]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
qemu-print: New qemu_fprintf(), qemu_vfprintf()
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
b6b71cb5 38#include "qemu/qemu-print.h"
53a5960a 39#if defined(CONFIG_USER_ONLY)
a9c94277 40#include "qemu.h"
432d268c 41#else /* !CONFIG_USER_ONLY */
741da0d3
PB
42#include "hw/hw.h"
43#include "exec/memory.h"
df43d49c 44#include "exec/ioport.h"
741da0d3 45#include "sysemu/dma.h"
9c607668 46#include "sysemu/numa.h"
79ca7a1b 47#include "sysemu/hw_accel.h"
741da0d3 48#include "exec/address-spaces.h"
9c17d615 49#include "sysemu/xen-mapcache.h"
0ab8ed18 50#include "trace-root.h"
d3a5038c 51
e2fa71f5 52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
53#include <linux/falloc.h>
54#endif
55
53a5960a 56#endif
0dc3f44a 57#include "qemu/rcu_queue.h"
4840f10e 58#include "qemu/main-loop.h"
5b6dd868 59#include "translate-all.h"
7615936e 60#include "sysemu/replay.h"
0cac1b66 61
022c62cb 62#include "exec/memory-internal.h"
220c3ebd 63#include "exec/ram_addr.h"
508127e2 64#include "exec/log.h"
67d95c15 65
9dfeca7c
BR
66#include "migration/vmstate.h"
67
b35ba30f 68#include "qemu/range.h"
794e8f30
MT
69#ifndef _WIN32
70#include "qemu/mmap-alloc.h"
71#endif
b35ba30f 72
be9b23c4
PX
73#include "monitor/monitor.h"
74
db7b5426 75//#define DEBUG_SUBPAGE
1196be37 76
e2eef170 77#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
78/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
79 * are protected by the ramlist lock.
80 */
0d53d9fe 81RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
82
83static MemoryRegion *system_memory;
309cb471 84static MemoryRegion *system_io;
62152b8a 85
f6790af6
AK
86AddressSpace address_space_io;
87AddressSpace address_space_memory;
2673a5da 88
0844e007 89MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 90static MemoryRegion io_mem_unassigned;
e2eef170 91#endif
9fa3e853 92
20bccb82
PM
93#ifdef TARGET_PAGE_BITS_VARY
94int target_page_bits;
95bool target_page_bits_decided;
96#endif
97
f481ee2d
PB
98CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99
6a00d601
FB
100/* current CPU in the current thread. It is only valid inside
101 cpu_exec() */
f240eb6f 102__thread CPUState *current_cpu;
2e70f6ef 103/* 0 = Do not count executed instructions.
bf20dc07 104 1 = Precise instruction counting.
2e70f6ef 105 2 = Adaptive rate instruction counting. */
5708fc66 106int use_icount;
6a00d601 107
a0be0c58
YZ
108uintptr_t qemu_host_page_size;
109intptr_t qemu_host_page_mask;
a0be0c58 110
20bccb82
PM
111bool set_preferred_target_page_bits(int bits)
112{
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
117 */
118#ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
123 }
124 target_page_bits = bits;
125 }
126#endif
127 return true;
128}
129
e2eef170 130#if !defined(CONFIG_USER_ONLY)
4346ae3e 131
20bccb82
PM
132static void finalize_target_page_bits(void)
133{
134#ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
137 }
138 target_page_bits_decided = true;
139#endif
140}
141
1db8abb1
PB
142typedef struct PhysPageEntry PhysPageEntry;
143
144struct PhysPageEntry {
9736e55b 145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 146 uint32_t skip : 6;
9736e55b 147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 148 uint32_t ptr : 26;
1db8abb1
PB
149};
150
8b795765
MT
151#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152
03f49957 153/* Size of the L2 (and L3, etc) page tables. */
57271d63 154#define ADDR_SPACE_BITS 64
03f49957 155
026736ce 156#define P_L2_BITS 9
03f49957
PB
157#define P_L2_SIZE (1 << P_L2_BITS)
158
159#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160
161typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 162
53cb28cb 163typedef struct PhysPageMap {
79e2b9ae
PB
164 struct rcu_head rcu;
165
53cb28cb
MA
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172} PhysPageMap;
173
1db8abb1 174struct AddressSpaceDispatch {
729633c2 175 MemoryRegionSection *mru_section;
1db8abb1
PB
176 /* This is a multi-level map on the physical address space.
177 * The bottom level has pointers to MemoryRegionSections.
178 */
179 PhysPageEntry phys_map;
53cb28cb 180 PhysPageMap map;
1db8abb1
PB
181};
182
90260c6c
JK
183#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
184typedef struct subpage_t {
185 MemoryRegion iomem;
16620684 186 FlatView *fv;
90260c6c 187 hwaddr base;
2615fabd 188 uint16_t sub_section[];
90260c6c
JK
189} subpage_t;
190
b41aac4f
LPF
191#define PHYS_SECTION_UNASSIGNED 0
192#define PHYS_SECTION_NOTDIRTY 1
193#define PHYS_SECTION_ROM 2
194#define PHYS_SECTION_WATCH 3
5312bd8b 195
e2eef170 196static void io_mem_init(void);
62152b8a 197static void memory_map_init(void);
09daed84 198static void tcg_commit(MemoryListener *listener);
e2eef170 199
1ec9b909 200static MemoryRegion io_mem_watch;
32857f4d
PM
201
202/**
203 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
204 * @cpu: the CPU whose AddressSpace this is
205 * @as: the AddressSpace itself
206 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
207 * @tcg_as_listener: listener for tracking changes to the AddressSpace
208 */
209struct CPUAddressSpace {
210 CPUState *cpu;
211 AddressSpace *as;
212 struct AddressSpaceDispatch *memory_dispatch;
213 MemoryListener tcg_as_listener;
214};
215
8deaf12c
GH
216struct DirtyBitmapSnapshot {
217 ram_addr_t start;
218 ram_addr_t end;
219 unsigned long dirty[];
220};
221
6658ffb8 222#endif
fd6ce8f6 223
6d9a1304 224#if !defined(CONFIG_USER_ONLY)
d6f2ea22 225
53cb28cb 226static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 227{
101420b8 228 static unsigned alloc_hint = 16;
53cb28cb 229 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
231 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
232 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 233 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 234 }
f7bf5461
AK
235}
236
db94604b 237static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
238{
239 unsigned i;
8b795765 240 uint32_t ret;
db94604b
PB
241 PhysPageEntry e;
242 PhysPageEntry *p;
f7bf5461 243
53cb28cb 244 ret = map->nodes_nb++;
db94604b 245 p = map->nodes[ret];
f7bf5461 246 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 247 assert(ret != map->nodes_nb_alloc);
db94604b
PB
248
249 e.skip = leaf ? 0 : 1;
250 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 251 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 252 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 253 }
f7bf5461 254 return ret;
d6f2ea22
AK
255}
256
53cb28cb
MA
257static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
258 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 259 int level)
f7bf5461
AK
260{
261 PhysPageEntry *p;
03f49957 262 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 263
9736e55b 264 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 265 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 266 }
db94604b 267 p = map->nodes[lp->ptr];
03f49957 268 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 269
03f49957 270 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 271 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 272 lp->skip = 0;
c19e8800 273 lp->ptr = leaf;
07f07b31
AK
274 *index += step;
275 *nb -= step;
2999097b 276 } else {
53cb28cb 277 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
278 }
279 ++lp;
f7bf5461
AK
280 }
281}
282
ac1970fb 283static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 284 hwaddr index, hwaddr nb,
2999097b 285 uint16_t leaf)
f7bf5461 286{
2999097b 287 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 288 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 289
53cb28cb 290 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
291}
292
b35ba30f
MT
293/* Compact a non leaf page entry. Simply detect that the entry has a single child,
294 * and update our entry so we can skip it and go directly to the destination.
295 */
efee678d 296static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
297{
298 unsigned valid_ptr = P_L2_SIZE;
299 int valid = 0;
300 PhysPageEntry *p;
301 int i;
302
303 if (lp->ptr == PHYS_MAP_NODE_NIL) {
304 return;
305 }
306
307 p = nodes[lp->ptr];
308 for (i = 0; i < P_L2_SIZE; i++) {
309 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
310 continue;
311 }
312
313 valid_ptr = i;
314 valid++;
315 if (p[i].skip) {
efee678d 316 phys_page_compact(&p[i], nodes);
b35ba30f
MT
317 }
318 }
319
320 /* We can only compress if there's only one child. */
321 if (valid != 1) {
322 return;
323 }
324
325 assert(valid_ptr < P_L2_SIZE);
326
327 /* Don't compress if it won't fit in the # of bits we have. */
328 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
329 return;
330 }
331
332 lp->ptr = p[valid_ptr].ptr;
333 if (!p[valid_ptr].skip) {
334 /* If our only child is a leaf, make this a leaf. */
335 /* By design, we should have made this node a leaf to begin with so we
336 * should never reach here.
337 * But since it's so simple to handle this, let's do it just in case we
338 * change this rule.
339 */
340 lp->skip = 0;
341 } else {
342 lp->skip += p[valid_ptr].skip;
343 }
344}
345
8629d3fc 346void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 347{
b35ba30f 348 if (d->phys_map.skip) {
efee678d 349 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
350 }
351}
352
29cb533d
FZ
353static inline bool section_covers_addr(const MemoryRegionSection *section,
354 hwaddr addr)
355{
356 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
357 * the section must cover the entire address space.
358 */
258dfaaa 359 return int128_gethi(section->size) ||
29cb533d 360 range_covers_byte(section->offset_within_address_space,
258dfaaa 361 int128_getlo(section->size), addr);
29cb533d
FZ
362}
363
003a0cf2 364static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 365{
003a0cf2
PX
366 PhysPageEntry lp = d->phys_map, *p;
367 Node *nodes = d->map.nodes;
368 MemoryRegionSection *sections = d->map.sections;
97115a8d 369 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 370 int i;
f1f6e3b8 371
9736e55b 372 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 373 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 374 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 375 }
9affd6fc 376 p = nodes[lp.ptr];
03f49957 377 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 378 }
b35ba30f 379
29cb533d 380 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
381 return &sections[lp.ptr];
382 } else {
383 return &sections[PHYS_SECTION_UNASSIGNED];
384 }
f3705d53
AK
385}
386
79e2b9ae 387/* Called from RCU critical section */
c7086b4a 388static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
389 hwaddr addr,
390 bool resolve_subpage)
9f029603 391{
729633c2 392 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
393 subpage_t *subpage;
394
07c114bb
PB
395 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
396 !section_covers_addr(section, addr)) {
003a0cf2 397 section = phys_page_find(d, addr);
07c114bb 398 atomic_set(&d->mru_section, section);
729633c2 399 }
90260c6c
JK
400 if (resolve_subpage && section->mr->subpage) {
401 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 402 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
403 }
404 return section;
9f029603
JK
405}
406
79e2b9ae 407/* Called from RCU critical section */
90260c6c 408static MemoryRegionSection *
c7086b4a 409address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 410 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
411{
412 MemoryRegionSection *section;
965eb2fc 413 MemoryRegion *mr;
a87f3954 414 Int128 diff;
149f54b5 415
c7086b4a 416 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
417 /* Compute offset within MemoryRegionSection */
418 addr -= section->offset_within_address_space;
419
420 /* Compute offset within MemoryRegion */
421 *xlat = addr + section->offset_within_region;
422
965eb2fc 423 mr = section->mr;
b242e0e0
PB
424
425 /* MMIO registers can be expected to perform full-width accesses based only
426 * on their address, without considering adjacent registers that could
427 * decode to completely different MemoryRegions. When such registers
428 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
429 * regions overlap wildly. For this reason we cannot clamp the accesses
430 * here.
431 *
432 * If the length is small (as is the case for address_space_ldl/stl),
433 * everything works fine. If the incoming length is large, however,
434 * the caller really has to do the clamping through memory_access_size.
435 */
965eb2fc 436 if (memory_region_is_ram(mr)) {
e4a511f8 437 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
438 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
439 }
149f54b5
PB
440 return section;
441}
90260c6c 442
a411c84b
PB
443/**
444 * address_space_translate_iommu - translate an address through an IOMMU
445 * memory region and then through the target address space.
446 *
447 * @iommu_mr: the IOMMU memory region that we start the translation from
448 * @addr: the address to be translated through the MMU
449 * @xlat: the translated address offset within the destination memory region.
450 * It cannot be %NULL.
451 * @plen_out: valid read/write length of the translated address. It
452 * cannot be %NULL.
453 * @page_mask_out: page mask for the translated address. This
454 * should only be meaningful for IOMMU translated
455 * addresses, since there may be huge pages that this bit
456 * would tell. It can be %NULL if we don't care about it.
457 * @is_write: whether the translation operation is for write
458 * @is_mmio: whether this can be MMIO, set true if it can
459 * @target_as: the address space targeted by the IOMMU
2f7b009c 460 * @attrs: transaction attributes
a411c84b
PB
461 *
462 * This function is called from RCU critical section. It is the common
463 * part of flatview_do_translate and address_space_translate_cached.
464 */
465static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
466 hwaddr *xlat,
467 hwaddr *plen_out,
468 hwaddr *page_mask_out,
469 bool is_write,
470 bool is_mmio,
2f7b009c
PM
471 AddressSpace **target_as,
472 MemTxAttrs attrs)
a411c84b
PB
473{
474 MemoryRegionSection *section;
475 hwaddr page_mask = (hwaddr)-1;
476
477 do {
478 hwaddr addr = *xlat;
479 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
480 int iommu_idx = 0;
481 IOMMUTLBEntry iotlb;
482
483 if (imrc->attrs_to_index) {
484 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
485 }
486
487 iotlb = imrc->translate(iommu_mr, addr, is_write ?
488 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
489
490 if (!(iotlb.perm & (1 << is_write))) {
491 goto unassigned;
492 }
493
494 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
495 | (addr & iotlb.addr_mask));
496 page_mask &= iotlb.addr_mask;
497 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
498 *target_as = iotlb.target_as;
499
500 section = address_space_translate_internal(
501 address_space_to_dispatch(iotlb.target_as), addr, xlat,
502 plen_out, is_mmio);
503
504 iommu_mr = memory_region_get_iommu(section->mr);
505 } while (unlikely(iommu_mr));
506
507 if (page_mask_out) {
508 *page_mask_out = page_mask;
509 }
510 return *section;
511
512unassigned:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
514}
515
d5e5fafd
PX
516/**
517 * flatview_do_translate - translate an address in FlatView
518 *
519 * @fv: the flat view that we want to translate on
520 * @addr: the address to be translated in above address space
521 * @xlat: the translated address offset within memory region. It
522 * cannot be @NULL.
523 * @plen_out: valid read/write length of the translated address. It
524 * can be @NULL when we don't care about it.
525 * @page_mask_out: page mask for the translated address. This
526 * should only be meaningful for IOMMU translated
527 * addresses, since there may be huge pages that this bit
528 * would tell. It can be @NULL if we don't care about it.
529 * @is_write: whether the translation operation is for write
530 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 531 * @target_as: the address space targeted by the IOMMU
49e14aa8 532 * @attrs: memory transaction attributes
d5e5fafd
PX
533 *
534 * This function is called from RCU critical section
535 */
16620684
AK
536static MemoryRegionSection flatview_do_translate(FlatView *fv,
537 hwaddr addr,
538 hwaddr *xlat,
d5e5fafd
PX
539 hwaddr *plen_out,
540 hwaddr *page_mask_out,
16620684
AK
541 bool is_write,
542 bool is_mmio,
49e14aa8
PM
543 AddressSpace **target_as,
544 MemTxAttrs attrs)
052c8fa9 545{
052c8fa9 546 MemoryRegionSection *section;
3df9d748 547 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
548 hwaddr plen = (hwaddr)(-1);
549
ad2804d9
PB
550 if (!plen_out) {
551 plen_out = &plen;
d5e5fafd 552 }
052c8fa9 553
a411c84b
PB
554 section = address_space_translate_internal(
555 flatview_to_dispatch(fv), addr, xlat,
556 plen_out, is_mmio);
052c8fa9 557
a411c84b
PB
558 iommu_mr = memory_region_get_iommu(section->mr);
559 if (unlikely(iommu_mr)) {
560 return address_space_translate_iommu(iommu_mr, xlat,
561 plen_out, page_mask_out,
562 is_write, is_mmio,
2f7b009c 563 target_as, attrs);
052c8fa9 564 }
d5e5fafd 565 if (page_mask_out) {
a411c84b
PB
566 /* Not behind an IOMMU, use default page size. */
567 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
568 }
569
a764040c 570 return *section;
052c8fa9
JW
571}
572
573/* Called from RCU critical section */
a764040c 574IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 575 bool is_write, MemTxAttrs attrs)
90260c6c 576{
a764040c 577 MemoryRegionSection section;
076a93d7 578 hwaddr xlat, page_mask;
30951157 579
076a93d7
PX
580 /*
581 * This can never be MMIO, and we don't really care about plen,
582 * but page mask.
583 */
584 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
585 NULL, &page_mask, is_write, false, &as,
586 attrs);
30951157 587
a764040c
PX
588 /* Illegal translation */
589 if (section.mr == &io_mem_unassigned) {
590 goto iotlb_fail;
591 }
30951157 592
a764040c
PX
593 /* Convert memory region offset into address space offset */
594 xlat += section.offset_within_address_space -
595 section.offset_within_region;
596
a764040c 597 return (IOMMUTLBEntry) {
e76bb18f 598 .target_as = as,
076a93d7
PX
599 .iova = addr & ~page_mask,
600 .translated_addr = xlat & ~page_mask,
601 .addr_mask = page_mask,
a764040c
PX
602 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
603 .perm = IOMMU_RW,
604 };
605
606iotlb_fail:
607 return (IOMMUTLBEntry) {0};
608}
609
610/* Called from RCU critical section */
16620684 611MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
612 hwaddr *plen, bool is_write,
613 MemTxAttrs attrs)
a764040c
PX
614{
615 MemoryRegion *mr;
616 MemoryRegionSection section;
16620684 617 AddressSpace *as = NULL;
a764040c
PX
618
619 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 620 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 621 is_write, true, &as, attrs);
a764040c
PX
622 mr = section.mr;
623
fe680d0d 624 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 625 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 626 *plen = MIN(page, *plen);
a87f3954
PB
627 }
628
30951157 629 return mr;
90260c6c
JK
630}
631
1f871c5e
PM
632typedef struct TCGIOMMUNotifier {
633 IOMMUNotifier n;
634 MemoryRegion *mr;
635 CPUState *cpu;
636 int iommu_idx;
637 bool active;
638} TCGIOMMUNotifier;
639
640static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
641{
642 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
643
644 if (!notifier->active) {
645 return;
646 }
647 tlb_flush(notifier->cpu);
648 notifier->active = false;
649 /* We leave the notifier struct on the list to avoid reallocating it later.
650 * Generally the number of IOMMUs a CPU deals with will be small.
651 * In any case we can't unregister the iommu notifier from a notify
652 * callback.
653 */
654}
655
656static void tcg_register_iommu_notifier(CPUState *cpu,
657 IOMMUMemoryRegion *iommu_mr,
658 int iommu_idx)
659{
660 /* Make sure this CPU has an IOMMU notifier registered for this
661 * IOMMU/IOMMU index combination, so that we can flush its TLB
662 * when the IOMMU tells us the mappings we've cached have changed.
663 */
664 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
665 TCGIOMMUNotifier *notifier;
666 int i;
667
668 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 669 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
670 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
671 break;
672 }
673 }
674 if (i == cpu->iommu_notifiers->len) {
675 /* Not found, add a new entry at the end of the array */
676 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
677 notifier = g_new0(TCGIOMMUNotifier, 1);
678 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
679
680 notifier->mr = mr;
681 notifier->iommu_idx = iommu_idx;
682 notifier->cpu = cpu;
683 /* Rather than trying to register interest in the specific part
684 * of the iommu's address space that we've accessed and then
685 * expand it later as subsequent accesses touch more of it, we
686 * just register interest in the whole thing, on the assumption
687 * that iommu reconfiguration will be rare.
688 */
689 iommu_notifier_init(&notifier->n,
690 tcg_iommu_unmap_notify,
691 IOMMU_NOTIFIER_UNMAP,
692 0,
693 HWADDR_MAX,
694 iommu_idx);
695 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
696 }
697
698 if (!notifier->active) {
699 notifier->active = true;
700 }
701}
702
703static void tcg_iommu_free_notifier_list(CPUState *cpu)
704{
705 /* Destroy the CPU's notifier list */
706 int i;
707 TCGIOMMUNotifier *notifier;
708
709 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 710 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 711 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 712 g_free(notifier);
1f871c5e
PM
713 }
714 g_array_free(cpu->iommu_notifiers, true);
715}
716
79e2b9ae 717/* Called from RCU critical section */
90260c6c 718MemoryRegionSection *
d7898cda 719address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
720 hwaddr *xlat, hwaddr *plen,
721 MemTxAttrs attrs, int *prot)
90260c6c 722{
30951157 723 MemoryRegionSection *section;
1f871c5e
PM
724 IOMMUMemoryRegion *iommu_mr;
725 IOMMUMemoryRegionClass *imrc;
726 IOMMUTLBEntry iotlb;
727 int iommu_idx;
f35e44e7 728 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 729
1f871c5e
PM
730 for (;;) {
731 section = address_space_translate_internal(d, addr, &addr, plen, false);
732
733 iommu_mr = memory_region_get_iommu(section->mr);
734 if (!iommu_mr) {
735 break;
736 }
737
738 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
739
740 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
741 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
742 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
743 * doesn't short-cut its translation table walk.
744 */
745 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
746 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
747 | (addr & iotlb.addr_mask));
748 /* Update the caller's prot bits to remove permissions the IOMMU
749 * is giving us a failure response for. If we get down to no
750 * permissions left at all we can give up now.
751 */
752 if (!(iotlb.perm & IOMMU_RO)) {
753 *prot &= ~(PAGE_READ | PAGE_EXEC);
754 }
755 if (!(iotlb.perm & IOMMU_WO)) {
756 *prot &= ~PAGE_WRITE;
757 }
758
759 if (!*prot) {
760 goto translate_fail;
761 }
762
763 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
764 }
30951157 765
3df9d748 766 assert(!memory_region_is_iommu(section->mr));
1f871c5e 767 *xlat = addr;
30951157 768 return section;
1f871c5e
PM
769
770translate_fail:
771 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 772}
5b6dd868 773#endif
fd6ce8f6 774
b170fce3 775#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
776
777static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 778{
259186a7 779 CPUState *cpu = opaque;
a513fe19 780
5b6dd868
BS
781 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
782 version_id is increased. */
259186a7 783 cpu->interrupt_request &= ~0x01;
d10eb08f 784 tlb_flush(cpu);
5b6dd868 785
15a356c4
PD
786 /* loadvm has just updated the content of RAM, bypassing the
787 * usual mechanisms that ensure we flush TBs for writes to
788 * memory we've translated code from. So we must flush all TBs,
789 * which will now be stale.
790 */
791 tb_flush(cpu);
792
5b6dd868 793 return 0;
a513fe19 794}
7501267e 795
6c3bff0e
PD
796static int cpu_common_pre_load(void *opaque)
797{
798 CPUState *cpu = opaque;
799
adee6424 800 cpu->exception_index = -1;
6c3bff0e
PD
801
802 return 0;
803}
804
805static bool cpu_common_exception_index_needed(void *opaque)
806{
807 CPUState *cpu = opaque;
808
adee6424 809 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
810}
811
812static const VMStateDescription vmstate_cpu_common_exception_index = {
813 .name = "cpu_common/exception_index",
814 .version_id = 1,
815 .minimum_version_id = 1,
5cd8cada 816 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
817 .fields = (VMStateField[]) {
818 VMSTATE_INT32(exception_index, CPUState),
819 VMSTATE_END_OF_LIST()
820 }
821};
822
bac05aa9
AS
823static bool cpu_common_crash_occurred_needed(void *opaque)
824{
825 CPUState *cpu = opaque;
826
827 return cpu->crash_occurred;
828}
829
830static const VMStateDescription vmstate_cpu_common_crash_occurred = {
831 .name = "cpu_common/crash_occurred",
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .needed = cpu_common_crash_occurred_needed,
835 .fields = (VMStateField[]) {
836 VMSTATE_BOOL(crash_occurred, CPUState),
837 VMSTATE_END_OF_LIST()
838 }
839};
840
1a1562f5 841const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
842 .name = "cpu_common",
843 .version_id = 1,
844 .minimum_version_id = 1,
6c3bff0e 845 .pre_load = cpu_common_pre_load,
5b6dd868 846 .post_load = cpu_common_post_load,
35d08458 847 .fields = (VMStateField[]) {
259186a7
AF
848 VMSTATE_UINT32(halted, CPUState),
849 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 850 VMSTATE_END_OF_LIST()
6c3bff0e 851 },
5cd8cada
JQ
852 .subsections = (const VMStateDescription*[]) {
853 &vmstate_cpu_common_exception_index,
bac05aa9 854 &vmstate_cpu_common_crash_occurred,
5cd8cada 855 NULL
5b6dd868
BS
856 }
857};
1a1562f5 858
5b6dd868 859#endif
ea041c0e 860
38d8f5c8 861CPUState *qemu_get_cpu(int index)
ea041c0e 862{
bdc44640 863 CPUState *cpu;
ea041c0e 864
bdc44640 865 CPU_FOREACH(cpu) {
55e5c285 866 if (cpu->cpu_index == index) {
bdc44640 867 return cpu;
55e5c285 868 }
ea041c0e 869 }
5b6dd868 870
bdc44640 871 return NULL;
ea041c0e
FB
872}
873
09daed84 874#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
875void cpu_address_space_init(CPUState *cpu, int asidx,
876 const char *prefix, MemoryRegion *mr)
09daed84 877{
12ebc9a7 878 CPUAddressSpace *newas;
80ceb07a 879 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 880 char *as_name;
80ceb07a
PX
881
882 assert(mr);
87a621d8
PX
883 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
884 address_space_init(as, mr, as_name);
885 g_free(as_name);
12ebc9a7
PM
886
887 /* Target code should have set num_ases before calling us */
888 assert(asidx < cpu->num_ases);
889
56943e8c
PM
890 if (asidx == 0) {
891 /* address space 0 gets the convenience alias */
892 cpu->as = as;
893 }
894
12ebc9a7
PM
895 /* KVM cannot currently support multiple address spaces. */
896 assert(asidx == 0 || !kvm_enabled());
09daed84 897
12ebc9a7
PM
898 if (!cpu->cpu_ases) {
899 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 900 }
32857f4d 901
12ebc9a7
PM
902 newas = &cpu->cpu_ases[asidx];
903 newas->cpu = cpu;
904 newas->as = as;
56943e8c 905 if (tcg_enabled()) {
12ebc9a7
PM
906 newas->tcg_as_listener.commit = tcg_commit;
907 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 908 }
09daed84 909}
651a5bc0
PM
910
911AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
912{
913 /* Return the AddressSpace corresponding to the specified index */
914 return cpu->cpu_ases[asidx].as;
915}
09daed84
EI
916#endif
917
7bbc124e 918void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 919{
9dfeca7c
BR
920 CPUClass *cc = CPU_GET_CLASS(cpu);
921
267f685b 922 cpu_list_remove(cpu);
9dfeca7c
BR
923
924 if (cc->vmsd != NULL) {
925 vmstate_unregister(NULL, cc->vmsd, cpu);
926 }
927 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
928 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
929 }
1f871c5e
PM
930#ifndef CONFIG_USER_ONLY
931 tcg_iommu_free_notifier_list(cpu);
932#endif
1c59eb39
BR
933}
934
c7e002c5
FZ
935Property cpu_common_props[] = {
936#ifndef CONFIG_USER_ONLY
937 /* Create a memory property for softmmu CPU object,
938 * so users can wire up its memory. (This can't go in qom/cpu.c
939 * because that file is compiled only once for both user-mode
940 * and system builds.) The default if no link is set up is to use
941 * the system address space.
942 */
943 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
944 MemoryRegion *),
945#endif
946 DEFINE_PROP_END_OF_LIST(),
947};
948
39e329e3 949void cpu_exec_initfn(CPUState *cpu)
ea041c0e 950{
56943e8c 951 cpu->as = NULL;
12ebc9a7 952 cpu->num_ases = 0;
56943e8c 953
291135b5 954#ifndef CONFIG_USER_ONLY
291135b5 955 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
956 cpu->memory = system_memory;
957 object_ref(OBJECT(cpu->memory));
291135b5 958#endif
39e329e3
LV
959}
960
ce5b1bbf 961void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 962{
55c3ceef 963 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 964 static bool tcg_target_initialized;
291135b5 965
267f685b 966 cpu_list_add(cpu);
1bc7e522 967
2dda6354
EC
968 if (tcg_enabled() && !tcg_target_initialized) {
969 tcg_target_initialized = true;
55c3ceef
RH
970 cc->tcg_initialize();
971 }
5005e253 972 tlb_init(cpu);
55c3ceef 973
1bc7e522 974#ifndef CONFIG_USER_ONLY
e0d47944 975 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 976 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 977 }
b170fce3 978 if (cc->vmsd != NULL) {
741da0d3 979 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 980 }
1f871c5e 981
5601be3b 982 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 983#endif
ea041c0e
FB
984}
985
2278b939
IM
986const char *parse_cpu_model(const char *cpu_model)
987{
988 ObjectClass *oc;
989 CPUClass *cc;
990 gchar **model_pieces;
991 const char *cpu_type;
992
993 model_pieces = g_strsplit(cpu_model, ",", 2);
994
995 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
996 if (oc == NULL) {
997 error_report("unable to find CPU model '%s'", model_pieces[0]);
998 g_strfreev(model_pieces);
999 exit(EXIT_FAILURE);
1000 }
1001
1002 cpu_type = object_class_get_name(oc);
1003 cc = CPU_CLASS(oc);
1004 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1005 g_strfreev(model_pieces);
1006 return cpu_type;
1007}
1008
c40d4792 1009#if defined(CONFIG_USER_ONLY)
8bca9a03 1010void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1011{
406bc339 1012 mmap_lock();
8bca9a03 1013 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1014 mmap_unlock();
1015}
8bca9a03
PB
1016
1017static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1018{
1019 tb_invalidate_phys_addr(pc);
1020}
406bc339 1021#else
8bca9a03
PB
1022void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1023{
1024 ram_addr_t ram_addr;
1025 MemoryRegion *mr;
1026 hwaddr l = 1;
1027
c40d4792
PB
1028 if (!tcg_enabled()) {
1029 return;
1030 }
1031
8bca9a03
PB
1032 rcu_read_lock();
1033 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1034 if (!(memory_region_is_ram(mr)
1035 || memory_region_is_romd(mr))) {
1036 rcu_read_unlock();
1037 return;
1038 }
1039 ram_addr = memory_region_get_ram_addr(mr) + addr;
1040 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1041 rcu_read_unlock();
1042}
1043
406bc339
PK
1044static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1045{
1046 MemTxAttrs attrs;
1047 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1048 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1049 if (phys != -1) {
1050 /* Locks grabbed by tb_invalidate_phys_addr */
1051 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1052 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1053 }
1e7855a5 1054}
406bc339 1055#endif
d720b93d 1056
c527ee8f 1057#if defined(CONFIG_USER_ONLY)
75a34036 1058void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1059
1060{
1061}
1062
3ee887e8
PM
1063int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1064 int flags)
1065{
1066 return -ENOSYS;
1067}
1068
1069void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1070{
1071}
1072
75a34036 1073int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1074 int flags, CPUWatchpoint **watchpoint)
1075{
1076 return -ENOSYS;
1077}
1078#else
6658ffb8 1079/* Add a watchpoint. */
75a34036 1080int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1081 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1082{
c0ce998e 1083 CPUWatchpoint *wp;
6658ffb8 1084
05068c0d 1085 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1086 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1087 error_report("tried to set invalid watchpoint at %"
1088 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1089 return -EINVAL;
1090 }
7267c094 1091 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1092
1093 wp->vaddr = addr;
05068c0d 1094 wp->len = len;
a1d1bb31
AL
1095 wp->flags = flags;
1096
2dc9f411 1097 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1098 if (flags & BP_GDB) {
1099 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1100 } else {
1101 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1102 }
6658ffb8 1103
31b030d4 1104 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1105
1106 if (watchpoint)
1107 *watchpoint = wp;
1108 return 0;
6658ffb8
PB
1109}
1110
a1d1bb31 1111/* Remove a specific watchpoint. */
75a34036 1112int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1113 int flags)
6658ffb8 1114{
a1d1bb31 1115 CPUWatchpoint *wp;
6658ffb8 1116
ff4700b0 1117 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1118 if (addr == wp->vaddr && len == wp->len
6e140f28 1119 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1120 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1121 return 0;
1122 }
1123 }
a1d1bb31 1124 return -ENOENT;
6658ffb8
PB
1125}
1126
a1d1bb31 1127/* Remove a specific watchpoint by reference. */
75a34036 1128void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1129{
ff4700b0 1130 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1131
31b030d4 1132 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1133
7267c094 1134 g_free(watchpoint);
a1d1bb31
AL
1135}
1136
1137/* Remove all matching watchpoints. */
75a34036 1138void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1139{
c0ce998e 1140 CPUWatchpoint *wp, *next;
a1d1bb31 1141
ff4700b0 1142 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1143 if (wp->flags & mask) {
1144 cpu_watchpoint_remove_by_ref(cpu, wp);
1145 }
c0ce998e 1146 }
7d03f82f 1147}
05068c0d
PM
1148
1149/* Return true if this watchpoint address matches the specified
1150 * access (ie the address range covered by the watchpoint overlaps
1151 * partially or completely with the address range covered by the
1152 * access).
1153 */
1154static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1155 vaddr addr,
1156 vaddr len)
1157{
1158 /* We know the lengths are non-zero, but a little caution is
1159 * required to avoid errors in the case where the range ends
1160 * exactly at the top of the address space and so addr + len
1161 * wraps round to zero.
1162 */
1163 vaddr wpend = wp->vaddr + wp->len - 1;
1164 vaddr addrend = addr + len - 1;
1165
1166 return !(addr > wpend || wp->vaddr > addrend);
1167}
1168
c527ee8f 1169#endif
7d03f82f 1170
a1d1bb31 1171/* Add a breakpoint. */
b3310ab3 1172int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1173 CPUBreakpoint **breakpoint)
4c3a88a2 1174{
c0ce998e 1175 CPUBreakpoint *bp;
3b46e624 1176
7267c094 1177 bp = g_malloc(sizeof(*bp));
4c3a88a2 1178
a1d1bb31
AL
1179 bp->pc = pc;
1180 bp->flags = flags;
1181
2dc9f411 1182 /* keep all GDB-injected breakpoints in front */
00b941e5 1183 if (flags & BP_GDB) {
f0c3c505 1184 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1185 } else {
f0c3c505 1186 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1187 }
3b46e624 1188
f0c3c505 1189 breakpoint_invalidate(cpu, pc);
a1d1bb31 1190
00b941e5 1191 if (breakpoint) {
a1d1bb31 1192 *breakpoint = bp;
00b941e5 1193 }
4c3a88a2 1194 return 0;
4c3a88a2
FB
1195}
1196
a1d1bb31 1197/* Remove a specific breakpoint. */
b3310ab3 1198int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1199{
a1d1bb31
AL
1200 CPUBreakpoint *bp;
1201
f0c3c505 1202 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1203 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1204 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1205 return 0;
1206 }
7d03f82f 1207 }
a1d1bb31 1208 return -ENOENT;
7d03f82f
EI
1209}
1210
a1d1bb31 1211/* Remove a specific breakpoint by reference. */
b3310ab3 1212void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1213{
f0c3c505
AF
1214 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1215
1216 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1217
7267c094 1218 g_free(breakpoint);
a1d1bb31
AL
1219}
1220
1221/* Remove all matching breakpoints. */
b3310ab3 1222void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1223{
c0ce998e 1224 CPUBreakpoint *bp, *next;
a1d1bb31 1225
f0c3c505 1226 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1227 if (bp->flags & mask) {
1228 cpu_breakpoint_remove_by_ref(cpu, bp);
1229 }
c0ce998e 1230 }
4c3a88a2
FB
1231}
1232
c33a346e
FB
1233/* enable or disable single step mode. EXCP_DEBUG is returned by the
1234 CPU loop after each instruction */
3825b28f 1235void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1236{
ed2803da
AF
1237 if (cpu->singlestep_enabled != enabled) {
1238 cpu->singlestep_enabled = enabled;
1239 if (kvm_enabled()) {
38e478ec 1240 kvm_update_guest_debug(cpu, 0);
ed2803da 1241 } else {
ccbb4d44 1242 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1243 /* XXX: only flush what is necessary */
bbd77c18 1244 tb_flush(cpu);
e22a25c9 1245 }
c33a346e 1246 }
c33a346e
FB
1247}
1248
a47dddd7 1249void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1250{
1251 va_list ap;
493ae1f0 1252 va_list ap2;
7501267e
FB
1253
1254 va_start(ap, fmt);
493ae1f0 1255 va_copy(ap2, ap);
7501267e
FB
1256 fprintf(stderr, "qemu: fatal: ");
1257 vfprintf(stderr, fmt, ap);
1258 fprintf(stderr, "\n");
878096ee 1259 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1260 if (qemu_log_separate()) {
1ee73216 1261 qemu_log_lock();
93fcfe39
AL
1262 qemu_log("qemu: fatal: ");
1263 qemu_log_vprintf(fmt, ap2);
1264 qemu_log("\n");
a0762859 1265 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1266 qemu_log_flush();
1ee73216 1267 qemu_log_unlock();
93fcfe39 1268 qemu_log_close();
924edcae 1269 }
493ae1f0 1270 va_end(ap2);
f9373291 1271 va_end(ap);
7615936e 1272 replay_finish();
fd052bf6
RV
1273#if defined(CONFIG_USER_ONLY)
1274 {
1275 struct sigaction act;
1276 sigfillset(&act.sa_mask);
1277 act.sa_handler = SIG_DFL;
8347c185 1278 act.sa_flags = 0;
fd052bf6
RV
1279 sigaction(SIGABRT, &act, NULL);
1280 }
1281#endif
7501267e
FB
1282 abort();
1283}
1284
0124311e 1285#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1286/* Called from RCU critical section */
041603fe
PB
1287static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1288{
1289 RAMBlock *block;
1290
43771539 1291 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1292 if (block && addr - block->offset < block->max_length) {
68851b98 1293 return block;
041603fe 1294 }
99e15582 1295 RAMBLOCK_FOREACH(block) {
9b8424d5 1296 if (addr - block->offset < block->max_length) {
041603fe
PB
1297 goto found;
1298 }
1299 }
1300
1301 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1302 abort();
1303
1304found:
43771539
PB
1305 /* It is safe to write mru_block outside the iothread lock. This
1306 * is what happens:
1307 *
1308 * mru_block = xxx
1309 * rcu_read_unlock()
1310 * xxx removed from list
1311 * rcu_read_lock()
1312 * read mru_block
1313 * mru_block = NULL;
1314 * call_rcu(reclaim_ramblock, xxx);
1315 * rcu_read_unlock()
1316 *
1317 * atomic_rcu_set is not needed here. The block was already published
1318 * when it was placed into the list. Here we're just making an extra
1319 * copy of the pointer.
1320 */
041603fe
PB
1321 ram_list.mru_block = block;
1322 return block;
1323}
1324
a2f4d5be 1325static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1326{
9a13565d 1327 CPUState *cpu;
041603fe 1328 ram_addr_t start1;
a2f4d5be
JQ
1329 RAMBlock *block;
1330 ram_addr_t end;
1331
f28d0dfd 1332 assert(tcg_enabled());
a2f4d5be
JQ
1333 end = TARGET_PAGE_ALIGN(start + length);
1334 start &= TARGET_PAGE_MASK;
d24981d3 1335
0dc3f44a 1336 rcu_read_lock();
041603fe
PB
1337 block = qemu_get_ram_block(start);
1338 assert(block == qemu_get_ram_block(end - 1));
1240be24 1339 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1340 CPU_FOREACH(cpu) {
1341 tlb_reset_dirty(cpu, start1, length);
1342 }
0dc3f44a 1343 rcu_read_unlock();
d24981d3
JQ
1344}
1345
5579c7f3 1346/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1347bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1348 ram_addr_t length,
1349 unsigned client)
1ccde1cb 1350{
5b82b703 1351 DirtyMemoryBlocks *blocks;
03eebc9e 1352 unsigned long end, page;
5b82b703 1353 bool dirty = false;
03eebc9e
SH
1354
1355 if (length == 0) {
1356 return false;
1357 }
f23db169 1358
03eebc9e
SH
1359 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1360 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1361
1362 rcu_read_lock();
1363
1364 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1365
1366 while (page < end) {
1367 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1369 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1370
1371 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1372 offset, num);
1373 page += num;
1374 }
1375
1376 rcu_read_unlock();
03eebc9e
SH
1377
1378 if (dirty && tcg_enabled()) {
a2f4d5be 1379 tlb_reset_dirty_range_all(start, length);
5579c7f3 1380 }
03eebc9e
SH
1381
1382 return dirty;
1ccde1cb
FB
1383}
1384
8deaf12c
GH
1385DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1386 (ram_addr_t start, ram_addr_t length, unsigned client)
1387{
1388 DirtyMemoryBlocks *blocks;
1389 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1390 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1391 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1392 DirtyBitmapSnapshot *snap;
1393 unsigned long page, end, dest;
1394
1395 snap = g_malloc0(sizeof(*snap) +
1396 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1397 snap->start = first;
1398 snap->end = last;
1399
1400 page = first >> TARGET_PAGE_BITS;
1401 end = last >> TARGET_PAGE_BITS;
1402 dest = 0;
1403
1404 rcu_read_lock();
1405
1406 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1407
1408 while (page < end) {
1409 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1411 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1412
1413 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1414 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1415 offset >>= BITS_PER_LEVEL;
1416
1417 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1418 blocks->blocks[idx] + offset,
1419 num);
1420 page += num;
1421 dest += num >> BITS_PER_LEVEL;
1422 }
1423
1424 rcu_read_unlock();
1425
1426 if (tcg_enabled()) {
1427 tlb_reset_dirty_range_all(start, length);
1428 }
1429
1430 return snap;
1431}
1432
1433bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1434 ram_addr_t start,
1435 ram_addr_t length)
1436{
1437 unsigned long page, end;
1438
1439 assert(start >= snap->start);
1440 assert(start + length <= snap->end);
1441
1442 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1443 page = (start - snap->start) >> TARGET_PAGE_BITS;
1444
1445 while (page < end) {
1446 if (test_bit(page, snap->dirty)) {
1447 return true;
1448 }
1449 page++;
1450 }
1451 return false;
1452}
1453
79e2b9ae 1454/* Called from RCU critical section */
bb0e627a 1455hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1456 MemoryRegionSection *section,
1457 target_ulong vaddr,
1458 hwaddr paddr, hwaddr xlat,
1459 int prot,
1460 target_ulong *address)
e5548617 1461{
a8170e5e 1462 hwaddr iotlb;
e5548617
BS
1463 CPUWatchpoint *wp;
1464
cc5bea60 1465 if (memory_region_is_ram(section->mr)) {
e5548617 1466 /* Normal RAM. */
e4e69794 1467 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1468 if (!section->readonly) {
b41aac4f 1469 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1470 } else {
b41aac4f 1471 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1472 }
1473 } else {
0b8e2c10
PM
1474 AddressSpaceDispatch *d;
1475
16620684 1476 d = flatview_to_dispatch(section->fv);
0b8e2c10 1477 iotlb = section - d->map.sections;
149f54b5 1478 iotlb += xlat;
e5548617
BS
1479 }
1480
1481 /* Make accesses to pages with watchpoints go via the
1482 watchpoint trap routines. */
ff4700b0 1483 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1484 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1485 /* Avoid trapping reads of pages with a write breakpoint. */
1486 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1487 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1488 *address |= TLB_MMIO;
1489 break;
1490 }
1491 }
1492 }
1493
1494 return iotlb;
1495}
9fa3e853
FB
1496#endif /* defined(CONFIG_USER_ONLY) */
1497
e2eef170 1498#if !defined(CONFIG_USER_ONLY)
8da3ff18 1499
c227f099 1500static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1501 uint16_t section);
16620684 1502static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1503
06329cce 1504static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1505 qemu_anon_ram_alloc;
91138037
MA
1506
1507/*
1508 * Set a custom physical guest memory alloator.
1509 * Accelerators with unusual needs may need this. Hopefully, we can
1510 * get rid of it eventually.
1511 */
06329cce 1512void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1513{
1514 phys_mem_alloc = alloc;
1515}
1516
53cb28cb
MA
1517static uint16_t phys_section_add(PhysPageMap *map,
1518 MemoryRegionSection *section)
5312bd8b 1519{
68f3f65b
PB
1520 /* The physical section number is ORed with a page-aligned
1521 * pointer to produce the iotlb entries. Thus it should
1522 * never overflow into the page-aligned value.
1523 */
53cb28cb 1524 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1525
53cb28cb
MA
1526 if (map->sections_nb == map->sections_nb_alloc) {
1527 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1528 map->sections = g_renew(MemoryRegionSection, map->sections,
1529 map->sections_nb_alloc);
5312bd8b 1530 }
53cb28cb 1531 map->sections[map->sections_nb] = *section;
dfde4e6e 1532 memory_region_ref(section->mr);
53cb28cb 1533 return map->sections_nb++;
5312bd8b
AK
1534}
1535
058bc4b5
PB
1536static void phys_section_destroy(MemoryRegion *mr)
1537{
55b4e80b
DS
1538 bool have_sub_page = mr->subpage;
1539
dfde4e6e
PB
1540 memory_region_unref(mr);
1541
55b4e80b 1542 if (have_sub_page) {
058bc4b5 1543 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1544 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1545 g_free(subpage);
1546 }
1547}
1548
6092666e 1549static void phys_sections_free(PhysPageMap *map)
5312bd8b 1550{
9affd6fc
PB
1551 while (map->sections_nb > 0) {
1552 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1553 phys_section_destroy(section->mr);
1554 }
9affd6fc
PB
1555 g_free(map->sections);
1556 g_free(map->nodes);
5312bd8b
AK
1557}
1558
9950322a 1559static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1560{
9950322a 1561 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1562 subpage_t *subpage;
a8170e5e 1563 hwaddr base = section->offset_within_address_space
0f0cb164 1564 & TARGET_PAGE_MASK;
003a0cf2 1565 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1566 MemoryRegionSection subsection = {
1567 .offset_within_address_space = base,
052e87b0 1568 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1569 };
a8170e5e 1570 hwaddr start, end;
0f0cb164 1571
f3705d53 1572 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1573
f3705d53 1574 if (!(existing->mr->subpage)) {
16620684
AK
1575 subpage = subpage_init(fv, base);
1576 subsection.fv = fv;
0f0cb164 1577 subsection.mr = &subpage->iomem;
ac1970fb 1578 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1579 phys_section_add(&d->map, &subsection));
0f0cb164 1580 } else {
f3705d53 1581 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1582 }
1583 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1584 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1585 subpage_register(subpage, start, end,
1586 phys_section_add(&d->map, section));
0f0cb164
AK
1587}
1588
1589
9950322a 1590static void register_multipage(FlatView *fv,
052e87b0 1591 MemoryRegionSection *section)
33417e70 1592{
9950322a 1593 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1594 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1595 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1596 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1597 TARGET_PAGE_BITS));
dd81124b 1598
733d5ef5
PB
1599 assert(num_pages);
1600 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1601}
1602
494d1997
WY
1603/*
1604 * The range in *section* may look like this:
1605 *
1606 * |s|PPPPPPP|s|
1607 *
1608 * where s stands for subpage and P for page.
1609 */
8629d3fc 1610void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1611{
494d1997 1612 MemoryRegionSection remain = *section;
052e87b0 1613 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1614
494d1997
WY
1615 /* register first subpage */
1616 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1617 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1618 - remain.offset_within_address_space;
733d5ef5 1619
494d1997 1620 MemoryRegionSection now = remain;
052e87b0 1621 now.size = int128_min(int128_make64(left), now.size);
9950322a 1622 register_subpage(fv, &now);
494d1997
WY
1623 if (int128_eq(remain.size, now.size)) {
1624 return;
1625 }
052e87b0
PB
1626 remain.size = int128_sub(remain.size, now.size);
1627 remain.offset_within_address_space += int128_get64(now.size);
1628 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1629 }
1630
1631 /* register whole pages */
1632 if (int128_ge(remain.size, page_size)) {
1633 MemoryRegionSection now = remain;
1634 now.size = int128_and(now.size, int128_neg(page_size));
1635 register_multipage(fv, &now);
1636 if (int128_eq(remain.size, now.size)) {
1637 return;
69b67646 1638 }
494d1997
WY
1639 remain.size = int128_sub(remain.size, now.size);
1640 remain.offset_within_address_space += int128_get64(now.size);
1641 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1642 }
494d1997
WY
1643
1644 /* register last subpage */
1645 register_subpage(fv, &remain);
0f0cb164
AK
1646}
1647
62a2744c
SY
1648void qemu_flush_coalesced_mmio_buffer(void)
1649{
1650 if (kvm_enabled())
1651 kvm_flush_coalesced_mmio_buffer();
1652}
1653
b2a8658e
UD
1654void qemu_mutex_lock_ramlist(void)
1655{
1656 qemu_mutex_lock(&ram_list.mutex);
1657}
1658
1659void qemu_mutex_unlock_ramlist(void)
1660{
1661 qemu_mutex_unlock(&ram_list.mutex);
1662}
1663
be9b23c4
PX
1664void ram_block_dump(Monitor *mon)
1665{
1666 RAMBlock *block;
1667 char *psize;
1668
1669 rcu_read_lock();
1670 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1671 "Block Name", "PSize", "Offset", "Used", "Total");
1672 RAMBLOCK_FOREACH(block) {
1673 psize = size_to_str(block->page_size);
1674 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1675 " 0x%016" PRIx64 "\n", block->idstr, psize,
1676 (uint64_t)block->offset,
1677 (uint64_t)block->used_length,
1678 (uint64_t)block->max_length);
1679 g_free(psize);
1680 }
1681 rcu_read_unlock();
1682}
1683
9c607668
AK
1684#ifdef __linux__
1685/*
1686 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1687 * may or may not name the same files / on the same filesystem now as
1688 * when we actually open and map them. Iterate over the file
1689 * descriptors instead, and use qemu_fd_getpagesize().
1690 */
1691static int find_max_supported_pagesize(Object *obj, void *opaque)
1692{
9c607668
AK
1693 long *hpsize_min = opaque;
1694
1695 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1696 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1697 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1698
7d5489e6 1699 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1700 *hpsize_min = hpsize;
9c607668
AK
1701 }
1702 }
1703
1704 return 0;
1705}
1706
1707long qemu_getrampagesize(void)
1708{
1709 long hpsize = LONG_MAX;
1710 long mainrampagesize;
1711 Object *memdev_root;
1712
0de6e2a3 1713 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1714
1715 /* it's possible we have memory-backend objects with
1716 * hugepage-backed RAM. these may get mapped into system
1717 * address space via -numa parameters or memory hotplug
1718 * hooks. we want to take these into account, but we
1719 * also want to make sure these supported hugepage
1720 * sizes are applicable across the entire range of memory
1721 * we may boot from, so we take the min across all
1722 * backends, and assume normal pages in cases where a
1723 * backend isn't backed by hugepages.
1724 */
1725 memdev_root = object_resolve_path("/objects", NULL);
1726 if (memdev_root) {
1727 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1728 }
1729 if (hpsize == LONG_MAX) {
1730 /* No additional memory regions found ==> Report main RAM page size */
1731 return mainrampagesize;
1732 }
1733
1734 /* If NUMA is disabled or the NUMA nodes are not backed with a
1735 * memory-backend, then there is at least one node using "normal" RAM,
1736 * so if its page size is smaller we have got to report that size instead.
1737 */
1738 if (hpsize > mainrampagesize &&
1739 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1740 static bool warned;
1741 if (!warned) {
1742 error_report("Huge page support disabled (n/a for main memory).");
1743 warned = true;
1744 }
1745 return mainrampagesize;
1746 }
1747
1748 return hpsize;
1749}
1750#else
1751long qemu_getrampagesize(void)
1752{
1753 return getpagesize();
1754}
1755#endif
1756
d5dbde46 1757#ifdef CONFIG_POSIX
d6af99c9
HZ
1758static int64_t get_file_size(int fd)
1759{
1760 int64_t size = lseek(fd, 0, SEEK_END);
1761 if (size < 0) {
1762 return -errno;
1763 }
1764 return size;
1765}
1766
8d37b030
MAL
1767static int file_ram_open(const char *path,
1768 const char *region_name,
1769 bool *created,
1770 Error **errp)
c902760f
MT
1771{
1772 char *filename;
8ca761f6
PF
1773 char *sanitized_name;
1774 char *c;
5c3ece79 1775 int fd = -1;
c902760f 1776
8d37b030 1777 *created = false;
fd97fd44
MA
1778 for (;;) {
1779 fd = open(path, O_RDWR);
1780 if (fd >= 0) {
1781 /* @path names an existing file, use it */
1782 break;
8d31d6b6 1783 }
fd97fd44
MA
1784 if (errno == ENOENT) {
1785 /* @path names a file that doesn't exist, create it */
1786 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1787 if (fd >= 0) {
8d37b030 1788 *created = true;
fd97fd44
MA
1789 break;
1790 }
1791 } else if (errno == EISDIR) {
1792 /* @path names a directory, create a file there */
1793 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1794 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1795 for (c = sanitized_name; *c != '\0'; c++) {
1796 if (*c == '/') {
1797 *c = '_';
1798 }
1799 }
8ca761f6 1800
fd97fd44
MA
1801 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1802 sanitized_name);
1803 g_free(sanitized_name);
8d31d6b6 1804
fd97fd44
MA
1805 fd = mkstemp(filename);
1806 if (fd >= 0) {
1807 unlink(filename);
1808 g_free(filename);
1809 break;
1810 }
1811 g_free(filename);
8d31d6b6 1812 }
fd97fd44
MA
1813 if (errno != EEXIST && errno != EINTR) {
1814 error_setg_errno(errp, errno,
1815 "can't open backing store %s for guest RAM",
1816 path);
8d37b030 1817 return -1;
fd97fd44
MA
1818 }
1819 /*
1820 * Try again on EINTR and EEXIST. The latter happens when
1821 * something else creates the file between our two open().
1822 */
8d31d6b6 1823 }
c902760f 1824
8d37b030
MAL
1825 return fd;
1826}
1827
1828static void *file_ram_alloc(RAMBlock *block,
1829 ram_addr_t memory,
1830 int fd,
1831 bool truncate,
1832 Error **errp)
1833{
1834 void *area;
1835
863e9621 1836 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1837 if (block->mr->align % block->page_size) {
1838 error_setg(errp, "alignment 0x%" PRIx64
1839 " must be multiples of page size 0x%zx",
1840 block->mr->align, block->page_size);
1841 return NULL;
61362b71
DH
1842 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1843 error_setg(errp, "alignment 0x%" PRIx64
1844 " must be a power of two", block->mr->align);
1845 return NULL;
98376843
HZ
1846 }
1847 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1848#if defined(__s390x__)
1849 if (kvm_enabled()) {
1850 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1851 }
1852#endif
fd97fd44 1853
863e9621 1854 if (memory < block->page_size) {
fd97fd44 1855 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1856 "or larger than page size 0x%zx",
1857 memory, block->page_size);
8d37b030 1858 return NULL;
1775f111
HZ
1859 }
1860
863e9621 1861 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1862
1863 /*
1864 * ftruncate is not supported by hugetlbfs in older
1865 * hosts, so don't bother bailing out on errors.
1866 * If anything goes wrong with it under other filesystems,
1867 * mmap will fail.
d6af99c9
HZ
1868 *
1869 * Do not truncate the non-empty backend file to avoid corrupting
1870 * the existing data in the file. Disabling shrinking is not
1871 * enough. For example, the current vNVDIMM implementation stores
1872 * the guest NVDIMM labels at the end of the backend file. If the
1873 * backend file is later extended, QEMU will not be able to find
1874 * those labels. Therefore, extending the non-empty backend file
1875 * is disabled as well.
c902760f 1876 */
8d37b030 1877 if (truncate && ftruncate(fd, memory)) {
9742bf26 1878 perror("ftruncate");
7f56e740 1879 }
c902760f 1880
d2f39add
DD
1881 area = qemu_ram_mmap(fd, memory, block->mr->align,
1882 block->flags & RAM_SHARED);
c902760f 1883 if (area == MAP_FAILED) {
7f56e740 1884 error_setg_errno(errp, errno,
fd97fd44 1885 "unable to map backing store for guest RAM");
8d37b030 1886 return NULL;
c902760f 1887 }
ef36fa14
MT
1888
1889 if (mem_prealloc) {
1e356fc1 1890 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1891 if (errp && *errp) {
53adb9d4 1892 qemu_ram_munmap(fd, area, memory);
8d37b030 1893 return NULL;
056b68af 1894 }
ef36fa14
MT
1895 }
1896
04b16653 1897 block->fd = fd;
c902760f
MT
1898 return area;
1899}
1900#endif
1901
154cc9ea
DDAG
1902/* Allocate space within the ram_addr_t space that governs the
1903 * dirty bitmaps.
1904 * Called with the ramlist lock held.
1905 */
d17b5288 1906static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1907{
1908 RAMBlock *block, *next_block;
3e837b2c 1909 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1910
49cd9ac6
SH
1911 assert(size != 0); /* it would hand out same offset multiple times */
1912
0dc3f44a 1913 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1914 return 0;
0d53d9fe 1915 }
04b16653 1916
99e15582 1917 RAMBLOCK_FOREACH(block) {
154cc9ea 1918 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1919
801110ab
DDAG
1920 /* Align blocks to start on a 'long' in the bitmap
1921 * which makes the bitmap sync'ing take the fast path.
1922 */
154cc9ea 1923 candidate = block->offset + block->max_length;
801110ab 1924 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1925
154cc9ea
DDAG
1926 /* Search for the closest following block
1927 * and find the gap.
1928 */
99e15582 1929 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1930 if (next_block->offset >= candidate) {
04b16653
AW
1931 next = MIN(next, next_block->offset);
1932 }
1933 }
154cc9ea
DDAG
1934
1935 /* If it fits remember our place and remember the size
1936 * of gap, but keep going so that we might find a smaller
1937 * gap to fill so avoiding fragmentation.
1938 */
1939 if (next - candidate >= size && next - candidate < mingap) {
1940 offset = candidate;
1941 mingap = next - candidate;
04b16653 1942 }
154cc9ea
DDAG
1943
1944 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1945 }
3e837b2c
AW
1946
1947 if (offset == RAM_ADDR_MAX) {
1948 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1949 (uint64_t)size);
1950 abort();
1951 }
1952
154cc9ea
DDAG
1953 trace_find_ram_offset(size, offset);
1954
04b16653
AW
1955 return offset;
1956}
1957
c136180c 1958static unsigned long last_ram_page(void)
d17b5288
AW
1959{
1960 RAMBlock *block;
1961 ram_addr_t last = 0;
1962
0dc3f44a 1963 rcu_read_lock();
99e15582 1964 RAMBLOCK_FOREACH(block) {
62be4e3a 1965 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1966 }
0dc3f44a 1967 rcu_read_unlock();
b8c48993 1968 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1969}
1970
ddb97f1d
JB
1971static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1972{
1973 int ret;
ddb97f1d
JB
1974
1975 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1976 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1977 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1978 if (ret) {
1979 perror("qemu_madvise");
1980 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1981 "but dump_guest_core=off specified\n");
1982 }
1983 }
1984}
1985
422148d3
DDAG
1986const char *qemu_ram_get_idstr(RAMBlock *rb)
1987{
1988 return rb->idstr;
1989}
1990
754cb9c0
YK
1991void *qemu_ram_get_host_addr(RAMBlock *rb)
1992{
1993 return rb->host;
1994}
1995
1996ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1997{
1998 return rb->offset;
1999}
2000
2001ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2002{
2003 return rb->used_length;
2004}
2005
463a4ac2
DDAG
2006bool qemu_ram_is_shared(RAMBlock *rb)
2007{
2008 return rb->flags & RAM_SHARED;
2009}
2010
2ce16640
DDAG
2011/* Note: Only set at the start of postcopy */
2012bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2013{
2014 return rb->flags & RAM_UF_ZEROPAGE;
2015}
2016
2017void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2018{
2019 rb->flags |= RAM_UF_ZEROPAGE;
2020}
2021
b895de50
CLG
2022bool qemu_ram_is_migratable(RAMBlock *rb)
2023{
2024 return rb->flags & RAM_MIGRATABLE;
2025}
2026
2027void qemu_ram_set_migratable(RAMBlock *rb)
2028{
2029 rb->flags |= RAM_MIGRATABLE;
2030}
2031
2032void qemu_ram_unset_migratable(RAMBlock *rb)
2033{
2034 rb->flags &= ~RAM_MIGRATABLE;
2035}
2036
ae3a7047 2037/* Called with iothread lock held. */
fa53a0e5 2038void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2039{
fa53a0e5 2040 RAMBlock *block;
20cfe881 2041
c5705a77
AK
2042 assert(new_block);
2043 assert(!new_block->idstr[0]);
84b89d78 2044
09e5ab63
AL
2045 if (dev) {
2046 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2047 if (id) {
2048 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2049 g_free(id);
84b89d78
CM
2050 }
2051 }
2052 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2053
ab0a9956 2054 rcu_read_lock();
99e15582 2055 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2056 if (block != new_block &&
2057 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2058 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2059 new_block->idstr);
2060 abort();
2061 }
2062 }
0dc3f44a 2063 rcu_read_unlock();
c5705a77
AK
2064}
2065
ae3a7047 2066/* Called with iothread lock held. */
fa53a0e5 2067void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2068{
ae3a7047
MD
2069 /* FIXME: arch_init.c assumes that this is not called throughout
2070 * migration. Ignore the problem since hot-unplug during migration
2071 * does not work anyway.
2072 */
20cfe881
HT
2073 if (block) {
2074 memset(block->idstr, 0, sizeof(block->idstr));
2075 }
2076}
2077
863e9621
DDAG
2078size_t qemu_ram_pagesize(RAMBlock *rb)
2079{
2080 return rb->page_size;
2081}
2082
67f11b5c
DDAG
2083/* Returns the largest size of page in use */
2084size_t qemu_ram_pagesize_largest(void)
2085{
2086 RAMBlock *block;
2087 size_t largest = 0;
2088
99e15582 2089 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2090 largest = MAX(largest, qemu_ram_pagesize(block));
2091 }
2092
2093 return largest;
2094}
2095
8490fc78
LC
2096static int memory_try_enable_merging(void *addr, size_t len)
2097{
75cc7f01 2098 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2099 /* disabled by the user */
2100 return 0;
2101 }
2102
2103 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2104}
2105
62be4e3a
MT
2106/* Only legal before guest might have detected the memory size: e.g. on
2107 * incoming migration, or right after reset.
2108 *
2109 * As memory core doesn't know how is memory accessed, it is up to
2110 * resize callback to update device state and/or add assertions to detect
2111 * misuse, if necessary.
2112 */
fa53a0e5 2113int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2114{
62be4e3a
MT
2115 assert(block);
2116
4ed023ce 2117 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2118
62be4e3a
MT
2119 if (block->used_length == newsize) {
2120 return 0;
2121 }
2122
2123 if (!(block->flags & RAM_RESIZEABLE)) {
2124 error_setg_errno(errp, EINVAL,
2125 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2126 " in != 0x" RAM_ADDR_FMT, block->idstr,
2127 newsize, block->used_length);
2128 return -EINVAL;
2129 }
2130
2131 if (block->max_length < newsize) {
2132 error_setg_errno(errp, EINVAL,
2133 "Length too large: %s: 0x" RAM_ADDR_FMT
2134 " > 0x" RAM_ADDR_FMT, block->idstr,
2135 newsize, block->max_length);
2136 return -EINVAL;
2137 }
2138
2139 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2140 block->used_length = newsize;
58d2707e
PB
2141 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2142 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2143 memory_region_set_size(block->mr, newsize);
2144 if (block->resized) {
2145 block->resized(block->idstr, newsize, block->host);
2146 }
2147 return 0;
2148}
2149
5b82b703
SH
2150/* Called with ram_list.mutex held */
2151static void dirty_memory_extend(ram_addr_t old_ram_size,
2152 ram_addr_t new_ram_size)
2153{
2154 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2155 DIRTY_MEMORY_BLOCK_SIZE);
2156 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2157 DIRTY_MEMORY_BLOCK_SIZE);
2158 int i;
2159
2160 /* Only need to extend if block count increased */
2161 if (new_num_blocks <= old_num_blocks) {
2162 return;
2163 }
2164
2165 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2166 DirtyMemoryBlocks *old_blocks;
2167 DirtyMemoryBlocks *new_blocks;
2168 int j;
2169
2170 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2171 new_blocks = g_malloc(sizeof(*new_blocks) +
2172 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2173
2174 if (old_num_blocks) {
2175 memcpy(new_blocks->blocks, old_blocks->blocks,
2176 old_num_blocks * sizeof(old_blocks->blocks[0]));
2177 }
2178
2179 for (j = old_num_blocks; j < new_num_blocks; j++) {
2180 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2181 }
2182
2183 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2184
2185 if (old_blocks) {
2186 g_free_rcu(old_blocks, rcu);
2187 }
2188 }
2189}
2190
06329cce 2191static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2192{
e1c57ab8 2193 RAMBlock *block;
0d53d9fe 2194 RAMBlock *last_block = NULL;
2152f5ca 2195 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2196 Error *err = NULL;
2152f5ca 2197
b8c48993 2198 old_ram_size = last_ram_page();
c5705a77 2199
b2a8658e 2200 qemu_mutex_lock_ramlist();
9b8424d5 2201 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2202
2203 if (!new_block->host) {
2204 if (xen_enabled()) {
9b8424d5 2205 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2206 new_block->mr, &err);
2207 if (err) {
2208 error_propagate(errp, err);
2209 qemu_mutex_unlock_ramlist();
39c350ee 2210 return;
37aa7a0e 2211 }
e1c57ab8 2212 } else {
9b8424d5 2213 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2214 &new_block->mr->align, shared);
39228250 2215 if (!new_block->host) {
ef701d7b
HT
2216 error_setg_errno(errp, errno,
2217 "cannot set up guest memory '%s'",
2218 memory_region_name(new_block->mr));
2219 qemu_mutex_unlock_ramlist();
39c350ee 2220 return;
39228250 2221 }
9b8424d5 2222 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2223 }
c902760f 2224 }
94a6b54f 2225
dd631697
LZ
2226 new_ram_size = MAX(old_ram_size,
2227 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2228 if (new_ram_size > old_ram_size) {
5b82b703 2229 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2230 }
0d53d9fe
MD
2231 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2232 * QLIST (which has an RCU-friendly variant) does not have insertion at
2233 * tail, so save the last element in last_block.
2234 */
99e15582 2235 RAMBLOCK_FOREACH(block) {
0d53d9fe 2236 last_block = block;
9b8424d5 2237 if (block->max_length < new_block->max_length) {
abb26d63
PB
2238 break;
2239 }
2240 }
2241 if (block) {
0dc3f44a 2242 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2243 } else if (last_block) {
0dc3f44a 2244 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2245 } else { /* list is empty */
0dc3f44a 2246 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2247 }
0d6d3c87 2248 ram_list.mru_block = NULL;
94a6b54f 2249
0dc3f44a
MD
2250 /* Write list before version */
2251 smp_wmb();
f798b07f 2252 ram_list.version++;
b2a8658e 2253 qemu_mutex_unlock_ramlist();
f798b07f 2254
9b8424d5 2255 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2256 new_block->used_length,
2257 DIRTY_CLIENTS_ALL);
94a6b54f 2258
a904c911
PB
2259 if (new_block->host) {
2260 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2261 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2262 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2263 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2264 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2265 }
94a6b54f 2266}
e9a1ab19 2267
d5dbde46 2268#ifdef CONFIG_POSIX
38b3362d 2269RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2270 uint32_t ram_flags, int fd,
38b3362d 2271 Error **errp)
e1c57ab8
PB
2272{
2273 RAMBlock *new_block;
ef701d7b 2274 Error *local_err = NULL;
8d37b030 2275 int64_t file_size;
e1c57ab8 2276
a4de8552
JH
2277 /* Just support these ram flags by now. */
2278 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2279
e1c57ab8 2280 if (xen_enabled()) {
7f56e740 2281 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2282 return NULL;
e1c57ab8
PB
2283 }
2284
e45e7ae2
MAL
2285 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2286 error_setg(errp,
2287 "host lacks kvm mmu notifiers, -mem-path unsupported");
2288 return NULL;
2289 }
2290
e1c57ab8
PB
2291 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2292 /*
2293 * file_ram_alloc() needs to allocate just like
2294 * phys_mem_alloc, but we haven't bothered to provide
2295 * a hook there.
2296 */
7f56e740
PB
2297 error_setg(errp,
2298 "-mem-path not supported with this accelerator");
528f46af 2299 return NULL;
e1c57ab8
PB
2300 }
2301
4ed023ce 2302 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2303 file_size = get_file_size(fd);
2304 if (file_size > 0 && file_size < size) {
2305 error_setg(errp, "backing store %s size 0x%" PRIx64
2306 " does not match 'size' option 0x" RAM_ADDR_FMT,
2307 mem_path, file_size, size);
8d37b030
MAL
2308 return NULL;
2309 }
2310
e1c57ab8
PB
2311 new_block = g_malloc0(sizeof(*new_block));
2312 new_block->mr = mr;
9b8424d5
MT
2313 new_block->used_length = size;
2314 new_block->max_length = size;
cbfc0171 2315 new_block->flags = ram_flags;
8d37b030 2316 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2317 if (!new_block->host) {
2318 g_free(new_block);
528f46af 2319 return NULL;
7f56e740
PB
2320 }
2321
cbfc0171 2322 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2323 if (local_err) {
2324 g_free(new_block);
2325 error_propagate(errp, local_err);
528f46af 2326 return NULL;
ef701d7b 2327 }
528f46af 2328 return new_block;
38b3362d
MAL
2329
2330}
2331
2332
2333RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2334 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2335 Error **errp)
2336{
2337 int fd;
2338 bool created;
2339 RAMBlock *block;
2340
2341 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2342 if (fd < 0) {
2343 return NULL;
2344 }
2345
cbfc0171 2346 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2347 if (!block) {
2348 if (created) {
2349 unlink(mem_path);
2350 }
2351 close(fd);
2352 return NULL;
2353 }
2354
2355 return block;
e1c57ab8 2356}
0b183fc8 2357#endif
e1c57ab8 2358
62be4e3a 2359static
528f46af
FZ
2360RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2361 void (*resized)(const char*,
2362 uint64_t length,
2363 void *host),
06329cce 2364 void *host, bool resizeable, bool share,
528f46af 2365 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2366{
2367 RAMBlock *new_block;
ef701d7b 2368 Error *local_err = NULL;
e1c57ab8 2369
4ed023ce
DDAG
2370 size = HOST_PAGE_ALIGN(size);
2371 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2372 new_block = g_malloc0(sizeof(*new_block));
2373 new_block->mr = mr;
62be4e3a 2374 new_block->resized = resized;
9b8424d5
MT
2375 new_block->used_length = size;
2376 new_block->max_length = max_size;
62be4e3a 2377 assert(max_size >= size);
e1c57ab8 2378 new_block->fd = -1;
863e9621 2379 new_block->page_size = getpagesize();
e1c57ab8
PB
2380 new_block->host = host;
2381 if (host) {
7bd4f430 2382 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2383 }
62be4e3a
MT
2384 if (resizeable) {
2385 new_block->flags |= RAM_RESIZEABLE;
2386 }
06329cce 2387 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2388 if (local_err) {
2389 g_free(new_block);
2390 error_propagate(errp, local_err);
528f46af 2391 return NULL;
ef701d7b 2392 }
528f46af 2393 return new_block;
e1c57ab8
PB
2394}
2395
528f46af 2396RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2397 MemoryRegion *mr, Error **errp)
2398{
06329cce
MA
2399 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2400 false, mr, errp);
62be4e3a
MT
2401}
2402
06329cce
MA
2403RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2404 MemoryRegion *mr, Error **errp)
6977dfe6 2405{
06329cce
MA
2406 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2407 share, mr, errp);
62be4e3a
MT
2408}
2409
528f46af 2410RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2411 void (*resized)(const char*,
2412 uint64_t length,
2413 void *host),
2414 MemoryRegion *mr, Error **errp)
2415{
06329cce
MA
2416 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2417 false, mr, errp);
6977dfe6
YT
2418}
2419
43771539
PB
2420static void reclaim_ramblock(RAMBlock *block)
2421{
2422 if (block->flags & RAM_PREALLOC) {
2423 ;
2424 } else if (xen_enabled()) {
2425 xen_invalidate_map_cache_entry(block->host);
2426#ifndef _WIN32
2427 } else if (block->fd >= 0) {
53adb9d4 2428 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2429 close(block->fd);
2430#endif
2431 } else {
2432 qemu_anon_ram_free(block->host, block->max_length);
2433 }
2434 g_free(block);
2435}
2436
f1060c55 2437void qemu_ram_free(RAMBlock *block)
e9a1ab19 2438{
85bc2a15
MAL
2439 if (!block) {
2440 return;
2441 }
2442
0987d735
PB
2443 if (block->host) {
2444 ram_block_notify_remove(block->host, block->max_length);
2445 }
2446
b2a8658e 2447 qemu_mutex_lock_ramlist();
f1060c55
FZ
2448 QLIST_REMOVE_RCU(block, next);
2449 ram_list.mru_block = NULL;
2450 /* Write list before version */
2451 smp_wmb();
2452 ram_list.version++;
2453 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2454 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2455}
2456
cd19cfa2
HY
2457#ifndef _WIN32
2458void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2459{
2460 RAMBlock *block;
2461 ram_addr_t offset;
2462 int flags;
2463 void *area, *vaddr;
2464
99e15582 2465 RAMBLOCK_FOREACH(block) {
cd19cfa2 2466 offset = addr - block->offset;
9b8424d5 2467 if (offset < block->max_length) {
1240be24 2468 vaddr = ramblock_ptr(block, offset);
7bd4f430 2469 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2470 ;
dfeaf2ab
MA
2471 } else if (xen_enabled()) {
2472 abort();
cd19cfa2
HY
2473 } else {
2474 flags = MAP_FIXED;
3435f395 2475 if (block->fd >= 0) {
dbcb8981
PB
2476 flags |= (block->flags & RAM_SHARED ?
2477 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2478 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2479 flags, block->fd, offset);
cd19cfa2 2480 } else {
2eb9fbaa
MA
2481 /*
2482 * Remap needs to match alloc. Accelerators that
2483 * set phys_mem_alloc never remap. If they did,
2484 * we'd need a remap hook here.
2485 */
2486 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2487
cd19cfa2
HY
2488 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2489 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2490 flags, -1, 0);
cd19cfa2
HY
2491 }
2492 if (area != vaddr) {
493d89bf
AF
2493 error_report("Could not remap addr: "
2494 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2495 length, addr);
cd19cfa2
HY
2496 exit(1);
2497 }
8490fc78 2498 memory_try_enable_merging(vaddr, length);
ddb97f1d 2499 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2500 }
cd19cfa2
HY
2501 }
2502 }
2503}
2504#endif /* !_WIN32 */
2505
1b5ec234 2506/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2507 * This should not be used for general purpose DMA. Use address_space_map
2508 * or address_space_rw instead. For local memory (e.g. video ram) that the
2509 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2510 *
49b24afc 2511 * Called within RCU critical section.
1b5ec234 2512 */
0878d0e1 2513void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2514{
3655cb9c
GA
2515 RAMBlock *block = ram_block;
2516
2517 if (block == NULL) {
2518 block = qemu_get_ram_block(addr);
0878d0e1 2519 addr -= block->offset;
3655cb9c 2520 }
ae3a7047
MD
2521
2522 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2523 /* We need to check if the requested address is in the RAM
2524 * because we don't want to map the entire memory in QEMU.
2525 * In that case just map until the end of the page.
2526 */
2527 if (block->offset == 0) {
1ff7c598 2528 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2529 }
ae3a7047 2530
1ff7c598 2531 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2532 }
0878d0e1 2533 return ramblock_ptr(block, addr);
dc828ca1
PB
2534}
2535
0878d0e1 2536/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2537 * but takes a size argument.
0dc3f44a 2538 *
e81bcda5 2539 * Called within RCU critical section.
ae3a7047 2540 */
3655cb9c 2541static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2542 hwaddr *size, bool lock)
38bee5dc 2543{
3655cb9c 2544 RAMBlock *block = ram_block;
8ab934f9
SS
2545 if (*size == 0) {
2546 return NULL;
2547 }
e81bcda5 2548
3655cb9c
GA
2549 if (block == NULL) {
2550 block = qemu_get_ram_block(addr);
0878d0e1 2551 addr -= block->offset;
3655cb9c 2552 }
0878d0e1 2553 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2554
2555 if (xen_enabled() && block->host == NULL) {
2556 /* We need to check if the requested address is in the RAM
2557 * because we don't want to map the entire memory in QEMU.
2558 * In that case just map the requested area.
2559 */
2560 if (block->offset == 0) {
f5aa69bd 2561 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2562 }
2563
f5aa69bd 2564 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2565 }
e81bcda5 2566
0878d0e1 2567 return ramblock_ptr(block, addr);
38bee5dc
SS
2568}
2569
f90bb71b
DDAG
2570/* Return the offset of a hostpointer within a ramblock */
2571ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2572{
2573 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2574 assert((uintptr_t)host >= (uintptr_t)rb->host);
2575 assert(res < rb->max_length);
2576
2577 return res;
2578}
2579
422148d3
DDAG
2580/*
2581 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2582 * in that RAMBlock.
2583 *
2584 * ptr: Host pointer to look up
2585 * round_offset: If true round the result offset down to a page boundary
2586 * *ram_addr: set to result ram_addr
2587 * *offset: set to result offset within the RAMBlock
2588 *
2589 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2590 *
2591 * By the time this function returns, the returned pointer is not protected
2592 * by RCU anymore. If the caller is not within an RCU critical section and
2593 * does not hold the iothread lock, it must have other means of protecting the
2594 * pointer, such as a reference to the region that includes the incoming
2595 * ram_addr_t.
2596 */
422148d3 2597RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2598 ram_addr_t *offset)
5579c7f3 2599{
94a6b54f
PB
2600 RAMBlock *block;
2601 uint8_t *host = ptr;
2602
868bb33f 2603 if (xen_enabled()) {
f615f396 2604 ram_addr_t ram_addr;
0dc3f44a 2605 rcu_read_lock();
f615f396
PB
2606 ram_addr = xen_ram_addr_from_mapcache(ptr);
2607 block = qemu_get_ram_block(ram_addr);
422148d3 2608 if (block) {
d6b6aec4 2609 *offset = ram_addr - block->offset;
422148d3 2610 }
0dc3f44a 2611 rcu_read_unlock();
422148d3 2612 return block;
712c2b41
SS
2613 }
2614
0dc3f44a
MD
2615 rcu_read_lock();
2616 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2617 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2618 goto found;
2619 }
2620
99e15582 2621 RAMBLOCK_FOREACH(block) {
432d268c
JN
2622 /* This case append when the block is not mapped. */
2623 if (block->host == NULL) {
2624 continue;
2625 }
9b8424d5 2626 if (host - block->host < block->max_length) {
23887b79 2627 goto found;
f471a17e 2628 }
94a6b54f 2629 }
432d268c 2630
0dc3f44a 2631 rcu_read_unlock();
1b5ec234 2632 return NULL;
23887b79
PB
2633
2634found:
422148d3
DDAG
2635 *offset = (host - block->host);
2636 if (round_offset) {
2637 *offset &= TARGET_PAGE_MASK;
2638 }
0dc3f44a 2639 rcu_read_unlock();
422148d3
DDAG
2640 return block;
2641}
2642
e3dd7493
DDAG
2643/*
2644 * Finds the named RAMBlock
2645 *
2646 * name: The name of RAMBlock to find
2647 *
2648 * Returns: RAMBlock (or NULL if not found)
2649 */
2650RAMBlock *qemu_ram_block_by_name(const char *name)
2651{
2652 RAMBlock *block;
2653
99e15582 2654 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2655 if (!strcmp(name, block->idstr)) {
2656 return block;
2657 }
2658 }
2659
2660 return NULL;
2661}
2662
422148d3
DDAG
2663/* Some of the softmmu routines need to translate from a host pointer
2664 (typically a TLB entry) back to a ram offset. */
07bdaa41 2665ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2666{
2667 RAMBlock *block;
f615f396 2668 ram_addr_t offset;
422148d3 2669
f615f396 2670 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2671 if (!block) {
07bdaa41 2672 return RAM_ADDR_INVALID;
422148d3
DDAG
2673 }
2674
07bdaa41 2675 return block->offset + offset;
e890261f 2676}
f471a17e 2677
27266271
PM
2678/* Called within RCU critical section. */
2679void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2680 CPUState *cpu,
2681 vaddr mem_vaddr,
2682 ram_addr_t ram_addr,
2683 unsigned size)
2684{
2685 ndi->cpu = cpu;
2686 ndi->ram_addr = ram_addr;
2687 ndi->mem_vaddr = mem_vaddr;
2688 ndi->size = size;
0ac20318 2689 ndi->pages = NULL;
ba051fb5 2690
5aa1ef71 2691 assert(tcg_enabled());
52159192 2692 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2693 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2694 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2695 }
27266271
PM
2696}
2697
2698/* Called within RCU critical section. */
2699void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2700{
0ac20318 2701 if (ndi->pages) {
f28d0dfd 2702 assert(tcg_enabled());
0ac20318
EC
2703 page_collection_unlock(ndi->pages);
2704 ndi->pages = NULL;
27266271
PM
2705 }
2706
2707 /* Set both VGA and migration bits for simplicity and to remove
2708 * the notdirty callback faster.
2709 */
2710 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2711 DIRTY_CLIENTS_NOCODE);
2712 /* we remove the notdirty callback only if the code has been
2713 flushed */
2714 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2715 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2716 }
2717}
2718
2719/* Called within RCU critical section. */
2720static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2721 uint64_t val, unsigned size)
2722{
2723 NotDirtyInfo ndi;
2724
2725 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2726 ram_addr, size);
2727
6d3ede54 2728 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2729 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2730}
2731
b018ddf6 2732static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2733 unsigned size, bool is_write,
2734 MemTxAttrs attrs)
b018ddf6
PB
2735{
2736 return is_write;
2737}
2738
0e0df1e2 2739static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2740 .write = notdirty_mem_write,
b018ddf6 2741 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2742 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2743 .valid = {
2744 .min_access_size = 1,
2745 .max_access_size = 8,
2746 .unaligned = false,
2747 },
2748 .impl = {
2749 .min_access_size = 1,
2750 .max_access_size = 8,
2751 .unaligned = false,
2752 },
1ccde1cb
FB
2753};
2754
0f459d16 2755/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2756static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2757{
93afeade 2758 CPUState *cpu = current_cpu;
568496c0 2759 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2760 target_ulong vaddr;
a1d1bb31 2761 CPUWatchpoint *wp;
0f459d16 2762
5aa1ef71 2763 assert(tcg_enabled());
ff4700b0 2764 if (cpu->watchpoint_hit) {
06d55cc1
AL
2765 /* We re-entered the check after replacing the TB. Now raise
2766 * the debug interrupt so that is will trigger after the
2767 * current instruction. */
93afeade 2768 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2769 return;
2770 }
93afeade 2771 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2772 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2773 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2774 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2775 && (wp->flags & flags)) {
08225676
PM
2776 if (flags == BP_MEM_READ) {
2777 wp->flags |= BP_WATCHPOINT_HIT_READ;
2778 } else {
2779 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2780 }
2781 wp->hitaddr = vaddr;
66b9b43c 2782 wp->hitattrs = attrs;
ff4700b0 2783 if (!cpu->watchpoint_hit) {
568496c0
SF
2784 if (wp->flags & BP_CPU &&
2785 !cc->debug_check_watchpoint(cpu, wp)) {
2786 wp->flags &= ~BP_WATCHPOINT_HIT;
2787 continue;
2788 }
ff4700b0 2789 cpu->watchpoint_hit = wp;
a5e99826 2790
0ac20318 2791 mmap_lock();
239c51a5 2792 tb_check_watchpoint(cpu);
6e140f28 2793 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2794 cpu->exception_index = EXCP_DEBUG;
0ac20318 2795 mmap_unlock();
5638d180 2796 cpu_loop_exit(cpu);
6e140f28 2797 } else {
9b990ee5
RH
2798 /* Force execution of one insn next time. */
2799 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2800 mmap_unlock();
6886b980 2801 cpu_loop_exit_noexc(cpu);
6e140f28 2802 }
06d55cc1 2803 }
6e140f28
AL
2804 } else {
2805 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2806 }
2807 }
2808}
2809
6658ffb8
PB
2810/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2811 so these check for a hit then pass through to the normal out-of-line
2812 phys routines. */
66b9b43c
PM
2813static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2814 unsigned size, MemTxAttrs attrs)
6658ffb8 2815{
66b9b43c
PM
2816 MemTxResult res;
2817 uint64_t data;
79ed0416
PM
2818 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2819 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2820
2821 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2822 switch (size) {
66b9b43c 2823 case 1:
79ed0416 2824 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2825 break;
2826 case 2:
79ed0416 2827 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2828 break;
2829 case 4:
79ed0416 2830 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2831 break;
306526b5
PB
2832 case 8:
2833 data = address_space_ldq(as, addr, attrs, &res);
2834 break;
1ec9b909
AK
2835 default: abort();
2836 }
66b9b43c
PM
2837 *pdata = data;
2838 return res;
6658ffb8
PB
2839}
2840
66b9b43c
PM
2841static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2842 uint64_t val, unsigned size,
2843 MemTxAttrs attrs)
6658ffb8 2844{
66b9b43c 2845 MemTxResult res;
79ed0416
PM
2846 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2847 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2848
2849 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2850 switch (size) {
67364150 2851 case 1:
79ed0416 2852 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2853 break;
2854 case 2:
79ed0416 2855 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2856 break;
2857 case 4:
79ed0416 2858 address_space_stl(as, addr, val, attrs, &res);
67364150 2859 break;
306526b5
PB
2860 case 8:
2861 address_space_stq(as, addr, val, attrs, &res);
2862 break;
1ec9b909
AK
2863 default: abort();
2864 }
66b9b43c 2865 return res;
6658ffb8
PB
2866}
2867
1ec9b909 2868static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2869 .read_with_attrs = watch_mem_read,
2870 .write_with_attrs = watch_mem_write,
1ec9b909 2871 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2872 .valid = {
2873 .min_access_size = 1,
2874 .max_access_size = 8,
2875 .unaligned = false,
2876 },
2877 .impl = {
2878 .min_access_size = 1,
2879 .max_access_size = 8,
2880 .unaligned = false,
2881 },
6658ffb8 2882};
6658ffb8 2883
b2a44fca 2884static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2885 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2886static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2887 const uint8_t *buf, hwaddr len);
2888static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2889 bool is_write, MemTxAttrs attrs);
16620684 2890
f25a49e0
PM
2891static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2892 unsigned len, MemTxAttrs attrs)
db7b5426 2893{
acc9d80b 2894 subpage_t *subpage = opaque;
ff6cff75 2895 uint8_t buf[8];
5c9eb028 2896 MemTxResult res;
791af8c8 2897
db7b5426 2898#if defined(DEBUG_SUBPAGE)
016e9d62 2899 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2900 subpage, len, addr);
db7b5426 2901#endif
16620684 2902 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2903 if (res) {
2904 return res;
f25a49e0 2905 }
6d3ede54
PM
2906 *data = ldn_p(buf, len);
2907 return MEMTX_OK;
db7b5426
BS
2908}
2909
f25a49e0
PM
2910static MemTxResult subpage_write(void *opaque, hwaddr addr,
2911 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2912{
acc9d80b 2913 subpage_t *subpage = opaque;
ff6cff75 2914 uint8_t buf[8];
acc9d80b 2915
db7b5426 2916#if defined(DEBUG_SUBPAGE)
016e9d62 2917 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2918 " value %"PRIx64"\n",
2919 __func__, subpage, len, addr, value);
db7b5426 2920#endif
6d3ede54 2921 stn_p(buf, len, value);
16620684 2922 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2923}
2924
c353e4cc 2925static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2926 unsigned len, bool is_write,
2927 MemTxAttrs attrs)
c353e4cc 2928{
acc9d80b 2929 subpage_t *subpage = opaque;
c353e4cc 2930#if defined(DEBUG_SUBPAGE)
016e9d62 2931 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2932 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2933#endif
2934
16620684 2935 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2936 len, is_write, attrs);
c353e4cc
PB
2937}
2938
70c68e44 2939static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2940 .read_with_attrs = subpage_read,
2941 .write_with_attrs = subpage_write,
ff6cff75
PB
2942 .impl.min_access_size = 1,
2943 .impl.max_access_size = 8,
2944 .valid.min_access_size = 1,
2945 .valid.max_access_size = 8,
c353e4cc 2946 .valid.accepts = subpage_accepts,
70c68e44 2947 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2948};
2949
c227f099 2950static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2951 uint16_t section)
db7b5426
BS
2952{
2953 int idx, eidx;
2954
2955 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2956 return -1;
2957 idx = SUBPAGE_IDX(start);
2958 eidx = SUBPAGE_IDX(end);
2959#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2960 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2961 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2962#endif
db7b5426 2963 for (; idx <= eidx; idx++) {
5312bd8b 2964 mmio->sub_section[idx] = section;
db7b5426
BS
2965 }
2966
2967 return 0;
2968}
2969
16620684 2970static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2971{
c227f099 2972 subpage_t *mmio;
db7b5426 2973
2615fabd 2974 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2975 mmio->fv = fv;
1eec614b 2976 mmio->base = base;
2c9b15ca 2977 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2978 NULL, TARGET_PAGE_SIZE);
b3b00c78 2979 mmio->iomem.subpage = true;
db7b5426 2980#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2981 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2982 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2983#endif
b41aac4f 2984 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2985
2986 return mmio;
2987}
2988
16620684 2989static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2990{
16620684 2991 assert(fv);
5312bd8b 2992 MemoryRegionSection section = {
16620684 2993 .fv = fv,
5312bd8b
AK
2994 .mr = mr,
2995 .offset_within_address_space = 0,
2996 .offset_within_region = 0,
052e87b0 2997 .size = int128_2_64(),
5312bd8b
AK
2998 };
2999
53cb28cb 3000 return phys_section_add(map, &section);
5312bd8b
AK
3001}
3002
8af36743
PM
3003static void readonly_mem_write(void *opaque, hwaddr addr,
3004 uint64_t val, unsigned size)
3005{
3006 /* Ignore any write to ROM. */
3007}
3008
3009static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3010 unsigned size, bool is_write,
3011 MemTxAttrs attrs)
8af36743
PM
3012{
3013 return is_write;
3014}
3015
3016/* This will only be used for writes, because reads are special cased
3017 * to directly access the underlying host ram.
3018 */
3019static const MemoryRegionOps readonly_mem_ops = {
3020 .write = readonly_mem_write,
3021 .valid.accepts = readonly_mem_accepts,
3022 .endianness = DEVICE_NATIVE_ENDIAN,
3023 .valid = {
3024 .min_access_size = 1,
3025 .max_access_size = 8,
3026 .unaligned = false,
3027 },
3028 .impl = {
3029 .min_access_size = 1,
3030 .max_access_size = 8,
3031 .unaligned = false,
3032 },
3033};
3034
2d54f194
PM
3035MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3036 hwaddr index, MemTxAttrs attrs)
aa102231 3037{
a54c87b6
PM
3038 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3039 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3040 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3041 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3042
2d54f194 3043 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3044}
3045
e9179ce1
AK
3046static void io_mem_init(void)
3047{
8af36743
PM
3048 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3049 NULL, NULL, UINT64_MAX);
2c9b15ca 3050 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3051 NULL, UINT64_MAX);
8d04fb55
JK
3052
3053 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3054 * which can be called without the iothread mutex.
3055 */
2c9b15ca 3056 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3057 NULL, UINT64_MAX);
8d04fb55
JK
3058 memory_region_clear_global_locking(&io_mem_notdirty);
3059
2c9b15ca 3060 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3061 NULL, UINT64_MAX);
e9179ce1
AK
3062}
3063
8629d3fc 3064AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3065{
53cb28cb
MA
3066 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3067 uint16_t n;
3068
16620684 3069 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3070 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3071 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3072 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3073 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3074 assert(n == PHYS_SECTION_ROM);
16620684 3075 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3076 assert(n == PHYS_SECTION_WATCH);
00752703 3077
9736e55b 3078 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3079
3080 return d;
00752703
PB
3081}
3082
66a6df1d 3083void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3084{
3085 phys_sections_free(&d->map);
3086 g_free(d);
3087}
3088
1d71148e 3089static void tcg_commit(MemoryListener *listener)
50c1e149 3090{
32857f4d
PM
3091 CPUAddressSpace *cpuas;
3092 AddressSpaceDispatch *d;
117712c3 3093
f28d0dfd 3094 assert(tcg_enabled());
117712c3
AK
3095 /* since each CPU stores ram addresses in its TLB cache, we must
3096 reset the modified entries */
32857f4d
PM
3097 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3098 cpu_reloading_memory_map();
3099 /* The CPU and TLB are protected by the iothread lock.
3100 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3101 * may have split the RCU critical section.
3102 */
66a6df1d 3103 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3104 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3105 tlb_flush(cpuas->cpu);
50c1e149
AK
3106}
3107
62152b8a
AK
3108static void memory_map_init(void)
3109{
7267c094 3110 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3111
57271d63 3112 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3113 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3114
7267c094 3115 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3116 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3117 65536);
7dca8043 3118 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3119}
3120
3121MemoryRegion *get_system_memory(void)
3122{
3123 return system_memory;
3124}
3125
309cb471
AK
3126MemoryRegion *get_system_io(void)
3127{
3128 return system_io;
3129}
3130
e2eef170
PB
3131#endif /* !defined(CONFIG_USER_ONLY) */
3132
13eb76e0
FB
3133/* physical memory access (slow version, mainly for debug) */
3134#if defined(CONFIG_USER_ONLY)
f17ec444 3135int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3136 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3137{
0c249ff7
LZ
3138 int flags;
3139 target_ulong l, page;
53a5960a 3140 void * p;
13eb76e0
FB
3141
3142 while (len > 0) {
3143 page = addr & TARGET_PAGE_MASK;
3144 l = (page + TARGET_PAGE_SIZE) - addr;
3145 if (l > len)
3146 l = len;
3147 flags = page_get_flags(page);
3148 if (!(flags & PAGE_VALID))
a68fe89c 3149 return -1;
13eb76e0
FB
3150 if (is_write) {
3151 if (!(flags & PAGE_WRITE))
a68fe89c 3152 return -1;
579a97f7 3153 /* XXX: this code should not depend on lock_user */
72fb7daa 3154 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3155 return -1;
72fb7daa
AJ
3156 memcpy(p, buf, l);
3157 unlock_user(p, addr, l);
13eb76e0
FB
3158 } else {
3159 if (!(flags & PAGE_READ))
a68fe89c 3160 return -1;
579a97f7 3161 /* XXX: this code should not depend on lock_user */
72fb7daa 3162 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3163 return -1;
72fb7daa 3164 memcpy(buf, p, l);
5b257578 3165 unlock_user(p, addr, 0);
13eb76e0
FB
3166 }
3167 len -= l;
3168 buf += l;
3169 addr += l;
3170 }
a68fe89c 3171 return 0;
13eb76e0 3172}
8df1cd07 3173
13eb76e0 3174#else
51d7a9eb 3175
845b6214 3176static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3177 hwaddr length)
51d7a9eb 3178{
e87f7778 3179 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3180 addr += memory_region_get_ram_addr(mr);
3181
e87f7778
PB
3182 /* No early return if dirty_log_mask is or becomes 0, because
3183 * cpu_physical_memory_set_dirty_range will still call
3184 * xen_modified_memory.
3185 */
3186 if (dirty_log_mask) {
3187 dirty_log_mask =
3188 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3189 }
3190 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3191 assert(tcg_enabled());
e87f7778
PB
3192 tb_invalidate_phys_range(addr, addr + length);
3193 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3194 }
e87f7778 3195 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3196}
3197
047be4ed
SH
3198void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3199{
3200 /*
3201 * In principle this function would work on other memory region types too,
3202 * but the ROM device use case is the only one where this operation is
3203 * necessary. Other memory regions should use the
3204 * address_space_read/write() APIs.
3205 */
3206 assert(memory_region_is_romd(mr));
3207
3208 invalidate_and_set_dirty(mr, addr, size);
3209}
3210
23326164 3211static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3212{
e1622f4b 3213 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3214
3215 /* Regions are assumed to support 1-4 byte accesses unless
3216 otherwise specified. */
23326164
RH
3217 if (access_size_max == 0) {
3218 access_size_max = 4;
3219 }
3220
3221 /* Bound the maximum access by the alignment of the address. */
3222 if (!mr->ops->impl.unaligned) {
3223 unsigned align_size_max = addr & -addr;
3224 if (align_size_max != 0 && align_size_max < access_size_max) {
3225 access_size_max = align_size_max;
3226 }
82f2563f 3227 }
23326164
RH
3228
3229 /* Don't attempt accesses larger than the maximum. */
3230 if (l > access_size_max) {
3231 l = access_size_max;
82f2563f 3232 }
6554f5c0 3233 l = pow2floor(l);
23326164
RH
3234
3235 return l;
82f2563f
PB
3236}
3237
4840f10e 3238static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3239{
4840f10e
JK
3240 bool unlocked = !qemu_mutex_iothread_locked();
3241 bool release_lock = false;
3242
3243 if (unlocked && mr->global_locking) {
3244 qemu_mutex_lock_iothread();
3245 unlocked = false;
3246 release_lock = true;
3247 }
125b3806 3248 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3249 if (unlocked) {
3250 qemu_mutex_lock_iothread();
3251 }
125b3806 3252 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3253 if (unlocked) {
3254 qemu_mutex_unlock_iothread();
3255 }
125b3806 3256 }
4840f10e
JK
3257
3258 return release_lock;
125b3806
PB
3259}
3260
a203ac70 3261/* Called within RCU critical section. */
16620684
AK
3262static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3263 MemTxAttrs attrs,
3264 const uint8_t *buf,
0c249ff7 3265 hwaddr len, hwaddr addr1,
16620684 3266 hwaddr l, MemoryRegion *mr)
13eb76e0 3267{
13eb76e0 3268 uint8_t *ptr;
791af8c8 3269 uint64_t val;
3b643495 3270 MemTxResult result = MEMTX_OK;
4840f10e 3271 bool release_lock = false;
3b46e624 3272
a203ac70 3273 for (;;) {
eb7eeb88
PB
3274 if (!memory_access_is_direct(mr, true)) {
3275 release_lock |= prepare_mmio_access(mr);
3276 l = memory_access_size(mr, l, addr1);
3277 /* XXX: could force current_cpu to NULL to avoid
3278 potential bugs */
6d3ede54
PM
3279 val = ldn_p(buf, l);
3280 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3281 } else {
eb7eeb88 3282 /* RAM case */
f5aa69bd 3283 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3284 memcpy(ptr, buf, l);
3285 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3286 }
4840f10e
JK
3287
3288 if (release_lock) {
3289 qemu_mutex_unlock_iothread();
3290 release_lock = false;
3291 }
3292
13eb76e0
FB
3293 len -= l;
3294 buf += l;
3295 addr += l;
a203ac70
PB
3296
3297 if (!len) {
3298 break;
3299 }
3300
3301 l = len;
efa99a2f 3302 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3303 }
fd8aaa76 3304
3b643495 3305 return result;
13eb76e0 3306}
8df1cd07 3307
4c6ebbb3 3308/* Called from RCU critical section. */
16620684 3309static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3310 const uint8_t *buf, hwaddr len)
ac1970fb 3311{
eb7eeb88 3312 hwaddr l;
eb7eeb88
PB
3313 hwaddr addr1;
3314 MemoryRegion *mr;
3315 MemTxResult result = MEMTX_OK;
eb7eeb88 3316
4c6ebbb3 3317 l = len;
efa99a2f 3318 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3319 result = flatview_write_continue(fv, addr, attrs, buf, len,
3320 addr1, l, mr);
a203ac70
PB
3321
3322 return result;
3323}
3324
3325/* Called within RCU critical section. */
16620684
AK
3326MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3327 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3328 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3329 MemoryRegion *mr)
a203ac70
PB
3330{
3331 uint8_t *ptr;
3332 uint64_t val;
3333 MemTxResult result = MEMTX_OK;
3334 bool release_lock = false;
eb7eeb88 3335
a203ac70 3336 for (;;) {
eb7eeb88
PB
3337 if (!memory_access_is_direct(mr, false)) {
3338 /* I/O case */
3339 release_lock |= prepare_mmio_access(mr);
3340 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3341 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3342 stn_p(buf, l, val);
eb7eeb88
PB
3343 } else {
3344 /* RAM case */
f5aa69bd 3345 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3346 memcpy(buf, ptr, l);
3347 }
3348
3349 if (release_lock) {
3350 qemu_mutex_unlock_iothread();
3351 release_lock = false;
3352 }
3353
3354 len -= l;
3355 buf += l;
3356 addr += l;
a203ac70
PB
3357
3358 if (!len) {
3359 break;
3360 }
3361
3362 l = len;
efa99a2f 3363 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3364 }
3365
3366 return result;
3367}
3368
b2a44fca
PB
3369/* Called from RCU critical section. */
3370static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3371 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3372{
3373 hwaddr l;
3374 hwaddr addr1;
3375 MemoryRegion *mr;
eb7eeb88 3376
b2a44fca 3377 l = len;
efa99a2f 3378 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3379 return flatview_read_continue(fv, addr, attrs, buf, len,
3380 addr1, l, mr);
ac1970fb
AK
3381}
3382
b2a44fca 3383MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3384 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3385{
3386 MemTxResult result = MEMTX_OK;
3387 FlatView *fv;
3388
3389 if (len > 0) {
3390 rcu_read_lock();
3391 fv = address_space_to_flatview(as);
3392 result = flatview_read(fv, addr, attrs, buf, len);
3393 rcu_read_unlock();
3394 }
3395
3396 return result;
3397}
3398
4c6ebbb3
PB
3399MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3400 MemTxAttrs attrs,
0c249ff7 3401 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3402{
3403 MemTxResult result = MEMTX_OK;
3404 FlatView *fv;
3405
3406 if (len > 0) {
3407 rcu_read_lock();
3408 fv = address_space_to_flatview(as);
3409 result = flatview_write(fv, addr, attrs, buf, len);
3410 rcu_read_unlock();
3411 }
3412
3413 return result;
3414}
3415
db84fd97 3416MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3417 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3418{
3419 if (is_write) {
3420 return address_space_write(as, addr, attrs, buf, len);
3421 } else {
3422 return address_space_read_full(as, addr, attrs, buf, len);
3423 }
3424}
3425
a8170e5e 3426void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3427 hwaddr len, int is_write)
ac1970fb 3428{
5c9eb028
PM
3429 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3430 buf, len, is_write);
ac1970fb
AK
3431}
3432
582b55a9
AG
3433enum write_rom_type {
3434 WRITE_DATA,
3435 FLUSH_CACHE,
3436};
3437
75693e14
PM
3438static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3439 hwaddr addr,
3440 MemTxAttrs attrs,
3441 const uint8_t *buf,
0c249ff7 3442 hwaddr len,
75693e14 3443 enum write_rom_type type)
d0ecd2aa 3444{
149f54b5 3445 hwaddr l;
d0ecd2aa 3446 uint8_t *ptr;
149f54b5 3447 hwaddr addr1;
5c8a00ce 3448 MemoryRegion *mr;
3b46e624 3449
41063e1e 3450 rcu_read_lock();
d0ecd2aa 3451 while (len > 0) {
149f54b5 3452 l = len;
75693e14 3453 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3454
5c8a00ce
PB
3455 if (!(memory_region_is_ram(mr) ||
3456 memory_region_is_romd(mr))) {
b242e0e0 3457 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3458 } else {
d0ecd2aa 3459 /* ROM/RAM case */
0878d0e1 3460 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3461 switch (type) {
3462 case WRITE_DATA:
3463 memcpy(ptr, buf, l);
845b6214 3464 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3465 break;
3466 case FLUSH_CACHE:
3467 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3468 break;
3469 }
d0ecd2aa
FB
3470 }
3471 len -= l;
3472 buf += l;
3473 addr += l;
3474 }
41063e1e 3475 rcu_read_unlock();
75693e14 3476 return MEMTX_OK;
d0ecd2aa
FB
3477}
3478
582b55a9 3479/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3480MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3481 MemTxAttrs attrs,
0c249ff7 3482 const uint8_t *buf, hwaddr len)
582b55a9 3483{
3c8133f9
PM
3484 return address_space_write_rom_internal(as, addr, attrs,
3485 buf, len, WRITE_DATA);
582b55a9
AG
3486}
3487
0c249ff7 3488void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3489{
3490 /*
3491 * This function should do the same thing as an icache flush that was
3492 * triggered from within the guest. For TCG we are always cache coherent,
3493 * so there is no need to flush anything. For KVM / Xen we need to flush
3494 * the host's instruction cache at least.
3495 */
3496 if (tcg_enabled()) {
3497 return;
3498 }
3499
75693e14
PM
3500 address_space_write_rom_internal(&address_space_memory,
3501 start, MEMTXATTRS_UNSPECIFIED,
3502 NULL, len, FLUSH_CACHE);
582b55a9
AG
3503}
3504
6d16c2f8 3505typedef struct {
d3e71559 3506 MemoryRegion *mr;
6d16c2f8 3507 void *buffer;
a8170e5e
AK
3508 hwaddr addr;
3509 hwaddr len;
c2cba0ff 3510 bool in_use;
6d16c2f8
AL
3511} BounceBuffer;
3512
3513static BounceBuffer bounce;
3514
ba223c29 3515typedef struct MapClient {
e95205e1 3516 QEMUBH *bh;
72cf2d4f 3517 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3518} MapClient;
3519
38e047b5 3520QemuMutex map_client_list_lock;
b58deb34 3521static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3522 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3523
e95205e1
FZ
3524static void cpu_unregister_map_client_do(MapClient *client)
3525{
3526 QLIST_REMOVE(client, link);
3527 g_free(client);
3528}
3529
33b6c2ed
FZ
3530static void cpu_notify_map_clients_locked(void)
3531{
3532 MapClient *client;
3533
3534 while (!QLIST_EMPTY(&map_client_list)) {
3535 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3536 qemu_bh_schedule(client->bh);
3537 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3538 }
3539}
3540
e95205e1 3541void cpu_register_map_client(QEMUBH *bh)
ba223c29 3542{
7267c094 3543 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3544
38e047b5 3545 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3546 client->bh = bh;
72cf2d4f 3547 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3548 if (!atomic_read(&bounce.in_use)) {
3549 cpu_notify_map_clients_locked();
3550 }
38e047b5 3551 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3552}
3553
38e047b5 3554void cpu_exec_init_all(void)
ba223c29 3555{
38e047b5 3556 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3557 /* The data structures we set up here depend on knowing the page size,
3558 * so no more changes can be made after this point.
3559 * In an ideal world, nothing we did before we had finished the
3560 * machine setup would care about the target page size, and we could
3561 * do this much later, rather than requiring board models to state
3562 * up front what their requirements are.
3563 */
3564 finalize_target_page_bits();
38e047b5 3565 io_mem_init();
680a4783 3566 memory_map_init();
38e047b5 3567 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3568}
3569
e95205e1 3570void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3571{
3572 MapClient *client;
3573
e95205e1
FZ
3574 qemu_mutex_lock(&map_client_list_lock);
3575 QLIST_FOREACH(client, &map_client_list, link) {
3576 if (client->bh == bh) {
3577 cpu_unregister_map_client_do(client);
3578 break;
3579 }
ba223c29 3580 }
e95205e1 3581 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3582}
3583
3584static void cpu_notify_map_clients(void)
3585{
38e047b5 3586 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3587 cpu_notify_map_clients_locked();
38e047b5 3588 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3589}
3590
0c249ff7 3591static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3592 bool is_write, MemTxAttrs attrs)
51644ab7 3593{
5c8a00ce 3594 MemoryRegion *mr;
51644ab7
PB
3595 hwaddr l, xlat;
3596
3597 while (len > 0) {
3598 l = len;
efa99a2f 3599 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3600 if (!memory_access_is_direct(mr, is_write)) {
3601 l = memory_access_size(mr, l, addr);
eace72b7 3602 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3603 return false;
3604 }
3605 }
3606
3607 len -= l;
3608 addr += l;
3609 }
3610 return true;
3611}
3612
16620684 3613bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3614 hwaddr len, bool is_write,
fddffa42 3615 MemTxAttrs attrs)
16620684 3616{
11e732a5
PB
3617 FlatView *fv;
3618 bool result;
3619
3620 rcu_read_lock();
3621 fv = address_space_to_flatview(as);
eace72b7 3622 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3623 rcu_read_unlock();
3624 return result;
16620684
AK
3625}
3626
715c31ec 3627static hwaddr
16620684 3628flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3629 hwaddr target_len,
3630 MemoryRegion *mr, hwaddr base, hwaddr len,
3631 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3632{
3633 hwaddr done = 0;
3634 hwaddr xlat;
3635 MemoryRegion *this_mr;
3636
3637 for (;;) {
3638 target_len -= len;
3639 addr += len;
3640 done += len;
3641 if (target_len == 0) {
3642 return done;
3643 }
3644
3645 len = target_len;
16620684 3646 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3647 &len, is_write, attrs);
715c31ec
PB
3648 if (this_mr != mr || xlat != base + done) {
3649 return done;
3650 }
3651 }
3652}
3653
6d16c2f8
AL
3654/* Map a physical memory region into a host virtual address.
3655 * May map a subset of the requested range, given by and returned in *plen.
3656 * May return NULL if resources needed to perform the mapping are exhausted.
3657 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3658 * Use cpu_register_map_client() to know when retrying the map operation is
3659 * likely to succeed.
6d16c2f8 3660 */
ac1970fb 3661void *address_space_map(AddressSpace *as,
a8170e5e
AK
3662 hwaddr addr,
3663 hwaddr *plen,
f26404fb
PM
3664 bool is_write,
3665 MemTxAttrs attrs)
6d16c2f8 3666{
a8170e5e 3667 hwaddr len = *plen;
715c31ec
PB
3668 hwaddr l, xlat;
3669 MemoryRegion *mr;
e81bcda5 3670 void *ptr;
ad0c60fa 3671 FlatView *fv;
6d16c2f8 3672
e3127ae0
PB
3673 if (len == 0) {
3674 return NULL;
3675 }
38bee5dc 3676
e3127ae0 3677 l = len;
41063e1e 3678 rcu_read_lock();
ad0c60fa 3679 fv = address_space_to_flatview(as);
efa99a2f 3680 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3681
e3127ae0 3682 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3683 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3684 rcu_read_unlock();
e3127ae0 3685 return NULL;
6d16c2f8 3686 }
e85d9db5
KW
3687 /* Avoid unbounded allocations */
3688 l = MIN(l, TARGET_PAGE_SIZE);
3689 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3690 bounce.addr = addr;
3691 bounce.len = l;
d3e71559
PB
3692
3693 memory_region_ref(mr);
3694 bounce.mr = mr;
e3127ae0 3695 if (!is_write) {
16620684 3696 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3697 bounce.buffer, l);
8ab934f9 3698 }
6d16c2f8 3699
41063e1e 3700 rcu_read_unlock();
e3127ae0
PB
3701 *plen = l;
3702 return bounce.buffer;
3703 }
3704
e3127ae0 3705
d3e71559 3706 memory_region_ref(mr);
16620684 3707 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3708 l, is_write, attrs);
f5aa69bd 3709 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3710 rcu_read_unlock();
3711
3712 return ptr;
6d16c2f8
AL
3713}
3714
ac1970fb 3715/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3716 * Will also mark the memory as dirty if is_write == 1. access_len gives
3717 * the amount of memory that was actually read or written by the caller.
3718 */
a8170e5e
AK
3719void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3720 int is_write, hwaddr access_len)
6d16c2f8
AL
3721{
3722 if (buffer != bounce.buffer) {
d3e71559
PB
3723 MemoryRegion *mr;
3724 ram_addr_t addr1;
3725
07bdaa41 3726 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3727 assert(mr != NULL);
6d16c2f8 3728 if (is_write) {
845b6214 3729 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3730 }
868bb33f 3731 if (xen_enabled()) {
e41d7c69 3732 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3733 }
d3e71559 3734 memory_region_unref(mr);
6d16c2f8
AL
3735 return;
3736 }
3737 if (is_write) {
5c9eb028
PM
3738 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3739 bounce.buffer, access_len);
6d16c2f8 3740 }
f8a83245 3741 qemu_vfree(bounce.buffer);
6d16c2f8 3742 bounce.buffer = NULL;
d3e71559 3743 memory_region_unref(bounce.mr);
c2cba0ff 3744 atomic_mb_set(&bounce.in_use, false);
ba223c29 3745 cpu_notify_map_clients();
6d16c2f8 3746}
d0ecd2aa 3747
a8170e5e
AK
3748void *cpu_physical_memory_map(hwaddr addr,
3749 hwaddr *plen,
ac1970fb
AK
3750 int is_write)
3751{
f26404fb
PM
3752 return address_space_map(&address_space_memory, addr, plen, is_write,
3753 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3754}
3755
a8170e5e
AK
3756void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3757 int is_write, hwaddr access_len)
ac1970fb
AK
3758{
3759 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3760}
3761
0ce265ff
PB
3762#define ARG1_DECL AddressSpace *as
3763#define ARG1 as
3764#define SUFFIX
3765#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3766#define RCU_READ_LOCK(...) rcu_read_lock()
3767#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3768#include "memory_ldst.inc.c"
1e78bcc1 3769
1f4e496e
PB
3770int64_t address_space_cache_init(MemoryRegionCache *cache,
3771 AddressSpace *as,
3772 hwaddr addr,
3773 hwaddr len,
3774 bool is_write)
3775{
48564041
PB
3776 AddressSpaceDispatch *d;
3777 hwaddr l;
3778 MemoryRegion *mr;
3779
3780 assert(len > 0);
3781
3782 l = len;
3783 cache->fv = address_space_get_flatview(as);
3784 d = flatview_to_dispatch(cache->fv);
3785 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3786
3787 mr = cache->mrs.mr;
3788 memory_region_ref(mr);
3789 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3790 /* We don't care about the memory attributes here as we're only
3791 * doing this if we found actual RAM, which behaves the same
3792 * regardless of attributes; so UNSPECIFIED is fine.
3793 */
48564041 3794 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3795 cache->xlat, l, is_write,
3796 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3797 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3798 } else {
3799 cache->ptr = NULL;
3800 }
3801
3802 cache->len = l;
3803 cache->is_write = is_write;
3804 return l;
1f4e496e
PB
3805}
3806
3807void address_space_cache_invalidate(MemoryRegionCache *cache,
3808 hwaddr addr,
3809 hwaddr access_len)
3810{
48564041
PB
3811 assert(cache->is_write);
3812 if (likely(cache->ptr)) {
3813 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3814 }
1f4e496e
PB
3815}
3816
3817void address_space_cache_destroy(MemoryRegionCache *cache)
3818{
48564041
PB
3819 if (!cache->mrs.mr) {
3820 return;
3821 }
3822
3823 if (xen_enabled()) {
3824 xen_invalidate_map_cache_entry(cache->ptr);
3825 }
3826 memory_region_unref(cache->mrs.mr);
3827 flatview_unref(cache->fv);
3828 cache->mrs.mr = NULL;
3829 cache->fv = NULL;
3830}
3831
3832/* Called from RCU critical section. This function has the same
3833 * semantics as address_space_translate, but it only works on a
3834 * predefined range of a MemoryRegion that was mapped with
3835 * address_space_cache_init.
3836 */
3837static inline MemoryRegion *address_space_translate_cached(
3838 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3839 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3840{
3841 MemoryRegionSection section;
3842 MemoryRegion *mr;
3843 IOMMUMemoryRegion *iommu_mr;
3844 AddressSpace *target_as;
3845
3846 assert(!cache->ptr);
3847 *xlat = addr + cache->xlat;
3848
3849 mr = cache->mrs.mr;
3850 iommu_mr = memory_region_get_iommu(mr);
3851 if (!iommu_mr) {
3852 /* MMIO region. */
3853 return mr;
3854 }
3855
3856 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3857 NULL, is_write, true,
2f7b009c 3858 &target_as, attrs);
48564041
PB
3859 return section.mr;
3860}
3861
3862/* Called from RCU critical section. address_space_read_cached uses this
3863 * out of line function when the target is an MMIO or IOMMU region.
3864 */
3865void
3866address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3867 void *buf, hwaddr len)
48564041
PB
3868{
3869 hwaddr addr1, l;
3870 MemoryRegion *mr;
3871
3872 l = len;
bc6b1cec
PM
3873 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3874 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3875 flatview_read_continue(cache->fv,
3876 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3877 addr1, l, mr);
3878}
3879
3880/* Called from RCU critical section. address_space_write_cached uses this
3881 * out of line function when the target is an MMIO or IOMMU region.
3882 */
3883void
3884address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3885 const void *buf, hwaddr len)
48564041
PB
3886{
3887 hwaddr addr1, l;
3888 MemoryRegion *mr;
3889
3890 l = len;
bc6b1cec
PM
3891 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3892 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3893 flatview_write_continue(cache->fv,
3894 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3895 addr1, l, mr);
1f4e496e
PB
3896}
3897
3898#define ARG1_DECL MemoryRegionCache *cache
3899#define ARG1 cache
48564041
PB
3900#define SUFFIX _cached_slow
3901#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3902#define RCU_READ_LOCK() ((void)0)
3903#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3904#include "memory_ldst.inc.c"
3905
5e2972fd 3906/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3907int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3908 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3909{
a8170e5e 3910 hwaddr phys_addr;
0c249ff7 3911 target_ulong l, page;
13eb76e0 3912
79ca7a1b 3913 cpu_synchronize_state(cpu);
13eb76e0 3914 while (len > 0) {
5232e4c7
PM
3915 int asidx;
3916 MemTxAttrs attrs;
3917
13eb76e0 3918 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3919 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3920 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3921 /* if no physical page mapped, return an error */
3922 if (phys_addr == -1)
3923 return -1;
3924 l = (page + TARGET_PAGE_SIZE) - addr;
3925 if (l > len)
3926 l = len;
5e2972fd 3927 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3928 if (is_write) {
3c8133f9 3929 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3930 attrs, buf, l);
2e38847b 3931 } else {
5232e4c7 3932 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3933 attrs, buf, l, 0);
2e38847b 3934 }
13eb76e0
FB
3935 len -= l;
3936 buf += l;
3937 addr += l;
3938 }
3939 return 0;
3940}
038629a6
DDAG
3941
3942/*
3943 * Allows code that needs to deal with migration bitmaps etc to still be built
3944 * target independent.
3945 */
20afaed9 3946size_t qemu_target_page_size(void)
038629a6 3947{
20afaed9 3948 return TARGET_PAGE_SIZE;
038629a6
DDAG
3949}
3950
46d702b1
JQ
3951int qemu_target_page_bits(void)
3952{
3953 return TARGET_PAGE_BITS;
3954}
3955
3956int qemu_target_page_bits_min(void)
3957{
3958 return TARGET_PAGE_BITS_MIN;
3959}
a68fe89c 3960#endif
13eb76e0 3961
98ed8ecf 3962bool target_words_bigendian(void)
8e4a424b
BS
3963{
3964#if defined(TARGET_WORDS_BIGENDIAN)
3965 return true;
3966#else
3967 return false;
3968#endif
3969}
3970
76f35538 3971#ifndef CONFIG_USER_ONLY
a8170e5e 3972bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3973{
5c8a00ce 3974 MemoryRegion*mr;
149f54b5 3975 hwaddr l = 1;
41063e1e 3976 bool res;
76f35538 3977
41063e1e 3978 rcu_read_lock();
5c8a00ce 3979 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3980 phys_addr, &phys_addr, &l, false,
3981 MEMTXATTRS_UNSPECIFIED);
76f35538 3982
41063e1e
PB
3983 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3984 rcu_read_unlock();
3985 return res;
76f35538 3986}
bd2fa51f 3987
e3807054 3988int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3989{
3990 RAMBlock *block;
e3807054 3991 int ret = 0;
bd2fa51f 3992
0dc3f44a 3993 rcu_read_lock();
99e15582 3994 RAMBLOCK_FOREACH(block) {
754cb9c0 3995 ret = func(block, opaque);
e3807054
DDAG
3996 if (ret) {
3997 break;
3998 }
bd2fa51f 3999 }
0dc3f44a 4000 rcu_read_unlock();
e3807054 4001 return ret;
bd2fa51f 4002}
d3a5038c
DDAG
4003
4004/*
4005 * Unmap pages of memory from start to start+length such that
4006 * they a) read as 0, b) Trigger whatever fault mechanism
4007 * the OS provides for postcopy.
4008 * The pages must be unmapped by the end of the function.
4009 * Returns: 0 on success, none-0 on failure
4010 *
4011 */
4012int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4013{
4014 int ret = -1;
4015
4016 uint8_t *host_startaddr = rb->host + start;
4017
4018 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4019 error_report("ram_block_discard_range: Unaligned start address: %p",
4020 host_startaddr);
4021 goto err;
4022 }
4023
4024 if ((start + length) <= rb->used_length) {
db144f70 4025 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4026 uint8_t *host_endaddr = host_startaddr + length;
4027 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4028 error_report("ram_block_discard_range: Unaligned end address: %p",
4029 host_endaddr);
4030 goto err;
4031 }
4032
4033 errno = ENOTSUP; /* If we are missing MADVISE etc */
4034
db144f70
DDAG
4035 /* The logic here is messy;
4036 * madvise DONTNEED fails for hugepages
4037 * fallocate works on hugepages and shmem
4038 */
4039 need_madvise = (rb->page_size == qemu_host_page_size);
4040 need_fallocate = rb->fd != -1;
4041 if (need_fallocate) {
4042 /* For a file, this causes the area of the file to be zero'd
4043 * if read, and for hugetlbfs also causes it to be unmapped
4044 * so a userfault will trigger.
e2fa71f5
DDAG
4045 */
4046#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4047 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4048 start, length);
db144f70
DDAG
4049 if (ret) {
4050 ret = -errno;
4051 error_report("ram_block_discard_range: Failed to fallocate "
4052 "%s:%" PRIx64 " +%zx (%d)",
4053 rb->idstr, start, length, ret);
4054 goto err;
4055 }
4056#else
4057 ret = -ENOSYS;
4058 error_report("ram_block_discard_range: fallocate not available/file"
4059 "%s:%" PRIx64 " +%zx (%d)",
4060 rb->idstr, start, length, ret);
4061 goto err;
e2fa71f5
DDAG
4062#endif
4063 }
db144f70
DDAG
4064 if (need_madvise) {
4065 /* For normal RAM this causes it to be unmapped,
4066 * for shared memory it causes the local mapping to disappear
4067 * and to fall back on the file contents (which we just
4068 * fallocate'd away).
4069 */
4070#if defined(CONFIG_MADVISE)
4071 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4072 if (ret) {
4073 ret = -errno;
4074 error_report("ram_block_discard_range: Failed to discard range "
4075 "%s:%" PRIx64 " +%zx (%d)",
4076 rb->idstr, start, length, ret);
4077 goto err;
4078 }
4079#else
4080 ret = -ENOSYS;
4081 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4082 "%s:%" PRIx64 " +%zx (%d)",
4083 rb->idstr, start, length, ret);
db144f70
DDAG
4084 goto err;
4085#endif
d3a5038c 4086 }
db144f70
DDAG
4087 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4088 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4089 } else {
4090 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4091 "/%zx/" RAM_ADDR_FMT")",
4092 rb->idstr, start, length, rb->used_length);
4093 }
4094
4095err:
4096 return ret;
4097}
4098
a4de8552
JH
4099bool ramblock_is_pmem(RAMBlock *rb)
4100{
4101 return rb->flags & RAM_PMEM;
4102}
4103
ec3f8c99 4104#endif
a0be0c58
YZ
4105
4106void page_size_init(void)
4107{
4108 /* NOTE: we can always suppose that qemu_host_page_size >=
4109 TARGET_PAGE_SIZE */
a0be0c58
YZ
4110 if (qemu_host_page_size == 0) {
4111 qemu_host_page_size = qemu_real_host_page_size;
4112 }
4113 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4114 qemu_host_page_size = TARGET_PAGE_SIZE;
4115 }
4116 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4117}
5e8fd947
AK
4118
4119#if !defined(CONFIG_USER_ONLY)
4120
b6b71cb5 4121static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4122{
4123 if (start == end - 1) {
b6b71cb5 4124 qemu_printf("\t%3d ", start);
5e8fd947 4125 } else {
b6b71cb5 4126 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4127 }
b6b71cb5 4128 qemu_printf(" skip=%d ", skip);
5e8fd947 4129 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4130 qemu_printf(" ptr=NIL");
5e8fd947 4131 } else if (!skip) {
b6b71cb5 4132 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4133 } else {
b6b71cb5 4134 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4135 }
b6b71cb5 4136 qemu_printf("\n");
5e8fd947
AK
4137}
4138
4139#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4140 int128_sub((size), int128_one())) : 0)
4141
b6b71cb5 4142void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4143{
4144 int i;
4145
b6b71cb5
MA
4146 qemu_printf(" Dispatch\n");
4147 qemu_printf(" Physical sections\n");
5e8fd947
AK
4148
4149 for (i = 0; i < d->map.sections_nb; ++i) {
4150 MemoryRegionSection *s = d->map.sections + i;
4151 const char *names[] = { " [unassigned]", " [not dirty]",
4152 " [ROM]", " [watch]" };
4153
b6b71cb5
MA
4154 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4155 " %s%s%s%s%s",
5e8fd947
AK
4156 i,
4157 s->offset_within_address_space,
4158 s->offset_within_address_space + MR_SIZE(s->mr->size),
4159 s->mr->name ? s->mr->name : "(noname)",
4160 i < ARRAY_SIZE(names) ? names[i] : "",
4161 s->mr == root ? " [ROOT]" : "",
4162 s == d->mru_section ? " [MRU]" : "",
4163 s->mr->is_iommu ? " [iommu]" : "");
4164
4165 if (s->mr->alias) {
b6b71cb5 4166 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4167 s->mr->alias->name : "noname");
4168 }
b6b71cb5 4169 qemu_printf("\n");
5e8fd947
AK
4170 }
4171
b6b71cb5 4172 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4173 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4174 for (i = 0; i < d->map.nodes_nb; ++i) {
4175 int j, jprev;
4176 PhysPageEntry prev;
4177 Node *n = d->map.nodes + i;
4178
b6b71cb5 4179 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4180
4181 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4182 PhysPageEntry *pe = *n + j;
4183
4184 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4185 continue;
4186 }
4187
b6b71cb5 4188 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4189
4190 jprev = j;
4191 prev = *pe;
4192 }
4193
4194 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4195 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4196 }
4197 }
4198}
4199
4200#endif