2481 }
2482}
2483
6658ffb8
PB
2484/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2485 so these check for a hit then pass through to the normal out-of-line
2486 phys routines. */
66b9b43c
PM
2487static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2488 unsigned size, MemTxAttrs attrs)
6658ffb8 2489{
66b9b43c
PM
2490 MemTxResult res;
2491 uint64_t data;
79ed0416
PM
2492 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2493 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2494
2495 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2496 switch (size) {
66b9b43c 2497 case 1:
79ed0416 2498 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2499 break;
2500 case 2:
79ed0416 2501 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2502 break;
2503 case 4:
79ed0416 2504 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2505 break;
306526b5
PB
2506 case 8:
2507 data = address_space_ldq(as, addr, attrs, &res);
2508 break;
1ec9b909
AK
2509 default: abort();
2510 }
66b9b43c
PM
2511 *pdata = data;
2512 return res;
6658ffb8
PB
2513}
2514
66b9b43c
PM
2515static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2516 uint64_t val, unsigned size,
2517 MemTxAttrs attrs)
6658ffb8 2518{
66b9b43c 2519 MemTxResult res;
79ed0416
PM
2520 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2521 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2522
2523 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2524 switch (size) {
67364150 2525 case 1:
79ed0416 2526 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2527 break;
2528 case 2:
79ed0416 2529 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2530 break;
2531 case 4:
79ed0416 2532 address_space_stl(as, addr, val, attrs, &res);
67364150 2533 break;
306526b5
PB
2534 case 8:
2535 address_space_stq(as, addr, val, attrs, &res);
2536 break;
1ec9b909
AK
2537 default: abort();
2538 }
66b9b43c 2539 return res;
6658ffb8
PB
2540}
2541
1ec9b909 2542static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2543 .read_with_attrs = watch_mem_read,
2544 .write_with_attrs = watch_mem_write,
1ec9b909 2545 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2546 .valid = {
2547 .min_access_size = 1,
2548 .max_access_size = 8,
2549 .unaligned = false,
2550 },
2551 .impl = {
2552 .min_access_size = 1,
2553 .max_access_size = 8,
2554 .unaligned = false,
2555 },
6658ffb8 2556};
6658ffb8 2557
16620684
AK
2558static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2559 const uint8_t *buf, int len);
2560static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2561 bool is_write);
2562
f25a49e0
PM
2563static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2564 unsigned len, MemTxAttrs attrs)
db7b5426 2565{
acc9d80b 2566 subpage_t *subpage = opaque;
ff6cff75 2567 uint8_t buf[8];
5c9eb028 2568 MemTxResult res;
791af8c8 2569
db7b5426 2570#if defined(DEBUG_SUBPAGE)
016e9d62 2571 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2572 subpage, len, addr);
db7b5426 2573#endif
16620684 2574 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2575 if (res) {
2576 return res;
f25a49e0 2577 }
acc9d80b
JK
2578 switch (len) {
2579 case 1:
f25a49e0
PM
2580 *data = ldub_p(buf);
2581 return MEMTX_OK;
acc9d80b 2582 case 2:
f25a49e0
PM
2583 *data = lduw_p(buf);
2584 return MEMTX_OK;
acc9d80b 2585 case 4:
f25a49e0
PM
2586 *data = ldl_p(buf);
2587 return MEMTX_OK;
ff6cff75 2588 case 8:
f25a49e0
PM
2589 *data = ldq_p(buf);
2590 return MEMTX_OK;
acc9d80b
JK
2591 default:
2592 abort();
2593 }
db7b5426
BS
2594}
2595
f25a49e0
PM
2596static MemTxResult subpage_write(void *opaque, hwaddr addr,
2597 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2598{
acc9d80b 2599 subpage_t *subpage = opaque;
ff6cff75 2600 uint8_t buf[8];
acc9d80b 2601
db7b5426 2602#if defined(DEBUG_SUBPAGE)
016e9d62 2603 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2604 " value %"PRIx64"\n",
2605 __func__, subpage, len, addr, value);
db7b5426 2606#endif
acc9d80b
JK
2607 switch (len) {
2608 case 1:
2609 stb_p(buf, value);
2610 break;
2611 case 2:
2612 stw_p(buf, value);
2613 break;
2614 case 4:
2615 stl_p(buf, value);
2616 break;
ff6cff75
PB
2617 case 8:
2618 stq_p(buf, value);
2619 break;
acc9d80b
JK
2620 default:
2621 abort();
2622 }
16620684 2623 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2624}
2625
c353e4cc 2626static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2627 unsigned len, bool is_write)
c353e4cc 2628{
acc9d80b 2629 subpage_t *subpage = opaque;
c353e4cc 2630#if defined(DEBUG_SUBPAGE)
016e9d62 2631 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2632 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2633#endif
2634
16620684
AK
2635 return flatview_access_valid(subpage->fv, addr + subpage->base,
2636 len, is_write);
c353e4cc
PB
2637}
2638
70c68e44 2639static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2640 .read_with_attrs = subpage_read,
2641 .write_with_attrs = subpage_write,
ff6cff75
PB
2642 .impl.min_access_size = 1,
2643 .impl.max_access_size = 8,
2644 .valid.min_access_size = 1,
2645 .valid.max_access_size = 8,
c353e4cc 2646 .valid.accepts = subpage_accepts,
70c68e44 2647 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2648};
2649
c227f099 2650static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2651 uint16_t section)
db7b5426
BS
2652{
2653 int idx, eidx;
2654
2655 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2656 return -1;
2657 idx = SUBPAGE_IDX(start);
2658 eidx = SUBPAGE_IDX(end);
2659#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2660 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2661 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2662#endif
db7b5426 2663 for (; idx <= eidx; idx++) {
5312bd8b 2664 mmio->sub_section[idx] = section;
db7b5426
BS
2665 }
2666
2667 return 0;
2668}
2669
16620684 2670static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2671{
c227f099 2672 subpage_t *mmio;
db7b5426 2673
2615fabd 2674 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2675 mmio->fv = fv;
1eec614b 2676 mmio->base = base;
2c9b15ca 2677 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2678 NULL, TARGET_PAGE_SIZE);
b3b00c78 2679 mmio->iomem.subpage = true;
db7b5426 2680#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2681 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2682 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2683#endif
b41aac4f 2684 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2685
2686 return mmio;
2687}
2688
16620684 2689static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2690{
16620684 2691 assert(fv);
5312bd8b 2692 MemoryRegionSection section = {
16620684 2693 .fv = fv,
5312bd8b
AK
2694 .mr = mr,
2695 .offset_within_address_space = 0,
2696 .offset_within_region = 0,
052e87b0 2697 .size = int128_2_64(),
5312bd8b
AK
2698 };
2699
53cb28cb 2700 return phys_section_add(map, &section);
5312bd8b
AK
2701}
2702
a54c87b6 2703MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2704{
a54c87b6
PM
2705 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2706 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2707 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2708 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2709
2710 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2711}
2712
e9179ce1
AK
2713static void io_mem_init(void)
2714{
1f6245e5 2715 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2716 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2717 NULL, UINT64_MAX);
8d04fb55
JK
2718
2719 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2720 * which can be called without the iothread mutex.
2721 */
2c9b15ca 2722 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2723 NULL, UINT64_MAX);
8d04fb55
JK
2724 memory_region_clear_global_locking(&io_mem_notdirty);
2725
2c9b15ca 2726 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2727 NULL, UINT64_MAX);
e9179ce1
AK
2728}
2729
8629d3fc 2730AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2731{
53cb28cb
MA
2732 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2733 uint16_t n;
2734
16620684 2735 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2736 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2737 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2738 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2739 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2740 assert(n == PHYS_SECTION_ROM);
16620684 2741 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2742 assert(n == PHYS_SECTION_WATCH);
00752703 2743
9736e55b 2744 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2745
2746 return d;
00752703
PB
2747}
2748
66a6df1d 2749void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2750{
2751 phys_sections_free(&d->map);
2752 g_free(d);
2753}
2754
1d71148e 2755static void tcg_commit(MemoryListener *listener)
50c1e149 2756{
32857f4d
PM
2757 CPUAddressSpace *cpuas;
2758 AddressSpaceDispatch *d;
117712c3
AK
2759
2760 /* since each CPU stores ram addresses in its TLB cache, we must
2761 reset the modified entries */
32857f4d
PM
2762 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2763 cpu_reloading_memory_map();
2764 /* The CPU and TLB are protected by the iothread lock.
2765 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2766 * may have split the RCU critical section.
2767 */
66a6df1d 2768 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2769 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2770 tlb_flush(cpuas->cpu);
50c1e149
AK
2771}
2772
62152b8a
AK
2773static void memory_map_init(void)
2774{
7267c094 2775 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2776
57271d63 2777 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2778 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2779
7267c094 2780 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2781 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2782 65536);
7dca8043 2783 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2784}
2785
2786MemoryRegion *get_system_memory(void)
2787{
2788 return system_memory;
2789}
2790
309cb471
AK
2791MemoryRegion *get_system_io(void)
2792{
2793 return system_io;
2794}
2795
e2eef170
PB
2796#endif /* !defined(CONFIG_USER_ONLY) */
2797
13eb76e0
FB
2798/* physical memory access (slow version, mainly for debug) */
2799#if defined(CONFIG_USER_ONLY)
f17ec444 2800int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2801 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2802{
2803 int l, flags;
2804 target_ulong page;
53a5960a 2805 void * p;
13eb76e0
FB
2806
2807 while (len > 0) {
2808 page = addr & TARGET_PAGE_MASK;
2809 l = (page + TARGET_PAGE_SIZE) - addr;
2810 if (l > len)
2811 l = len;
2812 flags = page_get_flags(page);
2813 if (!(flags & PAGE_VALID))
a68fe89c 2814 return -1;
13eb76e0
FB
2815 if (is_write) {
2816 if (!(flags & PAGE_WRITE))
a68fe89c 2817 return -1;
579a97f7 2818 /* XXX: this code should not depend on lock_user */
72fb7daa 2819 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2820 return -1;
72fb7daa
AJ
2821 memcpy(p, buf, l);
2822 unlock_user(p, addr, l);
13eb76e0
FB
2823 } else {
2824 if (!(flags & PAGE_READ))
a68fe89c 2825 return -1;
579a97f7 2826 /* XXX: this code should not depend on lock_user */
72fb7daa 2827 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2828 return -1;
72fb7daa 2829 memcpy(buf, p, l);
5b257578 2830 unlock_user(p, addr, 0);
13eb76e0
FB
2831 }
2832 len -= l;
2833 buf += l;
2834 addr += l;
2835 }
a68fe89c 2836 return 0;
13eb76e0 2837}
8df1cd07 2838
13eb76e0 2839#else
51d7a9eb 2840
845b6214 2841static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2842 hwaddr length)
51d7a9eb 2843{
e87f7778 2844 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2845 addr += memory_region_get_ram_addr(mr);
2846
e87f7778
PB
2847 /* No early return if dirty_log_mask is or becomes 0, because
2848 * cpu_physical_memory_set_dirty_range will still call
2849 * xen_modified_memory.
2850 */
2851 if (dirty_log_mask) {
2852 dirty_log_mask =
2853 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2854 }
2855 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2856 assert(tcg_enabled());
ba051fb5 2857 tb_lock();
e87f7778 2858 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2859 tb_unlock();
e87f7778 2860 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2861 }
e87f7778 2862 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2863}
2864
23326164 2865static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2866{
e1622f4b 2867 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2868
2869 /* Regions are assumed to support 1-4 byte accesses unless
2870 otherwise specified. */
23326164
RH
2871 if (access_size_max == 0) {
2872 access_size_max = 4;
2873 }
2874
2875 /* Bound the maximum access by the alignment of the address. */
2876 if (!mr->ops->impl.unaligned) {
2877 unsigned align_size_max = addr & -addr;
2878 if (align_size_max != 0 && align_size_max < access_size_max) {
2879 access_size_max = align_size_max;
2880 }
82f2563f 2881 }
23326164
RH
2882
2883 /* Don't attempt accesses larger than the maximum. */
2884 if (l > access_size_max) {
2885 l = access_size_max;
82f2563f 2886 }
6554f5c0 2887 l = pow2floor(l);
23326164
RH
2888
2889 return l;
82f2563f
PB
2890}
2891
4840f10e 2892static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2893{
4840f10e
JK
2894 bool unlocked = !qemu_mutex_iothread_locked();
2895 bool release_lock = false;
2896
2897 if (unlocked && mr->global_locking) {
2898 qemu_mutex_lock_iothread();
2899 unlocked = false;
2900 release_lock = true;
2901 }
125b3806 2902 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2903 if (unlocked) {
2904 qemu_mutex_lock_iothread();
2905 }
125b3806 2906 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2907 if (unlocked) {
2908 qemu_mutex_unlock_iothread();
2909 }
125b3806 2910 }
4840f10e
JK
2911
2912 return release_lock;
125b3806
PB
2913}
2914
a203ac70 2915/* Called within RCU critical section. */
16620684
AK
2916static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2917 MemTxAttrs attrs,
2918 const uint8_t *buf,
2919 int len, hwaddr addr1,
2920 hwaddr l, MemoryRegion *mr)
13eb76e0 2921{
13eb76e0 2922 uint8_t *ptr;
791af8c8 2923 uint64_t val;
3b643495 2924 MemTxResult result = MEMTX_OK;
4840f10e 2925 bool release_lock = false;
3b46e624 2926
a203ac70 2927 for (;;) {
eb7eeb88
PB
2928 if (!memory_access_is_direct(mr, true)) {
2929 release_lock |= prepare_mmio_access(mr);
2930 l = memory_access_size(mr, l, addr1);
2931 /* XXX: could force current_cpu to NULL to avoid
2932 potential bugs */
2933 switch (l) {
2934 case 8:
2935 /* 64 bit write access */
2936 val = ldq_p(buf);
2937 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2938 attrs);
2939 break;
2940 case 4:
2941 /* 32 bit write access */
6da67de6 2942 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2943 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2944 attrs);
2945 break;
2946 case 2:
2947 /* 16 bit write access */
2948 val = lduw_p(buf);
2949 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2950 attrs);
2951 break;
2952 case 1:
2953 /* 8 bit write access */
2954 val = ldub_p(buf);
2955 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2956 attrs);
2957 break;
2958 default:
2959 abort();
13eb76e0
FB
2960 }
2961 } else {
eb7eeb88 2962 /* RAM case */
f5aa69bd 2963 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
2964 memcpy(ptr, buf, l);
2965 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2966 }
4840f10e
JK
2967
2968 if (release_lock) {
2969 qemu_mutex_unlock_iothread();
2970 release_lock = false;
2971 }
2972
13eb76e0
FB
2973 len -= l;
2974 buf += l;
2975 addr += l;
a203ac70
PB
2976
2977 if (!len) {
2978 break;
2979 }
2980
2981 l = len;
16620684 2982 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 2983 }
fd8aaa76 2984
3b643495 2985 return result;
13eb76e0 2986}
8df1cd07 2987
16620684
AK
2988static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2989 const uint8_t *buf, int len)
ac1970fb 2990{
eb7eeb88 2991 hwaddr l;
eb7eeb88
PB
2992 hwaddr addr1;
2993 MemoryRegion *mr;
2994 MemTxResult result = MEMTX_OK;
eb7eeb88 2995
a203ac70
PB
2996 if (len > 0) {
2997 rcu_read_lock();
eb7eeb88 2998 l = len;
16620684
AK
2999 mr = flatview_translate(fv, addr, &addr1, &l, true);
3000 result = flatview_write_continue(fv, addr, attrs, buf, len,
3001 addr1, l, mr);
a203ac70
PB
3002 rcu_read_unlock();
3003 }
3004
3005 return result;
3006}
3007
16620684
AK
3008MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3009 MemTxAttrs attrs,
3010 const uint8_t *buf, int len)
3011{
3012 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3013}
3014
a203ac70 3015/* Called within RCU critical section. */
16620684
AK
3016MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3017 MemTxAttrs attrs, uint8_t *buf,
3018 int len, hwaddr addr1, hwaddr l,
3019 MemoryRegion *mr)
a203ac70
PB
3020{
3021 uint8_t *ptr;
3022 uint64_t val;
3023 MemTxResult result = MEMTX_OK;
3024 bool release_lock = false;
eb7eeb88 3025
a203ac70 3026 for (;;) {
eb7eeb88
PB
3027 if (!memory_access_is_direct(mr, false)) {
3028 /* I/O case */
3029 release_lock |= prepare_mmio_access(mr);
3030 l = memory_access_size(mr, l, addr1);
3031 switch (l) {
3032 case 8:
3033 /* 64 bit read access */
3034 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3035 attrs);
3036 stq_p(buf, val);
3037 break;
3038 case 4:
3039 /* 32 bit read access */
3040 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3041 attrs);
3042 stl_p(buf, val);
3043 break;
3044 case 2:
3045 /* 16 bit read access */
3046 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3047 attrs);
3048 stw_p(buf, val);
3049 break;
3050 case 1:
3051 /* 8 bit read access */
3052 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3053 attrs);
3054 stb_p(buf, val);
3055 break;
3056 default:
3057 abort();
3058 }
3059 } else {
3060 /* RAM case */
f5aa69bd 3061 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3062 memcpy(buf, ptr, l);
3063 }
3064
3065 if (release_lock) {
3066 qemu_mutex_unlock_iothread();
3067 release_lock = false;
3068 }
3069
3070 len -= l;
3071 buf += l;
3072 addr += l;
a203ac70
PB
3073
3074 if (!len) {
3075 break;
3076 }
3077
3078 l = len;
16620684 3079 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3080 }
3081
3082 return result;
3083}
3084
16620684
AK
3085MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3086 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3087{
3088 hwaddr l;
3089 hwaddr addr1;
3090 MemoryRegion *mr;
3091 MemTxResult result = MEMTX_OK;
3092
3093 if (len > 0) {
3094 rcu_read_lock();
3095 l = len;
16620684
AK
3096 mr = flatview_translate(fv, addr, &addr1, &l, false);
3097 result = flatview_read_continue(fv, addr, attrs, buf, len,
3098 addr1, l, mr);
a203ac70 3099 rcu_read_unlock();
eb7eeb88 3100 }
eb7eeb88
PB
3101
3102 return result;
ac1970fb
AK
3103}
3104
16620684
AK
3105static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3106 uint8_t *buf, int len, bool is_write)
eb7eeb88
PB
3107{
3108 if (is_write) {
16620684 3109 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88 3110 } else {
16620684 3111 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88
PB
3112 }
3113}
ac1970fb 3114
16620684
AK
3115MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3116 MemTxAttrs attrs, uint8_t *buf,
3117 int len, bool is_write)
3118{
3119 return flatview_rw(address_space_to_flatview(as),
3120 addr, attrs, buf, len, is_write);
3121}
3122
a8170e5e 3123void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3124 int len, int is_write)
3125{
5c9eb028
PM
3126 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3127 buf, len, is_write);
ac1970fb
AK
3128}
3129
582b55a9
AG
3130enum write_rom_type {
3131 WRITE_DATA,
3132 FLUSH_CACHE,
3133};
3134
2a221651 3135static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3136 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3137{
149f54b5 3138 hwaddr l;
d0ecd2aa 3139 uint8_t *ptr;
149f54b5 3140 hwaddr addr1;
5c8a00ce 3141 MemoryRegion *mr;
3b46e624 3142
41063e1e 3143 rcu_read_lock();
d0ecd2aa 3144 while (len > 0) {
149f54b5 3145 l = len;
2a221651 3146 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3147
5c8a00ce
PB
3148 if (!(memory_region_is_ram(mr) ||
3149 memory_region_is_romd(mr))) {
b242e0e0 3150 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3151 } else {
d0ecd2aa 3152 /* ROM/RAM case */
0878d0e1 3153 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3154 switch (type) {
3155 case WRITE_DATA:
3156 memcpy(ptr, buf, l);
845b6214 3157 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3158 break;
3159 case FLUSH_CACHE:
3160 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3161 break;
3162 }
d0ecd2aa
FB
3163 }
3164 len -= l;
3165 buf += l;
3166 addr += l;
3167 }
41063e1e 3168 rcu_read_unlock();
d0ecd2aa
FB
3169}
3170
582b55a9 3171/* used for ROM loading : can write in RAM and ROM */
2a221651 3172void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3173 const uint8_t *buf, int len)
3174{
2a221651 3175 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3176}
3177
3178void cpu_flush_icache_range(hwaddr start, int len)
3179{
3180 /*
3181 * This function should do the same thing as an icache flush that was
3182 * triggered from within the guest. For TCG we are always cache coherent,
3183 * so there is no need to flush anything. For KVM / Xen we need to flush
3184 * the host's instruction cache at least.
3185 */
3186 if (tcg_enabled()) {
3187 return;
3188 }
3189
2a221651
EI
3190 cpu_physical_memory_write_rom_internal(&address_space_memory,
3191 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3192}
3193
6d16c2f8 3194typedef struct {
d3e71559 3195 MemoryRegion *mr;
6d16c2f8 3196 void *buffer;
a8170e5e
AK
3197 hwaddr addr;
3198 hwaddr len;
c2cba0ff 3199 bool in_use;
6d16c2f8
AL
3200} BounceBuffer;
3201
3202static BounceBuffer bounce;
3203
ba223c29 3204typedef struct MapClient {
e95205e1 3205 QEMUBH *bh;
72cf2d4f 3206 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3207} MapClient;
3208
38e047b5 3209QemuMutex map_client_list_lock;
72cf2d4f
BS
3210static QLIST_HEAD(map_client_list, MapClient) map_client_list
3211 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3212
e95205e1
FZ
3213static void cpu_unregister_map_client_do(MapClient *client)
3214{
3215 QLIST_REMOVE(client, link);
3216 g_free(client);
3217}
3218
33b6c2ed
FZ
3219static void cpu_notify_map_clients_locked(void)
3220{
3221 MapClient *client;
3222
3223 while (!QLIST_EMPTY(&map_client_list)) {
3224 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3225 qemu_bh_schedule(client->bh);
3226 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3227 }
3228}
3229
e95205e1 3230void cpu_register_map_client(QEMUBH *bh)
ba223c29 3231{
7267c094 3232 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3233
38e047b5 3234 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3235 client->bh = bh;
72cf2d4f 3236 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3237 if (!atomic_read(&bounce.in_use)) {
3238 cpu_notify_map_clients_locked();
3239 }
38e047b5 3240 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3241}
3242
38e047b5 3243void cpu_exec_init_all(void)
ba223c29 3244{
38e047b5 3245 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3246 /* The data structures we set up here depend on knowing the page size,
3247 * so no more changes can be made after this point.
3248 * In an ideal world, nothing we did before we had finished the
3249 * machine setup would care about the target page size, and we could
3250 * do this much later, rather than requiring board models to state
3251 * up front what their requirements are.
3252 */
3253 finalize_target_page_bits();
38e047b5 3254 io_mem_init();
680a4783 3255 memory_map_init();
38e047b5 3256 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3257}
3258
e95205e1 3259void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3260{
3261 MapClient *client;
3262
e95205e1
FZ
3263 qemu_mutex_lock(&map_client_list_lock);
3264 QLIST_FOREACH(client, &map_client_list, link) {
3265 if (client->bh == bh) {
3266 cpu_unregister_map_client_do(client);
3267 break;
3268 }
ba223c29 3269 }
e95205e1 3270 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3271}
3272
3273static void cpu_notify_map_clients(void)
3274{
38e047b5 3275 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3276 cpu_notify_map_clients_locked();
38e047b5 3277 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3278}
3279
16620684
AK
3280static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3281 bool is_write)
51644ab7 3282{
5c8a00ce 3283 MemoryRegion *mr;
51644ab7
PB
3284 hwaddr l, xlat;
3285
41063e1e 3286 rcu_read_lock();
51644ab7
PB
3287 while (len > 0) {
3288 l = len;
16620684 3289 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3290 if (!memory_access_is_direct(mr, is_write)) {
3291 l = memory_access_size(mr, l, addr);
3292 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3293 rcu_read_unlock();
51644ab7
PB
3294 return false;
3295 }
3296 }
3297
3298 len -= l;
3299 addr += l;
3300 }
41063e1e 3301 rcu_read_unlock();
51644ab7
PB
3302 return true;
3303}
3304
16620684
AK
3305bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3306 int len, bool is_write)
3307{
3308 return flatview_access_valid(address_space_to_flatview(as),
3309 addr, len, is_write);
3310}
3311
715c31ec 3312static hwaddr
16620684
AK
3313flatview_extend_translation(FlatView *fv, hwaddr addr,
3314 hwaddr target_len,
715c31ec
PB
3315 MemoryRegion *mr, hwaddr base, hwaddr len,
3316 bool is_write)
3317{
3318 hwaddr done = 0;
3319 hwaddr xlat;
3320 MemoryRegion *this_mr;
3321
3322 for (;;) {
3323 target_len -= len;
3324 addr += len;
3325 done += len;
3326 if (target_len == 0) {
3327 return done;
3328 }
3329
3330 len = target_len;
16620684
AK
3331 this_mr = flatview_translate(fv, addr, &xlat,
3332 &len, is_write);
715c31ec
PB
3333 if (this_mr != mr || xlat != base + done) {
3334 return done;
3335 }
3336 }
3337}
3338
6d16c2f8
AL
3339/* Map a physical memory region into a host virtual address.
3340 * May map a subset of the requested range, given by and returned in *plen.
3341 * May return NULL if resources needed to perform the mapping are exhausted.
3342 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3343 * Use cpu_register_map_client() to know when retrying the map operation is
3344 * likely to succeed.
6d16c2f8 3345 */
ac1970fb 3346void *address_space_map(AddressSpace *as,
a8170e5e
AK
3347 hwaddr addr,
3348 hwaddr *plen,
ac1970fb 3349 bool is_write)
6d16c2f8 3350{
a8170e5e 3351 hwaddr len = *plen;
715c31ec
PB
3352 hwaddr l, xlat;
3353 MemoryRegion *mr;
e81bcda5 3354 void *ptr;
16620684 3355 FlatView *fv = address_space_to_flatview(as);
6d16c2f8 3356
e3127ae0
PB
3357 if (len == 0) {
3358 return NULL;
3359 }
38bee5dc 3360
e3127ae0 3361 l = len;
41063e1e 3362 rcu_read_lock();
16620684 3363 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3364
e3127ae0 3365 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3366 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3367 rcu_read_unlock();
e3127ae0 3368 return NULL;
6d16c2f8 3369 }
e85d9db5
KW
3370 /* Avoid unbounded allocations */
3371 l = MIN(l, TARGET_PAGE_SIZE);
3372 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3373 bounce.addr = addr;
3374 bounce.len = l;
d3e71559
PB
3375
3376 memory_region_ref(mr);
3377 bounce.mr = mr;
e3127ae0 3378 if (!is_write) {
16620684 3379 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3380 bounce.buffer, l);
8ab934f9 3381 }
6d16c2f8 3382
41063e1e 3383 rcu_read_unlock();
e3127ae0
PB
3384 *plen = l;
3385 return bounce.buffer;
3386 }
3387
e3127ae0 3388
d3e71559 3389 memory_region_ref(mr);
16620684
AK
3390 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3391 l, is_write);
f5aa69bd 3392 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3393 rcu_read_unlock();
3394
3395 return ptr;
6d16c2f8
AL
3396}
3397
ac1970fb 3398/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3399 * Will also mark the memory as dirty if is_write == 1. access_len gives
3400 * the amount of memory that was actually read or written by the caller.
3401 */
a8170e5e
AK
3402void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3403 int is_write, hwaddr access_len)
6d16c2f8
AL
3404{
3405 if (buffer != bounce.buffer) {
d3e71559
PB
3406 MemoryRegion *mr;
3407 ram_addr_t addr1;
3408
07bdaa41 3409 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3410 assert(mr != NULL);
6d16c2f8 3411 if (is_write) {
845b6214 3412 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3413 }
868bb33f 3414 if (xen_enabled()) {
e41d7c69 3415 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3416 }
d3e71559 3417 memory_region_unref(mr);
6d16c2f8
AL
3418 return;
3419 }
3420 if (is_write) {
5c9eb028
PM
3421 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3422 bounce.buffer, access_len);
6d16c2f8 3423 }
f8a83245 3424 qemu_vfree(bounce.buffer);
6d16c2f8 3425 bounce.buffer = NULL;
d3e71559 3426 memory_region_unref(bounce.mr);
c2cba0ff 3427 atomic_mb_set(&bounce.in_use, false);
ba223c29 3428 cpu_notify_map_clients();
6d16c2f8 3429}
d0ecd2aa 3430
a8170e5e
AK
3431void *cpu_physical_memory_map(hwaddr addr,
3432 hwaddr *plen,
ac1970fb
AK
3433 int is_write)
3434{
3435 return address_space_map(&address_space_memory, addr, plen, is_write);
3436}
3437
a8170e5e
AK
3438void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3439 int is_write, hwaddr access_len)
ac1970fb
AK
3440{
3441 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3442}
3443
0ce265ff
PB
3444#define ARG1_DECL AddressSpace *as
3445#define ARG1 as
3446#define SUFFIX
3447#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3448#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3449#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3450#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3451#define RCU_READ_LOCK(...) rcu_read_lock()
3452#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3453#include "memory_ldst.inc.c"
1e78bcc1 3454
1f4e496e
PB
3455int64_t address_space_cache_init(MemoryRegionCache *cache,
3456 AddressSpace *as,
3457 hwaddr addr,
3458 hwaddr len,
3459 bool is_write)
3460{
90c4fe5f
PB
3461 cache->len = len;
3462 cache->as = as;
3463 cache->xlat = addr;
3464 return len;
1f4e496e
PB
3465}
3466
3467void address_space_cache_invalidate(MemoryRegionCache *cache,
3468 hwaddr addr,
3469 hwaddr access_len)
3470{
1f4e496e
PB
3471}
3472
3473void address_space_cache_destroy(MemoryRegionCache *cache)
3474{
90c4fe5f 3475 cache->as = NULL;
1f4e496e
PB
3476}
3477
3478#define ARG1_DECL MemoryRegionCache *cache
3479#define ARG1 cache
3480#define SUFFIX _cached
90c4fe5f
PB
3481#define TRANSLATE(addr, ...) \
3482 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3483#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3484#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3485#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3486#define RCU_READ_LOCK() rcu_read_lock()
3487#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3488#include "memory_ldst.inc.c"
3489
5e2972fd 3490/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3491int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3492 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3493{
3494 int l;
a8170e5e 3495 hwaddr phys_addr;
9b3c35e0 3496 target_ulong page;
13eb76e0 3497
79ca7a1b 3498 cpu_synchronize_state(cpu);
13eb76e0 3499 while (len > 0) {
5232e4c7
PM
3500 int asidx;
3501 MemTxAttrs attrs;
3502
13eb76e0 3503 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3504 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3505 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3506 /* if no physical page mapped, return an error */
3507 if (phys_addr == -1)
3508 return -1;
3509 l = (page + TARGET_PAGE_SIZE) - addr;
3510 if (l > len)
3511 l = len;
5e2972fd 3512 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3513 if (is_write) {
5232e4c7
PM
3514 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3515 phys_addr, buf, l);
2e38847b 3516 } else {
5232e4c7
PM
3517 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3518 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3519 buf, l, 0);
2e38847b 3520 }
13eb76e0
FB
3521 len -= l;
3522 buf += l;
3523 addr += l;
3524 }
3525 return 0;
3526}
038629a6
DDAG
3527
3528/*
3529 * Allows code that needs to deal with migration bitmaps etc to still be built
3530 * target independent.
3531 */
20afaed9 3532size_t qemu_target_page_size(void)
038629a6 3533{
20afaed9 3534 return TARGET_PAGE_SIZE;
038629a6
DDAG
3535}
3536
46d702b1
JQ
3537int qemu_target_page_bits(void)
3538{
3539 return TARGET_PAGE_BITS;
3540}
3541
3542int qemu_target_page_bits_min(void)
3543{
3544 return TARGET_PAGE_BITS_MIN;
3545}
a68fe89c 3546#endif
13eb76e0 3547
8e4a424b
BS
3548/*
3549 * A helper function for the _utterly broken_ virtio device model to find out if
3550 * it's running on a big endian machine. Don't do this at home kids!
3551 */
98ed8ecf
GK
3552bool target_words_bigendian(void);
3553bool target_words_bigendian(void)
8e4a424b
BS
3554{
3555#if defined(TARGET_WORDS_BIGENDIAN)
3556 return true;
3557#else
3558 return false;
3559#endif
3560}
3561
76f35538 3562#ifndef CONFIG_USER_ONLY
a8170e5e 3563bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3564{
5c8a00ce 3565 MemoryRegion*mr;
149f54b5 3566 hwaddr l = 1;
41063e1e 3567 bool res;
76f35538 3568
41063e1e 3569 rcu_read_lock();
5c8a00ce
PB
3570 mr = address_space_translate(&address_space_memory,
3571 phys_addr, &phys_addr, &l, false);
76f35538 3572
41063e1e
PB
3573 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3574 rcu_read_unlock();
3575 return res;
76f35538 3576}
bd2fa51f 3577
e3807054 3578int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3579{
3580 RAMBlock *block;
e3807054 3581 int ret = 0;
bd2fa51f 3582
0dc3f44a 3583 rcu_read_lock();
99e15582 3584 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3585 ret = func(block->idstr, block->host, block->offset,
3586 block->used_length, opaque);
3587 if (ret) {
3588 break;
3589 }
bd2fa51f 3590 }
0dc3f44a 3591 rcu_read_unlock();
e3807054 3592 return ret;
bd2fa51f 3593}
d3a5038c
DDAG
3594
3595/*
3596 * Unmap pages of memory from start to start+length such that
3597 * they a) read as 0, b) Trigger whatever fault mechanism
3598 * the OS provides for postcopy.
3599 * The pages must be unmapped by the end of the function.
3600 * Returns: 0 on success, none-0 on failure
3601 *
3602 */
3603int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3604{
3605 int ret = -1;
3606
3607 uint8_t *host_startaddr = rb->host + start;
3608
3609 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3610 error_report("ram_block_discard_range: Unaligned start address: %p",
3611 host_startaddr);
3612 goto err;
3613 }
3614
3615 if ((start + length) <= rb->used_length) {
3616 uint8_t *host_endaddr = host_startaddr + length;
3617 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3618 error_report("ram_block_discard_range: Unaligned end address: %p",
3619 host_endaddr);
3620 goto err;
3621 }
3622
3623 errno = ENOTSUP; /* If we are missing MADVISE etc */
3624
e2fa71f5 3625 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3626#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3627 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3628 * freeing the page.
3629 */
3630 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3631#endif
e2fa71f5
DDAG
3632 } else {
3633 /* Huge page case - unfortunately it can't do DONTNEED, but
3634 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3635 * huge page file.
3636 */
3637#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3638 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3639 start, length);
3640#endif
3641 }
d3a5038c
DDAG
3642 if (ret) {
3643 ret = -errno;
3644 error_report("ram_block_discard_range: Failed to discard range "
3645 "%s:%" PRIx64 " +%zx (%d)",
3646 rb->idstr, start, length, ret);
3647 }
3648 } else {
3649 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3650 "/%zx/" RAM_ADDR_FMT")",
3651 rb->idstr, start, length, rb->used_length);
3652 }
3653
3654err:
3655 return ret;
3656}
3657
ec3f8c99 3658#endif
a0be0c58
YZ
3659
3660void page_size_init(void)
3661{
3662 /* NOTE: we can always suppose that qemu_host_page_size >=
3663 TARGET_PAGE_SIZE */
a0be0c58
YZ
3664 if (qemu_host_page_size == 0) {
3665 qemu_host_page_size = qemu_real_host_page_size;
3666 }
3667 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3668 qemu_host_page_size = TARGET_PAGE_SIZE;
3669 }
3670 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3671}
5e8fd947
AK
3672
3673#if !defined(CONFIG_USER_ONLY)
3674
3675static void mtree_print_phys_entries(fprintf_function mon, void *f,
3676 int start, int end, int skip, int ptr)
3677{
3678 if (start == end - 1) {
3679 mon(f, "\t%3d ", start);
3680 } else {
3681 mon(f, "\t%3d..%-3d ", start, end - 1);
3682 }
3683 mon(f, " skip=%d ", skip);
3684 if (ptr == PHYS_MAP_NODE_NIL) {
3685 mon(f, " ptr=NIL");
3686 } else if (!skip) {
3687 mon(f, " ptr=#%d", ptr);
3688 } else {
3689 mon(f, " ptr=[%d]", ptr);
3690 }
3691 mon(f, "\n");
3692}
3693
3694#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3695 int128_sub((size), int128_one())) : 0)
3696
3697void mtree_print_dispatch(fprintf_function mon, void *f,
3698 AddressSpaceDispatch *d, MemoryRegion *root)
3699{
3700 int i;
3701
3702 mon(f, " Dispatch\n");
3703 mon(f, " Physical sections\n");
3704
3705 for (i = 0; i < d->map.sections_nb; ++i) {
3706 MemoryRegionSection *s = d->map.sections + i;
3707 const char *names[] = { " [unassigned]", " [not dirty]",
3708 " [ROM]", " [watch]" };
3709
3710 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3711 i,
3712 s->offset_within_address_space,
3713 s->offset_within_address_space + MR_SIZE(s->mr->size),
3714 s->mr->name ? s->mr->name : "(noname)",
3715 i < ARRAY_SIZE(names) ? names[i] : "",
3716 s->mr == root ? " [ROOT]" : "",
3717 s == d->mru_section ? " [MRU]" : "",
3718 s->mr->is_iommu ? " [iommu]" : "");
3719
3720 if (s->mr->alias) {
3721 mon(f, " alias=%s", s->mr->alias->name ?
3722 s->mr->alias->name : "noname");
3723 }
3724 mon(f, "\n");
3725 }
3726
3727 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3728 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3729 for (i = 0; i < d->map.nodes_nb; ++i) {
3730 int j, jprev;
3731 PhysPageEntry prev;
3732 Node *n = d->map.nodes + i;
3733
3734 mon(f, " [%d]\n", i);
3735
3736 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3737 PhysPageEntry *pe = *n + j;
3738
3739 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3740 continue;
3741 }
3742
3743 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3744
3745 jprev = j;
3746 prev = *pe;
3747 }
3748
3749 if (jprev != ARRAY_SIZE(*n)) {
3750 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3751 }
3752 }
3753}
3754
3755#endif