]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
target/i386: Return 'indefinite integer value' for invalid SSE fp->int conversions
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3 45#include "exec/memory.h"
df43d49c 46#include "exec/ioport.h"
741da0d3 47#include "sysemu/dma.h"
b58c5c2d 48#include "sysemu/hostmem.h"
79ca7a1b 49#include "sysemu/hw_accel.h"
741da0d3 50#include "exec/address-spaces.h"
9c17d615 51#include "sysemu/xen-mapcache.h"
0ab8ed18 52#include "trace-root.h"
d3a5038c 53
e2fa71f5 54#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
e2eef170 93#endif
9fa3e853 94
20bccb82
PM
95#ifdef TARGET_PAGE_BITS_VARY
96int target_page_bits;
97bool target_page_bits_decided;
98#endif
99
f481ee2d
PB
100CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
6a00d601
FB
102/* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
f240eb6f 104__thread CPUState *current_cpu;
2e70f6ef 105/* 0 = Do not count executed instructions.
bf20dc07 106 1 = Precise instruction counting.
2e70f6ef 107 2 = Adaptive rate instruction counting. */
5708fc66 108int use_icount;
6a00d601 109
a0be0c58
YZ
110uintptr_t qemu_host_page_size;
111intptr_t qemu_host_page_mask;
a0be0c58 112
20bccb82
PM
113bool set_preferred_target_page_bits(int bits)
114{
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120#ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128#endif
129 return true;
130}
131
e2eef170 132#if !defined(CONFIG_USER_ONLY)
4346ae3e 133
20bccb82
PM
134static void finalize_target_page_bits(void)
135{
136#ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141#endif
142}
143
1db8abb1
PB
144typedef struct PhysPageEntry PhysPageEntry;
145
146struct PhysPageEntry {
9736e55b 147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 148 uint32_t skip : 6;
9736e55b 149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 150 uint32_t ptr : 26;
1db8abb1
PB
151};
152
8b795765
MT
153#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
03f49957 155/* Size of the L2 (and L3, etc) page tables. */
57271d63 156#define ADDR_SPACE_BITS 64
03f49957 157
026736ce 158#define P_L2_BITS 9
03f49957
PB
159#define P_L2_SIZE (1 << P_L2_BITS)
160
161#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 164
53cb28cb 165typedef struct PhysPageMap {
79e2b9ae
PB
166 struct rcu_head rcu;
167
53cb28cb
MA
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174} PhysPageMap;
175
1db8abb1 176struct AddressSpaceDispatch {
729633c2 177 MemoryRegionSection *mru_section;
1db8abb1
PB
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
53cb28cb 182 PhysPageMap map;
1db8abb1
PB
183};
184
90260c6c
JK
185#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186typedef struct subpage_t {
187 MemoryRegion iomem;
16620684 188 FlatView *fv;
90260c6c 189 hwaddr base;
2615fabd 190 uint16_t sub_section[];
90260c6c
JK
191} subpage_t;
192
b41aac4f
LPF
193#define PHYS_SECTION_UNASSIGNED 0
194#define PHYS_SECTION_NOTDIRTY 1
195#define PHYS_SECTION_ROM 2
196#define PHYS_SECTION_WATCH 3
5312bd8b 197
e2eef170 198static void io_mem_init(void);
62152b8a 199static void memory_map_init(void);
09daed84 200static void tcg_commit(MemoryListener *listener);
e2eef170 201
1ec9b909 202static MemoryRegion io_mem_watch;
32857f4d
PM
203
204/**
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
210 */
211struct CPUAddressSpace {
212 CPUState *cpu;
213 AddressSpace *as;
214 struct AddressSpaceDispatch *memory_dispatch;
215 MemoryListener tcg_as_listener;
216};
217
8deaf12c
GH
218struct DirtyBitmapSnapshot {
219 ram_addr_t start;
220 ram_addr_t end;
221 unsigned long dirty[];
222};
223
6658ffb8 224#endif
fd6ce8f6 225
6d9a1304 226#if !defined(CONFIG_USER_ONLY)
d6f2ea22 227
53cb28cb 228static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 229{
101420b8 230 static unsigned alloc_hint = 16;
53cb28cb 231 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 232 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
234 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 235 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 236 }
f7bf5461
AK
237}
238
db94604b 239static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
240{
241 unsigned i;
8b795765 242 uint32_t ret;
db94604b
PB
243 PhysPageEntry e;
244 PhysPageEntry *p;
f7bf5461 245
53cb28cb 246 ret = map->nodes_nb++;
db94604b 247 p = map->nodes[ret];
f7bf5461 248 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 249 assert(ret != map->nodes_nb_alloc);
db94604b
PB
250
251 e.skip = leaf ? 0 : 1;
252 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 253 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 254 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 255 }
f7bf5461 256 return ret;
d6f2ea22
AK
257}
258
53cb28cb
MA
259static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
260 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 261 int level)
f7bf5461
AK
262{
263 PhysPageEntry *p;
03f49957 264 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 265
9736e55b 266 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 267 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 268 }
db94604b 269 p = map->nodes[lp->ptr];
03f49957 270 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 271
03f49957 272 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 273 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 274 lp->skip = 0;
c19e8800 275 lp->ptr = leaf;
07f07b31
AK
276 *index += step;
277 *nb -= step;
2999097b 278 } else {
53cb28cb 279 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
280 }
281 ++lp;
f7bf5461
AK
282 }
283}
284
ac1970fb 285static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 286 hwaddr index, hwaddr nb,
2999097b 287 uint16_t leaf)
f7bf5461 288{
2999097b 289 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 290 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 291
53cb28cb 292 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
293}
294
b35ba30f
MT
295/* Compact a non leaf page entry. Simply detect that the entry has a single child,
296 * and update our entry so we can skip it and go directly to the destination.
297 */
efee678d 298static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
299{
300 unsigned valid_ptr = P_L2_SIZE;
301 int valid = 0;
302 PhysPageEntry *p;
303 int i;
304
305 if (lp->ptr == PHYS_MAP_NODE_NIL) {
306 return;
307 }
308
309 p = nodes[lp->ptr];
310 for (i = 0; i < P_L2_SIZE; i++) {
311 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
312 continue;
313 }
314
315 valid_ptr = i;
316 valid++;
317 if (p[i].skip) {
efee678d 318 phys_page_compact(&p[i], nodes);
b35ba30f
MT
319 }
320 }
321
322 /* We can only compress if there's only one child. */
323 if (valid != 1) {
324 return;
325 }
326
327 assert(valid_ptr < P_L2_SIZE);
328
329 /* Don't compress if it won't fit in the # of bits we have. */
330 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
331 return;
332 }
333
334 lp->ptr = p[valid_ptr].ptr;
335 if (!p[valid_ptr].skip) {
336 /* If our only child is a leaf, make this a leaf. */
337 /* By design, we should have made this node a leaf to begin with so we
338 * should never reach here.
339 * But since it's so simple to handle this, let's do it just in case we
340 * change this rule.
341 */
342 lp->skip = 0;
343 } else {
344 lp->skip += p[valid_ptr].skip;
345 }
346}
347
8629d3fc 348void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 349{
b35ba30f 350 if (d->phys_map.skip) {
efee678d 351 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
352 }
353}
354
29cb533d
FZ
355static inline bool section_covers_addr(const MemoryRegionSection *section,
356 hwaddr addr)
357{
358 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
359 * the section must cover the entire address space.
360 */
258dfaaa 361 return int128_gethi(section->size) ||
29cb533d 362 range_covers_byte(section->offset_within_address_space,
258dfaaa 363 int128_getlo(section->size), addr);
29cb533d
FZ
364}
365
003a0cf2 366static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 367{
003a0cf2
PX
368 PhysPageEntry lp = d->phys_map, *p;
369 Node *nodes = d->map.nodes;
370 MemoryRegionSection *sections = d->map.sections;
97115a8d 371 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 372 int i;
f1f6e3b8 373
9736e55b 374 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 375 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 376 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 377 }
9affd6fc 378 p = nodes[lp.ptr];
03f49957 379 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 380 }
b35ba30f 381
29cb533d 382 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
383 return &sections[lp.ptr];
384 } else {
385 return &sections[PHYS_SECTION_UNASSIGNED];
386 }
f3705d53
AK
387}
388
79e2b9ae 389/* Called from RCU critical section */
c7086b4a 390static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
391 hwaddr addr,
392 bool resolve_subpage)
9f029603 393{
729633c2 394 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
395 subpage_t *subpage;
396
07c114bb
PB
397 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
398 !section_covers_addr(section, addr)) {
003a0cf2 399 section = phys_page_find(d, addr);
07c114bb 400 atomic_set(&d->mru_section, section);
729633c2 401 }
90260c6c
JK
402 if (resolve_subpage && section->mr->subpage) {
403 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 404 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
405 }
406 return section;
9f029603
JK
407}
408
79e2b9ae 409/* Called from RCU critical section */
90260c6c 410static MemoryRegionSection *
c7086b4a 411address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 412 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
413{
414 MemoryRegionSection *section;
965eb2fc 415 MemoryRegion *mr;
a87f3954 416 Int128 diff;
149f54b5 417
c7086b4a 418 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
419 /* Compute offset within MemoryRegionSection */
420 addr -= section->offset_within_address_space;
421
422 /* Compute offset within MemoryRegion */
423 *xlat = addr + section->offset_within_region;
424
965eb2fc 425 mr = section->mr;
b242e0e0
PB
426
427 /* MMIO registers can be expected to perform full-width accesses based only
428 * on their address, without considering adjacent registers that could
429 * decode to completely different MemoryRegions. When such registers
430 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
431 * regions overlap wildly. For this reason we cannot clamp the accesses
432 * here.
433 *
434 * If the length is small (as is the case for address_space_ldl/stl),
435 * everything works fine. If the incoming length is large, however,
436 * the caller really has to do the clamping through memory_access_size.
437 */
965eb2fc 438 if (memory_region_is_ram(mr)) {
e4a511f8 439 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
440 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
441 }
149f54b5
PB
442 return section;
443}
90260c6c 444
a411c84b
PB
445/**
446 * address_space_translate_iommu - translate an address through an IOMMU
447 * memory region and then through the target address space.
448 *
449 * @iommu_mr: the IOMMU memory region that we start the translation from
450 * @addr: the address to be translated through the MMU
451 * @xlat: the translated address offset within the destination memory region.
452 * It cannot be %NULL.
453 * @plen_out: valid read/write length of the translated address. It
454 * cannot be %NULL.
455 * @page_mask_out: page mask for the translated address. This
456 * should only be meaningful for IOMMU translated
457 * addresses, since there may be huge pages that this bit
458 * would tell. It can be %NULL if we don't care about it.
459 * @is_write: whether the translation operation is for write
460 * @is_mmio: whether this can be MMIO, set true if it can
461 * @target_as: the address space targeted by the IOMMU
2f7b009c 462 * @attrs: transaction attributes
a411c84b
PB
463 *
464 * This function is called from RCU critical section. It is the common
465 * part of flatview_do_translate and address_space_translate_cached.
466 */
467static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
468 hwaddr *xlat,
469 hwaddr *plen_out,
470 hwaddr *page_mask_out,
471 bool is_write,
472 bool is_mmio,
2f7b009c
PM
473 AddressSpace **target_as,
474 MemTxAttrs attrs)
a411c84b
PB
475{
476 MemoryRegionSection *section;
477 hwaddr page_mask = (hwaddr)-1;
478
479 do {
480 hwaddr addr = *xlat;
481 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
482 int iommu_idx = 0;
483 IOMMUTLBEntry iotlb;
484
485 if (imrc->attrs_to_index) {
486 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
487 }
488
489 iotlb = imrc->translate(iommu_mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
491
492 if (!(iotlb.perm & (1 << is_write))) {
493 goto unassigned;
494 }
495
496 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
497 | (addr & iotlb.addr_mask));
498 page_mask &= iotlb.addr_mask;
499 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
500 *target_as = iotlb.target_as;
501
502 section = address_space_translate_internal(
503 address_space_to_dispatch(iotlb.target_as), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 } while (unlikely(iommu_mr));
508
509 if (page_mask_out) {
510 *page_mask_out = page_mask;
511 }
512 return *section;
513
514unassigned:
515 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516}
517
d5e5fafd
PX
518/**
519 * flatview_do_translate - translate an address in FlatView
520 *
521 * @fv: the flat view that we want to translate on
522 * @addr: the address to be translated in above address space
523 * @xlat: the translated address offset within memory region. It
524 * cannot be @NULL.
525 * @plen_out: valid read/write length of the translated address. It
526 * can be @NULL when we don't care about it.
527 * @page_mask_out: page mask for the translated address. This
528 * should only be meaningful for IOMMU translated
529 * addresses, since there may be huge pages that this bit
530 * would tell. It can be @NULL if we don't care about it.
531 * @is_write: whether the translation operation is for write
532 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 533 * @target_as: the address space targeted by the IOMMU
49e14aa8 534 * @attrs: memory transaction attributes
d5e5fafd
PX
535 *
536 * This function is called from RCU critical section
537 */
16620684
AK
538static MemoryRegionSection flatview_do_translate(FlatView *fv,
539 hwaddr addr,
540 hwaddr *xlat,
d5e5fafd
PX
541 hwaddr *plen_out,
542 hwaddr *page_mask_out,
16620684
AK
543 bool is_write,
544 bool is_mmio,
49e14aa8
PM
545 AddressSpace **target_as,
546 MemTxAttrs attrs)
052c8fa9 547{
052c8fa9 548 MemoryRegionSection *section;
3df9d748 549 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
550 hwaddr plen = (hwaddr)(-1);
551
ad2804d9
PB
552 if (!plen_out) {
553 plen_out = &plen;
d5e5fafd 554 }
052c8fa9 555
a411c84b
PB
556 section = address_space_translate_internal(
557 flatview_to_dispatch(fv), addr, xlat,
558 plen_out, is_mmio);
052c8fa9 559
a411c84b
PB
560 iommu_mr = memory_region_get_iommu(section->mr);
561 if (unlikely(iommu_mr)) {
562 return address_space_translate_iommu(iommu_mr, xlat,
563 plen_out, page_mask_out,
564 is_write, is_mmio,
2f7b009c 565 target_as, attrs);
052c8fa9 566 }
d5e5fafd 567 if (page_mask_out) {
a411c84b
PB
568 /* Not behind an IOMMU, use default page size. */
569 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
570 }
571
a764040c 572 return *section;
052c8fa9
JW
573}
574
575/* Called from RCU critical section */
a764040c 576IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 577 bool is_write, MemTxAttrs attrs)
90260c6c 578{
a764040c 579 MemoryRegionSection section;
076a93d7 580 hwaddr xlat, page_mask;
30951157 581
076a93d7
PX
582 /*
583 * This can never be MMIO, and we don't really care about plen,
584 * but page mask.
585 */
586 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
587 NULL, &page_mask, is_write, false, &as,
588 attrs);
30951157 589
a764040c
PX
590 /* Illegal translation */
591 if (section.mr == &io_mem_unassigned) {
592 goto iotlb_fail;
593 }
30951157 594
a764040c
PX
595 /* Convert memory region offset into address space offset */
596 xlat += section.offset_within_address_space -
597 section.offset_within_region;
598
a764040c 599 return (IOMMUTLBEntry) {
e76bb18f 600 .target_as = as,
076a93d7
PX
601 .iova = addr & ~page_mask,
602 .translated_addr = xlat & ~page_mask,
603 .addr_mask = page_mask,
a764040c
PX
604 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
605 .perm = IOMMU_RW,
606 };
607
608iotlb_fail:
609 return (IOMMUTLBEntry) {0};
610}
611
612/* Called from RCU critical section */
16620684 613MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
614 hwaddr *plen, bool is_write,
615 MemTxAttrs attrs)
a764040c
PX
616{
617 MemoryRegion *mr;
618 MemoryRegionSection section;
16620684 619 AddressSpace *as = NULL;
a764040c
PX
620
621 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 622 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 623 is_write, true, &as, attrs);
a764040c
PX
624 mr = section.mr;
625
fe680d0d 626 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 627 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 628 *plen = MIN(page, *plen);
a87f3954
PB
629 }
630
30951157 631 return mr;
90260c6c
JK
632}
633
1f871c5e
PM
634typedef struct TCGIOMMUNotifier {
635 IOMMUNotifier n;
636 MemoryRegion *mr;
637 CPUState *cpu;
638 int iommu_idx;
639 bool active;
640} TCGIOMMUNotifier;
641
642static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
643{
644 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
645
646 if (!notifier->active) {
647 return;
648 }
649 tlb_flush(notifier->cpu);
650 notifier->active = false;
651 /* We leave the notifier struct on the list to avoid reallocating it later.
652 * Generally the number of IOMMUs a CPU deals with will be small.
653 * In any case we can't unregister the iommu notifier from a notify
654 * callback.
655 */
656}
657
658static void tcg_register_iommu_notifier(CPUState *cpu,
659 IOMMUMemoryRegion *iommu_mr,
660 int iommu_idx)
661{
662 /* Make sure this CPU has an IOMMU notifier registered for this
663 * IOMMU/IOMMU index combination, so that we can flush its TLB
664 * when the IOMMU tells us the mappings we've cached have changed.
665 */
666 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
667 TCGIOMMUNotifier *notifier;
668 int i;
669
670 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 671 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
672 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
673 break;
674 }
675 }
676 if (i == cpu->iommu_notifiers->len) {
677 /* Not found, add a new entry at the end of the array */
678 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
679 notifier = g_new0(TCGIOMMUNotifier, 1);
680 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
681
682 notifier->mr = mr;
683 notifier->iommu_idx = iommu_idx;
684 notifier->cpu = cpu;
685 /* Rather than trying to register interest in the specific part
686 * of the iommu's address space that we've accessed and then
687 * expand it later as subsequent accesses touch more of it, we
688 * just register interest in the whole thing, on the assumption
689 * that iommu reconfiguration will be rare.
690 */
691 iommu_notifier_init(&notifier->n,
692 tcg_iommu_unmap_notify,
693 IOMMU_NOTIFIER_UNMAP,
694 0,
695 HWADDR_MAX,
696 iommu_idx);
697 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
698 }
699
700 if (!notifier->active) {
701 notifier->active = true;
702 }
703}
704
705static void tcg_iommu_free_notifier_list(CPUState *cpu)
706{
707 /* Destroy the CPU's notifier list */
708 int i;
709 TCGIOMMUNotifier *notifier;
710
711 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 712 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 713 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 714 g_free(notifier);
1f871c5e
PM
715 }
716 g_array_free(cpu->iommu_notifiers, true);
717}
718
79e2b9ae 719/* Called from RCU critical section */
90260c6c 720MemoryRegionSection *
d7898cda 721address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
722 hwaddr *xlat, hwaddr *plen,
723 MemTxAttrs attrs, int *prot)
90260c6c 724{
30951157 725 MemoryRegionSection *section;
1f871c5e
PM
726 IOMMUMemoryRegion *iommu_mr;
727 IOMMUMemoryRegionClass *imrc;
728 IOMMUTLBEntry iotlb;
729 int iommu_idx;
f35e44e7 730 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 731
1f871c5e
PM
732 for (;;) {
733 section = address_space_translate_internal(d, addr, &addr, plen, false);
734
735 iommu_mr = memory_region_get_iommu(section->mr);
736 if (!iommu_mr) {
737 break;
738 }
739
740 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
741
742 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
743 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
744 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
745 * doesn't short-cut its translation table walk.
746 */
747 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
748 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
749 | (addr & iotlb.addr_mask));
750 /* Update the caller's prot bits to remove permissions the IOMMU
751 * is giving us a failure response for. If we get down to no
752 * permissions left at all we can give up now.
753 */
754 if (!(iotlb.perm & IOMMU_RO)) {
755 *prot &= ~(PAGE_READ | PAGE_EXEC);
756 }
757 if (!(iotlb.perm & IOMMU_WO)) {
758 *prot &= ~PAGE_WRITE;
759 }
760
761 if (!*prot) {
762 goto translate_fail;
763 }
764
765 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
766 }
30951157 767
3df9d748 768 assert(!memory_region_is_iommu(section->mr));
1f871c5e 769 *xlat = addr;
30951157 770 return section;
1f871c5e
PM
771
772translate_fail:
773 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 774}
5b6dd868 775#endif
fd6ce8f6 776
b170fce3 777#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
778
779static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 780{
259186a7 781 CPUState *cpu = opaque;
a513fe19 782
5b6dd868
BS
783 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
784 version_id is increased. */
259186a7 785 cpu->interrupt_request &= ~0x01;
d10eb08f 786 tlb_flush(cpu);
5b6dd868 787
15a356c4
PD
788 /* loadvm has just updated the content of RAM, bypassing the
789 * usual mechanisms that ensure we flush TBs for writes to
790 * memory we've translated code from. So we must flush all TBs,
791 * which will now be stale.
792 */
793 tb_flush(cpu);
794
5b6dd868 795 return 0;
a513fe19 796}
7501267e 797
6c3bff0e
PD
798static int cpu_common_pre_load(void *opaque)
799{
800 CPUState *cpu = opaque;
801
adee6424 802 cpu->exception_index = -1;
6c3bff0e
PD
803
804 return 0;
805}
806
807static bool cpu_common_exception_index_needed(void *opaque)
808{
809 CPUState *cpu = opaque;
810
adee6424 811 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
812}
813
814static const VMStateDescription vmstate_cpu_common_exception_index = {
815 .name = "cpu_common/exception_index",
816 .version_id = 1,
817 .minimum_version_id = 1,
5cd8cada 818 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
819 .fields = (VMStateField[]) {
820 VMSTATE_INT32(exception_index, CPUState),
821 VMSTATE_END_OF_LIST()
822 }
823};
824
bac05aa9
AS
825static bool cpu_common_crash_occurred_needed(void *opaque)
826{
827 CPUState *cpu = opaque;
828
829 return cpu->crash_occurred;
830}
831
832static const VMStateDescription vmstate_cpu_common_crash_occurred = {
833 .name = "cpu_common/crash_occurred",
834 .version_id = 1,
835 .minimum_version_id = 1,
836 .needed = cpu_common_crash_occurred_needed,
837 .fields = (VMStateField[]) {
838 VMSTATE_BOOL(crash_occurred, CPUState),
839 VMSTATE_END_OF_LIST()
840 }
841};
842
1a1562f5 843const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
844 .name = "cpu_common",
845 .version_id = 1,
846 .minimum_version_id = 1,
6c3bff0e 847 .pre_load = cpu_common_pre_load,
5b6dd868 848 .post_load = cpu_common_post_load,
35d08458 849 .fields = (VMStateField[]) {
259186a7
AF
850 VMSTATE_UINT32(halted, CPUState),
851 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 852 VMSTATE_END_OF_LIST()
6c3bff0e 853 },
5cd8cada
JQ
854 .subsections = (const VMStateDescription*[]) {
855 &vmstate_cpu_common_exception_index,
bac05aa9 856 &vmstate_cpu_common_crash_occurred,
5cd8cada 857 NULL
5b6dd868
BS
858 }
859};
1a1562f5 860
5b6dd868 861#endif
ea041c0e 862
38d8f5c8 863CPUState *qemu_get_cpu(int index)
ea041c0e 864{
bdc44640 865 CPUState *cpu;
ea041c0e 866
bdc44640 867 CPU_FOREACH(cpu) {
55e5c285 868 if (cpu->cpu_index == index) {
bdc44640 869 return cpu;
55e5c285 870 }
ea041c0e 871 }
5b6dd868 872
bdc44640 873 return NULL;
ea041c0e
FB
874}
875
09daed84 876#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
877void cpu_address_space_init(CPUState *cpu, int asidx,
878 const char *prefix, MemoryRegion *mr)
09daed84 879{
12ebc9a7 880 CPUAddressSpace *newas;
80ceb07a 881 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 882 char *as_name;
80ceb07a
PX
883
884 assert(mr);
87a621d8
PX
885 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
886 address_space_init(as, mr, as_name);
887 g_free(as_name);
12ebc9a7
PM
888
889 /* Target code should have set num_ases before calling us */
890 assert(asidx < cpu->num_ases);
891
56943e8c
PM
892 if (asidx == 0) {
893 /* address space 0 gets the convenience alias */
894 cpu->as = as;
895 }
896
12ebc9a7
PM
897 /* KVM cannot currently support multiple address spaces. */
898 assert(asidx == 0 || !kvm_enabled());
09daed84 899
12ebc9a7
PM
900 if (!cpu->cpu_ases) {
901 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 902 }
32857f4d 903
12ebc9a7
PM
904 newas = &cpu->cpu_ases[asidx];
905 newas->cpu = cpu;
906 newas->as = as;
56943e8c 907 if (tcg_enabled()) {
12ebc9a7
PM
908 newas->tcg_as_listener.commit = tcg_commit;
909 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 910 }
09daed84 911}
651a5bc0
PM
912
913AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
914{
915 /* Return the AddressSpace corresponding to the specified index */
916 return cpu->cpu_ases[asidx].as;
917}
09daed84
EI
918#endif
919
7bbc124e 920void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 921{
9dfeca7c
BR
922 CPUClass *cc = CPU_GET_CLASS(cpu);
923
267f685b 924 cpu_list_remove(cpu);
9dfeca7c
BR
925
926 if (cc->vmsd != NULL) {
927 vmstate_unregister(NULL, cc->vmsd, cpu);
928 }
929 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
930 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
931 }
1f871c5e
PM
932#ifndef CONFIG_USER_ONLY
933 tcg_iommu_free_notifier_list(cpu);
934#endif
1c59eb39
BR
935}
936
c7e002c5
FZ
937Property cpu_common_props[] = {
938#ifndef CONFIG_USER_ONLY
939 /* Create a memory property for softmmu CPU object,
940 * so users can wire up its memory. (This can't go in qom/cpu.c
941 * because that file is compiled only once for both user-mode
942 * and system builds.) The default if no link is set up is to use
943 * the system address space.
944 */
945 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
946 MemoryRegion *),
947#endif
948 DEFINE_PROP_END_OF_LIST(),
949};
950
39e329e3 951void cpu_exec_initfn(CPUState *cpu)
ea041c0e 952{
56943e8c 953 cpu->as = NULL;
12ebc9a7 954 cpu->num_ases = 0;
56943e8c 955
291135b5 956#ifndef CONFIG_USER_ONLY
291135b5 957 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
958 cpu->memory = system_memory;
959 object_ref(OBJECT(cpu->memory));
291135b5 960#endif
39e329e3
LV
961}
962
ce5b1bbf 963void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 964{
55c3ceef 965 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 966 static bool tcg_target_initialized;
291135b5 967
267f685b 968 cpu_list_add(cpu);
1bc7e522 969
2dda6354
EC
970 if (tcg_enabled() && !tcg_target_initialized) {
971 tcg_target_initialized = true;
55c3ceef
RH
972 cc->tcg_initialize();
973 }
5005e253 974 tlb_init(cpu);
55c3ceef 975
1bc7e522 976#ifndef CONFIG_USER_ONLY
e0d47944 977 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 978 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 979 }
b170fce3 980 if (cc->vmsd != NULL) {
741da0d3 981 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 982 }
1f871c5e 983
5601be3b 984 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 985#endif
ea041c0e
FB
986}
987
c1c8cfe5 988const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
989{
990 ObjectClass *oc;
991 CPUClass *cc;
992 gchar **model_pieces;
993 const char *cpu_type;
994
c1c8cfe5 995 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
996 if (!model_pieces[0]) {
997 error_report("-cpu option cannot be empty");
998 exit(1);
999 }
2278b939
IM
1000
1001 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1002 if (oc == NULL) {
1003 error_report("unable to find CPU model '%s'", model_pieces[0]);
1004 g_strfreev(model_pieces);
1005 exit(EXIT_FAILURE);
1006 }
1007
1008 cpu_type = object_class_get_name(oc);
1009 cc = CPU_CLASS(oc);
1010 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1011 g_strfreev(model_pieces);
1012 return cpu_type;
1013}
1014
c40d4792 1015#if defined(CONFIG_USER_ONLY)
8bca9a03 1016void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1017{
406bc339 1018 mmap_lock();
8bca9a03 1019 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1020 mmap_unlock();
1021}
8bca9a03
PB
1022
1023static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1024{
1025 tb_invalidate_phys_addr(pc);
1026}
406bc339 1027#else
8bca9a03
PB
1028void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1029{
1030 ram_addr_t ram_addr;
1031 MemoryRegion *mr;
1032 hwaddr l = 1;
1033
c40d4792
PB
1034 if (!tcg_enabled()) {
1035 return;
1036 }
1037
8bca9a03
PB
1038 rcu_read_lock();
1039 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1040 if (!(memory_region_is_ram(mr)
1041 || memory_region_is_romd(mr))) {
1042 rcu_read_unlock();
1043 return;
1044 }
1045 ram_addr = memory_region_get_ram_addr(mr) + addr;
1046 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1047 rcu_read_unlock();
1048}
1049
406bc339
PK
1050static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1051{
1052 MemTxAttrs attrs;
1053 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1054 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1055 if (phys != -1) {
1056 /* Locks grabbed by tb_invalidate_phys_addr */
1057 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1058 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1059 }
1e7855a5 1060}
406bc339 1061#endif
d720b93d 1062
c527ee8f 1063#if defined(CONFIG_USER_ONLY)
75a34036 1064void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1065
1066{
1067}
1068
3ee887e8
PM
1069int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1070 int flags)
1071{
1072 return -ENOSYS;
1073}
1074
1075void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1076{
1077}
1078
75a34036 1079int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1080 int flags, CPUWatchpoint **watchpoint)
1081{
1082 return -ENOSYS;
1083}
1084#else
6658ffb8 1085/* Add a watchpoint. */
75a34036 1086int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1087 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1088{
c0ce998e 1089 CPUWatchpoint *wp;
6658ffb8 1090
05068c0d 1091 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1092 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1093 error_report("tried to set invalid watchpoint at %"
1094 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1095 return -EINVAL;
1096 }
7267c094 1097 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1098
1099 wp->vaddr = addr;
05068c0d 1100 wp->len = len;
a1d1bb31
AL
1101 wp->flags = flags;
1102
2dc9f411 1103 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1104 if (flags & BP_GDB) {
1105 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1106 } else {
1107 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1108 }
6658ffb8 1109
31b030d4 1110 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1111
1112 if (watchpoint)
1113 *watchpoint = wp;
1114 return 0;
6658ffb8
PB
1115}
1116
a1d1bb31 1117/* Remove a specific watchpoint. */
75a34036 1118int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1119 int flags)
6658ffb8 1120{
a1d1bb31 1121 CPUWatchpoint *wp;
6658ffb8 1122
ff4700b0 1123 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1124 if (addr == wp->vaddr && len == wp->len
6e140f28 1125 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1126 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1127 return 0;
1128 }
1129 }
a1d1bb31 1130 return -ENOENT;
6658ffb8
PB
1131}
1132
a1d1bb31 1133/* Remove a specific watchpoint by reference. */
75a34036 1134void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1135{
ff4700b0 1136 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1137
31b030d4 1138 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1139
7267c094 1140 g_free(watchpoint);
a1d1bb31
AL
1141}
1142
1143/* Remove all matching watchpoints. */
75a34036 1144void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1145{
c0ce998e 1146 CPUWatchpoint *wp, *next;
a1d1bb31 1147
ff4700b0 1148 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1149 if (wp->flags & mask) {
1150 cpu_watchpoint_remove_by_ref(cpu, wp);
1151 }
c0ce998e 1152 }
7d03f82f 1153}
05068c0d
PM
1154
1155/* Return true if this watchpoint address matches the specified
1156 * access (ie the address range covered by the watchpoint overlaps
1157 * partially or completely with the address range covered by the
1158 * access).
1159 */
1160static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1161 vaddr addr,
1162 vaddr len)
1163{
1164 /* We know the lengths are non-zero, but a little caution is
1165 * required to avoid errors in the case where the range ends
1166 * exactly at the top of the address space and so addr + len
1167 * wraps round to zero.
1168 */
1169 vaddr wpend = wp->vaddr + wp->len - 1;
1170 vaddr addrend = addr + len - 1;
1171
1172 return !(addr > wpend || wp->vaddr > addrend);
1173}
1174
c527ee8f 1175#endif
7d03f82f 1176
a1d1bb31 1177/* Add a breakpoint. */
b3310ab3 1178int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1179 CPUBreakpoint **breakpoint)
4c3a88a2 1180{
c0ce998e 1181 CPUBreakpoint *bp;
3b46e624 1182
7267c094 1183 bp = g_malloc(sizeof(*bp));
4c3a88a2 1184
a1d1bb31
AL
1185 bp->pc = pc;
1186 bp->flags = flags;
1187
2dc9f411 1188 /* keep all GDB-injected breakpoints in front */
00b941e5 1189 if (flags & BP_GDB) {
f0c3c505 1190 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1191 } else {
f0c3c505 1192 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1193 }
3b46e624 1194
f0c3c505 1195 breakpoint_invalidate(cpu, pc);
a1d1bb31 1196
00b941e5 1197 if (breakpoint) {
a1d1bb31 1198 *breakpoint = bp;
00b941e5 1199 }
4c3a88a2 1200 return 0;
4c3a88a2
FB
1201}
1202
a1d1bb31 1203/* Remove a specific breakpoint. */
b3310ab3 1204int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1205{
a1d1bb31
AL
1206 CPUBreakpoint *bp;
1207
f0c3c505 1208 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1209 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1210 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1211 return 0;
1212 }
7d03f82f 1213 }
a1d1bb31 1214 return -ENOENT;
7d03f82f
EI
1215}
1216
a1d1bb31 1217/* Remove a specific breakpoint by reference. */
b3310ab3 1218void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1219{
f0c3c505
AF
1220 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1221
1222 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1223
7267c094 1224 g_free(breakpoint);
a1d1bb31
AL
1225}
1226
1227/* Remove all matching breakpoints. */
b3310ab3 1228void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1229{
c0ce998e 1230 CPUBreakpoint *bp, *next;
a1d1bb31 1231
f0c3c505 1232 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1233 if (bp->flags & mask) {
1234 cpu_breakpoint_remove_by_ref(cpu, bp);
1235 }
c0ce998e 1236 }
4c3a88a2
FB
1237}
1238
c33a346e
FB
1239/* enable or disable single step mode. EXCP_DEBUG is returned by the
1240 CPU loop after each instruction */
3825b28f 1241void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1242{
ed2803da
AF
1243 if (cpu->singlestep_enabled != enabled) {
1244 cpu->singlestep_enabled = enabled;
1245 if (kvm_enabled()) {
38e478ec 1246 kvm_update_guest_debug(cpu, 0);
ed2803da 1247 } else {
ccbb4d44 1248 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1249 /* XXX: only flush what is necessary */
bbd77c18 1250 tb_flush(cpu);
e22a25c9 1251 }
c33a346e 1252 }
c33a346e
FB
1253}
1254
a47dddd7 1255void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1256{
1257 va_list ap;
493ae1f0 1258 va_list ap2;
7501267e
FB
1259
1260 va_start(ap, fmt);
493ae1f0 1261 va_copy(ap2, ap);
7501267e
FB
1262 fprintf(stderr, "qemu: fatal: ");
1263 vfprintf(stderr, fmt, ap);
1264 fprintf(stderr, "\n");
90c84c56 1265 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1266 if (qemu_log_separate()) {
1ee73216 1267 qemu_log_lock();
93fcfe39
AL
1268 qemu_log("qemu: fatal: ");
1269 qemu_log_vprintf(fmt, ap2);
1270 qemu_log("\n");
a0762859 1271 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1272 qemu_log_flush();
1ee73216 1273 qemu_log_unlock();
93fcfe39 1274 qemu_log_close();
924edcae 1275 }
493ae1f0 1276 va_end(ap2);
f9373291 1277 va_end(ap);
7615936e 1278 replay_finish();
fd052bf6
RV
1279#if defined(CONFIG_USER_ONLY)
1280 {
1281 struct sigaction act;
1282 sigfillset(&act.sa_mask);
1283 act.sa_handler = SIG_DFL;
8347c185 1284 act.sa_flags = 0;
fd052bf6
RV
1285 sigaction(SIGABRT, &act, NULL);
1286 }
1287#endif
7501267e
FB
1288 abort();
1289}
1290
0124311e 1291#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1292/* Called from RCU critical section */
041603fe
PB
1293static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1294{
1295 RAMBlock *block;
1296
43771539 1297 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1298 if (block && addr - block->offset < block->max_length) {
68851b98 1299 return block;
041603fe 1300 }
99e15582 1301 RAMBLOCK_FOREACH(block) {
9b8424d5 1302 if (addr - block->offset < block->max_length) {
041603fe
PB
1303 goto found;
1304 }
1305 }
1306
1307 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1308 abort();
1309
1310found:
43771539
PB
1311 /* It is safe to write mru_block outside the iothread lock. This
1312 * is what happens:
1313 *
1314 * mru_block = xxx
1315 * rcu_read_unlock()
1316 * xxx removed from list
1317 * rcu_read_lock()
1318 * read mru_block
1319 * mru_block = NULL;
1320 * call_rcu(reclaim_ramblock, xxx);
1321 * rcu_read_unlock()
1322 *
1323 * atomic_rcu_set is not needed here. The block was already published
1324 * when it was placed into the list. Here we're just making an extra
1325 * copy of the pointer.
1326 */
041603fe
PB
1327 ram_list.mru_block = block;
1328 return block;
1329}
1330
a2f4d5be 1331static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1332{
9a13565d 1333 CPUState *cpu;
041603fe 1334 ram_addr_t start1;
a2f4d5be
JQ
1335 RAMBlock *block;
1336 ram_addr_t end;
1337
f28d0dfd 1338 assert(tcg_enabled());
a2f4d5be
JQ
1339 end = TARGET_PAGE_ALIGN(start + length);
1340 start &= TARGET_PAGE_MASK;
d24981d3 1341
0dc3f44a 1342 rcu_read_lock();
041603fe
PB
1343 block = qemu_get_ram_block(start);
1344 assert(block == qemu_get_ram_block(end - 1));
1240be24 1345 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1346 CPU_FOREACH(cpu) {
1347 tlb_reset_dirty(cpu, start1, length);
1348 }
0dc3f44a 1349 rcu_read_unlock();
d24981d3
JQ
1350}
1351
5579c7f3 1352/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1353bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1354 ram_addr_t length,
1355 unsigned client)
1ccde1cb 1356{
5b82b703 1357 DirtyMemoryBlocks *blocks;
03eebc9e 1358 unsigned long end, page;
5b82b703 1359 bool dirty = false;
077874e0
PX
1360 RAMBlock *ramblock;
1361 uint64_t mr_offset, mr_size;
03eebc9e
SH
1362
1363 if (length == 0) {
1364 return false;
1365 }
f23db169 1366
03eebc9e
SH
1367 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1368 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1369
1370 rcu_read_lock();
1371
1372 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
077874e0
PX
1373 ramblock = qemu_get_ram_block(start);
1374 /* Range sanity check on the ramblock */
1375 assert(start >= ramblock->offset &&
1376 start + length <= ramblock->offset + ramblock->used_length);
5b82b703
SH
1377
1378 while (page < end) {
1379 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1380 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1381 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1382
1383 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1384 offset, num);
1385 page += num;
1386 }
1387
077874e0
PX
1388 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1389 mr_size = (end - page) << TARGET_PAGE_BITS;
1390 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1391
5b82b703 1392 rcu_read_unlock();
03eebc9e
SH
1393
1394 if (dirty && tcg_enabled()) {
a2f4d5be 1395 tlb_reset_dirty_range_all(start, length);
5579c7f3 1396 }
03eebc9e
SH
1397
1398 return dirty;
1ccde1cb
FB
1399}
1400
8deaf12c 1401DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1402 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1403{
1404 DirtyMemoryBlocks *blocks;
5dea4079 1405 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1406 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1407 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1408 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1409 DirtyBitmapSnapshot *snap;
1410 unsigned long page, end, dest;
1411
1412 snap = g_malloc0(sizeof(*snap) +
1413 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1414 snap->start = first;
1415 snap->end = last;
1416
1417 page = first >> TARGET_PAGE_BITS;
1418 end = last >> TARGET_PAGE_BITS;
1419 dest = 0;
1420
1421 rcu_read_lock();
1422
1423 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1424
1425 while (page < end) {
1426 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1427 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1428 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1429
1430 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1431 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1432 offset >>= BITS_PER_LEVEL;
1433
1434 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1435 blocks->blocks[idx] + offset,
1436 num);
1437 page += num;
1438 dest += num >> BITS_PER_LEVEL;
1439 }
1440
1441 rcu_read_unlock();
1442
1443 if (tcg_enabled()) {
1444 tlb_reset_dirty_range_all(start, length);
1445 }
1446
077874e0
PX
1447 memory_region_clear_dirty_bitmap(mr, offset, length);
1448
8deaf12c
GH
1449 return snap;
1450}
1451
1452bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1453 ram_addr_t start,
1454 ram_addr_t length)
1455{
1456 unsigned long page, end;
1457
1458 assert(start >= snap->start);
1459 assert(start + length <= snap->end);
1460
1461 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1462 page = (start - snap->start) >> TARGET_PAGE_BITS;
1463
1464 while (page < end) {
1465 if (test_bit(page, snap->dirty)) {
1466 return true;
1467 }
1468 page++;
1469 }
1470 return false;
1471}
1472
79e2b9ae 1473/* Called from RCU critical section */
bb0e627a 1474hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1475 MemoryRegionSection *section,
1476 target_ulong vaddr,
1477 hwaddr paddr, hwaddr xlat,
1478 int prot,
1479 target_ulong *address)
e5548617 1480{
a8170e5e 1481 hwaddr iotlb;
e5548617
BS
1482 CPUWatchpoint *wp;
1483
cc5bea60 1484 if (memory_region_is_ram(section->mr)) {
e5548617 1485 /* Normal RAM. */
e4e69794 1486 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1487 if (!section->readonly) {
b41aac4f 1488 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1489 } else {
b41aac4f 1490 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1491 }
1492 } else {
0b8e2c10
PM
1493 AddressSpaceDispatch *d;
1494
16620684 1495 d = flatview_to_dispatch(section->fv);
0b8e2c10 1496 iotlb = section - d->map.sections;
149f54b5 1497 iotlb += xlat;
e5548617
BS
1498 }
1499
1500 /* Make accesses to pages with watchpoints go via the
1501 watchpoint trap routines. */
ff4700b0 1502 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1503 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1504 /* Avoid trapping reads of pages with a write breakpoint. */
1505 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1506 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1507 *address |= TLB_MMIO;
1508 break;
1509 }
1510 }
1511 }
1512
1513 return iotlb;
1514}
9fa3e853
FB
1515#endif /* defined(CONFIG_USER_ONLY) */
1516
e2eef170 1517#if !defined(CONFIG_USER_ONLY)
8da3ff18 1518
c227f099 1519static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1520 uint16_t section);
16620684 1521static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1522
06329cce 1523static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1524 qemu_anon_ram_alloc;
91138037
MA
1525
1526/*
1527 * Set a custom physical guest memory alloator.
1528 * Accelerators with unusual needs may need this. Hopefully, we can
1529 * get rid of it eventually.
1530 */
06329cce 1531void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1532{
1533 phys_mem_alloc = alloc;
1534}
1535
53cb28cb
MA
1536static uint16_t phys_section_add(PhysPageMap *map,
1537 MemoryRegionSection *section)
5312bd8b 1538{
68f3f65b
PB
1539 /* The physical section number is ORed with a page-aligned
1540 * pointer to produce the iotlb entries. Thus it should
1541 * never overflow into the page-aligned value.
1542 */
53cb28cb 1543 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1544
53cb28cb
MA
1545 if (map->sections_nb == map->sections_nb_alloc) {
1546 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1547 map->sections = g_renew(MemoryRegionSection, map->sections,
1548 map->sections_nb_alloc);
5312bd8b 1549 }
53cb28cb 1550 map->sections[map->sections_nb] = *section;
dfde4e6e 1551 memory_region_ref(section->mr);
53cb28cb 1552 return map->sections_nb++;
5312bd8b
AK
1553}
1554
058bc4b5
PB
1555static void phys_section_destroy(MemoryRegion *mr)
1556{
55b4e80b
DS
1557 bool have_sub_page = mr->subpage;
1558
dfde4e6e
PB
1559 memory_region_unref(mr);
1560
55b4e80b 1561 if (have_sub_page) {
058bc4b5 1562 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1563 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1564 g_free(subpage);
1565 }
1566}
1567
6092666e 1568static void phys_sections_free(PhysPageMap *map)
5312bd8b 1569{
9affd6fc
PB
1570 while (map->sections_nb > 0) {
1571 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1572 phys_section_destroy(section->mr);
1573 }
9affd6fc
PB
1574 g_free(map->sections);
1575 g_free(map->nodes);
5312bd8b
AK
1576}
1577
9950322a 1578static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1579{
9950322a 1580 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1581 subpage_t *subpage;
a8170e5e 1582 hwaddr base = section->offset_within_address_space
0f0cb164 1583 & TARGET_PAGE_MASK;
003a0cf2 1584 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1585 MemoryRegionSection subsection = {
1586 .offset_within_address_space = base,
052e87b0 1587 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1588 };
a8170e5e 1589 hwaddr start, end;
0f0cb164 1590
f3705d53 1591 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1592
f3705d53 1593 if (!(existing->mr->subpage)) {
16620684
AK
1594 subpage = subpage_init(fv, base);
1595 subsection.fv = fv;
0f0cb164 1596 subsection.mr = &subpage->iomem;
ac1970fb 1597 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1598 phys_section_add(&d->map, &subsection));
0f0cb164 1599 } else {
f3705d53 1600 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1601 }
1602 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1603 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1604 subpage_register(subpage, start, end,
1605 phys_section_add(&d->map, section));
0f0cb164
AK
1606}
1607
1608
9950322a 1609static void register_multipage(FlatView *fv,
052e87b0 1610 MemoryRegionSection *section)
33417e70 1611{
9950322a 1612 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1613 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1614 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1615 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1616 TARGET_PAGE_BITS));
dd81124b 1617
733d5ef5
PB
1618 assert(num_pages);
1619 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1620}
1621
494d1997
WY
1622/*
1623 * The range in *section* may look like this:
1624 *
1625 * |s|PPPPPPP|s|
1626 *
1627 * where s stands for subpage and P for page.
1628 */
8629d3fc 1629void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1630{
494d1997 1631 MemoryRegionSection remain = *section;
052e87b0 1632 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1633
494d1997
WY
1634 /* register first subpage */
1635 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1636 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1637 - remain.offset_within_address_space;
733d5ef5 1638
494d1997 1639 MemoryRegionSection now = remain;
052e87b0 1640 now.size = int128_min(int128_make64(left), now.size);
9950322a 1641 register_subpage(fv, &now);
494d1997
WY
1642 if (int128_eq(remain.size, now.size)) {
1643 return;
1644 }
052e87b0
PB
1645 remain.size = int128_sub(remain.size, now.size);
1646 remain.offset_within_address_space += int128_get64(now.size);
1647 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1648 }
1649
1650 /* register whole pages */
1651 if (int128_ge(remain.size, page_size)) {
1652 MemoryRegionSection now = remain;
1653 now.size = int128_and(now.size, int128_neg(page_size));
1654 register_multipage(fv, &now);
1655 if (int128_eq(remain.size, now.size)) {
1656 return;
69b67646 1657 }
494d1997
WY
1658 remain.size = int128_sub(remain.size, now.size);
1659 remain.offset_within_address_space += int128_get64(now.size);
1660 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1661 }
494d1997
WY
1662
1663 /* register last subpage */
1664 register_subpage(fv, &remain);
0f0cb164
AK
1665}
1666
62a2744c
SY
1667void qemu_flush_coalesced_mmio_buffer(void)
1668{
1669 if (kvm_enabled())
1670 kvm_flush_coalesced_mmio_buffer();
1671}
1672
b2a8658e
UD
1673void qemu_mutex_lock_ramlist(void)
1674{
1675 qemu_mutex_lock(&ram_list.mutex);
1676}
1677
1678void qemu_mutex_unlock_ramlist(void)
1679{
1680 qemu_mutex_unlock(&ram_list.mutex);
1681}
1682
be9b23c4
PX
1683void ram_block_dump(Monitor *mon)
1684{
1685 RAMBlock *block;
1686 char *psize;
1687
1688 rcu_read_lock();
1689 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1690 "Block Name", "PSize", "Offset", "Used", "Total");
1691 RAMBLOCK_FOREACH(block) {
1692 psize = size_to_str(block->page_size);
1693 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1694 " 0x%016" PRIx64 "\n", block->idstr, psize,
1695 (uint64_t)block->offset,
1696 (uint64_t)block->used_length,
1697 (uint64_t)block->max_length);
1698 g_free(psize);
1699 }
1700 rcu_read_unlock();
1701}
1702
9c607668
AK
1703#ifdef __linux__
1704/*
1705 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1706 * may or may not name the same files / on the same filesystem now as
1707 * when we actually open and map them. Iterate over the file
1708 * descriptors instead, and use qemu_fd_getpagesize().
1709 */
905b7ee4 1710static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1711{
9c607668
AK
1712 long *hpsize_min = opaque;
1713
1714 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1715 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1716 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1717
7d5489e6 1718 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1719 *hpsize_min = hpsize;
9c607668
AK
1720 }
1721 }
1722
1723 return 0;
1724}
1725
905b7ee4
DH
1726static int find_max_backend_pagesize(Object *obj, void *opaque)
1727{
1728 long *hpsize_max = opaque;
1729
1730 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1731 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1732 long hpsize = host_memory_backend_pagesize(backend);
1733
1734 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1735 *hpsize_max = hpsize;
1736 }
1737 }
1738
1739 return 0;
1740}
1741
1742/*
1743 * TODO: We assume right now that all mapped host memory backends are
1744 * used as RAM, however some might be used for different purposes.
1745 */
1746long qemu_minrampagesize(void)
9c607668
AK
1747{
1748 long hpsize = LONG_MAX;
1749 long mainrampagesize;
1750 Object *memdev_root;
1751
0de6e2a3 1752 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1753
1754 /* it's possible we have memory-backend objects with
1755 * hugepage-backed RAM. these may get mapped into system
1756 * address space via -numa parameters or memory hotplug
1757 * hooks. we want to take these into account, but we
1758 * also want to make sure these supported hugepage
1759 * sizes are applicable across the entire range of memory
1760 * we may boot from, so we take the min across all
1761 * backends, and assume normal pages in cases where a
1762 * backend isn't backed by hugepages.
1763 */
1764 memdev_root = object_resolve_path("/objects", NULL);
1765 if (memdev_root) {
905b7ee4 1766 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1767 }
1768 if (hpsize == LONG_MAX) {
1769 /* No additional memory regions found ==> Report main RAM page size */
1770 return mainrampagesize;
1771 }
1772
1773 /* If NUMA is disabled or the NUMA nodes are not backed with a
1774 * memory-backend, then there is at least one node using "normal" RAM,
1775 * so if its page size is smaller we have got to report that size instead.
1776 */
1777 if (hpsize > mainrampagesize &&
1778 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1779 static bool warned;
1780 if (!warned) {
1781 error_report("Huge page support disabled (n/a for main memory).");
1782 warned = true;
1783 }
1784 return mainrampagesize;
1785 }
1786
1787 return hpsize;
1788}
905b7ee4
DH
1789
1790long qemu_maxrampagesize(void)
1791{
1792 long pagesize = qemu_mempath_getpagesize(mem_path);
1793 Object *memdev_root = object_resolve_path("/objects", NULL);
1794
1795 if (memdev_root) {
1796 object_child_foreach(memdev_root, find_max_backend_pagesize,
1797 &pagesize);
1798 }
1799 return pagesize;
1800}
9c607668 1801#else
905b7ee4
DH
1802long qemu_minrampagesize(void)
1803{
1804 return getpagesize();
1805}
1806long qemu_maxrampagesize(void)
9c607668
AK
1807{
1808 return getpagesize();
1809}
1810#endif
1811
d5dbde46 1812#ifdef CONFIG_POSIX
d6af99c9
HZ
1813static int64_t get_file_size(int fd)
1814{
1815 int64_t size = lseek(fd, 0, SEEK_END);
1816 if (size < 0) {
1817 return -errno;
1818 }
1819 return size;
1820}
1821
8d37b030
MAL
1822static int file_ram_open(const char *path,
1823 const char *region_name,
1824 bool *created,
1825 Error **errp)
c902760f
MT
1826{
1827 char *filename;
8ca761f6
PF
1828 char *sanitized_name;
1829 char *c;
5c3ece79 1830 int fd = -1;
c902760f 1831
8d37b030 1832 *created = false;
fd97fd44
MA
1833 for (;;) {
1834 fd = open(path, O_RDWR);
1835 if (fd >= 0) {
1836 /* @path names an existing file, use it */
1837 break;
8d31d6b6 1838 }
fd97fd44
MA
1839 if (errno == ENOENT) {
1840 /* @path names a file that doesn't exist, create it */
1841 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1842 if (fd >= 0) {
8d37b030 1843 *created = true;
fd97fd44
MA
1844 break;
1845 }
1846 } else if (errno == EISDIR) {
1847 /* @path names a directory, create a file there */
1848 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1849 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1850 for (c = sanitized_name; *c != '\0'; c++) {
1851 if (*c == '/') {
1852 *c = '_';
1853 }
1854 }
8ca761f6 1855
fd97fd44
MA
1856 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1857 sanitized_name);
1858 g_free(sanitized_name);
8d31d6b6 1859
fd97fd44
MA
1860 fd = mkstemp(filename);
1861 if (fd >= 0) {
1862 unlink(filename);
1863 g_free(filename);
1864 break;
1865 }
1866 g_free(filename);
8d31d6b6 1867 }
fd97fd44
MA
1868 if (errno != EEXIST && errno != EINTR) {
1869 error_setg_errno(errp, errno,
1870 "can't open backing store %s for guest RAM",
1871 path);
8d37b030 1872 return -1;
fd97fd44
MA
1873 }
1874 /*
1875 * Try again on EINTR and EEXIST. The latter happens when
1876 * something else creates the file between our two open().
1877 */
8d31d6b6 1878 }
c902760f 1879
8d37b030
MAL
1880 return fd;
1881}
1882
1883static void *file_ram_alloc(RAMBlock *block,
1884 ram_addr_t memory,
1885 int fd,
1886 bool truncate,
1887 Error **errp)
1888{
5cc8767d 1889 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1890 void *area;
1891
863e9621 1892 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1893 if (block->mr->align % block->page_size) {
1894 error_setg(errp, "alignment 0x%" PRIx64
1895 " must be multiples of page size 0x%zx",
1896 block->mr->align, block->page_size);
1897 return NULL;
61362b71
DH
1898 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1899 error_setg(errp, "alignment 0x%" PRIx64
1900 " must be a power of two", block->mr->align);
1901 return NULL;
98376843
HZ
1902 }
1903 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1904#if defined(__s390x__)
1905 if (kvm_enabled()) {
1906 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1907 }
1908#endif
fd97fd44 1909
863e9621 1910 if (memory < block->page_size) {
fd97fd44 1911 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1912 "or larger than page size 0x%zx",
1913 memory, block->page_size);
8d37b030 1914 return NULL;
1775f111
HZ
1915 }
1916
863e9621 1917 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1918
1919 /*
1920 * ftruncate is not supported by hugetlbfs in older
1921 * hosts, so don't bother bailing out on errors.
1922 * If anything goes wrong with it under other filesystems,
1923 * mmap will fail.
d6af99c9
HZ
1924 *
1925 * Do not truncate the non-empty backend file to avoid corrupting
1926 * the existing data in the file. Disabling shrinking is not
1927 * enough. For example, the current vNVDIMM implementation stores
1928 * the guest NVDIMM labels at the end of the backend file. If the
1929 * backend file is later extended, QEMU will not be able to find
1930 * those labels. Therefore, extending the non-empty backend file
1931 * is disabled as well.
c902760f 1932 */
8d37b030 1933 if (truncate && ftruncate(fd, memory)) {
9742bf26 1934 perror("ftruncate");
7f56e740 1935 }
c902760f 1936
d2f39add 1937 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1938 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1939 if (area == MAP_FAILED) {
7f56e740 1940 error_setg_errno(errp, errno,
fd97fd44 1941 "unable to map backing store for guest RAM");
8d37b030 1942 return NULL;
c902760f 1943 }
ef36fa14
MT
1944
1945 if (mem_prealloc) {
5cc8767d 1946 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
056b68af 1947 if (errp && *errp) {
53adb9d4 1948 qemu_ram_munmap(fd, area, memory);
8d37b030 1949 return NULL;
056b68af 1950 }
ef36fa14
MT
1951 }
1952
04b16653 1953 block->fd = fd;
c902760f
MT
1954 return area;
1955}
1956#endif
1957
154cc9ea
DDAG
1958/* Allocate space within the ram_addr_t space that governs the
1959 * dirty bitmaps.
1960 * Called with the ramlist lock held.
1961 */
d17b5288 1962static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1963{
1964 RAMBlock *block, *next_block;
3e837b2c 1965 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1966
49cd9ac6
SH
1967 assert(size != 0); /* it would hand out same offset multiple times */
1968
0dc3f44a 1969 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1970 return 0;
0d53d9fe 1971 }
04b16653 1972
99e15582 1973 RAMBLOCK_FOREACH(block) {
154cc9ea 1974 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1975
801110ab
DDAG
1976 /* Align blocks to start on a 'long' in the bitmap
1977 * which makes the bitmap sync'ing take the fast path.
1978 */
154cc9ea 1979 candidate = block->offset + block->max_length;
801110ab 1980 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1981
154cc9ea
DDAG
1982 /* Search for the closest following block
1983 * and find the gap.
1984 */
99e15582 1985 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1986 if (next_block->offset >= candidate) {
04b16653
AW
1987 next = MIN(next, next_block->offset);
1988 }
1989 }
154cc9ea
DDAG
1990
1991 /* If it fits remember our place and remember the size
1992 * of gap, but keep going so that we might find a smaller
1993 * gap to fill so avoiding fragmentation.
1994 */
1995 if (next - candidate >= size && next - candidate < mingap) {
1996 offset = candidate;
1997 mingap = next - candidate;
04b16653 1998 }
154cc9ea
DDAG
1999
2000 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 2001 }
3e837b2c
AW
2002
2003 if (offset == RAM_ADDR_MAX) {
2004 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2005 (uint64_t)size);
2006 abort();
2007 }
2008
154cc9ea
DDAG
2009 trace_find_ram_offset(size, offset);
2010
04b16653
AW
2011 return offset;
2012}
2013
c136180c 2014static unsigned long last_ram_page(void)
d17b5288
AW
2015{
2016 RAMBlock *block;
2017 ram_addr_t last = 0;
2018
0dc3f44a 2019 rcu_read_lock();
99e15582 2020 RAMBLOCK_FOREACH(block) {
62be4e3a 2021 last = MAX(last, block->offset + block->max_length);
0d53d9fe 2022 }
0dc3f44a 2023 rcu_read_unlock();
b8c48993 2024 return last >> TARGET_PAGE_BITS;
d17b5288
AW
2025}
2026
ddb97f1d
JB
2027static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2028{
2029 int ret;
ddb97f1d
JB
2030
2031 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 2032 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
2033 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2034 if (ret) {
2035 perror("qemu_madvise");
2036 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2037 "but dump_guest_core=off specified\n");
2038 }
2039 }
2040}
2041
422148d3
DDAG
2042const char *qemu_ram_get_idstr(RAMBlock *rb)
2043{
2044 return rb->idstr;
2045}
2046
754cb9c0
YK
2047void *qemu_ram_get_host_addr(RAMBlock *rb)
2048{
2049 return rb->host;
2050}
2051
2052ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2053{
2054 return rb->offset;
2055}
2056
2057ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2058{
2059 return rb->used_length;
2060}
2061
463a4ac2
DDAG
2062bool qemu_ram_is_shared(RAMBlock *rb)
2063{
2064 return rb->flags & RAM_SHARED;
2065}
2066
2ce16640
DDAG
2067/* Note: Only set at the start of postcopy */
2068bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2069{
2070 return rb->flags & RAM_UF_ZEROPAGE;
2071}
2072
2073void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2074{
2075 rb->flags |= RAM_UF_ZEROPAGE;
2076}
2077
b895de50
CLG
2078bool qemu_ram_is_migratable(RAMBlock *rb)
2079{
2080 return rb->flags & RAM_MIGRATABLE;
2081}
2082
2083void qemu_ram_set_migratable(RAMBlock *rb)
2084{
2085 rb->flags |= RAM_MIGRATABLE;
2086}
2087
2088void qemu_ram_unset_migratable(RAMBlock *rb)
2089{
2090 rb->flags &= ~RAM_MIGRATABLE;
2091}
2092
ae3a7047 2093/* Called with iothread lock held. */
fa53a0e5 2094void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2095{
fa53a0e5 2096 RAMBlock *block;
20cfe881 2097
c5705a77
AK
2098 assert(new_block);
2099 assert(!new_block->idstr[0]);
84b89d78 2100
09e5ab63
AL
2101 if (dev) {
2102 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2103 if (id) {
2104 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2105 g_free(id);
84b89d78
CM
2106 }
2107 }
2108 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2109
ab0a9956 2110 rcu_read_lock();
99e15582 2111 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2112 if (block != new_block &&
2113 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2114 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2115 new_block->idstr);
2116 abort();
2117 }
2118 }
0dc3f44a 2119 rcu_read_unlock();
c5705a77
AK
2120}
2121
ae3a7047 2122/* Called with iothread lock held. */
fa53a0e5 2123void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2124{
ae3a7047
MD
2125 /* FIXME: arch_init.c assumes that this is not called throughout
2126 * migration. Ignore the problem since hot-unplug during migration
2127 * does not work anyway.
2128 */
20cfe881
HT
2129 if (block) {
2130 memset(block->idstr, 0, sizeof(block->idstr));
2131 }
2132}
2133
863e9621
DDAG
2134size_t qemu_ram_pagesize(RAMBlock *rb)
2135{
2136 return rb->page_size;
2137}
2138
67f11b5c
DDAG
2139/* Returns the largest size of page in use */
2140size_t qemu_ram_pagesize_largest(void)
2141{
2142 RAMBlock *block;
2143 size_t largest = 0;
2144
99e15582 2145 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2146 largest = MAX(largest, qemu_ram_pagesize(block));
2147 }
2148
2149 return largest;
2150}
2151
8490fc78
LC
2152static int memory_try_enable_merging(void *addr, size_t len)
2153{
75cc7f01 2154 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2155 /* disabled by the user */
2156 return 0;
2157 }
2158
2159 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2160}
2161
62be4e3a
MT
2162/* Only legal before guest might have detected the memory size: e.g. on
2163 * incoming migration, or right after reset.
2164 *
2165 * As memory core doesn't know how is memory accessed, it is up to
2166 * resize callback to update device state and/or add assertions to detect
2167 * misuse, if necessary.
2168 */
fa53a0e5 2169int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2170{
62be4e3a
MT
2171 assert(block);
2172
4ed023ce 2173 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2174
62be4e3a
MT
2175 if (block->used_length == newsize) {
2176 return 0;
2177 }
2178
2179 if (!(block->flags & RAM_RESIZEABLE)) {
2180 error_setg_errno(errp, EINVAL,
2181 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2182 " in != 0x" RAM_ADDR_FMT, block->idstr,
2183 newsize, block->used_length);
2184 return -EINVAL;
2185 }
2186
2187 if (block->max_length < newsize) {
2188 error_setg_errno(errp, EINVAL,
2189 "Length too large: %s: 0x" RAM_ADDR_FMT
2190 " > 0x" RAM_ADDR_FMT, block->idstr,
2191 newsize, block->max_length);
2192 return -EINVAL;
2193 }
2194
2195 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2196 block->used_length = newsize;
58d2707e
PB
2197 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2198 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2199 memory_region_set_size(block->mr, newsize);
2200 if (block->resized) {
2201 block->resized(block->idstr, newsize, block->host);
2202 }
2203 return 0;
2204}
2205
5b82b703
SH
2206/* Called with ram_list.mutex held */
2207static void dirty_memory_extend(ram_addr_t old_ram_size,
2208 ram_addr_t new_ram_size)
2209{
2210 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2211 DIRTY_MEMORY_BLOCK_SIZE);
2212 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2213 DIRTY_MEMORY_BLOCK_SIZE);
2214 int i;
2215
2216 /* Only need to extend if block count increased */
2217 if (new_num_blocks <= old_num_blocks) {
2218 return;
2219 }
2220
2221 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2222 DirtyMemoryBlocks *old_blocks;
2223 DirtyMemoryBlocks *new_blocks;
2224 int j;
2225
2226 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2227 new_blocks = g_malloc(sizeof(*new_blocks) +
2228 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2229
2230 if (old_num_blocks) {
2231 memcpy(new_blocks->blocks, old_blocks->blocks,
2232 old_num_blocks * sizeof(old_blocks->blocks[0]));
2233 }
2234
2235 for (j = old_num_blocks; j < new_num_blocks; j++) {
2236 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2237 }
2238
2239 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2240
2241 if (old_blocks) {
2242 g_free_rcu(old_blocks, rcu);
2243 }
2244 }
2245}
2246
06329cce 2247static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2248{
e1c57ab8 2249 RAMBlock *block;
0d53d9fe 2250 RAMBlock *last_block = NULL;
2152f5ca 2251 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2252 Error *err = NULL;
2152f5ca 2253
b8c48993 2254 old_ram_size = last_ram_page();
c5705a77 2255
b2a8658e 2256 qemu_mutex_lock_ramlist();
9b8424d5 2257 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2258
2259 if (!new_block->host) {
2260 if (xen_enabled()) {
9b8424d5 2261 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2262 new_block->mr, &err);
2263 if (err) {
2264 error_propagate(errp, err);
2265 qemu_mutex_unlock_ramlist();
39c350ee 2266 return;
37aa7a0e 2267 }
e1c57ab8 2268 } else {
9b8424d5 2269 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2270 &new_block->mr->align, shared);
39228250 2271 if (!new_block->host) {
ef701d7b
HT
2272 error_setg_errno(errp, errno,
2273 "cannot set up guest memory '%s'",
2274 memory_region_name(new_block->mr));
2275 qemu_mutex_unlock_ramlist();
39c350ee 2276 return;
39228250 2277 }
9b8424d5 2278 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2279 }
c902760f 2280 }
94a6b54f 2281
dd631697
LZ
2282 new_ram_size = MAX(old_ram_size,
2283 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2284 if (new_ram_size > old_ram_size) {
5b82b703 2285 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2286 }
0d53d9fe
MD
2287 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2288 * QLIST (which has an RCU-friendly variant) does not have insertion at
2289 * tail, so save the last element in last_block.
2290 */
99e15582 2291 RAMBLOCK_FOREACH(block) {
0d53d9fe 2292 last_block = block;
9b8424d5 2293 if (block->max_length < new_block->max_length) {
abb26d63
PB
2294 break;
2295 }
2296 }
2297 if (block) {
0dc3f44a 2298 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2299 } else if (last_block) {
0dc3f44a 2300 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2301 } else { /* list is empty */
0dc3f44a 2302 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2303 }
0d6d3c87 2304 ram_list.mru_block = NULL;
94a6b54f 2305
0dc3f44a
MD
2306 /* Write list before version */
2307 smp_wmb();
f798b07f 2308 ram_list.version++;
b2a8658e 2309 qemu_mutex_unlock_ramlist();
f798b07f 2310
9b8424d5 2311 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2312 new_block->used_length,
2313 DIRTY_CLIENTS_ALL);
94a6b54f 2314
a904c911
PB
2315 if (new_block->host) {
2316 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2317 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2318 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2319 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2320 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2321 }
94a6b54f 2322}
e9a1ab19 2323
d5dbde46 2324#ifdef CONFIG_POSIX
38b3362d 2325RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2326 uint32_t ram_flags, int fd,
38b3362d 2327 Error **errp)
e1c57ab8
PB
2328{
2329 RAMBlock *new_block;
ef701d7b 2330 Error *local_err = NULL;
8d37b030 2331 int64_t file_size;
e1c57ab8 2332
a4de8552
JH
2333 /* Just support these ram flags by now. */
2334 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2335
e1c57ab8 2336 if (xen_enabled()) {
7f56e740 2337 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2338 return NULL;
e1c57ab8
PB
2339 }
2340
e45e7ae2
MAL
2341 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2342 error_setg(errp,
2343 "host lacks kvm mmu notifiers, -mem-path unsupported");
2344 return NULL;
2345 }
2346
e1c57ab8
PB
2347 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2348 /*
2349 * file_ram_alloc() needs to allocate just like
2350 * phys_mem_alloc, but we haven't bothered to provide
2351 * a hook there.
2352 */
7f56e740
PB
2353 error_setg(errp,
2354 "-mem-path not supported with this accelerator");
528f46af 2355 return NULL;
e1c57ab8
PB
2356 }
2357
4ed023ce 2358 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2359 file_size = get_file_size(fd);
2360 if (file_size > 0 && file_size < size) {
2361 error_setg(errp, "backing store %s size 0x%" PRIx64
2362 " does not match 'size' option 0x" RAM_ADDR_FMT,
2363 mem_path, file_size, size);
8d37b030
MAL
2364 return NULL;
2365 }
2366
e1c57ab8
PB
2367 new_block = g_malloc0(sizeof(*new_block));
2368 new_block->mr = mr;
9b8424d5
MT
2369 new_block->used_length = size;
2370 new_block->max_length = size;
cbfc0171 2371 new_block->flags = ram_flags;
8d37b030 2372 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2373 if (!new_block->host) {
2374 g_free(new_block);
528f46af 2375 return NULL;
7f56e740
PB
2376 }
2377
cbfc0171 2378 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2379 if (local_err) {
2380 g_free(new_block);
2381 error_propagate(errp, local_err);
528f46af 2382 return NULL;
ef701d7b 2383 }
528f46af 2384 return new_block;
38b3362d
MAL
2385
2386}
2387
2388
2389RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2390 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2391 Error **errp)
2392{
2393 int fd;
2394 bool created;
2395 RAMBlock *block;
2396
2397 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2398 if (fd < 0) {
2399 return NULL;
2400 }
2401
cbfc0171 2402 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2403 if (!block) {
2404 if (created) {
2405 unlink(mem_path);
2406 }
2407 close(fd);
2408 return NULL;
2409 }
2410
2411 return block;
e1c57ab8 2412}
0b183fc8 2413#endif
e1c57ab8 2414
62be4e3a 2415static
528f46af
FZ
2416RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2417 void (*resized)(const char*,
2418 uint64_t length,
2419 void *host),
06329cce 2420 void *host, bool resizeable, bool share,
528f46af 2421 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2422{
2423 RAMBlock *new_block;
ef701d7b 2424 Error *local_err = NULL;
e1c57ab8 2425
4ed023ce
DDAG
2426 size = HOST_PAGE_ALIGN(size);
2427 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2428 new_block = g_malloc0(sizeof(*new_block));
2429 new_block->mr = mr;
62be4e3a 2430 new_block->resized = resized;
9b8424d5
MT
2431 new_block->used_length = size;
2432 new_block->max_length = max_size;
62be4e3a 2433 assert(max_size >= size);
e1c57ab8 2434 new_block->fd = -1;
863e9621 2435 new_block->page_size = getpagesize();
e1c57ab8
PB
2436 new_block->host = host;
2437 if (host) {
7bd4f430 2438 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2439 }
62be4e3a
MT
2440 if (resizeable) {
2441 new_block->flags |= RAM_RESIZEABLE;
2442 }
06329cce 2443 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2444 if (local_err) {
2445 g_free(new_block);
2446 error_propagate(errp, local_err);
528f46af 2447 return NULL;
ef701d7b 2448 }
528f46af 2449 return new_block;
e1c57ab8
PB
2450}
2451
528f46af 2452RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2453 MemoryRegion *mr, Error **errp)
2454{
06329cce
MA
2455 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2456 false, mr, errp);
62be4e3a
MT
2457}
2458
06329cce
MA
2459RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2460 MemoryRegion *mr, Error **errp)
6977dfe6 2461{
06329cce
MA
2462 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2463 share, mr, errp);
62be4e3a
MT
2464}
2465
528f46af 2466RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2467 void (*resized)(const char*,
2468 uint64_t length,
2469 void *host),
2470 MemoryRegion *mr, Error **errp)
2471{
06329cce
MA
2472 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2473 false, mr, errp);
6977dfe6
YT
2474}
2475
43771539
PB
2476static void reclaim_ramblock(RAMBlock *block)
2477{
2478 if (block->flags & RAM_PREALLOC) {
2479 ;
2480 } else if (xen_enabled()) {
2481 xen_invalidate_map_cache_entry(block->host);
2482#ifndef _WIN32
2483 } else if (block->fd >= 0) {
53adb9d4 2484 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2485 close(block->fd);
2486#endif
2487 } else {
2488 qemu_anon_ram_free(block->host, block->max_length);
2489 }
2490 g_free(block);
2491}
2492
f1060c55 2493void qemu_ram_free(RAMBlock *block)
e9a1ab19 2494{
85bc2a15
MAL
2495 if (!block) {
2496 return;
2497 }
2498
0987d735
PB
2499 if (block->host) {
2500 ram_block_notify_remove(block->host, block->max_length);
2501 }
2502
b2a8658e 2503 qemu_mutex_lock_ramlist();
f1060c55
FZ
2504 QLIST_REMOVE_RCU(block, next);
2505 ram_list.mru_block = NULL;
2506 /* Write list before version */
2507 smp_wmb();
2508 ram_list.version++;
2509 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2510 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2511}
2512
cd19cfa2
HY
2513#ifndef _WIN32
2514void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2515{
2516 RAMBlock *block;
2517 ram_addr_t offset;
2518 int flags;
2519 void *area, *vaddr;
2520
99e15582 2521 RAMBLOCK_FOREACH(block) {
cd19cfa2 2522 offset = addr - block->offset;
9b8424d5 2523 if (offset < block->max_length) {
1240be24 2524 vaddr = ramblock_ptr(block, offset);
7bd4f430 2525 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2526 ;
dfeaf2ab
MA
2527 } else if (xen_enabled()) {
2528 abort();
cd19cfa2
HY
2529 } else {
2530 flags = MAP_FIXED;
3435f395 2531 if (block->fd >= 0) {
dbcb8981
PB
2532 flags |= (block->flags & RAM_SHARED ?
2533 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2534 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2535 flags, block->fd, offset);
cd19cfa2 2536 } else {
2eb9fbaa
MA
2537 /*
2538 * Remap needs to match alloc. Accelerators that
2539 * set phys_mem_alloc never remap. If they did,
2540 * we'd need a remap hook here.
2541 */
2542 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2543
cd19cfa2
HY
2544 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2545 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2546 flags, -1, 0);
cd19cfa2
HY
2547 }
2548 if (area != vaddr) {
493d89bf
AF
2549 error_report("Could not remap addr: "
2550 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2551 length, addr);
cd19cfa2
HY
2552 exit(1);
2553 }
8490fc78 2554 memory_try_enable_merging(vaddr, length);
ddb97f1d 2555 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2556 }
cd19cfa2
HY
2557 }
2558 }
2559}
2560#endif /* !_WIN32 */
2561
1b5ec234 2562/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2563 * This should not be used for general purpose DMA. Use address_space_map
2564 * or address_space_rw instead. For local memory (e.g. video ram) that the
2565 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2566 *
49b24afc 2567 * Called within RCU critical section.
1b5ec234 2568 */
0878d0e1 2569void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2570{
3655cb9c
GA
2571 RAMBlock *block = ram_block;
2572
2573 if (block == NULL) {
2574 block = qemu_get_ram_block(addr);
0878d0e1 2575 addr -= block->offset;
3655cb9c 2576 }
ae3a7047
MD
2577
2578 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2579 /* We need to check if the requested address is in the RAM
2580 * because we don't want to map the entire memory in QEMU.
2581 * In that case just map until the end of the page.
2582 */
2583 if (block->offset == 0) {
1ff7c598 2584 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2585 }
ae3a7047 2586
1ff7c598 2587 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2588 }
0878d0e1 2589 return ramblock_ptr(block, addr);
dc828ca1
PB
2590}
2591
0878d0e1 2592/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2593 * but takes a size argument.
0dc3f44a 2594 *
e81bcda5 2595 * Called within RCU critical section.
ae3a7047 2596 */
3655cb9c 2597static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2598 hwaddr *size, bool lock)
38bee5dc 2599{
3655cb9c 2600 RAMBlock *block = ram_block;
8ab934f9
SS
2601 if (*size == 0) {
2602 return NULL;
2603 }
e81bcda5 2604
3655cb9c
GA
2605 if (block == NULL) {
2606 block = qemu_get_ram_block(addr);
0878d0e1 2607 addr -= block->offset;
3655cb9c 2608 }
0878d0e1 2609 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2610
2611 if (xen_enabled() && block->host == NULL) {
2612 /* We need to check if the requested address is in the RAM
2613 * because we don't want to map the entire memory in QEMU.
2614 * In that case just map the requested area.
2615 */
2616 if (block->offset == 0) {
f5aa69bd 2617 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2618 }
2619
f5aa69bd 2620 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2621 }
e81bcda5 2622
0878d0e1 2623 return ramblock_ptr(block, addr);
38bee5dc
SS
2624}
2625
f90bb71b
DDAG
2626/* Return the offset of a hostpointer within a ramblock */
2627ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2628{
2629 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2630 assert((uintptr_t)host >= (uintptr_t)rb->host);
2631 assert(res < rb->max_length);
2632
2633 return res;
2634}
2635
422148d3
DDAG
2636/*
2637 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2638 * in that RAMBlock.
2639 *
2640 * ptr: Host pointer to look up
2641 * round_offset: If true round the result offset down to a page boundary
2642 * *ram_addr: set to result ram_addr
2643 * *offset: set to result offset within the RAMBlock
2644 *
2645 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2646 *
2647 * By the time this function returns, the returned pointer is not protected
2648 * by RCU anymore. If the caller is not within an RCU critical section and
2649 * does not hold the iothread lock, it must have other means of protecting the
2650 * pointer, such as a reference to the region that includes the incoming
2651 * ram_addr_t.
2652 */
422148d3 2653RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2654 ram_addr_t *offset)
5579c7f3 2655{
94a6b54f
PB
2656 RAMBlock *block;
2657 uint8_t *host = ptr;
2658
868bb33f 2659 if (xen_enabled()) {
f615f396 2660 ram_addr_t ram_addr;
0dc3f44a 2661 rcu_read_lock();
f615f396
PB
2662 ram_addr = xen_ram_addr_from_mapcache(ptr);
2663 block = qemu_get_ram_block(ram_addr);
422148d3 2664 if (block) {
d6b6aec4 2665 *offset = ram_addr - block->offset;
422148d3 2666 }
0dc3f44a 2667 rcu_read_unlock();
422148d3 2668 return block;
712c2b41
SS
2669 }
2670
0dc3f44a
MD
2671 rcu_read_lock();
2672 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2673 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2674 goto found;
2675 }
2676
99e15582 2677 RAMBLOCK_FOREACH(block) {
432d268c
JN
2678 /* This case append when the block is not mapped. */
2679 if (block->host == NULL) {
2680 continue;
2681 }
9b8424d5 2682 if (host - block->host < block->max_length) {
23887b79 2683 goto found;
f471a17e 2684 }
94a6b54f 2685 }
432d268c 2686
0dc3f44a 2687 rcu_read_unlock();
1b5ec234 2688 return NULL;
23887b79
PB
2689
2690found:
422148d3
DDAG
2691 *offset = (host - block->host);
2692 if (round_offset) {
2693 *offset &= TARGET_PAGE_MASK;
2694 }
0dc3f44a 2695 rcu_read_unlock();
422148d3
DDAG
2696 return block;
2697}
2698
e3dd7493
DDAG
2699/*
2700 * Finds the named RAMBlock
2701 *
2702 * name: The name of RAMBlock to find
2703 *
2704 * Returns: RAMBlock (or NULL if not found)
2705 */
2706RAMBlock *qemu_ram_block_by_name(const char *name)
2707{
2708 RAMBlock *block;
2709
99e15582 2710 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2711 if (!strcmp(name, block->idstr)) {
2712 return block;
2713 }
2714 }
2715
2716 return NULL;
2717}
2718
422148d3
DDAG
2719/* Some of the softmmu routines need to translate from a host pointer
2720 (typically a TLB entry) back to a ram offset. */
07bdaa41 2721ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2722{
2723 RAMBlock *block;
f615f396 2724 ram_addr_t offset;
422148d3 2725
f615f396 2726 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2727 if (!block) {
07bdaa41 2728 return RAM_ADDR_INVALID;
422148d3
DDAG
2729 }
2730
07bdaa41 2731 return block->offset + offset;
e890261f 2732}
f471a17e 2733
27266271
PM
2734/* Called within RCU critical section. */
2735void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2736 CPUState *cpu,
2737 vaddr mem_vaddr,
2738 ram_addr_t ram_addr,
2739 unsigned size)
2740{
2741 ndi->cpu = cpu;
2742 ndi->ram_addr = ram_addr;
2743 ndi->mem_vaddr = mem_vaddr;
2744 ndi->size = size;
0ac20318 2745 ndi->pages = NULL;
ba051fb5 2746
5aa1ef71 2747 assert(tcg_enabled());
52159192 2748 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2749 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2750 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2751 }
27266271
PM
2752}
2753
2754/* Called within RCU critical section. */
2755void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2756{
0ac20318 2757 if (ndi->pages) {
f28d0dfd 2758 assert(tcg_enabled());
0ac20318
EC
2759 page_collection_unlock(ndi->pages);
2760 ndi->pages = NULL;
27266271
PM
2761 }
2762
2763 /* Set both VGA and migration bits for simplicity and to remove
2764 * the notdirty callback faster.
2765 */
2766 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2767 DIRTY_CLIENTS_NOCODE);
2768 /* we remove the notdirty callback only if the code has been
2769 flushed */
2770 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2771 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2772 }
2773}
2774
2775/* Called within RCU critical section. */
2776static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2777 uint64_t val, unsigned size)
2778{
2779 NotDirtyInfo ndi;
2780
2781 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2782 ram_addr, size);
2783
6d3ede54 2784 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2785 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2786}
2787
b018ddf6 2788static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2789 unsigned size, bool is_write,
2790 MemTxAttrs attrs)
b018ddf6
PB
2791{
2792 return is_write;
2793}
2794
0e0df1e2 2795static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2796 .write = notdirty_mem_write,
b018ddf6 2797 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2798 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2799 .valid = {
2800 .min_access_size = 1,
2801 .max_access_size = 8,
2802 .unaligned = false,
2803 },
2804 .impl = {
2805 .min_access_size = 1,
2806 .max_access_size = 8,
2807 .unaligned = false,
2808 },
1ccde1cb
FB
2809};
2810
0f459d16 2811/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2812static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2813{
93afeade 2814 CPUState *cpu = current_cpu;
568496c0 2815 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2816 target_ulong vaddr;
a1d1bb31 2817 CPUWatchpoint *wp;
0f459d16 2818
5aa1ef71 2819 assert(tcg_enabled());
ff4700b0 2820 if (cpu->watchpoint_hit) {
06d55cc1
AL
2821 /* We re-entered the check after replacing the TB. Now raise
2822 * the debug interrupt so that is will trigger after the
2823 * current instruction. */
93afeade 2824 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2825 return;
2826 }
93afeade 2827 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2828 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2829 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2830 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2831 && (wp->flags & flags)) {
08225676
PM
2832 if (flags == BP_MEM_READ) {
2833 wp->flags |= BP_WATCHPOINT_HIT_READ;
2834 } else {
2835 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2836 }
2837 wp->hitaddr = vaddr;
66b9b43c 2838 wp->hitattrs = attrs;
ff4700b0 2839 if (!cpu->watchpoint_hit) {
568496c0
SF
2840 if (wp->flags & BP_CPU &&
2841 !cc->debug_check_watchpoint(cpu, wp)) {
2842 wp->flags &= ~BP_WATCHPOINT_HIT;
2843 continue;
2844 }
ff4700b0 2845 cpu->watchpoint_hit = wp;
a5e99826 2846
0ac20318 2847 mmap_lock();
239c51a5 2848 tb_check_watchpoint(cpu);
6e140f28 2849 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2850 cpu->exception_index = EXCP_DEBUG;
0ac20318 2851 mmap_unlock();
5638d180 2852 cpu_loop_exit(cpu);
6e140f28 2853 } else {
9b990ee5
RH
2854 /* Force execution of one insn next time. */
2855 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2856 mmap_unlock();
6886b980 2857 cpu_loop_exit_noexc(cpu);
6e140f28 2858 }
06d55cc1 2859 }
6e140f28
AL
2860 } else {
2861 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2862 }
2863 }
2864}
2865
6658ffb8
PB
2866/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2867 so these check for a hit then pass through to the normal out-of-line
2868 phys routines. */
66b9b43c
PM
2869static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2870 unsigned size, MemTxAttrs attrs)
6658ffb8 2871{
66b9b43c
PM
2872 MemTxResult res;
2873 uint64_t data;
79ed0416
PM
2874 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2875 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2876
2877 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2878 switch (size) {
66b9b43c 2879 case 1:
79ed0416 2880 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2881 break;
2882 case 2:
79ed0416 2883 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2884 break;
2885 case 4:
79ed0416 2886 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2887 break;
306526b5
PB
2888 case 8:
2889 data = address_space_ldq(as, addr, attrs, &res);
2890 break;
1ec9b909
AK
2891 default: abort();
2892 }
66b9b43c
PM
2893 *pdata = data;
2894 return res;
6658ffb8
PB
2895}
2896
66b9b43c
PM
2897static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2898 uint64_t val, unsigned size,
2899 MemTxAttrs attrs)
6658ffb8 2900{
66b9b43c 2901 MemTxResult res;
79ed0416
PM
2902 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2903 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2904
2905 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2906 switch (size) {
67364150 2907 case 1:
79ed0416 2908 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2909 break;
2910 case 2:
79ed0416 2911 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2912 break;
2913 case 4:
79ed0416 2914 address_space_stl(as, addr, val, attrs, &res);
67364150 2915 break;
306526b5
PB
2916 case 8:
2917 address_space_stq(as, addr, val, attrs, &res);
2918 break;
1ec9b909
AK
2919 default: abort();
2920 }
66b9b43c 2921 return res;
6658ffb8
PB
2922}
2923
1ec9b909 2924static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2925 .read_with_attrs = watch_mem_read,
2926 .write_with_attrs = watch_mem_write,
1ec9b909 2927 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2928 .valid = {
2929 .min_access_size = 1,
2930 .max_access_size = 8,
2931 .unaligned = false,
2932 },
2933 .impl = {
2934 .min_access_size = 1,
2935 .max_access_size = 8,
2936 .unaligned = false,
2937 },
6658ffb8 2938};
6658ffb8 2939
b2a44fca 2940static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2941 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2942static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2943 const uint8_t *buf, hwaddr len);
2944static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2945 bool is_write, MemTxAttrs attrs);
16620684 2946
f25a49e0
PM
2947static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2948 unsigned len, MemTxAttrs attrs)
db7b5426 2949{
acc9d80b 2950 subpage_t *subpage = opaque;
ff6cff75 2951 uint8_t buf[8];
5c9eb028 2952 MemTxResult res;
791af8c8 2953
db7b5426 2954#if defined(DEBUG_SUBPAGE)
016e9d62 2955 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2956 subpage, len, addr);
db7b5426 2957#endif
16620684 2958 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2959 if (res) {
2960 return res;
f25a49e0 2961 }
6d3ede54
PM
2962 *data = ldn_p(buf, len);
2963 return MEMTX_OK;
db7b5426
BS
2964}
2965
f25a49e0
PM
2966static MemTxResult subpage_write(void *opaque, hwaddr addr,
2967 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2968{
acc9d80b 2969 subpage_t *subpage = opaque;
ff6cff75 2970 uint8_t buf[8];
acc9d80b 2971
db7b5426 2972#if defined(DEBUG_SUBPAGE)
016e9d62 2973 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2974 " value %"PRIx64"\n",
2975 __func__, subpage, len, addr, value);
db7b5426 2976#endif
6d3ede54 2977 stn_p(buf, len, value);
16620684 2978 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2979}
2980
c353e4cc 2981static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2982 unsigned len, bool is_write,
2983 MemTxAttrs attrs)
c353e4cc 2984{
acc9d80b 2985 subpage_t *subpage = opaque;
c353e4cc 2986#if defined(DEBUG_SUBPAGE)
016e9d62 2987 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2988 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2989#endif
2990
16620684 2991 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2992 len, is_write, attrs);
c353e4cc
PB
2993}
2994
70c68e44 2995static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2996 .read_with_attrs = subpage_read,
2997 .write_with_attrs = subpage_write,
ff6cff75
PB
2998 .impl.min_access_size = 1,
2999 .impl.max_access_size = 8,
3000 .valid.min_access_size = 1,
3001 .valid.max_access_size = 8,
c353e4cc 3002 .valid.accepts = subpage_accepts,
70c68e44 3003 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3004};
3005
c227f099 3006static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3007 uint16_t section)
db7b5426
BS
3008{
3009 int idx, eidx;
3010
3011 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3012 return -1;
3013 idx = SUBPAGE_IDX(start);
3014 eidx = SUBPAGE_IDX(end);
3015#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3016 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3017 __func__, mmio, start, end, idx, eidx, section);
db7b5426 3018#endif
db7b5426 3019 for (; idx <= eidx; idx++) {
5312bd8b 3020 mmio->sub_section[idx] = section;
db7b5426
BS
3021 }
3022
3023 return 0;
3024}
3025
16620684 3026static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 3027{
c227f099 3028 subpage_t *mmio;
db7b5426 3029
2615fabd 3030 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 3031 mmio->fv = fv;
1eec614b 3032 mmio->base = base;
2c9b15ca 3033 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 3034 NULL, TARGET_PAGE_SIZE);
b3b00c78 3035 mmio->iomem.subpage = true;
db7b5426 3036#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3037 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3038 mmio, base, TARGET_PAGE_SIZE);
db7b5426 3039#endif
b41aac4f 3040 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
3041
3042 return mmio;
3043}
3044
16620684 3045static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 3046{
16620684 3047 assert(fv);
5312bd8b 3048 MemoryRegionSection section = {
16620684 3049 .fv = fv,
5312bd8b
AK
3050 .mr = mr,
3051 .offset_within_address_space = 0,
3052 .offset_within_region = 0,
052e87b0 3053 .size = int128_2_64(),
5312bd8b
AK
3054 };
3055
53cb28cb 3056 return phys_section_add(map, &section);
5312bd8b
AK
3057}
3058
8af36743
PM
3059static void readonly_mem_write(void *opaque, hwaddr addr,
3060 uint64_t val, unsigned size)
3061{
3062 /* Ignore any write to ROM. */
3063}
3064
3065static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3066 unsigned size, bool is_write,
3067 MemTxAttrs attrs)
8af36743
PM
3068{
3069 return is_write;
3070}
3071
3072/* This will only be used for writes, because reads are special cased
3073 * to directly access the underlying host ram.
3074 */
3075static const MemoryRegionOps readonly_mem_ops = {
3076 .write = readonly_mem_write,
3077 .valid.accepts = readonly_mem_accepts,
3078 .endianness = DEVICE_NATIVE_ENDIAN,
3079 .valid = {
3080 .min_access_size = 1,
3081 .max_access_size = 8,
3082 .unaligned = false,
3083 },
3084 .impl = {
3085 .min_access_size = 1,
3086 .max_access_size = 8,
3087 .unaligned = false,
3088 },
3089};
3090
2d54f194
PM
3091MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3092 hwaddr index, MemTxAttrs attrs)
aa102231 3093{
a54c87b6
PM
3094 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3095 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3096 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3097 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3098
2d54f194 3099 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3100}
3101
e9179ce1
AK
3102static void io_mem_init(void)
3103{
8af36743
PM
3104 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3105 NULL, NULL, UINT64_MAX);
2c9b15ca 3106 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3107 NULL, UINT64_MAX);
8d04fb55
JK
3108
3109 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3110 * which can be called without the iothread mutex.
3111 */
2c9b15ca 3112 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3113 NULL, UINT64_MAX);
8d04fb55
JK
3114 memory_region_clear_global_locking(&io_mem_notdirty);
3115
2c9b15ca 3116 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3117 NULL, UINT64_MAX);
e9179ce1
AK
3118}
3119
8629d3fc 3120AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3121{
53cb28cb
MA
3122 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3123 uint16_t n;
3124
16620684 3125 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3126 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3127 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3128 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3129 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3130 assert(n == PHYS_SECTION_ROM);
16620684 3131 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3132 assert(n == PHYS_SECTION_WATCH);
00752703 3133
9736e55b 3134 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3135
3136 return d;
00752703
PB
3137}
3138
66a6df1d 3139void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3140{
3141 phys_sections_free(&d->map);
3142 g_free(d);
3143}
3144
1d71148e 3145static void tcg_commit(MemoryListener *listener)
50c1e149 3146{
32857f4d
PM
3147 CPUAddressSpace *cpuas;
3148 AddressSpaceDispatch *d;
117712c3 3149
f28d0dfd 3150 assert(tcg_enabled());
117712c3
AK
3151 /* since each CPU stores ram addresses in its TLB cache, we must
3152 reset the modified entries */
32857f4d
PM
3153 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3154 cpu_reloading_memory_map();
3155 /* The CPU and TLB are protected by the iothread lock.
3156 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3157 * may have split the RCU critical section.
3158 */
66a6df1d 3159 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3160 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3161 tlb_flush(cpuas->cpu);
50c1e149
AK
3162}
3163
62152b8a
AK
3164static void memory_map_init(void)
3165{
7267c094 3166 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3167
57271d63 3168 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3169 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3170
7267c094 3171 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3172 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3173 65536);
7dca8043 3174 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3175}
3176
3177MemoryRegion *get_system_memory(void)
3178{
3179 return system_memory;
3180}
3181
309cb471
AK
3182MemoryRegion *get_system_io(void)
3183{
3184 return system_io;
3185}
3186
e2eef170
PB
3187#endif /* !defined(CONFIG_USER_ONLY) */
3188
13eb76e0
FB
3189/* physical memory access (slow version, mainly for debug) */
3190#if defined(CONFIG_USER_ONLY)
f17ec444 3191int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3192 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3193{
0c249ff7
LZ
3194 int flags;
3195 target_ulong l, page;
53a5960a 3196 void * p;
13eb76e0
FB
3197
3198 while (len > 0) {
3199 page = addr & TARGET_PAGE_MASK;
3200 l = (page + TARGET_PAGE_SIZE) - addr;
3201 if (l > len)
3202 l = len;
3203 flags = page_get_flags(page);
3204 if (!(flags & PAGE_VALID))
a68fe89c 3205 return -1;
13eb76e0
FB
3206 if (is_write) {
3207 if (!(flags & PAGE_WRITE))
a68fe89c 3208 return -1;
579a97f7 3209 /* XXX: this code should not depend on lock_user */
72fb7daa 3210 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3211 return -1;
72fb7daa
AJ
3212 memcpy(p, buf, l);
3213 unlock_user(p, addr, l);
13eb76e0
FB
3214 } else {
3215 if (!(flags & PAGE_READ))
a68fe89c 3216 return -1;
579a97f7 3217 /* XXX: this code should not depend on lock_user */
72fb7daa 3218 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3219 return -1;
72fb7daa 3220 memcpy(buf, p, l);
5b257578 3221 unlock_user(p, addr, 0);
13eb76e0
FB
3222 }
3223 len -= l;
3224 buf += l;
3225 addr += l;
3226 }
a68fe89c 3227 return 0;
13eb76e0 3228}
8df1cd07 3229
13eb76e0 3230#else
51d7a9eb 3231
845b6214 3232static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3233 hwaddr length)
51d7a9eb 3234{
e87f7778 3235 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3236 addr += memory_region_get_ram_addr(mr);
3237
e87f7778
PB
3238 /* No early return if dirty_log_mask is or becomes 0, because
3239 * cpu_physical_memory_set_dirty_range will still call
3240 * xen_modified_memory.
3241 */
3242 if (dirty_log_mask) {
3243 dirty_log_mask =
3244 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3245 }
3246 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3247 assert(tcg_enabled());
e87f7778
PB
3248 tb_invalidate_phys_range(addr, addr + length);
3249 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3250 }
e87f7778 3251 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3252}
3253
047be4ed
SH
3254void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3255{
3256 /*
3257 * In principle this function would work on other memory region types too,
3258 * but the ROM device use case is the only one where this operation is
3259 * necessary. Other memory regions should use the
3260 * address_space_read/write() APIs.
3261 */
3262 assert(memory_region_is_romd(mr));
3263
3264 invalidate_and_set_dirty(mr, addr, size);
3265}
3266
23326164 3267static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3268{
e1622f4b 3269 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3270
3271 /* Regions are assumed to support 1-4 byte accesses unless
3272 otherwise specified. */
23326164
RH
3273 if (access_size_max == 0) {
3274 access_size_max = 4;
3275 }
3276
3277 /* Bound the maximum access by the alignment of the address. */
3278 if (!mr->ops->impl.unaligned) {
3279 unsigned align_size_max = addr & -addr;
3280 if (align_size_max != 0 && align_size_max < access_size_max) {
3281 access_size_max = align_size_max;
3282 }
82f2563f 3283 }
23326164
RH
3284
3285 /* Don't attempt accesses larger than the maximum. */
3286 if (l > access_size_max) {
3287 l = access_size_max;
82f2563f 3288 }
6554f5c0 3289 l = pow2floor(l);
23326164
RH
3290
3291 return l;
82f2563f
PB
3292}
3293
4840f10e 3294static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3295{
4840f10e
JK
3296 bool unlocked = !qemu_mutex_iothread_locked();
3297 bool release_lock = false;
3298
3299 if (unlocked && mr->global_locking) {
3300 qemu_mutex_lock_iothread();
3301 unlocked = false;
3302 release_lock = true;
3303 }
125b3806 3304 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3305 if (unlocked) {
3306 qemu_mutex_lock_iothread();
3307 }
125b3806 3308 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3309 if (unlocked) {
3310 qemu_mutex_unlock_iothread();
3311 }
125b3806 3312 }
4840f10e
JK
3313
3314 return release_lock;
125b3806
PB
3315}
3316
a203ac70 3317/* Called within RCU critical section. */
16620684
AK
3318static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3319 MemTxAttrs attrs,
3320 const uint8_t *buf,
0c249ff7 3321 hwaddr len, hwaddr addr1,
16620684 3322 hwaddr l, MemoryRegion *mr)
13eb76e0 3323{
13eb76e0 3324 uint8_t *ptr;
791af8c8 3325 uint64_t val;
3b643495 3326 MemTxResult result = MEMTX_OK;
4840f10e 3327 bool release_lock = false;
3b46e624 3328
a203ac70 3329 for (;;) {
eb7eeb88
PB
3330 if (!memory_access_is_direct(mr, true)) {
3331 release_lock |= prepare_mmio_access(mr);
3332 l = memory_access_size(mr, l, addr1);
3333 /* XXX: could force current_cpu to NULL to avoid
3334 potential bugs */
6d3ede54
PM
3335 val = ldn_p(buf, l);
3336 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3337 } else {
eb7eeb88 3338 /* RAM case */
f5aa69bd 3339 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3340 memcpy(ptr, buf, l);
3341 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3342 }
4840f10e
JK
3343
3344 if (release_lock) {
3345 qemu_mutex_unlock_iothread();
3346 release_lock = false;
3347 }
3348
13eb76e0
FB
3349 len -= l;
3350 buf += l;
3351 addr += l;
a203ac70
PB
3352
3353 if (!len) {
3354 break;
3355 }
3356
3357 l = len;
efa99a2f 3358 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3359 }
fd8aaa76 3360
3b643495 3361 return result;
13eb76e0 3362}
8df1cd07 3363
4c6ebbb3 3364/* Called from RCU critical section. */
16620684 3365static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3366 const uint8_t *buf, hwaddr len)
ac1970fb 3367{
eb7eeb88 3368 hwaddr l;
eb7eeb88
PB
3369 hwaddr addr1;
3370 MemoryRegion *mr;
3371 MemTxResult result = MEMTX_OK;
eb7eeb88 3372
4c6ebbb3 3373 l = len;
efa99a2f 3374 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3375 result = flatview_write_continue(fv, addr, attrs, buf, len,
3376 addr1, l, mr);
a203ac70
PB
3377
3378 return result;
3379}
3380
3381/* Called within RCU critical section. */
16620684
AK
3382MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3383 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3384 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3385 MemoryRegion *mr)
a203ac70
PB
3386{
3387 uint8_t *ptr;
3388 uint64_t val;
3389 MemTxResult result = MEMTX_OK;
3390 bool release_lock = false;
eb7eeb88 3391
a203ac70 3392 for (;;) {
eb7eeb88
PB
3393 if (!memory_access_is_direct(mr, false)) {
3394 /* I/O case */
3395 release_lock |= prepare_mmio_access(mr);
3396 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3397 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3398 stn_p(buf, l, val);
eb7eeb88
PB
3399 } else {
3400 /* RAM case */
f5aa69bd 3401 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3402 memcpy(buf, ptr, l);
3403 }
3404
3405 if (release_lock) {
3406 qemu_mutex_unlock_iothread();
3407 release_lock = false;
3408 }
3409
3410 len -= l;
3411 buf += l;
3412 addr += l;
a203ac70
PB
3413
3414 if (!len) {
3415 break;
3416 }
3417
3418 l = len;
efa99a2f 3419 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3420 }
3421
3422 return result;
3423}
3424
b2a44fca
PB
3425/* Called from RCU critical section. */
3426static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3427 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3428{
3429 hwaddr l;
3430 hwaddr addr1;
3431 MemoryRegion *mr;
eb7eeb88 3432
b2a44fca 3433 l = len;
efa99a2f 3434 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3435 return flatview_read_continue(fv, addr, attrs, buf, len,
3436 addr1, l, mr);
ac1970fb
AK
3437}
3438
b2a44fca 3439MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3440 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3441{
3442 MemTxResult result = MEMTX_OK;
3443 FlatView *fv;
3444
3445 if (len > 0) {
3446 rcu_read_lock();
3447 fv = address_space_to_flatview(as);
3448 result = flatview_read(fv, addr, attrs, buf, len);
3449 rcu_read_unlock();
3450 }
3451
3452 return result;
3453}
3454
4c6ebbb3
PB
3455MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3456 MemTxAttrs attrs,
0c249ff7 3457 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3458{
3459 MemTxResult result = MEMTX_OK;
3460 FlatView *fv;
3461
3462 if (len > 0) {
3463 rcu_read_lock();
3464 fv = address_space_to_flatview(as);
3465 result = flatview_write(fv, addr, attrs, buf, len);
3466 rcu_read_unlock();
3467 }
3468
3469 return result;
3470}
3471
db84fd97 3472MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3473 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3474{
3475 if (is_write) {
3476 return address_space_write(as, addr, attrs, buf, len);
3477 } else {
3478 return address_space_read_full(as, addr, attrs, buf, len);
3479 }
3480}
3481
a8170e5e 3482void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3483 hwaddr len, int is_write)
ac1970fb 3484{
5c9eb028
PM
3485 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3486 buf, len, is_write);
ac1970fb
AK
3487}
3488
582b55a9
AG
3489enum write_rom_type {
3490 WRITE_DATA,
3491 FLUSH_CACHE,
3492};
3493
75693e14
PM
3494static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3495 hwaddr addr,
3496 MemTxAttrs attrs,
3497 const uint8_t *buf,
0c249ff7 3498 hwaddr len,
75693e14 3499 enum write_rom_type type)
d0ecd2aa 3500{
149f54b5 3501 hwaddr l;
d0ecd2aa 3502 uint8_t *ptr;
149f54b5 3503 hwaddr addr1;
5c8a00ce 3504 MemoryRegion *mr;
3b46e624 3505
41063e1e 3506 rcu_read_lock();
d0ecd2aa 3507 while (len > 0) {
149f54b5 3508 l = len;
75693e14 3509 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3510
5c8a00ce
PB
3511 if (!(memory_region_is_ram(mr) ||
3512 memory_region_is_romd(mr))) {
b242e0e0 3513 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3514 } else {
d0ecd2aa 3515 /* ROM/RAM case */
0878d0e1 3516 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3517 switch (type) {
3518 case WRITE_DATA:
3519 memcpy(ptr, buf, l);
845b6214 3520 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3521 break;
3522 case FLUSH_CACHE:
3523 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3524 break;
3525 }
d0ecd2aa
FB
3526 }
3527 len -= l;
3528 buf += l;
3529 addr += l;
3530 }
41063e1e 3531 rcu_read_unlock();
75693e14 3532 return MEMTX_OK;
d0ecd2aa
FB
3533}
3534
582b55a9 3535/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3536MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3537 MemTxAttrs attrs,
0c249ff7 3538 const uint8_t *buf, hwaddr len)
582b55a9 3539{
3c8133f9
PM
3540 return address_space_write_rom_internal(as, addr, attrs,
3541 buf, len, WRITE_DATA);
582b55a9
AG
3542}
3543
0c249ff7 3544void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3545{
3546 /*
3547 * This function should do the same thing as an icache flush that was
3548 * triggered from within the guest. For TCG we are always cache coherent,
3549 * so there is no need to flush anything. For KVM / Xen we need to flush
3550 * the host's instruction cache at least.
3551 */
3552 if (tcg_enabled()) {
3553 return;
3554 }
3555
75693e14
PM
3556 address_space_write_rom_internal(&address_space_memory,
3557 start, MEMTXATTRS_UNSPECIFIED,
3558 NULL, len, FLUSH_CACHE);
582b55a9
AG
3559}
3560
6d16c2f8 3561typedef struct {
d3e71559 3562 MemoryRegion *mr;
6d16c2f8 3563 void *buffer;
a8170e5e
AK
3564 hwaddr addr;
3565 hwaddr len;
c2cba0ff 3566 bool in_use;
6d16c2f8
AL
3567} BounceBuffer;
3568
3569static BounceBuffer bounce;
3570
ba223c29 3571typedef struct MapClient {
e95205e1 3572 QEMUBH *bh;
72cf2d4f 3573 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3574} MapClient;
3575
38e047b5 3576QemuMutex map_client_list_lock;
b58deb34 3577static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3578 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3579
e95205e1
FZ
3580static void cpu_unregister_map_client_do(MapClient *client)
3581{
3582 QLIST_REMOVE(client, link);
3583 g_free(client);
3584}
3585
33b6c2ed
FZ
3586static void cpu_notify_map_clients_locked(void)
3587{
3588 MapClient *client;
3589
3590 while (!QLIST_EMPTY(&map_client_list)) {
3591 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3592 qemu_bh_schedule(client->bh);
3593 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3594 }
3595}
3596
e95205e1 3597void cpu_register_map_client(QEMUBH *bh)
ba223c29 3598{
7267c094 3599 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3600
38e047b5 3601 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3602 client->bh = bh;
72cf2d4f 3603 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3604 if (!atomic_read(&bounce.in_use)) {
3605 cpu_notify_map_clients_locked();
3606 }
38e047b5 3607 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3608}
3609
38e047b5 3610void cpu_exec_init_all(void)
ba223c29 3611{
38e047b5 3612 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3613 /* The data structures we set up here depend on knowing the page size,
3614 * so no more changes can be made after this point.
3615 * In an ideal world, nothing we did before we had finished the
3616 * machine setup would care about the target page size, and we could
3617 * do this much later, rather than requiring board models to state
3618 * up front what their requirements are.
3619 */
3620 finalize_target_page_bits();
38e047b5 3621 io_mem_init();
680a4783 3622 memory_map_init();
38e047b5 3623 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3624}
3625
e95205e1 3626void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3627{
3628 MapClient *client;
3629
e95205e1
FZ
3630 qemu_mutex_lock(&map_client_list_lock);
3631 QLIST_FOREACH(client, &map_client_list, link) {
3632 if (client->bh == bh) {
3633 cpu_unregister_map_client_do(client);
3634 break;
3635 }
ba223c29 3636 }
e95205e1 3637 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3638}
3639
3640static void cpu_notify_map_clients(void)
3641{
38e047b5 3642 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3643 cpu_notify_map_clients_locked();
38e047b5 3644 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3645}
3646
0c249ff7 3647static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3648 bool is_write, MemTxAttrs attrs)
51644ab7 3649{
5c8a00ce 3650 MemoryRegion *mr;
51644ab7
PB
3651 hwaddr l, xlat;
3652
3653 while (len > 0) {
3654 l = len;
efa99a2f 3655 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3656 if (!memory_access_is_direct(mr, is_write)) {
3657 l = memory_access_size(mr, l, addr);
eace72b7 3658 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3659 return false;
3660 }
3661 }
3662
3663 len -= l;
3664 addr += l;
3665 }
3666 return true;
3667}
3668
16620684 3669bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3670 hwaddr len, bool is_write,
fddffa42 3671 MemTxAttrs attrs)
16620684 3672{
11e732a5
PB
3673 FlatView *fv;
3674 bool result;
3675
3676 rcu_read_lock();
3677 fv = address_space_to_flatview(as);
eace72b7 3678 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3679 rcu_read_unlock();
3680 return result;
16620684
AK
3681}
3682
715c31ec 3683static hwaddr
16620684 3684flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3685 hwaddr target_len,
3686 MemoryRegion *mr, hwaddr base, hwaddr len,
3687 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3688{
3689 hwaddr done = 0;
3690 hwaddr xlat;
3691 MemoryRegion *this_mr;
3692
3693 for (;;) {
3694 target_len -= len;
3695 addr += len;
3696 done += len;
3697 if (target_len == 0) {
3698 return done;
3699 }
3700
3701 len = target_len;
16620684 3702 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3703 &len, is_write, attrs);
715c31ec
PB
3704 if (this_mr != mr || xlat != base + done) {
3705 return done;
3706 }
3707 }
3708}
3709
6d16c2f8
AL
3710/* Map a physical memory region into a host virtual address.
3711 * May map a subset of the requested range, given by and returned in *plen.
3712 * May return NULL if resources needed to perform the mapping are exhausted.
3713 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3714 * Use cpu_register_map_client() to know when retrying the map operation is
3715 * likely to succeed.
6d16c2f8 3716 */
ac1970fb 3717void *address_space_map(AddressSpace *as,
a8170e5e
AK
3718 hwaddr addr,
3719 hwaddr *plen,
f26404fb
PM
3720 bool is_write,
3721 MemTxAttrs attrs)
6d16c2f8 3722{
a8170e5e 3723 hwaddr len = *plen;
715c31ec
PB
3724 hwaddr l, xlat;
3725 MemoryRegion *mr;
e81bcda5 3726 void *ptr;
ad0c60fa 3727 FlatView *fv;
6d16c2f8 3728
e3127ae0
PB
3729 if (len == 0) {
3730 return NULL;
3731 }
38bee5dc 3732
e3127ae0 3733 l = len;
41063e1e 3734 rcu_read_lock();
ad0c60fa 3735 fv = address_space_to_flatview(as);
efa99a2f 3736 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3737
e3127ae0 3738 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3739 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3740 rcu_read_unlock();
e3127ae0 3741 return NULL;
6d16c2f8 3742 }
e85d9db5
KW
3743 /* Avoid unbounded allocations */
3744 l = MIN(l, TARGET_PAGE_SIZE);
3745 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3746 bounce.addr = addr;
3747 bounce.len = l;
d3e71559
PB
3748
3749 memory_region_ref(mr);
3750 bounce.mr = mr;
e3127ae0 3751 if (!is_write) {
16620684 3752 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3753 bounce.buffer, l);
8ab934f9 3754 }
6d16c2f8 3755
41063e1e 3756 rcu_read_unlock();
e3127ae0
PB
3757 *plen = l;
3758 return bounce.buffer;
3759 }
3760
e3127ae0 3761
d3e71559 3762 memory_region_ref(mr);
16620684 3763 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3764 l, is_write, attrs);
f5aa69bd 3765 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3766 rcu_read_unlock();
3767
3768 return ptr;
6d16c2f8
AL
3769}
3770
ac1970fb 3771/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3772 * Will also mark the memory as dirty if is_write == 1. access_len gives
3773 * the amount of memory that was actually read or written by the caller.
3774 */
a8170e5e
AK
3775void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3776 int is_write, hwaddr access_len)
6d16c2f8
AL
3777{
3778 if (buffer != bounce.buffer) {
d3e71559
PB
3779 MemoryRegion *mr;
3780 ram_addr_t addr1;
3781
07bdaa41 3782 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3783 assert(mr != NULL);
6d16c2f8 3784 if (is_write) {
845b6214 3785 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3786 }
868bb33f 3787 if (xen_enabled()) {
e41d7c69 3788 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3789 }
d3e71559 3790 memory_region_unref(mr);
6d16c2f8
AL
3791 return;
3792 }
3793 if (is_write) {
5c9eb028
PM
3794 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3795 bounce.buffer, access_len);
6d16c2f8 3796 }
f8a83245 3797 qemu_vfree(bounce.buffer);
6d16c2f8 3798 bounce.buffer = NULL;
d3e71559 3799 memory_region_unref(bounce.mr);
c2cba0ff 3800 atomic_mb_set(&bounce.in_use, false);
ba223c29 3801 cpu_notify_map_clients();
6d16c2f8 3802}
d0ecd2aa 3803
a8170e5e
AK
3804void *cpu_physical_memory_map(hwaddr addr,
3805 hwaddr *plen,
ac1970fb
AK
3806 int is_write)
3807{
f26404fb
PM
3808 return address_space_map(&address_space_memory, addr, plen, is_write,
3809 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3810}
3811
a8170e5e
AK
3812void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3813 int is_write, hwaddr access_len)
ac1970fb
AK
3814{
3815 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3816}
3817
0ce265ff
PB
3818#define ARG1_DECL AddressSpace *as
3819#define ARG1 as
3820#define SUFFIX
3821#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3822#define RCU_READ_LOCK(...) rcu_read_lock()
3823#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3824#include "memory_ldst.inc.c"
1e78bcc1 3825
1f4e496e
PB
3826int64_t address_space_cache_init(MemoryRegionCache *cache,
3827 AddressSpace *as,
3828 hwaddr addr,
3829 hwaddr len,
3830 bool is_write)
3831{
48564041
PB
3832 AddressSpaceDispatch *d;
3833 hwaddr l;
3834 MemoryRegion *mr;
3835
3836 assert(len > 0);
3837
3838 l = len;
3839 cache->fv = address_space_get_flatview(as);
3840 d = flatview_to_dispatch(cache->fv);
3841 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3842
3843 mr = cache->mrs.mr;
3844 memory_region_ref(mr);
3845 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3846 /* We don't care about the memory attributes here as we're only
3847 * doing this if we found actual RAM, which behaves the same
3848 * regardless of attributes; so UNSPECIFIED is fine.
3849 */
48564041 3850 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3851 cache->xlat, l, is_write,
3852 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3853 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3854 } else {
3855 cache->ptr = NULL;
3856 }
3857
3858 cache->len = l;
3859 cache->is_write = is_write;
3860 return l;
1f4e496e
PB
3861}
3862
3863void address_space_cache_invalidate(MemoryRegionCache *cache,
3864 hwaddr addr,
3865 hwaddr access_len)
3866{
48564041
PB
3867 assert(cache->is_write);
3868 if (likely(cache->ptr)) {
3869 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3870 }
1f4e496e
PB
3871}
3872
3873void address_space_cache_destroy(MemoryRegionCache *cache)
3874{
48564041
PB
3875 if (!cache->mrs.mr) {
3876 return;
3877 }
3878
3879 if (xen_enabled()) {
3880 xen_invalidate_map_cache_entry(cache->ptr);
3881 }
3882 memory_region_unref(cache->mrs.mr);
3883 flatview_unref(cache->fv);
3884 cache->mrs.mr = NULL;
3885 cache->fv = NULL;
3886}
3887
3888/* Called from RCU critical section. This function has the same
3889 * semantics as address_space_translate, but it only works on a
3890 * predefined range of a MemoryRegion that was mapped with
3891 * address_space_cache_init.
3892 */
3893static inline MemoryRegion *address_space_translate_cached(
3894 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3895 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3896{
3897 MemoryRegionSection section;
3898 MemoryRegion *mr;
3899 IOMMUMemoryRegion *iommu_mr;
3900 AddressSpace *target_as;
3901
3902 assert(!cache->ptr);
3903 *xlat = addr + cache->xlat;
3904
3905 mr = cache->mrs.mr;
3906 iommu_mr = memory_region_get_iommu(mr);
3907 if (!iommu_mr) {
3908 /* MMIO region. */
3909 return mr;
3910 }
3911
3912 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3913 NULL, is_write, true,
2f7b009c 3914 &target_as, attrs);
48564041
PB
3915 return section.mr;
3916}
3917
3918/* Called from RCU critical section. address_space_read_cached uses this
3919 * out of line function when the target is an MMIO or IOMMU region.
3920 */
3921void
3922address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3923 void *buf, hwaddr len)
48564041
PB
3924{
3925 hwaddr addr1, l;
3926 MemoryRegion *mr;
3927
3928 l = len;
bc6b1cec
PM
3929 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3930 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3931 flatview_read_continue(cache->fv,
3932 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3933 addr1, l, mr);
3934}
3935
3936/* Called from RCU critical section. address_space_write_cached uses this
3937 * out of line function when the target is an MMIO or IOMMU region.
3938 */
3939void
3940address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3941 const void *buf, hwaddr len)
48564041
PB
3942{
3943 hwaddr addr1, l;
3944 MemoryRegion *mr;
3945
3946 l = len;
bc6b1cec
PM
3947 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3948 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3949 flatview_write_continue(cache->fv,
3950 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3951 addr1, l, mr);
1f4e496e
PB
3952}
3953
3954#define ARG1_DECL MemoryRegionCache *cache
3955#define ARG1 cache
48564041
PB
3956#define SUFFIX _cached_slow
3957#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3958#define RCU_READ_LOCK() ((void)0)
3959#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3960#include "memory_ldst.inc.c"
3961
5e2972fd 3962/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3963int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3964 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3965{
a8170e5e 3966 hwaddr phys_addr;
0c249ff7 3967 target_ulong l, page;
13eb76e0 3968
79ca7a1b 3969 cpu_synchronize_state(cpu);
13eb76e0 3970 while (len > 0) {
5232e4c7
PM
3971 int asidx;
3972 MemTxAttrs attrs;
3973
13eb76e0 3974 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3975 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3976 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3977 /* if no physical page mapped, return an error */
3978 if (phys_addr == -1)
3979 return -1;
3980 l = (page + TARGET_PAGE_SIZE) - addr;
3981 if (l > len)
3982 l = len;
5e2972fd 3983 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3984 if (is_write) {
3c8133f9 3985 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3986 attrs, buf, l);
2e38847b 3987 } else {
5232e4c7 3988 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3989 attrs, buf, l, 0);
2e38847b 3990 }
13eb76e0
FB
3991 len -= l;
3992 buf += l;
3993 addr += l;
3994 }
3995 return 0;
3996}
038629a6
DDAG
3997
3998/*
3999 * Allows code that needs to deal with migration bitmaps etc to still be built
4000 * target independent.
4001 */
20afaed9 4002size_t qemu_target_page_size(void)
038629a6 4003{
20afaed9 4004 return TARGET_PAGE_SIZE;
038629a6
DDAG
4005}
4006
46d702b1
JQ
4007int qemu_target_page_bits(void)
4008{
4009 return TARGET_PAGE_BITS;
4010}
4011
4012int qemu_target_page_bits_min(void)
4013{
4014 return TARGET_PAGE_BITS_MIN;
4015}
a68fe89c 4016#endif
13eb76e0 4017
98ed8ecf 4018bool target_words_bigendian(void)
8e4a424b
BS
4019{
4020#if defined(TARGET_WORDS_BIGENDIAN)
4021 return true;
4022#else
4023 return false;
4024#endif
4025}
4026
76f35538 4027#ifndef CONFIG_USER_ONLY
a8170e5e 4028bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 4029{
5c8a00ce 4030 MemoryRegion*mr;
149f54b5 4031 hwaddr l = 1;
41063e1e 4032 bool res;
76f35538 4033
41063e1e 4034 rcu_read_lock();
5c8a00ce 4035 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
4036 phys_addr, &phys_addr, &l, false,
4037 MEMTXATTRS_UNSPECIFIED);
76f35538 4038
41063e1e
PB
4039 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4040 rcu_read_unlock();
4041 return res;
76f35538 4042}
bd2fa51f 4043
e3807054 4044int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
4045{
4046 RAMBlock *block;
e3807054 4047 int ret = 0;
bd2fa51f 4048
0dc3f44a 4049 rcu_read_lock();
99e15582 4050 RAMBLOCK_FOREACH(block) {
754cb9c0 4051 ret = func(block, opaque);
e3807054
DDAG
4052 if (ret) {
4053 break;
4054 }
bd2fa51f 4055 }
0dc3f44a 4056 rcu_read_unlock();
e3807054 4057 return ret;
bd2fa51f 4058}
d3a5038c
DDAG
4059
4060/*
4061 * Unmap pages of memory from start to start+length such that
4062 * they a) read as 0, b) Trigger whatever fault mechanism
4063 * the OS provides for postcopy.
4064 * The pages must be unmapped by the end of the function.
4065 * Returns: 0 on success, none-0 on failure
4066 *
4067 */
4068int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4069{
4070 int ret = -1;
4071
4072 uint8_t *host_startaddr = rb->host + start;
4073
4074 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4075 error_report("ram_block_discard_range: Unaligned start address: %p",
4076 host_startaddr);
4077 goto err;
4078 }
4079
4080 if ((start + length) <= rb->used_length) {
db144f70 4081 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4082 uint8_t *host_endaddr = host_startaddr + length;
4083 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4084 error_report("ram_block_discard_range: Unaligned end address: %p",
4085 host_endaddr);
4086 goto err;
4087 }
4088
4089 errno = ENOTSUP; /* If we are missing MADVISE etc */
4090
db144f70
DDAG
4091 /* The logic here is messy;
4092 * madvise DONTNEED fails for hugepages
4093 * fallocate works on hugepages and shmem
4094 */
4095 need_madvise = (rb->page_size == qemu_host_page_size);
4096 need_fallocate = rb->fd != -1;
4097 if (need_fallocate) {
4098 /* For a file, this causes the area of the file to be zero'd
4099 * if read, and for hugetlbfs also causes it to be unmapped
4100 * so a userfault will trigger.
e2fa71f5
DDAG
4101 */
4102#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4103 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4104 start, length);
db144f70
DDAG
4105 if (ret) {
4106 ret = -errno;
4107 error_report("ram_block_discard_range: Failed to fallocate "
4108 "%s:%" PRIx64 " +%zx (%d)",
4109 rb->idstr, start, length, ret);
4110 goto err;
4111 }
4112#else
4113 ret = -ENOSYS;
4114 error_report("ram_block_discard_range: fallocate not available/file"
4115 "%s:%" PRIx64 " +%zx (%d)",
4116 rb->idstr, start, length, ret);
4117 goto err;
e2fa71f5
DDAG
4118#endif
4119 }
db144f70
DDAG
4120 if (need_madvise) {
4121 /* For normal RAM this causes it to be unmapped,
4122 * for shared memory it causes the local mapping to disappear
4123 * and to fall back on the file contents (which we just
4124 * fallocate'd away).
4125 */
4126#if defined(CONFIG_MADVISE)
4127 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4128 if (ret) {
4129 ret = -errno;
4130 error_report("ram_block_discard_range: Failed to discard range "
4131 "%s:%" PRIx64 " +%zx (%d)",
4132 rb->idstr, start, length, ret);
4133 goto err;
4134 }
4135#else
4136 ret = -ENOSYS;
4137 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4138 "%s:%" PRIx64 " +%zx (%d)",
4139 rb->idstr, start, length, ret);
db144f70
DDAG
4140 goto err;
4141#endif
d3a5038c 4142 }
db144f70
DDAG
4143 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4144 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4145 } else {
4146 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4147 "/%zx/" RAM_ADDR_FMT")",
4148 rb->idstr, start, length, rb->used_length);
4149 }
4150
4151err:
4152 return ret;
4153}
4154
a4de8552
JH
4155bool ramblock_is_pmem(RAMBlock *rb)
4156{
4157 return rb->flags & RAM_PMEM;
4158}
4159
ec3f8c99 4160#endif
a0be0c58
YZ
4161
4162void page_size_init(void)
4163{
4164 /* NOTE: we can always suppose that qemu_host_page_size >=
4165 TARGET_PAGE_SIZE */
a0be0c58
YZ
4166 if (qemu_host_page_size == 0) {
4167 qemu_host_page_size = qemu_real_host_page_size;
4168 }
4169 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4170 qemu_host_page_size = TARGET_PAGE_SIZE;
4171 }
4172 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4173}
5e8fd947
AK
4174
4175#if !defined(CONFIG_USER_ONLY)
4176
b6b71cb5 4177static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4178{
4179 if (start == end - 1) {
b6b71cb5 4180 qemu_printf("\t%3d ", start);
5e8fd947 4181 } else {
b6b71cb5 4182 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4183 }
b6b71cb5 4184 qemu_printf(" skip=%d ", skip);
5e8fd947 4185 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4186 qemu_printf(" ptr=NIL");
5e8fd947 4187 } else if (!skip) {
b6b71cb5 4188 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4189 } else {
b6b71cb5 4190 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4191 }
b6b71cb5 4192 qemu_printf("\n");
5e8fd947
AK
4193}
4194
4195#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4196 int128_sub((size), int128_one())) : 0)
4197
b6b71cb5 4198void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4199{
4200 int i;
4201
b6b71cb5
MA
4202 qemu_printf(" Dispatch\n");
4203 qemu_printf(" Physical sections\n");
5e8fd947
AK
4204
4205 for (i = 0; i < d->map.sections_nb; ++i) {
4206 MemoryRegionSection *s = d->map.sections + i;
4207 const char *names[] = { " [unassigned]", " [not dirty]",
4208 " [ROM]", " [watch]" };
4209
b6b71cb5
MA
4210 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4211 " %s%s%s%s%s",
5e8fd947
AK
4212 i,
4213 s->offset_within_address_space,
4214 s->offset_within_address_space + MR_SIZE(s->mr->size),
4215 s->mr->name ? s->mr->name : "(noname)",
4216 i < ARRAY_SIZE(names) ? names[i] : "",
4217 s->mr == root ? " [ROOT]" : "",
4218 s == d->mru_section ? " [MRU]" : "",
4219 s->mr->is_iommu ? " [iommu]" : "");
4220
4221 if (s->mr->alias) {
b6b71cb5 4222 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4223 s->mr->alias->name : "noname");
4224 }
b6b71cb5 4225 qemu_printf("\n");
5e8fd947
AK
4226 }
4227
b6b71cb5 4228 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4229 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4230 for (i = 0; i < d->map.nodes_nb; ++i) {
4231 int j, jprev;
4232 PhysPageEntry prev;
4233 Node *n = d->map.nodes + i;
4234
b6b71cb5 4235 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4236
4237 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4238 PhysPageEntry *pe = *n + j;
4239
4240 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4241 continue;
4242 }
4243
b6b71cb5 4244 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4245
4246 jprev = j;
4247 prev = *pe;
4248 }
4249
4250 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4251 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4252 }
4253 }
4254}
4255
4256#endif