]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
utils: provide size_to_str()
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5
DDAG
51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52#include <fcntl.h>
53#include <linux/falloc.h>
54#endif
55
53a5960a 56#endif
0d6d3c87 57#include "exec/cpu-all.h"
0dc3f44a 58#include "qemu/rcu_queue.h"
4840f10e 59#include "qemu/main-loop.h"
5b6dd868 60#include "translate-all.h"
7615936e 61#include "sysemu/replay.h"
0cac1b66 62
022c62cb 63#include "exec/memory-internal.h"
220c3ebd 64#include "exec/ram_addr.h"
508127e2 65#include "exec/log.h"
67d95c15 66
9dfeca7c
BR
67#include "migration/vmstate.h"
68
b35ba30f 69#include "qemu/range.h"
794e8f30
MT
70#ifndef _WIN32
71#include "qemu/mmap-alloc.h"
72#endif
b35ba30f 73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
e2eef170 102#endif
9fa3e853 103
20bccb82
PM
104#ifdef TARGET_PAGE_BITS_VARY
105int target_page_bits;
106bool target_page_bits_decided;
107#endif
108
bdc44640 109struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
110/* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
f240eb6f 112__thread CPUState *current_cpu;
2e70f6ef 113/* 0 = Do not count executed instructions.
bf20dc07 114 1 = Precise instruction counting.
2e70f6ef 115 2 = Adaptive rate instruction counting. */
5708fc66 116int use_icount;
6a00d601 117
20bccb82
PM
118bool set_preferred_target_page_bits(int bits)
119{
120 /* The target page size is the lowest common denominator for all
121 * the CPUs in the system, so we can only make it smaller, never
122 * larger. And we can't make it smaller once we've committed to
123 * a particular size.
124 */
125#ifdef TARGET_PAGE_BITS_VARY
126 assert(bits >= TARGET_PAGE_BITS_MIN);
127 if (target_page_bits == 0 || target_page_bits > bits) {
128 if (target_page_bits_decided) {
129 return false;
130 }
131 target_page_bits = bits;
132 }
133#endif
134 return true;
135}
136
e2eef170 137#if !defined(CONFIG_USER_ONLY)
4346ae3e 138
20bccb82
PM
139static void finalize_target_page_bits(void)
140{
141#ifdef TARGET_PAGE_BITS_VARY
142 if (target_page_bits == 0) {
143 target_page_bits = TARGET_PAGE_BITS_MIN;
144 }
145 target_page_bits_decided = true;
146#endif
147}
148
1db8abb1
PB
149typedef struct PhysPageEntry PhysPageEntry;
150
151struct PhysPageEntry {
9736e55b 152 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 153 uint32_t skip : 6;
9736e55b 154 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 155 uint32_t ptr : 26;
1db8abb1
PB
156};
157
8b795765
MT
158#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
159
03f49957 160/* Size of the L2 (and L3, etc) page tables. */
57271d63 161#define ADDR_SPACE_BITS 64
03f49957 162
026736ce 163#define P_L2_BITS 9
03f49957
PB
164#define P_L2_SIZE (1 << P_L2_BITS)
165
166#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
167
168typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 169
53cb28cb 170typedef struct PhysPageMap {
79e2b9ae
PB
171 struct rcu_head rcu;
172
53cb28cb
MA
173 unsigned sections_nb;
174 unsigned sections_nb_alloc;
175 unsigned nodes_nb;
176 unsigned nodes_nb_alloc;
177 Node *nodes;
178 MemoryRegionSection *sections;
179} PhysPageMap;
180
1db8abb1 181struct AddressSpaceDispatch {
79e2b9ae
PB
182 struct rcu_head rcu;
183
729633c2 184 MemoryRegionSection *mru_section;
1db8abb1
PB
185 /* This is a multi-level map on the physical address space.
186 * The bottom level has pointers to MemoryRegionSections.
187 */
188 PhysPageEntry phys_map;
53cb28cb 189 PhysPageMap map;
acc9d80b 190 AddressSpace *as;
1db8abb1
PB
191};
192
90260c6c
JK
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 MemoryRegion iomem;
acc9d80b 196 AddressSpace *as;
90260c6c 197 hwaddr base;
2615fabd 198 uint16_t sub_section[];
90260c6c
JK
199} subpage_t;
200
b41aac4f
LPF
201#define PHYS_SECTION_UNASSIGNED 0
202#define PHYS_SECTION_NOTDIRTY 1
203#define PHYS_SECTION_ROM 2
204#define PHYS_SECTION_WATCH 3
5312bd8b 205
e2eef170 206static void io_mem_init(void);
62152b8a 207static void memory_map_init(void);
09daed84 208static void tcg_commit(MemoryListener *listener);
e2eef170 209
1ec9b909 210static MemoryRegion io_mem_watch;
32857f4d
PM
211
212/**
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
218 */
219struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
224};
225
8deaf12c
GH
226struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
230};
231
6658ffb8 232#endif
fd6ce8f6 233
6d9a1304 234#if !defined(CONFIG_USER_ONLY)
d6f2ea22 235
53cb28cb 236static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 237{
101420b8 238 static unsigned alloc_hint = 16;
53cb28cb 239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 243 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 244 }
f7bf5461
AK
245}
246
db94604b 247static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
248{
249 unsigned i;
8b795765 250 uint32_t ret;
db94604b
PB
251 PhysPageEntry e;
252 PhysPageEntry *p;
f7bf5461 253
53cb28cb 254 ret = map->nodes_nb++;
db94604b 255 p = map->nodes[ret];
f7bf5461 256 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 257 assert(ret != map->nodes_nb_alloc);
db94604b
PB
258
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 261 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 262 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 263 }
f7bf5461 264 return ret;
d6f2ea22
AK
265}
266
53cb28cb
MA
267static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 269 int level)
f7bf5461
AK
270{
271 PhysPageEntry *p;
03f49957 272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 273
9736e55b 274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 275 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 276 }
db94604b 277 p = map->nodes[lp->ptr];
03f49957 278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 279
03f49957 280 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 281 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 282 lp->skip = 0;
c19e8800 283 lp->ptr = leaf;
07f07b31
AK
284 *index += step;
285 *nb -= step;
2999097b 286 } else {
53cb28cb 287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
288 }
289 ++lp;
f7bf5461
AK
290 }
291}
292
ac1970fb 293static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 294 hwaddr index, hwaddr nb,
2999097b 295 uint16_t leaf)
f7bf5461 296{
2999097b 297 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 299
53cb28cb 300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
301}
302
b35ba30f
MT
303/* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
305 */
efee678d 306static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
307{
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
312
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
315 }
316
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
321 }
322
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
efee678d 326 phys_page_compact(&p[i], nodes);
b35ba30f
MT
327 }
328 }
329
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
333 }
334
335 assert(valid_ptr < P_L2_SIZE);
336
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
340 }
341
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
349 */
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
353 }
354}
355
356static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
357{
b35ba30f 358 if (d->phys_map.skip) {
efee678d 359 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
360 }
361}
362
29cb533d
FZ
363static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
365{
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
368 */
258dfaaa 369 return int128_gethi(section->size) ||
29cb533d 370 range_covers_byte(section->offset_within_address_space,
258dfaaa 371 int128_getlo(section->size), addr);
29cb533d
FZ
372}
373
97115a8d 374static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 375 Node *nodes, MemoryRegionSection *sections)
92e873b9 376{
31ab2b4a 377 PhysPageEntry *p;
97115a8d 378 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 379 int i;
f1f6e3b8 380
9736e55b 381 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 382 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 383 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 384 }
9affd6fc 385 p = nodes[lp.ptr];
03f49957 386 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 387 }
b35ba30f 388
29cb533d 389 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
390 return &sections[lp.ptr];
391 } else {
392 return &sections[PHYS_SECTION_UNASSIGNED];
393 }
f3705d53
AK
394}
395
e5548617
BS
396bool memory_region_is_unassigned(MemoryRegion *mr)
397{
2a8e7499 398 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 399 && mr != &io_mem_watch;
fd6ce8f6 400}
149f54b5 401
79e2b9ae 402/* Called from RCU critical section */
c7086b4a 403static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
404 hwaddr addr,
405 bool resolve_subpage)
9f029603 406{
729633c2 407 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 408 subpage_t *subpage;
729633c2 409 bool update;
90260c6c 410
729633c2
FZ
411 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
412 section_covers_addr(section, addr)) {
413 update = false;
414 } else {
415 section = phys_page_find(d->phys_map, addr, d->map.nodes,
416 d->map.sections);
417 update = true;
418 }
90260c6c
JK
419 if (resolve_subpage && section->mr->subpage) {
420 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 421 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 422 }
729633c2
FZ
423 if (update) {
424 atomic_set(&d->mru_section, section);
425 }
90260c6c 426 return section;
9f029603
JK
427}
428
79e2b9ae 429/* Called from RCU critical section */
90260c6c 430static MemoryRegionSection *
c7086b4a 431address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 432 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
433{
434 MemoryRegionSection *section;
965eb2fc 435 MemoryRegion *mr;
a87f3954 436 Int128 diff;
149f54b5 437
c7086b4a 438 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
439 /* Compute offset within MemoryRegionSection */
440 addr -= section->offset_within_address_space;
441
442 /* Compute offset within MemoryRegion */
443 *xlat = addr + section->offset_within_region;
444
965eb2fc 445 mr = section->mr;
b242e0e0
PB
446
447 /* MMIO registers can be expected to perform full-width accesses based only
448 * on their address, without considering adjacent registers that could
449 * decode to completely different MemoryRegions. When such registers
450 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
451 * regions overlap wildly. For this reason we cannot clamp the accesses
452 * here.
453 *
454 * If the length is small (as is the case for address_space_ldl/stl),
455 * everything works fine. If the incoming length is large, however,
456 * the caller really has to do the clamping through memory_access_size.
457 */
965eb2fc 458 if (memory_region_is_ram(mr)) {
e4a511f8 459 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
460 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
461 }
149f54b5
PB
462 return section;
463}
90260c6c 464
41063e1e 465/* Called from RCU critical section */
052c8fa9
JW
466IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
467 bool is_write)
468{
469 IOMMUTLBEntry iotlb = {0};
470 MemoryRegionSection *section;
471 MemoryRegion *mr;
472
473 for (;;) {
474 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
475 section = address_space_lookup_region(d, addr, false);
476 addr = addr - section->offset_within_address_space
477 + section->offset_within_region;
478 mr = section->mr;
479
480 if (!mr->iommu_ops) {
481 break;
482 }
483
484 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
485 if (!(iotlb.perm & (1 << is_write))) {
486 iotlb.target_as = NULL;
487 break;
488 }
489
490 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
491 | (addr & iotlb.addr_mask));
492 as = iotlb.target_as;
493 }
494
495 return iotlb;
496}
497
498/* Called from RCU critical section */
5c8a00ce
PB
499MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
500 hwaddr *xlat, hwaddr *plen,
501 bool is_write)
90260c6c 502{
30951157
AK
503 IOMMUTLBEntry iotlb;
504 MemoryRegionSection *section;
505 MemoryRegion *mr;
30951157
AK
506
507 for (;;) {
79e2b9ae
PB
508 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
509 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
510 mr = section->mr;
511
512 if (!mr->iommu_ops) {
513 break;
514 }
515
8d7b8cb9 516 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
517 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
518 | (addr & iotlb.addr_mask));
23820dbf 519 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
520 if (!(iotlb.perm & (1 << is_write))) {
521 mr = &io_mem_unassigned;
522 break;
523 }
524
525 as = iotlb.target_as;
526 }
527
fe680d0d 528 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 529 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 530 *plen = MIN(page, *plen);
a87f3954
PB
531 }
532
30951157
AK
533 *xlat = addr;
534 return mr;
90260c6c
JK
535}
536
79e2b9ae 537/* Called from RCU critical section */
90260c6c 538MemoryRegionSection *
d7898cda 539address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 540 hwaddr *xlat, hwaddr *plen)
90260c6c 541{
30951157 542 MemoryRegionSection *section;
f35e44e7 543 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
544
545 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
546
547 assert(!section->mr->iommu_ops);
548 return section;
90260c6c 549}
5b6dd868 550#endif
fd6ce8f6 551
b170fce3 552#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
553
554static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 555{
259186a7 556 CPUState *cpu = opaque;
a513fe19 557
5b6dd868
BS
558 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
559 version_id is increased. */
259186a7 560 cpu->interrupt_request &= ~0x01;
d10eb08f 561 tlb_flush(cpu);
5b6dd868
BS
562
563 return 0;
a513fe19 564}
7501267e 565
6c3bff0e
PD
566static int cpu_common_pre_load(void *opaque)
567{
568 CPUState *cpu = opaque;
569
adee6424 570 cpu->exception_index = -1;
6c3bff0e
PD
571
572 return 0;
573}
574
575static bool cpu_common_exception_index_needed(void *opaque)
576{
577 CPUState *cpu = opaque;
578
adee6424 579 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
580}
581
582static const VMStateDescription vmstate_cpu_common_exception_index = {
583 .name = "cpu_common/exception_index",
584 .version_id = 1,
585 .minimum_version_id = 1,
5cd8cada 586 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
587 .fields = (VMStateField[]) {
588 VMSTATE_INT32(exception_index, CPUState),
589 VMSTATE_END_OF_LIST()
590 }
591};
592
bac05aa9
AS
593static bool cpu_common_crash_occurred_needed(void *opaque)
594{
595 CPUState *cpu = opaque;
596
597 return cpu->crash_occurred;
598}
599
600static const VMStateDescription vmstate_cpu_common_crash_occurred = {
601 .name = "cpu_common/crash_occurred",
602 .version_id = 1,
603 .minimum_version_id = 1,
604 .needed = cpu_common_crash_occurred_needed,
605 .fields = (VMStateField[]) {
606 VMSTATE_BOOL(crash_occurred, CPUState),
607 VMSTATE_END_OF_LIST()
608 }
609};
610
1a1562f5 611const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
612 .name = "cpu_common",
613 .version_id = 1,
614 .minimum_version_id = 1,
6c3bff0e 615 .pre_load = cpu_common_pre_load,
5b6dd868 616 .post_load = cpu_common_post_load,
35d08458 617 .fields = (VMStateField[]) {
259186a7
AF
618 VMSTATE_UINT32(halted, CPUState),
619 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 620 VMSTATE_END_OF_LIST()
6c3bff0e 621 },
5cd8cada
JQ
622 .subsections = (const VMStateDescription*[]) {
623 &vmstate_cpu_common_exception_index,
bac05aa9 624 &vmstate_cpu_common_crash_occurred,
5cd8cada 625 NULL
5b6dd868
BS
626 }
627};
1a1562f5 628
5b6dd868 629#endif
ea041c0e 630
38d8f5c8 631CPUState *qemu_get_cpu(int index)
ea041c0e 632{
bdc44640 633 CPUState *cpu;
ea041c0e 634
bdc44640 635 CPU_FOREACH(cpu) {
55e5c285 636 if (cpu->cpu_index == index) {
bdc44640 637 return cpu;
55e5c285 638 }
ea041c0e 639 }
5b6dd868 640
bdc44640 641 return NULL;
ea041c0e
FB
642}
643
09daed84 644#if !defined(CONFIG_USER_ONLY)
56943e8c 645void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 646{
12ebc9a7
PM
647 CPUAddressSpace *newas;
648
649 /* Target code should have set num_ases before calling us */
650 assert(asidx < cpu->num_ases);
651
56943e8c
PM
652 if (asidx == 0) {
653 /* address space 0 gets the convenience alias */
654 cpu->as = as;
655 }
656
12ebc9a7
PM
657 /* KVM cannot currently support multiple address spaces. */
658 assert(asidx == 0 || !kvm_enabled());
09daed84 659
12ebc9a7
PM
660 if (!cpu->cpu_ases) {
661 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 662 }
32857f4d 663
12ebc9a7
PM
664 newas = &cpu->cpu_ases[asidx];
665 newas->cpu = cpu;
666 newas->as = as;
56943e8c 667 if (tcg_enabled()) {
12ebc9a7
PM
668 newas->tcg_as_listener.commit = tcg_commit;
669 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 670 }
09daed84 671}
651a5bc0
PM
672
673AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
674{
675 /* Return the AddressSpace corresponding to the specified index */
676 return cpu->cpu_ases[asidx].as;
677}
09daed84
EI
678#endif
679
7bbc124e 680void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 681{
9dfeca7c
BR
682 CPUClass *cc = CPU_GET_CLASS(cpu);
683
267f685b 684 cpu_list_remove(cpu);
9dfeca7c
BR
685
686 if (cc->vmsd != NULL) {
687 vmstate_unregister(NULL, cc->vmsd, cpu);
688 }
689 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
690 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
691 }
1c59eb39
BR
692}
693
39e329e3 694void cpu_exec_initfn(CPUState *cpu)
ea041c0e 695{
56943e8c 696 cpu->as = NULL;
12ebc9a7 697 cpu->num_ases = 0;
56943e8c 698
291135b5 699#ifndef CONFIG_USER_ONLY
291135b5 700 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
701
702 /* This is a softmmu CPU object, so create a property for it
703 * so users can wire up its memory. (This can't go in qom/cpu.c
704 * because that file is compiled only once for both user-mode
705 * and system builds.) The default if no link is set up is to use
706 * the system address space.
707 */
708 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
709 (Object **)&cpu->memory,
710 qdev_prop_allow_set_link_before_realize,
711 OBJ_PROP_LINK_UNREF_ON_RELEASE,
712 &error_abort);
713 cpu->memory = system_memory;
714 object_ref(OBJECT(cpu->memory));
291135b5 715#endif
39e329e3
LV
716}
717
ce5b1bbf 718void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
719{
720 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 721
267f685b 722 cpu_list_add(cpu);
1bc7e522
IM
723
724#ifndef CONFIG_USER_ONLY
e0d47944 725 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 726 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 727 }
b170fce3 728 if (cc->vmsd != NULL) {
741da0d3 729 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 730 }
741da0d3 731#endif
ea041c0e
FB
732}
733
00b941e5 734static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 735{
a9353fe8
PM
736 /* Flush the whole TB as this will not have race conditions
737 * even if we don't have proper locking yet.
738 * Ideally we would just invalidate the TBs for the
739 * specified PC.
740 */
741 tb_flush(cpu);
1e7855a5 742}
d720b93d 743
c527ee8f 744#if defined(CONFIG_USER_ONLY)
75a34036 745void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
746
747{
748}
749
3ee887e8
PM
750int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
751 int flags)
752{
753 return -ENOSYS;
754}
755
756void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
757{
758}
759
75a34036 760int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
761 int flags, CPUWatchpoint **watchpoint)
762{
763 return -ENOSYS;
764}
765#else
6658ffb8 766/* Add a watchpoint. */
75a34036 767int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 768 int flags, CPUWatchpoint **watchpoint)
6658ffb8 769{
c0ce998e 770 CPUWatchpoint *wp;
6658ffb8 771
05068c0d 772 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 773 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
774 error_report("tried to set invalid watchpoint at %"
775 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
776 return -EINVAL;
777 }
7267c094 778 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
779
780 wp->vaddr = addr;
05068c0d 781 wp->len = len;
a1d1bb31
AL
782 wp->flags = flags;
783
2dc9f411 784 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
785 if (flags & BP_GDB) {
786 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
787 } else {
788 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
789 }
6658ffb8 790
31b030d4 791 tlb_flush_page(cpu, addr);
a1d1bb31
AL
792
793 if (watchpoint)
794 *watchpoint = wp;
795 return 0;
6658ffb8
PB
796}
797
a1d1bb31 798/* Remove a specific watchpoint. */
75a34036 799int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 800 int flags)
6658ffb8 801{
a1d1bb31 802 CPUWatchpoint *wp;
6658ffb8 803
ff4700b0 804 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 805 if (addr == wp->vaddr && len == wp->len
6e140f28 806 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 807 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
808 return 0;
809 }
810 }
a1d1bb31 811 return -ENOENT;
6658ffb8
PB
812}
813
a1d1bb31 814/* Remove a specific watchpoint by reference. */
75a34036 815void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 816{
ff4700b0 817 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 818
31b030d4 819 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 820
7267c094 821 g_free(watchpoint);
a1d1bb31
AL
822}
823
824/* Remove all matching watchpoints. */
75a34036 825void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 826{
c0ce998e 827 CPUWatchpoint *wp, *next;
a1d1bb31 828
ff4700b0 829 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
830 if (wp->flags & mask) {
831 cpu_watchpoint_remove_by_ref(cpu, wp);
832 }
c0ce998e 833 }
7d03f82f 834}
05068c0d
PM
835
836/* Return true if this watchpoint address matches the specified
837 * access (ie the address range covered by the watchpoint overlaps
838 * partially or completely with the address range covered by the
839 * access).
840 */
841static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
842 vaddr addr,
843 vaddr len)
844{
845 /* We know the lengths are non-zero, but a little caution is
846 * required to avoid errors in the case where the range ends
847 * exactly at the top of the address space and so addr + len
848 * wraps round to zero.
849 */
850 vaddr wpend = wp->vaddr + wp->len - 1;
851 vaddr addrend = addr + len - 1;
852
853 return !(addr > wpend || wp->vaddr > addrend);
854}
855
c527ee8f 856#endif
7d03f82f 857
a1d1bb31 858/* Add a breakpoint. */
b3310ab3 859int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 860 CPUBreakpoint **breakpoint)
4c3a88a2 861{
c0ce998e 862 CPUBreakpoint *bp;
3b46e624 863
7267c094 864 bp = g_malloc(sizeof(*bp));
4c3a88a2 865
a1d1bb31
AL
866 bp->pc = pc;
867 bp->flags = flags;
868
2dc9f411 869 /* keep all GDB-injected breakpoints in front */
00b941e5 870 if (flags & BP_GDB) {
f0c3c505 871 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 872 } else {
f0c3c505 873 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 874 }
3b46e624 875
f0c3c505 876 breakpoint_invalidate(cpu, pc);
a1d1bb31 877
00b941e5 878 if (breakpoint) {
a1d1bb31 879 *breakpoint = bp;
00b941e5 880 }
4c3a88a2 881 return 0;
4c3a88a2
FB
882}
883
a1d1bb31 884/* Remove a specific breakpoint. */
b3310ab3 885int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 886{
a1d1bb31
AL
887 CPUBreakpoint *bp;
888
f0c3c505 889 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 890 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 891 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
892 return 0;
893 }
7d03f82f 894 }
a1d1bb31 895 return -ENOENT;
7d03f82f
EI
896}
897
a1d1bb31 898/* Remove a specific breakpoint by reference. */
b3310ab3 899void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 900{
f0c3c505
AF
901 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
902
903 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 904
7267c094 905 g_free(breakpoint);
a1d1bb31
AL
906}
907
908/* Remove all matching breakpoints. */
b3310ab3 909void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 910{
c0ce998e 911 CPUBreakpoint *bp, *next;
a1d1bb31 912
f0c3c505 913 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
914 if (bp->flags & mask) {
915 cpu_breakpoint_remove_by_ref(cpu, bp);
916 }
c0ce998e 917 }
4c3a88a2
FB
918}
919
c33a346e
FB
920/* enable or disable single step mode. EXCP_DEBUG is returned by the
921 CPU loop after each instruction */
3825b28f 922void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 923{
ed2803da
AF
924 if (cpu->singlestep_enabled != enabled) {
925 cpu->singlestep_enabled = enabled;
926 if (kvm_enabled()) {
38e478ec 927 kvm_update_guest_debug(cpu, 0);
ed2803da 928 } else {
ccbb4d44 929 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 930 /* XXX: only flush what is necessary */
bbd77c18 931 tb_flush(cpu);
e22a25c9 932 }
c33a346e 933 }
c33a346e
FB
934}
935
a47dddd7 936void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
937{
938 va_list ap;
493ae1f0 939 va_list ap2;
7501267e
FB
940
941 va_start(ap, fmt);
493ae1f0 942 va_copy(ap2, ap);
7501267e
FB
943 fprintf(stderr, "qemu: fatal: ");
944 vfprintf(stderr, fmt, ap);
945 fprintf(stderr, "\n");
878096ee 946 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 947 if (qemu_log_separate()) {
1ee73216 948 qemu_log_lock();
93fcfe39
AL
949 qemu_log("qemu: fatal: ");
950 qemu_log_vprintf(fmt, ap2);
951 qemu_log("\n");
a0762859 952 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 953 qemu_log_flush();
1ee73216 954 qemu_log_unlock();
93fcfe39 955 qemu_log_close();
924edcae 956 }
493ae1f0 957 va_end(ap2);
f9373291 958 va_end(ap);
7615936e 959 replay_finish();
fd052bf6
RV
960#if defined(CONFIG_USER_ONLY)
961 {
962 struct sigaction act;
963 sigfillset(&act.sa_mask);
964 act.sa_handler = SIG_DFL;
965 sigaction(SIGABRT, &act, NULL);
966 }
967#endif
7501267e
FB
968 abort();
969}
970
0124311e 971#if !defined(CONFIG_USER_ONLY)
0dc3f44a 972/* Called from RCU critical section */
041603fe
PB
973static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
974{
975 RAMBlock *block;
976
43771539 977 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 978 if (block && addr - block->offset < block->max_length) {
68851b98 979 return block;
041603fe 980 }
99e15582 981 RAMBLOCK_FOREACH(block) {
9b8424d5 982 if (addr - block->offset < block->max_length) {
041603fe
PB
983 goto found;
984 }
985 }
986
987 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
988 abort();
989
990found:
43771539
PB
991 /* It is safe to write mru_block outside the iothread lock. This
992 * is what happens:
993 *
994 * mru_block = xxx
995 * rcu_read_unlock()
996 * xxx removed from list
997 * rcu_read_lock()
998 * read mru_block
999 * mru_block = NULL;
1000 * call_rcu(reclaim_ramblock, xxx);
1001 * rcu_read_unlock()
1002 *
1003 * atomic_rcu_set is not needed here. The block was already published
1004 * when it was placed into the list. Here we're just making an extra
1005 * copy of the pointer.
1006 */
041603fe
PB
1007 ram_list.mru_block = block;
1008 return block;
1009}
1010
a2f4d5be 1011static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1012{
9a13565d 1013 CPUState *cpu;
041603fe 1014 ram_addr_t start1;
a2f4d5be
JQ
1015 RAMBlock *block;
1016 ram_addr_t end;
1017
1018 end = TARGET_PAGE_ALIGN(start + length);
1019 start &= TARGET_PAGE_MASK;
d24981d3 1020
0dc3f44a 1021 rcu_read_lock();
041603fe
PB
1022 block = qemu_get_ram_block(start);
1023 assert(block == qemu_get_ram_block(end - 1));
1240be24 1024 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1025 CPU_FOREACH(cpu) {
1026 tlb_reset_dirty(cpu, start1, length);
1027 }
0dc3f44a 1028 rcu_read_unlock();
d24981d3
JQ
1029}
1030
5579c7f3 1031/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1032bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1033 ram_addr_t length,
1034 unsigned client)
1ccde1cb 1035{
5b82b703 1036 DirtyMemoryBlocks *blocks;
03eebc9e 1037 unsigned long end, page;
5b82b703 1038 bool dirty = false;
03eebc9e
SH
1039
1040 if (length == 0) {
1041 return false;
1042 }
f23db169 1043
03eebc9e
SH
1044 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1045 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1046
1047 rcu_read_lock();
1048
1049 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1050
1051 while (page < end) {
1052 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1053 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1054 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1055
1056 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1057 offset, num);
1058 page += num;
1059 }
1060
1061 rcu_read_unlock();
03eebc9e
SH
1062
1063 if (dirty && tcg_enabled()) {
a2f4d5be 1064 tlb_reset_dirty_range_all(start, length);
5579c7f3 1065 }
03eebc9e
SH
1066
1067 return dirty;
1ccde1cb
FB
1068}
1069
8deaf12c
GH
1070DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1071 (ram_addr_t start, ram_addr_t length, unsigned client)
1072{
1073 DirtyMemoryBlocks *blocks;
1074 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1075 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1076 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1077 DirtyBitmapSnapshot *snap;
1078 unsigned long page, end, dest;
1079
1080 snap = g_malloc0(sizeof(*snap) +
1081 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1082 snap->start = first;
1083 snap->end = last;
1084
1085 page = first >> TARGET_PAGE_BITS;
1086 end = last >> TARGET_PAGE_BITS;
1087 dest = 0;
1088
1089 rcu_read_lock();
1090
1091 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1092
1093 while (page < end) {
1094 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1095 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1096 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1097
1098 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1099 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1100 offset >>= BITS_PER_LEVEL;
1101
1102 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1103 blocks->blocks[idx] + offset,
1104 num);
1105 page += num;
1106 dest += num >> BITS_PER_LEVEL;
1107 }
1108
1109 rcu_read_unlock();
1110
1111 if (tcg_enabled()) {
1112 tlb_reset_dirty_range_all(start, length);
1113 }
1114
1115 return snap;
1116}
1117
1118bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1119 ram_addr_t start,
1120 ram_addr_t length)
1121{
1122 unsigned long page, end;
1123
1124 assert(start >= snap->start);
1125 assert(start + length <= snap->end);
1126
1127 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1128 page = (start - snap->start) >> TARGET_PAGE_BITS;
1129
1130 while (page < end) {
1131 if (test_bit(page, snap->dirty)) {
1132 return true;
1133 }
1134 page++;
1135 }
1136 return false;
1137}
1138
79e2b9ae 1139/* Called from RCU critical section */
bb0e627a 1140hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1141 MemoryRegionSection *section,
1142 target_ulong vaddr,
1143 hwaddr paddr, hwaddr xlat,
1144 int prot,
1145 target_ulong *address)
e5548617 1146{
a8170e5e 1147 hwaddr iotlb;
e5548617
BS
1148 CPUWatchpoint *wp;
1149
cc5bea60 1150 if (memory_region_is_ram(section->mr)) {
e5548617 1151 /* Normal RAM. */
e4e69794 1152 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1153 if (!section->readonly) {
b41aac4f 1154 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1155 } else {
b41aac4f 1156 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1157 }
1158 } else {
0b8e2c10
PM
1159 AddressSpaceDispatch *d;
1160
1161 d = atomic_rcu_read(&section->address_space->dispatch);
1162 iotlb = section - d->map.sections;
149f54b5 1163 iotlb += xlat;
e5548617
BS
1164 }
1165
1166 /* Make accesses to pages with watchpoints go via the
1167 watchpoint trap routines. */
ff4700b0 1168 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1169 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1170 /* Avoid trapping reads of pages with a write breakpoint. */
1171 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1172 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1173 *address |= TLB_MMIO;
1174 break;
1175 }
1176 }
1177 }
1178
1179 return iotlb;
1180}
9fa3e853
FB
1181#endif /* defined(CONFIG_USER_ONLY) */
1182
e2eef170 1183#if !defined(CONFIG_USER_ONLY)
8da3ff18 1184
c227f099 1185static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1186 uint16_t section);
acc9d80b 1187static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1188
a2b257d6
IM
1189static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1190 qemu_anon_ram_alloc;
91138037
MA
1191
1192/*
1193 * Set a custom physical guest memory alloator.
1194 * Accelerators with unusual needs may need this. Hopefully, we can
1195 * get rid of it eventually.
1196 */
a2b257d6 1197void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1198{
1199 phys_mem_alloc = alloc;
1200}
1201
53cb28cb
MA
1202static uint16_t phys_section_add(PhysPageMap *map,
1203 MemoryRegionSection *section)
5312bd8b 1204{
68f3f65b
PB
1205 /* The physical section number is ORed with a page-aligned
1206 * pointer to produce the iotlb entries. Thus it should
1207 * never overflow into the page-aligned value.
1208 */
53cb28cb 1209 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1210
53cb28cb
MA
1211 if (map->sections_nb == map->sections_nb_alloc) {
1212 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1213 map->sections = g_renew(MemoryRegionSection, map->sections,
1214 map->sections_nb_alloc);
5312bd8b 1215 }
53cb28cb 1216 map->sections[map->sections_nb] = *section;
dfde4e6e 1217 memory_region_ref(section->mr);
53cb28cb 1218 return map->sections_nb++;
5312bd8b
AK
1219}
1220
058bc4b5
PB
1221static void phys_section_destroy(MemoryRegion *mr)
1222{
55b4e80b
DS
1223 bool have_sub_page = mr->subpage;
1224
dfde4e6e
PB
1225 memory_region_unref(mr);
1226
55b4e80b 1227 if (have_sub_page) {
058bc4b5 1228 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1229 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1230 g_free(subpage);
1231 }
1232}
1233
6092666e 1234static void phys_sections_free(PhysPageMap *map)
5312bd8b 1235{
9affd6fc
PB
1236 while (map->sections_nb > 0) {
1237 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1238 phys_section_destroy(section->mr);
1239 }
9affd6fc
PB
1240 g_free(map->sections);
1241 g_free(map->nodes);
5312bd8b
AK
1242}
1243
ac1970fb 1244static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1245{
1246 subpage_t *subpage;
a8170e5e 1247 hwaddr base = section->offset_within_address_space
0f0cb164 1248 & TARGET_PAGE_MASK;
97115a8d 1249 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1250 d->map.nodes, d->map.sections);
0f0cb164
AK
1251 MemoryRegionSection subsection = {
1252 .offset_within_address_space = base,
052e87b0 1253 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1254 };
a8170e5e 1255 hwaddr start, end;
0f0cb164 1256
f3705d53 1257 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1258
f3705d53 1259 if (!(existing->mr->subpage)) {
acc9d80b 1260 subpage = subpage_init(d->as, base);
3be91e86 1261 subsection.address_space = d->as;
0f0cb164 1262 subsection.mr = &subpage->iomem;
ac1970fb 1263 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1264 phys_section_add(&d->map, &subsection));
0f0cb164 1265 } else {
f3705d53 1266 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1267 }
1268 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1269 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1270 subpage_register(subpage, start, end,
1271 phys_section_add(&d->map, section));
0f0cb164
AK
1272}
1273
1274
052e87b0
PB
1275static void register_multipage(AddressSpaceDispatch *d,
1276 MemoryRegionSection *section)
33417e70 1277{
a8170e5e 1278 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1279 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1280 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1281 TARGET_PAGE_BITS));
dd81124b 1282
733d5ef5
PB
1283 assert(num_pages);
1284 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1285}
1286
ac1970fb 1287static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1288{
89ae337a 1289 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1290 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1291 MemoryRegionSection now = *section, remain = *section;
052e87b0 1292 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1293
733d5ef5
PB
1294 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1295 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1296 - now.offset_within_address_space;
1297
052e87b0 1298 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1299 register_subpage(d, &now);
733d5ef5 1300 } else {
052e87b0 1301 now.size = int128_zero();
733d5ef5 1302 }
052e87b0
PB
1303 while (int128_ne(remain.size, now.size)) {
1304 remain.size = int128_sub(remain.size, now.size);
1305 remain.offset_within_address_space += int128_get64(now.size);
1306 remain.offset_within_region += int128_get64(now.size);
69b67646 1307 now = remain;
052e87b0 1308 if (int128_lt(remain.size, page_size)) {
733d5ef5 1309 register_subpage(d, &now);
88266249 1310 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1311 now.size = page_size;
ac1970fb 1312 register_subpage(d, &now);
69b67646 1313 } else {
052e87b0 1314 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1315 register_multipage(d, &now);
69b67646 1316 }
0f0cb164
AK
1317 }
1318}
1319
62a2744c
SY
1320void qemu_flush_coalesced_mmio_buffer(void)
1321{
1322 if (kvm_enabled())
1323 kvm_flush_coalesced_mmio_buffer();
1324}
1325
b2a8658e
UD
1326void qemu_mutex_lock_ramlist(void)
1327{
1328 qemu_mutex_lock(&ram_list.mutex);
1329}
1330
1331void qemu_mutex_unlock_ramlist(void)
1332{
1333 qemu_mutex_unlock(&ram_list.mutex);
1334}
1335
9c607668
AK
1336#ifdef __linux__
1337/*
1338 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1339 * may or may not name the same files / on the same filesystem now as
1340 * when we actually open and map them. Iterate over the file
1341 * descriptors instead, and use qemu_fd_getpagesize().
1342 */
1343static int find_max_supported_pagesize(Object *obj, void *opaque)
1344{
1345 char *mem_path;
1346 long *hpsize_min = opaque;
1347
1348 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1349 mem_path = object_property_get_str(obj, "mem-path", NULL);
1350 if (mem_path) {
1351 long hpsize = qemu_mempath_getpagesize(mem_path);
1352 if (hpsize < *hpsize_min) {
1353 *hpsize_min = hpsize;
1354 }
1355 } else {
1356 *hpsize_min = getpagesize();
1357 }
1358 }
1359
1360 return 0;
1361}
1362
1363long qemu_getrampagesize(void)
1364{
1365 long hpsize = LONG_MAX;
1366 long mainrampagesize;
1367 Object *memdev_root;
1368
1369 if (mem_path) {
1370 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1371 } else {
1372 mainrampagesize = getpagesize();
1373 }
1374
1375 /* it's possible we have memory-backend objects with
1376 * hugepage-backed RAM. these may get mapped into system
1377 * address space via -numa parameters or memory hotplug
1378 * hooks. we want to take these into account, but we
1379 * also want to make sure these supported hugepage
1380 * sizes are applicable across the entire range of memory
1381 * we may boot from, so we take the min across all
1382 * backends, and assume normal pages in cases where a
1383 * backend isn't backed by hugepages.
1384 */
1385 memdev_root = object_resolve_path("/objects", NULL);
1386 if (memdev_root) {
1387 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1388 }
1389 if (hpsize == LONG_MAX) {
1390 /* No additional memory regions found ==> Report main RAM page size */
1391 return mainrampagesize;
1392 }
1393
1394 /* If NUMA is disabled or the NUMA nodes are not backed with a
1395 * memory-backend, then there is at least one node using "normal" RAM,
1396 * so if its page size is smaller we have got to report that size instead.
1397 */
1398 if (hpsize > mainrampagesize &&
1399 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1400 static bool warned;
1401 if (!warned) {
1402 error_report("Huge page support disabled (n/a for main memory).");
1403 warned = true;
1404 }
1405 return mainrampagesize;
1406 }
1407
1408 return hpsize;
1409}
1410#else
1411long qemu_getrampagesize(void)
1412{
1413 return getpagesize();
1414}
1415#endif
1416
e1e84ba0 1417#ifdef __linux__
d6af99c9
HZ
1418static int64_t get_file_size(int fd)
1419{
1420 int64_t size = lseek(fd, 0, SEEK_END);
1421 if (size < 0) {
1422 return -errno;
1423 }
1424 return size;
1425}
1426
04b16653
AW
1427static void *file_ram_alloc(RAMBlock *block,
1428 ram_addr_t memory,
7f56e740
PB
1429 const char *path,
1430 Error **errp)
c902760f 1431{
fd97fd44 1432 bool unlink_on_error = false;
c902760f 1433 char *filename;
8ca761f6
PF
1434 char *sanitized_name;
1435 char *c;
056b68af 1436 void *area = MAP_FAILED;
5c3ece79 1437 int fd = -1;
d6af99c9 1438 int64_t file_size;
c902760f
MT
1439
1440 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1441 error_setg(errp,
1442 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1443 return NULL;
c902760f
MT
1444 }
1445
fd97fd44
MA
1446 for (;;) {
1447 fd = open(path, O_RDWR);
1448 if (fd >= 0) {
1449 /* @path names an existing file, use it */
1450 break;
8d31d6b6 1451 }
fd97fd44
MA
1452 if (errno == ENOENT) {
1453 /* @path names a file that doesn't exist, create it */
1454 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1455 if (fd >= 0) {
1456 unlink_on_error = true;
1457 break;
1458 }
1459 } else if (errno == EISDIR) {
1460 /* @path names a directory, create a file there */
1461 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1462 sanitized_name = g_strdup(memory_region_name(block->mr));
1463 for (c = sanitized_name; *c != '\0'; c++) {
1464 if (*c == '/') {
1465 *c = '_';
1466 }
1467 }
8ca761f6 1468
fd97fd44
MA
1469 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1470 sanitized_name);
1471 g_free(sanitized_name);
8d31d6b6 1472
fd97fd44
MA
1473 fd = mkstemp(filename);
1474 if (fd >= 0) {
1475 unlink(filename);
1476 g_free(filename);
1477 break;
1478 }
1479 g_free(filename);
8d31d6b6 1480 }
fd97fd44
MA
1481 if (errno != EEXIST && errno != EINTR) {
1482 error_setg_errno(errp, errno,
1483 "can't open backing store %s for guest RAM",
1484 path);
1485 goto error;
1486 }
1487 /*
1488 * Try again on EINTR and EEXIST. The latter happens when
1489 * something else creates the file between our two open().
1490 */
8d31d6b6 1491 }
c902760f 1492
863e9621 1493 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1494 block->mr->align = block->page_size;
1495#if defined(__s390x__)
1496 if (kvm_enabled()) {
1497 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1498 }
1499#endif
fd97fd44 1500
d6af99c9
HZ
1501 file_size = get_file_size(fd);
1502
863e9621 1503 if (memory < block->page_size) {
fd97fd44 1504 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1505 "or larger than page size 0x%zx",
1506 memory, block->page_size);
f9a49dfa 1507 goto error;
c902760f 1508 }
c902760f 1509
1775f111
HZ
1510 if (file_size > 0 && file_size < memory) {
1511 error_setg(errp, "backing store %s size 0x%" PRIx64
1512 " does not match 'size' option 0x" RAM_ADDR_FMT,
1513 path, file_size, memory);
1514 goto error;
1515 }
1516
863e9621 1517 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1518
1519 /*
1520 * ftruncate is not supported by hugetlbfs in older
1521 * hosts, so don't bother bailing out on errors.
1522 * If anything goes wrong with it under other filesystems,
1523 * mmap will fail.
d6af99c9
HZ
1524 *
1525 * Do not truncate the non-empty backend file to avoid corrupting
1526 * the existing data in the file. Disabling shrinking is not
1527 * enough. For example, the current vNVDIMM implementation stores
1528 * the guest NVDIMM labels at the end of the backend file. If the
1529 * backend file is later extended, QEMU will not be able to find
1530 * those labels. Therefore, extending the non-empty backend file
1531 * is disabled as well.
c902760f 1532 */
d6af99c9 1533 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1534 perror("ftruncate");
7f56e740 1535 }
c902760f 1536
d2f39add
DD
1537 area = qemu_ram_mmap(fd, memory, block->mr->align,
1538 block->flags & RAM_SHARED);
c902760f 1539 if (area == MAP_FAILED) {
7f56e740 1540 error_setg_errno(errp, errno,
fd97fd44 1541 "unable to map backing store for guest RAM");
f9a49dfa 1542 goto error;
c902760f 1543 }
ef36fa14
MT
1544
1545 if (mem_prealloc) {
1e356fc1 1546 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af
IM
1547 if (errp && *errp) {
1548 goto error;
1549 }
ef36fa14
MT
1550 }
1551
04b16653 1552 block->fd = fd;
c902760f 1553 return area;
f9a49dfa
MT
1554
1555error:
056b68af
IM
1556 if (area != MAP_FAILED) {
1557 qemu_ram_munmap(area, memory);
1558 }
fd97fd44
MA
1559 if (unlink_on_error) {
1560 unlink(path);
1561 }
5c3ece79
PB
1562 if (fd != -1) {
1563 close(fd);
1564 }
f9a49dfa 1565 return NULL;
c902760f
MT
1566}
1567#endif
1568
0dc3f44a 1569/* Called with the ramlist lock held. */
d17b5288 1570static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1571{
1572 RAMBlock *block, *next_block;
3e837b2c 1573 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1574
49cd9ac6
SH
1575 assert(size != 0); /* it would hand out same offset multiple times */
1576
0dc3f44a 1577 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1578 return 0;
0d53d9fe 1579 }
04b16653 1580
99e15582 1581 RAMBLOCK_FOREACH(block) {
f15fbc4b 1582 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1583
62be4e3a 1584 end = block->offset + block->max_length;
04b16653 1585
99e15582 1586 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1587 if (next_block->offset >= end) {
1588 next = MIN(next, next_block->offset);
1589 }
1590 }
1591 if (next - end >= size && next - end < mingap) {
3e837b2c 1592 offset = end;
04b16653
AW
1593 mingap = next - end;
1594 }
1595 }
3e837b2c
AW
1596
1597 if (offset == RAM_ADDR_MAX) {
1598 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1599 (uint64_t)size);
1600 abort();
1601 }
1602
04b16653
AW
1603 return offset;
1604}
1605
b8c48993 1606unsigned long last_ram_page(void)
d17b5288
AW
1607{
1608 RAMBlock *block;
1609 ram_addr_t last = 0;
1610
0dc3f44a 1611 rcu_read_lock();
99e15582 1612 RAMBLOCK_FOREACH(block) {
62be4e3a 1613 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1614 }
0dc3f44a 1615 rcu_read_unlock();
b8c48993 1616 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1617}
1618
ddb97f1d
JB
1619static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1620{
1621 int ret;
ddb97f1d
JB
1622
1623 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1624 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1625 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1626 if (ret) {
1627 perror("qemu_madvise");
1628 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1629 "but dump_guest_core=off specified\n");
1630 }
1631 }
1632}
1633
422148d3
DDAG
1634const char *qemu_ram_get_idstr(RAMBlock *rb)
1635{
1636 return rb->idstr;
1637}
1638
463a4ac2
DDAG
1639bool qemu_ram_is_shared(RAMBlock *rb)
1640{
1641 return rb->flags & RAM_SHARED;
1642}
1643
ae3a7047 1644/* Called with iothread lock held. */
fa53a0e5 1645void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1646{
fa53a0e5 1647 RAMBlock *block;
20cfe881 1648
c5705a77
AK
1649 assert(new_block);
1650 assert(!new_block->idstr[0]);
84b89d78 1651
09e5ab63
AL
1652 if (dev) {
1653 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1654 if (id) {
1655 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1656 g_free(id);
84b89d78
CM
1657 }
1658 }
1659 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1660
ab0a9956 1661 rcu_read_lock();
99e15582 1662 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1663 if (block != new_block &&
1664 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1665 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1666 new_block->idstr);
1667 abort();
1668 }
1669 }
0dc3f44a 1670 rcu_read_unlock();
c5705a77
AK
1671}
1672
ae3a7047 1673/* Called with iothread lock held. */
fa53a0e5 1674void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1675{
ae3a7047
MD
1676 /* FIXME: arch_init.c assumes that this is not called throughout
1677 * migration. Ignore the problem since hot-unplug during migration
1678 * does not work anyway.
1679 */
20cfe881
HT
1680 if (block) {
1681 memset(block->idstr, 0, sizeof(block->idstr));
1682 }
1683}
1684
863e9621
DDAG
1685size_t qemu_ram_pagesize(RAMBlock *rb)
1686{
1687 return rb->page_size;
1688}
1689
67f11b5c
DDAG
1690/* Returns the largest size of page in use */
1691size_t qemu_ram_pagesize_largest(void)
1692{
1693 RAMBlock *block;
1694 size_t largest = 0;
1695
99e15582 1696 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1697 largest = MAX(largest, qemu_ram_pagesize(block));
1698 }
1699
1700 return largest;
1701}
1702
8490fc78
LC
1703static int memory_try_enable_merging(void *addr, size_t len)
1704{
75cc7f01 1705 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1706 /* disabled by the user */
1707 return 0;
1708 }
1709
1710 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1711}
1712
62be4e3a
MT
1713/* Only legal before guest might have detected the memory size: e.g. on
1714 * incoming migration, or right after reset.
1715 *
1716 * As memory core doesn't know how is memory accessed, it is up to
1717 * resize callback to update device state and/or add assertions to detect
1718 * misuse, if necessary.
1719 */
fa53a0e5 1720int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1721{
62be4e3a
MT
1722 assert(block);
1723
4ed023ce 1724 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1725
62be4e3a
MT
1726 if (block->used_length == newsize) {
1727 return 0;
1728 }
1729
1730 if (!(block->flags & RAM_RESIZEABLE)) {
1731 error_setg_errno(errp, EINVAL,
1732 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1733 " in != 0x" RAM_ADDR_FMT, block->idstr,
1734 newsize, block->used_length);
1735 return -EINVAL;
1736 }
1737
1738 if (block->max_length < newsize) {
1739 error_setg_errno(errp, EINVAL,
1740 "Length too large: %s: 0x" RAM_ADDR_FMT
1741 " > 0x" RAM_ADDR_FMT, block->idstr,
1742 newsize, block->max_length);
1743 return -EINVAL;
1744 }
1745
1746 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1747 block->used_length = newsize;
58d2707e
PB
1748 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1749 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1750 memory_region_set_size(block->mr, newsize);
1751 if (block->resized) {
1752 block->resized(block->idstr, newsize, block->host);
1753 }
1754 return 0;
1755}
1756
5b82b703
SH
1757/* Called with ram_list.mutex held */
1758static void dirty_memory_extend(ram_addr_t old_ram_size,
1759 ram_addr_t new_ram_size)
1760{
1761 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1762 DIRTY_MEMORY_BLOCK_SIZE);
1763 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1764 DIRTY_MEMORY_BLOCK_SIZE);
1765 int i;
1766
1767 /* Only need to extend if block count increased */
1768 if (new_num_blocks <= old_num_blocks) {
1769 return;
1770 }
1771
1772 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1773 DirtyMemoryBlocks *old_blocks;
1774 DirtyMemoryBlocks *new_blocks;
1775 int j;
1776
1777 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1778 new_blocks = g_malloc(sizeof(*new_blocks) +
1779 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1780
1781 if (old_num_blocks) {
1782 memcpy(new_blocks->blocks, old_blocks->blocks,
1783 old_num_blocks * sizeof(old_blocks->blocks[0]));
1784 }
1785
1786 for (j = old_num_blocks; j < new_num_blocks; j++) {
1787 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1788 }
1789
1790 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1791
1792 if (old_blocks) {
1793 g_free_rcu(old_blocks, rcu);
1794 }
1795 }
1796}
1797
528f46af 1798static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1799{
e1c57ab8 1800 RAMBlock *block;
0d53d9fe 1801 RAMBlock *last_block = NULL;
2152f5ca 1802 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1803 Error *err = NULL;
2152f5ca 1804
b8c48993 1805 old_ram_size = last_ram_page();
c5705a77 1806
b2a8658e 1807 qemu_mutex_lock_ramlist();
9b8424d5 1808 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1809
1810 if (!new_block->host) {
1811 if (xen_enabled()) {
9b8424d5 1812 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1813 new_block->mr, &err);
1814 if (err) {
1815 error_propagate(errp, err);
1816 qemu_mutex_unlock_ramlist();
39c350ee 1817 return;
37aa7a0e 1818 }
e1c57ab8 1819 } else {
9b8424d5 1820 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1821 &new_block->mr->align);
39228250 1822 if (!new_block->host) {
ef701d7b
HT
1823 error_setg_errno(errp, errno,
1824 "cannot set up guest memory '%s'",
1825 memory_region_name(new_block->mr));
1826 qemu_mutex_unlock_ramlist();
39c350ee 1827 return;
39228250 1828 }
9b8424d5 1829 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1830 }
c902760f 1831 }
94a6b54f 1832
dd631697
LZ
1833 new_ram_size = MAX(old_ram_size,
1834 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1835 if (new_ram_size > old_ram_size) {
5b82b703 1836 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1837 }
0d53d9fe
MD
1838 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1839 * QLIST (which has an RCU-friendly variant) does not have insertion at
1840 * tail, so save the last element in last_block.
1841 */
99e15582 1842 RAMBLOCK_FOREACH(block) {
0d53d9fe 1843 last_block = block;
9b8424d5 1844 if (block->max_length < new_block->max_length) {
abb26d63
PB
1845 break;
1846 }
1847 }
1848 if (block) {
0dc3f44a 1849 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1850 } else if (last_block) {
0dc3f44a 1851 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1852 } else { /* list is empty */
0dc3f44a 1853 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1854 }
0d6d3c87 1855 ram_list.mru_block = NULL;
94a6b54f 1856
0dc3f44a
MD
1857 /* Write list before version */
1858 smp_wmb();
f798b07f 1859 ram_list.version++;
b2a8658e 1860 qemu_mutex_unlock_ramlist();
f798b07f 1861
9b8424d5 1862 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1863 new_block->used_length,
1864 DIRTY_CLIENTS_ALL);
94a6b54f 1865
a904c911
PB
1866 if (new_block->host) {
1867 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1868 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1869 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1870 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1871 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1872 }
94a6b54f 1873}
e9a1ab19 1874
0b183fc8 1875#ifdef __linux__
528f46af
FZ
1876RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1877 bool share, const char *mem_path,
1878 Error **errp)
e1c57ab8
PB
1879{
1880 RAMBlock *new_block;
ef701d7b 1881 Error *local_err = NULL;
e1c57ab8
PB
1882
1883 if (xen_enabled()) {
7f56e740 1884 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1885 return NULL;
e1c57ab8
PB
1886 }
1887
1888 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1889 /*
1890 * file_ram_alloc() needs to allocate just like
1891 * phys_mem_alloc, but we haven't bothered to provide
1892 * a hook there.
1893 */
7f56e740
PB
1894 error_setg(errp,
1895 "-mem-path not supported with this accelerator");
528f46af 1896 return NULL;
e1c57ab8
PB
1897 }
1898
4ed023ce 1899 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1900 new_block = g_malloc0(sizeof(*new_block));
1901 new_block->mr = mr;
9b8424d5
MT
1902 new_block->used_length = size;
1903 new_block->max_length = size;
dbcb8981 1904 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1905 new_block->host = file_ram_alloc(new_block, size,
1906 mem_path, errp);
1907 if (!new_block->host) {
1908 g_free(new_block);
528f46af 1909 return NULL;
7f56e740
PB
1910 }
1911
528f46af 1912 ram_block_add(new_block, &local_err);
ef701d7b
HT
1913 if (local_err) {
1914 g_free(new_block);
1915 error_propagate(errp, local_err);
528f46af 1916 return NULL;
ef701d7b 1917 }
528f46af 1918 return new_block;
e1c57ab8 1919}
0b183fc8 1920#endif
e1c57ab8 1921
62be4e3a 1922static
528f46af
FZ
1923RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1924 void (*resized)(const char*,
1925 uint64_t length,
1926 void *host),
1927 void *host, bool resizeable,
1928 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1929{
1930 RAMBlock *new_block;
ef701d7b 1931 Error *local_err = NULL;
e1c57ab8 1932
4ed023ce
DDAG
1933 size = HOST_PAGE_ALIGN(size);
1934 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1935 new_block = g_malloc0(sizeof(*new_block));
1936 new_block->mr = mr;
62be4e3a 1937 new_block->resized = resized;
9b8424d5
MT
1938 new_block->used_length = size;
1939 new_block->max_length = max_size;
62be4e3a 1940 assert(max_size >= size);
e1c57ab8 1941 new_block->fd = -1;
863e9621 1942 new_block->page_size = getpagesize();
e1c57ab8
PB
1943 new_block->host = host;
1944 if (host) {
7bd4f430 1945 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1946 }
62be4e3a
MT
1947 if (resizeable) {
1948 new_block->flags |= RAM_RESIZEABLE;
1949 }
528f46af 1950 ram_block_add(new_block, &local_err);
ef701d7b
HT
1951 if (local_err) {
1952 g_free(new_block);
1953 error_propagate(errp, local_err);
528f46af 1954 return NULL;
ef701d7b 1955 }
528f46af 1956 return new_block;
e1c57ab8
PB
1957}
1958
528f46af 1959RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1960 MemoryRegion *mr, Error **errp)
1961{
1962 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1963}
1964
528f46af 1965RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1966{
62be4e3a
MT
1967 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1968}
1969
528f46af 1970RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1971 void (*resized)(const char*,
1972 uint64_t length,
1973 void *host),
1974 MemoryRegion *mr, Error **errp)
1975{
1976 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1977}
1978
43771539
PB
1979static void reclaim_ramblock(RAMBlock *block)
1980{
1981 if (block->flags & RAM_PREALLOC) {
1982 ;
1983 } else if (xen_enabled()) {
1984 xen_invalidate_map_cache_entry(block->host);
1985#ifndef _WIN32
1986 } else if (block->fd >= 0) {
2f3a2bb1 1987 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1988 close(block->fd);
1989#endif
1990 } else {
1991 qemu_anon_ram_free(block->host, block->max_length);
1992 }
1993 g_free(block);
1994}
1995
f1060c55 1996void qemu_ram_free(RAMBlock *block)
e9a1ab19 1997{
85bc2a15
MAL
1998 if (!block) {
1999 return;
2000 }
2001
0987d735
PB
2002 if (block->host) {
2003 ram_block_notify_remove(block->host, block->max_length);
2004 }
2005
b2a8658e 2006 qemu_mutex_lock_ramlist();
f1060c55
FZ
2007 QLIST_REMOVE_RCU(block, next);
2008 ram_list.mru_block = NULL;
2009 /* Write list before version */
2010 smp_wmb();
2011 ram_list.version++;
2012 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2013 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2014}
2015
cd19cfa2
HY
2016#ifndef _WIN32
2017void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2018{
2019 RAMBlock *block;
2020 ram_addr_t offset;
2021 int flags;
2022 void *area, *vaddr;
2023
99e15582 2024 RAMBLOCK_FOREACH(block) {
cd19cfa2 2025 offset = addr - block->offset;
9b8424d5 2026 if (offset < block->max_length) {
1240be24 2027 vaddr = ramblock_ptr(block, offset);
7bd4f430 2028 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2029 ;
dfeaf2ab
MA
2030 } else if (xen_enabled()) {
2031 abort();
cd19cfa2
HY
2032 } else {
2033 flags = MAP_FIXED;
3435f395 2034 if (block->fd >= 0) {
dbcb8981
PB
2035 flags |= (block->flags & RAM_SHARED ?
2036 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2037 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2038 flags, block->fd, offset);
cd19cfa2 2039 } else {
2eb9fbaa
MA
2040 /*
2041 * Remap needs to match alloc. Accelerators that
2042 * set phys_mem_alloc never remap. If they did,
2043 * we'd need a remap hook here.
2044 */
2045 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2046
cd19cfa2
HY
2047 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2048 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2049 flags, -1, 0);
cd19cfa2
HY
2050 }
2051 if (area != vaddr) {
f15fbc4b
AP
2052 fprintf(stderr, "Could not remap addr: "
2053 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2054 length, addr);
2055 exit(1);
2056 }
8490fc78 2057 memory_try_enable_merging(vaddr, length);
ddb97f1d 2058 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2059 }
cd19cfa2
HY
2060 }
2061 }
2062}
2063#endif /* !_WIN32 */
2064
1b5ec234 2065/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2066 * This should not be used for general purpose DMA. Use address_space_map
2067 * or address_space_rw instead. For local memory (e.g. video ram) that the
2068 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2069 *
49b24afc 2070 * Called within RCU critical section.
1b5ec234 2071 */
0878d0e1 2072void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2073{
3655cb9c
GA
2074 RAMBlock *block = ram_block;
2075
2076 if (block == NULL) {
2077 block = qemu_get_ram_block(addr);
0878d0e1 2078 addr -= block->offset;
3655cb9c 2079 }
ae3a7047
MD
2080
2081 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2082 /* We need to check if the requested address is in the RAM
2083 * because we don't want to map the entire memory in QEMU.
2084 * In that case just map until the end of the page.
2085 */
2086 if (block->offset == 0) {
49b24afc 2087 return xen_map_cache(addr, 0, 0);
0d6d3c87 2088 }
ae3a7047
MD
2089
2090 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 2091 }
0878d0e1 2092 return ramblock_ptr(block, addr);
dc828ca1
PB
2093}
2094
0878d0e1 2095/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2096 * but takes a size argument.
0dc3f44a 2097 *
e81bcda5 2098 * Called within RCU critical section.
ae3a7047 2099 */
3655cb9c
GA
2100static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2101 hwaddr *size)
38bee5dc 2102{
3655cb9c 2103 RAMBlock *block = ram_block;
8ab934f9
SS
2104 if (*size == 0) {
2105 return NULL;
2106 }
e81bcda5 2107
3655cb9c
GA
2108 if (block == NULL) {
2109 block = qemu_get_ram_block(addr);
0878d0e1 2110 addr -= block->offset;
3655cb9c 2111 }
0878d0e1 2112 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2113
2114 if (xen_enabled() && block->host == NULL) {
2115 /* We need to check if the requested address is in the RAM
2116 * because we don't want to map the entire memory in QEMU.
2117 * In that case just map the requested area.
2118 */
2119 if (block->offset == 0) {
2120 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
2121 }
2122
e81bcda5 2123 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 2124 }
e81bcda5 2125
0878d0e1 2126 return ramblock_ptr(block, addr);
38bee5dc
SS
2127}
2128
422148d3
DDAG
2129/*
2130 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2131 * in that RAMBlock.
2132 *
2133 * ptr: Host pointer to look up
2134 * round_offset: If true round the result offset down to a page boundary
2135 * *ram_addr: set to result ram_addr
2136 * *offset: set to result offset within the RAMBlock
2137 *
2138 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2139 *
2140 * By the time this function returns, the returned pointer is not protected
2141 * by RCU anymore. If the caller is not within an RCU critical section and
2142 * does not hold the iothread lock, it must have other means of protecting the
2143 * pointer, such as a reference to the region that includes the incoming
2144 * ram_addr_t.
2145 */
422148d3 2146RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2147 ram_addr_t *offset)
5579c7f3 2148{
94a6b54f
PB
2149 RAMBlock *block;
2150 uint8_t *host = ptr;
2151
868bb33f 2152 if (xen_enabled()) {
f615f396 2153 ram_addr_t ram_addr;
0dc3f44a 2154 rcu_read_lock();
f615f396
PB
2155 ram_addr = xen_ram_addr_from_mapcache(ptr);
2156 block = qemu_get_ram_block(ram_addr);
422148d3 2157 if (block) {
d6b6aec4 2158 *offset = ram_addr - block->offset;
422148d3 2159 }
0dc3f44a 2160 rcu_read_unlock();
422148d3 2161 return block;
712c2b41
SS
2162 }
2163
0dc3f44a
MD
2164 rcu_read_lock();
2165 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2166 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2167 goto found;
2168 }
2169
99e15582 2170 RAMBLOCK_FOREACH(block) {
432d268c
JN
2171 /* This case append when the block is not mapped. */
2172 if (block->host == NULL) {
2173 continue;
2174 }
9b8424d5 2175 if (host - block->host < block->max_length) {
23887b79 2176 goto found;
f471a17e 2177 }
94a6b54f 2178 }
432d268c 2179
0dc3f44a 2180 rcu_read_unlock();
1b5ec234 2181 return NULL;
23887b79
PB
2182
2183found:
422148d3
DDAG
2184 *offset = (host - block->host);
2185 if (round_offset) {
2186 *offset &= TARGET_PAGE_MASK;
2187 }
0dc3f44a 2188 rcu_read_unlock();
422148d3
DDAG
2189 return block;
2190}
2191
e3dd7493
DDAG
2192/*
2193 * Finds the named RAMBlock
2194 *
2195 * name: The name of RAMBlock to find
2196 *
2197 * Returns: RAMBlock (or NULL if not found)
2198 */
2199RAMBlock *qemu_ram_block_by_name(const char *name)
2200{
2201 RAMBlock *block;
2202
99e15582 2203 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2204 if (!strcmp(name, block->idstr)) {
2205 return block;
2206 }
2207 }
2208
2209 return NULL;
2210}
2211
422148d3
DDAG
2212/* Some of the softmmu routines need to translate from a host pointer
2213 (typically a TLB entry) back to a ram offset. */
07bdaa41 2214ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2215{
2216 RAMBlock *block;
f615f396 2217 ram_addr_t offset;
422148d3 2218
f615f396 2219 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2220 if (!block) {
07bdaa41 2221 return RAM_ADDR_INVALID;
422148d3
DDAG
2222 }
2223
07bdaa41 2224 return block->offset + offset;
e890261f 2225}
f471a17e 2226
49b24afc 2227/* Called within RCU critical section. */
a8170e5e 2228static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2229 uint64_t val, unsigned size)
9fa3e853 2230{
ba051fb5
AB
2231 bool locked = false;
2232
52159192 2233 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2234 locked = true;
2235 tb_lock();
0e0df1e2 2236 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2237 }
0e0df1e2
AK
2238 switch (size) {
2239 case 1:
0878d0e1 2240 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2241 break;
2242 case 2:
0878d0e1 2243 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2244 break;
2245 case 4:
0878d0e1 2246 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2247 break;
2248 default:
2249 abort();
3a7d929e 2250 }
ba051fb5
AB
2251
2252 if (locked) {
2253 tb_unlock();
2254 }
2255
58d2707e
PB
2256 /* Set both VGA and migration bits for simplicity and to remove
2257 * the notdirty callback faster.
2258 */
2259 cpu_physical_memory_set_dirty_range(ram_addr, size,
2260 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2261 /* we remove the notdirty callback only if the code has been
2262 flushed */
a2cd8c85 2263 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2264 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2265 }
9fa3e853
FB
2266}
2267
b018ddf6
PB
2268static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2269 unsigned size, bool is_write)
2270{
2271 return is_write;
2272}
2273
0e0df1e2 2274static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2275 .write = notdirty_mem_write,
b018ddf6 2276 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2277 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2278};
2279
0f459d16 2280/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2281static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2282{
93afeade 2283 CPUState *cpu = current_cpu;
568496c0 2284 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2285 CPUArchState *env = cpu->env_ptr;
06d55cc1 2286 target_ulong pc, cs_base;
0f459d16 2287 target_ulong vaddr;
a1d1bb31 2288 CPUWatchpoint *wp;
89fee74a 2289 uint32_t cpu_flags;
0f459d16 2290
ff4700b0 2291 if (cpu->watchpoint_hit) {
06d55cc1
AL
2292 /* We re-entered the check after replacing the TB. Now raise
2293 * the debug interrupt so that is will trigger after the
2294 * current instruction. */
93afeade 2295 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2296 return;
2297 }
93afeade 2298 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2299 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2300 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2301 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2302 && (wp->flags & flags)) {
08225676
PM
2303 if (flags == BP_MEM_READ) {
2304 wp->flags |= BP_WATCHPOINT_HIT_READ;
2305 } else {
2306 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2307 }
2308 wp->hitaddr = vaddr;
66b9b43c 2309 wp->hitattrs = attrs;
ff4700b0 2310 if (!cpu->watchpoint_hit) {
568496c0
SF
2311 if (wp->flags & BP_CPU &&
2312 !cc->debug_check_watchpoint(cpu, wp)) {
2313 wp->flags &= ~BP_WATCHPOINT_HIT;
2314 continue;
2315 }
ff4700b0 2316 cpu->watchpoint_hit = wp;
a5e99826 2317
8d04fb55
JK
2318 /* Both tb_lock and iothread_mutex will be reset when
2319 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2320 * back into the cpu_exec main loop.
a5e99826
FK
2321 */
2322 tb_lock();
239c51a5 2323 tb_check_watchpoint(cpu);
6e140f28 2324 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2325 cpu->exception_index = EXCP_DEBUG;
5638d180 2326 cpu_loop_exit(cpu);
6e140f28
AL
2327 } else {
2328 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2329 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2330 cpu_loop_exit_noexc(cpu);
6e140f28 2331 }
06d55cc1 2332 }
6e140f28
AL
2333 } else {
2334 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2335 }
2336 }
2337}
2338
6658ffb8
PB
2339/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2340 so these check for a hit then pass through to the normal out-of-line
2341 phys routines. */
66b9b43c
PM
2342static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2343 unsigned size, MemTxAttrs attrs)
6658ffb8 2344{
66b9b43c
PM
2345 MemTxResult res;
2346 uint64_t data;
79ed0416
PM
2347 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2348 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2349
2350 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2351 switch (size) {
66b9b43c 2352 case 1:
79ed0416 2353 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2354 break;
2355 case 2:
79ed0416 2356 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2357 break;
2358 case 4:
79ed0416 2359 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2360 break;
1ec9b909
AK
2361 default: abort();
2362 }
66b9b43c
PM
2363 *pdata = data;
2364 return res;
6658ffb8
PB
2365}
2366
66b9b43c
PM
2367static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2368 uint64_t val, unsigned size,
2369 MemTxAttrs attrs)
6658ffb8 2370{
66b9b43c 2371 MemTxResult res;
79ed0416
PM
2372 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2373 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2374
2375 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2376 switch (size) {
67364150 2377 case 1:
79ed0416 2378 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2379 break;
2380 case 2:
79ed0416 2381 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2382 break;
2383 case 4:
79ed0416 2384 address_space_stl(as, addr, val, attrs, &res);
67364150 2385 break;
1ec9b909
AK
2386 default: abort();
2387 }
66b9b43c 2388 return res;
6658ffb8
PB
2389}
2390
1ec9b909 2391static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2392 .read_with_attrs = watch_mem_read,
2393 .write_with_attrs = watch_mem_write,
1ec9b909 2394 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2395};
6658ffb8 2396
f25a49e0
PM
2397static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2398 unsigned len, MemTxAttrs attrs)
db7b5426 2399{
acc9d80b 2400 subpage_t *subpage = opaque;
ff6cff75 2401 uint8_t buf[8];
5c9eb028 2402 MemTxResult res;
791af8c8 2403
db7b5426 2404#if defined(DEBUG_SUBPAGE)
016e9d62 2405 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2406 subpage, len, addr);
db7b5426 2407#endif
5c9eb028
PM
2408 res = address_space_read(subpage->as, addr + subpage->base,
2409 attrs, buf, len);
2410 if (res) {
2411 return res;
f25a49e0 2412 }
acc9d80b
JK
2413 switch (len) {
2414 case 1:
f25a49e0
PM
2415 *data = ldub_p(buf);
2416 return MEMTX_OK;
acc9d80b 2417 case 2:
f25a49e0
PM
2418 *data = lduw_p(buf);
2419 return MEMTX_OK;
acc9d80b 2420 case 4:
f25a49e0
PM
2421 *data = ldl_p(buf);
2422 return MEMTX_OK;
ff6cff75 2423 case 8:
f25a49e0
PM
2424 *data = ldq_p(buf);
2425 return MEMTX_OK;
acc9d80b
JK
2426 default:
2427 abort();
2428 }
db7b5426
BS
2429}
2430
f25a49e0
PM
2431static MemTxResult subpage_write(void *opaque, hwaddr addr,
2432 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2433{
acc9d80b 2434 subpage_t *subpage = opaque;
ff6cff75 2435 uint8_t buf[8];
acc9d80b 2436
db7b5426 2437#if defined(DEBUG_SUBPAGE)
016e9d62 2438 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2439 " value %"PRIx64"\n",
2440 __func__, subpage, len, addr, value);
db7b5426 2441#endif
acc9d80b
JK
2442 switch (len) {
2443 case 1:
2444 stb_p(buf, value);
2445 break;
2446 case 2:
2447 stw_p(buf, value);
2448 break;
2449 case 4:
2450 stl_p(buf, value);
2451 break;
ff6cff75
PB
2452 case 8:
2453 stq_p(buf, value);
2454 break;
acc9d80b
JK
2455 default:
2456 abort();
2457 }
5c9eb028
PM
2458 return address_space_write(subpage->as, addr + subpage->base,
2459 attrs, buf, len);
db7b5426
BS
2460}
2461
c353e4cc 2462static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2463 unsigned len, bool is_write)
c353e4cc 2464{
acc9d80b 2465 subpage_t *subpage = opaque;
c353e4cc 2466#if defined(DEBUG_SUBPAGE)
016e9d62 2467 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2468 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2469#endif
2470
acc9d80b 2471 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2472 len, is_write);
c353e4cc
PB
2473}
2474
70c68e44 2475static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2476 .read_with_attrs = subpage_read,
2477 .write_with_attrs = subpage_write,
ff6cff75
PB
2478 .impl.min_access_size = 1,
2479 .impl.max_access_size = 8,
2480 .valid.min_access_size = 1,
2481 .valid.max_access_size = 8,
c353e4cc 2482 .valid.accepts = subpage_accepts,
70c68e44 2483 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2484};
2485
c227f099 2486static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2487 uint16_t section)
db7b5426
BS
2488{
2489 int idx, eidx;
2490
2491 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2492 return -1;
2493 idx = SUBPAGE_IDX(start);
2494 eidx = SUBPAGE_IDX(end);
2495#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2496 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2497 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2498#endif
db7b5426 2499 for (; idx <= eidx; idx++) {
5312bd8b 2500 mmio->sub_section[idx] = section;
db7b5426
BS
2501 }
2502
2503 return 0;
2504}
2505
acc9d80b 2506static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2507{
c227f099 2508 subpage_t *mmio;
db7b5426 2509
2615fabd 2510 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2511 mmio->as = as;
1eec614b 2512 mmio->base = base;
2c9b15ca 2513 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2514 NULL, TARGET_PAGE_SIZE);
b3b00c78 2515 mmio->iomem.subpage = true;
db7b5426 2516#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2517 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2518 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2519#endif
b41aac4f 2520 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2521
2522 return mmio;
2523}
2524
a656e22f
PC
2525static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2526 MemoryRegion *mr)
5312bd8b 2527{
a656e22f 2528 assert(as);
5312bd8b 2529 MemoryRegionSection section = {
a656e22f 2530 .address_space = as,
5312bd8b
AK
2531 .mr = mr,
2532 .offset_within_address_space = 0,
2533 .offset_within_region = 0,
052e87b0 2534 .size = int128_2_64(),
5312bd8b
AK
2535 };
2536
53cb28cb 2537 return phys_section_add(map, &section);
5312bd8b
AK
2538}
2539
a54c87b6 2540MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2541{
a54c87b6
PM
2542 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2543 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2544 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2545 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2546
2547 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2548}
2549
e9179ce1
AK
2550static void io_mem_init(void)
2551{
1f6245e5 2552 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2553 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2554 NULL, UINT64_MAX);
8d04fb55
JK
2555
2556 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2557 * which can be called without the iothread mutex.
2558 */
2c9b15ca 2559 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2560 NULL, UINT64_MAX);
8d04fb55
JK
2561 memory_region_clear_global_locking(&io_mem_notdirty);
2562
2c9b15ca 2563 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2564 NULL, UINT64_MAX);
e9179ce1
AK
2565}
2566
ac1970fb 2567static void mem_begin(MemoryListener *listener)
00752703
PB
2568{
2569 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2570 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2571 uint16_t n;
2572
a656e22f 2573 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2574 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2575 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2576 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2577 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2578 assert(n == PHYS_SECTION_ROM);
a656e22f 2579 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2580 assert(n == PHYS_SECTION_WATCH);
00752703 2581
9736e55b 2582 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2583 d->as = as;
2584 as->next_dispatch = d;
2585}
2586
79e2b9ae
PB
2587static void address_space_dispatch_free(AddressSpaceDispatch *d)
2588{
2589 phys_sections_free(&d->map);
2590 g_free(d);
2591}
2592
00752703 2593static void mem_commit(MemoryListener *listener)
ac1970fb 2594{
89ae337a 2595 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2596 AddressSpaceDispatch *cur = as->dispatch;
2597 AddressSpaceDispatch *next = as->next_dispatch;
2598
53cb28cb 2599 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2600
79e2b9ae 2601 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2602 if (cur) {
79e2b9ae 2603 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2604 }
9affd6fc
PB
2605}
2606
1d71148e 2607static void tcg_commit(MemoryListener *listener)
50c1e149 2608{
32857f4d
PM
2609 CPUAddressSpace *cpuas;
2610 AddressSpaceDispatch *d;
117712c3
AK
2611
2612 /* since each CPU stores ram addresses in its TLB cache, we must
2613 reset the modified entries */
32857f4d
PM
2614 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2615 cpu_reloading_memory_map();
2616 /* The CPU and TLB are protected by the iothread lock.
2617 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2618 * may have split the RCU critical section.
2619 */
2620 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2621 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2622 tlb_flush(cpuas->cpu);
50c1e149
AK
2623}
2624
ac1970fb
AK
2625void address_space_init_dispatch(AddressSpace *as)
2626{
00752703 2627 as->dispatch = NULL;
89ae337a 2628 as->dispatch_listener = (MemoryListener) {
ac1970fb 2629 .begin = mem_begin,
00752703 2630 .commit = mem_commit,
ac1970fb
AK
2631 .region_add = mem_add,
2632 .region_nop = mem_add,
2633 .priority = 0,
2634 };
89ae337a 2635 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2636}
2637
6e48e8f9
PB
2638void address_space_unregister(AddressSpace *as)
2639{
2640 memory_listener_unregister(&as->dispatch_listener);
2641}
2642
83f3c251
AK
2643void address_space_destroy_dispatch(AddressSpace *as)
2644{
2645 AddressSpaceDispatch *d = as->dispatch;
2646
79e2b9ae
PB
2647 atomic_rcu_set(&as->dispatch, NULL);
2648 if (d) {
2649 call_rcu(d, address_space_dispatch_free, rcu);
2650 }
83f3c251
AK
2651}
2652
62152b8a
AK
2653static void memory_map_init(void)
2654{
7267c094 2655 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2656
57271d63 2657 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2658 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2659
7267c094 2660 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2661 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2662 65536);
7dca8043 2663 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2664}
2665
2666MemoryRegion *get_system_memory(void)
2667{
2668 return system_memory;
2669}
2670
309cb471
AK
2671MemoryRegion *get_system_io(void)
2672{
2673 return system_io;
2674}
2675
e2eef170
PB
2676#endif /* !defined(CONFIG_USER_ONLY) */
2677
13eb76e0
FB
2678/* physical memory access (slow version, mainly for debug) */
2679#if defined(CONFIG_USER_ONLY)
f17ec444 2680int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2681 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2682{
2683 int l, flags;
2684 target_ulong page;
53a5960a 2685 void * p;
13eb76e0
FB
2686
2687 while (len > 0) {
2688 page = addr & TARGET_PAGE_MASK;
2689 l = (page + TARGET_PAGE_SIZE) - addr;
2690 if (l > len)
2691 l = len;
2692 flags = page_get_flags(page);
2693 if (!(flags & PAGE_VALID))
a68fe89c 2694 return -1;
13eb76e0
FB
2695 if (is_write) {
2696 if (!(flags & PAGE_WRITE))
a68fe89c 2697 return -1;
579a97f7 2698 /* XXX: this code should not depend on lock_user */
72fb7daa 2699 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2700 return -1;
72fb7daa
AJ
2701 memcpy(p, buf, l);
2702 unlock_user(p, addr, l);
13eb76e0
FB
2703 } else {
2704 if (!(flags & PAGE_READ))
a68fe89c 2705 return -1;
579a97f7 2706 /* XXX: this code should not depend on lock_user */
72fb7daa 2707 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2708 return -1;
72fb7daa 2709 memcpy(buf, p, l);
5b257578 2710 unlock_user(p, addr, 0);
13eb76e0
FB
2711 }
2712 len -= l;
2713 buf += l;
2714 addr += l;
2715 }
a68fe89c 2716 return 0;
13eb76e0 2717}
8df1cd07 2718
13eb76e0 2719#else
51d7a9eb 2720
845b6214 2721static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2722 hwaddr length)
51d7a9eb 2723{
e87f7778 2724 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2725 addr += memory_region_get_ram_addr(mr);
2726
e87f7778
PB
2727 /* No early return if dirty_log_mask is or becomes 0, because
2728 * cpu_physical_memory_set_dirty_range will still call
2729 * xen_modified_memory.
2730 */
2731 if (dirty_log_mask) {
2732 dirty_log_mask =
2733 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2734 }
2735 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2736 tb_lock();
e87f7778 2737 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2738 tb_unlock();
e87f7778 2739 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2740 }
e87f7778 2741 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2742}
2743
23326164 2744static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2745{
e1622f4b 2746 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2747
2748 /* Regions are assumed to support 1-4 byte accesses unless
2749 otherwise specified. */
23326164
RH
2750 if (access_size_max == 0) {
2751 access_size_max = 4;
2752 }
2753
2754 /* Bound the maximum access by the alignment of the address. */
2755 if (!mr->ops->impl.unaligned) {
2756 unsigned align_size_max = addr & -addr;
2757 if (align_size_max != 0 && align_size_max < access_size_max) {
2758 access_size_max = align_size_max;
2759 }
82f2563f 2760 }
23326164
RH
2761
2762 /* Don't attempt accesses larger than the maximum. */
2763 if (l > access_size_max) {
2764 l = access_size_max;
82f2563f 2765 }
6554f5c0 2766 l = pow2floor(l);
23326164
RH
2767
2768 return l;
82f2563f
PB
2769}
2770
4840f10e 2771static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2772{
4840f10e
JK
2773 bool unlocked = !qemu_mutex_iothread_locked();
2774 bool release_lock = false;
2775
2776 if (unlocked && mr->global_locking) {
2777 qemu_mutex_lock_iothread();
2778 unlocked = false;
2779 release_lock = true;
2780 }
125b3806 2781 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2782 if (unlocked) {
2783 qemu_mutex_lock_iothread();
2784 }
125b3806 2785 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2786 if (unlocked) {
2787 qemu_mutex_unlock_iothread();
2788 }
125b3806 2789 }
4840f10e
JK
2790
2791 return release_lock;
125b3806
PB
2792}
2793
a203ac70
PB
2794/* Called within RCU critical section. */
2795static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2796 MemTxAttrs attrs,
2797 const uint8_t *buf,
2798 int len, hwaddr addr1,
2799 hwaddr l, MemoryRegion *mr)
13eb76e0 2800{
13eb76e0 2801 uint8_t *ptr;
791af8c8 2802 uint64_t val;
3b643495 2803 MemTxResult result = MEMTX_OK;
4840f10e 2804 bool release_lock = false;
3b46e624 2805
a203ac70 2806 for (;;) {
eb7eeb88
PB
2807 if (!memory_access_is_direct(mr, true)) {
2808 release_lock |= prepare_mmio_access(mr);
2809 l = memory_access_size(mr, l, addr1);
2810 /* XXX: could force current_cpu to NULL to avoid
2811 potential bugs */
2812 switch (l) {
2813 case 8:
2814 /* 64 bit write access */
2815 val = ldq_p(buf);
2816 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2817 attrs);
2818 break;
2819 case 4:
2820 /* 32 bit write access */
6da67de6 2821 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2822 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2823 attrs);
2824 break;
2825 case 2:
2826 /* 16 bit write access */
2827 val = lduw_p(buf);
2828 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2829 attrs);
2830 break;
2831 case 1:
2832 /* 8 bit write access */
2833 val = ldub_p(buf);
2834 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2835 attrs);
2836 break;
2837 default:
2838 abort();
13eb76e0
FB
2839 }
2840 } else {
eb7eeb88 2841 /* RAM case */
0878d0e1 2842 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2843 memcpy(ptr, buf, l);
2844 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2845 }
4840f10e
JK
2846
2847 if (release_lock) {
2848 qemu_mutex_unlock_iothread();
2849 release_lock = false;
2850 }
2851
13eb76e0
FB
2852 len -= l;
2853 buf += l;
2854 addr += l;
a203ac70
PB
2855
2856 if (!len) {
2857 break;
2858 }
2859
2860 l = len;
2861 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2862 }
fd8aaa76 2863
3b643495 2864 return result;
13eb76e0 2865}
8df1cd07 2866
a203ac70
PB
2867MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2868 const uint8_t *buf, int len)
ac1970fb 2869{
eb7eeb88 2870 hwaddr l;
eb7eeb88
PB
2871 hwaddr addr1;
2872 MemoryRegion *mr;
2873 MemTxResult result = MEMTX_OK;
eb7eeb88 2874
a203ac70
PB
2875 if (len > 0) {
2876 rcu_read_lock();
eb7eeb88 2877 l = len;
a203ac70
PB
2878 mr = address_space_translate(as, addr, &addr1, &l, true);
2879 result = address_space_write_continue(as, addr, attrs, buf, len,
2880 addr1, l, mr);
2881 rcu_read_unlock();
2882 }
2883
2884 return result;
2885}
2886
2887/* Called within RCU critical section. */
2888MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2889 MemTxAttrs attrs, uint8_t *buf,
2890 int len, hwaddr addr1, hwaddr l,
2891 MemoryRegion *mr)
2892{
2893 uint8_t *ptr;
2894 uint64_t val;
2895 MemTxResult result = MEMTX_OK;
2896 bool release_lock = false;
eb7eeb88 2897
a203ac70 2898 for (;;) {
eb7eeb88
PB
2899 if (!memory_access_is_direct(mr, false)) {
2900 /* I/O case */
2901 release_lock |= prepare_mmio_access(mr);
2902 l = memory_access_size(mr, l, addr1);
2903 switch (l) {
2904 case 8:
2905 /* 64 bit read access */
2906 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2907 attrs);
2908 stq_p(buf, val);
2909 break;
2910 case 4:
2911 /* 32 bit read access */
2912 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2913 attrs);
2914 stl_p(buf, val);
2915 break;
2916 case 2:
2917 /* 16 bit read access */
2918 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2919 attrs);
2920 stw_p(buf, val);
2921 break;
2922 case 1:
2923 /* 8 bit read access */
2924 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2925 attrs);
2926 stb_p(buf, val);
2927 break;
2928 default:
2929 abort();
2930 }
2931 } else {
2932 /* RAM case */
0878d0e1 2933 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2934 memcpy(buf, ptr, l);
2935 }
2936
2937 if (release_lock) {
2938 qemu_mutex_unlock_iothread();
2939 release_lock = false;
2940 }
2941
2942 len -= l;
2943 buf += l;
2944 addr += l;
a203ac70
PB
2945
2946 if (!len) {
2947 break;
2948 }
2949
2950 l = len;
2951 mr = address_space_translate(as, addr, &addr1, &l, false);
2952 }
2953
2954 return result;
2955}
2956
3cc8f884
PB
2957MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2958 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2959{
2960 hwaddr l;
2961 hwaddr addr1;
2962 MemoryRegion *mr;
2963 MemTxResult result = MEMTX_OK;
2964
2965 if (len > 0) {
2966 rcu_read_lock();
2967 l = len;
2968 mr = address_space_translate(as, addr, &addr1, &l, false);
2969 result = address_space_read_continue(as, addr, attrs, buf, len,
2970 addr1, l, mr);
2971 rcu_read_unlock();
eb7eeb88 2972 }
eb7eeb88
PB
2973
2974 return result;
ac1970fb
AK
2975}
2976
eb7eeb88
PB
2977MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2978 uint8_t *buf, int len, bool is_write)
2979{
2980 if (is_write) {
2981 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2982 } else {
2983 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2984 }
2985}
ac1970fb 2986
a8170e5e 2987void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2988 int len, int is_write)
2989{
5c9eb028
PM
2990 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2991 buf, len, is_write);
ac1970fb
AK
2992}
2993
582b55a9
AG
2994enum write_rom_type {
2995 WRITE_DATA,
2996 FLUSH_CACHE,
2997};
2998
2a221651 2999static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3000 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3001{
149f54b5 3002 hwaddr l;
d0ecd2aa 3003 uint8_t *ptr;
149f54b5 3004 hwaddr addr1;
5c8a00ce 3005 MemoryRegion *mr;
3b46e624 3006
41063e1e 3007 rcu_read_lock();
d0ecd2aa 3008 while (len > 0) {
149f54b5 3009 l = len;
2a221651 3010 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3011
5c8a00ce
PB
3012 if (!(memory_region_is_ram(mr) ||
3013 memory_region_is_romd(mr))) {
b242e0e0 3014 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3015 } else {
d0ecd2aa 3016 /* ROM/RAM case */
0878d0e1 3017 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3018 switch (type) {
3019 case WRITE_DATA:
3020 memcpy(ptr, buf, l);
845b6214 3021 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3022 break;
3023 case FLUSH_CACHE:
3024 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3025 break;
3026 }
d0ecd2aa
FB
3027 }
3028 len -= l;
3029 buf += l;
3030 addr += l;
3031 }
41063e1e 3032 rcu_read_unlock();
d0ecd2aa
FB
3033}
3034
582b55a9 3035/* used for ROM loading : can write in RAM and ROM */
2a221651 3036void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3037 const uint8_t *buf, int len)
3038{
2a221651 3039 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3040}
3041
3042void cpu_flush_icache_range(hwaddr start, int len)
3043{
3044 /*
3045 * This function should do the same thing as an icache flush that was
3046 * triggered from within the guest. For TCG we are always cache coherent,
3047 * so there is no need to flush anything. For KVM / Xen we need to flush
3048 * the host's instruction cache at least.
3049 */
3050 if (tcg_enabled()) {
3051 return;
3052 }
3053
2a221651
EI
3054 cpu_physical_memory_write_rom_internal(&address_space_memory,
3055 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3056}
3057
6d16c2f8 3058typedef struct {
d3e71559 3059 MemoryRegion *mr;
6d16c2f8 3060 void *buffer;
a8170e5e
AK
3061 hwaddr addr;
3062 hwaddr len;
c2cba0ff 3063 bool in_use;
6d16c2f8
AL
3064} BounceBuffer;
3065
3066static BounceBuffer bounce;
3067
ba223c29 3068typedef struct MapClient {
e95205e1 3069 QEMUBH *bh;
72cf2d4f 3070 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3071} MapClient;
3072
38e047b5 3073QemuMutex map_client_list_lock;
72cf2d4f
BS
3074static QLIST_HEAD(map_client_list, MapClient) map_client_list
3075 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3076
e95205e1
FZ
3077static void cpu_unregister_map_client_do(MapClient *client)
3078{
3079 QLIST_REMOVE(client, link);
3080 g_free(client);
3081}
3082
33b6c2ed
FZ
3083static void cpu_notify_map_clients_locked(void)
3084{
3085 MapClient *client;
3086
3087 while (!QLIST_EMPTY(&map_client_list)) {
3088 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3089 qemu_bh_schedule(client->bh);
3090 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3091 }
3092}
3093
e95205e1 3094void cpu_register_map_client(QEMUBH *bh)
ba223c29 3095{
7267c094 3096 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3097
38e047b5 3098 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3099 client->bh = bh;
72cf2d4f 3100 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3101 if (!atomic_read(&bounce.in_use)) {
3102 cpu_notify_map_clients_locked();
3103 }
38e047b5 3104 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3105}
3106
38e047b5 3107void cpu_exec_init_all(void)
ba223c29 3108{
38e047b5 3109 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3110 /* The data structures we set up here depend on knowing the page size,
3111 * so no more changes can be made after this point.
3112 * In an ideal world, nothing we did before we had finished the
3113 * machine setup would care about the target page size, and we could
3114 * do this much later, rather than requiring board models to state
3115 * up front what their requirements are.
3116 */
3117 finalize_target_page_bits();
38e047b5 3118 io_mem_init();
680a4783 3119 memory_map_init();
38e047b5 3120 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3121}
3122
e95205e1 3123void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3124{
3125 MapClient *client;
3126
e95205e1
FZ
3127 qemu_mutex_lock(&map_client_list_lock);
3128 QLIST_FOREACH(client, &map_client_list, link) {
3129 if (client->bh == bh) {
3130 cpu_unregister_map_client_do(client);
3131 break;
3132 }
ba223c29 3133 }
e95205e1 3134 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3135}
3136
3137static void cpu_notify_map_clients(void)
3138{
38e047b5 3139 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3140 cpu_notify_map_clients_locked();
38e047b5 3141 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3142}
3143
51644ab7
PB
3144bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3145{
5c8a00ce 3146 MemoryRegion *mr;
51644ab7
PB
3147 hwaddr l, xlat;
3148
41063e1e 3149 rcu_read_lock();
51644ab7
PB
3150 while (len > 0) {
3151 l = len;
5c8a00ce
PB
3152 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3153 if (!memory_access_is_direct(mr, is_write)) {
3154 l = memory_access_size(mr, l, addr);
3155 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3156 rcu_read_unlock();
51644ab7
PB
3157 return false;
3158 }
3159 }
3160
3161 len -= l;
3162 addr += l;
3163 }
41063e1e 3164 rcu_read_unlock();
51644ab7
PB
3165 return true;
3166}
3167
715c31ec
PB
3168static hwaddr
3169address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3170 MemoryRegion *mr, hwaddr base, hwaddr len,
3171 bool is_write)
3172{
3173 hwaddr done = 0;
3174 hwaddr xlat;
3175 MemoryRegion *this_mr;
3176
3177 for (;;) {
3178 target_len -= len;
3179 addr += len;
3180 done += len;
3181 if (target_len == 0) {
3182 return done;
3183 }
3184
3185 len = target_len;
3186 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3187 if (this_mr != mr || xlat != base + done) {
3188 return done;
3189 }
3190 }
3191}
3192
6d16c2f8
AL
3193/* Map a physical memory region into a host virtual address.
3194 * May map a subset of the requested range, given by and returned in *plen.
3195 * May return NULL if resources needed to perform the mapping are exhausted.
3196 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3197 * Use cpu_register_map_client() to know when retrying the map operation is
3198 * likely to succeed.
6d16c2f8 3199 */
ac1970fb 3200void *address_space_map(AddressSpace *as,
a8170e5e
AK
3201 hwaddr addr,
3202 hwaddr *plen,
ac1970fb 3203 bool is_write)
6d16c2f8 3204{
a8170e5e 3205 hwaddr len = *plen;
715c31ec
PB
3206 hwaddr l, xlat;
3207 MemoryRegion *mr;
e81bcda5 3208 void *ptr;
6d16c2f8 3209
e3127ae0
PB
3210 if (len == 0) {
3211 return NULL;
3212 }
38bee5dc 3213
e3127ae0 3214 l = len;
41063e1e 3215 rcu_read_lock();
e3127ae0 3216 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3217
e3127ae0 3218 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3219 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3220 rcu_read_unlock();
e3127ae0 3221 return NULL;
6d16c2f8 3222 }
e85d9db5
KW
3223 /* Avoid unbounded allocations */
3224 l = MIN(l, TARGET_PAGE_SIZE);
3225 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3226 bounce.addr = addr;
3227 bounce.len = l;
d3e71559
PB
3228
3229 memory_region_ref(mr);
3230 bounce.mr = mr;
e3127ae0 3231 if (!is_write) {
5c9eb028
PM
3232 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3233 bounce.buffer, l);
8ab934f9 3234 }
6d16c2f8 3235
41063e1e 3236 rcu_read_unlock();
e3127ae0
PB
3237 *plen = l;
3238 return bounce.buffer;
3239 }
3240
e3127ae0 3241
d3e71559 3242 memory_region_ref(mr);
715c31ec
PB
3243 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3244 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3245 rcu_read_unlock();
3246
3247 return ptr;
6d16c2f8
AL
3248}
3249
ac1970fb 3250/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3251 * Will also mark the memory as dirty if is_write == 1. access_len gives
3252 * the amount of memory that was actually read or written by the caller.
3253 */
a8170e5e
AK
3254void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3255 int is_write, hwaddr access_len)
6d16c2f8
AL
3256{
3257 if (buffer != bounce.buffer) {
d3e71559
PB
3258 MemoryRegion *mr;
3259 ram_addr_t addr1;
3260
07bdaa41 3261 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3262 assert(mr != NULL);
6d16c2f8 3263 if (is_write) {
845b6214 3264 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3265 }
868bb33f 3266 if (xen_enabled()) {
e41d7c69 3267 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3268 }
d3e71559 3269 memory_region_unref(mr);
6d16c2f8
AL
3270 return;
3271 }
3272 if (is_write) {
5c9eb028
PM
3273 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3274 bounce.buffer, access_len);
6d16c2f8 3275 }
f8a83245 3276 qemu_vfree(bounce.buffer);
6d16c2f8 3277 bounce.buffer = NULL;
d3e71559 3278 memory_region_unref(bounce.mr);
c2cba0ff 3279 atomic_mb_set(&bounce.in_use, false);
ba223c29 3280 cpu_notify_map_clients();
6d16c2f8 3281}
d0ecd2aa 3282
a8170e5e
AK
3283void *cpu_physical_memory_map(hwaddr addr,
3284 hwaddr *plen,
ac1970fb
AK
3285 int is_write)
3286{
3287 return address_space_map(&address_space_memory, addr, plen, is_write);
3288}
3289
a8170e5e
AK
3290void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3291 int is_write, hwaddr access_len)
ac1970fb
AK
3292{
3293 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3294}
3295
0ce265ff
PB
3296#define ARG1_DECL AddressSpace *as
3297#define ARG1 as
3298#define SUFFIX
3299#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3300#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3301#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3302#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3303#define RCU_READ_LOCK(...) rcu_read_lock()
3304#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3305#include "memory_ldst.inc.c"
1e78bcc1 3306
1f4e496e
PB
3307int64_t address_space_cache_init(MemoryRegionCache *cache,
3308 AddressSpace *as,
3309 hwaddr addr,
3310 hwaddr len,
3311 bool is_write)
3312{
90c4fe5f
PB
3313 cache->len = len;
3314 cache->as = as;
3315 cache->xlat = addr;
3316 return len;
1f4e496e
PB
3317}
3318
3319void address_space_cache_invalidate(MemoryRegionCache *cache,
3320 hwaddr addr,
3321 hwaddr access_len)
3322{
1f4e496e
PB
3323}
3324
3325void address_space_cache_destroy(MemoryRegionCache *cache)
3326{
90c4fe5f 3327 cache->as = NULL;
1f4e496e
PB
3328}
3329
3330#define ARG1_DECL MemoryRegionCache *cache
3331#define ARG1 cache
3332#define SUFFIX _cached
90c4fe5f
PB
3333#define TRANSLATE(addr, ...) \
3334 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3335#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3336#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3337#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3338#define RCU_READ_LOCK() rcu_read_lock()
3339#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3340#include "memory_ldst.inc.c"
3341
5e2972fd 3342/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3343int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3344 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3345{
3346 int l;
a8170e5e 3347 hwaddr phys_addr;
9b3c35e0 3348 target_ulong page;
13eb76e0 3349
79ca7a1b 3350 cpu_synchronize_state(cpu);
13eb76e0 3351 while (len > 0) {
5232e4c7
PM
3352 int asidx;
3353 MemTxAttrs attrs;
3354
13eb76e0 3355 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3356 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3357 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3358 /* if no physical page mapped, return an error */
3359 if (phys_addr == -1)
3360 return -1;
3361 l = (page + TARGET_PAGE_SIZE) - addr;
3362 if (l > len)
3363 l = len;
5e2972fd 3364 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3365 if (is_write) {
5232e4c7
PM
3366 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3367 phys_addr, buf, l);
2e38847b 3368 } else {
5232e4c7
PM
3369 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3370 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3371 buf, l, 0);
2e38847b 3372 }
13eb76e0
FB
3373 len -= l;
3374 buf += l;
3375 addr += l;
3376 }
3377 return 0;
3378}
038629a6
DDAG
3379
3380/*
3381 * Allows code that needs to deal with migration bitmaps etc to still be built
3382 * target independent.
3383 */
20afaed9 3384size_t qemu_target_page_size(void)
038629a6 3385{
20afaed9 3386 return TARGET_PAGE_SIZE;
038629a6
DDAG
3387}
3388
a68fe89c 3389#endif
13eb76e0 3390
8e4a424b
BS
3391/*
3392 * A helper function for the _utterly broken_ virtio device model to find out if
3393 * it's running on a big endian machine. Don't do this at home kids!
3394 */
98ed8ecf
GK
3395bool target_words_bigendian(void);
3396bool target_words_bigendian(void)
8e4a424b
BS
3397{
3398#if defined(TARGET_WORDS_BIGENDIAN)
3399 return true;
3400#else
3401 return false;
3402#endif
3403}
3404
76f35538 3405#ifndef CONFIG_USER_ONLY
a8170e5e 3406bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3407{
5c8a00ce 3408 MemoryRegion*mr;
149f54b5 3409 hwaddr l = 1;
41063e1e 3410 bool res;
76f35538 3411
41063e1e 3412 rcu_read_lock();
5c8a00ce
PB
3413 mr = address_space_translate(&address_space_memory,
3414 phys_addr, &phys_addr, &l, false);
76f35538 3415
41063e1e
PB
3416 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3417 rcu_read_unlock();
3418 return res;
76f35538 3419}
bd2fa51f 3420
e3807054 3421int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3422{
3423 RAMBlock *block;
e3807054 3424 int ret = 0;
bd2fa51f 3425
0dc3f44a 3426 rcu_read_lock();
99e15582 3427 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3428 ret = func(block->idstr, block->host, block->offset,
3429 block->used_length, opaque);
3430 if (ret) {
3431 break;
3432 }
bd2fa51f 3433 }
0dc3f44a 3434 rcu_read_unlock();
e3807054 3435 return ret;
bd2fa51f 3436}
d3a5038c
DDAG
3437
3438/*
3439 * Unmap pages of memory from start to start+length such that
3440 * they a) read as 0, b) Trigger whatever fault mechanism
3441 * the OS provides for postcopy.
3442 * The pages must be unmapped by the end of the function.
3443 * Returns: 0 on success, none-0 on failure
3444 *
3445 */
3446int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3447{
3448 int ret = -1;
3449
3450 uint8_t *host_startaddr = rb->host + start;
3451
3452 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3453 error_report("ram_block_discard_range: Unaligned start address: %p",
3454 host_startaddr);
3455 goto err;
3456 }
3457
3458 if ((start + length) <= rb->used_length) {
3459 uint8_t *host_endaddr = host_startaddr + length;
3460 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3461 error_report("ram_block_discard_range: Unaligned end address: %p",
3462 host_endaddr);
3463 goto err;
3464 }
3465
3466 errno = ENOTSUP; /* If we are missing MADVISE etc */
3467
e2fa71f5 3468 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3469#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3470 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3471 * freeing the page.
3472 */
3473 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3474#endif
e2fa71f5
DDAG
3475 } else {
3476 /* Huge page case - unfortunately it can't do DONTNEED, but
3477 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3478 * huge page file.
3479 */
3480#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3481 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3482 start, length);
3483#endif
3484 }
d3a5038c
DDAG
3485 if (ret) {
3486 ret = -errno;
3487 error_report("ram_block_discard_range: Failed to discard range "
3488 "%s:%" PRIx64 " +%zx (%d)",
3489 rb->idstr, start, length, ret);
3490 }
3491 } else {
3492 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3493 "/%zx/" RAM_ADDR_FMT")",
3494 rb->idstr, start, length, rb->used_length);
3495 }
3496
3497err:
3498 return ret;
3499}
3500
ec3f8c99 3501#endif