]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
tcg: define CF_PARALLEL and use it for TB hashing along with CF_COUNT_MASK
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
53a5960a 40#if defined(CONFIG_USER_ONLY)
a9c94277 41#include "qemu.h"
432d268c 42#else /* !CONFIG_USER_ONLY */
741da0d3
PB
43#include "hw/hw.h"
44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
9c607668 47#include "sysemu/numa.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
741da0d3 49#include "exec/address-spaces.h"
9c17d615 50#include "sysemu/xen-mapcache.h"
0ab8ed18 51#include "trace-root.h"
d3a5038c 52
e2fa71f5
DDAG
53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54#include <fcntl.h>
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
a0be0c58
YZ
121uintptr_t qemu_host_page_size;
122intptr_t qemu_host_page_mask;
a0be0c58 123
20bccb82
PM
124bool set_preferred_target_page_bits(int bits)
125{
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131#ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139#endif
140 return true;
141}
142
e2eef170 143#if !defined(CONFIG_USER_ONLY)
4346ae3e 144
20bccb82
PM
145static void finalize_target_page_bits(void)
146{
147#ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152#endif
153}
154
1db8abb1
PB
155typedef struct PhysPageEntry PhysPageEntry;
156
157struct PhysPageEntry {
9736e55b 158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 159 uint32_t skip : 6;
9736e55b 160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 161 uint32_t ptr : 26;
1db8abb1
PB
162};
163
8b795765
MT
164#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
03f49957 166/* Size of the L2 (and L3, etc) page tables. */
57271d63 167#define ADDR_SPACE_BITS 64
03f49957 168
026736ce 169#define P_L2_BITS 9
03f49957
PB
170#define P_L2_SIZE (1 << P_L2_BITS)
171
172#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 175
53cb28cb 176typedef struct PhysPageMap {
79e2b9ae
PB
177 struct rcu_head rcu;
178
53cb28cb
MA
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185} PhysPageMap;
186
1db8abb1 187struct AddressSpaceDispatch {
729633c2 188 MemoryRegionSection *mru_section;
1db8abb1
PB
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
53cb28cb 193 PhysPageMap map;
1db8abb1
PB
194};
195
90260c6c
JK
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
16620684 199 FlatView *fv;
90260c6c 200 hwaddr base;
2615fabd 201 uint16_t sub_section[];
90260c6c
JK
202} subpage_t;
203
b41aac4f
LPF
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
5312bd8b 208
e2eef170 209static void io_mem_init(void);
62152b8a 210static void memory_map_init(void);
09daed84 211static void tcg_commit(MemoryListener *listener);
e2eef170 212
1ec9b909 213static MemoryRegion io_mem_watch;
32857f4d
PM
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
8deaf12c
GH
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
6658ffb8 235#endif
fd6ce8f6 236
6d9a1304 237#if !defined(CONFIG_USER_ONLY)
d6f2ea22 238
53cb28cb 239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 240{
101420b8 241 static unsigned alloc_hint = 16;
53cb28cb 242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 246 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 247 }
f7bf5461
AK
248}
249
db94604b 250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
251{
252 unsigned i;
8b795765 253 uint32_t ret;
db94604b
PB
254 PhysPageEntry e;
255 PhysPageEntry *p;
f7bf5461 256
53cb28cb 257 ret = map->nodes_nb++;
db94604b 258 p = map->nodes[ret];
f7bf5461 259 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 260 assert(ret != map->nodes_nb_alloc);
db94604b
PB
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 264 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 265 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 266 }
f7bf5461 267 return ret;
d6f2ea22
AK
268}
269
53cb28cb
MA
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 272 int level)
f7bf5461
AK
273{
274 PhysPageEntry *p;
03f49957 275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 276
9736e55b 277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 278 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 279 }
db94604b 280 p = map->nodes[lp->ptr];
03f49957 281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 282
03f49957 283 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 284 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 285 lp->skip = 0;
c19e8800 286 lp->ptr = leaf;
07f07b31
AK
287 *index += step;
288 *nb -= step;
2999097b 289 } else {
53cb28cb 290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
291 }
292 ++lp;
f7bf5461
AK
293 }
294}
295
ac1970fb 296static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 297 hwaddr index, hwaddr nb,
2999097b 298 uint16_t leaf)
f7bf5461 299{
2999097b 300 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 302
53cb28cb 303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
304}
305
b35ba30f
MT
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
efee678d 309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
efee678d 329 phys_page_compact(&p[i], nodes);
b35ba30f
MT
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
8629d3fc 359void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 360{
b35ba30f 361 if (d->phys_map.skip) {
efee678d 362 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
363 }
364}
365
29cb533d
FZ
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
258dfaaa 372 return int128_gethi(section->size) ||
29cb533d 373 range_covers_byte(section->offset_within_address_space,
258dfaaa 374 int128_getlo(section->size), addr);
29cb533d
FZ
375}
376
003a0cf2 377static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 378{
003a0cf2
PX
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
97115a8d 382 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 383 int i;
f1f6e3b8 384
9736e55b 385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 387 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 388 }
9affd6fc 389 p = nodes[lp.ptr];
03f49957 390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 391 }
b35ba30f 392
29cb533d 393 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
f3705d53
AK
398}
399
e5548617
BS
400bool memory_region_is_unassigned(MemoryRegion *mr)
401{
2a8e7499 402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 403 && mr != &io_mem_watch;
fd6ce8f6 404}
149f54b5 405
79e2b9ae 406/* Called from RCU critical section */
c7086b4a 407static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
408 hwaddr addr,
409 bool resolve_subpage)
9f029603 410{
729633c2 411 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 412 subpage_t *subpage;
729633c2 413 bool update;
90260c6c 414
729633c2
FZ
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
003a0cf2 419 section = phys_page_find(d, addr);
729633c2
FZ
420 update = true;
421 }
90260c6c
JK
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 425 }
729633c2
FZ
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
90260c6c 429 return section;
9f029603
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433static MemoryRegionSection *
c7086b4a 434address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 435 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
436{
437 MemoryRegionSection *section;
965eb2fc 438 MemoryRegion *mr;
a87f3954 439 Int128 diff;
149f54b5 440
c7086b4a 441 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
965eb2fc 448 mr = section->mr;
b242e0e0
PB
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
965eb2fc 461 if (memory_region_is_ram(mr)) {
e4a511f8 462 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
149f54b5
PB
465 return section;
466}
90260c6c 467
d5e5fafd
PX
468/**
469 * flatview_do_translate - translate an address in FlatView
470 *
471 * @fv: the flat view that we want to translate on
472 * @addr: the address to be translated in above address space
473 * @xlat: the translated address offset within memory region. It
474 * cannot be @NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * can be @NULL when we don't care about it.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be @NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 *
484 * This function is called from RCU critical section
485 */
16620684
AK
486static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
d5e5fafd
PX
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
16620684
AK
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as)
052c8fa9 494{
a764040c 495 IOMMUTLBEntry iotlb;
052c8fa9 496 MemoryRegionSection *section;
3df9d748 497 IOMMUMemoryRegion *iommu_mr;
1221a474 498 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
499 hwaddr page_mask = (hwaddr)(-1);
500 hwaddr plen = (hwaddr)(-1);
501
502 if (plen_out) {
503 plen = *plen_out;
504 }
052c8fa9
JW
505
506 for (;;) {
16620684
AK
507 section = address_space_translate_internal(
508 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 509 &plen, is_mmio);
052c8fa9 510
3df9d748
AK
511 iommu_mr = memory_region_get_iommu(section->mr);
512 if (!iommu_mr) {
052c8fa9
JW
513 break;
514 }
1221a474 515 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 516
1221a474
AK
517 iotlb = imrc->translate(iommu_mr, addr, is_write ?
518 IOMMU_WO : IOMMU_RO);
a764040c
PX
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
d5e5fafd
PX
521 page_mask &= iotlb.addr_mask;
522 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 523 if (!(iotlb.perm & (1 << is_write))) {
a764040c 524 goto translate_fail;
052c8fa9
JW
525 }
526
16620684 527 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 528 *target_as = iotlb.target_as;
052c8fa9
JW
529 }
530
a764040c
PX
531 *xlat = addr;
532
d5e5fafd
PX
533 if (page_mask == (hwaddr)(-1)) {
534 /* Not behind an IOMMU, use default page size. */
535 page_mask = ~TARGET_PAGE_MASK;
536 }
537
538 if (page_mask_out) {
539 *page_mask_out = page_mask;
540 }
541
542 if (plen_out) {
543 *plen_out = plen;
544 }
545
a764040c
PX
546 return *section;
547
548translate_fail:
549 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
550}
551
552/* Called from RCU critical section */
a764040c
PX
553IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
554 bool is_write)
90260c6c 555{
a764040c 556 MemoryRegionSection section;
076a93d7 557 hwaddr xlat, page_mask;
30951157 558
076a93d7
PX
559 /*
560 * This can never be MMIO, and we don't really care about plen,
561 * but page mask.
562 */
563 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
564 NULL, &page_mask, is_write, false, &as);
30951157 565
a764040c
PX
566 /* Illegal translation */
567 if (section.mr == &io_mem_unassigned) {
568 goto iotlb_fail;
569 }
30951157 570
a764040c
PX
571 /* Convert memory region offset into address space offset */
572 xlat += section.offset_within_address_space -
573 section.offset_within_region;
574
a764040c 575 return (IOMMUTLBEntry) {
e76bb18f 576 .target_as = as,
076a93d7
PX
577 .iova = addr & ~page_mask,
578 .translated_addr = xlat & ~page_mask,
579 .addr_mask = page_mask,
a764040c
PX
580 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
581 .perm = IOMMU_RW,
582 };
583
584iotlb_fail:
585 return (IOMMUTLBEntry) {0};
586}
587
588/* Called from RCU critical section */
16620684
AK
589MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
590 hwaddr *plen, bool is_write)
a764040c
PX
591{
592 MemoryRegion *mr;
593 MemoryRegionSection section;
16620684 594 AddressSpace *as = NULL;
a764040c
PX
595
596 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
597 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
598 is_write, true, &as);
a764040c
PX
599 mr = section.mr;
600
fe680d0d 601 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 602 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 603 *plen = MIN(page, *plen);
a87f3954
PB
604 }
605
30951157 606 return mr;
90260c6c
JK
607}
608
79e2b9ae 609/* Called from RCU critical section */
90260c6c 610MemoryRegionSection *
d7898cda 611address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 612 hwaddr *xlat, hwaddr *plen)
90260c6c 613{
30951157 614 MemoryRegionSection *section;
f35e44e7 615 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
616
617 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 618
3df9d748 619 assert(!memory_region_is_iommu(section->mr));
30951157 620 return section;
90260c6c 621}
5b6dd868 622#endif
fd6ce8f6 623
b170fce3 624#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
625
626static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 627{
259186a7 628 CPUState *cpu = opaque;
a513fe19 629
5b6dd868
BS
630 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
631 version_id is increased. */
259186a7 632 cpu->interrupt_request &= ~0x01;
d10eb08f 633 tlb_flush(cpu);
5b6dd868
BS
634
635 return 0;
a513fe19 636}
7501267e 637
6c3bff0e
PD
638static int cpu_common_pre_load(void *opaque)
639{
640 CPUState *cpu = opaque;
641
adee6424 642 cpu->exception_index = -1;
6c3bff0e
PD
643
644 return 0;
645}
646
647static bool cpu_common_exception_index_needed(void *opaque)
648{
649 CPUState *cpu = opaque;
650
adee6424 651 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
652}
653
654static const VMStateDescription vmstate_cpu_common_exception_index = {
655 .name = "cpu_common/exception_index",
656 .version_id = 1,
657 .minimum_version_id = 1,
5cd8cada 658 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
659 .fields = (VMStateField[]) {
660 VMSTATE_INT32(exception_index, CPUState),
661 VMSTATE_END_OF_LIST()
662 }
663};
664
bac05aa9
AS
665static bool cpu_common_crash_occurred_needed(void *opaque)
666{
667 CPUState *cpu = opaque;
668
669 return cpu->crash_occurred;
670}
671
672static const VMStateDescription vmstate_cpu_common_crash_occurred = {
673 .name = "cpu_common/crash_occurred",
674 .version_id = 1,
675 .minimum_version_id = 1,
676 .needed = cpu_common_crash_occurred_needed,
677 .fields = (VMStateField[]) {
678 VMSTATE_BOOL(crash_occurred, CPUState),
679 VMSTATE_END_OF_LIST()
680 }
681};
682
1a1562f5 683const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
684 .name = "cpu_common",
685 .version_id = 1,
686 .minimum_version_id = 1,
6c3bff0e 687 .pre_load = cpu_common_pre_load,
5b6dd868 688 .post_load = cpu_common_post_load,
35d08458 689 .fields = (VMStateField[]) {
259186a7
AF
690 VMSTATE_UINT32(halted, CPUState),
691 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 692 VMSTATE_END_OF_LIST()
6c3bff0e 693 },
5cd8cada
JQ
694 .subsections = (const VMStateDescription*[]) {
695 &vmstate_cpu_common_exception_index,
bac05aa9 696 &vmstate_cpu_common_crash_occurred,
5cd8cada 697 NULL
5b6dd868
BS
698 }
699};
1a1562f5 700
5b6dd868 701#endif
ea041c0e 702
38d8f5c8 703CPUState *qemu_get_cpu(int index)
ea041c0e 704{
bdc44640 705 CPUState *cpu;
ea041c0e 706
bdc44640 707 CPU_FOREACH(cpu) {
55e5c285 708 if (cpu->cpu_index == index) {
bdc44640 709 return cpu;
55e5c285 710 }
ea041c0e 711 }
5b6dd868 712
bdc44640 713 return NULL;
ea041c0e
FB
714}
715
09daed84 716#if !defined(CONFIG_USER_ONLY)
56943e8c 717void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 718{
12ebc9a7
PM
719 CPUAddressSpace *newas;
720
721 /* Target code should have set num_ases before calling us */
722 assert(asidx < cpu->num_ases);
723
56943e8c
PM
724 if (asidx == 0) {
725 /* address space 0 gets the convenience alias */
726 cpu->as = as;
727 }
728
12ebc9a7
PM
729 /* KVM cannot currently support multiple address spaces. */
730 assert(asidx == 0 || !kvm_enabled());
09daed84 731
12ebc9a7
PM
732 if (!cpu->cpu_ases) {
733 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 734 }
32857f4d 735
12ebc9a7
PM
736 newas = &cpu->cpu_ases[asidx];
737 newas->cpu = cpu;
738 newas->as = as;
56943e8c 739 if (tcg_enabled()) {
12ebc9a7
PM
740 newas->tcg_as_listener.commit = tcg_commit;
741 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 742 }
09daed84 743}
651a5bc0
PM
744
745AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
746{
747 /* Return the AddressSpace corresponding to the specified index */
748 return cpu->cpu_ases[asidx].as;
749}
09daed84
EI
750#endif
751
7bbc124e 752void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 753{
9dfeca7c
BR
754 CPUClass *cc = CPU_GET_CLASS(cpu);
755
267f685b 756 cpu_list_remove(cpu);
9dfeca7c
BR
757
758 if (cc->vmsd != NULL) {
759 vmstate_unregister(NULL, cc->vmsd, cpu);
760 }
761 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
762 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
763 }
1c59eb39
BR
764}
765
c7e002c5
FZ
766Property cpu_common_props[] = {
767#ifndef CONFIG_USER_ONLY
768 /* Create a memory property for softmmu CPU object,
769 * so users can wire up its memory. (This can't go in qom/cpu.c
770 * because that file is compiled only once for both user-mode
771 * and system builds.) The default if no link is set up is to use
772 * the system address space.
773 */
774 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
775 MemoryRegion *),
776#endif
777 DEFINE_PROP_END_OF_LIST(),
778};
779
39e329e3 780void cpu_exec_initfn(CPUState *cpu)
ea041c0e 781{
56943e8c 782 cpu->as = NULL;
12ebc9a7 783 cpu->num_ases = 0;
56943e8c 784
291135b5 785#ifndef CONFIG_USER_ONLY
291135b5 786 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
787 cpu->memory = system_memory;
788 object_ref(OBJECT(cpu->memory));
291135b5 789#endif
39e329e3
LV
790}
791
ce5b1bbf 792void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 793{
55c3ceef 794 CPUClass *cc = CPU_GET_CLASS(cpu);
291135b5 795
267f685b 796 cpu_list_add(cpu);
1bc7e522 797
55c3ceef
RH
798 if (tcg_enabled() && !cc->tcg_initialized) {
799 cc->tcg_initialized = true;
800 cc->tcg_initialize();
801 }
802
1bc7e522 803#ifndef CONFIG_USER_ONLY
e0d47944 804 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 805 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 806 }
b170fce3 807 if (cc->vmsd != NULL) {
741da0d3 808 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 809 }
741da0d3 810#endif
ea041c0e
FB
811}
812
406bc339 813#if defined(CONFIG_USER_ONLY)
00b941e5 814static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 815{
406bc339
PK
816 mmap_lock();
817 tb_lock();
818 tb_invalidate_phys_page_range(pc, pc + 1, 0);
819 tb_unlock();
820 mmap_unlock();
821}
822#else
823static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
824{
825 MemTxAttrs attrs;
826 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
827 int asidx = cpu_asidx_from_attrs(cpu, attrs);
828 if (phys != -1) {
829 /* Locks grabbed by tb_invalidate_phys_addr */
830 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
831 phys | (pc & ~TARGET_PAGE_MASK));
832 }
1e7855a5 833}
406bc339 834#endif
d720b93d 835
c527ee8f 836#if defined(CONFIG_USER_ONLY)
75a34036 837void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
838
839{
840}
841
3ee887e8
PM
842int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
843 int flags)
844{
845 return -ENOSYS;
846}
847
848void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
849{
850}
851
75a34036 852int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
853 int flags, CPUWatchpoint **watchpoint)
854{
855 return -ENOSYS;
856}
857#else
6658ffb8 858/* Add a watchpoint. */
75a34036 859int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 860 int flags, CPUWatchpoint **watchpoint)
6658ffb8 861{
c0ce998e 862 CPUWatchpoint *wp;
6658ffb8 863
05068c0d 864 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 865 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
866 error_report("tried to set invalid watchpoint at %"
867 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
868 return -EINVAL;
869 }
7267c094 870 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
871
872 wp->vaddr = addr;
05068c0d 873 wp->len = len;
a1d1bb31
AL
874 wp->flags = flags;
875
2dc9f411 876 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
877 if (flags & BP_GDB) {
878 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
879 } else {
880 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
881 }
6658ffb8 882
31b030d4 883 tlb_flush_page(cpu, addr);
a1d1bb31
AL
884
885 if (watchpoint)
886 *watchpoint = wp;
887 return 0;
6658ffb8
PB
888}
889
a1d1bb31 890/* Remove a specific watchpoint. */
75a34036 891int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 892 int flags)
6658ffb8 893{
a1d1bb31 894 CPUWatchpoint *wp;
6658ffb8 895
ff4700b0 896 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 897 if (addr == wp->vaddr && len == wp->len
6e140f28 898 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 899 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
900 return 0;
901 }
902 }
a1d1bb31 903 return -ENOENT;
6658ffb8
PB
904}
905
a1d1bb31 906/* Remove a specific watchpoint by reference. */
75a34036 907void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 908{
ff4700b0 909 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 910
31b030d4 911 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 912
7267c094 913 g_free(watchpoint);
a1d1bb31
AL
914}
915
916/* Remove all matching watchpoints. */
75a34036 917void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 918{
c0ce998e 919 CPUWatchpoint *wp, *next;
a1d1bb31 920
ff4700b0 921 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
922 if (wp->flags & mask) {
923 cpu_watchpoint_remove_by_ref(cpu, wp);
924 }
c0ce998e 925 }
7d03f82f 926}
05068c0d
PM
927
928/* Return true if this watchpoint address matches the specified
929 * access (ie the address range covered by the watchpoint overlaps
930 * partially or completely with the address range covered by the
931 * access).
932 */
933static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
934 vaddr addr,
935 vaddr len)
936{
937 /* We know the lengths are non-zero, but a little caution is
938 * required to avoid errors in the case where the range ends
939 * exactly at the top of the address space and so addr + len
940 * wraps round to zero.
941 */
942 vaddr wpend = wp->vaddr + wp->len - 1;
943 vaddr addrend = addr + len - 1;
944
945 return !(addr > wpend || wp->vaddr > addrend);
946}
947
c527ee8f 948#endif
7d03f82f 949
a1d1bb31 950/* Add a breakpoint. */
b3310ab3 951int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 952 CPUBreakpoint **breakpoint)
4c3a88a2 953{
c0ce998e 954 CPUBreakpoint *bp;
3b46e624 955
7267c094 956 bp = g_malloc(sizeof(*bp));
4c3a88a2 957
a1d1bb31
AL
958 bp->pc = pc;
959 bp->flags = flags;
960
2dc9f411 961 /* keep all GDB-injected breakpoints in front */
00b941e5 962 if (flags & BP_GDB) {
f0c3c505 963 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 964 } else {
f0c3c505 965 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 966 }
3b46e624 967
f0c3c505 968 breakpoint_invalidate(cpu, pc);
a1d1bb31 969
00b941e5 970 if (breakpoint) {
a1d1bb31 971 *breakpoint = bp;
00b941e5 972 }
4c3a88a2 973 return 0;
4c3a88a2
FB
974}
975
a1d1bb31 976/* Remove a specific breakpoint. */
b3310ab3 977int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 978{
a1d1bb31
AL
979 CPUBreakpoint *bp;
980
f0c3c505 981 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 982 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 983 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
984 return 0;
985 }
7d03f82f 986 }
a1d1bb31 987 return -ENOENT;
7d03f82f
EI
988}
989
a1d1bb31 990/* Remove a specific breakpoint by reference. */
b3310ab3 991void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 992{
f0c3c505
AF
993 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
994
995 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 996
7267c094 997 g_free(breakpoint);
a1d1bb31
AL
998}
999
1000/* Remove all matching breakpoints. */
b3310ab3 1001void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1002{
c0ce998e 1003 CPUBreakpoint *bp, *next;
a1d1bb31 1004
f0c3c505 1005 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1006 if (bp->flags & mask) {
1007 cpu_breakpoint_remove_by_ref(cpu, bp);
1008 }
c0ce998e 1009 }
4c3a88a2
FB
1010}
1011
c33a346e
FB
1012/* enable or disable single step mode. EXCP_DEBUG is returned by the
1013 CPU loop after each instruction */
3825b28f 1014void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1015{
ed2803da
AF
1016 if (cpu->singlestep_enabled != enabled) {
1017 cpu->singlestep_enabled = enabled;
1018 if (kvm_enabled()) {
38e478ec 1019 kvm_update_guest_debug(cpu, 0);
ed2803da 1020 } else {
ccbb4d44 1021 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1022 /* XXX: only flush what is necessary */
bbd77c18 1023 tb_flush(cpu);
e22a25c9 1024 }
c33a346e 1025 }
c33a346e
FB
1026}
1027
a47dddd7 1028void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1029{
1030 va_list ap;
493ae1f0 1031 va_list ap2;
7501267e
FB
1032
1033 va_start(ap, fmt);
493ae1f0 1034 va_copy(ap2, ap);
7501267e
FB
1035 fprintf(stderr, "qemu: fatal: ");
1036 vfprintf(stderr, fmt, ap);
1037 fprintf(stderr, "\n");
878096ee 1038 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1039 if (qemu_log_separate()) {
1ee73216 1040 qemu_log_lock();
93fcfe39
AL
1041 qemu_log("qemu: fatal: ");
1042 qemu_log_vprintf(fmt, ap2);
1043 qemu_log("\n");
a0762859 1044 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1045 qemu_log_flush();
1ee73216 1046 qemu_log_unlock();
93fcfe39 1047 qemu_log_close();
924edcae 1048 }
493ae1f0 1049 va_end(ap2);
f9373291 1050 va_end(ap);
7615936e 1051 replay_finish();
fd052bf6
RV
1052#if defined(CONFIG_USER_ONLY)
1053 {
1054 struct sigaction act;
1055 sigfillset(&act.sa_mask);
1056 act.sa_handler = SIG_DFL;
1057 sigaction(SIGABRT, &act, NULL);
1058 }
1059#endif
7501267e
FB
1060 abort();
1061}
1062
0124311e 1063#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1064/* Called from RCU critical section */
041603fe
PB
1065static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1066{
1067 RAMBlock *block;
1068
43771539 1069 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1070 if (block && addr - block->offset < block->max_length) {
68851b98 1071 return block;
041603fe 1072 }
99e15582 1073 RAMBLOCK_FOREACH(block) {
9b8424d5 1074 if (addr - block->offset < block->max_length) {
041603fe
PB
1075 goto found;
1076 }
1077 }
1078
1079 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1080 abort();
1081
1082found:
43771539
PB
1083 /* It is safe to write mru_block outside the iothread lock. This
1084 * is what happens:
1085 *
1086 * mru_block = xxx
1087 * rcu_read_unlock()
1088 * xxx removed from list
1089 * rcu_read_lock()
1090 * read mru_block
1091 * mru_block = NULL;
1092 * call_rcu(reclaim_ramblock, xxx);
1093 * rcu_read_unlock()
1094 *
1095 * atomic_rcu_set is not needed here. The block was already published
1096 * when it was placed into the list. Here we're just making an extra
1097 * copy of the pointer.
1098 */
041603fe
PB
1099 ram_list.mru_block = block;
1100 return block;
1101}
1102
a2f4d5be 1103static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1104{
9a13565d 1105 CPUState *cpu;
041603fe 1106 ram_addr_t start1;
a2f4d5be
JQ
1107 RAMBlock *block;
1108 ram_addr_t end;
1109
1110 end = TARGET_PAGE_ALIGN(start + length);
1111 start &= TARGET_PAGE_MASK;
d24981d3 1112
0dc3f44a 1113 rcu_read_lock();
041603fe
PB
1114 block = qemu_get_ram_block(start);
1115 assert(block == qemu_get_ram_block(end - 1));
1240be24 1116 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1117 CPU_FOREACH(cpu) {
1118 tlb_reset_dirty(cpu, start1, length);
1119 }
0dc3f44a 1120 rcu_read_unlock();
d24981d3
JQ
1121}
1122
5579c7f3 1123/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1124bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1125 ram_addr_t length,
1126 unsigned client)
1ccde1cb 1127{
5b82b703 1128 DirtyMemoryBlocks *blocks;
03eebc9e 1129 unsigned long end, page;
5b82b703 1130 bool dirty = false;
03eebc9e
SH
1131
1132 if (length == 0) {
1133 return false;
1134 }
f23db169 1135
03eebc9e
SH
1136 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1137 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1138
1139 rcu_read_lock();
1140
1141 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1142
1143 while (page < end) {
1144 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1145 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1146 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1147
1148 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1149 offset, num);
1150 page += num;
1151 }
1152
1153 rcu_read_unlock();
03eebc9e
SH
1154
1155 if (dirty && tcg_enabled()) {
a2f4d5be 1156 tlb_reset_dirty_range_all(start, length);
5579c7f3 1157 }
03eebc9e
SH
1158
1159 return dirty;
1ccde1cb
FB
1160}
1161
8deaf12c
GH
1162DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1163 (ram_addr_t start, ram_addr_t length, unsigned client)
1164{
1165 DirtyMemoryBlocks *blocks;
1166 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1167 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1168 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1169 DirtyBitmapSnapshot *snap;
1170 unsigned long page, end, dest;
1171
1172 snap = g_malloc0(sizeof(*snap) +
1173 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1174 snap->start = first;
1175 snap->end = last;
1176
1177 page = first >> TARGET_PAGE_BITS;
1178 end = last >> TARGET_PAGE_BITS;
1179 dest = 0;
1180
1181 rcu_read_lock();
1182
1183 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1184
1185 while (page < end) {
1186 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1187 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1188 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1189
1190 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1191 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1192 offset >>= BITS_PER_LEVEL;
1193
1194 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1195 blocks->blocks[idx] + offset,
1196 num);
1197 page += num;
1198 dest += num >> BITS_PER_LEVEL;
1199 }
1200
1201 rcu_read_unlock();
1202
1203 if (tcg_enabled()) {
1204 tlb_reset_dirty_range_all(start, length);
1205 }
1206
1207 return snap;
1208}
1209
1210bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1211 ram_addr_t start,
1212 ram_addr_t length)
1213{
1214 unsigned long page, end;
1215
1216 assert(start >= snap->start);
1217 assert(start + length <= snap->end);
1218
1219 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1220 page = (start - snap->start) >> TARGET_PAGE_BITS;
1221
1222 while (page < end) {
1223 if (test_bit(page, snap->dirty)) {
1224 return true;
1225 }
1226 page++;
1227 }
1228 return false;
1229}
1230
79e2b9ae 1231/* Called from RCU critical section */
bb0e627a 1232hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1233 MemoryRegionSection *section,
1234 target_ulong vaddr,
1235 hwaddr paddr, hwaddr xlat,
1236 int prot,
1237 target_ulong *address)
e5548617 1238{
a8170e5e 1239 hwaddr iotlb;
e5548617
BS
1240 CPUWatchpoint *wp;
1241
cc5bea60 1242 if (memory_region_is_ram(section->mr)) {
e5548617 1243 /* Normal RAM. */
e4e69794 1244 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1245 if (!section->readonly) {
b41aac4f 1246 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1247 } else {
b41aac4f 1248 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1249 }
1250 } else {
0b8e2c10
PM
1251 AddressSpaceDispatch *d;
1252
16620684 1253 d = flatview_to_dispatch(section->fv);
0b8e2c10 1254 iotlb = section - d->map.sections;
149f54b5 1255 iotlb += xlat;
e5548617
BS
1256 }
1257
1258 /* Make accesses to pages with watchpoints go via the
1259 watchpoint trap routines. */
ff4700b0 1260 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1261 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1262 /* Avoid trapping reads of pages with a write breakpoint. */
1263 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1264 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1265 *address |= TLB_MMIO;
1266 break;
1267 }
1268 }
1269 }
1270
1271 return iotlb;
1272}
9fa3e853
FB
1273#endif /* defined(CONFIG_USER_ONLY) */
1274
e2eef170 1275#if !defined(CONFIG_USER_ONLY)
8da3ff18 1276
c227f099 1277static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1278 uint16_t section);
16620684 1279static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1280
a2b257d6
IM
1281static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1282 qemu_anon_ram_alloc;
91138037
MA
1283
1284/*
1285 * Set a custom physical guest memory alloator.
1286 * Accelerators with unusual needs may need this. Hopefully, we can
1287 * get rid of it eventually.
1288 */
a2b257d6 1289void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1290{
1291 phys_mem_alloc = alloc;
1292}
1293
53cb28cb
MA
1294static uint16_t phys_section_add(PhysPageMap *map,
1295 MemoryRegionSection *section)
5312bd8b 1296{
68f3f65b
PB
1297 /* The physical section number is ORed with a page-aligned
1298 * pointer to produce the iotlb entries. Thus it should
1299 * never overflow into the page-aligned value.
1300 */
53cb28cb 1301 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1302
53cb28cb
MA
1303 if (map->sections_nb == map->sections_nb_alloc) {
1304 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1305 map->sections = g_renew(MemoryRegionSection, map->sections,
1306 map->sections_nb_alloc);
5312bd8b 1307 }
53cb28cb 1308 map->sections[map->sections_nb] = *section;
dfde4e6e 1309 memory_region_ref(section->mr);
53cb28cb 1310 return map->sections_nb++;
5312bd8b
AK
1311}
1312
058bc4b5
PB
1313static void phys_section_destroy(MemoryRegion *mr)
1314{
55b4e80b
DS
1315 bool have_sub_page = mr->subpage;
1316
dfde4e6e
PB
1317 memory_region_unref(mr);
1318
55b4e80b 1319 if (have_sub_page) {
058bc4b5 1320 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1321 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1322 g_free(subpage);
1323 }
1324}
1325
6092666e 1326static void phys_sections_free(PhysPageMap *map)
5312bd8b 1327{
9affd6fc
PB
1328 while (map->sections_nb > 0) {
1329 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1330 phys_section_destroy(section->mr);
1331 }
9affd6fc
PB
1332 g_free(map->sections);
1333 g_free(map->nodes);
5312bd8b
AK
1334}
1335
9950322a 1336static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1337{
9950322a 1338 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1339 subpage_t *subpage;
a8170e5e 1340 hwaddr base = section->offset_within_address_space
0f0cb164 1341 & TARGET_PAGE_MASK;
003a0cf2 1342 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1343 MemoryRegionSection subsection = {
1344 .offset_within_address_space = base,
052e87b0 1345 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1346 };
a8170e5e 1347 hwaddr start, end;
0f0cb164 1348
f3705d53 1349 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1350
f3705d53 1351 if (!(existing->mr->subpage)) {
16620684
AK
1352 subpage = subpage_init(fv, base);
1353 subsection.fv = fv;
0f0cb164 1354 subsection.mr = &subpage->iomem;
ac1970fb 1355 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1356 phys_section_add(&d->map, &subsection));
0f0cb164 1357 } else {
f3705d53 1358 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1359 }
1360 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1361 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1362 subpage_register(subpage, start, end,
1363 phys_section_add(&d->map, section));
0f0cb164
AK
1364}
1365
1366
9950322a 1367static void register_multipage(FlatView *fv,
052e87b0 1368 MemoryRegionSection *section)
33417e70 1369{
9950322a 1370 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1371 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1372 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1373 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1374 TARGET_PAGE_BITS));
dd81124b 1375
733d5ef5
PB
1376 assert(num_pages);
1377 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1378}
1379
8629d3fc 1380void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1381{
99b9cc06 1382 MemoryRegionSection now = *section, remain = *section;
052e87b0 1383 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1384
733d5ef5
PB
1385 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1386 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1387 - now.offset_within_address_space;
1388
052e87b0 1389 now.size = int128_min(int128_make64(left), now.size);
9950322a 1390 register_subpage(fv, &now);
733d5ef5 1391 } else {
052e87b0 1392 now.size = int128_zero();
733d5ef5 1393 }
052e87b0
PB
1394 while (int128_ne(remain.size, now.size)) {
1395 remain.size = int128_sub(remain.size, now.size);
1396 remain.offset_within_address_space += int128_get64(now.size);
1397 remain.offset_within_region += int128_get64(now.size);
69b67646 1398 now = remain;
052e87b0 1399 if (int128_lt(remain.size, page_size)) {
9950322a 1400 register_subpage(fv, &now);
88266249 1401 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1402 now.size = page_size;
9950322a 1403 register_subpage(fv, &now);
69b67646 1404 } else {
052e87b0 1405 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1406 register_multipage(fv, &now);
69b67646 1407 }
0f0cb164
AK
1408 }
1409}
1410
62a2744c
SY
1411void qemu_flush_coalesced_mmio_buffer(void)
1412{
1413 if (kvm_enabled())
1414 kvm_flush_coalesced_mmio_buffer();
1415}
1416
b2a8658e
UD
1417void qemu_mutex_lock_ramlist(void)
1418{
1419 qemu_mutex_lock(&ram_list.mutex);
1420}
1421
1422void qemu_mutex_unlock_ramlist(void)
1423{
1424 qemu_mutex_unlock(&ram_list.mutex);
1425}
1426
be9b23c4
PX
1427void ram_block_dump(Monitor *mon)
1428{
1429 RAMBlock *block;
1430 char *psize;
1431
1432 rcu_read_lock();
1433 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1434 "Block Name", "PSize", "Offset", "Used", "Total");
1435 RAMBLOCK_FOREACH(block) {
1436 psize = size_to_str(block->page_size);
1437 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1438 " 0x%016" PRIx64 "\n", block->idstr, psize,
1439 (uint64_t)block->offset,
1440 (uint64_t)block->used_length,
1441 (uint64_t)block->max_length);
1442 g_free(psize);
1443 }
1444 rcu_read_unlock();
1445}
1446
9c607668
AK
1447#ifdef __linux__
1448/*
1449 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1450 * may or may not name the same files / on the same filesystem now as
1451 * when we actually open and map them. Iterate over the file
1452 * descriptors instead, and use qemu_fd_getpagesize().
1453 */
1454static int find_max_supported_pagesize(Object *obj, void *opaque)
1455{
1456 char *mem_path;
1457 long *hpsize_min = opaque;
1458
1459 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1460 mem_path = object_property_get_str(obj, "mem-path", NULL);
1461 if (mem_path) {
1462 long hpsize = qemu_mempath_getpagesize(mem_path);
1463 if (hpsize < *hpsize_min) {
1464 *hpsize_min = hpsize;
1465 }
1466 } else {
1467 *hpsize_min = getpagesize();
1468 }
1469 }
1470
1471 return 0;
1472}
1473
1474long qemu_getrampagesize(void)
1475{
1476 long hpsize = LONG_MAX;
1477 long mainrampagesize;
1478 Object *memdev_root;
1479
1480 if (mem_path) {
1481 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1482 } else {
1483 mainrampagesize = getpagesize();
1484 }
1485
1486 /* it's possible we have memory-backend objects with
1487 * hugepage-backed RAM. these may get mapped into system
1488 * address space via -numa parameters or memory hotplug
1489 * hooks. we want to take these into account, but we
1490 * also want to make sure these supported hugepage
1491 * sizes are applicable across the entire range of memory
1492 * we may boot from, so we take the min across all
1493 * backends, and assume normal pages in cases where a
1494 * backend isn't backed by hugepages.
1495 */
1496 memdev_root = object_resolve_path("/objects", NULL);
1497 if (memdev_root) {
1498 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1499 }
1500 if (hpsize == LONG_MAX) {
1501 /* No additional memory regions found ==> Report main RAM page size */
1502 return mainrampagesize;
1503 }
1504
1505 /* If NUMA is disabled or the NUMA nodes are not backed with a
1506 * memory-backend, then there is at least one node using "normal" RAM,
1507 * so if its page size is smaller we have got to report that size instead.
1508 */
1509 if (hpsize > mainrampagesize &&
1510 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1511 static bool warned;
1512 if (!warned) {
1513 error_report("Huge page support disabled (n/a for main memory).");
1514 warned = true;
1515 }
1516 return mainrampagesize;
1517 }
1518
1519 return hpsize;
1520}
1521#else
1522long qemu_getrampagesize(void)
1523{
1524 return getpagesize();
1525}
1526#endif
1527
e1e84ba0 1528#ifdef __linux__
d6af99c9
HZ
1529static int64_t get_file_size(int fd)
1530{
1531 int64_t size = lseek(fd, 0, SEEK_END);
1532 if (size < 0) {
1533 return -errno;
1534 }
1535 return size;
1536}
1537
8d37b030
MAL
1538static int file_ram_open(const char *path,
1539 const char *region_name,
1540 bool *created,
1541 Error **errp)
c902760f
MT
1542{
1543 char *filename;
8ca761f6
PF
1544 char *sanitized_name;
1545 char *c;
5c3ece79 1546 int fd = -1;
c902760f 1547
8d37b030 1548 *created = false;
fd97fd44
MA
1549 for (;;) {
1550 fd = open(path, O_RDWR);
1551 if (fd >= 0) {
1552 /* @path names an existing file, use it */
1553 break;
8d31d6b6 1554 }
fd97fd44
MA
1555 if (errno == ENOENT) {
1556 /* @path names a file that doesn't exist, create it */
1557 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1558 if (fd >= 0) {
8d37b030 1559 *created = true;
fd97fd44
MA
1560 break;
1561 }
1562 } else if (errno == EISDIR) {
1563 /* @path names a directory, create a file there */
1564 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1565 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1566 for (c = sanitized_name; *c != '\0'; c++) {
1567 if (*c == '/') {
1568 *c = '_';
1569 }
1570 }
8ca761f6 1571
fd97fd44
MA
1572 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1573 sanitized_name);
1574 g_free(sanitized_name);
8d31d6b6 1575
fd97fd44
MA
1576 fd = mkstemp(filename);
1577 if (fd >= 0) {
1578 unlink(filename);
1579 g_free(filename);
1580 break;
1581 }
1582 g_free(filename);
8d31d6b6 1583 }
fd97fd44
MA
1584 if (errno != EEXIST && errno != EINTR) {
1585 error_setg_errno(errp, errno,
1586 "can't open backing store %s for guest RAM",
1587 path);
8d37b030 1588 return -1;
fd97fd44
MA
1589 }
1590 /*
1591 * Try again on EINTR and EEXIST. The latter happens when
1592 * something else creates the file between our two open().
1593 */
8d31d6b6 1594 }
c902760f 1595
8d37b030
MAL
1596 return fd;
1597}
1598
1599static void *file_ram_alloc(RAMBlock *block,
1600 ram_addr_t memory,
1601 int fd,
1602 bool truncate,
1603 Error **errp)
1604{
1605 void *area;
1606
863e9621 1607 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1608 block->mr->align = block->page_size;
1609#if defined(__s390x__)
1610 if (kvm_enabled()) {
1611 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1612 }
1613#endif
fd97fd44 1614
863e9621 1615 if (memory < block->page_size) {
fd97fd44 1616 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1617 "or larger than page size 0x%zx",
1618 memory, block->page_size);
8d37b030 1619 return NULL;
1775f111
HZ
1620 }
1621
863e9621 1622 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1623
1624 /*
1625 * ftruncate is not supported by hugetlbfs in older
1626 * hosts, so don't bother bailing out on errors.
1627 * If anything goes wrong with it under other filesystems,
1628 * mmap will fail.
d6af99c9
HZ
1629 *
1630 * Do not truncate the non-empty backend file to avoid corrupting
1631 * the existing data in the file. Disabling shrinking is not
1632 * enough. For example, the current vNVDIMM implementation stores
1633 * the guest NVDIMM labels at the end of the backend file. If the
1634 * backend file is later extended, QEMU will not be able to find
1635 * those labels. Therefore, extending the non-empty backend file
1636 * is disabled as well.
c902760f 1637 */
8d37b030 1638 if (truncate && ftruncate(fd, memory)) {
9742bf26 1639 perror("ftruncate");
7f56e740 1640 }
c902760f 1641
d2f39add
DD
1642 area = qemu_ram_mmap(fd, memory, block->mr->align,
1643 block->flags & RAM_SHARED);
c902760f 1644 if (area == MAP_FAILED) {
7f56e740 1645 error_setg_errno(errp, errno,
fd97fd44 1646 "unable to map backing store for guest RAM");
8d37b030 1647 return NULL;
c902760f 1648 }
ef36fa14
MT
1649
1650 if (mem_prealloc) {
1e356fc1 1651 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1652 if (errp && *errp) {
8d37b030
MAL
1653 qemu_ram_munmap(area, memory);
1654 return NULL;
056b68af 1655 }
ef36fa14
MT
1656 }
1657
04b16653 1658 block->fd = fd;
c902760f
MT
1659 return area;
1660}
1661#endif
1662
0dc3f44a 1663/* Called with the ramlist lock held. */
d17b5288 1664static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1665{
1666 RAMBlock *block, *next_block;
3e837b2c 1667 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1668
49cd9ac6
SH
1669 assert(size != 0); /* it would hand out same offset multiple times */
1670
0dc3f44a 1671 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1672 return 0;
0d53d9fe 1673 }
04b16653 1674
99e15582 1675 RAMBLOCK_FOREACH(block) {
f15fbc4b 1676 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1677
62be4e3a 1678 end = block->offset + block->max_length;
04b16653 1679
99e15582 1680 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1681 if (next_block->offset >= end) {
1682 next = MIN(next, next_block->offset);
1683 }
1684 }
1685 if (next - end >= size && next - end < mingap) {
3e837b2c 1686 offset = end;
04b16653
AW
1687 mingap = next - end;
1688 }
1689 }
3e837b2c
AW
1690
1691 if (offset == RAM_ADDR_MAX) {
1692 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1693 (uint64_t)size);
1694 abort();
1695 }
1696
04b16653
AW
1697 return offset;
1698}
1699
b8c48993 1700unsigned long last_ram_page(void)
d17b5288
AW
1701{
1702 RAMBlock *block;
1703 ram_addr_t last = 0;
1704
0dc3f44a 1705 rcu_read_lock();
99e15582 1706 RAMBLOCK_FOREACH(block) {
62be4e3a 1707 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1708 }
0dc3f44a 1709 rcu_read_unlock();
b8c48993 1710 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1711}
1712
ddb97f1d
JB
1713static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1714{
1715 int ret;
ddb97f1d
JB
1716
1717 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1718 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1719 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1720 if (ret) {
1721 perror("qemu_madvise");
1722 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1723 "but dump_guest_core=off specified\n");
1724 }
1725 }
1726}
1727
422148d3
DDAG
1728const char *qemu_ram_get_idstr(RAMBlock *rb)
1729{
1730 return rb->idstr;
1731}
1732
463a4ac2
DDAG
1733bool qemu_ram_is_shared(RAMBlock *rb)
1734{
1735 return rb->flags & RAM_SHARED;
1736}
1737
ae3a7047 1738/* Called with iothread lock held. */
fa53a0e5 1739void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1740{
fa53a0e5 1741 RAMBlock *block;
20cfe881 1742
c5705a77
AK
1743 assert(new_block);
1744 assert(!new_block->idstr[0]);
84b89d78 1745
09e5ab63
AL
1746 if (dev) {
1747 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1748 if (id) {
1749 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1750 g_free(id);
84b89d78
CM
1751 }
1752 }
1753 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1754
ab0a9956 1755 rcu_read_lock();
99e15582 1756 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1757 if (block != new_block &&
1758 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1759 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1760 new_block->idstr);
1761 abort();
1762 }
1763 }
0dc3f44a 1764 rcu_read_unlock();
c5705a77
AK
1765}
1766
ae3a7047 1767/* Called with iothread lock held. */
fa53a0e5 1768void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1769{
ae3a7047
MD
1770 /* FIXME: arch_init.c assumes that this is not called throughout
1771 * migration. Ignore the problem since hot-unplug during migration
1772 * does not work anyway.
1773 */
20cfe881
HT
1774 if (block) {
1775 memset(block->idstr, 0, sizeof(block->idstr));
1776 }
1777}
1778
863e9621
DDAG
1779size_t qemu_ram_pagesize(RAMBlock *rb)
1780{
1781 return rb->page_size;
1782}
1783
67f11b5c
DDAG
1784/* Returns the largest size of page in use */
1785size_t qemu_ram_pagesize_largest(void)
1786{
1787 RAMBlock *block;
1788 size_t largest = 0;
1789
99e15582 1790 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1791 largest = MAX(largest, qemu_ram_pagesize(block));
1792 }
1793
1794 return largest;
1795}
1796
8490fc78
LC
1797static int memory_try_enable_merging(void *addr, size_t len)
1798{
75cc7f01 1799 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1800 /* disabled by the user */
1801 return 0;
1802 }
1803
1804 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1805}
1806
62be4e3a
MT
1807/* Only legal before guest might have detected the memory size: e.g. on
1808 * incoming migration, or right after reset.
1809 *
1810 * As memory core doesn't know how is memory accessed, it is up to
1811 * resize callback to update device state and/or add assertions to detect
1812 * misuse, if necessary.
1813 */
fa53a0e5 1814int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1815{
62be4e3a
MT
1816 assert(block);
1817
4ed023ce 1818 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1819
62be4e3a
MT
1820 if (block->used_length == newsize) {
1821 return 0;
1822 }
1823
1824 if (!(block->flags & RAM_RESIZEABLE)) {
1825 error_setg_errno(errp, EINVAL,
1826 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1827 " in != 0x" RAM_ADDR_FMT, block->idstr,
1828 newsize, block->used_length);
1829 return -EINVAL;
1830 }
1831
1832 if (block->max_length < newsize) {
1833 error_setg_errno(errp, EINVAL,
1834 "Length too large: %s: 0x" RAM_ADDR_FMT
1835 " > 0x" RAM_ADDR_FMT, block->idstr,
1836 newsize, block->max_length);
1837 return -EINVAL;
1838 }
1839
1840 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1841 block->used_length = newsize;
58d2707e
PB
1842 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1843 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1844 memory_region_set_size(block->mr, newsize);
1845 if (block->resized) {
1846 block->resized(block->idstr, newsize, block->host);
1847 }
1848 return 0;
1849}
1850
5b82b703
SH
1851/* Called with ram_list.mutex held */
1852static void dirty_memory_extend(ram_addr_t old_ram_size,
1853 ram_addr_t new_ram_size)
1854{
1855 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1856 DIRTY_MEMORY_BLOCK_SIZE);
1857 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1858 DIRTY_MEMORY_BLOCK_SIZE);
1859 int i;
1860
1861 /* Only need to extend if block count increased */
1862 if (new_num_blocks <= old_num_blocks) {
1863 return;
1864 }
1865
1866 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1867 DirtyMemoryBlocks *old_blocks;
1868 DirtyMemoryBlocks *new_blocks;
1869 int j;
1870
1871 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1872 new_blocks = g_malloc(sizeof(*new_blocks) +
1873 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1874
1875 if (old_num_blocks) {
1876 memcpy(new_blocks->blocks, old_blocks->blocks,
1877 old_num_blocks * sizeof(old_blocks->blocks[0]));
1878 }
1879
1880 for (j = old_num_blocks; j < new_num_blocks; j++) {
1881 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1882 }
1883
1884 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1885
1886 if (old_blocks) {
1887 g_free_rcu(old_blocks, rcu);
1888 }
1889 }
1890}
1891
528f46af 1892static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1893{
e1c57ab8 1894 RAMBlock *block;
0d53d9fe 1895 RAMBlock *last_block = NULL;
2152f5ca 1896 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1897 Error *err = NULL;
2152f5ca 1898
b8c48993 1899 old_ram_size = last_ram_page();
c5705a77 1900
b2a8658e 1901 qemu_mutex_lock_ramlist();
9b8424d5 1902 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1903
1904 if (!new_block->host) {
1905 if (xen_enabled()) {
9b8424d5 1906 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1907 new_block->mr, &err);
1908 if (err) {
1909 error_propagate(errp, err);
1910 qemu_mutex_unlock_ramlist();
39c350ee 1911 return;
37aa7a0e 1912 }
e1c57ab8 1913 } else {
9b8424d5 1914 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1915 &new_block->mr->align);
39228250 1916 if (!new_block->host) {
ef701d7b
HT
1917 error_setg_errno(errp, errno,
1918 "cannot set up guest memory '%s'",
1919 memory_region_name(new_block->mr));
1920 qemu_mutex_unlock_ramlist();
39c350ee 1921 return;
39228250 1922 }
9b8424d5 1923 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1924 }
c902760f 1925 }
94a6b54f 1926
dd631697
LZ
1927 new_ram_size = MAX(old_ram_size,
1928 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1929 if (new_ram_size > old_ram_size) {
5b82b703 1930 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1931 }
0d53d9fe
MD
1932 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1933 * QLIST (which has an RCU-friendly variant) does not have insertion at
1934 * tail, so save the last element in last_block.
1935 */
99e15582 1936 RAMBLOCK_FOREACH(block) {
0d53d9fe 1937 last_block = block;
9b8424d5 1938 if (block->max_length < new_block->max_length) {
abb26d63
PB
1939 break;
1940 }
1941 }
1942 if (block) {
0dc3f44a 1943 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1944 } else if (last_block) {
0dc3f44a 1945 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1946 } else { /* list is empty */
0dc3f44a 1947 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1948 }
0d6d3c87 1949 ram_list.mru_block = NULL;
94a6b54f 1950
0dc3f44a
MD
1951 /* Write list before version */
1952 smp_wmb();
f798b07f 1953 ram_list.version++;
b2a8658e 1954 qemu_mutex_unlock_ramlist();
f798b07f 1955
9b8424d5 1956 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1957 new_block->used_length,
1958 DIRTY_CLIENTS_ALL);
94a6b54f 1959
a904c911
PB
1960 if (new_block->host) {
1961 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1962 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1963 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1964 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1965 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1966 }
94a6b54f 1967}
e9a1ab19 1968
0b183fc8 1969#ifdef __linux__
38b3362d
MAL
1970RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1971 bool share, int fd,
1972 Error **errp)
e1c57ab8
PB
1973{
1974 RAMBlock *new_block;
ef701d7b 1975 Error *local_err = NULL;
8d37b030 1976 int64_t file_size;
e1c57ab8
PB
1977
1978 if (xen_enabled()) {
7f56e740 1979 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1980 return NULL;
e1c57ab8
PB
1981 }
1982
e45e7ae2
MAL
1983 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1984 error_setg(errp,
1985 "host lacks kvm mmu notifiers, -mem-path unsupported");
1986 return NULL;
1987 }
1988
e1c57ab8
PB
1989 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1990 /*
1991 * file_ram_alloc() needs to allocate just like
1992 * phys_mem_alloc, but we haven't bothered to provide
1993 * a hook there.
1994 */
7f56e740
PB
1995 error_setg(errp,
1996 "-mem-path not supported with this accelerator");
528f46af 1997 return NULL;
e1c57ab8
PB
1998 }
1999
4ed023ce 2000 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2001 file_size = get_file_size(fd);
2002 if (file_size > 0 && file_size < size) {
2003 error_setg(errp, "backing store %s size 0x%" PRIx64
2004 " does not match 'size' option 0x" RAM_ADDR_FMT,
2005 mem_path, file_size, size);
8d37b030
MAL
2006 return NULL;
2007 }
2008
e1c57ab8
PB
2009 new_block = g_malloc0(sizeof(*new_block));
2010 new_block->mr = mr;
9b8424d5
MT
2011 new_block->used_length = size;
2012 new_block->max_length = size;
dbcb8981 2013 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2014 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2015 if (!new_block->host) {
2016 g_free(new_block);
528f46af 2017 return NULL;
7f56e740
PB
2018 }
2019
528f46af 2020 ram_block_add(new_block, &local_err);
ef701d7b
HT
2021 if (local_err) {
2022 g_free(new_block);
2023 error_propagate(errp, local_err);
528f46af 2024 return NULL;
ef701d7b 2025 }
528f46af 2026 return new_block;
38b3362d
MAL
2027
2028}
2029
2030
2031RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2032 bool share, const char *mem_path,
2033 Error **errp)
2034{
2035 int fd;
2036 bool created;
2037 RAMBlock *block;
2038
2039 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2040 if (fd < 0) {
2041 return NULL;
2042 }
2043
2044 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2045 if (!block) {
2046 if (created) {
2047 unlink(mem_path);
2048 }
2049 close(fd);
2050 return NULL;
2051 }
2052
2053 return block;
e1c57ab8 2054}
0b183fc8 2055#endif
e1c57ab8 2056
62be4e3a 2057static
528f46af
FZ
2058RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2059 void (*resized)(const char*,
2060 uint64_t length,
2061 void *host),
2062 void *host, bool resizeable,
2063 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2064{
2065 RAMBlock *new_block;
ef701d7b 2066 Error *local_err = NULL;
e1c57ab8 2067
4ed023ce
DDAG
2068 size = HOST_PAGE_ALIGN(size);
2069 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2070 new_block = g_malloc0(sizeof(*new_block));
2071 new_block->mr = mr;
62be4e3a 2072 new_block->resized = resized;
9b8424d5
MT
2073 new_block->used_length = size;
2074 new_block->max_length = max_size;
62be4e3a 2075 assert(max_size >= size);
e1c57ab8 2076 new_block->fd = -1;
863e9621 2077 new_block->page_size = getpagesize();
e1c57ab8
PB
2078 new_block->host = host;
2079 if (host) {
7bd4f430 2080 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2081 }
62be4e3a
MT
2082 if (resizeable) {
2083 new_block->flags |= RAM_RESIZEABLE;
2084 }
528f46af 2085 ram_block_add(new_block, &local_err);
ef701d7b
HT
2086 if (local_err) {
2087 g_free(new_block);
2088 error_propagate(errp, local_err);
528f46af 2089 return NULL;
ef701d7b 2090 }
528f46af 2091 return new_block;
e1c57ab8
PB
2092}
2093
528f46af 2094RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2095 MemoryRegion *mr, Error **errp)
2096{
2097 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2098}
2099
528f46af 2100RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2101{
62be4e3a
MT
2102 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2103}
2104
528f46af 2105RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2106 void (*resized)(const char*,
2107 uint64_t length,
2108 void *host),
2109 MemoryRegion *mr, Error **errp)
2110{
2111 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2112}
2113
43771539
PB
2114static void reclaim_ramblock(RAMBlock *block)
2115{
2116 if (block->flags & RAM_PREALLOC) {
2117 ;
2118 } else if (xen_enabled()) {
2119 xen_invalidate_map_cache_entry(block->host);
2120#ifndef _WIN32
2121 } else if (block->fd >= 0) {
2f3a2bb1 2122 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2123 close(block->fd);
2124#endif
2125 } else {
2126 qemu_anon_ram_free(block->host, block->max_length);
2127 }
2128 g_free(block);
2129}
2130
f1060c55 2131void qemu_ram_free(RAMBlock *block)
e9a1ab19 2132{
85bc2a15
MAL
2133 if (!block) {
2134 return;
2135 }
2136
0987d735
PB
2137 if (block->host) {
2138 ram_block_notify_remove(block->host, block->max_length);
2139 }
2140
b2a8658e 2141 qemu_mutex_lock_ramlist();
f1060c55
FZ
2142 QLIST_REMOVE_RCU(block, next);
2143 ram_list.mru_block = NULL;
2144 /* Write list before version */
2145 smp_wmb();
2146 ram_list.version++;
2147 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2148 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2149}
2150
cd19cfa2
HY
2151#ifndef _WIN32
2152void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2153{
2154 RAMBlock *block;
2155 ram_addr_t offset;
2156 int flags;
2157 void *area, *vaddr;
2158
99e15582 2159 RAMBLOCK_FOREACH(block) {
cd19cfa2 2160 offset = addr - block->offset;
9b8424d5 2161 if (offset < block->max_length) {
1240be24 2162 vaddr = ramblock_ptr(block, offset);
7bd4f430 2163 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2164 ;
dfeaf2ab
MA
2165 } else if (xen_enabled()) {
2166 abort();
cd19cfa2
HY
2167 } else {
2168 flags = MAP_FIXED;
3435f395 2169 if (block->fd >= 0) {
dbcb8981
PB
2170 flags |= (block->flags & RAM_SHARED ?
2171 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2172 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2173 flags, block->fd, offset);
cd19cfa2 2174 } else {
2eb9fbaa
MA
2175 /*
2176 * Remap needs to match alloc. Accelerators that
2177 * set phys_mem_alloc never remap. If they did,
2178 * we'd need a remap hook here.
2179 */
2180 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2181
cd19cfa2
HY
2182 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2183 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2184 flags, -1, 0);
cd19cfa2
HY
2185 }
2186 if (area != vaddr) {
f15fbc4b
AP
2187 fprintf(stderr, "Could not remap addr: "
2188 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2189 length, addr);
2190 exit(1);
2191 }
8490fc78 2192 memory_try_enable_merging(vaddr, length);
ddb97f1d 2193 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2194 }
cd19cfa2
HY
2195 }
2196 }
2197}
2198#endif /* !_WIN32 */
2199
1b5ec234 2200/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2201 * This should not be used for general purpose DMA. Use address_space_map
2202 * or address_space_rw instead. For local memory (e.g. video ram) that the
2203 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2204 *
49b24afc 2205 * Called within RCU critical section.
1b5ec234 2206 */
0878d0e1 2207void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2208{
3655cb9c
GA
2209 RAMBlock *block = ram_block;
2210
2211 if (block == NULL) {
2212 block = qemu_get_ram_block(addr);
0878d0e1 2213 addr -= block->offset;
3655cb9c 2214 }
ae3a7047
MD
2215
2216 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2217 /* We need to check if the requested address is in the RAM
2218 * because we don't want to map the entire memory in QEMU.
2219 * In that case just map until the end of the page.
2220 */
2221 if (block->offset == 0) {
1ff7c598 2222 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2223 }
ae3a7047 2224
1ff7c598 2225 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2226 }
0878d0e1 2227 return ramblock_ptr(block, addr);
dc828ca1
PB
2228}
2229
0878d0e1 2230/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2231 * but takes a size argument.
0dc3f44a 2232 *
e81bcda5 2233 * Called within RCU critical section.
ae3a7047 2234 */
3655cb9c 2235static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2236 hwaddr *size, bool lock)
38bee5dc 2237{
3655cb9c 2238 RAMBlock *block = ram_block;
8ab934f9
SS
2239 if (*size == 0) {
2240 return NULL;
2241 }
e81bcda5 2242
3655cb9c
GA
2243 if (block == NULL) {
2244 block = qemu_get_ram_block(addr);
0878d0e1 2245 addr -= block->offset;
3655cb9c 2246 }
0878d0e1 2247 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2248
2249 if (xen_enabled() && block->host == NULL) {
2250 /* We need to check if the requested address is in the RAM
2251 * because we don't want to map the entire memory in QEMU.
2252 * In that case just map the requested area.
2253 */
2254 if (block->offset == 0) {
f5aa69bd 2255 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2256 }
2257
f5aa69bd 2258 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2259 }
e81bcda5 2260
0878d0e1 2261 return ramblock_ptr(block, addr);
38bee5dc
SS
2262}
2263
422148d3
DDAG
2264/*
2265 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2266 * in that RAMBlock.
2267 *
2268 * ptr: Host pointer to look up
2269 * round_offset: If true round the result offset down to a page boundary
2270 * *ram_addr: set to result ram_addr
2271 * *offset: set to result offset within the RAMBlock
2272 *
2273 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2274 *
2275 * By the time this function returns, the returned pointer is not protected
2276 * by RCU anymore. If the caller is not within an RCU critical section and
2277 * does not hold the iothread lock, it must have other means of protecting the
2278 * pointer, such as a reference to the region that includes the incoming
2279 * ram_addr_t.
2280 */
422148d3 2281RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2282 ram_addr_t *offset)
5579c7f3 2283{
94a6b54f
PB
2284 RAMBlock *block;
2285 uint8_t *host = ptr;
2286
868bb33f 2287 if (xen_enabled()) {
f615f396 2288 ram_addr_t ram_addr;
0dc3f44a 2289 rcu_read_lock();
f615f396
PB
2290 ram_addr = xen_ram_addr_from_mapcache(ptr);
2291 block = qemu_get_ram_block(ram_addr);
422148d3 2292 if (block) {
d6b6aec4 2293 *offset = ram_addr - block->offset;
422148d3 2294 }
0dc3f44a 2295 rcu_read_unlock();
422148d3 2296 return block;
712c2b41
SS
2297 }
2298
0dc3f44a
MD
2299 rcu_read_lock();
2300 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2301 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2302 goto found;
2303 }
2304
99e15582 2305 RAMBLOCK_FOREACH(block) {
432d268c
JN
2306 /* This case append when the block is not mapped. */
2307 if (block->host == NULL) {
2308 continue;
2309 }
9b8424d5 2310 if (host - block->host < block->max_length) {
23887b79 2311 goto found;
f471a17e 2312 }
94a6b54f 2313 }
432d268c 2314
0dc3f44a 2315 rcu_read_unlock();
1b5ec234 2316 return NULL;
23887b79
PB
2317
2318found:
422148d3
DDAG
2319 *offset = (host - block->host);
2320 if (round_offset) {
2321 *offset &= TARGET_PAGE_MASK;
2322 }
0dc3f44a 2323 rcu_read_unlock();
422148d3
DDAG
2324 return block;
2325}
2326
e3dd7493
DDAG
2327/*
2328 * Finds the named RAMBlock
2329 *
2330 * name: The name of RAMBlock to find
2331 *
2332 * Returns: RAMBlock (or NULL if not found)
2333 */
2334RAMBlock *qemu_ram_block_by_name(const char *name)
2335{
2336 RAMBlock *block;
2337
99e15582 2338 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2339 if (!strcmp(name, block->idstr)) {
2340 return block;
2341 }
2342 }
2343
2344 return NULL;
2345}
2346
422148d3
DDAG
2347/* Some of the softmmu routines need to translate from a host pointer
2348 (typically a TLB entry) back to a ram offset. */
07bdaa41 2349ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2350{
2351 RAMBlock *block;
f615f396 2352 ram_addr_t offset;
422148d3 2353
f615f396 2354 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2355 if (!block) {
07bdaa41 2356 return RAM_ADDR_INVALID;
422148d3
DDAG
2357 }
2358
07bdaa41 2359 return block->offset + offset;
e890261f 2360}
f471a17e 2361
49b24afc 2362/* Called within RCU critical section. */
a8170e5e 2363static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2364 uint64_t val, unsigned size)
9fa3e853 2365{
ba051fb5
AB
2366 bool locked = false;
2367
5aa1ef71 2368 assert(tcg_enabled());
52159192 2369 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2370 locked = true;
2371 tb_lock();
0e0df1e2 2372 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2373 }
0e0df1e2
AK
2374 switch (size) {
2375 case 1:
0878d0e1 2376 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2377 break;
2378 case 2:
0878d0e1 2379 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2380 break;
2381 case 4:
0878d0e1 2382 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2383 break;
ad52878f
AB
2384 case 8:
2385 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2386 break;
0e0df1e2
AK
2387 default:
2388 abort();
3a7d929e 2389 }
ba051fb5
AB
2390
2391 if (locked) {
2392 tb_unlock();
2393 }
2394
58d2707e
PB
2395 /* Set both VGA and migration bits for simplicity and to remove
2396 * the notdirty callback faster.
2397 */
2398 cpu_physical_memory_set_dirty_range(ram_addr, size,
2399 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2400 /* we remove the notdirty callback only if the code has been
2401 flushed */
a2cd8c85 2402 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2403 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2404 }
9fa3e853
FB
2405}
2406
b018ddf6
PB
2407static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2408 unsigned size, bool is_write)
2409{
2410 return is_write;
2411}
2412
0e0df1e2 2413static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2414 .write = notdirty_mem_write,
b018ddf6 2415 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2416 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2417 .valid = {
2418 .min_access_size = 1,
2419 .max_access_size = 8,
2420 .unaligned = false,
2421 },
2422 .impl = {
2423 .min_access_size = 1,
2424 .max_access_size = 8,
2425 .unaligned = false,
2426 },
1ccde1cb
FB
2427};
2428
0f459d16 2429/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2430static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2431{
93afeade 2432 CPUState *cpu = current_cpu;
568496c0 2433 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2434 CPUArchState *env = cpu->env_ptr;
06d55cc1 2435 target_ulong pc, cs_base;
0f459d16 2436 target_ulong vaddr;
a1d1bb31 2437 CPUWatchpoint *wp;
89fee74a 2438 uint32_t cpu_flags;
0f459d16 2439
5aa1ef71 2440 assert(tcg_enabled());
ff4700b0 2441 if (cpu->watchpoint_hit) {
06d55cc1
AL
2442 /* We re-entered the check after replacing the TB. Now raise
2443 * the debug interrupt so that is will trigger after the
2444 * current instruction. */
93afeade 2445 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2446 return;
2447 }
93afeade 2448 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2449 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2450 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2451 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2452 && (wp->flags & flags)) {
08225676
PM
2453 if (flags == BP_MEM_READ) {
2454 wp->flags |= BP_WATCHPOINT_HIT_READ;
2455 } else {
2456 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2457 }
2458 wp->hitaddr = vaddr;
66b9b43c 2459 wp->hitattrs = attrs;
ff4700b0 2460 if (!cpu->watchpoint_hit) {
568496c0
SF
2461 if (wp->flags & BP_CPU &&
2462 !cc->debug_check_watchpoint(cpu, wp)) {
2463 wp->flags &= ~BP_WATCHPOINT_HIT;
2464 continue;
2465 }
ff4700b0 2466 cpu->watchpoint_hit = wp;
a5e99826 2467
8d04fb55
JK
2468 /* Both tb_lock and iothread_mutex will be reset when
2469 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2470 * back into the cpu_exec main loop.
a5e99826
FK
2471 */
2472 tb_lock();
239c51a5 2473 tb_check_watchpoint(cpu);
6e140f28 2474 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2475 cpu->exception_index = EXCP_DEBUG;
5638d180 2476 cpu_loop_exit(cpu);
6e140f28
AL
2477 } else {
2478 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
4e2ca83e 2479 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1 | curr_cflags());
6886b980 2480 cpu_loop_exit_noexc(cpu);
6e140f28 2481 }
06d55cc1 2482 }
6e140f28
AL
2483 } else {
2484 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2485 }
2486 }
2487}
2488
6658ffb8
PB
2489/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2490 so these check for a hit then pass through to the normal out-of-line
2491 phys routines. */
66b9b43c
PM
2492static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2493 unsigned size, MemTxAttrs attrs)
6658ffb8 2494{
66b9b43c
PM
2495 MemTxResult res;
2496 uint64_t data;
79ed0416
PM
2497 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2498 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2499
2500 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2501 switch (size) {
66b9b43c 2502 case 1:
79ed0416 2503 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2504 break;
2505 case 2:
79ed0416 2506 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2507 break;
2508 case 4:
79ed0416 2509 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2510 break;
306526b5
PB
2511 case 8:
2512 data = address_space_ldq(as, addr, attrs, &res);
2513 break;
1ec9b909
AK
2514 default: abort();
2515 }
66b9b43c
PM
2516 *pdata = data;
2517 return res;
6658ffb8
PB
2518}
2519
66b9b43c
PM
2520static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2521 uint64_t val, unsigned size,
2522 MemTxAttrs attrs)
6658ffb8 2523{
66b9b43c 2524 MemTxResult res;
79ed0416
PM
2525 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2526 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2527
2528 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2529 switch (size) {
67364150 2530 case 1:
79ed0416 2531 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2532 break;
2533 case 2:
79ed0416 2534 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2535 break;
2536 case 4:
79ed0416 2537 address_space_stl(as, addr, val, attrs, &res);
67364150 2538 break;
306526b5
PB
2539 case 8:
2540 address_space_stq(as, addr, val, attrs, &res);
2541 break;
1ec9b909
AK
2542 default: abort();
2543 }
66b9b43c 2544 return res;
6658ffb8
PB
2545}
2546
1ec9b909 2547static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2548 .read_with_attrs = watch_mem_read,
2549 .write_with_attrs = watch_mem_write,
1ec9b909 2550 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2551 .valid = {
2552 .min_access_size = 1,
2553 .max_access_size = 8,
2554 .unaligned = false,
2555 },
2556 .impl = {
2557 .min_access_size = 1,
2558 .max_access_size = 8,
2559 .unaligned = false,
2560 },
6658ffb8 2561};
6658ffb8 2562
16620684
AK
2563static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2564 const uint8_t *buf, int len);
2565static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2566 bool is_write);
2567
f25a49e0
PM
2568static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2569 unsigned len, MemTxAttrs attrs)
db7b5426 2570{
acc9d80b 2571 subpage_t *subpage = opaque;
ff6cff75 2572 uint8_t buf[8];
5c9eb028 2573 MemTxResult res;
791af8c8 2574
db7b5426 2575#if defined(DEBUG_SUBPAGE)
016e9d62 2576 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2577 subpage, len, addr);
db7b5426 2578#endif
16620684 2579 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2580 if (res) {
2581 return res;
f25a49e0 2582 }
acc9d80b
JK
2583 switch (len) {
2584 case 1:
f25a49e0
PM
2585 *data = ldub_p(buf);
2586 return MEMTX_OK;
acc9d80b 2587 case 2:
f25a49e0
PM
2588 *data = lduw_p(buf);
2589 return MEMTX_OK;
acc9d80b 2590 case 4:
f25a49e0
PM
2591 *data = ldl_p(buf);
2592 return MEMTX_OK;
ff6cff75 2593 case 8:
f25a49e0
PM
2594 *data = ldq_p(buf);
2595 return MEMTX_OK;
acc9d80b
JK
2596 default:
2597 abort();
2598 }
db7b5426
BS
2599}
2600
f25a49e0
PM
2601static MemTxResult subpage_write(void *opaque, hwaddr addr,
2602 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2603{
acc9d80b 2604 subpage_t *subpage = opaque;
ff6cff75 2605 uint8_t buf[8];
acc9d80b 2606
db7b5426 2607#if defined(DEBUG_SUBPAGE)
016e9d62 2608 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2609 " value %"PRIx64"\n",
2610 __func__, subpage, len, addr, value);
db7b5426 2611#endif
acc9d80b
JK
2612 switch (len) {
2613 case 1:
2614 stb_p(buf, value);
2615 break;
2616 case 2:
2617 stw_p(buf, value);
2618 break;
2619 case 4:
2620 stl_p(buf, value);
2621 break;
ff6cff75
PB
2622 case 8:
2623 stq_p(buf, value);
2624 break;
acc9d80b
JK
2625 default:
2626 abort();
2627 }
16620684 2628 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2629}
2630
c353e4cc 2631static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2632 unsigned len, bool is_write)
c353e4cc 2633{
acc9d80b 2634 subpage_t *subpage = opaque;
c353e4cc 2635#if defined(DEBUG_SUBPAGE)
016e9d62 2636 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2637 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2638#endif
2639
16620684
AK
2640 return flatview_access_valid(subpage->fv, addr + subpage->base,
2641 len, is_write);
c353e4cc
PB
2642}
2643
70c68e44 2644static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2645 .read_with_attrs = subpage_read,
2646 .write_with_attrs = subpage_write,
ff6cff75
PB
2647 .impl.min_access_size = 1,
2648 .impl.max_access_size = 8,
2649 .valid.min_access_size = 1,
2650 .valid.max_access_size = 8,
c353e4cc 2651 .valid.accepts = subpage_accepts,
70c68e44 2652 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2653};
2654
c227f099 2655static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2656 uint16_t section)
db7b5426
BS
2657{
2658 int idx, eidx;
2659
2660 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2661 return -1;
2662 idx = SUBPAGE_IDX(start);
2663 eidx = SUBPAGE_IDX(end);
2664#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2665 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2666 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2667#endif
db7b5426 2668 for (; idx <= eidx; idx++) {
5312bd8b 2669 mmio->sub_section[idx] = section;
db7b5426
BS
2670 }
2671
2672 return 0;
2673}
2674
16620684 2675static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2676{
c227f099 2677 subpage_t *mmio;
db7b5426 2678
2615fabd 2679 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2680 mmio->fv = fv;
1eec614b 2681 mmio->base = base;
2c9b15ca 2682 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2683 NULL, TARGET_PAGE_SIZE);
b3b00c78 2684 mmio->iomem.subpage = true;
db7b5426 2685#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2686 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2687 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2688#endif
b41aac4f 2689 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2690
2691 return mmio;
2692}
2693
16620684 2694static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2695{
16620684 2696 assert(fv);
5312bd8b 2697 MemoryRegionSection section = {
16620684 2698 .fv = fv,
5312bd8b
AK
2699 .mr = mr,
2700 .offset_within_address_space = 0,
2701 .offset_within_region = 0,
052e87b0 2702 .size = int128_2_64(),
5312bd8b
AK
2703 };
2704
53cb28cb 2705 return phys_section_add(map, &section);
5312bd8b
AK
2706}
2707
a54c87b6 2708MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2709{
a54c87b6
PM
2710 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2711 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2712 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2713 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2714
2715 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2716}
2717
e9179ce1
AK
2718static void io_mem_init(void)
2719{
1f6245e5 2720 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2721 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2722 NULL, UINT64_MAX);
8d04fb55
JK
2723
2724 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2725 * which can be called without the iothread mutex.
2726 */
2c9b15ca 2727 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2728 NULL, UINT64_MAX);
8d04fb55
JK
2729 memory_region_clear_global_locking(&io_mem_notdirty);
2730
2c9b15ca 2731 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2732 NULL, UINT64_MAX);
e9179ce1
AK
2733}
2734
8629d3fc 2735AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2736{
53cb28cb
MA
2737 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2738 uint16_t n;
2739
16620684 2740 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2741 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2742 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2743 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2744 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2745 assert(n == PHYS_SECTION_ROM);
16620684 2746 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2747 assert(n == PHYS_SECTION_WATCH);
00752703 2748
9736e55b 2749 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2750
2751 return d;
00752703
PB
2752}
2753
66a6df1d 2754void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2755{
2756 phys_sections_free(&d->map);
2757 g_free(d);
2758}
2759
1d71148e 2760static void tcg_commit(MemoryListener *listener)
50c1e149 2761{
32857f4d
PM
2762 CPUAddressSpace *cpuas;
2763 AddressSpaceDispatch *d;
117712c3
AK
2764
2765 /* since each CPU stores ram addresses in its TLB cache, we must
2766 reset the modified entries */
32857f4d
PM
2767 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2768 cpu_reloading_memory_map();
2769 /* The CPU and TLB are protected by the iothread lock.
2770 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2771 * may have split the RCU critical section.
2772 */
66a6df1d 2773 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2774 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2775 tlb_flush(cpuas->cpu);
50c1e149
AK
2776}
2777
62152b8a
AK
2778static void memory_map_init(void)
2779{
7267c094 2780 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2781
57271d63 2782 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2783 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2784
7267c094 2785 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2786 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2787 65536);
7dca8043 2788 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2789}
2790
2791MemoryRegion *get_system_memory(void)
2792{
2793 return system_memory;
2794}
2795
309cb471
AK
2796MemoryRegion *get_system_io(void)
2797{
2798 return system_io;
2799}
2800
e2eef170
PB
2801#endif /* !defined(CONFIG_USER_ONLY) */
2802
13eb76e0
FB
2803/* physical memory access (slow version, mainly for debug) */
2804#if defined(CONFIG_USER_ONLY)
f17ec444 2805int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2806 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2807{
2808 int l, flags;
2809 target_ulong page;
53a5960a 2810 void * p;
13eb76e0
FB
2811
2812 while (len > 0) {
2813 page = addr & TARGET_PAGE_MASK;
2814 l = (page + TARGET_PAGE_SIZE) - addr;
2815 if (l > len)
2816 l = len;
2817 flags = page_get_flags(page);
2818 if (!(flags & PAGE_VALID))
a68fe89c 2819 return -1;
13eb76e0
FB
2820 if (is_write) {
2821 if (!(flags & PAGE_WRITE))
a68fe89c 2822 return -1;
579a97f7 2823 /* XXX: this code should not depend on lock_user */
72fb7daa 2824 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2825 return -1;
72fb7daa
AJ
2826 memcpy(p, buf, l);
2827 unlock_user(p, addr, l);
13eb76e0
FB
2828 } else {
2829 if (!(flags & PAGE_READ))
a68fe89c 2830 return -1;
579a97f7 2831 /* XXX: this code should not depend on lock_user */
72fb7daa 2832 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2833 return -1;
72fb7daa 2834 memcpy(buf, p, l);
5b257578 2835 unlock_user(p, addr, 0);
13eb76e0
FB
2836 }
2837 len -= l;
2838 buf += l;
2839 addr += l;
2840 }
a68fe89c 2841 return 0;
13eb76e0 2842}
8df1cd07 2843
13eb76e0 2844#else
51d7a9eb 2845
845b6214 2846static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2847 hwaddr length)
51d7a9eb 2848{
e87f7778 2849 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2850 addr += memory_region_get_ram_addr(mr);
2851
e87f7778
PB
2852 /* No early return if dirty_log_mask is or becomes 0, because
2853 * cpu_physical_memory_set_dirty_range will still call
2854 * xen_modified_memory.
2855 */
2856 if (dirty_log_mask) {
2857 dirty_log_mask =
2858 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2859 }
2860 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2861 assert(tcg_enabled());
ba051fb5 2862 tb_lock();
e87f7778 2863 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2864 tb_unlock();
e87f7778 2865 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2866 }
e87f7778 2867 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2868}
2869
23326164 2870static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2871{
e1622f4b 2872 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2873
2874 /* Regions are assumed to support 1-4 byte accesses unless
2875 otherwise specified. */
23326164
RH
2876 if (access_size_max == 0) {
2877 access_size_max = 4;
2878 }
2879
2880 /* Bound the maximum access by the alignment of the address. */
2881 if (!mr->ops->impl.unaligned) {
2882 unsigned align_size_max = addr & -addr;
2883 if (align_size_max != 0 && align_size_max < access_size_max) {
2884 access_size_max = align_size_max;
2885 }
82f2563f 2886 }
23326164
RH
2887
2888 /* Don't attempt accesses larger than the maximum. */
2889 if (l > access_size_max) {
2890 l = access_size_max;
82f2563f 2891 }
6554f5c0 2892 l = pow2floor(l);
23326164
RH
2893
2894 return l;
82f2563f
PB
2895}
2896
4840f10e 2897static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2898{
4840f10e
JK
2899 bool unlocked = !qemu_mutex_iothread_locked();
2900 bool release_lock = false;
2901
2902 if (unlocked && mr->global_locking) {
2903 qemu_mutex_lock_iothread();
2904 unlocked = false;
2905 release_lock = true;
2906 }
125b3806 2907 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2908 if (unlocked) {
2909 qemu_mutex_lock_iothread();
2910 }
125b3806 2911 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2912 if (unlocked) {
2913 qemu_mutex_unlock_iothread();
2914 }
125b3806 2915 }
4840f10e
JK
2916
2917 return release_lock;
125b3806
PB
2918}
2919
a203ac70 2920/* Called within RCU critical section. */
16620684
AK
2921static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2922 MemTxAttrs attrs,
2923 const uint8_t *buf,
2924 int len, hwaddr addr1,
2925 hwaddr l, MemoryRegion *mr)
13eb76e0 2926{
13eb76e0 2927 uint8_t *ptr;
791af8c8 2928 uint64_t val;
3b643495 2929 MemTxResult result = MEMTX_OK;
4840f10e 2930 bool release_lock = false;
3b46e624 2931
a203ac70 2932 for (;;) {
eb7eeb88
PB
2933 if (!memory_access_is_direct(mr, true)) {
2934 release_lock |= prepare_mmio_access(mr);
2935 l = memory_access_size(mr, l, addr1);
2936 /* XXX: could force current_cpu to NULL to avoid
2937 potential bugs */
2938 switch (l) {
2939 case 8:
2940 /* 64 bit write access */
2941 val = ldq_p(buf);
2942 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2943 attrs);
2944 break;
2945 case 4:
2946 /* 32 bit write access */
6da67de6 2947 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2948 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2949 attrs);
2950 break;
2951 case 2:
2952 /* 16 bit write access */
2953 val = lduw_p(buf);
2954 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2955 attrs);
2956 break;
2957 case 1:
2958 /* 8 bit write access */
2959 val = ldub_p(buf);
2960 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2961 attrs);
2962 break;
2963 default:
2964 abort();
13eb76e0
FB
2965 }
2966 } else {
eb7eeb88 2967 /* RAM case */
f5aa69bd 2968 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
2969 memcpy(ptr, buf, l);
2970 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2971 }
4840f10e
JK
2972
2973 if (release_lock) {
2974 qemu_mutex_unlock_iothread();
2975 release_lock = false;
2976 }
2977
13eb76e0
FB
2978 len -= l;
2979 buf += l;
2980 addr += l;
a203ac70
PB
2981
2982 if (!len) {
2983 break;
2984 }
2985
2986 l = len;
16620684 2987 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 2988 }
fd8aaa76 2989
3b643495 2990 return result;
13eb76e0 2991}
8df1cd07 2992
16620684
AK
2993static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2994 const uint8_t *buf, int len)
ac1970fb 2995{
eb7eeb88 2996 hwaddr l;
eb7eeb88
PB
2997 hwaddr addr1;
2998 MemoryRegion *mr;
2999 MemTxResult result = MEMTX_OK;
eb7eeb88 3000
a203ac70
PB
3001 if (len > 0) {
3002 rcu_read_lock();
eb7eeb88 3003 l = len;
16620684
AK
3004 mr = flatview_translate(fv, addr, &addr1, &l, true);
3005 result = flatview_write_continue(fv, addr, attrs, buf, len,
3006 addr1, l, mr);
a203ac70
PB
3007 rcu_read_unlock();
3008 }
3009
3010 return result;
3011}
3012
16620684
AK
3013MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3014 MemTxAttrs attrs,
3015 const uint8_t *buf, int len)
3016{
3017 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3018}
3019
a203ac70 3020/* Called within RCU critical section. */
16620684
AK
3021MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3022 MemTxAttrs attrs, uint8_t *buf,
3023 int len, hwaddr addr1, hwaddr l,
3024 MemoryRegion *mr)
a203ac70
PB
3025{
3026 uint8_t *ptr;
3027 uint64_t val;
3028 MemTxResult result = MEMTX_OK;
3029 bool release_lock = false;
eb7eeb88 3030
a203ac70 3031 for (;;) {
eb7eeb88
PB
3032 if (!memory_access_is_direct(mr, false)) {
3033 /* I/O case */
3034 release_lock |= prepare_mmio_access(mr);
3035 l = memory_access_size(mr, l, addr1);
3036 switch (l) {
3037 case 8:
3038 /* 64 bit read access */
3039 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3040 attrs);
3041 stq_p(buf, val);
3042 break;
3043 case 4:
3044 /* 32 bit read access */
3045 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3046 attrs);
3047 stl_p(buf, val);
3048 break;
3049 case 2:
3050 /* 16 bit read access */
3051 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3052 attrs);
3053 stw_p(buf, val);
3054 break;
3055 case 1:
3056 /* 8 bit read access */
3057 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3058 attrs);
3059 stb_p(buf, val);
3060 break;
3061 default:
3062 abort();
3063 }
3064 } else {
3065 /* RAM case */
f5aa69bd 3066 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3067 memcpy(buf, ptr, l);
3068 }
3069
3070 if (release_lock) {
3071 qemu_mutex_unlock_iothread();
3072 release_lock = false;
3073 }
3074
3075 len -= l;
3076 buf += l;
3077 addr += l;
a203ac70
PB
3078
3079 if (!len) {
3080 break;
3081 }
3082
3083 l = len;
16620684 3084 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3085 }
3086
3087 return result;
3088}
3089
16620684
AK
3090MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3091 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3092{
3093 hwaddr l;
3094 hwaddr addr1;
3095 MemoryRegion *mr;
3096 MemTxResult result = MEMTX_OK;
3097
3098 if (len > 0) {
3099 rcu_read_lock();
3100 l = len;
16620684
AK
3101 mr = flatview_translate(fv, addr, &addr1, &l, false);
3102 result = flatview_read_continue(fv, addr, attrs, buf, len,
3103 addr1, l, mr);
a203ac70 3104 rcu_read_unlock();
eb7eeb88 3105 }
eb7eeb88
PB
3106
3107 return result;
ac1970fb
AK
3108}
3109
16620684
AK
3110static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3111 uint8_t *buf, int len, bool is_write)
eb7eeb88
PB
3112{
3113 if (is_write) {
16620684 3114 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88 3115 } else {
16620684 3116 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88
PB
3117 }
3118}
ac1970fb 3119
16620684
AK
3120MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3121 MemTxAttrs attrs, uint8_t *buf,
3122 int len, bool is_write)
3123{
3124 return flatview_rw(address_space_to_flatview(as),
3125 addr, attrs, buf, len, is_write);
3126}
3127
a8170e5e 3128void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3129 int len, int is_write)
3130{
5c9eb028
PM
3131 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3132 buf, len, is_write);
ac1970fb
AK
3133}
3134
582b55a9
AG
3135enum write_rom_type {
3136 WRITE_DATA,
3137 FLUSH_CACHE,
3138};
3139
2a221651 3140static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3141 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3142{
149f54b5 3143 hwaddr l;
d0ecd2aa 3144 uint8_t *ptr;
149f54b5 3145 hwaddr addr1;
5c8a00ce 3146 MemoryRegion *mr;
3b46e624 3147
41063e1e 3148 rcu_read_lock();
d0ecd2aa 3149 while (len > 0) {
149f54b5 3150 l = len;
2a221651 3151 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3152
5c8a00ce
PB
3153 if (!(memory_region_is_ram(mr) ||
3154 memory_region_is_romd(mr))) {
b242e0e0 3155 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3156 } else {
d0ecd2aa 3157 /* ROM/RAM case */
0878d0e1 3158 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3159 switch (type) {
3160 case WRITE_DATA:
3161 memcpy(ptr, buf, l);
845b6214 3162 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3163 break;
3164 case FLUSH_CACHE:
3165 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3166 break;
3167 }
d0ecd2aa
FB
3168 }
3169 len -= l;
3170 buf += l;
3171 addr += l;
3172 }
41063e1e 3173 rcu_read_unlock();
d0ecd2aa
FB
3174}
3175
582b55a9 3176/* used for ROM loading : can write in RAM and ROM */
2a221651 3177void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3178 const uint8_t *buf, int len)
3179{
2a221651 3180 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3181}
3182
3183void cpu_flush_icache_range(hwaddr start, int len)
3184{
3185 /*
3186 * This function should do the same thing as an icache flush that was
3187 * triggered from within the guest. For TCG we are always cache coherent,
3188 * so there is no need to flush anything. For KVM / Xen we need to flush
3189 * the host's instruction cache at least.
3190 */
3191 if (tcg_enabled()) {
3192 return;
3193 }
3194
2a221651
EI
3195 cpu_physical_memory_write_rom_internal(&address_space_memory,
3196 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3197}
3198
6d16c2f8 3199typedef struct {
d3e71559 3200 MemoryRegion *mr;
6d16c2f8 3201 void *buffer;
a8170e5e
AK
3202 hwaddr addr;
3203 hwaddr len;
c2cba0ff 3204 bool in_use;
6d16c2f8
AL
3205} BounceBuffer;
3206
3207static BounceBuffer bounce;
3208
ba223c29 3209typedef struct MapClient {
e95205e1 3210 QEMUBH *bh;
72cf2d4f 3211 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3212} MapClient;
3213
38e047b5 3214QemuMutex map_client_list_lock;
72cf2d4f
BS
3215static QLIST_HEAD(map_client_list, MapClient) map_client_list
3216 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3217
e95205e1
FZ
3218static void cpu_unregister_map_client_do(MapClient *client)
3219{
3220 QLIST_REMOVE(client, link);
3221 g_free(client);
3222}
3223
33b6c2ed
FZ
3224static void cpu_notify_map_clients_locked(void)
3225{
3226 MapClient *client;
3227
3228 while (!QLIST_EMPTY(&map_client_list)) {
3229 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3230 qemu_bh_schedule(client->bh);
3231 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3232 }
3233}
3234
e95205e1 3235void cpu_register_map_client(QEMUBH *bh)
ba223c29 3236{
7267c094 3237 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3238
38e047b5 3239 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3240 client->bh = bh;
72cf2d4f 3241 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3242 if (!atomic_read(&bounce.in_use)) {
3243 cpu_notify_map_clients_locked();
3244 }
38e047b5 3245 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3246}
3247
38e047b5 3248void cpu_exec_init_all(void)
ba223c29 3249{
38e047b5 3250 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3251 /* The data structures we set up here depend on knowing the page size,
3252 * so no more changes can be made after this point.
3253 * In an ideal world, nothing we did before we had finished the
3254 * machine setup would care about the target page size, and we could
3255 * do this much later, rather than requiring board models to state
3256 * up front what their requirements are.
3257 */
3258 finalize_target_page_bits();
38e047b5 3259 io_mem_init();
680a4783 3260 memory_map_init();
38e047b5 3261 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3262}
3263
e95205e1 3264void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3265{
3266 MapClient *client;
3267
e95205e1
FZ
3268 qemu_mutex_lock(&map_client_list_lock);
3269 QLIST_FOREACH(client, &map_client_list, link) {
3270 if (client->bh == bh) {
3271 cpu_unregister_map_client_do(client);
3272 break;
3273 }
ba223c29 3274 }
e95205e1 3275 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3276}
3277
3278static void cpu_notify_map_clients(void)
3279{
38e047b5 3280 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3281 cpu_notify_map_clients_locked();
38e047b5 3282 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3283}
3284
16620684
AK
3285static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3286 bool is_write)
51644ab7 3287{
5c8a00ce 3288 MemoryRegion *mr;
51644ab7
PB
3289 hwaddr l, xlat;
3290
41063e1e 3291 rcu_read_lock();
51644ab7
PB
3292 while (len > 0) {
3293 l = len;
16620684 3294 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3295 if (!memory_access_is_direct(mr, is_write)) {
3296 l = memory_access_size(mr, l, addr);
3297 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3298 rcu_read_unlock();
51644ab7
PB
3299 return false;
3300 }
3301 }
3302
3303 len -= l;
3304 addr += l;
3305 }
41063e1e 3306 rcu_read_unlock();
51644ab7
PB
3307 return true;
3308}
3309
16620684
AK
3310bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3311 int len, bool is_write)
3312{
3313 return flatview_access_valid(address_space_to_flatview(as),
3314 addr, len, is_write);
3315}
3316
715c31ec 3317static hwaddr
16620684
AK
3318flatview_extend_translation(FlatView *fv, hwaddr addr,
3319 hwaddr target_len,
715c31ec
PB
3320 MemoryRegion *mr, hwaddr base, hwaddr len,
3321 bool is_write)
3322{
3323 hwaddr done = 0;
3324 hwaddr xlat;
3325 MemoryRegion *this_mr;
3326
3327 for (;;) {
3328 target_len -= len;
3329 addr += len;
3330 done += len;
3331 if (target_len == 0) {
3332 return done;
3333 }
3334
3335 len = target_len;
16620684
AK
3336 this_mr = flatview_translate(fv, addr, &xlat,
3337 &len, is_write);
715c31ec
PB
3338 if (this_mr != mr || xlat != base + done) {
3339 return done;
3340 }
3341 }
3342}
3343
6d16c2f8
AL
3344/* Map a physical memory region into a host virtual address.
3345 * May map a subset of the requested range, given by and returned in *plen.
3346 * May return NULL if resources needed to perform the mapping are exhausted.
3347 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3348 * Use cpu_register_map_client() to know when retrying the map operation is
3349 * likely to succeed.
6d16c2f8 3350 */
ac1970fb 3351void *address_space_map(AddressSpace *as,
a8170e5e
AK
3352 hwaddr addr,
3353 hwaddr *plen,
ac1970fb 3354 bool is_write)
6d16c2f8 3355{
a8170e5e 3356 hwaddr len = *plen;
715c31ec
PB
3357 hwaddr l, xlat;
3358 MemoryRegion *mr;
e81bcda5 3359 void *ptr;
16620684 3360 FlatView *fv = address_space_to_flatview(as);
6d16c2f8 3361
e3127ae0
PB
3362 if (len == 0) {
3363 return NULL;
3364 }
38bee5dc 3365
e3127ae0 3366 l = len;
41063e1e 3367 rcu_read_lock();
16620684 3368 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3369
e3127ae0 3370 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3371 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3372 rcu_read_unlock();
e3127ae0 3373 return NULL;
6d16c2f8 3374 }
e85d9db5
KW
3375 /* Avoid unbounded allocations */
3376 l = MIN(l, TARGET_PAGE_SIZE);
3377 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3378 bounce.addr = addr;
3379 bounce.len = l;
d3e71559
PB
3380
3381 memory_region_ref(mr);
3382 bounce.mr = mr;
e3127ae0 3383 if (!is_write) {
16620684 3384 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3385 bounce.buffer, l);
8ab934f9 3386 }
6d16c2f8 3387
41063e1e 3388 rcu_read_unlock();
e3127ae0
PB
3389 *plen = l;
3390 return bounce.buffer;
3391 }
3392
e3127ae0 3393
d3e71559 3394 memory_region_ref(mr);
16620684
AK
3395 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3396 l, is_write);
f5aa69bd 3397 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3398 rcu_read_unlock();
3399
3400 return ptr;
6d16c2f8
AL
3401}
3402
ac1970fb 3403/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3404 * Will also mark the memory as dirty if is_write == 1. access_len gives
3405 * the amount of memory that was actually read or written by the caller.
3406 */
a8170e5e
AK
3407void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3408 int is_write, hwaddr access_len)
6d16c2f8
AL
3409{
3410 if (buffer != bounce.buffer) {
d3e71559
PB
3411 MemoryRegion *mr;
3412 ram_addr_t addr1;
3413
07bdaa41 3414 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3415 assert(mr != NULL);
6d16c2f8 3416 if (is_write) {
845b6214 3417 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3418 }
868bb33f 3419 if (xen_enabled()) {
e41d7c69 3420 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3421 }
d3e71559 3422 memory_region_unref(mr);
6d16c2f8
AL
3423 return;
3424 }
3425 if (is_write) {
5c9eb028
PM
3426 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3427 bounce.buffer, access_len);
6d16c2f8 3428 }
f8a83245 3429 qemu_vfree(bounce.buffer);
6d16c2f8 3430 bounce.buffer = NULL;
d3e71559 3431 memory_region_unref(bounce.mr);
c2cba0ff 3432 atomic_mb_set(&bounce.in_use, false);
ba223c29 3433 cpu_notify_map_clients();
6d16c2f8 3434}
d0ecd2aa 3435
a8170e5e
AK
3436void *cpu_physical_memory_map(hwaddr addr,
3437 hwaddr *plen,
ac1970fb
AK
3438 int is_write)
3439{
3440 return address_space_map(&address_space_memory, addr, plen, is_write);
3441}
3442
a8170e5e
AK
3443void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3444 int is_write, hwaddr access_len)
ac1970fb
AK
3445{
3446 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3447}
3448
0ce265ff
PB
3449#define ARG1_DECL AddressSpace *as
3450#define ARG1 as
3451#define SUFFIX
3452#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3453#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3454#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3455#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3456#define RCU_READ_LOCK(...) rcu_read_lock()
3457#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3458#include "memory_ldst.inc.c"
1e78bcc1 3459
1f4e496e
PB
3460int64_t address_space_cache_init(MemoryRegionCache *cache,
3461 AddressSpace *as,
3462 hwaddr addr,
3463 hwaddr len,
3464 bool is_write)
3465{
90c4fe5f
PB
3466 cache->len = len;
3467 cache->as = as;
3468 cache->xlat = addr;
3469 return len;
1f4e496e
PB
3470}
3471
3472void address_space_cache_invalidate(MemoryRegionCache *cache,
3473 hwaddr addr,
3474 hwaddr access_len)
3475{
1f4e496e
PB
3476}
3477
3478void address_space_cache_destroy(MemoryRegionCache *cache)
3479{
90c4fe5f 3480 cache->as = NULL;
1f4e496e
PB
3481}
3482
3483#define ARG1_DECL MemoryRegionCache *cache
3484#define ARG1 cache
3485#define SUFFIX _cached
90c4fe5f
PB
3486#define TRANSLATE(addr, ...) \
3487 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3488#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3489#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3490#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3491#define RCU_READ_LOCK() rcu_read_lock()
3492#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3493#include "memory_ldst.inc.c"
3494
5e2972fd 3495/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3496int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3497 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3498{
3499 int l;
a8170e5e 3500 hwaddr phys_addr;
9b3c35e0 3501 target_ulong page;
13eb76e0 3502
79ca7a1b 3503 cpu_synchronize_state(cpu);
13eb76e0 3504 while (len > 0) {
5232e4c7
PM
3505 int asidx;
3506 MemTxAttrs attrs;
3507
13eb76e0 3508 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3509 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3510 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3511 /* if no physical page mapped, return an error */
3512 if (phys_addr == -1)
3513 return -1;
3514 l = (page + TARGET_PAGE_SIZE) - addr;
3515 if (l > len)
3516 l = len;
5e2972fd 3517 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3518 if (is_write) {
5232e4c7
PM
3519 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3520 phys_addr, buf, l);
2e38847b 3521 } else {
5232e4c7
PM
3522 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3523 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3524 buf, l, 0);
2e38847b 3525 }
13eb76e0
FB
3526 len -= l;
3527 buf += l;
3528 addr += l;
3529 }
3530 return 0;
3531}
038629a6
DDAG
3532
3533/*
3534 * Allows code that needs to deal with migration bitmaps etc to still be built
3535 * target independent.
3536 */
20afaed9 3537size_t qemu_target_page_size(void)
038629a6 3538{
20afaed9 3539 return TARGET_PAGE_SIZE;
038629a6
DDAG
3540}
3541
46d702b1
JQ
3542int qemu_target_page_bits(void)
3543{
3544 return TARGET_PAGE_BITS;
3545}
3546
3547int qemu_target_page_bits_min(void)
3548{
3549 return TARGET_PAGE_BITS_MIN;
3550}
a68fe89c 3551#endif
13eb76e0 3552
8e4a424b
BS
3553/*
3554 * A helper function for the _utterly broken_ virtio device model to find out if
3555 * it's running on a big endian machine. Don't do this at home kids!
3556 */
98ed8ecf
GK
3557bool target_words_bigendian(void);
3558bool target_words_bigendian(void)
8e4a424b
BS
3559{
3560#if defined(TARGET_WORDS_BIGENDIAN)
3561 return true;
3562#else
3563 return false;
3564#endif
3565}
3566
76f35538 3567#ifndef CONFIG_USER_ONLY
a8170e5e 3568bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3569{
5c8a00ce 3570 MemoryRegion*mr;
149f54b5 3571 hwaddr l = 1;
41063e1e 3572 bool res;
76f35538 3573
41063e1e 3574 rcu_read_lock();
5c8a00ce
PB
3575 mr = address_space_translate(&address_space_memory,
3576 phys_addr, &phys_addr, &l, false);
76f35538 3577
41063e1e
PB
3578 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3579 rcu_read_unlock();
3580 return res;
76f35538 3581}
bd2fa51f 3582
e3807054 3583int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3584{
3585 RAMBlock *block;
e3807054 3586 int ret = 0;
bd2fa51f 3587
0dc3f44a 3588 rcu_read_lock();
99e15582 3589 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3590 ret = func(block->idstr, block->host, block->offset,
3591 block->used_length, opaque);
3592 if (ret) {
3593 break;
3594 }
bd2fa51f 3595 }
0dc3f44a 3596 rcu_read_unlock();
e3807054 3597 return ret;
bd2fa51f 3598}
d3a5038c
DDAG
3599
3600/*
3601 * Unmap pages of memory from start to start+length such that
3602 * they a) read as 0, b) Trigger whatever fault mechanism
3603 * the OS provides for postcopy.
3604 * The pages must be unmapped by the end of the function.
3605 * Returns: 0 on success, none-0 on failure
3606 *
3607 */
3608int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3609{
3610 int ret = -1;
3611
3612 uint8_t *host_startaddr = rb->host + start;
3613
3614 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3615 error_report("ram_block_discard_range: Unaligned start address: %p",
3616 host_startaddr);
3617 goto err;
3618 }
3619
3620 if ((start + length) <= rb->used_length) {
3621 uint8_t *host_endaddr = host_startaddr + length;
3622 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3623 error_report("ram_block_discard_range: Unaligned end address: %p",
3624 host_endaddr);
3625 goto err;
3626 }
3627
3628 errno = ENOTSUP; /* If we are missing MADVISE etc */
3629
e2fa71f5 3630 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3631#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3632 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3633 * freeing the page.
3634 */
3635 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3636#endif
e2fa71f5
DDAG
3637 } else {
3638 /* Huge page case - unfortunately it can't do DONTNEED, but
3639 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3640 * huge page file.
3641 */
3642#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3643 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3644 start, length);
3645#endif
3646 }
d3a5038c
DDAG
3647 if (ret) {
3648 ret = -errno;
3649 error_report("ram_block_discard_range: Failed to discard range "
3650 "%s:%" PRIx64 " +%zx (%d)",
3651 rb->idstr, start, length, ret);
3652 }
3653 } else {
3654 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3655 "/%zx/" RAM_ADDR_FMT")",
3656 rb->idstr, start, length, rb->used_length);
3657 }
3658
3659err:
3660 return ret;
3661}
3662
ec3f8c99 3663#endif
a0be0c58
YZ
3664
3665void page_size_init(void)
3666{
3667 /* NOTE: we can always suppose that qemu_host_page_size >=
3668 TARGET_PAGE_SIZE */
a0be0c58
YZ
3669 if (qemu_host_page_size == 0) {
3670 qemu_host_page_size = qemu_real_host_page_size;
3671 }
3672 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3673 qemu_host_page_size = TARGET_PAGE_SIZE;
3674 }
3675 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3676}
5e8fd947
AK
3677
3678#if !defined(CONFIG_USER_ONLY)
3679
3680static void mtree_print_phys_entries(fprintf_function mon, void *f,
3681 int start, int end, int skip, int ptr)
3682{
3683 if (start == end - 1) {
3684 mon(f, "\t%3d ", start);
3685 } else {
3686 mon(f, "\t%3d..%-3d ", start, end - 1);
3687 }
3688 mon(f, " skip=%d ", skip);
3689 if (ptr == PHYS_MAP_NODE_NIL) {
3690 mon(f, " ptr=NIL");
3691 } else if (!skip) {
3692 mon(f, " ptr=#%d", ptr);
3693 } else {
3694 mon(f, " ptr=[%d]", ptr);
3695 }
3696 mon(f, "\n");
3697}
3698
3699#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3700 int128_sub((size), int128_one())) : 0)
3701
3702void mtree_print_dispatch(fprintf_function mon, void *f,
3703 AddressSpaceDispatch *d, MemoryRegion *root)
3704{
3705 int i;
3706
3707 mon(f, " Dispatch\n");
3708 mon(f, " Physical sections\n");
3709
3710 for (i = 0; i < d->map.sections_nb; ++i) {
3711 MemoryRegionSection *s = d->map.sections + i;
3712 const char *names[] = { " [unassigned]", " [not dirty]",
3713 " [ROM]", " [watch]" };
3714
3715 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3716 i,
3717 s->offset_within_address_space,
3718 s->offset_within_address_space + MR_SIZE(s->mr->size),
3719 s->mr->name ? s->mr->name : "(noname)",
3720 i < ARRAY_SIZE(names) ? names[i] : "",
3721 s->mr == root ? " [ROOT]" : "",
3722 s == d->mru_section ? " [MRU]" : "",
3723 s->mr->is_iommu ? " [iommu]" : "");
3724
3725 if (s->mr->alias) {
3726 mon(f, " alias=%s", s->mr->alias->name ?
3727 s->mr->alias->name : "noname");
3728 }
3729 mon(f, "\n");
3730 }
3731
3732 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3733 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3734 for (i = 0; i < d->map.nodes_nb; ++i) {
3735 int j, jprev;
3736 PhysPageEntry prev;
3737 Node *n = d->map.nodes + i;
3738
3739 mon(f, " [%d]\n", i);
3740
3741 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3742 PhysPageEntry *pe = *n + j;
3743
3744 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3745 continue;
3746 }
3747
3748 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3749
3750 jprev = j;
3751 prev = *pe;
3752 }
3753
3754 if (jprev != ARRAY_SIZE(*n)) {
3755 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3756 }
3757 }
3758}
3759
3760#endif