]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
[Ada] Internal crash on illegal renaming
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
e9c75a1a 9-- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
29448168 27with Casing; use Casing;
ee6ba406 28with Debug; use Debug;
29with Einfo; use Einfo;
7b8fa048 30with Elists; use Elists;
31with Eval_Fat; use Eval_Fat;
32with Exp_Ch11; use Exp_Ch11;
ee6ba406 33with Exp_Ch2; use Exp_Ch2;
df40eeb0 34with Exp_Ch4; use Exp_Ch4;
05fcfafb 35with Exp_Pakd; use Exp_Pakd;
ee6ba406 36with Exp_Util; use Exp_Util;
4fb5f0a0 37with Expander; use Expander;
ee6ba406 38with Freeze; use Freeze;
9dfe12ae 39with Lib; use Lib;
ee6ba406 40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
9dfe12ae 43with Output; use Output;
c2b56224 44with Restrict; use Restrict;
1e16c51c 45with Rident; use Rident;
ee6ba406 46with Rtsfind; use Rtsfind;
47with Sem; use Sem;
d60c9ff7 48with Sem_Aux; use Sem_Aux;
00f91aef 49with Sem_Ch3; use Sem_Ch3;
9dfe12ae 50with Sem_Ch8; use Sem_Ch8;
7e933b61 51with Sem_Disp; use Sem_Disp;
7b8fa048 52with Sem_Eval; use Sem_Eval;
becb6111 53with Sem_Mech; use Sem_Mech;
ee6ba406 54with Sem_Res; use Sem_Res;
55with Sem_Util; use Sem_Util;
56with Sem_Warn; use Sem_Warn;
57with Sinfo; use Sinfo;
9dfe12ae 58with Sinput; use Sinput;
ee6ba406 59with Snames; use Snames;
9dfe12ae 60with Sprint; use Sprint;
ee6ba406 61with Stand; use Stand;
bb569db0 62with Stringt; use Stringt;
f15731c4 63with Targparm; use Targparm;
ee6ba406 64with Tbuild; use Tbuild;
65with Ttypes; use Ttypes;
ee6ba406 66with Validsw; use Validsw;
67
68package body Checks is
69
70 -- General note: many of these routines are concerned with generating
71 -- checking code to make sure that constraint error is raised at runtime.
72 -- Clearly this code is only needed if the expander is active, since
73 -- otherwise we will not be generating code or going into the runtime
74 -- execution anyway.
75
76 -- We therefore disconnect most of these checks if the expander is
77 -- inactive. This has the additional benefit that we do not need to
78 -- worry about the tree being messed up by previous errors (since errors
79 -- turn off expansion anyway).
80
81 -- There are a few exceptions to the above rule. For instance routines
82 -- such as Apply_Scalar_Range_Check that do not insert any code can be
83 -- safely called even when the Expander is inactive (but Errors_Detected
84 -- is 0). The benefit of executing this code when expansion is off, is
85 -- the ability to emit constraint error warning for static expressions
86 -- even when we are not generating code.
87
20cf157b 88 -- The above is modified in gnatprove mode to ensure that proper check
89 -- flags are always placed, even if expansion is off.
90
9dfe12ae 91 -------------------------------------
92 -- Suppression of Redundant Checks --
93 -------------------------------------
94
95 -- This unit implements a limited circuit for removal of redundant
96 -- checks. The processing is based on a tracing of simple sequential
97 -- flow. For any sequence of statements, we save expressions that are
98 -- marked to be checked, and then if the same expression appears later
99 -- with the same check, then under certain circumstances, the second
100 -- check can be suppressed.
101
102 -- Basically, we can suppress the check if we know for certain that
103 -- the previous expression has been elaborated (together with its
104 -- check), and we know that the exception frame is the same, and that
105 -- nothing has happened to change the result of the exception.
106
107 -- Let us examine each of these three conditions in turn to describe
108 -- how we ensure that this condition is met.
109
110 -- First, we need to know for certain that the previous expression has
6fb3c314 111 -- been executed. This is done principally by the mechanism of calling
9dfe12ae 112 -- Conditional_Statements_Begin at the start of any statement sequence
113 -- and Conditional_Statements_End at the end. The End call causes all
114 -- checks remembered since the Begin call to be discarded. This does
115 -- miss a few cases, notably the case of a nested BEGIN-END block with
116 -- no exception handlers. But the important thing is to be conservative.
117 -- The other protection is that all checks are discarded if a label
118 -- is encountered, since then the assumption of sequential execution
119 -- is violated, and we don't know enough about the flow.
120
121 -- Second, we need to know that the exception frame is the same. We
122 -- do this by killing all remembered checks when we enter a new frame.
123 -- Again, that's over-conservative, but generally the cases we can help
124 -- with are pretty local anyway (like the body of a loop for example).
125
126 -- Third, we must be sure to forget any checks which are no longer valid.
127 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
128 -- used to note any changes to local variables. We only attempt to deal
129 -- with checks involving local variables, so we do not need to worry
130 -- about global variables. Second, a call to any non-global procedure
131 -- causes us to abandon all stored checks, since such a all may affect
132 -- the values of any local variables.
133
134 -- The following define the data structures used to deal with remembering
135 -- checks so that redundant checks can be eliminated as described above.
136
137 -- Right now, the only expressions that we deal with are of the form of
138 -- simple local objects (either declared locally, or IN parameters) or
139 -- such objects plus/minus a compile time known constant. We can do
140 -- more later on if it seems worthwhile, but this catches many simple
141 -- cases in practice.
142
143 -- The following record type reflects a single saved check. An entry
144 -- is made in the stack of saved checks if and only if the expression
145 -- has been elaborated with the indicated checks.
146
147 type Saved_Check is record
148 Killed : Boolean;
149 -- Set True if entry is killed by Kill_Checks
150
151 Entity : Entity_Id;
152 -- The entity involved in the expression that is checked
153
154 Offset : Uint;
155 -- A compile time value indicating the result of adding or
156 -- subtracting a compile time value. This value is to be
157 -- added to the value of the Entity. A value of zero is
158 -- used for the case of a simple entity reference.
159
160 Check_Type : Character;
161 -- This is set to 'R' for a range check (in which case Target_Type
162 -- is set to the target type for the range check) or to 'O' for an
163 -- overflow check (in which case Target_Type is set to Empty).
164
165 Target_Type : Entity_Id;
166 -- Used only if Do_Range_Check is set. Records the target type for
167 -- the check. We need this, because a check is a duplicate only if
6fb3c314 168 -- it has the same target type (or more accurately one with a
9dfe12ae 169 -- range that is smaller or equal to the stored target type of a
170 -- saved check).
171 end record;
172
173 -- The following table keeps track of saved checks. Rather than use an
bbbfe30c 174 -- extensible table, we just use a table of fixed size, and we discard
9dfe12ae 175 -- any saved checks that do not fit. That's very unlikely to happen and
176 -- this is only an optimization in any case.
177
178 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
179 -- Array of saved checks
180
181 Num_Saved_Checks : Nat := 0;
182 -- Number of saved checks
183
184 -- The following stack keeps track of statement ranges. It is treated
185 -- as a stack. When Conditional_Statements_Begin is called, an entry
186 -- is pushed onto this stack containing the value of Num_Saved_Checks
187 -- at the time of the call. Then when Conditional_Statements_End is
188 -- called, this value is popped off and used to reset Num_Saved_Checks.
189
190 -- Note: again, this is a fixed length stack with a size that should
191 -- always be fine. If the value of the stack pointer goes above the
192 -- limit, then we just forget all saved checks.
193
194 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
195 Saved_Checks_TOS : Nat := 0;
196
197 -----------------------
198 -- Local Subprograms --
199 -----------------------
ee6ba406 200
0df9d43f 201 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
3cce7f32 202 -- Used to apply arithmetic overflow checks for all cases except operators
691fe9e0 203 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
0df9d43f 204 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
205 -- signed integer arithmetic operator (but not an if or case expression).
206 -- It is also called for types other than signed integers.
3cce7f32 207
208 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
209 -- Used to apply arithmetic overflow checks for the case where the overflow
0df9d43f 210 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
211 -- arithmetic op (which includes the case of if and case expressions). Note
212 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
213 -- we have work to do even if overflow checking is suppressed.
3cce7f32 214
2fe22c69 215 procedure Apply_Division_Check
216 (N : Node_Id;
217 Rlo : Uint;
218 Rhi : Uint;
219 ROK : Boolean);
220 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
221 -- division checks as required if the Do_Division_Check flag is set.
222 -- Rlo and Rhi give the possible range of the right operand, these values
223 -- can be referenced and trusted only if ROK is set True.
224
225 procedure Apply_Float_Conversion_Check
226 (Ck_Node : Node_Id;
227 Target_Typ : Entity_Id);
228 -- The checks on a conversion from a floating-point type to an integer
229 -- type are delicate. They have to be performed before conversion, they
230 -- have to raise an exception when the operand is a NaN, and rounding must
231 -- be taken into account to determine the safe bounds of the operand.
232
ee6ba406 233 procedure Apply_Selected_Length_Checks
234 (Ck_Node : Node_Id;
235 Target_Typ : Entity_Id;
236 Source_Typ : Entity_Id;
237 Do_Static : Boolean);
238 -- This is the subprogram that does all the work for Apply_Length_Check
239 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
240 -- described for the above routines. The Do_Static flag indicates that
241 -- only a static check is to be done.
242
243 procedure Apply_Selected_Range_Checks
244 (Ck_Node : Node_Id;
245 Target_Typ : Entity_Id;
246 Source_Typ : Entity_Id;
247 Do_Static : Boolean);
248 -- This is the subprogram that does all the work for Apply_Range_Check.
249 -- Expr, Target_Typ and Source_Typ are as described for the above
250 -- routine. The Do_Static flag indicates that only a static check is
251 -- to be done.
252
2af58f67 253 type Check_Type is new Check_Id range Access_Check .. Division_Check;
13dbf220 254 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
255 -- This function is used to see if an access or division by zero check is
256 -- needed. The check is to be applied to a single variable appearing in the
257 -- source, and N is the node for the reference. If N is not of this form,
258 -- True is returned with no further processing. If N is of the right form,
259 -- then further processing determines if the given Check is needed.
260 --
261 -- The particular circuit is to see if we have the case of a check that is
262 -- not needed because it appears in the right operand of a short circuited
263 -- conditional where the left operand guards the check. For example:
264 --
265 -- if Var = 0 or else Q / Var > 12 then
266 -- ...
267 -- end if;
268 --
269 -- In this example, the division check is not required. At the same time
270 -- we can issue warnings for suspicious use of non-short-circuited forms,
271 -- such as:
272 --
273 -- if Var = 0 or Q / Var > 12 then
274 -- ...
275 -- end if;
276
9dfe12ae 277 procedure Find_Check
278 (Expr : Node_Id;
279 Check_Type : Character;
280 Target_Type : Entity_Id;
281 Entry_OK : out Boolean;
282 Check_Num : out Nat;
283 Ent : out Entity_Id;
284 Ofs : out Uint);
285 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
286 -- to see if a check is of the form for optimization, and if so, to see
287 -- if it has already been performed. Expr is the expression to check,
288 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
289 -- Target_Type is the target type for a range check, and Empty for an
290 -- overflow check. If the entry is not of the form for optimization,
291 -- then Entry_OK is set to False, and the remaining out parameters
292 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
293 -- entity and offset from the expression. Check_Num is the number of
294 -- a matching saved entry in Saved_Checks, or zero if no such entry
295 -- is located.
296
ee6ba406 297 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
298 -- If a discriminal is used in constraining a prival, Return reference
299 -- to the discriminal of the protected body (which renames the parameter
300 -- of the enclosing protected operation). This clumsy transformation is
301 -- needed because privals are created too late and their actual subtypes
302 -- are not available when analysing the bodies of the protected operations.
0577b0b1 303 -- This function is called whenever the bound is an entity and the scope
304 -- indicates a protected operation. If the bound is an in-parameter of
305 -- a protected operation that is not a prival, the function returns the
306 -- bound itself.
ee6ba406 307 -- To be cleaned up???
308
309 function Guard_Access
310 (Cond : Node_Id;
311 Loc : Source_Ptr;
314a23b6 312 Ck_Node : Node_Id) return Node_Id;
ee6ba406 313 -- In the access type case, guard the test with a test to ensure
314 -- that the access value is non-null, since the checks do not
315 -- not apply to null access values.
316
317 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
318 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
319 -- Constraint_Error node.
320
3cce7f32 321 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
322 -- Returns True if node N is for an arithmetic operation with signed
0326b4d4 323 -- integer operands. This includes unary and binary operators, and also
324 -- if and case expression nodes where the dependent expressions are of
325 -- a signed integer type. These are the kinds of nodes for which special
691fe9e0 326 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
3cce7f32 327
0577b0b1 328 function Range_Or_Validity_Checks_Suppressed
329 (Expr : Node_Id) return Boolean;
330 -- Returns True if either range or validity checks or both are suppressed
331 -- for the type of the given expression, or, if the expression is the name
332 -- of an entity, if these checks are suppressed for the entity.
333
ee6ba406 334 function Selected_Length_Checks
335 (Ck_Node : Node_Id;
336 Target_Typ : Entity_Id;
337 Source_Typ : Entity_Id;
314a23b6 338 Warn_Node : Node_Id) return Check_Result;
ee6ba406 339 -- Like Apply_Selected_Length_Checks, except it doesn't modify
340 -- anything, just returns a list of nodes as described in the spec of
341 -- this package for the Range_Check function.
18cb6d78 342 -- ??? In fact it does construct the test and insert it into the tree,
343 -- and insert actions in various ways (calling Insert_Action directly
344 -- in particular) so we do not call it in GNATprove mode, contrary to
345 -- Selected_Range_Checks.
ee6ba406 346
347 function Selected_Range_Checks
348 (Ck_Node : Node_Id;
349 Target_Typ : Entity_Id;
350 Source_Typ : Entity_Id;
314a23b6 351 Warn_Node : Node_Id) return Check_Result;
ee6ba406 352 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
353 -- just returns a list of nodes as described in the spec of this package
354 -- for the Range_Check function.
355
356 ------------------------------
357 -- Access_Checks_Suppressed --
358 ------------------------------
359
360 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
361 begin
9dfe12ae 362 if Present (E) and then Checks_May_Be_Suppressed (E) then
363 return Is_Check_Suppressed (E, Access_Check);
364 else
fafc6b97 365 return Scope_Suppress.Suppress (Access_Check);
9dfe12ae 366 end if;
ee6ba406 367 end Access_Checks_Suppressed;
368
369 -------------------------------------
370 -- Accessibility_Checks_Suppressed --
371 -------------------------------------
372
373 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
374 begin
9dfe12ae 375 if Present (E) and then Checks_May_Be_Suppressed (E) then
376 return Is_Check_Suppressed (E, Accessibility_Check);
377 else
fafc6b97 378 return Scope_Suppress.Suppress (Accessibility_Check);
9dfe12ae 379 end if;
ee6ba406 380 end Accessibility_Checks_Suppressed;
381
00c403ee 382 -----------------------------
383 -- Activate_Division_Check --
384 -----------------------------
385
386 procedure Activate_Division_Check (N : Node_Id) is
387 begin
388 Set_Do_Division_Check (N, True);
389 Possible_Local_Raise (N, Standard_Constraint_Error);
390 end Activate_Division_Check;
391
392 -----------------------------
393 -- Activate_Overflow_Check --
394 -----------------------------
395
396 procedure Activate_Overflow_Check (N : Node_Id) is
c8e92b5f 397 Typ : constant Entity_Id := Etype (N);
398
00c403ee 399 begin
c8e92b5f 400 -- Floating-point case. If Etype is not set (this can happen when we
401 -- activate a check on a node that has not yet been analyzed), then
402 -- we assume we do not have a floating-point type (as per our spec).
403
404 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405
406 -- Ignore call if we have no automatic overflow checks on the target
407 -- and Check_Float_Overflow mode is not set. These are the cases in
408 -- which we expect to generate infinities and NaN's with no check.
409
410 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
411 return;
412
413 -- Ignore for unary operations ("+", "-", abs) since these can never
414 -- result in overflow for floating-point cases.
b8446e0d 415
c8e92b5f 416 elsif Nkind (N) in N_Unary_Op then
417 return;
418
419 -- Otherwise we will set the flag
420
421 else
422 null;
423 end if;
424
425 -- Discrete case
426
427 else
428 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
429 -- for zero-divide is a divide check, not an overflow check).
b8446e0d 430
c8e92b5f 431 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
432 return;
433 end if;
b8446e0d 434 end if;
435
c8e92b5f 436 -- Fall through for cases where we do set the flag
b8446e0d 437
438 Set_Do_Overflow_Check (N, True);
439 Possible_Local_Raise (N, Standard_Constraint_Error);
00c403ee 440 end Activate_Overflow_Check;
441
442 --------------------------
443 -- Activate_Range_Check --
444 --------------------------
445
446 procedure Activate_Range_Check (N : Node_Id) is
447 begin
448 Set_Do_Range_Check (N, True);
449 Possible_Local_Raise (N, Standard_Constraint_Error);
450 end Activate_Range_Check;
451
0577b0b1 452 ---------------------------------
453 -- Alignment_Checks_Suppressed --
454 ---------------------------------
455
456 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
457 begin
458 if Present (E) and then Checks_May_Be_Suppressed (E) then
459 return Is_Check_Suppressed (E, Alignment_Check);
460 else
fafc6b97 461 return Scope_Suppress.Suppress (Alignment_Check);
0577b0b1 462 end if;
463 end Alignment_Checks_Suppressed;
464
2d70530c 465 ----------------------------------
466 -- Allocation_Checks_Suppressed --
467 ----------------------------------
468
fa771c05 469 -- Note: at the current time there are no calls to this function, because
470 -- the relevant check is in the run-time, so it is not a check that the
471 -- compiler can suppress anyway, but we still have to recognize the check
472 -- name Allocation_Check since it is part of the standard.
473
2d70530c 474 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
475 begin
476 if Present (E) and then Checks_May_Be_Suppressed (E) then
477 return Is_Check_Suppressed (E, Allocation_Check);
478 else
479 return Scope_Suppress.Suppress (Allocation_Check);
480 end if;
481 end Allocation_Checks_Suppressed;
482
ee6ba406 483 -------------------------
484 -- Append_Range_Checks --
485 -------------------------
486
487 procedure Append_Range_Checks
488 (Checks : Check_Result;
489 Stmts : List_Id;
490 Suppress_Typ : Entity_Id;
491 Static_Sloc : Source_Ptr;
492 Flag_Node : Node_Id)
493 is
2b4f2458 494 Checks_On : constant Boolean :=
495 not Index_Checks_Suppressed (Suppress_Typ)
496 or else
497 not Range_Checks_Suppressed (Suppress_Typ);
498
9dfe12ae 499 Internal_Flag_Node : constant Node_Id := Flag_Node;
500 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501
ee6ba406 502 begin
2b4f2458 503 -- For now we just return if Checks_On is false, however this should be
504 -- enhanced to check for an always True value in the condition and to
505 -- generate a compilation warning???
ee6ba406 506
507 if not Checks_On then
508 return;
509 end if;
510
511 for J in 1 .. 2 loop
512 exit when No (Checks (J));
513
514 if Nkind (Checks (J)) = N_Raise_Constraint_Error
515 and then Present (Condition (Checks (J)))
516 then
517 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
518 Append_To (Stmts, Checks (J));
519 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
520 end if;
521
522 else
523 Append_To
f15731c4 524 (Stmts,
525 Make_Raise_Constraint_Error (Internal_Static_Sloc,
526 Reason => CE_Range_Check_Failed));
ee6ba406 527 end if;
528 end loop;
529 end Append_Range_Checks;
530
531 ------------------------
532 -- Apply_Access_Check --
533 ------------------------
534
535 procedure Apply_Access_Check (N : Node_Id) is
536 P : constant Node_Id := Prefix (N);
537
538 begin
13dbf220 539 -- We do not need checks if we are not generating code (i.e. the
540 -- expander is not active). This is not just an optimization, there
541 -- are cases (e.g. with pragma Debug) where generating the checks
542 -- can cause real trouble).
284faf8b 543
a33565dd 544 if not Expander_Active then
13dbf220 545 return;
9dfe12ae 546 end if;
ee6ba406 547
84d0d4a5 548 -- No check if short circuiting makes check unnecessary
9dfe12ae 549
84d0d4a5 550 if not Check_Needed (P, Access_Check) then
551 return;
ee6ba406 552 end if;
9dfe12ae 553
cc60bd16 554 -- No check if accessing the Offset_To_Top component of a dispatch
555 -- table. They are safe by construction.
556
040277b1 557 if Tagged_Type_Expansion
558 and then Present (Etype (P))
cc60bd16 559 and then RTU_Loaded (Ada_Tags)
560 and then RTE_Available (RE_Offset_To_Top_Ptr)
561 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
562 then
563 return;
564 end if;
565
84d0d4a5 566 -- Otherwise go ahead and install the check
9dfe12ae 567
fa7497e8 568 Install_Null_Excluding_Check (P);
ee6ba406 569 end Apply_Access_Check;
570
571 -------------------------------
572 -- Apply_Accessibility_Check --
573 -------------------------------
574
55dc6dc2 575 procedure Apply_Accessibility_Check
576 (N : Node_Id;
577 Typ : Entity_Id;
578 Insert_Node : Node_Id)
579 is
b1118eb8 580 Check_Cond : Node_Id;
ee6ba406 581 Loc : constant Source_Ptr := Sloc (N);
1a9cc6cd 582 Param_Ent : Entity_Id := Param_Entity (N);
ee6ba406 583 Param_Level : Node_Id;
584 Type_Level : Node_Id;
585
586 begin
47d210a3 587 if Ada_Version >= Ada_2012
588 and then not Present (Param_Ent)
589 and then Is_Entity_Name (N)
590 and then Ekind_In (Entity (N), E_Constant, E_Variable)
591 and then Present (Effective_Extra_Accessibility (Entity (N)))
592 then
593 Param_Ent := Entity (N);
594 while Present (Renamed_Object (Param_Ent)) loop
1a9cc6cd 595
47d210a3 596 -- Renamed_Object must return an Entity_Name here
597 -- because of preceding "Present (E_E_A (...))" test.
598
599 Param_Ent := Entity (Renamed_Object (Param_Ent));
600 end loop;
601 end if;
602
ee6ba406 603 if Inside_A_Generic then
604 return;
605
6ffc64fc 606 -- Only apply the run-time check if the access parameter has an
607 -- associated extra access level parameter and when the level of the
608 -- type is less deep than the level of the access parameter, and
609 -- accessibility checks are not suppressed.
ee6ba406 610
611 elsif Present (Param_Ent)
612 and then Present (Extra_Accessibility (Param_Ent))
47d210a3 613 and then UI_Gt (Object_Access_Level (N),
1a9cc6cd 614 Deepest_Type_Access_Level (Typ))
ee6ba406 615 and then not Accessibility_Checks_Suppressed (Param_Ent)
616 and then not Accessibility_Checks_Suppressed (Typ)
617 then
618 Param_Level :=
619 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
620
e1415398 621 -- Use the dynamic accessibility parameter for the function's result
622 -- when one has been created instead of statically referring to the
623 -- deepest type level so as to appropriatly handle the rules for
624 -- RM 3.10.2 (10.1/3).
625
626 if Ekind_In (Scope (Param_Ent), E_Function,
627 E_Operator,
628 E_Subprogram_Type)
629 and then Present (Extra_Accessibility_Of_Result (Scope (Param_Ent)))
630 then
631 Type_Level :=
632 New_Occurrence_Of
633 (Extra_Accessibility_Of_Result (Scope (Param_Ent)), Loc);
634 else
635 Type_Level :=
636 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
637 end if;
ee6ba406 638
bf3e1520 639 -- Raise Program_Error if the accessibility level of the access
84d0d4a5 640 -- parameter is deeper than the level of the target access type.
ee6ba406 641
b1118eb8 642 Check_Cond := Make_Op_Gt (Loc,
643 Left_Opnd => Param_Level,
644 Right_Opnd => Type_Level);
645
55dc6dc2 646 Insert_Action (Insert_Node,
ee6ba406 647 Make_Raise_Program_Error (Loc,
b1118eb8 648 Condition => Check_Cond,
649 Reason => PE_Accessibility_Check_Failed));
ee6ba406 650
651 Analyze_And_Resolve (N);
b1118eb8 652
653 -- If constant folding has happened on the condition for the
654 -- generated error, then warn about it being unconditional.
655
656 if Nkind (Check_Cond) = N_Identifier
657 and then Entity (Check_Cond) = Standard_True
658 then
659 Error_Msg_Warn := SPARK_Mode /= On;
660 Error_Msg_N
661 ("accessibility check fails<<", N);
662 Error_Msg_N
663 ("\Program_Error [<<", N);
664 end if;
ee6ba406 665 end if;
666 end Apply_Accessibility_Check;
667
0577b0b1 668 --------------------------------
669 -- Apply_Address_Clause_Check --
670 --------------------------------
671
672 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
d950dc79 673 pragma Assert (Nkind (N) = N_Freeze_Entity);
674
8650387e 675 AC : constant Node_Id := Address_Clause (E);
676 Loc : constant Source_Ptr := Sloc (AC);
677 Typ : constant Entity_Id := Etype (E);
c2b56224 678
c2b56224 679 Expr : Node_Id;
0577b0b1 680 -- Address expression (not necessarily the same as Aexp, for example
681 -- when Aexp is a reference to a constant, in which case Expr gets
7b8fa048 682 -- reset to reference the value expression of the constant).
0577b0b1 683
c2b56224 684 begin
d6da7448 685 -- See if alignment check needed. Note that we never need a check if the
686 -- maximum alignment is one, since the check will always succeed.
687
688 -- Note: we do not check for checks suppressed here, since that check
689 -- was done in Sem_Ch13 when the address clause was processed. We are
690 -- only called if checks were not suppressed. The reason for this is
691 -- that we have to delay the call to Apply_Alignment_Check till freeze
692 -- time (so that all types etc are elaborated), but we have to check
693 -- the status of check suppressing at the point of the address clause.
694
695 if No (AC)
696 or else not Check_Address_Alignment (AC)
697 or else Maximum_Alignment = 1
698 then
699 return;
700 end if;
701
702 -- Obtain expression from address clause
9dfe12ae 703
514a5555 704 Expr := Address_Value (Expression (AC));
0577b0b1 705
514a5555 706 -- See if we know that Expr has an acceptable value at compile time. If
707 -- it hasn't or we don't know, we defer issuing the warning until the
708 -- end of the compilation to take into account back end annotations.
c2b56224 709
710 if Compile_Time_Known_Value (Expr)
f2a06be9 711 and then (Known_Alignment (E) or else Known_Alignment (Typ))
c2b56224 712 then
f2a06be9 713 declare
714 AL : Uint := Alignment (Typ);
715
716 begin
8650387e 717 -- The object alignment might be more restrictive than the type
718 -- alignment.
f2a06be9 719
720 if Known_Alignment (E) then
721 AL := Alignment (E);
722 end if;
723
514a5555 724 if Expr_Value (Expr) mod AL = 0 then
0577b0b1 725 return;
f2a06be9 726 end if;
727 end;
c2b56224 728
7161e166 729 -- If the expression has the form X'Address, then we can find out if the
730 -- object X has an alignment that is compatible with the object E. If it
731 -- hasn't or we don't know, we defer issuing the warning until the end
732 -- of the compilation to take into account back end annotations.
c2b56224 733
0577b0b1 734 elsif Nkind (Expr) = N_Attribute_Reference
735 and then Attribute_Name (Expr) = Name_Address
7161e166 736 and then
737 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
0577b0b1 738 then
d6da7448 739 return;
0577b0b1 740 end if;
c2b56224 741
6fb3c314 742 -- Here we do not know if the value is acceptable. Strictly we don't
743 -- have to do anything, since if the alignment is bad, we have an
744 -- erroneous program. However we are allowed to check for erroneous
745 -- conditions and we decide to do this by default if the check is not
746 -- suppressed.
0577b0b1 747
748 -- However, don't do the check if elaboration code is unwanted
749
750 if Restriction_Active (No_Elaboration_Code) then
751 return;
752
753 -- Generate a check to raise PE if alignment may be inappropriate
754
755 else
1916d94e 756 -- If the original expression is a nonstatic constant, use the name
8650387e 757 -- of the constant itself rather than duplicating its initialization
758 -- expression, which was extracted above.
0577b0b1 759
00c403ee 760 -- Note: Expr is empty if the address-clause is applied to in-mode
761 -- actuals (allowed by 13.1(22)).
762
763 if not Present (Expr)
764 or else
765 (Is_Entity_Name (Expression (AC))
766 and then Ekind (Entity (Expression (AC))) = E_Constant
8650387e 767 and then Nkind (Parent (Entity (Expression (AC)))) =
768 N_Object_Declaration)
0577b0b1 769 then
770 Expr := New_Copy_Tree (Expression (AC));
771 else
772 Remove_Side_Effects (Expr);
c2b56224 773 end if;
c2b56224 774
d950dc79 775 if No (Actions (N)) then
776 Set_Actions (N, New_List);
777 end if;
778
779 Prepend_To (Actions (N),
0577b0b1 780 Make_Raise_Program_Error (Loc,
781 Condition =>
782 Make_Op_Ne (Loc,
8650387e 783 Left_Opnd =>
0577b0b1 784 Make_Op_Mod (Loc,
8650387e 785 Left_Opnd =>
0577b0b1 786 Unchecked_Convert_To
787 (RTE (RE_Integer_Address), Expr),
788 Right_Opnd =>
789 Make_Attribute_Reference (Loc,
d950dc79 790 Prefix => New_Occurrence_Of (E, Loc),
0577b0b1 791 Attribute_Name => Name_Alignment)),
792 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
8650387e 793 Reason => PE_Misaligned_Address_Value));
7b8fa048 794
795 Warning_Msg := No_Error_Msg;
d950dc79 796 Analyze (First (Actions (N)), Suppress => All_Checks);
cd309f05 797
514a5555 798 -- If the above raise action generated a warning message (for example
7b8fa048 799 -- from Warn_On_Non_Local_Exception mode with the active restriction
800 -- No_Exception_Propagation).
801
802 if Warning_Msg /= No_Error_Msg then
8650387e 803
7b8fa048 804 -- If the expression has a known at compile time value, then
805 -- once we know the alignment of the type, we can check if the
806 -- exception will be raised or not, and if not, we don't need
807 -- the warning so we will kill the warning later on.
808
809 if Compile_Time_Known_Value (Expr) then
810 Alignment_Warnings.Append
811 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
cd309f05 812
8650387e 813 -- Add explanation of the warning generated by the check
814
815 else
514a5555 816 Error_Msg_N
8650387e 817 ("\address value may be incompatible with alignment of "
818 & "object?X?", AC);
514a5555 819 end if;
cd309f05 820 end if;
78be29d1 821
0577b0b1 822 return;
823 end if;
9dfe12ae 824
825 exception
8650387e 826
0577b0b1 827 -- If we have some missing run time component in configurable run time
828 -- mode then just skip the check (it is not required in any case).
829
9dfe12ae 830 when RE_Not_Available =>
831 return;
0577b0b1 832 end Apply_Address_Clause_Check;
c2b56224 833
ee6ba406 834 -------------------------------------
835 -- Apply_Arithmetic_Overflow_Check --
836 -------------------------------------
837
3cce7f32 838 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
839 begin
840 -- Use old routine in almost all cases (the only case we are treating
21a55437 841 -- specially is the case of a signed integer arithmetic op with the
0df9d43f 842 -- overflow checking mode set to MINIMIZED or ELIMINATED).
3cce7f32 843
0df9d43f 844 if Overflow_Check_Mode = Strict
3cce7f32 845 or else not Is_Signed_Integer_Arithmetic_Op (N)
846 then
0df9d43f 847 Apply_Arithmetic_Overflow_Strict (N);
3cce7f32 848
21a55437 849 -- Otherwise use the new routine for the case of a signed integer
850 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
851 -- mode is MINIMIZED or ELIMINATED.
3cce7f32 852
853 else
854 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
855 end if;
856 end Apply_Arithmetic_Overflow_Check;
857
0df9d43f 858 --------------------------------------
859 -- Apply_Arithmetic_Overflow_Strict --
860 --------------------------------------
3cce7f32 861
fc1dbe36 862 -- This routine is called only if the type is an integer type and an
863 -- arithmetic overflow check may be needed for op (add, subtract, or
864 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
865 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
f40f9731 866 -- operation into a more complex sequence of tests that ensures that
867 -- overflow is properly caught.
ee6ba406 868
0df9d43f 869 -- This is used in CHECKED modes. It is identical to the code for this
870 -- cases before the big overflow earthquake, thus ensuring that in this
871 -- modes we have compatible behavior (and reliability) to what was there
872 -- before. It is also called for types other than signed integers, and if
873 -- the Do_Overflow_Check flag is off.
3cce7f32 874
875 -- Note: we also call this routine if we decide in the MINIMIZED case
876 -- to give up and just generate an overflow check without any fuss.
877
0df9d43f 878 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
21a55437 879 Loc : constant Source_Ptr := Sloc (N);
880 Typ : constant Entity_Id := Etype (N);
881 Rtyp : constant Entity_Id := Root_Type (Typ);
ee6ba406 882
883 begin
0df9d43f 884 -- Nothing to do if Do_Overflow_Check not set or overflow checks
885 -- suppressed.
886
887 if not Do_Overflow_Check (N) then
888 return;
889 end if;
890
f40f9731 891 -- An interesting special case. If the arithmetic operation appears as
892 -- the operand of a type conversion:
893
894 -- type1 (x op y)
895
896 -- and all the following conditions apply:
897
898 -- arithmetic operation is for a signed integer type
899 -- target type type1 is a static integer subtype
900 -- range of x and y are both included in the range of type1
901 -- range of x op y is included in the range of type1
902 -- size of type1 is at least twice the result size of op
903
a36d34e4 904 -- then we don't do an overflow check in any case. Instead, we transform
f40f9731 905 -- the operation so that we end up with:
906
907 -- type1 (type1 (x) op type1 (y))
908
909 -- This avoids intermediate overflow before the conversion. It is
910 -- explicitly permitted by RM 3.5.4(24):
911
912 -- For the execution of a predefined operation of a signed integer
913 -- type, the implementation need not raise Constraint_Error if the
914 -- result is outside the base range of the type, so long as the
915 -- correct result is produced.
916
917 -- It's hard to imagine that any programmer counts on the exception
918 -- being raised in this case, and in any case it's wrong coding to
919 -- have this expectation, given the RM permission. Furthermore, other
920 -- Ada compilers do allow such out of range results.
921
922 -- Note that we do this transformation even if overflow checking is
923 -- off, since this is precisely about giving the "right" result and
924 -- avoiding the need for an overflow check.
925
8eb4a5eb 926 -- Note: this circuit is partially redundant with respect to the similar
927 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
928 -- with cases that do not come through here. We still need the following
929 -- processing even with the Exp_Ch4 code in place, since we want to be
930 -- sure not to generate the arithmetic overflow check in these cases
931 -- (Exp_Ch4 would have a hard time removing them once generated).
932
f40f9731 933 if Is_Signed_Integer_Type (Typ)
934 and then Nkind (Parent (N)) = N_Type_Conversion
ee6ba406 935 then
f32c377d 936 Conversion_Optimization : declare
f40f9731 937 Target_Type : constant Entity_Id :=
b6341c67 938 Base_Type (Entity (Subtype_Mark (Parent (N))));
f40f9731 939
940 Llo, Lhi : Uint;
941 Rlo, Rhi : Uint;
942 LOK, ROK : Boolean;
943
944 Vlo : Uint;
945 Vhi : Uint;
946 VOK : Boolean;
947
948 Tlo : Uint;
949 Thi : Uint;
950
951 begin
952 if Is_Integer_Type (Target_Type)
953 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
954 then
955 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
956 Thi := Expr_Value (Type_High_Bound (Target_Type));
957
9c486805 958 Determine_Range
959 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
960 Determine_Range
961 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
f40f9731 962
963 if (LOK and ROK)
964 and then Tlo <= Llo and then Lhi <= Thi
965 and then Tlo <= Rlo and then Rhi <= Thi
966 then
9c486805 967 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
f40f9731 968
969 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
970 Rewrite (Left_Opnd (N),
971 Make_Type_Conversion (Loc,
972 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
973 Expression => Relocate_Node (Left_Opnd (N))));
974
975 Rewrite (Right_Opnd (N),
976 Make_Type_Conversion (Loc,
977 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
978 Expression => Relocate_Node (Right_Opnd (N))));
979
780bfb21 980 -- Rewrite the conversion operand so that the original
981 -- node is retained, in order to avoid the warning for
982 -- redundant conversions in Resolve_Type_Conversion.
983
984 Rewrite (N, Relocate_Node (N));
985
f40f9731 986 Set_Etype (N, Target_Type);
780bfb21 987
f40f9731 988 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
989 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
990
991 -- Given that the target type is twice the size of the
992 -- source type, overflow is now impossible, so we can
993 -- safely kill the overflow check and return.
994
995 Set_Do_Overflow_Check (N, False);
996 return;
997 end if;
998 end if;
999 end if;
f32c377d 1000 end Conversion_Optimization;
ee6ba406 1001 end if;
1002
f40f9731 1003 -- Now see if an overflow check is required
1004
1005 declare
1006 Siz : constant Int := UI_To_Int (Esize (Rtyp));
1007 Dsiz : constant Int := Siz * 2;
1008 Opnod : Node_Id;
1009 Ctyp : Entity_Id;
1010 Opnd : Node_Id;
1011 Cent : RE_Id;
ee6ba406 1012
f40f9731 1013 begin
1014 -- Skip check if back end does overflow checks, or the overflow flag
df40eeb0 1015 -- is not set anyway, or we are not doing code expansion, or the
1016 -- parent node is a type conversion whose operand is an arithmetic
1017 -- operation on signed integers on which the expander can promote
bbbed24b 1018 -- later the operands to type Integer (see Expand_N_Type_Conversion).
ee6ba406 1019
f40f9731 1020 if Backend_Overflow_Checks_On_Target
1021 or else not Do_Overflow_Check (N)
a33565dd 1022 or else not Expander_Active
df40eeb0 1023 or else (Present (Parent (N))
1024 and then Nkind (Parent (N)) = N_Type_Conversion
1025 and then Integer_Promotion_Possible (Parent (N)))
f40f9731 1026 then
1027 return;
1028 end if;
ee6ba406 1029
f40f9731 1030 -- Otherwise, generate the full general code for front end overflow
1031 -- detection, which works by doing arithmetic in a larger type:
ee6ba406 1032
f40f9731 1033 -- x op y
ee6ba406 1034
f40f9731 1035 -- is expanded into
ee6ba406 1036
f40f9731 1037 -- Typ (Checktyp (x) op Checktyp (y));
ee6ba406 1038
f40f9731 1039 -- where Typ is the type of the original expression, and Checktyp is
1040 -- an integer type of sufficient length to hold the largest possible
1041 -- result.
ee6ba406 1042
f40f9731 1043 -- If the size of check type exceeds the size of Long_Long_Integer,
1044 -- we use a different approach, expanding to:
ee6ba406 1045
f40f9731 1046 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
ee6ba406 1047
f40f9731 1048 -- where xxx is Add, Multiply or Subtract as appropriate
ee6ba406 1049
f40f9731 1050 -- Find check type if one exists
1051
1052 if Dsiz <= Standard_Integer_Size then
1053 Ctyp := Standard_Integer;
ee6ba406 1054
f40f9731 1055 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1056 Ctyp := Standard_Long_Long_Integer;
1057
c9f84db7 1058 -- No check type exists, use runtime call
ee6ba406 1059
1060 else
f40f9731 1061 if Nkind (N) = N_Op_Add then
1062 Cent := RE_Add_With_Ovflo_Check;
ee6ba406 1063
f40f9731 1064 elsif Nkind (N) = N_Op_Multiply then
1065 Cent := RE_Multiply_With_Ovflo_Check;
ee6ba406 1066
f40f9731 1067 else
1068 pragma Assert (Nkind (N) = N_Op_Subtract);
1069 Cent := RE_Subtract_With_Ovflo_Check;
1070 end if;
1071
1072 Rewrite (N,
1073 OK_Convert_To (Typ,
1074 Make_Function_Call (Loc,
83c6c069 1075 Name => New_Occurrence_Of (RTE (Cent), Loc),
f40f9731 1076 Parameter_Associations => New_List (
1077 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1078 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
ee6ba406 1079
f40f9731 1080 Analyze_And_Resolve (N, Typ);
1081 return;
1082 end if;
ee6ba406 1083
f40f9731 1084 -- If we fall through, we have the case where we do the arithmetic
1085 -- in the next higher type and get the check by conversion. In these
1086 -- cases Ctyp is set to the type to be used as the check type.
ee6ba406 1087
f40f9731 1088 Opnod := Relocate_Node (N);
ee6ba406 1089
f40f9731 1090 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
ee6ba406 1091
f40f9731 1092 Analyze (Opnd);
1093 Set_Etype (Opnd, Ctyp);
1094 Set_Analyzed (Opnd, True);
1095 Set_Left_Opnd (Opnod, Opnd);
ee6ba406 1096
f40f9731 1097 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
ee6ba406 1098
f40f9731 1099 Analyze (Opnd);
1100 Set_Etype (Opnd, Ctyp);
1101 Set_Analyzed (Opnd, True);
1102 Set_Right_Opnd (Opnod, Opnd);
ee6ba406 1103
f40f9731 1104 -- The type of the operation changes to the base type of the check
1105 -- type, and we reset the overflow check indication, since clearly no
1106 -- overflow is possible now that we are using a double length type.
1107 -- We also set the Analyzed flag to avoid a recursive attempt to
1108 -- expand the node.
ee6ba406 1109
f40f9731 1110 Set_Etype (Opnod, Base_Type (Ctyp));
1111 Set_Do_Overflow_Check (Opnod, False);
1112 Set_Analyzed (Opnod, True);
ee6ba406 1113
f40f9731 1114 -- Now build the outer conversion
ee6ba406 1115
f40f9731 1116 Opnd := OK_Convert_To (Typ, Opnod);
1117 Analyze (Opnd);
1118 Set_Etype (Opnd, Typ);
9dfe12ae 1119
f40f9731 1120 -- In the discrete type case, we directly generate the range check
1121 -- for the outer operand. This range check will implement the
1122 -- required overflow check.
9dfe12ae 1123
f40f9731 1124 if Is_Discrete_Type (Typ) then
1125 Rewrite (N, Opnd);
1126 Generate_Range_Check
1127 (Expression (N), Typ, CE_Overflow_Check_Failed);
9dfe12ae 1128
f40f9731 1129 -- For other types, we enable overflow checking on the conversion,
1130 -- after setting the node as analyzed to prevent recursive attempts
1131 -- to expand the conversion node.
9dfe12ae 1132
f40f9731 1133 else
1134 Set_Analyzed (Opnd, True);
1135 Enable_Overflow_Check (Opnd);
1136 Rewrite (N, Opnd);
1137 end if;
1138
1139 exception
1140 when RE_Not_Available =>
1141 return;
1142 end;
0df9d43f 1143 end Apply_Arithmetic_Overflow_Strict;
3cce7f32 1144
1145 ----------------------------------------------------
1146 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1147 ----------------------------------------------------
1148
1149 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1150 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
3cce7f32 1151
1152 Loc : constant Source_Ptr := Sloc (Op);
1153 P : constant Node_Id := Parent (Op);
1154
49b3a812 1155 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1156 -- Operands and results are of this type when we convert
1157
3cce7f32 1158 Result_Type : constant Entity_Id := Etype (Op);
1159 -- Original result type
1160
db415383 1161 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 1162 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1163
1164 Lo, Hi : Uint;
1165 -- Ranges of values for result
1166
1167 begin
1168 -- Nothing to do if our parent is one of the following:
1169
0326b4d4 1170 -- Another signed integer arithmetic op
3cce7f32 1171 -- A membership operation
1172 -- A comparison operation
1173
1174 -- In all these cases, we will process at the higher level (and then
1175 -- this node will be processed during the downwards recursion that
0df9d43f 1176 -- is part of the processing in Minimize_Eliminate_Overflows).
3cce7f32 1177
1178 if Is_Signed_Integer_Arithmetic_Op (P)
b8a17a21 1179 or else Nkind (P) in N_Membership_Test
1180 or else Nkind (P) in N_Op_Compare
aa4b16cb 1181
70a2dff4 1182 -- This is also true for an alternative in a case expression
1183
1184 or else Nkind (P) = N_Case_Expression_Alternative
1185
1186 -- This is also true for a range operand in a membership test
aa4b16cb 1187
b8a17a21 1188 or else (Nkind (P) = N_Range
1189 and then Nkind (Parent (P)) in N_Membership_Test)
3cce7f32 1190 then
af90720d 1191 -- If_Expressions and Case_Expressions are treated as arithmetic
1192 -- ops, but if they appear in an assignment or similar contexts
1193 -- there is no overflow check that starts from that parent node,
1194 -- so apply check now.
1195
1196 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1197 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1198 then
1199 null;
1200 else
1201 return;
1202 end if;
3cce7f32 1203 end if;
1204
0326b4d4 1205 -- Otherwise, we have a top level arithmetic operation node, and this
21a55437 1206 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1207 -- modes. This is the case where we tell the machinery not to move into
1208 -- Bignum mode at this top level (of course the top level operation
1209 -- will still be in Bignum mode if either of its operands are of type
1210 -- Bignum).
3cce7f32 1211
0df9d43f 1212 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
3cce7f32 1213
1214 -- That call may but does not necessarily change the result type of Op.
1215 -- It is the job of this routine to undo such changes, so that at the
1216 -- top level, we have the proper type. This "undoing" is a point at
1217 -- which a final overflow check may be applied.
1218
f32c377d 1219 -- If the result type was not fiddled we are all set. We go to base
1220 -- types here because things may have been rewritten to generate the
1221 -- base type of the operand types.
3cce7f32 1222
f32c377d 1223 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
3cce7f32 1224 return;
1225
1226 -- Bignum case
1227
49b3a812 1228 elsif Is_RTE (Etype (Op), RE_Bignum) then
3cce7f32 1229
d94b5da2 1230 -- We need a sequence that looks like:
3cce7f32 1231
1232 -- Rnn : Result_Type;
1233
1234 -- declare
d94b5da2 1235 -- M : Mark_Id := SS_Mark;
3cce7f32 1236 -- begin
49b3a812 1237 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
3cce7f32 1238 -- SS_Release (M);
1239 -- end;
1240
1241 -- This block is inserted (using Insert_Actions), and then the node
1242 -- is replaced with a reference to Rnn.
1243
75b45a21 1244 -- If our parent is a conversion node then there is no point in
a36d34e4 1245 -- generating a conversion to Result_Type. Instead, we let the parent
75b45a21 1246 -- handle this. Note that this special case is not just about
1247 -- optimization. Consider
3cce7f32 1248
1249 -- A,B,C : Integer;
1250 -- ...
49b3a812 1251 -- X := Long_Long_Integer'Base (A * (B ** C));
3cce7f32 1252
1253 -- Now the product may fit in Long_Long_Integer but not in Integer.
21a55437 1254 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1255 -- overflow exception for this intermediate value.
3cce7f32 1256
1257 declare
49b3a812 1258 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3cce7f32 1259 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1260 RHS : Node_Id;
1261
1262 Rtype : Entity_Id;
1263
1264 begin
1265 RHS := Convert_From_Bignum (Op);
1266
1267 if Nkind (P) /= N_Type_Conversion then
49b3a812 1268 Convert_To_And_Rewrite (Result_Type, RHS);
3cce7f32 1269 Rtype := Result_Type;
1270
1271 -- Interesting question, do we need a check on that conversion
1272 -- operation. Answer, not if we know the result is in range.
1273 -- At the moment we are not taking advantage of this. To be
1274 -- looked at later ???
1275
1276 else
49b3a812 1277 Rtype := LLIB;
3cce7f32 1278 end if;
1279
1280 Insert_Before
1281 (First (Statements (Handled_Statement_Sequence (Blk))),
1282 Make_Assignment_Statement (Loc,
1283 Name => New_Occurrence_Of (Rnn, Loc),
1284 Expression => RHS));
1285
1286 Insert_Actions (Op, New_List (
1287 Make_Object_Declaration (Loc,
1288 Defining_Identifier => Rnn,
1289 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1290 Blk));
1291
1292 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1293 Analyze_And_Resolve (Op);
1294 end;
1295
af90720d 1296 -- Here we know the result is Long_Long_Integer'Base, or that it has
412f75eb 1297 -- been rewritten because the parent operation is a conversion. See
0df9d43f 1298 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
3cce7f32 1299
1300 else
f32c377d 1301 pragma Assert
1302 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
3cce7f32 1303
1304 -- All we need to do here is to convert the result to the proper
1305 -- result type. As explained above for the Bignum case, we can
1306 -- omit this if our parent is a type conversion.
1307
1308 if Nkind (P) /= N_Type_Conversion then
1309 Convert_To_And_Rewrite (Result_Type, Op);
1310 end if;
1311
1312 Analyze_And_Resolve (Op);
1313 end if;
1314 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
ee6ba406 1315
ee6ba406 1316 ----------------------------
1317 -- Apply_Constraint_Check --
1318 ----------------------------
1319
1320 procedure Apply_Constraint_Check
1321 (N : Node_Id;
1322 Typ : Entity_Id;
1323 No_Sliding : Boolean := False)
1324 is
1325 Desig_Typ : Entity_Id;
1326
1327 begin
7aafae1c 1328 -- No checks inside a generic (check the instantiations)
1329
ee6ba406 1330 if Inside_A_Generic then
1331 return;
7aafae1c 1332 end if;
ee6ba406 1333
6fb3c314 1334 -- Apply required constraint checks
7aafae1c 1335
1336 if Is_Scalar_Type (Typ) then
ee6ba406 1337 Apply_Scalar_Range_Check (N, Typ);
1338
1339 elsif Is_Array_Type (Typ) then
1340
05fcfafb 1341 -- A useful optimization: an aggregate with only an others clause
5f260d20 1342 -- always has the right bounds.
1343
1344 if Nkind (N) = N_Aggregate
1345 and then No (Expressions (N))
1346 and then Nkind
1347 (First (Choices (First (Component_Associations (N)))))
1348 = N_Others_Choice
1349 then
1350 return;
1351 end if;
1352
ee6ba406 1353 if Is_Constrained (Typ) then
1354 Apply_Length_Check (N, Typ);
1355
1356 if No_Sliding then
1357 Apply_Range_Check (N, Typ);
1358 end if;
1359 else
1360 Apply_Range_Check (N, Typ);
1361 end if;
1362
4fb5f0a0 1363 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
ee6ba406 1364 and then Has_Discriminants (Base_Type (Typ))
1365 and then Is_Constrained (Typ)
1366 then
1367 Apply_Discriminant_Check (N, Typ);
1368
1369 elsif Is_Access_Type (Typ) then
1370
1371 Desig_Typ := Designated_Type (Typ);
1372
1373 -- No checks necessary if expression statically null
1374
2af58f67 1375 if Known_Null (N) then
00c403ee 1376 if Can_Never_Be_Null (Typ) then
1377 Install_Null_Excluding_Check (N);
1378 end if;
ee6ba406 1379
1380 -- No sliding possible on access to arrays
1381
1382 elsif Is_Array_Type (Desig_Typ) then
1383 if Is_Constrained (Desig_Typ) then
1384 Apply_Length_Check (N, Typ);
1385 end if;
1386
1387 Apply_Range_Check (N, Typ);
1388
a63a0aad 1389 -- Do not install a discriminant check for a constrained subtype
1390 -- created for an unconstrained nominal type because the subtype
1391 -- has the correct constraints by construction.
1392
ee6ba406 1393 elsif Has_Discriminants (Base_Type (Desig_Typ))
a63a0aad 1394 and then Is_Constrained (Desig_Typ)
1395 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
ee6ba406 1396 then
1397 Apply_Discriminant_Check (N, Typ);
1398 end if;
fa7497e8 1399
bf3e1520 1400 -- Apply the 2005 Null_Excluding check. Note that we do not apply
00c403ee 1401 -- this check if the constraint node is illegal, as shown by having
1402 -- an error posted. This additional guard prevents cascaded errors
1403 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1404
fa7497e8 1405 if Can_Never_Be_Null (Typ)
1406 and then not Can_Never_Be_Null (Etype (N))
00c403ee 1407 and then not Error_Posted (N)
fa7497e8 1408 then
1409 Install_Null_Excluding_Check (N);
1410 end if;
ee6ba406 1411 end if;
1412 end Apply_Constraint_Check;
1413
1414 ------------------------------
1415 -- Apply_Discriminant_Check --
1416 ------------------------------
1417
1418 procedure Apply_Discriminant_Check
1419 (N : Node_Id;
1420 Typ : Entity_Id;
1421 Lhs : Node_Id := Empty)
1422 is
1423 Loc : constant Source_Ptr := Sloc (N);
1424 Do_Access : constant Boolean := Is_Access_Type (Typ);
1425 S_Typ : Entity_Id := Etype (N);
1426 Cond : Node_Id;
1427 T_Typ : Entity_Id;
1428
7be5088a 1429 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1430 -- A heap object with an indefinite subtype is constrained by its
1431 -- initial value, and assigning to it requires a constraint_check.
1432 -- The target may be an explicit dereference, or a renaming of one.
1433
ee6ba406 1434 function Is_Aliased_Unconstrained_Component return Boolean;
1435 -- It is possible for an aliased component to have a nominal
1436 -- unconstrained subtype (through instantiation). If this is a
1437 -- discriminated component assigned in the expansion of an aggregate
1438 -- in an initialization, the check must be suppressed. This unusual
2af58f67 1439 -- situation requires a predicate of its own.
ee6ba406 1440
7be5088a 1441 ----------------------------------
1442 -- Denotes_Explicit_Dereference --
1443 ----------------------------------
1444
1445 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1446 begin
1447 return
1448 Nkind (Obj) = N_Explicit_Dereference
1449 or else
1450 (Is_Entity_Name (Obj)
1451 and then Present (Renamed_Object (Entity (Obj)))
9474aa9c 1452 and then Nkind (Renamed_Object (Entity (Obj))) =
1453 N_Explicit_Dereference);
7be5088a 1454 end Denotes_Explicit_Dereference;
1455
ee6ba406 1456 ----------------------------------------
1457 -- Is_Aliased_Unconstrained_Component --
1458 ----------------------------------------
1459
1460 function Is_Aliased_Unconstrained_Component return Boolean is
1461 Comp : Entity_Id;
1462 Pref : Node_Id;
1463
1464 begin
1465 if Nkind (Lhs) /= N_Selected_Component then
1466 return False;
1467 else
1468 Comp := Entity (Selector_Name (Lhs));
1469 Pref := Prefix (Lhs);
1470 end if;
1471
1472 if Ekind (Comp) /= E_Component
1473 or else not Is_Aliased (Comp)
1474 then
1475 return False;
1476 end if;
1477
1478 return not Comes_From_Source (Pref)
1479 and then In_Instance
1480 and then not Is_Constrained (Etype (Comp));
1481 end Is_Aliased_Unconstrained_Component;
1482
1483 -- Start of processing for Apply_Discriminant_Check
1484
1485 begin
1486 if Do_Access then
1487 T_Typ := Designated_Type (Typ);
1488 else
1489 T_Typ := Typ;
1490 end if;
1491
105fa703 1492 -- If the expression is a function call that returns a limited object
1493 -- it cannot be copied. It is not clear how to perform the proper
1494 -- discriminant check in this case because the discriminant value must
1495 -- be retrieved from the constructed object itself.
1496
1497 if Nkind (N) = N_Function_Call
1498 and then Is_Limited_Type (Typ)
1499 and then Is_Entity_Name (Name (N))
1500 and then Returns_By_Ref (Entity (Name (N)))
1501 then
1502 return;
1503 end if;
1504
f0d65dae 1505 -- Only apply checks when generating code and discriminant checks are
1506 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1507 -- still analyze the expression to possibly issue errors on SPARK code
1508 -- when a run-time error can be detected at compile time.
1509
1510 if not GNATprove_Mode then
1511 if not Expander_Active
1512 or else Discriminant_Checks_Suppressed (T_Typ)
1513 then
1514 return;
1515 end if;
ee6ba406 1516 end if;
1517
feff2f05 1518 -- No discriminant checks necessary for an access when expression is
1519 -- statically Null. This is not only an optimization, it is fundamental
1520 -- because otherwise discriminant checks may be generated in init procs
1521 -- for types containing an access to a not-yet-frozen record, causing a
1522 -- deadly forward reference.
ee6ba406 1523
feff2f05 1524 -- Also, if the expression is of an access type whose designated type is
1525 -- incomplete, then the access value must be null and we suppress the
1526 -- check.
ee6ba406 1527
2af58f67 1528 if Known_Null (N) then
ee6ba406 1529 return;
1530
1531 elsif Is_Access_Type (S_Typ) then
1532 S_Typ := Designated_Type (S_Typ);
1533
1534 if Ekind (S_Typ) = E_Incomplete_Type then
1535 return;
1536 end if;
1537 end if;
1538
0577b0b1 1539 -- If an assignment target is present, then we need to generate the
1540 -- actual subtype if the target is a parameter or aliased object with
1541 -- an unconstrained nominal subtype.
1542
1543 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1544 -- subtype to the parameter and dereference cases, since other aliased
1545 -- objects are unconstrained (unless the nominal subtype is explicitly
7be5088a 1546 -- constrained).
ee6ba406 1547
1548 if Present (Lhs)
1549 and then (Present (Param_Entity (Lhs))
de54c5ab 1550 or else (Ada_Version < Ada_2005
0577b0b1 1551 and then not Is_Constrained (T_Typ)
ee6ba406 1552 and then Is_Aliased_View (Lhs)
0577b0b1 1553 and then not Is_Aliased_Unconstrained_Component)
de54c5ab 1554 or else (Ada_Version >= Ada_2005
0577b0b1 1555 and then not Is_Constrained (T_Typ)
7be5088a 1556 and then Denotes_Explicit_Dereference (Lhs)
0577b0b1 1557 and then Nkind (Original_Node (Lhs)) /=
1558 N_Function_Call))
ee6ba406 1559 then
1560 T_Typ := Get_Actual_Subtype (Lhs);
1561 end if;
1562
feff2f05 1563 -- Nothing to do if the type is unconstrained (this is the case where
1564 -- the actual subtype in the RM sense of N is unconstrained and no check
1565 -- is required).
ee6ba406 1566
1567 if not Is_Constrained (T_Typ) then
1568 return;
05fcfafb 1569
1570 -- Ada 2005: nothing to do if the type is one for which there is a
1571 -- partial view that is constrained.
1572
de54c5ab 1573 elsif Ada_Version >= Ada_2005
0d78d2d4 1574 and then Object_Type_Has_Constrained_Partial_View
d41a3f41 1575 (Typ => Base_Type (T_Typ),
1576 Scop => Current_Scope)
05fcfafb 1577 then
1578 return;
ee6ba406 1579 end if;
1580
00f91aef 1581 -- Nothing to do if the type is an Unchecked_Union
1582
1583 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1584 return;
1585 end if;
1586
8d11916f 1587 -- Suppress checks if the subtypes are the same. The check must be
feff2f05 1588 -- preserved in an assignment to a formal, because the constraint is
1589 -- given by the actual.
ee6ba406 1590
1591 if Nkind (Original_Node (N)) /= N_Allocator
1592 and then (No (Lhs)
8143bf7c 1593 or else not Is_Entity_Name (Lhs)
1594 or else No (Param_Entity (Lhs)))
ee6ba406 1595 then
1596 if (Etype (N) = Typ
1597 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1598 and then not Is_Aliased_View (Lhs)
1599 then
1600 return;
1601 end if;
1602
feff2f05 1603 -- We can also eliminate checks on allocators with a subtype mark that
1604 -- coincides with the context type. The context type may be a subtype
1605 -- without a constraint (common case, a generic actual).
ee6ba406 1606
1607 elsif Nkind (Original_Node (N)) = N_Allocator
1608 and then Is_Entity_Name (Expression (Original_Node (N)))
1609 then
1610 declare
9dfe12ae 1611 Alloc_Typ : constant Entity_Id :=
b6341c67 1612 Entity (Expression (Original_Node (N)));
ee6ba406 1613
1614 begin
1615 if Alloc_Typ = T_Typ
1616 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1617 and then Is_Entity_Name (
1618 Subtype_Indication (Parent (T_Typ)))
1619 and then Alloc_Typ = Base_Type (T_Typ))
1620
1621 then
1622 return;
1623 end if;
1624 end;
1625 end if;
1626
feff2f05 1627 -- See if we have a case where the types are both constrained, and all
1628 -- the constraints are constants. In this case, we can do the check
1629 -- successfully at compile time.
ee6ba406 1630
8d11916f 1631 -- We skip this check for the case where the node is rewritten as
d7ec9a29 1632 -- an allocator, because it already carries the context subtype,
1633 -- and extracting the discriminants from the aggregate is messy.
ee6ba406 1634
1635 if Is_Constrained (S_Typ)
1636 and then Nkind (Original_Node (N)) /= N_Allocator
1637 then
1638 declare
1639 DconT : Elmt_Id;
1640 Discr : Entity_Id;
1641 DconS : Elmt_Id;
1642 ItemS : Node_Id;
1643 ItemT : Node_Id;
1644
1645 begin
1646 -- S_Typ may not have discriminants in the case where it is a
feff2f05 1647 -- private type completed by a default discriminated type. In that
8d11916f 1648 -- case, we need to get the constraints from the underlying type.
feff2f05 1649 -- If the underlying type is unconstrained (i.e. has no default
1650 -- discriminants) no check is needed.
ee6ba406 1651
1652 if Has_Discriminants (S_Typ) then
1653 Discr := First_Discriminant (S_Typ);
1654 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1655
1656 else
1657 Discr := First_Discriminant (Underlying_Type (S_Typ));
1658 DconS :=
1659 First_Elmt
1660 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1661
1662 if No (DconS) then
1663 return;
1664 end if;
fccb5da7 1665
1666 -- A further optimization: if T_Typ is derived from S_Typ
1667 -- without imposing a constraint, no check is needed.
1668
1669 if Nkind (Original_Node (Parent (T_Typ))) =
1670 N_Full_Type_Declaration
1671 then
1672 declare
5c61a0ff 1673 Type_Def : constant Node_Id :=
b6341c67 1674 Type_Definition (Original_Node (Parent (T_Typ)));
fccb5da7 1675 begin
1676 if Nkind (Type_Def) = N_Derived_Type_Definition
1677 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1678 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1679 then
1680 return;
1681 end if;
1682 end;
1683 end if;
ee6ba406 1684 end if;
1685
86594966 1686 -- Constraint may appear in full view of type
1687
1688 if Ekind (T_Typ) = E_Private_Subtype
1689 and then Present (Full_View (T_Typ))
1690 then
d7ec9a29 1691 DconT :=
86594966 1692 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
86594966 1693 else
d7ec9a29 1694 DconT :=
1695 First_Elmt (Discriminant_Constraint (T_Typ));
86594966 1696 end if;
ee6ba406 1697
1698 while Present (Discr) loop
1699 ItemS := Node (DconS);
1700 ItemT := Node (DconT);
1701
00c403ee 1702 -- For a discriminated component type constrained by the
1703 -- current instance of an enclosing type, there is no
1704 -- applicable discriminant check.
1705
1706 if Nkind (ItemT) = N_Attribute_Reference
1707 and then Is_Access_Type (Etype (ItemT))
1708 and then Is_Entity_Name (Prefix (ItemT))
1709 and then Is_Type (Entity (Prefix (ItemT)))
1710 then
1711 return;
1712 end if;
1713
cc60bd16 1714 -- If the expressions for the discriminants are identical
1715 -- and it is side-effect free (for now just an entity),
1716 -- this may be a shared constraint, e.g. from a subtype
1717 -- without a constraint introduced as a generic actual.
1718 -- Examine other discriminants if any.
1719
1720 if ItemS = ItemT
1721 and then Is_Entity_Name (ItemS)
1722 then
1723 null;
1724
1725 elsif not Is_OK_Static_Expression (ItemS)
1726 or else not Is_OK_Static_Expression (ItemT)
1727 then
1728 exit;
ee6ba406 1729
cc60bd16 1730 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
ee6ba406 1731 if Do_Access then -- needs run-time check.
1732 exit;
1733 else
1734 Apply_Compile_Time_Constraint_Error
cb97ae5c 1735 (N, "incorrect value for discriminant&??",
f15731c4 1736 CE_Discriminant_Check_Failed, Ent => Discr);
ee6ba406 1737 return;
1738 end if;
1739 end if;
1740
1741 Next_Elmt (DconS);
1742 Next_Elmt (DconT);
1743 Next_Discriminant (Discr);
1744 end loop;
1745
1746 if No (Discr) then
1747 return;
1748 end if;
1749 end;
1750 end if;
1751
f0d65dae 1752 -- In GNATprove mode, we do not apply the checks
1753
1754 if GNATprove_Mode then
1755 return;
1756 end if;
1757
ee6ba406 1758 -- Here we need a discriminant check. First build the expression
1759 -- for the comparisons of the discriminants:
1760
1761 -- (n.disc1 /= typ.disc1) or else
1762 -- (n.disc2 /= typ.disc2) or else
1763 -- ...
1764 -- (n.discn /= typ.discn)
1765
1766 Cond := Build_Discriminant_Checks (N, T_Typ);
1767
3cce7f32 1768 -- If Lhs is set and is a parameter, then the condition is guarded by:
1769 -- lhs'constrained and then (condition built above)
ee6ba406 1770
1771 if Present (Param_Entity (Lhs)) then
1772 Cond :=
1773 Make_And_Then (Loc,
1774 Left_Opnd =>
1775 Make_Attribute_Reference (Loc,
1776 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1777 Attribute_Name => Name_Constrained),
1778 Right_Opnd => Cond);
1779 end if;
1780
1781 if Do_Access then
1782 Cond := Guard_Access (Cond, Loc, N);
1783 end if;
1784
1785 Insert_Action (N,
f15731c4 1786 Make_Raise_Constraint_Error (Loc,
1787 Condition => Cond,
1788 Reason => CE_Discriminant_Check_Failed));
ee6ba406 1789 end Apply_Discriminant_Check;
1790
2fe22c69 1791 -------------------------
1792 -- Apply_Divide_Checks --
1793 -------------------------
ee6ba406 1794
2fe22c69 1795 procedure Apply_Divide_Checks (N : Node_Id) is
ee6ba406 1796 Loc : constant Source_Ptr := Sloc (N);
1797 Typ : constant Entity_Id := Etype (N);
1798 Left : constant Node_Id := Left_Opnd (N);
1799 Right : constant Node_Id := Right_Opnd (N);
1800
db415383 1801 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
2fe22c69 1802 -- Current overflow checking mode
1803
ee6ba406 1804 LLB : Uint;
1805 Llo : Uint;
1806 Lhi : Uint;
1807 LOK : Boolean;
1808 Rlo : Uint;
1809 Rhi : Uint;
2fe22c69 1810 ROK : Boolean;
96da3284 1811
1812 pragma Warnings (Off, Lhi);
1813 -- Don't actually use this value
ee6ba406 1814
1815 begin
0df9d43f 1816 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1817 -- operating on signed integer types, then the only thing this routine
1818 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1819 -- procedure will (possibly later on during recursive downward calls),
1820 -- ensure that any needed overflow/division checks are properly applied.
2fe22c69 1821
1822 if Mode in Minimized_Or_Eliminated
2fe22c69 1823 and then Is_Signed_Integer_Type (Typ)
1824 then
1825 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1826 return;
1827 end if;
1828
1829 -- Proceed here in SUPPRESSED or CHECKED modes
1830
a33565dd 1831 if Expander_Active
13dbf220 1832 and then not Backend_Divide_Checks_On_Target
1833 and then Check_Needed (Right, Division_Check)
ee6ba406 1834 then
9c486805 1835 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
ee6ba406 1836
2fe22c69 1837 -- Deal with division check
ee6ba406 1838
2fe22c69 1839 if Do_Division_Check (N)
1840 and then not Division_Checks_Suppressed (Typ)
1841 then
1842 Apply_Division_Check (N, Rlo, Rhi, ROK);
ee6ba406 1843 end if;
1844
2fe22c69 1845 -- Deal with overflow check
1846
0df9d43f 1847 if Do_Overflow_Check (N)
1848 and then not Overflow_Checks_Suppressed (Etype (N))
1849 then
f3ccbbb3 1850 Set_Do_Overflow_Check (N, False);
1851
2fe22c69 1852 -- Test for extremely annoying case of xxx'First divided by -1
1853 -- for division of signed integer types (only overflow case).
ee6ba406 1854
ee6ba406 1855 if Nkind (N) = N_Op_Divide
1856 and then Is_Signed_Integer_Type (Typ)
1857 then
9c486805 1858 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
ee6ba406 1859 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1860
1861 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
2fe22c69 1862 and then
1863 ((not LOK) or else (Llo = LLB))
ee6ba406 1864 then
f72e7b2a 1865 -- Ensure that expressions are not evaluated twice (once
1866 -- for their runtime checks and once for their regular
1867 -- computation).
1868
1869 Force_Evaluation (Left, Mode => Strict);
1870 Force_Evaluation (Right, Mode => Strict);
1871
ee6ba406 1872 Insert_Action (N,
1873 Make_Raise_Constraint_Error (Loc,
1874 Condition =>
1875 Make_And_Then (Loc,
2fe22c69 1876 Left_Opnd =>
1877 Make_Op_Eq (Loc,
1878 Left_Opnd =>
1879 Duplicate_Subexpr_Move_Checks (Left),
1880 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
ee6ba406 1881
2fe22c69 1882 Right_Opnd =>
1883 Make_Op_Eq (Loc,
1884 Left_Opnd => Duplicate_Subexpr (Right),
1885 Right_Opnd => Make_Integer_Literal (Loc, -1))),
ee6ba406 1886
f15731c4 1887 Reason => CE_Overflow_Check_Failed));
ee6ba406 1888 end if;
1889 end if;
1890 end if;
1891 end if;
2fe22c69 1892 end Apply_Divide_Checks;
1893
1894 --------------------------
1895 -- Apply_Division_Check --
1896 --------------------------
1897
1898 procedure Apply_Division_Check
1899 (N : Node_Id;
1900 Rlo : Uint;
1901 Rhi : Uint;
1902 ROK : Boolean)
1903 is
1904 pragma Assert (Do_Division_Check (N));
1905
1906 Loc : constant Source_Ptr := Sloc (N);
f81a201b 1907 Right : constant Node_Id := Right_Opnd (N);
1908 Opnd : Node_Id;
2fe22c69 1909
1910 begin
a33565dd 1911 if Expander_Active
2fe22c69 1912 and then not Backend_Divide_Checks_On_Target
1913 and then Check_Needed (Right, Division_Check)
2fe22c69 1914
f81a201b 1915 -- See if division by zero possible, and if so generate test. This
1916 -- part of the test is not controlled by the -gnato switch, since it
1917 -- is a Division_Check and not an Overflow_Check.
f3ccbbb3 1918
f81a201b 1919 and then Do_Division_Check (N)
1920 then
1921 Set_Do_Division_Check (N, False);
75f4b34c 1922
f81a201b 1923 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1924 if Is_Floating_Point_Type (Etype (N)) then
1925 Opnd := Make_Real_Literal (Loc, Ureal_0);
1926 else
1927 Opnd := Make_Integer_Literal (Loc, 0);
2fe22c69 1928 end if;
f81a201b 1929
1930 Insert_Action (N,
1931 Make_Raise_Constraint_Error (Loc,
1932 Condition =>
1933 Make_Op_Eq (Loc,
1934 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1935 Right_Opnd => Opnd),
1936 Reason => CE_Divide_By_Zero));
2fe22c69 1937 end if;
1938 end if;
1939 end Apply_Division_Check;
ee6ba406 1940
5329ca64 1941 ----------------------------------
1942 -- Apply_Float_Conversion_Check --
1943 ----------------------------------
1944
feff2f05 1945 -- Let F and I be the source and target types of the conversion. The RM
1946 -- specifies that a floating-point value X is rounded to the nearest
1947 -- integer, with halfway cases being rounded away from zero. The rounded
1948 -- value of X is checked against I'Range.
1949
1950 -- The catch in the above paragraph is that there is no good way to know
1951 -- whether the round-to-integer operation resulted in overflow. A remedy is
1952 -- to perform a range check in the floating-point domain instead, however:
5329ca64 1953
5329ca64 1954 -- (1) The bounds may not be known at compile time
2af58f67 1955 -- (2) The check must take into account rounding or truncation.
5329ca64 1956 -- (3) The range of type I may not be exactly representable in F.
2af58f67 1957 -- (4) For the rounding case, The end-points I'First - 0.5 and
1958 -- I'Last + 0.5 may or may not be in range, depending on the
1959 -- sign of I'First and I'Last.
5329ca64 1960 -- (5) X may be a NaN, which will fail any comparison
1961
2af58f67 1962 -- The following steps correctly convert X with rounding:
feff2f05 1963
5329ca64 1964 -- (1) If either I'First or I'Last is not known at compile time, use
1965 -- I'Base instead of I in the next three steps and perform a
1966 -- regular range check against I'Range after conversion.
1967 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1968 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2af58f67 1969 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1970 -- In other words, take one of the closest floating-point numbers
1971 -- (which is an integer value) to I'First, and see if it is in
1972 -- range or not.
5329ca64 1973 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1974 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2af58f67 1975 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
5329ca64 1976 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1977 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1978
2af58f67 1979 -- For the truncating case, replace steps (2) and (3) as follows:
1980 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1981 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1982 -- Lo_OK be True.
1983 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1984 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
141d591a 1985 -- Hi_OK be True.
2af58f67 1986
5329ca64 1987 procedure Apply_Float_Conversion_Check
1988 (Ck_Node : Node_Id;
1989 Target_Typ : Entity_Id)
1990 is
feff2f05 1991 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1992 HB : constant Node_Id := Type_High_Bound (Target_Typ);
5329ca64 1993 Loc : constant Source_Ptr := Sloc (Ck_Node);
1994 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
feff2f05 1995 Target_Base : constant Entity_Id :=
b6341c67 1996 Implementation_Base_Type (Target_Typ);
feff2f05 1997
2af58f67 1998 Par : constant Node_Id := Parent (Ck_Node);
1999 pragma Assert (Nkind (Par) = N_Type_Conversion);
2000 -- Parent of check node, must be a type conversion
2001
2002 Truncate : constant Boolean := Float_Truncate (Par);
2003 Max_Bound : constant Uint :=
b6341c67 2004 UI_Expon
2005 (Machine_Radix_Value (Expr_Type),
2006 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
2af58f67 2007
5329ca64 2008 -- Largest bound, so bound plus or minus half is a machine number of F
2009
feff2f05 2010 Ifirst, Ilast : Uint;
2011 -- Bounds of integer type
2012
2013 Lo, Hi : Ureal;
2014 -- Bounds to check in floating-point domain
5329ca64 2015
feff2f05 2016 Lo_OK, Hi_OK : Boolean;
2017 -- True iff Lo resp. Hi belongs to I'Range
5329ca64 2018
feff2f05 2019 Lo_Chk, Hi_Chk : Node_Id;
2020 -- Expressions that are False iff check fails
2021
2022 Reason : RT_Exception_Code;
5329ca64 2023
2024 begin
41f06abf 2025 -- We do not need checks if we are not generating code (i.e. the full
2026 -- expander is not active). In SPARK mode, we specifically don't want
2027 -- the frontend to expand these checks, which are dealt with directly
2028 -- in the formal verification backend.
2029
a33565dd 2030 if not Expander_Active then
41f06abf 2031 return;
2032 end if;
2033
5329ca64 2034 if not Compile_Time_Known_Value (LB)
2035 or not Compile_Time_Known_Value (HB)
2036 then
2037 declare
feff2f05 2038 -- First check that the value falls in the range of the base type,
2039 -- to prevent overflow during conversion and then perform a
2040 -- regular range check against the (dynamic) bounds.
5329ca64 2041
5329ca64 2042 pragma Assert (Target_Base /= Target_Typ);
5329ca64 2043
46eb6933 2044 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
5329ca64 2045
2046 begin
2047 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2048 Set_Etype (Temp, Target_Base);
2049
2050 Insert_Action (Parent (Par),
2051 Make_Object_Declaration (Loc,
2052 Defining_Identifier => Temp,
2053 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2054 Expression => New_Copy_Tree (Par)),
2055 Suppress => All_Checks);
2056
2057 Insert_Action (Par,
2058 Make_Raise_Constraint_Error (Loc,
2059 Condition =>
2060 Make_Not_In (Loc,
2061 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2062 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2063 Reason => CE_Range_Check_Failed));
2064 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2065
2066 return;
2067 end;
2068 end if;
2069
7d86aa98 2070 -- Get the (static) bounds of the target type
5329ca64 2071
2072 Ifirst := Expr_Value (LB);
2073 Ilast := Expr_Value (HB);
2074
7d86aa98 2075 -- A simple optimization: if the expression is a universal literal,
2076 -- we can do the comparison with the bounds and the conversion to
2077 -- an integer type statically. The range checks are unchanged.
2078
2079 if Nkind (Ck_Node) = N_Real_Literal
2080 and then Etype (Ck_Node) = Universal_Real
2081 and then Is_Integer_Type (Target_Typ)
2082 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2083 then
2084 declare
2085 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2086
2087 begin
2088 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2089
4309515d 2090 -- Conversion is safe
7d86aa98 2091
2092 Rewrite (Parent (Ck_Node),
2093 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2094 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2095 return;
2096 end if;
2097 end;
2098 end if;
2099
5329ca64 2100 -- Check against lower bound
2101
2af58f67 2102 if Truncate and then Ifirst > 0 then
2103 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2104 Lo_OK := False;
2105
2106 elsif Truncate then
2107 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2108 Lo_OK := True;
2109
2110 elsif abs (Ifirst) < Max_Bound then
5329ca64 2111 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2112 Lo_OK := (Ifirst > 0);
2af58f67 2113
5329ca64 2114 else
2115 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2116 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2117 end if;
2118
2119 if Lo_OK then
2120
2121 -- Lo_Chk := (X >= Lo)
2122
2123 Lo_Chk := Make_Op_Ge (Loc,
2124 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2125 Right_Opnd => Make_Real_Literal (Loc, Lo));
2126
2127 else
2128 -- Lo_Chk := (X > Lo)
2129
2130 Lo_Chk := Make_Op_Gt (Loc,
2131 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2132 Right_Opnd => Make_Real_Literal (Loc, Lo));
2133 end if;
2134
2135 -- Check against higher bound
2136
2af58f67 2137 if Truncate and then Ilast < 0 then
2138 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
b2c42753 2139 Hi_OK := False;
2af58f67 2140
2141 elsif Truncate then
2142 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2143 Hi_OK := True;
2144
2145 elsif abs (Ilast) < Max_Bound then
5329ca64 2146 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2147 Hi_OK := (Ilast < 0);
2148 else
2149 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2150 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2151 end if;
2152
2153 if Hi_OK then
2154
2155 -- Hi_Chk := (X <= Hi)
2156
2157 Hi_Chk := Make_Op_Le (Loc,
2158 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2159 Right_Opnd => Make_Real_Literal (Loc, Hi));
2160
2161 else
2162 -- Hi_Chk := (X < Hi)
2163
2164 Hi_Chk := Make_Op_Lt (Loc,
2165 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2166 Right_Opnd => Make_Real_Literal (Loc, Hi));
2167 end if;
2168
feff2f05 2169 -- If the bounds of the target type are the same as those of the base
2170 -- type, the check is an overflow check as a range check is not
2171 -- performed in these cases.
5329ca64 2172
2173 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2174 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2175 then
2176 Reason := CE_Overflow_Check_Failed;
2177 else
2178 Reason := CE_Range_Check_Failed;
2179 end if;
2180
2181 -- Raise CE if either conditions does not hold
2182
2183 Insert_Action (Ck_Node,
2184 Make_Raise_Constraint_Error (Loc,
05fcfafb 2185 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
5329ca64 2186 Reason => Reason));
2187 end Apply_Float_Conversion_Check;
2188
ee6ba406 2189 ------------------------
2190 -- Apply_Length_Check --
2191 ------------------------
2192
2193 procedure Apply_Length_Check
2194 (Ck_Node : Node_Id;
2195 Target_Typ : Entity_Id;
2196 Source_Typ : Entity_Id := Empty)
2197 is
2198 begin
2199 Apply_Selected_Length_Checks
2200 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2201 end Apply_Length_Check;
2202
3b045963 2203 -------------------------------------
2204 -- Apply_Parameter_Aliasing_Checks --
2205 -------------------------------------
b73adb97 2206
3b045963 2207 procedure Apply_Parameter_Aliasing_Checks
2208 (Call : Node_Id;
2209 Subp : Entity_Id)
2210 is
bb569db0 2211 Loc : constant Source_Ptr := Sloc (Call);
2212
3b045963 2213 function May_Cause_Aliasing
2214 (Formal_1 : Entity_Id;
2215 Formal_2 : Entity_Id) return Boolean;
2216 -- Determine whether two formal parameters can alias each other
2217 -- depending on their modes.
2218
2219 function Original_Actual (N : Node_Id) return Node_Id;
2220 -- The expander may replace an actual with a temporary for the sake of
2221 -- side effect removal. The temporary may hide a potential aliasing as
2222 -- it does not share the address of the actual. This routine attempts
2223 -- to retrieve the original actual.
2224
bb569db0 2225 procedure Overlap_Check
2226 (Actual_1 : Node_Id;
2227 Actual_2 : Node_Id;
2228 Formal_1 : Entity_Id;
2229 Formal_2 : Entity_Id;
2230 Check : in out Node_Id);
2231 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2232 -- If detailed exception messages are enabled, the check is augmented to
2233 -- provide information about the names of the corresponding formals. See
2234 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2235 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2236 -- Check contains all and-ed simple tests generated so far or remains
2237 -- unchanged in the case of detailed exception messaged.
2238
3b045963 2239 ------------------------
2240 -- May_Cause_Aliasing --
2241 ------------------------
b73adb97 2242
3b045963 2243 function May_Cause_Aliasing
4a9e7f0c 2244 (Formal_1 : Entity_Id;
3b045963 2245 Formal_2 : Entity_Id) return Boolean
2246 is
2247 begin
2248 -- The following combination cannot lead to aliasing
2249
2250 -- Formal 1 Formal 2
2251 -- IN IN
2252
2253 if Ekind (Formal_1) = E_In_Parameter
a45d946f 2254 and then
2255 Ekind (Formal_2) = E_In_Parameter
3b045963 2256 then
2257 return False;
2258
2259 -- The following combinations may lead to aliasing
2260
2261 -- Formal 1 Formal 2
2262 -- IN OUT
2263 -- IN IN OUT
2264 -- OUT IN
2265 -- OUT IN OUT
2266 -- OUT OUT
2267
2268 else
2269 return True;
2270 end if;
2271 end May_Cause_Aliasing;
2272
2273 ---------------------
2274 -- Original_Actual --
2275 ---------------------
2276
2277 function Original_Actual (N : Node_Id) return Node_Id is
2278 begin
2279 if Nkind (N) = N_Type_Conversion then
2280 return Expression (N);
2281
2282 -- The expander created a temporary to capture the result of a type
2283 -- conversion where the expression is the real actual.
2284
2285 elsif Nkind (N) = N_Identifier
2286 and then Present (Original_Node (N))
2287 and then Nkind (Original_Node (N)) = N_Type_Conversion
2288 then
2289 return Expression (Original_Node (N));
2290 end if;
2291
2292 return N;
2293 end Original_Actual;
2294
bb569db0 2295 -------------------
2296 -- Overlap_Check --
2297 -------------------
2298
2299 procedure Overlap_Check
2300 (Actual_1 : Node_Id;
2301 Actual_2 : Node_Id;
2302 Formal_1 : Entity_Id;
2303 Formal_2 : Entity_Id;
2304 Check : in out Node_Id)
2305 is
29448168 2306 Cond : Node_Id;
2307 ID_Casing : constant Casing_Type :=
2308 Identifier_Casing (Source_Index (Current_Sem_Unit));
bb569db0 2309
2310 begin
2311 -- Generate:
2312 -- Actual_1'Overlaps_Storage (Actual_2)
2313
2314 Cond :=
2315 Make_Attribute_Reference (Loc,
2316 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2317 Attribute_Name => Name_Overlaps_Storage,
2318 Expressions =>
2319 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2320
2321 -- Generate the following check when detailed exception messages are
2322 -- enabled:
2323
2324 -- if Actual_1'Overlaps_Storage (Actual_2) then
2325 -- raise Program_Error with <detailed message>;
2326 -- end if;
2327
2328 if Exception_Extra_Info then
2329 Start_String;
2330
2331 -- Do not generate location information for internal calls
2332
2333 if Comes_From_Source (Call) then
2334 Store_String_Chars (Build_Location_String (Loc));
2335 Store_String_Char (' ');
2336 end if;
2337
2338 Store_String_Chars ("aliased parameters, actuals for """);
29448168 2339
2340 Get_Name_String (Chars (Formal_1));
2341 Set_Casing (ID_Casing);
2342 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2343
bb569db0 2344 Store_String_Chars (""" and """);
29448168 2345
2346 Get_Name_String (Chars (Formal_2));
2347 Set_Casing (ID_Casing);
2348 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2349
bb569db0 2350 Store_String_Chars (""" overlap");
2351
2352 Insert_Action (Call,
2353 Make_If_Statement (Loc,
2354 Condition => Cond,
2355 Then_Statements => New_List (
2356 Make_Raise_Statement (Loc,
2357 Name =>
83c6c069 2358 New_Occurrence_Of (Standard_Program_Error, Loc),
bb569db0 2359 Expression => Make_String_Literal (Loc, End_String)))));
2360
2361 -- Create a sequence of overlapping checks by and-ing them all
2362 -- together.
2363
2364 else
2365 if No (Check) then
2366 Check := Cond;
2367 else
2368 Check :=
2369 Make_And_Then (Loc,
2370 Left_Opnd => Check,
2371 Right_Opnd => Cond);
2372 end if;
2373 end if;
2374 end Overlap_Check;
2375
3b045963 2376 -- Local variables
2377
15fca308 2378 Actual_1 : Node_Id;
2379 Actual_2 : Node_Id;
2380 Check : Node_Id;
2381 Formal_1 : Entity_Id;
2382 Formal_2 : Entity_Id;
2383 Orig_Act_1 : Node_Id;
2384 Orig_Act_2 : Node_Id;
3b045963 2385
2386 -- Start of processing for Apply_Parameter_Aliasing_Checks
2387
2388 begin
bb569db0 2389 Check := Empty;
3b045963 2390
2391 Actual_1 := First_Actual (Call);
2392 Formal_1 := First_Formal (Subp);
2393 while Present (Actual_1) and then Present (Formal_1) loop
15fca308 2394 Orig_Act_1 := Original_Actual (Actual_1);
3b045963 2395
2396 -- Ensure that the actual is an object that is not passed by value.
2397 -- Elementary types are always passed by value, therefore actuals of
747426db 2398 -- such types cannot lead to aliasing. An aggregate is an object in
2399 -- Ada 2012, but an actual that is an aggregate cannot overlap with
4dc3174c 2400 -- another actual. A type that is By_Reference (such as an array of
2401 -- controlled types) is not subject to the check because any update
2402 -- will be done in place and a subsequent read will always see the
2403 -- correct value, see RM 6.2 (12/3).
3b045963 2404
15fca308 2405 if Nkind (Orig_Act_1) = N_Aggregate
2406 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2407 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
747426db 2408 then
2409 null;
2410
15fca308 2411 elsif Is_Object_Reference (Orig_Act_1)
2412 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2413 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
3b045963 2414 then
2415 Actual_2 := Next_Actual (Actual_1);
2416 Formal_2 := Next_Formal (Formal_1);
2417 while Present (Actual_2) and then Present (Formal_2) loop
15fca308 2418 Orig_Act_2 := Original_Actual (Actual_2);
3b045963 2419
2420 -- The other actual we are testing against must also denote
2421 -- a non pass-by-value object. Generate the check only when
2422 -- the mode of the two formals may lead to aliasing.
2423
15fca308 2424 if Is_Object_Reference (Orig_Act_2)
2425 and then not Is_Elementary_Type (Etype (Orig_Act_2))
3b045963 2426 and then May_Cause_Aliasing (Formal_1, Formal_2)
2427 then
72f889fa 2428 Remove_Side_Effects (Actual_1);
2429 Remove_Side_Effects (Actual_2);
2430
bb569db0 2431 Overlap_Check
2432 (Actual_1 => Actual_1,
2433 Actual_2 => Actual_2,
2434 Formal_1 => Formal_1,
2435 Formal_2 => Formal_2,
2436 Check => Check);
3b045963 2437 end if;
2438
2439 Next_Actual (Actual_2);
2440 Next_Formal (Formal_2);
2441 end loop;
2442 end if;
2443
2444 Next_Actual (Actual_1);
2445 Next_Formal (Formal_1);
2446 end loop;
2447
bb569db0 2448 -- Place a simple check right before the call
3b045963 2449
bb569db0 2450 if Present (Check) and then not Exception_Extra_Info then
3b045963 2451 Insert_Action (Call,
2452 Make_Raise_Program_Error (Loc,
bb569db0 2453 Condition => Check,
2454 Reason => PE_Aliased_Parameters));
3b045963 2455 end if;
2456 end Apply_Parameter_Aliasing_Checks;
2457
2458 -------------------------------------
2459 -- Apply_Parameter_Validity_Checks --
2460 -------------------------------------
2461
2462 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2463 Subp_Decl : Node_Id;
b73adb97 2464
4a9e7f0c 2465 procedure Add_Validity_Check
ed695684 2466 (Formal : Entity_Id;
2467 Prag_Nam : Name_Id;
4a9e7f0c 2468 For_Result : Boolean := False);
2469 -- Add a single 'Valid[_Scalar] check which verifies the initialization
ed695684 2470 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
4a9e7f0c 2471 -- Set flag For_Result when to verify the result of a function.
b73adb97 2472
b73adb97 2473 ------------------------
2474 -- Add_Validity_Check --
2475 ------------------------
2476
2477 procedure Add_Validity_Check
ed695684 2478 (Formal : Entity_Id;
2479 Prag_Nam : Name_Id;
b73adb97 2480 For_Result : Boolean := False)
2481 is
ed695684 2482 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2483 -- Create a pre/postcondition pragma that tests expression Expr
2484
2485 ------------------------------
2486 -- Build_Pre_Post_Condition --
2487 ------------------------------
2488
2489 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2490 Loc : constant Source_Ptr := Sloc (Subp);
2491 Decls : List_Id;
2492 Prag : Node_Id;
2493
2494 begin
2495 Prag :=
2496 Make_Pragma (Loc,
c33cb5ff 2497 Chars => Prag_Nam,
ed695684 2498 Pragma_Argument_Associations => New_List (
2499 Make_Pragma_Argument_Association (Loc,
2500 Chars => Name_Check,
2501 Expression => Expr)));
2502
2503 -- Add a message unless exception messages are suppressed
2504
2505 if not Exception_Locations_Suppressed then
2506 Append_To (Pragma_Argument_Associations (Prag),
2507 Make_Pragma_Argument_Association (Loc,
2508 Chars => Name_Message,
2509 Expression =>
2510 Make_String_Literal (Loc,
2511 Strval => "failed "
2512 & Get_Name_String (Prag_Nam)
2513 & " from "
2514 & Build_Location_String (Loc))));
2515 end if;
2516
2517 -- Insert the pragma in the tree
2518
2519 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2520 Add_Global_Declaration (Prag);
2521 Analyze (Prag);
2522
2523 -- PPC pragmas associated with subprogram bodies must be inserted
2524 -- in the declarative part of the body.
2525
2526 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2527 Decls := Declarations (Subp_Decl);
2528
2529 if No (Decls) then
2530 Decls := New_List;
2531 Set_Declarations (Subp_Decl, Decls);
2532 end if;
2533
2534 Prepend_To (Decls, Prag);
2535 Analyze (Prag);
2536
2537 -- For subprogram declarations insert the PPC pragma right after
2538 -- the declarative node.
2539
2540 else
2541 Insert_After_And_Analyze (Subp_Decl, Prag);
2542 end if;
2543 end Build_Pre_Post_Condition;
2544
2545 -- Local variables
2546
4a9e7f0c 2547 Loc : constant Source_Ptr := Sloc (Subp);
ed695684 2548 Typ : constant Entity_Id := Etype (Formal);
b73adb97 2549 Check : Node_Id;
2550 Nam : Name_Id;
2551
ed695684 2552 -- Start of processing for Add_Validity_Check
2553
b73adb97 2554 begin
9916a361 2555 -- For scalars, generate 'Valid test
b73adb97 2556
2557 if Is_Scalar_Type (Typ) then
2558 Nam := Name_Valid;
9916a361 2559
2560 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2561
2562 elsif Scalar_Part_Present (Typ) then
b73adb97 2563 Nam := Name_Valid_Scalars;
9916a361 2564
2565 -- No test needed for other cases (no scalars to test)
2566
b73adb97 2567 else
2568 return;
2569 end if;
2570
2571 -- Step 1: Create the expression to verify the validity of the
2572 -- context.
2573
ed695684 2574 Check := New_Occurrence_Of (Formal, Loc);
b73adb97 2575
2576 -- When processing a function result, use 'Result. Generate
2577 -- Context'Result
2578
2579 if For_Result then
2580 Check :=
2581 Make_Attribute_Reference (Loc,
2582 Prefix => Check,
2583 Attribute_Name => Name_Result);
2584 end if;
2585
2586 -- Generate:
2587 -- Context['Result]'Valid[_Scalars]
2588
2589 Check :=
2590 Make_Attribute_Reference (Loc,
2591 Prefix => Check,
2592 Attribute_Name => Nam);
2593
4a9e7f0c 2594 -- Step 2: Create a pre or post condition pragma
2595
ed695684 2596 Build_Pre_Post_Condition (Check);
4a9e7f0c 2597 end Add_Validity_Check;
2598
4a9e7f0c 2599 -- Local variables
2600
2601 Formal : Entity_Id;
4a9e7f0c 2602 Subp_Spec : Node_Id;
2603
3b045963 2604 -- Start of processing for Apply_Parameter_Validity_Checks
b73adb97 2605
2606 begin
4a9e7f0c 2607 -- Extract the subprogram specification and declaration nodes
b73adb97 2608
4a9e7f0c 2609 Subp_Spec := Parent (Subp);
a45d946f 2610
4a9e7f0c 2611 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2612 Subp_Spec := Parent (Subp_Spec);
2613 end if;
a45d946f 2614
4a9e7f0c 2615 Subp_Decl := Parent (Subp_Spec);
9e58d7ed 2616
b73adb97 2617 if not Comes_From_Source (Subp)
4a9e7f0c 2618
2619 -- Do not process formal subprograms because the corresponding actual
2620 -- will receive the proper checks when the instance is analyzed.
2621
2622 or else Is_Formal_Subprogram (Subp)
2623
95ac2d90 2624 -- Do not process imported subprograms since pre and postconditions
a45d946f 2625 -- are never verified on routines coming from a different language.
4a9e7f0c 2626
b73adb97 2627 or else Is_Imported (Subp)
2628 or else Is_Intrinsic_Subprogram (Subp)
4a9e7f0c 2629
a45d946f 2630 -- The PPC pragmas generated by this routine do not correspond to
2631 -- source aspects, therefore they cannot be applied to abstract
2632 -- subprograms.
4a9e7f0c 2633
7c443ae8 2634 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
4a9e7f0c 2635
a45d946f 2636 -- Do not consider subprogram renaminds because the renamed entity
2637 -- already has the proper PPC pragmas.
1bd93de5 2638
2639 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2640
a45d946f 2641 -- Do not process null procedures because there is no benefit of
2642 -- adding the checks to a no action routine.
4a9e7f0c 2643
2644 or else (Nkind (Subp_Spec) = N_Procedure_Specification
a45d946f 2645 and then Null_Present (Subp_Spec))
b73adb97 2646 then
2647 return;
2648 end if;
2649
4a9e7f0c 2650 -- Inspect all the formals applying aliasing and scalar initialization
2651 -- checks where applicable.
b73adb97 2652
2653 Formal := First_Formal (Subp);
2654 while Present (Formal) loop
4a9e7f0c 2655
2656 -- Generate the following scalar initialization checks for each
2657 -- formal parameter:
2658
2659 -- mode IN - Pre => Formal'Valid[_Scalars]
2660 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2661 -- mode OUT - Post => Formal'Valid[_Scalars]
2662
2663 if Check_Validity_Of_Parameters then
2664 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2665 Add_Validity_Check (Formal, Name_Precondition, False);
2666 end if;
2667
2668 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2669 Add_Validity_Check (Formal, Name_Postcondition, False);
2670 end if;
b73adb97 2671 end if;
2672
b73adb97 2673 Next_Formal (Formal);
2674 end loop;
2675
a45d946f 2676 -- Generate following scalar initialization check for function result:
4a9e7f0c 2677
2678 -- Post => Subp'Result'Valid[_Scalars]
b73adb97 2679
a45d946f 2680 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
4a9e7f0c 2681 Add_Validity_Check (Subp, Name_Postcondition, True);
b73adb97 2682 end if;
3b045963 2683 end Apply_Parameter_Validity_Checks;
b73adb97 2684
7aafae1c 2685 ---------------------------
2686 -- Apply_Predicate_Check --
2687 ---------------------------
2688
e60047e5 2689 procedure Apply_Predicate_Check
2690 (N : Node_Id;
2691 Typ : Entity_Id;
2692 Fun : Entity_Id := Empty)
2693 is
301d5ec3 2694 S : Entity_Id;
9e58d7ed 2695
7aafae1c 2696 begin
da2270e7 2697 if Predicate_Checks_Suppressed (Empty) then
2698 return;
301d5ec3 2699
2c011bc5 2700 elsif Predicates_Ignored (Typ) then
2701 return;
2702
da2270e7 2703 elsif Present (Predicate_Function (Typ)) then
301d5ec3 2704 S := Current_Scope;
9e58d7ed 2705 while Present (S) and then not Is_Subprogram (S) loop
301d5ec3 2706 S := Scope (S);
2707 end loop;
2708
ea822fd4 2709 -- A predicate check does not apply within internally generated
2710 -- subprograms, such as TSS functions.
2711
2712 if Within_Internal_Subprogram then
301d5ec3 2713 return;
22631b41 2714
96a2d100 2715 -- If the check appears within the predicate function itself, it
2716 -- means that the user specified a check whose formal is the
2717 -- predicated subtype itself, rather than some covering type. This
2718 -- is likely to be a common error, and thus deserves a warning.
22631b41 2719
0e9014a7 2720 elsif Present (S) and then S = Predicate_Function (Typ) then
e60047e5 2721 Error_Msg_NE
0c4abd51 2722 ("predicate check includes a call to& that requires a "
2723 & "predicate check??", Parent (N), Fun);
96a2d100 2724 Error_Msg_N
cb97ae5c 2725 ("\this will result in infinite recursion??", Parent (N));
e60047e5 2726
2727 if Is_First_Subtype (Typ) then
2728 Error_Msg_NE
0c4abd51 2729 ("\use an explicit subtype of& to carry the predicate",
e60047e5 2730 Parent (N), Typ);
2731 end if;
2732
96a2d100 2733 Insert_Action (N,
61016a7a 2734 Make_Raise_Storage_Error (Sloc (N),
2735 Reason => SE_Infinite_Recursion));
22631b41 2736
64cc9e5d 2737 -- Here for normal case of predicate active
e6281d47 2738
61016a7a 2739 else
164597c5 2740 -- If the expression is an IN parameter, the predicate will have
2741 -- been applied at the point of call. An additional check would
2742 -- be redundant, or will lead to out-of-scope references if the
2743 -- call appears within an aspect specification for a precondition.
2744
2745 -- However, if the reference is within the body of the subprogram
2746 -- that declares the formal, the predicate can safely be applied,
2747 -- which may be necessary for a nested call whose formal has a
2748 -- different predicate.
2749
2750 if Is_Entity_Name (N)
2751 and then Ekind (Entity (N)) = E_In_Parameter
2752 then
2753 declare
2754 In_Body : Boolean := False;
50948c8a 2755 P : Node_Id := Parent (N);
164597c5 2756
2757 begin
2758 while Present (P) loop
2759 if Nkind (P) = N_Subprogram_Body
2760 and then Corresponding_Spec (P) = Scope (Entity (N))
2761 then
2762 In_Body := True;
2763 exit;
2764 end if;
2765
2766 P := Parent (P);
2767 end loop;
2768
2769 if not In_Body then
2770 return;
2771 end if;
2772 end;
2773 end if;
2774
b04165c4 2775 -- If the type has a static predicate and the expression is known
2776 -- at compile time, see if the expression satisfies the predicate.
3a75f20b 2777
2778 Check_Expression_Against_Static_Predicate (N, Typ);
e6281d47 2779
e34cd69d 2780 if not Expander_Active then
2781 return;
2782 end if;
2783
2784 -- For an entity of the type, generate a call to the predicate
2785 -- function, unless its type is an actual subtype, which is not
2786 -- visible outside of the enclosing subprogram.
2787
2788 if Is_Entity_Name (N)
2789 and then not Is_Actual_Subtype (Typ)
2790 then
da2270e7 2791 Insert_Action (N,
2792 Make_Predicate_Check
2793 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2794
f9906591 2795 -- If the expression is not an entity it may have side effects,
bc885df9 2796 -- and the following call will create an object declaration for
2797 -- it. We disable checks during its analysis, to prevent an
2798 -- infinite recursion.
da2270e7 2799
e3b910d8 2800 -- If the prefix is an aggregate in an assignment, apply the
2801 -- check to the LHS after assignment, rather than create a
2802 -- redundant temporary. This is only necessary in rare cases
2803 -- of array types (including strings) initialized with an
2804 -- aggregate with an "others" clause, either coming from source
2805 -- or generated by an Initialize_Scalars pragma.
2806
2807 elsif Nkind (N) = N_Aggregate
2808 and then Nkind (Parent (N)) = N_Assignment_Statement
2809 then
2810 Insert_Action_After (Parent (N),
2811 Make_Predicate_Check
2812 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2813
da2270e7 2814 else
2815 Insert_Action (N,
bc885df9 2816 Make_Predicate_Check
2817 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
da2270e7 2818 end if;
301d5ec3 2819 end if;
7aafae1c 2820 end if;
2821 end Apply_Predicate_Check;
2822
ee6ba406 2823 -----------------------
2824 -- Apply_Range_Check --
2825 -----------------------
2826
2827 procedure Apply_Range_Check
2828 (Ck_Node : Node_Id;
2829 Target_Typ : Entity_Id;
2830 Source_Typ : Entity_Id := Empty)
2831 is
2832 begin
2833 Apply_Selected_Range_Checks
2834 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2835 end Apply_Range_Check;
2836
2837 ------------------------------
2838 -- Apply_Scalar_Range_Check --
2839 ------------------------------
2840
feff2f05 2841 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2842 -- off if it is already set on.
ee6ba406 2843
2844 procedure Apply_Scalar_Range_Check
2845 (Expr : Node_Id;
2846 Target_Typ : Entity_Id;
2847 Source_Typ : Entity_Id := Empty;
2848 Fixed_Int : Boolean := False)
2849 is
2850 Parnt : constant Node_Id := Parent (Expr);
2851 S_Typ : Entity_Id;
2852 Arr : Node_Id := Empty; -- initialize to prevent warning
2853 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
ee6ba406 2854
2855 Is_Subscr_Ref : Boolean;
2856 -- Set true if Expr is a subscript
2857
2858 Is_Unconstrained_Subscr_Ref : Boolean;
2859 -- Set true if Expr is a subscript of an unconstrained array. In this
2860 -- case we do not attempt to do an analysis of the value against the
2861 -- range of the subscript, since we don't know the actual subtype.
2862
2863 Int_Real : Boolean;
feff2f05 2864 -- Set to True if Expr should be regarded as a real value even though
2865 -- the type of Expr might be discrete.
ee6ba406 2866
a0a15971 2867 procedure Bad_Value (Warn : Boolean := False);
2868 -- Procedure called if value is determined to be out of range. Warn is
2869 -- True to force a warning instead of an error, even when SPARK_Mode is
2870 -- On.
ee6ba406 2871
9dfe12ae 2872 ---------------
2873 -- Bad_Value --
2874 ---------------
2875
a0a15971 2876 procedure Bad_Value (Warn : Boolean := False) is
ee6ba406 2877 begin
2878 Apply_Compile_Time_Constraint_Error
cb97ae5c 2879 (Expr, "value not in range of}??", CE_Range_Check_Failed,
a0a15971 2880 Ent => Target_Typ,
2881 Typ => Target_Typ,
2882 Warn => Warn);
ee6ba406 2883 end Bad_Value;
2884
9dfe12ae 2885 -- Start of processing for Apply_Scalar_Range_Check
2886
ee6ba406 2887 begin
2af58f67 2888 -- Return if check obviously not needed
ee6ba406 2889
2af58f67 2890 if
2891 -- Not needed inside generic
ee6ba406 2892
2af58f67 2893 Inside_A_Generic
2894
2895 -- Not needed if previous error
2896
2897 or else Target_Typ = Any_Type
2898 or else Nkind (Expr) = N_Error
2899
2900 -- Not needed for non-scalar type
2901
2902 or else not Is_Scalar_Type (Target_Typ)
2903
2904 -- Not needed if we know node raises CE already
2905
2906 or else Raises_Constraint_Error (Expr)
ee6ba406 2907 then
2908 return;
2909 end if;
2910
2911 -- Now, see if checks are suppressed
2912
2913 Is_Subscr_Ref :=
2914 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2915
2916 if Is_Subscr_Ref then
2917 Arr := Prefix (Parnt);
2918 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
cce84b09 2919
a3a76ccc 2920 if Is_Access_Type (Arr_Typ) then
245e87df 2921 Arr_Typ := Designated_Type (Arr_Typ);
a3a76ccc 2922 end if;
ee6ba406 2923 end if;
2924
2925 if not Do_Range_Check (Expr) then
2926
2927 -- Subscript reference. Check for Index_Checks suppressed
2928
2929 if Is_Subscr_Ref then
2930
2931 -- Check array type and its base type
2932
2933 if Index_Checks_Suppressed (Arr_Typ)
9dfe12ae 2934 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
ee6ba406 2935 then
2936 return;
2937
2938 -- Check array itself if it is an entity name
2939
2940 elsif Is_Entity_Name (Arr)
9dfe12ae 2941 and then Index_Checks_Suppressed (Entity (Arr))
ee6ba406 2942 then
2943 return;
2944
2945 -- Check expression itself if it is an entity name
2946
2947 elsif Is_Entity_Name (Expr)
9dfe12ae 2948 and then Index_Checks_Suppressed (Entity (Expr))
ee6ba406 2949 then
2950 return;
2951 end if;
2952
2953 -- All other cases, check for Range_Checks suppressed
2954
2955 else
2956 -- Check target type and its base type
2957
2958 if Range_Checks_Suppressed (Target_Typ)
9dfe12ae 2959 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
ee6ba406 2960 then
2961 return;
2962
2963 -- Check expression itself if it is an entity name
2964
2965 elsif Is_Entity_Name (Expr)
9dfe12ae 2966 and then Range_Checks_Suppressed (Entity (Expr))
ee6ba406 2967 then
2968 return;
2969
feff2f05 2970 -- If Expr is part of an assignment statement, then check left
2971 -- side of assignment if it is an entity name.
ee6ba406 2972
2973 elsif Nkind (Parnt) = N_Assignment_Statement
2974 and then Is_Entity_Name (Name (Parnt))
9dfe12ae 2975 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
ee6ba406 2976 then
2977 return;
2978 end if;
2979 end if;
2980 end if;
2981
9dfe12ae 2982 -- Do not set range checks if they are killed
2983
2984 if Nkind (Expr) = N_Unchecked_Type_Conversion
2985 and then Kill_Range_Check (Expr)
2986 then
2987 return;
2988 end if;
2989
2990 -- Do not set range checks for any values from System.Scalar_Values
39a0c1d3 2991 -- since the whole idea of such values is to avoid checking them.
9dfe12ae 2992
2993 if Is_Entity_Name (Expr)
2994 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2995 then
2996 return;
2997 end if;
2998
ee6ba406 2999 -- Now see if we need a check
3000
3001 if No (Source_Typ) then
3002 S_Typ := Etype (Expr);
3003 else
3004 S_Typ := Source_Typ;
3005 end if;
3006
3007 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
3008 return;
3009 end if;
3010
3011 Is_Unconstrained_Subscr_Ref :=
3012 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
3013
b40670e1 3014 -- Special checks for floating-point type
ee6ba406 3015
b40670e1 3016 if Is_Floating_Point_Type (S_Typ) then
3017
3018 -- Always do a range check if the source type includes infinities and
3019 -- the target type does not include infinities. We do not do this if
3020 -- range checks are killed.
cb388b10 3021 -- If the expression is a literal and the bounds of the type are
3022 -- static constants it may be possible to optimize the check.
b40670e1 3023
3024 if Has_Infinities (S_Typ)
3025 and then not Has_Infinities (Target_Typ)
3026 then
cb388b10 3027 -- If the expression is a literal and the bounds of the type are
3028 -- static constants it may be possible to optimize the check.
3029
3030 if Nkind (Expr) = N_Real_Literal then
3031 declare
3032 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3033 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3034
3035 begin
3036 if Compile_Time_Known_Value (Tlo)
3037 and then Compile_Time_Known_Value (Thi)
3038 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
3039 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
3040 then
3041 return;
3042 else
3043 Enable_Range_Check (Expr);
3044 end if;
3045 end;
3046
3047 else
3048 Enable_Range_Check (Expr);
3049 end if;
b40670e1 3050 end if;
ee6ba406 3051 end if;
3052
feff2f05 3053 -- Return if we know expression is definitely in the range of the target
3054 -- type as determined by Determine_Range. Right now we only do this for
3055 -- discrete types, and not fixed-point or floating-point types.
ee6ba406 3056
f2a06be9 3057 -- The additional less-precise tests below catch these cases
ee6ba406 3058
54022749 3059 -- In GNATprove_Mode, also deal with the case of a conversion from
3060 -- floating-point to integer. It is only possible because analysis
3061 -- in GNATprove rules out the possibility of a NaN or infinite value.
3062
feff2f05 3063 -- Note: skip this if we are given a source_typ, since the point of
3064 -- supplying a Source_Typ is to stop us looking at the expression.
3065 -- We could sharpen this test to be out parameters only ???
ee6ba406 3066
3067 if Is_Discrete_Type (Target_Typ)
54022749 3068 and then (Is_Discrete_Type (Etype (Expr))
3069 or else (GNATprove_Mode
3070 and then Is_Floating_Point_Type (Etype (Expr))))
ee6ba406 3071 and then not Is_Unconstrained_Subscr_Ref
3072 and then No (Source_Typ)
3073 then
3074 declare
ee6ba406 3075 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
552d7cbc 3076 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
ee6ba406 3077
3078 begin
3079 if Compile_Time_Known_Value (Tlo)
3080 and then Compile_Time_Known_Value (Thi)
3081 then
9dfe12ae 3082 declare
5bb74b99 3083 OK : Boolean := False; -- initialize to prevent warning
9dfe12ae 3084 Hiv : constant Uint := Expr_Value (Thi);
552d7cbc 3085 Lov : constant Uint := Expr_Value (Tlo);
5bb74b99 3086 Hi : Uint := No_Uint;
3087 Lo : Uint := No_Uint;
ee6ba406 3088
9dfe12ae 3089 begin
552d7cbc 3090 -- If range is null, we for sure have a constraint error (we
3091 -- don't even need to look at the value involved, since all
3092 -- possible values will raise CE).
9dfe12ae 3093
3094 if Lov > Hiv then
f4f2bf51 3095
a0a15971 3096 -- When SPARK_Mode is On, force a warning instead of
3097 -- an error in that case, as this likely corresponds
3098 -- to deactivated code.
3099
3100 Bad_Value (Warn => SPARK_Mode = On);
3101
3102 -- In GNATprove mode, we enable the range check so that
3103 -- GNATprove will issue a message if it cannot be proved.
f4f2bf51 3104
3105 if GNATprove_Mode then
3106 Enable_Range_Check (Expr);
f4f2bf51 3107 end if;
3108
9dfe12ae 3109 return;
3110 end if;
3111
3112 -- Otherwise determine range of value
3113
54022749 3114 if Is_Discrete_Type (Etype (Expr)) then
552d7cbc 3115 Determine_Range
3116 (Expr, OK, Lo, Hi, Assume_Valid => True);
54022749 3117
3118 -- When converting a float to an integer type, determine the
3119 -- range in real first, and then convert the bounds using
3120 -- UR_To_Uint which correctly rounds away from zero when
3121 -- half way between two integers, as required by normal
3122 -- Ada 95 rounding semantics. It is only possible because
3123 -- analysis in GNATprove rules out the possibility of a NaN
3124 -- or infinite value.
3125
3126 elsif GNATprove_Mode
3127 and then Is_Floating_Point_Type (Etype (Expr))
3128 then
3129 declare
54022749 3130 Hir : Ureal;
552d7cbc 3131 Lor : Ureal;
3132
54022749 3133 begin
552d7cbc 3134 Determine_Range_R
3135 (Expr, OK, Lor, Hir, Assume_Valid => True);
54022749 3136
3137 if OK then
3138 Lo := UR_To_Uint (Lor);
3139 Hi := UR_To_Uint (Hir);
3140 end if;
3141 end;
3142 end if;
9dfe12ae 3143
3144 if OK then
3145
3146 -- If definitely in range, all OK
ee6ba406 3147
ee6ba406 3148 if Lo >= Lov and then Hi <= Hiv then
3149 return;
3150
9dfe12ae 3151 -- If definitely not in range, warn
3152
ee6ba406 3153 elsif Lov > Hi or else Hiv < Lo then
e9dae6c3 3154
c59854a0 3155 -- Ignore out of range values for System.Priority in
3156 -- CodePeer mode since the actual target compiler may
3157 -- provide a wider range.
3158
3159 if not CodePeer_Mode
3160 or else Target_Typ /= RTE (RE_Priority)
3161 then
3162 Bad_Value;
3163 end if;
3164
ee6ba406 3165 return;
9dfe12ae 3166
3167 -- Otherwise we don't know
3168
3169 else
3170 null;
ee6ba406 3171 end if;
9dfe12ae 3172 end if;
3173 end;
ee6ba406 3174 end if;
3175 end;
3176 end if;
3177
3178 Int_Real :=
3179 Is_Floating_Point_Type (S_Typ)
3180 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3181
3182 -- Check if we can determine at compile time whether Expr is in the
9dfe12ae 3183 -- range of the target type. Note that if S_Typ is within the bounds
3184 -- of Target_Typ then this must be the case. This check is meaningful
3185 -- only if this is not a conversion between integer and real types.
ee6ba406 3186
3187 if not Is_Unconstrained_Subscr_Ref
b40670e1 3188 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
ee6ba406 3189 and then
7a1dabb3 3190 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
ac5f5168 3191
3192 -- Also check if the expression itself is in the range of the
3193 -- target type if it is a known at compile time value. We skip
3194 -- this test if S_Typ is set since for OUT and IN OUT parameters
3195 -- the Expr itself is not relevant to the checking.
3196
ee6ba406 3197 or else
ac5f5168 3198 (No (Source_Typ)
3199 and then Is_In_Range (Expr, Target_Typ,
3200 Assume_Valid => True,
3201 Fixed_Int => Fixed_Int,
3202 Int_Real => Int_Real)))
ee6ba406 3203 then
3204 return;
3205
9c486805 3206 elsif Is_Out_Of_Range (Expr, Target_Typ,
3207 Assume_Valid => True,
3208 Fixed_Int => Fixed_Int,
3209 Int_Real => Int_Real)
3210 then
ee6ba406 3211 Bad_Value;
3212 return;
3213
b40670e1 3214 -- Floating-point case
feff2f05 3215 -- In the floating-point case, we only do range checks if the type is
3216 -- constrained. We definitely do NOT want range checks for unconstrained
29d958a7 3217 -- types, since we want to have infinities, except when
3218 -- Check_Float_Overflow is set.
ee6ba406 3219
9dfe12ae 3220 elsif Is_Floating_Point_Type (S_Typ) then
29d958a7 3221 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
9dfe12ae 3222 Enable_Range_Check (Expr);
3223 end if;
ee6ba406 3224
9dfe12ae 3225 -- For all other cases we enable a range check unconditionally
ee6ba406 3226
3227 else
3228 Enable_Range_Check (Expr);
3229 return;
3230 end if;
ee6ba406 3231 end Apply_Scalar_Range_Check;
3232
3233 ----------------------------------
3234 -- Apply_Selected_Length_Checks --
3235 ----------------------------------
3236
3237 procedure Apply_Selected_Length_Checks
3238 (Ck_Node : Node_Id;
3239 Target_Typ : Entity_Id;
3240 Source_Typ : Entity_Id;
3241 Do_Static : Boolean)
3242 is
2b4f2458 3243 Checks_On : constant Boolean :=
3244 not Index_Checks_Suppressed (Target_Typ)
3245 or else
3246 not Length_Checks_Suppressed (Target_Typ);
3247
3248 Loc : constant Source_Ptr := Sloc (Ck_Node);
3249
ee6ba406 3250 Cond : Node_Id;
ee6ba406 3251 R_Cno : Node_Id;
2b4f2458 3252 R_Result : Check_Result;
ee6ba406 3253
3254 begin
18cb6d78 3255 -- Only apply checks when generating code
f0d65dae 3256
4098232e 3257 -- Note: this means that we lose some useful warnings if the expander
f0d65dae 3258 -- is not active.
4098232e 3259
18cb6d78 3260 if not Expander_Active then
ee6ba406 3261 return;
3262 end if;
3263
3264 R_Result :=
3265 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3266
3267 for J in 1 .. 2 loop
ee6ba406 3268 R_Cno := R_Result (J);
3269 exit when No (R_Cno);
3270
3271 -- A length check may mention an Itype which is attached to a
3272 -- subsequent node. At the top level in a package this can cause
3273 -- an order-of-elaboration problem, so we make sure that the itype
3274 -- is referenced now.
3275
3276 if Ekind (Current_Scope) = E_Package
3277 and then Is_Compilation_Unit (Current_Scope)
3278 then
3279 Ensure_Defined (Target_Typ, Ck_Node);
3280
3281 if Present (Source_Typ) then
3282 Ensure_Defined (Source_Typ, Ck_Node);
3283
3284 elsif Is_Itype (Etype (Ck_Node)) then
3285 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3286 end if;
3287 end if;
3288
feff2f05 3289 -- If the item is a conditional raise of constraint error, then have
3290 -- a look at what check is being performed and ???
ee6ba406 3291
3292 if Nkind (R_Cno) = N_Raise_Constraint_Error
3293 and then Present (Condition (R_Cno))
3294 then
3295 Cond := Condition (R_Cno);
3296
0577b0b1 3297 -- Case where node does not now have a dynamic check
ee6ba406 3298
0577b0b1 3299 if not Has_Dynamic_Length_Check (Ck_Node) then
3300
3301 -- If checks are on, just insert the check
3302
3303 if Checks_On then
3304 Insert_Action (Ck_Node, R_Cno);
3305
3306 if not Do_Static then
3307 Set_Has_Dynamic_Length_Check (Ck_Node);
3308 end if;
3309
3310 -- If checks are off, then analyze the length check after
3311 -- temporarily attaching it to the tree in case the relevant
6fb3c314 3312 -- condition can be evaluated at compile time. We still want a
0577b0b1 3313 -- compile time warning in this case.
3314
3315 else
3316 Set_Parent (R_Cno, Ck_Node);
3317 Analyze (R_Cno);
ee6ba406 3318 end if;
ee6ba406 3319 end if;
3320
3321 -- Output a warning if the condition is known to be True
3322
3323 if Is_Entity_Name (Cond)
3324 and then Entity (Cond) = Standard_True
3325 then
3326 Apply_Compile_Time_Constraint_Error
cb97ae5c 3327 (Ck_Node, "wrong length for array of}??",
f15731c4 3328 CE_Length_Check_Failed,
ee6ba406 3329 Ent => Target_Typ,
3330 Typ => Target_Typ);
3331
3332 -- If we were only doing a static check, or if checks are not
3333 -- on, then we want to delete the check, since it is not needed.
3334 -- We do this by replacing the if statement by a null statement
3335
3336 elsif Do_Static or else not Checks_On then
00c403ee 3337 Remove_Warning_Messages (R_Cno);
ee6ba406 3338 Rewrite (R_Cno, Make_Null_Statement (Loc));
3339 end if;
3340
3341 else
3342 Install_Static_Check (R_Cno, Loc);
3343 end if;
ee6ba406 3344 end loop;
ee6ba406 3345 end Apply_Selected_Length_Checks;
3346
3347 ---------------------------------
3348 -- Apply_Selected_Range_Checks --
3349 ---------------------------------
3350
3351 procedure Apply_Selected_Range_Checks
3352 (Ck_Node : Node_Id;
3353 Target_Typ : Entity_Id;
3354 Source_Typ : Entity_Id;
3355 Do_Static : Boolean)
3356 is
ee6ba406 3357 Checks_On : constant Boolean :=
f9bcba0d 3358 not Index_Checks_Suppressed (Target_Typ)
5372d110 3359 or else
3360 not Range_Checks_Suppressed (Target_Typ);
f9bcba0d 3361
2b4f2458 3362 Loc : constant Source_Ptr := Sloc (Ck_Node);
3363
f9bcba0d 3364 Cond : Node_Id;
3365 R_Cno : Node_Id;
3366 R_Result : Check_Result;
ee6ba406 3367
3368 begin
f0d65dae 3369 -- Only apply checks when generating code. In GNATprove mode, we do not
3370 -- apply the checks, but we still call Selected_Range_Checks to possibly
3371 -- issue errors on SPARK code when a run-time error can be detected at
3372 -- compile time.
3373
3374 if not GNATprove_Mode then
3375 if not Expander_Active or not Checks_On then
3376 return;
3377 end if;
ee6ba406 3378 end if;
3379
3380 R_Result :=
3381 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3382
f0d65dae 3383 if GNATprove_Mode then
3384 return;
3385 end if;
3386
ee6ba406 3387 for J in 1 .. 2 loop
ee6ba406 3388 R_Cno := R_Result (J);
3389 exit when No (R_Cno);
3390
f9bcba0d 3391 -- The range check requires runtime evaluation. Depending on what its
3392 -- triggering condition is, the check may be converted into a compile
3393 -- time constraint check.
ee6ba406 3394
3395 if Nkind (R_Cno) = N_Raise_Constraint_Error
3396 and then Present (Condition (R_Cno))
3397 then
3398 Cond := Condition (R_Cno);
3399
f9bcba0d 3400 -- Insert the range check before the related context. Note that
3401 -- this action analyses the triggering condition.
ee6ba406 3402
f9bcba0d 3403 Insert_Action (Ck_Node, R_Cno);
3404
3405 -- This old code doesn't make sense, why is the context flagged as
3406 -- requiring dynamic range checks now in the middle of generating
3407 -- them ???
3408
3409 if not Do_Static then
3410 Set_Has_Dynamic_Range_Check (Ck_Node);
ee6ba406 3411 end if;
3412
f9bcba0d 3413 -- The triggering condition evaluates to True, the range check
3414 -- can be converted into a compile time constraint check.
ee6ba406 3415
3416 if Is_Entity_Name (Cond)
3417 and then Entity (Cond) = Standard_True
3418 then
feff2f05 3419 -- Since an N_Range is technically not an expression, we have
3420 -- to set one of the bounds to C_E and then just flag the
3421 -- N_Range. The warning message will point to the lower bound
3422 -- and complain about a range, which seems OK.
ee6ba406 3423
3424 if Nkind (Ck_Node) = N_Range then
3425 Apply_Compile_Time_Constraint_Error
5372d110 3426 (Low_Bound (Ck_Node),
3427 "static range out of bounds of}??",
f15731c4 3428 CE_Range_Check_Failed,
ee6ba406 3429 Ent => Target_Typ,
3430 Typ => Target_Typ);
3431
3432 Set_Raises_Constraint_Error (Ck_Node);
3433
3434 else
3435 Apply_Compile_Time_Constraint_Error
5372d110 3436 (Ck_Node,
1581f2d7 3437 "static value out of range of}??",
f15731c4 3438 CE_Range_Check_Failed,
ee6ba406 3439 Ent => Target_Typ,
3440 Typ => Target_Typ);
3441 end if;
3442
3443 -- If we were only doing a static check, or if checks are not
3444 -- on, then we want to delete the check, since it is not needed.
3445 -- We do this by replacing the if statement by a null statement
3446
3fabf0ca 3447 elsif Do_Static then
00c403ee 3448 Remove_Warning_Messages (R_Cno);
ee6ba406 3449 Rewrite (R_Cno, Make_Null_Statement (Loc));
3450 end if;
3451
4ee78e36 3452 -- The range check raises Constraint_Error explicitly
f9bcba0d 3453
ee6ba406 3454 else
3455 Install_Static_Check (R_Cno, Loc);
3456 end if;
ee6ba406 3457 end loop;
ee6ba406 3458 end Apply_Selected_Range_Checks;
3459
3460 -------------------------------
3461 -- Apply_Static_Length_Check --
3462 -------------------------------
3463
3464 procedure Apply_Static_Length_Check
3465 (Expr : Node_Id;
3466 Target_Typ : Entity_Id;
3467 Source_Typ : Entity_Id := Empty)
3468 is
3469 begin
3470 Apply_Selected_Length_Checks
3471 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3472 end Apply_Static_Length_Check;
3473
3474 -------------------------------------
3475 -- Apply_Subscript_Validity_Checks --
3476 -------------------------------------
3477
3478 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3479 Sub : Node_Id;
3480
3481 begin
3482 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3483
3484 -- Loop through subscripts
3485
3486 Sub := First (Expressions (Expr));
3487 while Present (Sub) loop
3488
feff2f05 3489 -- Check one subscript. Note that we do not worry about enumeration
3490 -- type with holes, since we will convert the value to a Pos value
3491 -- for the subscript, and that convert will do the necessary validity
3492 -- check.
ee6ba406 3493
3494 Ensure_Valid (Sub, Holes_OK => True);
3495
3496 -- Move to next subscript
3497
3498 Sub := Next (Sub);
3499 end loop;
3500 end Apply_Subscript_Validity_Checks;
3501
3502 ----------------------------------
3503 -- Apply_Type_Conversion_Checks --
3504 ----------------------------------
3505
3506 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3507 Target_Type : constant Entity_Id := Etype (N);
3508 Target_Base : constant Entity_Id := Base_Type (Target_Type);
9dfe12ae 3509 Expr : constant Node_Id := Expression (N);
f4532fe1 3510
3511 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
141d591a 3512 -- Note: if Etype (Expr) is a private type without discriminants, its
3513 -- full view might have discriminants with defaults, so we need the
3514 -- full view here to retrieve the constraints.
ee6ba406 3515
3516 begin
3517 if Inside_A_Generic then
3518 return;
3519
f15731c4 3520 -- Skip these checks if serious errors detected, there are some nasty
ee6ba406 3521 -- situations of incomplete trees that blow things up.
3522
f15731c4 3523 elsif Serious_Errors_Detected > 0 then
ee6ba406 3524 return;
3525
ea822fd4 3526 -- Never generate discriminant checks for Unchecked_Union types
3527
3528 elsif Present (Expr_Type)
3529 and then Is_Unchecked_Union (Expr_Type)
3530 then
3531 return;
3532
feff2f05 3533 -- Scalar type conversions of the form Target_Type (Expr) require a
3534 -- range check if we cannot be sure that Expr is in the base type of
3535 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3536 -- are not quite the same condition from an implementation point of
3537 -- view, but clearly the second includes the first.
ee6ba406 3538
3539 elsif Is_Scalar_Type (Target_Type) then
3540 declare
3541 Conv_OK : constant Boolean := Conversion_OK (N);
feff2f05 3542 -- If the Conversion_OK flag on the type conversion is set and no
ea822fd4 3543 -- floating-point type is involved in the type conversion then
3544 -- fixed-point values must be read as integral values.
ee6ba406 3545
5329ca64 3546 Float_To_Int : constant Boolean :=
b6341c67 3547 Is_Floating_Point_Type (Expr_Type)
3548 and then Is_Integer_Type (Target_Type);
5329ca64 3549
ee6ba406 3550 begin
ee6ba406 3551 if not Overflow_Checks_Suppressed (Target_Base)
0df9d43f 3552 and then not Overflow_Checks_Suppressed (Target_Type)
e254d721 3553 and then not
7a1dabb3 3554 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
5329ca64 3555 and then not Float_To_Int
ee6ba406 3556 then
4642b679 3557 -- A small optimization: the attribute 'Pos applied to an
c59f2b2d 3558 -- enumeration type has a known range, even though its type is
3559 -- Universal_Integer. So in numeric conversions it is usually
3560 -- within range of the target integer type. Use the static
3561 -- bounds of the base types to check. Disable this optimization
3562 -- in case of a generic formal discrete type, because we don't
3563 -- necessarily know the upper bound yet.
259716a0 3564
3565 if Nkind (Expr) = N_Attribute_Reference
3566 and then Attribute_Name (Expr) = Name_Pos
3567 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
c59f2b2d 3568 and then not Is_Generic_Type (Etype (Prefix (Expr)))
259716a0 3569 and then Is_Integer_Type (Target_Type)
3570 then
3571 declare
4642b679 3572 Enum_T : constant Entity_Id :=
3573 Root_Type (Etype (Prefix (Expr)));
3574 Int_T : constant Entity_Id := Base_Type (Target_Type);
3575 Last_I : constant Uint :=
3576 Intval (High_Bound (Scalar_Range (Int_T)));
3577 Last_E : Uint;
259716a0 3578
3579 begin
4642b679 3580 -- Character types have no explicit literals, so we use
259716a0 3581 -- the known number of characters in the type.
3582
3583 if Root_Type (Enum_T) = Standard_Character then
3584 Last_E := UI_From_Int (255);
3585
3586 elsif Enum_T = Standard_Wide_Character
3587 or else Enum_T = Standard_Wide_Wide_Character
3588 then
3589 Last_E := UI_From_Int (65535);
3590
3591 else
4642b679 3592 Last_E :=
3593 Enumeration_Pos
259716a0 3594 (Entity (High_Bound (Scalar_Range (Enum_T))));
3595 end if;
3596
3597 if Last_E <= Last_I then
3598 null;
3599
3600 else
3601 Activate_Overflow_Check (N);
3602 end if;
3603 end;
3604
3605 else
3606 Activate_Overflow_Check (N);
3607 end if;
ee6ba406 3608 end if;
3609
3610 if not Range_Checks_Suppressed (Target_Type)
3611 and then not Range_Checks_Suppressed (Expr_Type)
3612 then
54022749 3613 if Float_To_Int
3614 and then not GNATprove_Mode
3615 then
5329ca64 3616 Apply_Float_Conversion_Check (Expr, Target_Type);
f81a201b 3617
5329ca64 3618 else
7d97dbc9 3619 -- Conversions involving fixed-point types are expanded
3620 -- separately, and do not need a Range_Check flag, except
c6056dd1 3621 -- in GNATprove_Mode, where the explicit constraint check
3622 -- will not be generated.
7d97dbc9 3623
95c16286 3624 if GNATprove_Mode
3625 or else not Is_Fixed_Point_Type (Expr_Type)
7d97dbc9 3626 then
3627 Apply_Scalar_Range_Check
3628 (Expr, Target_Type, Fixed_Int => Conv_OK);
3629
3630 else
3631 Set_Do_Range_Check (Expression (N), False);
3632 end if;
798afddc 3633
3634 -- If the target type has predicates, we need to indicate
ea822fd4 3635 -- the need for a check, even if Determine_Range finds that
3636 -- the value is within bounds. This may be the case e.g for
3637 -- a division with a constant denominator.
798afddc 3638
3639 if Has_Predicates (Target_Type) then
3640 Enable_Range_Check (Expr);
3641 end if;
5329ca64 3642 end if;
ee6ba406 3643 end if;
3644 end;
3645
3646 elsif Comes_From_Source (N)
f40f9731 3647 and then not Discriminant_Checks_Suppressed (Target_Type)
ee6ba406 3648 and then Is_Record_Type (Target_Type)
3649 and then Is_Derived_Type (Target_Type)
3650 and then not Is_Tagged_Type (Target_Type)
3651 and then not Is_Constrained (Target_Type)
9dfe12ae 3652 and then Present (Stored_Constraint (Target_Type))
ee6ba406 3653 then
141d591a 3654 -- An unconstrained derived type may have inherited discriminant.
9dfe12ae 3655 -- Build an actual discriminant constraint list using the stored
ee6ba406 3656 -- constraint, to verify that the expression of the parent type
ea822fd4 3657 -- satisfies the constraints imposed by the (unconstrained) derived
3658 -- type. This applies to value conversions, not to view conversions
3659 -- of tagged types.
ee6ba406 3660
3661 declare
9dfe12ae 3662 Loc : constant Source_Ptr := Sloc (N);
3663 Cond : Node_Id;
3664 Constraint : Elmt_Id;
3665 Discr_Value : Node_Id;
3666 Discr : Entity_Id;
3667
3668 New_Constraints : constant Elist_Id := New_Elmt_List;
3669 Old_Constraints : constant Elist_Id :=
b6341c67 3670 Discriminant_Constraint (Expr_Type);
ee6ba406 3671
3672 begin
9dfe12ae 3673 Constraint := First_Elmt (Stored_Constraint (Target_Type));
ee6ba406 3674 while Present (Constraint) loop
3675 Discr_Value := Node (Constraint);
3676
3677 if Is_Entity_Name (Discr_Value)
3678 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3679 then
3680 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3681
3682 if Present (Discr)
3683 and then Scope (Discr) = Base_Type (Expr_Type)
3684 then
3685 -- Parent is constrained by new discriminant. Obtain
feff2f05 3686 -- Value of original discriminant in expression. If the
3687 -- new discriminant has been used to constrain more than
3688 -- one of the stored discriminants, this will provide the
3689 -- required consistency check.
ee6ba406 3690
55868293 3691 Append_Elmt
3692 (Make_Selected_Component (Loc,
3693 Prefix =>
9dfe12ae 3694 Duplicate_Subexpr_No_Checks
3695 (Expr, Name_Req => True),
ee6ba406 3696 Selector_Name =>
3697 Make_Identifier (Loc, Chars (Discr))),
55868293 3698 New_Constraints);
ee6ba406 3699
3700 else
3701 -- Discriminant of more remote ancestor ???
3702
3703 return;
3704 end if;
3705
feff2f05 3706 -- Derived type definition has an explicit value for this
3707 -- stored discriminant.
ee6ba406 3708
3709 else
3710 Append_Elmt
9dfe12ae 3711 (Duplicate_Subexpr_No_Checks (Discr_Value),
3712 New_Constraints);
ee6ba406 3713 end if;
3714
3715 Next_Elmt (Constraint);
3716 end loop;
3717
3718 -- Use the unconstrained expression type to retrieve the
3719 -- discriminants of the parent, and apply momentarily the
3720 -- discriminant constraint synthesized above.
3721
3722 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3723 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3724 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3725
3726 Insert_Action (N,
f15731c4 3727 Make_Raise_Constraint_Error (Loc,
3728 Condition => Cond,
3729 Reason => CE_Discriminant_Check_Failed));
ee6ba406 3730 end;
3731
175a6969 3732 -- For arrays, checks are set now, but conversions are applied during
3733 -- expansion, to take into accounts changes of representation. The
3734 -- checks become range checks on the base type or length checks on the
3735 -- subtype, depending on whether the target type is unconstrained or
8e802312 3736 -- constrained. Note that the range check is put on the expression of a
3737 -- type conversion, while the length check is put on the type conversion
3738 -- itself.
175a6969 3739
3740 elsif Is_Array_Type (Target_Type) then
3741 if Is_Constrained (Target_Type) then
3742 Set_Do_Length_Check (N);
3743 else
3744 Set_Do_Range_Check (Expr);
3745 end if;
ee6ba406 3746 end if;
ee6ba406 3747 end Apply_Type_Conversion_Checks;
3748
3749 ----------------------------------------------
3750 -- Apply_Universal_Integer_Attribute_Checks --
3751 ----------------------------------------------
3752
3753 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3754 Loc : constant Source_Ptr := Sloc (N);
3755 Typ : constant Entity_Id := Etype (N);
3756
3757 begin
3758 if Inside_A_Generic then
3759 return;
3760
3761 -- Nothing to do if checks are suppressed
3762
3763 elsif Range_Checks_Suppressed (Typ)
3764 and then Overflow_Checks_Suppressed (Typ)
3765 then
3766 return;
3767
3768 -- Nothing to do if the attribute does not come from source. The
3769 -- internal attributes we generate of this type do not need checks,
3770 -- and furthermore the attempt to check them causes some circular
3771 -- elaboration orders when dealing with packed types.
3772
3773 elsif not Comes_From_Source (N) then
3774 return;
3775
9dfe12ae 3776 -- If the prefix is a selected component that depends on a discriminant
3777 -- the check may improperly expose a discriminant instead of using
3778 -- the bounds of the object itself. Set the type of the attribute to
3779 -- the base type of the context, so that a check will be imposed when
3780 -- needed (e.g. if the node appears as an index).
3781
3782 elsif Nkind (Prefix (N)) = N_Selected_Component
3783 and then Ekind (Typ) = E_Signed_Integer_Subtype
3784 and then Depends_On_Discriminant (Scalar_Range (Typ))
3785 then
3786 Set_Etype (N, Base_Type (Typ));
3787
feff2f05 3788 -- Otherwise, replace the attribute node with a type conversion node
3789 -- whose expression is the attribute, retyped to universal integer, and
3790 -- whose subtype mark is the target type. The call to analyze this
3791 -- conversion will set range and overflow checks as required for proper
3792 -- detection of an out of range value.
ee6ba406 3793
3794 else
3795 Set_Etype (N, Universal_Integer);
3796 Set_Analyzed (N, True);
3797
3798 Rewrite (N,
3799 Make_Type_Conversion (Loc,
3800 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3801 Expression => Relocate_Node (N)));
3802
3803 Analyze_And_Resolve (N, Typ);
3804 return;
3805 end if;
ee6ba406 3806 end Apply_Universal_Integer_Attribute_Checks;
3807
07c191b0 3808 -------------------------------------
3809 -- Atomic_Synchronization_Disabled --
3810 -------------------------------------
3811
3812 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3813 -- using a bogus check called Atomic_Synchronization. This is to make it
3814 -- more convenient to get exactly the same semantics as [Un]Suppress.
3815
3816 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3817 begin
b444f81d 3818 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3819 -- looks enabled, since it is never disabled.
3820
3821 if Debug_Flag_Dot_E then
3822 return False;
3823
3824 -- If debug flag d.d is set then always return True, i.e. all atomic
3825 -- sync looks disabled, since it always tests True.
3826
3827 elsif Debug_Flag_Dot_D then
3828 return True;
3829
3830 -- If entity present, then check result for that entity
3831
3832 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
07c191b0 3833 return Is_Check_Suppressed (E, Atomic_Synchronization);
b444f81d 3834
3835 -- Otherwise result depends on current scope setting
3836
07c191b0 3837 else
fafc6b97 3838 return Scope_Suppress.Suppress (Atomic_Synchronization);
07c191b0 3839 end if;
3840 end Atomic_Synchronization_Disabled;
3841
ee6ba406 3842 -------------------------------
3843 -- Build_Discriminant_Checks --
3844 -------------------------------
3845
3846 function Build_Discriminant_Checks
3847 (N : Node_Id;
314a23b6 3848 T_Typ : Entity_Id) return Node_Id
ee6ba406 3849 is
3850 Loc : constant Source_Ptr := Sloc (N);
3851 Cond : Node_Id;
3852 Disc : Elmt_Id;
3853 Disc_Ent : Entity_Id;
9dfe12ae 3854 Dref : Node_Id;
ee6ba406 3855 Dval : Node_Id;
3856
84d0d4a5 3857 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3858
bacd5059 3859 --------------------------------
3860 -- Aggregate_Discriminant_Val --
3861 --------------------------------
84d0d4a5 3862
3863 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3864 Assoc : Node_Id;
3865
3866 begin
feff2f05 3867 -- The aggregate has been normalized with named associations. We use
3868 -- the Chars field to locate the discriminant to take into account
3869 -- discriminants in derived types, which carry the same name as those
3870 -- in the parent.
84d0d4a5 3871
3872 Assoc := First (Component_Associations (N));
3873 while Present (Assoc) loop
3874 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3875 return Expression (Assoc);
3876 else
3877 Next (Assoc);
3878 end if;
3879 end loop;
3880
3881 -- Discriminant must have been found in the loop above
3882
3883 raise Program_Error;
3884 end Aggregate_Discriminant_Val;
3885
3886 -- Start of processing for Build_Discriminant_Checks
3887
ee6ba406 3888 begin
84d0d4a5 3889 -- Loop through discriminants evolving the condition
3890
ee6ba406 3891 Cond := Empty;
3892 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3893
9dfe12ae 3894 -- For a fully private type, use the discriminants of the parent type
ee6ba406 3895
3896 if Is_Private_Type (T_Typ)
3897 and then No (Full_View (T_Typ))
3898 then
3899 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3900 else
3901 Disc_Ent := First_Discriminant (T_Typ);
3902 end if;
3903
3904 while Present (Disc) loop
ee6ba406 3905 Dval := Node (Disc);
3906
3907 if Nkind (Dval) = N_Identifier
3908 and then Ekind (Entity (Dval)) = E_Discriminant
3909 then
3910 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3911 else
9dfe12ae 3912 Dval := Duplicate_Subexpr_No_Checks (Dval);
ee6ba406 3913 end if;
3914
00f91aef 3915 -- If we have an Unchecked_Union node, we can infer the discriminants
3916 -- of the node.
9dfe12ae 3917
00f91aef 3918 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3919 Dref := New_Copy (
3920 Get_Discriminant_Value (
3921 First_Discriminant (T_Typ),
3922 T_Typ,
3923 Stored_Constraint (T_Typ)));
3924
84d0d4a5 3925 elsif Nkind (N) = N_Aggregate then
3926 Dref :=
3927 Duplicate_Subexpr_No_Checks
3928 (Aggregate_Discriminant_Val (Disc_Ent));
3929
00f91aef 3930 else
3931 Dref :=
3932 Make_Selected_Component (Loc,
20cf157b 3933 Prefix =>
00f91aef 3934 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
20cf157b 3935 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
00f91aef 3936
3937 Set_Is_In_Discriminant_Check (Dref);
3938 end if;
9dfe12ae 3939
ee6ba406 3940 Evolve_Or_Else (Cond,
3941 Make_Op_Ne (Loc,
20cf157b 3942 Left_Opnd => Dref,
ee6ba406 3943 Right_Opnd => Dval));
3944
3945 Next_Elmt (Disc);
3946 Next_Discriminant (Disc_Ent);
3947 end loop;
3948
3949 return Cond;
3950 end Build_Discriminant_Checks;
3951
13dbf220 3952 ------------------
3953 -- Check_Needed --
3954 ------------------
3955
3956 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3957 N : Node_Id;
3958 P : Node_Id;
3959 K : Node_Kind;
3960 L : Node_Id;
3961 R : Node_Id;
3962
9b2068d4 3963 function Left_Expression (Op : Node_Id) return Node_Id;
3964 -- Return the relevant expression from the left operand of the given
3965 -- short circuit form: this is LO itself, except if LO is a qualified
3966 -- expression, a type conversion, or an expression with actions, in
3967 -- which case this is Left_Expression (Expression (LO)).
3968
3969 ---------------------
3970 -- Left_Expression --
3971 ---------------------
3972
3973 function Left_Expression (Op : Node_Id) return Node_Id is
3974 LE : Node_Id := Left_Opnd (Op);
3975 begin
20cf157b 3976 while Nkind_In (LE, N_Qualified_Expression,
3977 N_Type_Conversion,
3978 N_Expression_With_Actions)
9b2068d4 3979 loop
3980 LE := Expression (LE);
3981 end loop;
3982
3983 return LE;
3984 end Left_Expression;
3985
3986 -- Start of processing for Check_Needed
3987
13dbf220 3988 begin
3989 -- Always check if not simple entity
3990
3991 if Nkind (Nod) not in N_Has_Entity
3992 or else not Comes_From_Source (Nod)
3993 then
3994 return True;
3995 end if;
3996
3997 -- Look up tree for short circuit
3998
3999 N := Nod;
4000 loop
4001 P := Parent (N);
4002 K := Nkind (P);
4003
7b17e51b 4004 -- Done if out of subexpression (note that we allow generated stuff
4005 -- such as itype declarations in this context, to keep the loop going
4006 -- since we may well have generated such stuff in complex situations.
4007 -- Also done if no parent (probably an error condition, but no point
39a0c1d3 4008 -- in behaving nasty if we find it).
7b17e51b 4009
4010 if No (P)
4011 or else (K not in N_Subexpr and then Comes_From_Source (P))
4012 then
13dbf220 4013 return True;
4014
7b17e51b 4015 -- Or/Or Else case, where test is part of the right operand, or is
4016 -- part of one of the actions associated with the right operand, and
4017 -- the left operand is an equality test.
13dbf220 4018
7b17e51b 4019 elsif K = N_Op_Or then
13dbf220 4020 exit when N = Right_Opnd (P)
9b2068d4 4021 and then Nkind (Left_Expression (P)) = N_Op_Eq;
13dbf220 4022
7b17e51b 4023 elsif K = N_Or_Else then
4024 exit when (N = Right_Opnd (P)
4025 or else
4026 (Is_List_Member (N)
4027 and then List_Containing (N) = Actions (P)))
9b2068d4 4028 and then Nkind (Left_Expression (P)) = N_Op_Eq;
13dbf220 4029
7b17e51b 4030 -- Similar test for the And/And then case, where the left operand
4031 -- is an inequality test.
4032
4033 elsif K = N_Op_And then
13dbf220 4034 exit when N = Right_Opnd (P)
9b2068d4 4035 and then Nkind (Left_Expression (P)) = N_Op_Ne;
7b17e51b 4036
4037 elsif K = N_And_Then then
4038 exit when (N = Right_Opnd (P)
4039 or else
4040 (Is_List_Member (N)
20cf157b 4041 and then List_Containing (N) = Actions (P)))
9b2068d4 4042 and then Nkind (Left_Expression (P)) = N_Op_Ne;
13dbf220 4043 end if;
4044
4045 N := P;
4046 end loop;
4047
4048 -- If we fall through the loop, then we have a conditional with an
9b2068d4 4049 -- appropriate test as its left operand, so look further.
4050
4051 L := Left_Expression (P);
4052
4053 -- L is an "=" or "/=" operator: extract its operands
13dbf220 4054
13dbf220 4055 R := Right_Opnd (L);
4056 L := Left_Opnd (L);
4057
4058 -- Left operand of test must match original variable
4059
20cf157b 4060 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
13dbf220 4061 return True;
4062 end if;
4063
2af58f67 4064 -- Right operand of test must be key value (zero or null)
13dbf220 4065
4066 case Check is
4067 when Access_Check =>
2af58f67 4068 if not Known_Null (R) then
13dbf220 4069 return True;
4070 end if;
4071
4072 when Division_Check =>
4073 if not Compile_Time_Known_Value (R)
4074 or else Expr_Value (R) /= Uint_0
4075 then
4076 return True;
4077 end if;
2af58f67 4078
4079 when others =>
4080 raise Program_Error;
13dbf220 4081 end case;
4082
4083 -- Here we have the optimizable case, warn if not short-circuited
4084
4085 if K = N_Op_And or else K = N_Op_Or then
c4968aa2 4086 Error_Msg_Warn := SPARK_Mode /= On;
4098232e 4087
13dbf220 4088 case Check is
4089 when Access_Check =>
4098232e 4090 if GNATprove_Mode then
4091 Error_Msg_N
4092 ("Constraint_Error might have been raised (access check)",
4093 Parent (Nod));
4094 else
4095 Error_Msg_N
4096 ("Constraint_Error may be raised (access check)??",
4097 Parent (Nod));
4098 end if;
4099
13dbf220 4100 when Division_Check =>
4098232e 4101 if GNATprove_Mode then
4102 Error_Msg_N
4103 ("Constraint_Error might have been raised (zero divide)",
4104 Parent (Nod));
4105 else
4106 Error_Msg_N
4107 ("Constraint_Error may be raised (zero divide)??",
4108 Parent (Nod));
4109 end if;
2af58f67 4110
4111 when others =>
4112 raise Program_Error;
13dbf220 4113 end case;
4114
4115 if K = N_Op_And then
e977c0cf 4116 Error_Msg_N -- CODEFIX
cb97ae5c 4117 ("use `AND THEN` instead of AND??", P);
13dbf220 4118 else
e977c0cf 4119 Error_Msg_N -- CODEFIX
cb97ae5c 4120 ("use `OR ELSE` instead of OR??", P);
13dbf220 4121 end if;
4122
6fb3c314 4123 -- If not short-circuited, we need the check
13dbf220 4124
4125 return True;
4126
4127 -- If short-circuited, we can omit the check
4128
4129 else
4130 return False;
4131 end if;
4132 end Check_Needed;
4133
ee6ba406 4134 -----------------------------------
4135 -- Check_Valid_Lvalue_Subscripts --
4136 -----------------------------------
4137
4138 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4139 begin
4140 -- Skip this if range checks are suppressed
4141
4142 if Range_Checks_Suppressed (Etype (Expr)) then
4143 return;
4144
feff2f05 4145 -- Only do this check for expressions that come from source. We assume
4146 -- that expander generated assignments explicitly include any necessary
4147 -- checks. Note that this is not just an optimization, it avoids
39a0c1d3 4148 -- infinite recursions.
ee6ba406 4149
4150 elsif not Comes_From_Source (Expr) then
4151 return;
4152
4153 -- For a selected component, check the prefix
4154
4155 elsif Nkind (Expr) = N_Selected_Component then
4156 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4157 return;
4158
4159 -- Case of indexed component
4160
4161 elsif Nkind (Expr) = N_Indexed_Component then
4162 Apply_Subscript_Validity_Checks (Expr);
4163
feff2f05 4164 -- Prefix may itself be or contain an indexed component, and these
4165 -- subscripts need checking as well.
ee6ba406 4166
4167 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4168 end if;
4169 end Check_Valid_Lvalue_Subscripts;
4170
fa7497e8 4171 ----------------------------------
4172 -- Null_Exclusion_Static_Checks --
4173 ----------------------------------
4174
e9998840 4175 procedure Null_Exclusion_Static_Checks
69733a9a 4176 (N : Node_Id;
4177 Comp : Node_Id := Empty;
4178 Array_Comp : Boolean := False)
e9998840 4179 is
b1e656fb 4180 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4181 Kind : constant Node_Kind := Nkind (N);
4182 Error_Nod : Node_Id;
4183 Expr : Node_Id;
4184 Typ : Entity_Id;
fa7497e8 4185
13dbf220 4186 begin
0577b0b1 4187 pragma Assert
b1e656fb 4188 (Nkind_In (Kind, N_Component_Declaration,
4189 N_Discriminant_Specification,
4190 N_Function_Specification,
4191 N_Object_Declaration,
4192 N_Parameter_Specification));
0577b0b1 4193
b1e656fb 4194 if Kind = N_Function_Specification then
0577b0b1 4195 Typ := Etype (Defining_Entity (N));
4196 else
4197 Typ := Etype (Defining_Identifier (N));
4198 end if;
fa7497e8 4199
b1e656fb 4200 case Kind is
13dbf220 4201 when N_Component_Declaration =>
4202 if Present (Access_Definition (Component_Definition (N))) then
b1e656fb 4203 Error_Nod := Component_Definition (N);
13dbf220 4204 else
b1e656fb 4205 Error_Nod := Subtype_Indication (Component_Definition (N));
13dbf220 4206 end if;
5329ca64 4207
0577b0b1 4208 when N_Discriminant_Specification =>
b1e656fb 4209 Error_Nod := Discriminant_Type (N);
0577b0b1 4210
4211 when N_Function_Specification =>
b1e656fb 4212 Error_Nod := Result_Definition (N);
0577b0b1 4213
4214 when N_Object_Declaration =>
b1e656fb 4215 Error_Nod := Object_Definition (N);
0577b0b1 4216
4217 when N_Parameter_Specification =>
b1e656fb 4218 Error_Nod := Parameter_Type (N);
0577b0b1 4219
13dbf220 4220 when others =>
4221 raise Program_Error;
4222 end case;
5329ca64 4223
0577b0b1 4224 if Has_Null then
5329ca64 4225
0577b0b1 4226 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4227 -- applied to an access [sub]type.
5329ca64 4228
0577b0b1 4229 if not Is_Access_Type (Typ) then
503f7fd3 4230 Error_Msg_N
b1e656fb 4231 ("`NOT NULL` allowed only for an access type", Error_Nod);
5329ca64 4232
feff2f05 4233 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
0577b0b1 4234 -- be applied to a [sub]type that does not exclude null already.
4235
b1e656fb 4236 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
503f7fd3 4237 Error_Msg_NE
00c403ee 4238 ("`NOT NULL` not allowed (& already excludes null)",
b1e656fb 4239 Error_Nod, Typ);
0577b0b1 4240 end if;
13dbf220 4241 end if;
5329ca64 4242
cc60bd16 4243 -- Check that null-excluding objects are always initialized, except for
4244 -- deferred constants, for which the expression will appear in the full
4245 -- declaration.
13dbf220 4246
b1e656fb 4247 if Kind = N_Object_Declaration
84d0d4a5 4248 and then No (Expression (N))
cc60bd16 4249 and then not Constant_Present (N)
feff2f05 4250 and then not No_Initialization (N)
13dbf220 4251 then
e9998840 4252 if Present (Comp) then
4253
b1ff36e7 4254 -- Specialize the warning message to indicate that we are dealing
e9998840 4255 -- with an uninitialized composite object that has a defaulted
4256 -- null-excluding component.
4257
4258 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4259 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4260
69733a9a 4261 Discard_Node
4262 (Compile_Time_Constraint_Error
4263 (N => N,
4264 Msg =>
4265 "(Ada 2005) null-excluding component % of object % must "
4266 & "be initialized??",
4267 Ent => Defining_Identifier (Comp)));
4268
4269 -- This is a case of an array with null-excluding components, so
4270 -- indicate that in the warning.
4271
4272 elsif Array_Comp then
4273 Discard_Node
4274 (Compile_Time_Constraint_Error
4275 (N => N,
4276 Msg =>
4277 "(Ada 2005) null-excluding array components must "
4278 & "be initialized??",
4279 Ent => Defining_Identifier (N)));
4280
4281 -- Normal case of object of a null-excluding access type
b1ff36e7 4282
e9998840 4283 else
69733a9a 4284 -- Add an expression that assigns null. This node is needed by
4285 -- Apply_Compile_Time_Constraint_Error, which will replace this
4286 -- with a Constraint_Error node.
4287
4288 Set_Expression (N, Make_Null (Sloc (N)));
4289 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4290
e9998840 4291 Apply_Compile_Time_Constraint_Error
4292 (N => Expression (N),
4293 Msg =>
4294 "(Ada 2005) null-excluding objects must be initialized??",
4295 Reason => CE_Null_Not_Allowed);
4296 end if;
13dbf220 4297 end if;
5329ca64 4298
cc60bd16 4299 -- Check that a null-excluding component, formal or object is not being
4300 -- assigned a null value. Otherwise generate a warning message and
2c145f84 4301 -- replace Expression (N) by an N_Constraint_Error node.
13dbf220 4302
b1e656fb 4303 if Kind /= N_Function_Specification then
0577b0b1 4304 Expr := Expression (N);
5329ca64 4305
2af58f67 4306 if Present (Expr) and then Known_Null (Expr) then
b1e656fb 4307 case Kind is
99378362 4308 when N_Component_Declaration
4309 | N_Discriminant_Specification
4310 =>
7189d17f 4311 Apply_Compile_Time_Constraint_Error
0577b0b1 4312 (N => Expr,
99378362 4313 Msg =>
4314 "(Ada 2005) null not allowed in null-excluding "
4315 & "components??",
0577b0b1 4316 Reason => CE_Null_Not_Allowed);
5329ca64 4317
0577b0b1 4318 when N_Object_Declaration =>
7189d17f 4319 Apply_Compile_Time_Constraint_Error
0577b0b1 4320 (N => Expr,
99378362 4321 Msg =>
4322 "(Ada 2005) null not allowed in null-excluding "
4323 & "objects??",
0577b0b1 4324 Reason => CE_Null_Not_Allowed);
5329ca64 4325
0577b0b1 4326 when N_Parameter_Specification =>
7189d17f 4327 Apply_Compile_Time_Constraint_Error
0577b0b1 4328 (N => Expr,
99378362 4329 Msg =>
4330 "(Ada 2005) null not allowed in null-excluding "
4331 & "formals??",
0577b0b1 4332 Reason => CE_Null_Not_Allowed);
13dbf220 4333
4334 when others =>
4335 null;
5329ca64 4336 end case;
4337 end if;
0577b0b1 4338 end if;
fa7497e8 4339 end Null_Exclusion_Static_Checks;
4340
9dfe12ae 4341 ----------------------------------
4342 -- Conditional_Statements_Begin --
4343 ----------------------------------
4344
4345 procedure Conditional_Statements_Begin is
4346 begin
4347 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4348
feff2f05 4349 -- If stack overflows, kill all checks, that way we know to simply reset
4350 -- the number of saved checks to zero on return. This should never occur
4351 -- in practice.
9dfe12ae 4352
4353 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4354 Kill_All_Checks;
4355
feff2f05 4356 -- In the normal case, we just make a new stack entry saving the current
4357 -- number of saved checks for a later restore.
9dfe12ae 4358
4359 else
4360 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4361
4362 if Debug_Flag_CC then
4363 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4364 Num_Saved_Checks);
4365 end if;
4366 end if;
4367 end Conditional_Statements_Begin;
4368
4369 --------------------------------
4370 -- Conditional_Statements_End --
4371 --------------------------------
4372
4373 procedure Conditional_Statements_End is
4374 begin
4375 pragma Assert (Saved_Checks_TOS > 0);
4376
feff2f05 4377 -- If the saved checks stack overflowed, then we killed all checks, so
4378 -- setting the number of saved checks back to zero is correct. This
4379 -- should never occur in practice.
9dfe12ae 4380
4381 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4382 Num_Saved_Checks := 0;
4383
feff2f05 4384 -- In the normal case, restore the number of saved checks from the top
4385 -- stack entry.
9dfe12ae 4386
4387 else
4388 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
20cf157b 4389
9dfe12ae 4390 if Debug_Flag_CC then
4391 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4392 Num_Saved_Checks);
4393 end if;
4394 end if;
4395
4396 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4397 end Conditional_Statements_End;
4398
3cce7f32 4399 -------------------------
4400 -- Convert_From_Bignum --
4401 -------------------------
4402
4403 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4404 Loc : constant Source_Ptr := Sloc (N);
4405
4406 begin
4407 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4408
4409 -- Construct call From Bignum
4410
4411 return
4412 Make_Function_Call (Loc,
4413 Name =>
4414 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4415 Parameter_Associations => New_List (Relocate_Node (N)));
4416 end Convert_From_Bignum;
4417
4418 -----------------------
4419 -- Convert_To_Bignum --
4420 -----------------------
4421
4422 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4423 Loc : constant Source_Ptr := Sloc (N);
4424
4425 begin
0326b4d4 4426 -- Nothing to do if Bignum already except call Relocate_Node
3cce7f32 4427
4428 if Is_RTE (Etype (N), RE_Bignum) then
4429 return Relocate_Node (N);
4430
21a55437 4431 -- Otherwise construct call to To_Bignum, converting the operand to the
4432 -- required Long_Long_Integer form.
3cce7f32 4433
4434 else
4435 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4436 return
4437 Make_Function_Call (Loc,
4438 Name =>
4439 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4440 Parameter_Associations => New_List (
4441 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4442 end if;
4443 end Convert_To_Bignum;
4444
ee6ba406 4445 ---------------------
4446 -- Determine_Range --
4447 ---------------------
4448
6af1bdbc 4449 Cache_Size : constant := 2 ** 10;
ee6ba406 4450 type Cache_Index is range 0 .. Cache_Size - 1;
39a0c1d3 4451 -- Determine size of below cache (power of 2 is more efficient)
ee6ba406 4452
7ac8c2b1 4453 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4454 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4455 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4456 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4457 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4458 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
feff2f05 4459 -- The above arrays are used to implement a small direct cache for
7ac8c2b1 4460 -- Determine_Range and Determine_Range_R calls. Because of the way these
4461 -- subprograms recursively traces subexpressions, and because overflow
4462 -- checking calls the routine on the way up the tree, a quadratic behavior
4463 -- can otherwise be encountered in large expressions. The cache entry for
4464 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4465 -- by checking the actual node value stored there. The Range_Cache_V array
4466 -- records the setting of Assume_Valid for the cache entry.
ee6ba406 4467
4468 procedure Determine_Range
9c486805 4469 (N : Node_Id;
4470 OK : out Boolean;
4471 Lo : out Uint;
4472 Hi : out Uint;
4473 Assume_Valid : Boolean := False)
ee6ba406 4474 is
e254d721 4475 Typ : Entity_Id := Etype (N);
4476 -- Type to use, may get reset to base type for possibly invalid entity
8880be85 4477
4478 Lo_Left : Uint;
4479 Hi_Left : Uint;
4480 -- Lo and Hi bounds of left operand
ee6ba406 4481
5bb74b99 4482 Lo_Right : Uint := No_Uint;
4483 Hi_Right : Uint := No_Uint;
8880be85 4484 -- Lo and Hi bounds of right (or only) operand
4485
4486 Bound : Node_Id;
4487 -- Temp variable used to hold a bound node
4488
4489 Hbound : Uint;
4490 -- High bound of base type of expression
4491
4492 Lor : Uint;
4493 Hir : Uint;
4494 -- Refined values for low and high bounds, after tightening
4495
4496 OK1 : Boolean;
4497 -- Used in lower level calls to indicate if call succeeded
4498
4499 Cindex : Cache_Index;
4500 -- Used to search cache
ee6ba406 4501
094ed68e 4502 Btyp : Entity_Id;
4503 -- Base type
4504
ee6ba406 4505 function OK_Operands return Boolean;
4506 -- Used for binary operators. Determines the ranges of the left and
4507 -- right operands, and if they are both OK, returns True, and puts
341bd953 4508 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
ee6ba406 4509
4510 -----------------
4511 -- OK_Operands --
4512 -----------------
4513
4514 function OK_Operands return Boolean is
4515 begin
9c486805 4516 Determine_Range
4517 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
ee6ba406 4518
4519 if not OK1 then
4520 return False;
4521 end if;
4522
9c486805 4523 Determine_Range
4524 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4525 return OK1;
4526 end OK_Operands;
4527
4528 -- Start of processing for Determine_Range
4529
4530 begin
e12b2502 4531 -- Prevent junk warnings by initializing range variables
4532
4533 Lo := No_Uint;
4534 Hi := No_Uint;
4535 Lor := No_Uint;
4536 Hir := No_Uint;
4537
87bdc21d 4538 -- For temporary constants internally generated to remove side effects
4539 -- we must use the corresponding expression to determine the range of
e12b2502 4540 -- the expression. But note that the expander can also generate
4541 -- constants in other cases, including deferred constants.
87bdc21d 4542
4543 if Is_Entity_Name (N)
4544 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4545 and then Ekind (Entity (N)) = E_Constant
4546 and then Is_Internal_Name (Chars (Entity (N)))
4547 then
e12b2502 4548 if Present (Expression (Parent (Entity (N)))) then
4549 Determine_Range
4550 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
87bdc21d 4551
e12b2502 4552 elsif Present (Full_View (Entity (N))) then
4553 Determine_Range
4554 (Expression (Parent (Full_View (Entity (N)))),
4555 OK, Lo, Hi, Assume_Valid);
ee6ba406 4556
e12b2502 4557 else
4558 OK := False;
4559 end if;
4560 return;
4561 end if;
ee6ba406 4562
a781c0fc 4563 -- If type is not defined, we can't determine its range
ee6ba406 4564
a781c0fc 4565 if No (Typ)
4566
4567 -- We don't deal with anything except discrete types
4568
4569 or else not Is_Discrete_Type (Typ)
4570
cdfda0e3 4571 -- Don't deal with enumerated types with non-standard representation
4572
4573 or else (Is_Enumeration_Type (Typ)
4574 and then Present (Enum_Pos_To_Rep (Base_Type (Typ))))
4575
a781c0fc 4576 -- Ignore type for which an error has been posted, since range in
4577 -- this case may well be a bogosity deriving from the error. Also
4578 -- ignore if error posted on the reference node.
4579
4580 or else Error_Posted (N) or else Error_Posted (Typ)
ee6ba406 4581 then
4582 OK := False;
4583 return;
4584 end if;
4585
4586 -- For all other cases, we can determine the range
4587
4588 OK := True;
4589
feff2f05 4590 -- If value is compile time known, then the possible range is the one
39a0c1d3 4591 -- value that we know this expression definitely has.
ee6ba406 4592
4593 if Compile_Time_Known_Value (N) then
4594 Lo := Expr_Value (N);
4595 Hi := Lo;
4596 return;
4597 end if;
4598
4599 -- Return if already in the cache
4600
4601 Cindex := Cache_Index (N mod Cache_Size);
4602
9c486805 4603 if Determine_Range_Cache_N (Cindex) = N
4604 and then
4605 Determine_Range_Cache_V (Cindex) = Assume_Valid
4606 then
ee6ba406 4607 Lo := Determine_Range_Cache_Lo (Cindex);
4608 Hi := Determine_Range_Cache_Hi (Cindex);
4609 return;
4610 end if;
4611
feff2f05 4612 -- Otherwise, start by finding the bounds of the type of the expression,
4613 -- the value cannot be outside this range (if it is, then we have an
4614 -- overflow situation, which is a separate check, we are talking here
4615 -- only about the expression value).
ee6ba406 4616
341bd953 4617 -- First a check, never try to find the bounds of a generic type, since
4618 -- these bounds are always junk values, and it is only valid to look at
4619 -- the bounds in an instance.
4620
4621 if Is_Generic_Type (Typ) then
4622 OK := False;
4623 return;
4624 end if;
4625
9c486805 4626 -- First step, change to use base type unless we know the value is valid
e254d721 4627
9c486805 4628 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4629 or else Assume_No_Invalid_Values
4630 or else Assume_Valid
e254d721 4631 then
1916d94e 4632 -- If this is a known valid constant with a nonstatic value, it may
4633 -- have inherited a narrower subtype from its initial value; use this
4634 -- saved subtype (see sem_ch3.adb).
4635
4636 if Is_Entity_Name (N)
4637 and then Ekind (Entity (N)) = E_Constant
4638 and then Present (Actual_Subtype (Entity (N)))
4639 then
4640 Typ := Actual_Subtype (Entity (N));
4641 end if;
4642
9c486805 4643 else
4644 Typ := Underlying_Type (Base_Type (Typ));
e254d721 4645 end if;
4646
094ed68e 4647 -- Retrieve the base type. Handle the case where the base type is a
4648 -- private enumeration type.
4649
4650 Btyp := Base_Type (Typ);
4651
4652 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4653 Btyp := Full_View (Btyp);
4654 end if;
4655
feff2f05 4656 -- We use the actual bound unless it is dynamic, in which case use the
4657 -- corresponding base type bound if possible. If we can't get a bound
4658 -- then we figure we can't determine the range (a peculiar case, that
4659 -- perhaps cannot happen, but there is no point in bombing in this
4660 -- optimization circuit.
8880be85 4661
4662 -- First the low bound
ee6ba406 4663
4664 Bound := Type_Low_Bound (Typ);
4665
4666 if Compile_Time_Known_Value (Bound) then
4667 Lo := Expr_Value (Bound);
4668
094ed68e 4669 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4670 Lo := Expr_Value (Type_Low_Bound (Btyp));
ee6ba406 4671
4672 else
4673 OK := False;
4674 return;
4675 end if;
4676
8880be85 4677 -- Now the high bound
4678
ee6ba406 4679 Bound := Type_High_Bound (Typ);
4680
8880be85 4681 -- We need the high bound of the base type later on, and this should
4682 -- always be compile time known. Again, it is not clear that this
4683 -- can ever be false, but no point in bombing.
ee6ba406 4684
094ed68e 4685 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4686 Hbound := Expr_Value (Type_High_Bound (Btyp));
ee6ba406 4687 Hi := Hbound;
4688
4689 else
4690 OK := False;
4691 return;
4692 end if;
4693
feff2f05 4694 -- If we have a static subtype, then that may have a tighter bound so
4695 -- use the upper bound of the subtype instead in this case.
8880be85 4696
4697 if Compile_Time_Known_Value (Bound) then
4698 Hi := Expr_Value (Bound);
4699 end if;
4700
feff2f05 4701 -- We may be able to refine this value in certain situations. If any
4702 -- refinement is possible, then Lor and Hir are set to possibly tighter
4703 -- bounds, and OK1 is set to True.
ee6ba406 4704
4705 case Nkind (N) is
4706
4707 -- For unary plus, result is limited by range of operand
4708
4709 when N_Op_Plus =>
9c486805 4710 Determine_Range
4711 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4712
4713 -- For unary minus, determine range of operand, and negate it
4714
4715 when N_Op_Minus =>
9c486805 4716 Determine_Range
4717 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4718
4719 if OK1 then
4720 Lor := -Hi_Right;
4721 Hir := -Lo_Right;
4722 end if;
4723
4724 -- For binary addition, get range of each operand and do the
4725 -- addition to get the result range.
4726
4727 when N_Op_Add =>
4728 if OK_Operands then
4729 Lor := Lo_Left + Lo_Right;
4730 Hir := Hi_Left + Hi_Right;
4731 end if;
4732
feff2f05 4733 -- Division is tricky. The only case we consider is where the right
4734 -- operand is a positive constant, and in this case we simply divide
4735 -- the bounds of the left operand
ee6ba406 4736
4737 when N_Op_Divide =>
4738 if OK_Operands then
4739 if Lo_Right = Hi_Right
4740 and then Lo_Right > 0
4741 then
4742 Lor := Lo_Left / Lo_Right;
4743 Hir := Hi_Left / Lo_Right;
ee6ba406 4744 else
4745 OK1 := False;
4746 end if;
4747 end if;
4748
feff2f05 4749 -- For binary subtraction, get range of each operand and do the worst
4750 -- case subtraction to get the result range.
ee6ba406 4751
4752 when N_Op_Subtract =>
4753 if OK_Operands then
4754 Lor := Lo_Left - Hi_Right;
4755 Hir := Hi_Left - Lo_Right;
4756 end if;
4757
feff2f05 4758 -- For MOD, if right operand is a positive constant, then result must
4759 -- be in the allowable range of mod results.
ee6ba406 4760
4761 when N_Op_Mod =>
4762 if OK_Operands then
9dfe12ae 4763 if Lo_Right = Hi_Right
4764 and then Lo_Right /= 0
4765 then
ee6ba406 4766 if Lo_Right > 0 then
4767 Lor := Uint_0;
4768 Hir := Lo_Right - 1;
4769
9dfe12ae 4770 else -- Lo_Right < 0
ee6ba406 4771 Lor := Lo_Right + 1;
4772 Hir := Uint_0;
4773 end if;
4774
4775 else
4776 OK1 := False;
4777 end if;
4778 end if;
4779
feff2f05 4780 -- For REM, if right operand is a positive constant, then result must
4781 -- be in the allowable range of mod results.
ee6ba406 4782
4783 when N_Op_Rem =>
4784 if OK_Operands then
99378362 4785 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
ee6ba406 4786 declare
4787 Dval : constant Uint := (abs Lo_Right) - 1;
4788
4789 begin
4790 -- The sign of the result depends on the sign of the
4791 -- dividend (but not on the sign of the divisor, hence
4792 -- the abs operation above).
4793
4794 if Lo_Left < 0 then
4795 Lor := -Dval;
4796 else
4797 Lor := Uint_0;
4798 end if;
4799
4800 if Hi_Left < 0 then
4801 Hir := Uint_0;
4802 else
4803 Hir := Dval;
4804 end if;
4805 end;
4806
4807 else
4808 OK1 := False;
4809 end if;
4810 end if;
4811
4812 -- Attribute reference cases
4813
4814 when N_Attribute_Reference =>
4815 case Attribute_Name (N) is
4816
4817 -- For Pos/Val attributes, we can refine the range using the
ddbf7f2e 4818 -- possible range of values of the attribute expression.
ee6ba406 4819
99378362 4820 when Name_Pos
4821 | Name_Val
4822 =>
9c486805 4823 Determine_Range
4824 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4825
4826 -- For Length attribute, use the bounds of the corresponding
4827 -- index type to refine the range.
4828
4829 when Name_Length =>
4830 declare
4831 Atyp : Entity_Id := Etype (Prefix (N));
4832 Inum : Nat;
4833 Indx : Node_Id;
4834
4835 LL, LU : Uint;
4836 UL, UU : Uint;
4837
4838 begin
4839 if Is_Access_Type (Atyp) then
4840 Atyp := Designated_Type (Atyp);
4841 end if;
4842
4843 -- For string literal, we know exact value
4844
4845 if Ekind (Atyp) = E_String_Literal_Subtype then
4846 OK := True;
4847 Lo := String_Literal_Length (Atyp);
4848 Hi := String_Literal_Length (Atyp);
4849 return;
4850 end if;
4851
4852 -- Otherwise check for expression given
4853
4854 if No (Expressions (N)) then
4855 Inum := 1;
4856 else
4857 Inum :=
4858 UI_To_Int (Expr_Value (First (Expressions (N))));
4859 end if;
4860
4861 Indx := First_Index (Atyp);
4862 for J in 2 .. Inum loop
4863 Indx := Next_Index (Indx);
4864 end loop;
4865
9116df93 4866 -- If the index type is a formal type or derived from
c8da6114 4867 -- one, the bounds are not static.
4868
4869 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4870 OK := False;
4871 return;
4872 end if;
4873
ee6ba406 4874 Determine_Range
9c486805 4875 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4876 Assume_Valid);
ee6ba406 4877
4878 if OK1 then
4879 Determine_Range
9c486805 4880 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4881 Assume_Valid);
ee6ba406 4882
4883 if OK1 then
4884
4885 -- The maximum value for Length is the biggest
4886 -- possible gap between the values of the bounds.
4887 -- But of course, this value cannot be negative.
4888
9c486805 4889 Hir := UI_Max (Uint_0, UU - LL + 1);
ee6ba406 4890
4891 -- For constrained arrays, the minimum value for
4892 -- Length is taken from the actual value of the
9116df93 4893 -- bounds, since the index will be exactly of this
4894 -- subtype.
ee6ba406 4895
4896 if Is_Constrained (Atyp) then
9c486805 4897 Lor := UI_Max (Uint_0, UL - LU + 1);
ee6ba406 4898
4899 -- For an unconstrained array, the minimum value
4900 -- for length is always zero.
4901
4902 else
4903 Lor := Uint_0;
4904 end if;
4905 end if;
4906 end if;
4907 end;
4908
4909 -- No special handling for other attributes
9116df93 4910 -- Probably more opportunities exist here???
ee6ba406 4911
4912 when others =>
4913 OK1 := False;
4914
4915 end case;
4916
ee6ba406 4917 when N_Type_Conversion =>
54022749 4918
4919 -- For type conversion from one discrete type to another, we can
4920 -- refine the range using the converted value.
4921
4922 if Is_Discrete_Type (Etype (Expression (N))) then
4923 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4924
4925 -- When converting a float to an integer type, determine the range
4926 -- in real first, and then convert the bounds using UR_To_Uint
4927 -- which correctly rounds away from zero when half way between two
4928 -- integers, as required by normal Ada 95 rounding semantics. It
4929 -- is only possible because analysis in GNATprove rules out the
4930 -- possibility of a NaN or infinite value.
4931
4932 elsif GNATprove_Mode
4933 and then Is_Floating_Point_Type (Etype (Expression (N)))
4934 then
4935 declare
4936 Lor_Real, Hir_Real : Ureal;
4937 begin
4938 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4939 Assume_Valid);
4940
4941 if OK1 then
4942 Lor := UR_To_Uint (Lor_Real);
4943 Hir := UR_To_Uint (Hir_Real);
4944 end if;
4945 end;
4946
4947 else
4948 OK1 := False;
4949 end if;
ee6ba406 4950
4951 -- Nothing special to do for all other expression kinds
4952
4953 when others =>
4954 OK1 := False;
4955 Lor := No_Uint;
4956 Hir := No_Uint;
4957 end case;
4958
9116df93 4959 -- At this stage, if OK1 is true, then we know that the actual result of
4960 -- the computed expression is in the range Lor .. Hir. We can use this
4961 -- to restrict the possible range of results.
ee6ba406 4962
4963 if OK1 then
4964
9116df93 4965 -- If the refined value of the low bound is greater than the type
7ac8c2b1 4966 -- low bound, then reset it to the more restrictive value. However,
9116df93 4967 -- we do NOT do this for the case of a modular type where the
4968 -- possible upper bound on the value is above the base type high
4969 -- bound, because that means the result could wrap.
ee6ba406 4970
4971 if Lor > Lo
9116df93 4972 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
ee6ba406 4973 then
4974 Lo := Lor;
4975 end if;
4976
9116df93 4977 -- Similarly, if the refined value of the high bound is less than the
4978 -- value so far, then reset it to the more restrictive value. Again,
4979 -- we do not do this if the refined low bound is negative for a
4980 -- modular type, since this would wrap.
ee6ba406 4981
4982 if Hir < Hi
9116df93 4983 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
ee6ba406 4984 then
4985 Hi := Hir;
4986 end if;
4987 end if;
4988
4989 -- Set cache entry for future call and we are all done
4990
4991 Determine_Range_Cache_N (Cindex) := N;
9c486805 4992 Determine_Range_Cache_V (Cindex) := Assume_Valid;
ee6ba406 4993 Determine_Range_Cache_Lo (Cindex) := Lo;
4994 Determine_Range_Cache_Hi (Cindex) := Hi;
4995 return;
4996
9116df93 4997 -- If any exception occurs, it means that we have some bug in the compiler,
4998 -- possibly triggered by a previous error, or by some unforeseen peculiar
ee6ba406 4999 -- occurrence. However, this is only an optimization attempt, so there is
5000 -- really no point in crashing the compiler. Instead we just decide, too
5001 -- bad, we can't figure out a range in this case after all.
5002
5003 exception
5004 when others =>
5005
5006 -- Debug flag K disables this behavior (useful for debugging)
5007
5008 if Debug_Flag_K then
5009 raise;
5010 else
5011 OK := False;
5012 Lo := No_Uint;
5013 Hi := No_Uint;
5014 return;
5015 end if;
ee6ba406 5016 end Determine_Range;
5017
7ac8c2b1 5018 -----------------------
5019 -- Determine_Range_R --
5020 -----------------------
5021
5022 procedure Determine_Range_R
5023 (N : Node_Id;
5024 OK : out Boolean;
5025 Lo : out Ureal;
5026 Hi : out Ureal;
5027 Assume_Valid : Boolean := False)
5028 is
5029 Typ : Entity_Id := Etype (N);
5030 -- Type to use, may get reset to base type for possibly invalid entity
5031
5032 Lo_Left : Ureal;
5033 Hi_Left : Ureal;
5034 -- Lo and Hi bounds of left operand
5035
5bb74b99 5036 Lo_Right : Ureal := No_Ureal;
5037 Hi_Right : Ureal := No_Ureal;
7ac8c2b1 5038 -- Lo and Hi bounds of right (or only) operand
5039
5040 Bound : Node_Id;
5041 -- Temp variable used to hold a bound node
5042
5043 Hbound : Ureal;
5044 -- High bound of base type of expression
5045
5046 Lor : Ureal;
5047 Hir : Ureal;
5048 -- Refined values for low and high bounds, after tightening
5049
5050 OK1 : Boolean;
5051 -- Used in lower level calls to indicate if call succeeded
5052
5053 Cindex : Cache_Index;
5054 -- Used to search cache
5055
5056 Btyp : Entity_Id;
5057 -- Base type
5058
5059 function OK_Operands return Boolean;
5060 -- Used for binary operators. Determines the ranges of the left and
5061 -- right operands, and if they are both OK, returns True, and puts
5062 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
5063
5064 function Round_Machine (B : Ureal) return Ureal;
5065 -- B is a real bound. Round it using mode Round_Even.
5066
5067 -----------------
5068 -- OK_Operands --
5069 -----------------
5070
5071 function OK_Operands return Boolean is
5072 begin
5073 Determine_Range_R
5074 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5075
5076 if not OK1 then
5077 return False;
5078 end if;
5079
5080 Determine_Range_R
5081 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5082 return OK1;
5083 end OK_Operands;
5084
5085 -------------------
5086 -- Round_Machine --
5087 -------------------
5088
5089 function Round_Machine (B : Ureal) return Ureal is
5090 begin
5091 return Machine (Typ, B, Round_Even, N);
5092 end Round_Machine;
5093
5094 -- Start of processing for Determine_Range_R
5095
5096 begin
5097 -- Prevent junk warnings by initializing range variables
5098
5099 Lo := No_Ureal;
5100 Hi := No_Ureal;
5101 Lor := No_Ureal;
5102 Hir := No_Ureal;
5103
5104 -- For temporary constants internally generated to remove side effects
5105 -- we must use the corresponding expression to determine the range of
5106 -- the expression. But note that the expander can also generate
5107 -- constants in other cases, including deferred constants.
5108
5109 if Is_Entity_Name (N)
5110 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5111 and then Ekind (Entity (N)) = E_Constant
5112 and then Is_Internal_Name (Chars (Entity (N)))
5113 then
5114 if Present (Expression (Parent (Entity (N)))) then
5115 Determine_Range_R
5116 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5117
5118 elsif Present (Full_View (Entity (N))) then
5119 Determine_Range_R
5120 (Expression (Parent (Full_View (Entity (N)))),
5121 OK, Lo, Hi, Assume_Valid);
5122
5123 else
5124 OK := False;
5125 end if;
4c1c7f3f 5126
7ac8c2b1 5127 return;
5128 end if;
5129
5130 -- If type is not defined, we can't determine its range
5131
5132 if No (Typ)
5133
5134 -- We don't deal with anything except IEEE floating-point types
5135
5136 or else not Is_Floating_Point_Type (Typ)
5137 or else Float_Rep (Typ) /= IEEE_Binary
5138
5139 -- Ignore type for which an error has been posted, since range in
5140 -- this case may well be a bogosity deriving from the error. Also
5141 -- ignore if error posted on the reference node.
5142
5143 or else Error_Posted (N) or else Error_Posted (Typ)
5144 then
5145 OK := False;
5146 return;
5147 end if;
5148
5149 -- For all other cases, we can determine the range
5150
5151 OK := True;
5152
5153 -- If value is compile time known, then the possible range is the one
5154 -- value that we know this expression definitely has.
5155
5156 if Compile_Time_Known_Value (N) then
5157 Lo := Expr_Value_R (N);
5158 Hi := Lo;
5159 return;
5160 end if;
5161
5162 -- Return if already in the cache
5163
5164 Cindex := Cache_Index (N mod Cache_Size);
5165
5166 if Determine_Range_Cache_N (Cindex) = N
5167 and then
5168 Determine_Range_Cache_V (Cindex) = Assume_Valid
5169 then
5170 Lo := Determine_Range_Cache_Lo_R (Cindex);
5171 Hi := Determine_Range_Cache_Hi_R (Cindex);
5172 return;
5173 end if;
5174
5175 -- Otherwise, start by finding the bounds of the type of the expression,
5176 -- the value cannot be outside this range (if it is, then we have an
5177 -- overflow situation, which is a separate check, we are talking here
5178 -- only about the expression value).
5179
5180 -- First a check, never try to find the bounds of a generic type, since
5181 -- these bounds are always junk values, and it is only valid to look at
5182 -- the bounds in an instance.
5183
5184 if Is_Generic_Type (Typ) then
5185 OK := False;
5186 return;
5187 end if;
5188
5189 -- First step, change to use base type unless we know the value is valid
5190
5191 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5192 or else Assume_No_Invalid_Values
5193 or else Assume_Valid
5194 then
5195 null;
5196 else
5197 Typ := Underlying_Type (Base_Type (Typ));
5198 end if;
5199
5200 -- Retrieve the base type. Handle the case where the base type is a
5201 -- private type.
5202
5203 Btyp := Base_Type (Typ);
5204
5205 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5206 Btyp := Full_View (Btyp);
5207 end if;
5208
5209 -- We use the actual bound unless it is dynamic, in which case use the
5210 -- corresponding base type bound if possible. If we can't get a bound
5211 -- then we figure we can't determine the range (a peculiar case, that
5212 -- perhaps cannot happen, but there is no point in bombing in this
5213 -- optimization circuit).
5214
5215 -- First the low bound
5216
5217 Bound := Type_Low_Bound (Typ);
5218
5219 if Compile_Time_Known_Value (Bound) then
5220 Lo := Expr_Value_R (Bound);
5221
5222 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5223 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5224
5225 else
5226 OK := False;
5227 return;
5228 end if;
5229
5230 -- Now the high bound
5231
5232 Bound := Type_High_Bound (Typ);
5233
5234 -- We need the high bound of the base type later on, and this should
5235 -- always be compile time known. Again, it is not clear that this
5236 -- can ever be false, but no point in bombing.
5237
5238 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5239 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5240 Hi := Hbound;
5241
5242 else
5243 OK := False;
5244 return;
5245 end if;
5246
5247 -- If we have a static subtype, then that may have a tighter bound so
5248 -- use the upper bound of the subtype instead in this case.
5249
5250 if Compile_Time_Known_Value (Bound) then
5251 Hi := Expr_Value_R (Bound);
5252 end if;
5253
5254 -- We may be able to refine this value in certain situations. If any
5255 -- refinement is possible, then Lor and Hir are set to possibly tighter
5256 -- bounds, and OK1 is set to True.
5257
5258 case Nkind (N) is
5259
5260 -- For unary plus, result is limited by range of operand
5261
5262 when N_Op_Plus =>
5263 Determine_Range_R
5264 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5265
5266 -- For unary minus, determine range of operand, and negate it
5267
5268 when N_Op_Minus =>
5269 Determine_Range_R
5270 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5271
5272 if OK1 then
5273 Lor := -Hi_Right;
5274 Hir := -Lo_Right;
5275 end if;
5276
5277 -- For binary addition, get range of each operand and do the
5278 -- addition to get the result range.
5279
5280 when N_Op_Add =>
5281 if OK_Operands then
5282 Lor := Round_Machine (Lo_Left + Lo_Right);
5283 Hir := Round_Machine (Hi_Left + Hi_Right);
5284 end if;
5285
5286 -- For binary subtraction, get range of each operand and do the worst
5287 -- case subtraction to get the result range.
5288
5289 when N_Op_Subtract =>
5290 if OK_Operands then
5291 Lor := Round_Machine (Lo_Left - Hi_Right);
5292 Hir := Round_Machine (Hi_Left - Lo_Right);
5293 end if;
5294
5295 -- For multiplication, get range of each operand and do the
5296 -- four multiplications to get the result range.
5297
5298 when N_Op_Multiply =>
5299 if OK_Operands then
5300 declare
5301 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5302 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5303 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5304 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
552d7cbc 5305
7ac8c2b1 5306 begin
5307 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5308 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5309 end;
5310 end if;
5311
5312 -- For division, consider separately the cases where the right
5313 -- operand is positive or negative. Otherwise, the right operand
5314 -- can be arbitrarily close to zero, so the result is likely to
5315 -- be unbounded in one direction, do not attempt to compute it.
5316
5317 when N_Op_Divide =>
5318 if OK_Operands then
5319
5320 -- Right operand is positive
5321
5322 if Lo_Right > Ureal_0 then
5323
5324 -- If the low bound of the left operand is negative, obtain
5325 -- the overall low bound by dividing it by the smallest
5326 -- value of the right operand, and otherwise by the largest
5327 -- value of the right operand.
5328
5329 if Lo_Left < Ureal_0 then
5330 Lor := Round_Machine (Lo_Left / Lo_Right);
5331 else
5332 Lor := Round_Machine (Lo_Left / Hi_Right);
5333 end if;
5334
5335 -- If the high bound of the left operand is negative, obtain
5336 -- the overall high bound by dividing it by the largest
5337 -- value of the right operand, and otherwise by the
5338 -- smallest value of the right operand.
5339
5340 if Hi_Left < Ureal_0 then
5341 Hir := Round_Machine (Hi_Left / Hi_Right);
5342 else
5343 Hir := Round_Machine (Hi_Left / Lo_Right);
5344 end if;
5345
5346 -- Right operand is negative
5347
5348 elsif Hi_Right < Ureal_0 then
5349
5350 -- If the low bound of the left operand is negative, obtain
5351 -- the overall low bound by dividing it by the largest
5352 -- value of the right operand, and otherwise by the smallest
5353 -- value of the right operand.
5354
5355 if Lo_Left < Ureal_0 then
5356 Lor := Round_Machine (Lo_Left / Hi_Right);
5357 else
5358 Lor := Round_Machine (Lo_Left / Lo_Right);
5359 end if;
5360
5361 -- If the high bound of the left operand is negative, obtain
5362 -- the overall high bound by dividing it by the smallest
5363 -- value of the right operand, and otherwise by the
5364 -- largest value of the right operand.
5365
5366 if Hi_Left < Ureal_0 then
5367 Hir := Round_Machine (Hi_Left / Lo_Right);
5368 else
5369 Hir := Round_Machine (Hi_Left / Hi_Right);
5370 end if;
5371
5372 else
5373 OK1 := False;
5374 end if;
5375 end if;
5376
7ac8c2b1 5377 when N_Type_Conversion =>
3c5c732f 5378
5379 -- For type conversion from one floating-point type to another, we
5380 -- can refine the range using the converted value.
5381
5382 if Is_Floating_Point_Type (Etype (Expression (N))) then
5383 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5384
5385 -- When converting an integer to a floating-point type, determine
5386 -- the range in integer first, and then convert the bounds.
5387
5388 elsif Is_Discrete_Type (Etype (Expression (N))) then
5389 declare
552d7cbc 5390 Hir_Int : Uint;
5391 Lor_Int : Uint;
5392
3c5c732f 5393 begin
552d7cbc 5394 Determine_Range
5395 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
3c5c732f 5396
5397 if OK1 then
5398 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5399 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5400 end if;
5401 end;
5402
5403 else
5404 OK1 := False;
5405 end if;
7ac8c2b1 5406
5407 -- Nothing special to do for all other expression kinds
5408
5409 when others =>
5410 OK1 := False;
5411 Lor := No_Ureal;
5412 Hir := No_Ureal;
5413 end case;
5414
5415 -- At this stage, if OK1 is true, then we know that the actual result of
5416 -- the computed expression is in the range Lor .. Hir. We can use this
5417 -- to restrict the possible range of results.
5418
5419 if OK1 then
5420
5421 -- If the refined value of the low bound is greater than the type
5422 -- low bound, then reset it to the more restrictive value.
5423
5424 if Lor > Lo then
5425 Lo := Lor;
5426 end if;
5427
5428 -- Similarly, if the refined value of the high bound is less than the
5429 -- value so far, then reset it to the more restrictive value.
5430
5431 if Hir < Hi then
5432 Hi := Hir;
5433 end if;
5434 end if;
5435
5436 -- Set cache entry for future call and we are all done
5437
5438 Determine_Range_Cache_N (Cindex) := N;
5439 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5440 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5441 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5442 return;
5443
5444 -- If any exception occurs, it means that we have some bug in the compiler,
5445 -- possibly triggered by a previous error, or by some unforeseen peculiar
5446 -- occurrence. However, this is only an optimization attempt, so there is
5447 -- really no point in crashing the compiler. Instead we just decide, too
5448 -- bad, we can't figure out a range in this case after all.
5449
5450 exception
5451 when others =>
5452
5453 -- Debug flag K disables this behavior (useful for debugging)
5454
5455 if Debug_Flag_K then
5456 raise;
5457 else
5458 OK := False;
5459 Lo := No_Ureal;
5460 Hi := No_Ureal;
5461 return;
5462 end if;
5463 end Determine_Range_R;
5464
ee6ba406 5465 ------------------------------------
5466 -- Discriminant_Checks_Suppressed --
5467 ------------------------------------
5468
5469 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5470 begin
9dfe12ae 5471 if Present (E) then
5472 if Is_Unchecked_Union (E) then
5473 return True;
5474 elsif Checks_May_Be_Suppressed (E) then
5475 return Is_Check_Suppressed (E, Discriminant_Check);
5476 end if;
5477 end if;
5478
fafc6b97 5479 return Scope_Suppress.Suppress (Discriminant_Check);
ee6ba406 5480 end Discriminant_Checks_Suppressed;
5481
5482 --------------------------------
5483 -- Division_Checks_Suppressed --
5484 --------------------------------
5485
5486 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5487 begin
9dfe12ae 5488 if Present (E) and then Checks_May_Be_Suppressed (E) then
5489 return Is_Check_Suppressed (E, Division_Check);
5490 else
fafc6b97 5491 return Scope_Suppress.Suppress (Division_Check);
9dfe12ae 5492 end if;
ee6ba406 5493 end Division_Checks_Suppressed;
5494
fa771c05 5495 --------------------------------------
5496 -- Duplicated_Tag_Checks_Suppressed --
5497 --------------------------------------
5498
5499 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5500 begin
5501 if Present (E) and then Checks_May_Be_Suppressed (E) then
5502 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5503 else
5504 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5505 end if;
5506 end Duplicated_Tag_Checks_Suppressed;
5507
ee6ba406 5508 -----------------------------------
5509 -- Elaboration_Checks_Suppressed --
5510 -----------------------------------
5511
5512 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5513 begin
38f5559f 5514 -- The complication in this routine is that if we are in the dynamic
5515 -- model of elaboration, we also check All_Checks, since All_Checks
5516 -- does not set Elaboration_Check explicitly.
5517
9dfe12ae 5518 if Present (E) then
5519 if Kill_Elaboration_Checks (E) then
5520 return True;
38f5559f 5521
9dfe12ae 5522 elsif Checks_May_Be_Suppressed (E) then
38f5559f 5523 if Is_Check_Suppressed (E, Elaboration_Check) then
5524 return True;
fe48a434 5525
38f5559f 5526 elsif Dynamic_Elaboration_Checks then
5527 return Is_Check_Suppressed (E, All_Checks);
fe48a434 5528
38f5559f 5529 else
5530 return False;
5531 end if;
9dfe12ae 5532 end if;
5533 end if;
5534
fafc6b97 5535 if Scope_Suppress.Suppress (Elaboration_Check) then
38f5559f 5536 return True;
fe48a434 5537
38f5559f 5538 elsif Dynamic_Elaboration_Checks then
fafc6b97 5539 return Scope_Suppress.Suppress (All_Checks);
fe48a434 5540
38f5559f 5541 else
5542 return False;
5543 end if;
ee6ba406 5544 end Elaboration_Checks_Suppressed;
5545
9dfe12ae 5546 ---------------------------
5547 -- Enable_Overflow_Check --
5548 ---------------------------
5549
5550 procedure Enable_Overflow_Check (N : Node_Id) is
4c1c7f3f 5551 Typ : constant Entity_Id := Base_Type (Etype (N));
db415383 5552 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 5553 Chk : Nat;
5554 OK : Boolean;
5555 Ent : Entity_Id;
5556 Ofs : Uint;
5557 Lo : Uint;
5558 Hi : Uint;
ee6ba406 5559
f3ccbbb3 5560 Do_Ovflow_Check : Boolean;
5561
ee6ba406 5562 begin
9dfe12ae 5563 if Debug_Flag_CC then
5564 w ("Enable_Overflow_Check for node ", Int (N));
5565 Write_Str (" Source location = ");
5566 wl (Sloc (N));
00c403ee 5567 pg (Union_Id (N));
ee6ba406 5568 end if;
ee6ba406 5569
75209ec5 5570 -- No check if overflow checks suppressed for type of node
5571
0df9d43f 5572 if Overflow_Checks_Suppressed (Etype (N)) then
75209ec5 5573 return;
5574
49260fa5 5575 -- Nothing to do for unsigned integer types, which do not overflow
5576
5577 elsif Is_Modular_Integer_Type (Typ) then
5578 return;
3cce7f32 5579 end if;
5580
0df9d43f 5581 -- This is the point at which processing for STRICT mode diverges
21a55437 5582 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5583 -- probably more extreme that it needs to be, but what is going on here
5584 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
0df9d43f 5585 -- to leave the processing for STRICT mode untouched. There were
21a55437 5586 -- two reasons for this. First it avoided any incompatible change of
0df9d43f 5587 -- behavior. Second, it guaranteed that STRICT mode continued to be
21a55437 5588 -- legacy reliable.
3cce7f32 5589
0df9d43f 5590 -- The big difference is that in STRICT mode there is a fair amount of
3cce7f32 5591 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5592 -- know that no check is needed. We skip all that in the two new modes,
5593 -- since really overflow checking happens over a whole subtree, and we
5594 -- do the corresponding optimizations later on when applying the checks.
5595
5596 if Mode in Minimized_Or_Eliminated then
0df9d43f 5597 if not (Overflow_Checks_Suppressed (Etype (N)))
5598 and then not (Is_Entity_Name (N)
5599 and then Overflow_Checks_Suppressed (Entity (N)))
5600 then
5601 Activate_Overflow_Check (N);
5602 end if;
3cce7f32 5603
5604 if Debug_Flag_CC then
5605 w ("Minimized/Eliminated mode");
5606 end if;
5607
5608 return;
5609 end if;
5610
0df9d43f 5611 -- Remainder of processing is for STRICT case, and is unchanged from
691fe9e0 5612 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
49260fa5 5613
feff2f05 5614 -- Nothing to do if the range of the result is known OK. We skip this
5615 -- for conversions, since the caller already did the check, and in any
5616 -- case the condition for deleting the check for a type conversion is
cc60bd16 5617 -- different.
ee6ba406 5618
3cce7f32 5619 if Nkind (N) /= N_Type_Conversion then
9c486805 5620 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
ee6ba406 5621
cc60bd16 5622 -- Note in the test below that we assume that the range is not OK
5623 -- if a bound of the range is equal to that of the type. That's not
5624 -- quite accurate but we do this for the following reasons:
ee6ba406 5625
9dfe12ae 5626 -- a) The way that Determine_Range works, it will typically report
5627 -- the bounds of the value as being equal to the bounds of the
5628 -- type, because it either can't tell anything more precise, or
5629 -- does not think it is worth the effort to be more precise.
ee6ba406 5630
9dfe12ae 5631 -- b) It is very unusual to have a situation in which this would
5632 -- generate an unnecessary overflow check (an example would be
5633 -- a subtype with a range 0 .. Integer'Last - 1 to which the
cc60bd16 5634 -- literal value one is added).
ee6ba406 5635
9dfe12ae 5636 -- c) The alternative is a lot of special casing in this routine
5637 -- which would partially duplicate Determine_Range processing.
ee6ba406 5638
f3ccbbb3 5639 if OK then
5640 Do_Ovflow_Check := True;
5641
5642 -- Note that the following checks are quite deliberately > and <
5643 -- rather than >= and <= as explained above.
5644
5645 if Lo > Expr_Value (Type_Low_Bound (Typ))
5646 and then
5647 Hi < Expr_Value (Type_High_Bound (Typ))
5648 then
5649 Do_Ovflow_Check := False;
5650
5651 -- Despite the comments above, it is worth dealing specially with
5652 -- division specially. The only case where integer division can
5653 -- overflow is (largest negative number) / (-1). So we will do
5654 -- an extra range analysis to see if this is possible.
5655
5656 elsif Nkind (N) = N_Op_Divide then
5657 Determine_Range
5658 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5659
5660 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5661 Do_Ovflow_Check := False;
5662
5663 else
5664 Determine_Range
5665 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5666
5667 if OK and then (Lo > Uint_Minus_1
5668 or else
5669 Hi < Uint_Minus_1)
5670 then
5671 Do_Ovflow_Check := False;
5672 end if;
5673 end if;
9dfe12ae 5674 end if;
5675
f3ccbbb3 5676 -- If no overflow check required, we are done
5677
5678 if not Do_Ovflow_Check then
5679 if Debug_Flag_CC then
5680 w ("No overflow check required");
5681 end if;
5682
5683 return;
5684 end if;
9dfe12ae 5685 end if;
5686 end if;
5687
feff2f05 5688 -- If not in optimizing mode, set flag and we are done. We are also done
5689 -- (and just set the flag) if the type is not a discrete type, since it
5690 -- is not worth the effort to eliminate checks for other than discrete
5691 -- types. In addition, we take this same path if we have stored the
5692 -- maximum number of checks possible already (a very unlikely situation,
39a0c1d3 5693 -- but we do not want to blow up).
9dfe12ae 5694
5695 if Optimization_Level = 0
5696 or else not Is_Discrete_Type (Etype (N))
5697 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 5698 then
00c403ee 5699 Activate_Overflow_Check (N);
9dfe12ae 5700
5701 if Debug_Flag_CC then
5702 w ("Optimization off");
5703 end if;
5704
ee6ba406 5705 return;
9dfe12ae 5706 end if;
ee6ba406 5707
9dfe12ae 5708 -- Otherwise evaluate and check the expression
5709
5710 Find_Check
5711 (Expr => N,
5712 Check_Type => 'O',
5713 Target_Type => Empty,
5714 Entry_OK => OK,
5715 Check_Num => Chk,
5716 Ent => Ent,
5717 Ofs => Ofs);
5718
5719 if Debug_Flag_CC then
5720 w ("Called Find_Check");
5721 w (" OK = ", OK);
5722
5723 if OK then
5724 w (" Check_Num = ", Chk);
5725 w (" Ent = ", Int (Ent));
5726 Write_Str (" Ofs = ");
5727 pid (Ofs);
5728 end if;
5729 end if;
ee6ba406 5730
9dfe12ae 5731 -- If check is not of form to optimize, then set flag and we are done
5732
5733 if not OK then
00c403ee 5734 Activate_Overflow_Check (N);
ee6ba406 5735 return;
9dfe12ae 5736 end if;
ee6ba406 5737
9dfe12ae 5738 -- If check is already performed, then return without setting flag
5739
5740 if Chk /= 0 then
5741 if Debug_Flag_CC then
5742 w ("Check suppressed!");
5743 end if;
ee6ba406 5744
ee6ba406 5745 return;
9dfe12ae 5746 end if;
ee6ba406 5747
9dfe12ae 5748 -- Here we will make a new entry for the new check
5749
00c403ee 5750 Activate_Overflow_Check (N);
9dfe12ae 5751 Num_Saved_Checks := Num_Saved_Checks + 1;
5752 Saved_Checks (Num_Saved_Checks) :=
5753 (Killed => False,
5754 Entity => Ent,
5755 Offset => Ofs,
5756 Check_Type => 'O',
5757 Target_Type => Empty);
5758
5759 if Debug_Flag_CC then
5760 w ("Make new entry, check number = ", Num_Saved_Checks);
5761 w (" Entity = ", Int (Ent));
5762 Write_Str (" Offset = ");
5763 pid (Ofs);
5764 w (" Check_Type = O");
5765 w (" Target_Type = Empty");
5766 end if;
ee6ba406 5767
feff2f05 5768 -- If we get an exception, then something went wrong, probably because of
20cf157b 5769 -- an error in the structure of the tree due to an incorrect program. Or
5770 -- it may be a bug in the optimization circuit. In either case the safest
feff2f05 5771 -- thing is simply to set the check flag unconditionally.
9dfe12ae 5772
5773 exception
5774 when others =>
00c403ee 5775 Activate_Overflow_Check (N);
9dfe12ae 5776
5777 if Debug_Flag_CC then
5778 w (" exception occurred, overflow flag set");
5779 end if;
5780
5781 return;
5782 end Enable_Overflow_Check;
5783
5784 ------------------------
5785 -- Enable_Range_Check --
5786 ------------------------
5787
5788 procedure Enable_Range_Check (N : Node_Id) is
5789 Chk : Nat;
5790 OK : Boolean;
5791 Ent : Entity_Id;
5792 Ofs : Uint;
5793 Ttyp : Entity_Id;
5794 P : Node_Id;
5795
5796 begin
feff2f05 5797 -- Return if unchecked type conversion with range check killed. In this
39a0c1d3 5798 -- case we never set the flag (that's what Kill_Range_Check is about).
9dfe12ae 5799
5800 if Nkind (N) = N_Unchecked_Type_Conversion
5801 and then Kill_Range_Check (N)
ee6ba406 5802 then
5803 return;
9dfe12ae 5804 end if;
ee6ba406 5805
55e8372b 5806 -- Do not set range check flag if parent is assignment statement or
5807 -- object declaration with Suppress_Assignment_Checks flag set
5808
5809 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5810 and then Suppress_Assignment_Checks (Parent (N))
5811 then
5812 return;
5813 end if;
5814
0577b0b1 5815 -- Check for various cases where we should suppress the range check
5816
5817 -- No check if range checks suppressed for type of node
5818
20cf157b 5819 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
0577b0b1 5820 return;
5821
5822 -- No check if node is an entity name, and range checks are suppressed
5823 -- for this entity, or for the type of this entity.
5824
5825 elsif Is_Entity_Name (N)
5826 and then (Range_Checks_Suppressed (Entity (N))
20cf157b 5827 or else Range_Checks_Suppressed (Etype (Entity (N))))
0577b0b1 5828 then
5829 return;
5830
5831 -- No checks if index of array, and index checks are suppressed for
5832 -- the array object or the type of the array.
5833
5834 elsif Nkind (Parent (N)) = N_Indexed_Component then
5835 declare
5836 Pref : constant Node_Id := Prefix (Parent (N));
5837 begin
5838 if Is_Entity_Name (Pref)
5839 and then Index_Checks_Suppressed (Entity (Pref))
5840 then
5841 return;
5842 elsif Index_Checks_Suppressed (Etype (Pref)) then
5843 return;
5844 end if;
5845 end;
5846 end if;
5847
9dfe12ae 5848 -- Debug trace output
ee6ba406 5849
9dfe12ae 5850 if Debug_Flag_CC then
5851 w ("Enable_Range_Check for node ", Int (N));
5852 Write_Str (" Source location = ");
5853 wl (Sloc (N));
00c403ee 5854 pg (Union_Id (N));
9dfe12ae 5855 end if;
5856
feff2f05 5857 -- If not in optimizing mode, set flag and we are done. We are also done
5858 -- (and just set the flag) if the type is not a discrete type, since it
5859 -- is not worth the effort to eliminate checks for other than discrete
5860 -- types. In addition, we take this same path if we have stored the
5861 -- maximum number of checks possible already (a very unlikely situation,
39a0c1d3 5862 -- but we do not want to blow up).
9dfe12ae 5863
5864 if Optimization_Level = 0
5865 or else No (Etype (N))
5866 or else not Is_Discrete_Type (Etype (N))
5867 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 5868 then
00c403ee 5869 Activate_Range_Check (N);
9dfe12ae 5870
5871 if Debug_Flag_CC then
5872 w ("Optimization off");
5873 end if;
5874
ee6ba406 5875 return;
9dfe12ae 5876 end if;
ee6ba406 5877
9dfe12ae 5878 -- Otherwise find out the target type
ee6ba406 5879
9dfe12ae 5880 P := Parent (N);
ee6ba406 5881
9dfe12ae 5882 -- For assignment, use left side subtype
5883
5884 if Nkind (P) = N_Assignment_Statement
5885 and then Expression (P) = N
5886 then
5887 Ttyp := Etype (Name (P));
5888
5889 -- For indexed component, use subscript subtype
5890
5891 elsif Nkind (P) = N_Indexed_Component then
5892 declare
5893 Atyp : Entity_Id;
5894 Indx : Node_Id;
5895 Subs : Node_Id;
5896
5897 begin
5898 Atyp := Etype (Prefix (P));
5899
5900 if Is_Access_Type (Atyp) then
5901 Atyp := Designated_Type (Atyp);
f07ea091 5902
5903 -- If the prefix is an access to an unconstrained array,
feff2f05 5904 -- perform check unconditionally: it depends on the bounds of
5905 -- an object and we cannot currently recognize whether the test
5906 -- may be redundant.
f07ea091 5907
5908 if not Is_Constrained (Atyp) then
00c403ee 5909 Activate_Range_Check (N);
f07ea091 5910 return;
5911 end if;
7189d17f 5912
31831d39 5913 -- Ditto if prefix is simply an unconstrained array. We used
5914 -- to think this case was OK, if the prefix was not an explicit
5915 -- dereference, but we have now seen a case where this is not
5916 -- true, so it is safer to just suppress the optimization in this
5917 -- case. The back end is getting better at eliminating redundant
5918 -- checks in any case, so the loss won't be important.
7189d17f 5919
31831d39 5920 elsif Is_Array_Type (Atyp)
7189d17f 5921 and then not Is_Constrained (Atyp)
5922 then
00c403ee 5923 Activate_Range_Check (N);
7189d17f 5924 return;
9dfe12ae 5925 end if;
5926
5927 Indx := First_Index (Atyp);
5928 Subs := First (Expressions (P));
5929 loop
5930 if Subs = N then
5931 Ttyp := Etype (Indx);
5932 exit;
5933 end if;
5934
5935 Next_Index (Indx);
5936 Next (Subs);
5937 end loop;
5938 end;
5939
5940 -- For now, ignore all other cases, they are not so interesting
5941
5942 else
5943 if Debug_Flag_CC then
5944 w (" target type not found, flag set");
5945 end if;
5946
00c403ee 5947 Activate_Range_Check (N);
9dfe12ae 5948 return;
5949 end if;
5950
5951 -- Evaluate and check the expression
5952
5953 Find_Check
5954 (Expr => N,
5955 Check_Type => 'R',
5956 Target_Type => Ttyp,
5957 Entry_OK => OK,
5958 Check_Num => Chk,
5959 Ent => Ent,
5960 Ofs => Ofs);
5961
5962 if Debug_Flag_CC then
5963 w ("Called Find_Check");
5964 w ("Target_Typ = ", Int (Ttyp));
5965 w (" OK = ", OK);
5966
5967 if OK then
5968 w (" Check_Num = ", Chk);
5969 w (" Ent = ", Int (Ent));
5970 Write_Str (" Ofs = ");
5971 pid (Ofs);
5972 end if;
5973 end if;
5974
5975 -- If check is not of form to optimize, then set flag and we are done
5976
5977 if not OK then
5978 if Debug_Flag_CC then
5979 w (" expression not of optimizable type, flag set");
5980 end if;
5981
00c403ee 5982 Activate_Range_Check (N);
9dfe12ae 5983 return;
5984 end if;
5985
5986 -- If check is already performed, then return without setting flag
5987
5988 if Chk /= 0 then
5989 if Debug_Flag_CC then
5990 w ("Check suppressed!");
5991 end if;
5992
5993 return;
5994 end if;
5995
5996 -- Here we will make a new entry for the new check
5997
00c403ee 5998 Activate_Range_Check (N);
9dfe12ae 5999 Num_Saved_Checks := Num_Saved_Checks + 1;
6000 Saved_Checks (Num_Saved_Checks) :=
6001 (Killed => False,
6002 Entity => Ent,
6003 Offset => Ofs,
6004 Check_Type => 'R',
6005 Target_Type => Ttyp);
6006
6007 if Debug_Flag_CC then
6008 w ("Make new entry, check number = ", Num_Saved_Checks);
6009 w (" Entity = ", Int (Ent));
6010 Write_Str (" Offset = ");
6011 pid (Ofs);
6012 w (" Check_Type = R");
6013 w (" Target_Type = ", Int (Ttyp));
00c403ee 6014 pg (Union_Id (Ttyp));
9dfe12ae 6015 end if;
6016
feff2f05 6017 -- If we get an exception, then something went wrong, probably because of
6018 -- an error in the structure of the tree due to an incorrect program. Or
6019 -- it may be a bug in the optimization circuit. In either case the safest
6020 -- thing is simply to set the check flag unconditionally.
9dfe12ae 6021
6022 exception
6023 when others =>
00c403ee 6024 Activate_Range_Check (N);
9dfe12ae 6025
6026 if Debug_Flag_CC then
6027 w (" exception occurred, range flag set");
6028 end if;
6029
6030 return;
6031 end Enable_Range_Check;
6032
6033 ------------------
6034 -- Ensure_Valid --
6035 ------------------
6036
aaec8d13 6037 procedure Ensure_Valid
6038 (Expr : Node_Id;
6039 Holes_OK : Boolean := False;
6040 Related_Id : Entity_Id := Empty;
6041 Is_Low_Bound : Boolean := False;
6042 Is_High_Bound : Boolean := False)
6043 is
9dfe12ae 6044 Typ : constant Entity_Id := Etype (Expr);
6045
6046 begin
6047 -- Ignore call if we are not doing any validity checking
6048
6049 if not Validity_Checks_On then
6050 return;
6051
0577b0b1 6052 -- Ignore call if range or validity checks suppressed on entity or type
9dfe12ae 6053
0577b0b1 6054 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
9dfe12ae 6055 return;
6056
feff2f05 6057 -- No check required if expression is from the expander, we assume the
6058 -- expander will generate whatever checks are needed. Note that this is
39a0c1d3 6059 -- not just an optimization, it avoids infinite recursions.
9dfe12ae 6060
6061 -- Unchecked conversions must be checked, unless they are initialized
6062 -- scalar values, as in a component assignment in an init proc.
6063
6064 -- In addition, we force a check if Force_Validity_Checks is set
6065
6066 elsif not Comes_From_Source (Expr)
404eb7da 6067 and then not
6068 (Nkind (Expr) = N_Identifier
6069 and then Present (Renamed_Object (Entity (Expr)))
6070 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
9dfe12ae 6071 and then not Force_Validity_Checks
6072 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
6073 or else Kill_Range_Check (Expr))
6074 then
6075 return;
6076
6077 -- No check required if expression is known to have valid value
6078
6079 elsif Expr_Known_Valid (Expr) then
6080 return;
6081
ea1f4b87 6082 -- No check needed within a generated predicate function. Validity
6083 -- of input value will have been checked earlier.
6084
6085 elsif Ekind (Current_Scope) = E_Function
6086 and then Is_Predicate_Function (Current_Scope)
6087 then
6088 return;
6089
feff2f05 6090 -- Ignore case of enumeration with holes where the flag is set not to
6091 -- worry about holes, since no special validity check is needed
9dfe12ae 6092
6093 elsif Is_Enumeration_Type (Typ)
6094 and then Has_Non_Standard_Rep (Typ)
6095 and then Holes_OK
6096 then
6097 return;
6098
f2a06be9 6099 -- No check required on the left-hand side of an assignment
9dfe12ae 6100
6101 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6102 and then Expr = Name (Parent (Expr))
6103 then
6104 return;
6105
6fb3c314 6106 -- No check on a universal real constant. The context will eventually
38f5559f 6107 -- convert it to a machine number for some target type, or report an
6108 -- illegality.
6109
6110 elsif Nkind (Expr) = N_Real_Literal
6111 and then Etype (Expr) = Universal_Real
6112 then
6113 return;
6114
6fb3c314 6115 -- If the expression denotes a component of a packed boolean array,
0577b0b1 6116 -- no possible check applies. We ignore the old ACATS chestnuts that
6117 -- involve Boolean range True..True.
6118
6119 -- Note: validity checks are generated for expressions that yield a
6120 -- scalar type, when it is possible to create a value that is outside of
6121 -- the type. If this is a one-bit boolean no such value exists. This is
6122 -- an optimization, and it also prevents compiler blowing up during the
6123 -- elaboration of improperly expanded packed array references.
6124
6125 elsif Nkind (Expr) = N_Indexed_Component
6126 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6127 and then Root_Type (Etype (Expr)) = Standard_Boolean
6128 then
6129 return;
6130
737e8460 6131 -- For an expression with actions, we want to insert the validity check
6132 -- on the final Expression.
6133
6134 elsif Nkind (Expr) = N_Expression_With_Actions then
6135 Ensure_Valid (Expression (Expr));
6136 return;
6137
9dfe12ae 6138 -- An annoying special case. If this is an out parameter of a scalar
6139 -- type, then the value is not going to be accessed, therefore it is
becb6111 6140 -- inappropriate to do any validity check at the call site. Likewise
6141 -- if the parameter is passed by reference.
9dfe12ae 6142
6143 else
6144 -- Only need to worry about scalar types
6145
6146 if Is_Scalar_Type (Typ) then
ee6ba406 6147 declare
6148 P : Node_Id;
6149 N : Node_Id;
6150 E : Entity_Id;
6151 F : Entity_Id;
6152 A : Node_Id;
6153 L : List_Id;
6154
6155 begin
6156 -- Find actual argument (which may be a parameter association)
6157 -- and the parent of the actual argument (the call statement)
6158
6159 N := Expr;
6160 P := Parent (Expr);
6161
6162 if Nkind (P) = N_Parameter_Association then
6163 N := P;
6164 P := Parent (N);
6165 end if;
6166
becb6111 6167 -- If this is an indirect or dispatching call, get signature
6168 -- from the subprogram type.
ee6ba406 6169
becb6111 6170 if Nkind_In (P, N_Entry_Call_Statement,
6171 N_Function_Call,
6172 N_Procedure_Call_Statement)
6173 then
6174 E := Get_Called_Entity (P);
ee6ba406 6175 L := Parameter_Associations (P);
9dfe12ae 6176
feff2f05 6177 -- Only need to worry if there are indeed actuals, and if
becb6111 6178 -- this could be a subprogram call, otherwise we cannot get
6179 -- a match (either we are not an argument, or the mode of
6180 -- the formal is not OUT). This test also filters out the
feff2f05 6181 -- generic case.
ee6ba406 6182
20cf157b 6183 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6184
feff2f05 6185 -- This is the loop through parameters, looking for an
6186 -- OUT parameter for which we are the argument.
ee6ba406 6187
6188 F := First_Formal (E);
6189 A := First (L);
ee6ba406 6190 while Present (F) loop
becb6111 6191 if A = N
6192 and then (Ekind (F) = E_Out_Parameter
6193 or else Mechanism (F) = By_Reference)
6194 then
ee6ba406 6195 return;
6196 end if;
6197
6198 Next_Formal (F);
6199 Next (A);
6200 end loop;
6201 end if;
6202 end if;
6203 end;
6204 end if;
6205 end if;
6206
fa6a6949 6207 -- If this is a boolean expression, only its elementary operands need
90a07d4c 6208 -- checking: if they are valid, a boolean or short-circuit operation
6209 -- with them will be valid as well.
784d4230 6210
6211 if Base_Type (Typ) = Standard_Boolean
7af38999 6212 and then
fa6a6949 6213 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
784d4230 6214 then
6215 return;
6216 end if;
6217
0577b0b1 6218 -- If we fall through, a validity check is required
ee6ba406 6219
aaec8d13 6220 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
ce7498d3 6221
6222 if Is_Entity_Name (Expr)
6223 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6224 then
6225 Set_Is_Known_Valid (Entity (Expr));
6226 end if;
ee6ba406 6227 end Ensure_Valid;
6228
6229 ----------------------
6230 -- Expr_Known_Valid --
6231 ----------------------
6232
6233 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6234 Typ : constant Entity_Id := Etype (Expr);
6235
6236 begin
feff2f05 6237 -- Non-scalar types are always considered valid, since they never give
6238 -- rise to the issues of erroneous or bounded error behavior that are
6239 -- the concern. In formal reference manual terms the notion of validity
6240 -- only applies to scalar types. Note that even when packed arrays are
6241 -- represented using modular types, they are still arrays semantically,
6242 -- so they are also always valid (in particular, the unused bits can be
6243 -- random rubbish without affecting the validity of the array value).
ee6ba406 6244
a88a5773 6245 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
ee6ba406 6246 return True;
6247
6248 -- If no validity checking, then everything is considered valid
6249
6250 elsif not Validity_Checks_On then
6251 return True;
6252
6253 -- Floating-point types are considered valid unless floating-point
6254 -- validity checks have been specifically turned on.
6255
6256 elsif Is_Floating_Point_Type (Typ)
6257 and then not Validity_Check_Floating_Point
6258 then
6259 return True;
6260
feff2f05 6261 -- If the expression is the value of an object that is known to be
6262 -- valid, then clearly the expression value itself is valid.
ee6ba406 6263
6264 elsif Is_Entity_Name (Expr)
6265 and then Is_Known_Valid (Entity (Expr))
985fe5d6 6266
6267 -- Exclude volatile variables
6268
6269 and then not Treat_As_Volatile (Entity (Expr))
ee6ba406 6270 then
6271 return True;
6272
0577b0b1 6273 -- References to discriminants are always considered valid. The value
6274 -- of a discriminant gets checked when the object is built. Within the
6275 -- record, we consider it valid, and it is important to do so, since
6276 -- otherwise we can try to generate bogus validity checks which
feff2f05 6277 -- reference discriminants out of scope. Discriminants of concurrent
6278 -- types are excluded for the same reason.
0577b0b1 6279
6280 elsif Is_Entity_Name (Expr)
feff2f05 6281 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
0577b0b1 6282 then
6283 return True;
6284
feff2f05 6285 -- If the type is one for which all values are known valid, then we are
6286 -- sure that the value is valid except in the slightly odd case where
6287 -- the expression is a reference to a variable whose size has been
6288 -- explicitly set to a value greater than the object size.
ee6ba406 6289
6290 elsif Is_Known_Valid (Typ) then
6291 if Is_Entity_Name (Expr)
6292 and then Ekind (Entity (Expr)) = E_Variable
6293 and then Esize (Entity (Expr)) > Esize (Typ)
6294 then
6295 return False;
6296 else
6297 return True;
6298 end if;
6299
6300 -- Integer and character literals always have valid values, where
6301 -- appropriate these will be range checked in any case.
6302
20cf157b 6303 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
ee6ba406 6304 return True;
91e47010 6305
ee6ba406 6306 -- If we have a type conversion or a qualification of a known valid
6307 -- value, then the result will always be valid.
6308
20cf157b 6309 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
ee6ba406 6310 return Expr_Known_Valid (Expression (Expr));
6311
1eb1395f 6312 -- Case of expression is a non-floating-point operator. In this case we
6313 -- can assume the result is valid the generated code for the operator
6314 -- will include whatever checks are needed (e.g. range checks) to ensure
6315 -- validity. This assumption does not hold for the floating-point case,
6316 -- since floating-point operators can generate Infinite or NaN results
6317 -- which are considered invalid.
6318
6319 -- Historical note: in older versions, the exemption of floating-point
6320 -- types from this assumption was done only in cases where the parent
6321 -- was an assignment, function call or parameter association. Presumably
6322 -- the idea was that in other contexts, the result would be checked
6323 -- elsewhere, but this list of cases was missing tests (at least the
6324 -- N_Object_Declaration case, as shown by a reported missing validity
6325 -- check), and it is not clear why function calls but not procedure
6326 -- calls were tested for. It really seems more accurate and much
6327 -- safer to recognize that expressions which are the result of a
6328 -- floating-point operator can never be assumed to be valid.
6329
6330 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6331 return True;
1d90d657 6332
feff2f05 6333 -- The result of a membership test is always valid, since it is true or
6334 -- false, there are no other possibilities.
0577b0b1 6335
6336 elsif Nkind (Expr) in N_Membership_Test then
6337 return True;
6338
ee6ba406 6339 -- For all other cases, we do not know the expression is valid
6340
6341 else
6342 return False;
6343 end if;
6344 end Expr_Known_Valid;
6345
9dfe12ae 6346 ----------------
6347 -- Find_Check --
6348 ----------------
6349
6350 procedure Find_Check
6351 (Expr : Node_Id;
6352 Check_Type : Character;
6353 Target_Type : Entity_Id;
6354 Entry_OK : out Boolean;
6355 Check_Num : out Nat;
6356 Ent : out Entity_Id;
6357 Ofs : out Uint)
6358 is
6359 function Within_Range_Of
6360 (Target_Type : Entity_Id;
314a23b6 6361 Check_Type : Entity_Id) return Boolean;
9dfe12ae 6362 -- Given a requirement for checking a range against Target_Type, and
6363 -- and a range Check_Type against which a check has already been made,
6364 -- determines if the check against check type is sufficient to ensure
6365 -- that no check against Target_Type is required.
6366
6367 ---------------------
6368 -- Within_Range_Of --
6369 ---------------------
6370
6371 function Within_Range_Of
6372 (Target_Type : Entity_Id;
314a23b6 6373 Check_Type : Entity_Id) return Boolean
9dfe12ae 6374 is
6375 begin
6376 if Target_Type = Check_Type then
6377 return True;
6378
6379 else
6380 declare
6381 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6382 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6383 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6384 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6385
6386 begin
6387 if (Tlo = Clo
6388 or else (Compile_Time_Known_Value (Tlo)
6389 and then
6390 Compile_Time_Known_Value (Clo)
6391 and then
6392 Expr_Value (Clo) >= Expr_Value (Tlo)))
6393 and then
6394 (Thi = Chi
6395 or else (Compile_Time_Known_Value (Thi)
6396 and then
6397 Compile_Time_Known_Value (Chi)
6398 and then
6399 Expr_Value (Chi) <= Expr_Value (Clo)))
6400 then
6401 return True;
6402 else
6403 return False;
6404 end if;
6405 end;
6406 end if;
6407 end Within_Range_Of;
6408
6409 -- Start of processing for Find_Check
6410
6411 begin
ed195555 6412 -- Establish default, in case no entry is found
9dfe12ae 6413
6414 Check_Num := 0;
6415
6416 -- Case of expression is simple entity reference
6417
6418 if Is_Entity_Name (Expr) then
6419 Ent := Entity (Expr);
6420 Ofs := Uint_0;
6421
6422 -- Case of expression is entity + known constant
6423
6424 elsif Nkind (Expr) = N_Op_Add
6425 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6426 and then Is_Entity_Name (Left_Opnd (Expr))
6427 then
6428 Ent := Entity (Left_Opnd (Expr));
6429 Ofs := Expr_Value (Right_Opnd (Expr));
6430
6431 -- Case of expression is entity - known constant
6432
6433 elsif Nkind (Expr) = N_Op_Subtract
6434 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6435 and then Is_Entity_Name (Left_Opnd (Expr))
6436 then
6437 Ent := Entity (Left_Opnd (Expr));
6438 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6439
6440 -- Any other expression is not of the right form
6441
6442 else
6443 Ent := Empty;
6444 Ofs := Uint_0;
6445 Entry_OK := False;
6446 return;
6447 end if;
6448
feff2f05 6449 -- Come here with expression of appropriate form, check if entity is an
6450 -- appropriate one for our purposes.
9dfe12ae 6451
6452 if (Ekind (Ent) = E_Variable
cc60bd16 6453 or else Is_Constant_Object (Ent))
9dfe12ae 6454 and then not Is_Library_Level_Entity (Ent)
6455 then
6456 Entry_OK := True;
6457 else
6458 Entry_OK := False;
6459 return;
6460 end if;
6461
6462 -- See if there is matching check already
6463
6464 for J in reverse 1 .. Num_Saved_Checks loop
6465 declare
6466 SC : Saved_Check renames Saved_Checks (J);
9dfe12ae 6467 begin
6468 if SC.Killed = False
6469 and then SC.Entity = Ent
6470 and then SC.Offset = Ofs
6471 and then SC.Check_Type = Check_Type
6472 and then Within_Range_Of (Target_Type, SC.Target_Type)
6473 then
6474 Check_Num := J;
6475 return;
6476 end if;
6477 end;
6478 end loop;
6479
6480 -- If we fall through entry was not found
6481
9dfe12ae 6482 return;
6483 end Find_Check;
6484
6485 ---------------------------------
6486 -- Generate_Discriminant_Check --
6487 ---------------------------------
6488
6489 -- Note: the code for this procedure is derived from the
feff2f05 6490 -- Emit_Discriminant_Check Routine in trans.c.
9dfe12ae 6491
6492 procedure Generate_Discriminant_Check (N : Node_Id) is
6493 Loc : constant Source_Ptr := Sloc (N);
6494 Pref : constant Node_Id := Prefix (N);
6495 Sel : constant Node_Id := Selector_Name (N);
6496
6497 Orig_Comp : constant Entity_Id :=
b6341c67 6498 Original_Record_Component (Entity (Sel));
9dfe12ae 6499 -- The original component to be checked
6500
6501 Discr_Fct : constant Entity_Id :=
b6341c67 6502 Discriminant_Checking_Func (Orig_Comp);
9dfe12ae 6503 -- The discriminant checking function
6504
6505 Discr : Entity_Id;
6506 -- One discriminant to be checked in the type
6507
6508 Real_Discr : Entity_Id;
6509 -- Actual discriminant in the call
6510
6511 Pref_Type : Entity_Id;
6512 -- Type of relevant prefix (ignoring private/access stuff)
6513
6514 Args : List_Id;
6515 -- List of arguments for function call
6516
6517 Formal : Entity_Id;
feff2f05 6518 -- Keep track of the formal corresponding to the actual we build for
6519 -- each discriminant, in order to be able to perform the necessary type
6520 -- conversions.
9dfe12ae 6521
6522 Scomp : Node_Id;
6523 -- Selected component reference for checking function argument
6524
6525 begin
6526 Pref_Type := Etype (Pref);
6527
6528 -- Force evaluation of the prefix, so that it does not get evaluated
6529 -- twice (once for the check, once for the actual reference). Such a
20cf157b 6530 -- double evaluation is always a potential source of inefficiency, and
6531 -- is functionally incorrect in the volatile case, or when the prefix
f9906591 6532 -- may have side effects. A nonvolatile entity or a component of a
6533 -- nonvolatile entity requires no evaluation.
9dfe12ae 6534
6535 if Is_Entity_Name (Pref) then
6536 if Treat_As_Volatile (Entity (Pref)) then
6537 Force_Evaluation (Pref, Name_Req => True);
6538 end if;
6539
6540 elsif Treat_As_Volatile (Etype (Pref)) then
20cf157b 6541 Force_Evaluation (Pref, Name_Req => True);
9dfe12ae 6542
6543 elsif Nkind (Pref) = N_Selected_Component
6544 and then Is_Entity_Name (Prefix (Pref))
6545 then
6546 null;
6547
6548 else
6549 Force_Evaluation (Pref, Name_Req => True);
6550 end if;
6551
6552 -- For a tagged type, use the scope of the original component to
6553 -- obtain the type, because ???
6554
6555 if Is_Tagged_Type (Scope (Orig_Comp)) then
6556 Pref_Type := Scope (Orig_Comp);
6557
feff2f05 6558 -- For an untagged derived type, use the discriminants of the parent
6559 -- which have been renamed in the derivation, possibly by a one-to-many
d1a2e31b 6560 -- discriminant constraint. For untagged type, initially get the Etype
feff2f05 6561 -- of the prefix
9dfe12ae 6562
6563 else
6564 if Is_Derived_Type (Pref_Type)
6565 and then Number_Discriminants (Pref_Type) /=
6566 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6567 then
6568 Pref_Type := Etype (Base_Type (Pref_Type));
6569 end if;
6570 end if;
6571
6572 -- We definitely should have a checking function, This routine should
6573 -- not be called if no discriminant checking function is present.
6574
6575 pragma Assert (Present (Discr_Fct));
6576
6577 -- Create the list of the actual parameters for the call. This list
6578 -- is the list of the discriminant fields of the record expression to
6579 -- be discriminant checked.
6580
6581 Args := New_List;
6582 Formal := First_Formal (Discr_Fct);
6583 Discr := First_Discriminant (Pref_Type);
6584 while Present (Discr) loop
6585
6586 -- If we have a corresponding discriminant field, and a parent
6587 -- subtype is present, then we want to use the corresponding
6588 -- discriminant since this is the one with the useful value.
6589
6590 if Present (Corresponding_Discriminant (Discr))
6591 and then Ekind (Pref_Type) = E_Record_Type
6592 and then Present (Parent_Subtype (Pref_Type))
6593 then
6594 Real_Discr := Corresponding_Discriminant (Discr);
6595 else
6596 Real_Discr := Discr;
6597 end if;
6598
6599 -- Construct the reference to the discriminant
6600
6601 Scomp :=
6602 Make_Selected_Component (Loc,
6603 Prefix =>
6604 Unchecked_Convert_To (Pref_Type,
6605 Duplicate_Subexpr (Pref)),
6606 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6607
6608 -- Manually analyze and resolve this selected component. We really
6609 -- want it just as it appears above, and do not want the expander
feff2f05 6610 -- playing discriminal games etc with this reference. Then we append
6611 -- the argument to the list we are gathering.
9dfe12ae 6612
6613 Set_Etype (Scomp, Etype (Real_Discr));
6614 Set_Analyzed (Scomp, True);
6615 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6616
6617 Next_Formal_With_Extras (Formal);
6618 Next_Discriminant (Discr);
6619 end loop;
6620
6621 -- Now build and insert the call
6622
6623 Insert_Action (N,
6624 Make_Raise_Constraint_Error (Loc,
6625 Condition =>
6626 Make_Function_Call (Loc,
20cf157b 6627 Name => New_Occurrence_Of (Discr_Fct, Loc),
9dfe12ae 6628 Parameter_Associations => Args),
6629 Reason => CE_Discriminant_Check_Failed));
6630 end Generate_Discriminant_Check;
6631
5c99c290 6632 ---------------------------
6633 -- Generate_Index_Checks --
6634 ---------------------------
9dfe12ae 6635
6636 procedure Generate_Index_Checks (N : Node_Id) is
05f3e139 6637
6638 function Entity_Of_Prefix return Entity_Id;
6639 -- Returns the entity of the prefix of N (or Empty if not found)
6640
3f42e2a7 6641 ----------------------
6642 -- Entity_Of_Prefix --
6643 ----------------------
6644
05f3e139 6645 function Entity_Of_Prefix return Entity_Id is
e5d38095 6646 P : Node_Id;
6647
05f3e139 6648 begin
e5d38095 6649 P := Prefix (N);
05f3e139 6650 while not Is_Entity_Name (P) loop
6651 if not Nkind_In (P, N_Selected_Component,
6652 N_Indexed_Component)
6653 then
6654 return Empty;
6655 end if;
6656
6657 P := Prefix (P);
6658 end loop;
6659
6660 return Entity (P);
6661 end Entity_Of_Prefix;
6662
6663 -- Local variables
6664
6665 Loc : constant Source_Ptr := Sloc (N);
6666 A : constant Node_Id := Prefix (N);
6667 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6668 Sub : Node_Id;
9dfe12ae 6669
3f42e2a7 6670 -- Start of processing for Generate_Index_Checks
6671
9dfe12ae 6672 begin
05f3e139 6673 -- Ignore call if the prefix is not an array since we have a serious
6674 -- error in the sources. Ignore it also if index checks are suppressed
6675 -- for array object or type.
0577b0b1 6676
05f3e139 6677 if not Is_Array_Type (Etype (A))
20cf157b 6678 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
0577b0b1 6679 or else Index_Checks_Suppressed (Etype (A))
6680 then
6681 return;
df9fba45 6682
6683 -- The indexed component we are dealing with contains 'Loop_Entry in its
6684 -- prefix. This case arises when analysis has determined that constructs
6685 -- such as
6686
6687 -- Prefix'Loop_Entry (Expr)
6688 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6689
6690 -- require rewriting for error detection purposes. A side effect of this
6691 -- action is the generation of index checks that mention 'Loop_Entry.
6692 -- Delay the generation of the check until 'Loop_Entry has been properly
6693 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6694
6695 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6696 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6697 then
6698 return;
0577b0b1 6699 end if;
6700
05f3e139 6701 -- Generate a raise of constraint error with the appropriate reason and
6702 -- a condition of the form:
6703
3f42e2a7 6704 -- Base_Type (Sub) not in Array'Range (Subscript)
05f3e139 6705
6706 -- Note that the reason we generate the conversion to the base type here
6707 -- is that we definitely want the range check to take place, even if it
6708 -- looks like the subtype is OK. Optimization considerations that allow
6709 -- us to omit the check have already been taken into account in the
6710 -- setting of the Do_Range_Check flag earlier on.
0577b0b1 6711
9dfe12ae 6712 Sub := First (Expressions (N));
05f3e139 6713
6714 -- Handle string literals
6715
6716 if Ekind (Etype (A)) = E_String_Literal_Subtype then
9dfe12ae 6717 if Do_Range_Check (Sub) then
6718 Set_Do_Range_Check (Sub, False);
6719
05f3e139 6720 -- For string literals we obtain the bounds of the string from the
6721 -- associated subtype.
9dfe12ae 6722
05f3e139 6723 Insert_Action (N,
094ed68e 6724 Make_Raise_Constraint_Error (Loc,
6725 Condition =>
6726 Make_Not_In (Loc,
6727 Left_Opnd =>
6728 Convert_To (Base_Type (Etype (Sub)),
6729 Duplicate_Subexpr_Move_Checks (Sub)),
6730 Right_Opnd =>
6731 Make_Attribute_Reference (Loc,
83c6c069 6732 Prefix => New_Occurrence_Of (Etype (A), Loc),
094ed68e 6733 Attribute_Name => Name_Range)),
6734 Reason => CE_Index_Check_Failed));
05f3e139 6735 end if;
9dfe12ae 6736
05f3e139 6737 -- General case
9dfe12ae 6738
05f3e139 6739 else
6740 declare
6741 A_Idx : Node_Id := Empty;
6742 A_Range : Node_Id;
6743 Ind : Nat;
6744 Num : List_Id;
6745 Range_N : Node_Id;
9dfe12ae 6746
05f3e139 6747 begin
6748 A_Idx := First_Index (Etype (A));
6749 Ind := 1;
6750 while Present (Sub) loop
6751 if Do_Range_Check (Sub) then
6752 Set_Do_Range_Check (Sub, False);
9dfe12ae 6753
05f3e139 6754 -- Force evaluation except for the case of a simple name of
f9906591 6755 -- a nonvolatile entity.
9dfe12ae 6756
05f3e139 6757 if not Is_Entity_Name (Sub)
6758 or else Treat_As_Volatile (Entity (Sub))
6759 then
6760 Force_Evaluation (Sub);
6761 end if;
9dfe12ae 6762
05f3e139 6763 if Nkind (A_Idx) = N_Range then
6764 A_Range := A_Idx;
6765
6766 elsif Nkind (A_Idx) = N_Identifier
6767 or else Nkind (A_Idx) = N_Expanded_Name
6768 then
6769 A_Range := Scalar_Range (Entity (A_Idx));
6770
6771 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6772 A_Range := Range_Expression (Constraint (A_Idx));
6773 end if;
6774
6775 -- For array objects with constant bounds we can generate
6776 -- the index check using the bounds of the type of the index
6777
6778 if Present (A_Ent)
6779 and then Ekind (A_Ent) = E_Variable
6780 and then Is_Constant_Bound (Low_Bound (A_Range))
6781 and then Is_Constant_Bound (High_Bound (A_Range))
6782 then
6783 Range_N :=
6784 Make_Attribute_Reference (Loc,
3f42e2a7 6785 Prefix =>
83c6c069 6786 New_Occurrence_Of (Etype (A_Idx), Loc),
05f3e139 6787 Attribute_Name => Name_Range);
6788
6789 -- For arrays with non-constant bounds we cannot generate
6790 -- the index check using the bounds of the type of the index
6791 -- since it may reference discriminants of some enclosing
6792 -- type. We obtain the bounds directly from the prefix
6793 -- object.
6794
6795 else
6796 if Ind = 1 then
6797 Num := No_List;
6798 else
6799 Num := New_List (Make_Integer_Literal (Loc, Ind));
6800 end if;
6801
6802 Range_N :=
6803 Make_Attribute_Reference (Loc,
6804 Prefix =>
6805 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6806 Attribute_Name => Name_Range,
6807 Expressions => Num);
6808 end if;
6809
6810 Insert_Action (N,
094ed68e 6811 Make_Raise_Constraint_Error (Loc,
6812 Condition =>
6813 Make_Not_In (Loc,
6814 Left_Opnd =>
6815 Convert_To (Base_Type (Etype (Sub)),
6816 Duplicate_Subexpr_Move_Checks (Sub)),
6817 Right_Opnd => Range_N),
6818 Reason => CE_Index_Check_Failed));
05f3e139 6819 end if;
6820
6821 A_Idx := Next_Index (A_Idx);
6822 Ind := Ind + 1;
6823 Next (Sub);
6824 end loop;
6825 end;
6826 end if;
9dfe12ae 6827 end Generate_Index_Checks;
6828
6829 --------------------------
6830 -- Generate_Range_Check --
6831 --------------------------
6832
6833 procedure Generate_Range_Check
6834 (N : Node_Id;
6835 Target_Type : Entity_Id;
6836 Reason : RT_Exception_Code)
6837 is
6838 Loc : constant Source_Ptr := Sloc (N);
6839 Source_Type : constant Entity_Id := Etype (N);
6840 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6841 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6842
1f5d83cf 6843 procedure Convert_And_Check_Range;
6844 -- Convert the conversion operand to the target base type and save in
6845 -- a temporary. Then check the converted value against the range of the
6846 -- target subtype.
6847
124f1911 6848 -----------------------------
6849 -- Convert_And_Check_Range --
6850 -----------------------------
1f5d83cf 6851
124f1911 6852 procedure Convert_And_Check_Range is
cdfda0e3 6853 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6854 Conv_Node : Node_Id;
1f5d83cf 6855
124f1911 6856 begin
cdfda0e3 6857 -- For enumeration types with non-standard representation this is a
6858 -- direct conversion from the enumeration type to the target integer
6859 -- type, which is treated by the back end as a normal integer type
6860 -- conversion, treating the enumeration type as an integer, which is
6861 -- exactly what we want. We set Conversion_OK to make sure that the
6862 -- analyzer does not complain about what otherwise might be an
6863 -- illegal conversion.
6864
6865 if Is_Enumeration_Type (Source_Base_Type)
6866 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
6867 and then Is_Integer_Type (Target_Base_Type)
6868 then
6869 Conv_Node :=
96cb18c0 6870 OK_Convert_To
6871 (Typ => Target_Base_Type,
6872 Expr => Duplicate_Subexpr (N));
cdfda0e3 6873
6874 -- Common case
6875
6876 else
6877 Conv_Node :=
6878 Make_Type_Conversion (Loc,
6879 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6880 Expression => Duplicate_Subexpr (N));
6881 end if;
6882
124f1911 6883 -- We make a temporary to hold the value of the converted value
6884 -- (converted to the base type), and then do the test against this
6885 -- temporary. The conversion itself is replaced by an occurrence of
6886 -- Tnn and followed by the explicit range check. Note that checks
6887 -- are suppressed for this code, since we don't want a recursive
1f5d83cf 6888 -- range check popping up.
6889
124f1911 6890 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6891 -- [constraint_error when Tnn not in Target_Type]
6892
1f5d83cf 6893 Insert_Actions (N, New_List (
6894 Make_Object_Declaration (Loc,
6895 Defining_Identifier => Tnn,
6896 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6897 Constant_Present => True,
cdfda0e3 6898 Expression => Conv_Node),
1f5d83cf 6899
6900 Make_Raise_Constraint_Error (Loc,
6901 Condition =>
6902 Make_Not_In (Loc,
6903 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6904 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6905 Reason => Reason)),
6906 Suppress => All_Checks);
6907
6908 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6909
6910 -- Set the type of N, because the declaration for Tnn might not
6911 -- be analyzed yet, as is the case if N appears within a record
6912 -- declaration, as a discriminant constraint or expression.
6913
6914 Set_Etype (N, Target_Base_Type);
6915 end Convert_And_Check_Range;
6916
6917 -- Start of processing for Generate_Range_Check
6918
9dfe12ae 6919 begin
feff2f05 6920 -- First special case, if the source type is already within the range
6921 -- of the target type, then no check is needed (probably we should have
6922 -- stopped Do_Range_Check from being set in the first place, but better
cda40848 6923 -- late than never in preventing junk code and junk flag settings.
9dfe12ae 6924
7a1dabb3 6925 if In_Subrange_Of (Source_Type, Target_Type)
b40670e1 6926
6927 -- We do NOT apply this if the source node is a literal, since in this
6928 -- case the literal has already been labeled as having the subtype of
6929 -- the target.
6930
9dfe12ae 6931 and then not
b40670e1 6932 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
9dfe12ae 6933 or else
b40670e1 6934 (Is_Entity_Name (N)
6935 and then Ekind (Entity (N)) = E_Enumeration_Literal))
9dfe12ae 6936 then
cda40848 6937 Set_Do_Range_Check (N, False);
9dfe12ae 6938 return;
6939 end if;
6940
cda40848 6941 -- Here a check is needed. If the expander is not active, or if we are
6942 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6943 -- are done. In both these cases, we just want to see the range check
6944 -- flag set, we do not want to generate the explicit range check code.
6945
6946 if GNATprove_Mode or else not Expander_Active then
6947 Set_Do_Range_Check (N, True);
6948 return;
6949 end if;
6950
6951 -- Here we will generate an explicit range check, so we don't want to
6952 -- set the Do_Range check flag, since the range check is taken care of
6953 -- by the code we will generate.
6954
6955 Set_Do_Range_Check (N, False);
6956
6957 -- Force evaluation of the node, so that it does not get evaluated twice
6958 -- (once for the check, once for the actual reference). Such a double
6959 -- evaluation is always a potential source of inefficiency, and is
6960 -- functionally incorrect in the volatile case.
9dfe12ae 6961
f47b9548 6962 -- We skip the evaluation of attribute references because, after these
6963 -- runtime checks are generated, the expander may need to rewrite this
6964 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6965 -- Expand_N_Attribute_Reference).
6966
6967 if Nkind (N) /= N_Attribute_Reference
6968 and then (not Is_Entity_Name (N)
ca09bfdb 6969 or else Treat_As_Volatile (Entity (N)))
f47b9548 6970 then
6971 Force_Evaluation (N, Mode => Strict);
9dfe12ae 6972 end if;
6973
feff2f05 6974 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6975 -- the same since in this case we can simply do a direct check of the
6976 -- value of N against the bounds of Target_Type.
9dfe12ae 6977
6978 -- [constraint_error when N not in Target_Type]
6979
6980 -- Note: this is by far the most common case, for example all cases of
6981 -- checks on the RHS of assignments are in this category, but not all
6982 -- cases are like this. Notably conversions can involve two types.
6983
6984 if Source_Base_Type = Target_Base_Type then
99ed4b4c 6985
6986 -- Insert the explicit range check. Note that we suppress checks for
6987 -- this code, since we don't want a recursive range check popping up.
6988
9dfe12ae 6989 Insert_Action (N,
6990 Make_Raise_Constraint_Error (Loc,
6991 Condition =>
6992 Make_Not_In (Loc,
6993 Left_Opnd => Duplicate_Subexpr (N),
6994 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
99ed4b4c 6995 Reason => Reason),
6996 Suppress => All_Checks);
9dfe12ae 6997
6998 -- Next test for the case where the target type is within the bounds
6999 -- of the base type of the source type, since in this case we can
7000 -- simply convert these bounds to the base type of T to do the test.
7001
7002 -- [constraint_error when N not in
7003 -- Source_Base_Type (Target_Type'First)
7004 -- ..
7005 -- Source_Base_Type(Target_Type'Last))]
7006
f2a06be9 7007 -- The conversions will always work and need no check
9dfe12ae 7008
a9b57347 7009 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
7010 -- of converting from an enumeration value to an integer type, such as
7011 -- occurs for the case of generating a range check on Enum'Val(Exp)
7012 -- (which used to be handled by gigi). This is OK, since the conversion
7013 -- itself does not require a check.
7014
7a1dabb3 7015 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
99ed4b4c 7016
7017 -- Insert the explicit range check. Note that we suppress checks for
7018 -- this code, since we don't want a recursive range check popping up.
7019
1f5d83cf 7020 if Is_Discrete_Type (Source_Base_Type)
7021 and then
7022 Is_Discrete_Type (Target_Base_Type)
7023 then
7024 Insert_Action (N,
7025 Make_Raise_Constraint_Error (Loc,
7026 Condition =>
7027 Make_Not_In (Loc,
7028 Left_Opnd => Duplicate_Subexpr (N),
7029
7030 Right_Opnd =>
7031 Make_Range (Loc,
7032 Low_Bound =>
7033 Unchecked_Convert_To (Source_Base_Type,
7034 Make_Attribute_Reference (Loc,
7035 Prefix =>
7036 New_Occurrence_Of (Target_Type, Loc),
7037 Attribute_Name => Name_First)),
7038
7039 High_Bound =>
7040 Unchecked_Convert_To (Source_Base_Type,
7041 Make_Attribute_Reference (Loc,
7042 Prefix =>
7043 New_Occurrence_Of (Target_Type, Loc),
7044 Attribute_Name => Name_Last)))),
7045 Reason => Reason),
7046 Suppress => All_Checks);
9dfe12ae 7047
1f5d83cf 7048 -- For conversions involving at least one type that is not discrete,
7049 -- first convert to target type and then generate the range check.
7050 -- This avoids problems with values that are close to a bound of the
7051 -- target type that would fail a range check when done in a larger
7052 -- source type before converting but would pass if converted with
7053 -- rounding and then checked (such as in float-to-float conversions).
7054
7055 else
7056 Convert_And_Check_Range;
7057 end if;
9dfe12ae 7058
feff2f05 7059 -- Note that at this stage we now that the Target_Base_Type is not in
7060 -- the range of the Source_Base_Type (since even the Target_Type itself
7061 -- is not in this range). It could still be the case that Source_Type is
7062 -- in range of the target base type since we have not checked that case.
9dfe12ae 7063
feff2f05 7064 -- If that is the case, we can freely convert the source to the target,
7065 -- and then test the target result against the bounds.
9dfe12ae 7066
7a1dabb3 7067 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
1f5d83cf 7068 Convert_And_Check_Range;
9dfe12ae 7069
7070 -- At this stage, we know that we have two scalar types, which are
7071 -- directly convertible, and where neither scalar type has a base
7072 -- range that is in the range of the other scalar type.
7073
7074 -- The only way this can happen is with a signed and unsigned type.
7075 -- So test for these two cases:
7076
7077 else
7078 -- Case of the source is unsigned and the target is signed
7079
7080 if Is_Unsigned_Type (Source_Base_Type)
7081 and then not Is_Unsigned_Type (Target_Base_Type)
7082 then
7083 -- If the source is unsigned and the target is signed, then we
7084 -- know that the source is not shorter than the target (otherwise
7085 -- the source base type would be in the target base type range).
7086
feff2f05 7087 -- In other words, the unsigned type is either the same size as
7088 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 7089
7090 pragma Assert
7091 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7092
7093 -- We only need to check the low bound if the low bound of the
7094 -- target type is non-negative. If the low bound of the target
7095 -- type is negative, then we know that we will fit fine.
7096
7097 -- If the high bound of the target type is negative, then we
7098 -- know we have a constraint error, since we can't possibly
7099 -- have a negative source.
7100
7101 -- With these two checks out of the way, we can do the check
7102 -- using the source type safely
7103
39a0c1d3 7104 -- This is definitely the most annoying case.
9dfe12ae 7105
7106 -- [constraint_error
7107 -- when (Target_Type'First >= 0
7108 -- and then
7109 -- N < Source_Base_Type (Target_Type'First))
7110 -- or else Target_Type'Last < 0
7111 -- or else N > Source_Base_Type (Target_Type'Last)];
7112
7113 -- We turn off all checks since we know that the conversions
7114 -- will work fine, given the guards for negative values.
7115
7116 Insert_Action (N,
7117 Make_Raise_Constraint_Error (Loc,
7118 Condition =>
7119 Make_Or_Else (Loc,
7120 Make_Or_Else (Loc,
7121 Left_Opnd =>
7122 Make_And_Then (Loc,
7123 Left_Opnd => Make_Op_Ge (Loc,
7124 Left_Opnd =>
7125 Make_Attribute_Reference (Loc,
7126 Prefix =>
7127 New_Occurrence_Of (Target_Type, Loc),
7128 Attribute_Name => Name_First),
7129 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7130
7131 Right_Opnd =>
7132 Make_Op_Lt (Loc,
7133 Left_Opnd => Duplicate_Subexpr (N),
7134 Right_Opnd =>
7135 Convert_To (Source_Base_Type,
7136 Make_Attribute_Reference (Loc,
7137 Prefix =>
7138 New_Occurrence_Of (Target_Type, Loc),
7139 Attribute_Name => Name_First)))),
7140
7141 Right_Opnd =>
7142 Make_Op_Lt (Loc,
7143 Left_Opnd =>
7144 Make_Attribute_Reference (Loc,
7145 Prefix => New_Occurrence_Of (Target_Type, Loc),
7146 Attribute_Name => Name_Last),
7147 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7148
7149 Right_Opnd =>
7150 Make_Op_Gt (Loc,
7151 Left_Opnd => Duplicate_Subexpr (N),
7152 Right_Opnd =>
7153 Convert_To (Source_Base_Type,
7154 Make_Attribute_Reference (Loc,
7155 Prefix => New_Occurrence_Of (Target_Type, Loc),
7156 Attribute_Name => Name_Last)))),
7157
7158 Reason => Reason),
7159 Suppress => All_Checks);
7160
7161 -- Only remaining possibility is that the source is signed and
fc75802a 7162 -- the target is unsigned.
9dfe12ae 7163
7164 else
7165 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
20cf157b 7166 and then Is_Unsigned_Type (Target_Base_Type));
9dfe12ae 7167
feff2f05 7168 -- If the source is signed and the target is unsigned, then we
7169 -- know that the target is not shorter than the source (otherwise
7170 -- the target base type would be in the source base type range).
9dfe12ae 7171
feff2f05 7172 -- In other words, the unsigned type is either the same size as
7173 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 7174
feff2f05 7175 -- Clearly we have an error if the source value is negative since
7176 -- no unsigned type can have negative values. If the source type
7177 -- is non-negative, then the check can be done using the target
7178 -- type.
9dfe12ae 7179
7180 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7181
7182 -- [constraint_error
7183 -- when N < 0 or else Tnn not in Target_Type];
7184
feff2f05 7185 -- We turn off all checks for the conversion of N to the target
7186 -- base type, since we generate the explicit check to ensure that
7187 -- the value is non-negative
9dfe12ae 7188
7189 declare
46eb6933 7190 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 7191
7192 begin
7193 Insert_Actions (N, New_List (
7194 Make_Object_Declaration (Loc,
7195 Defining_Identifier => Tnn,
7196 Object_Definition =>
7197 New_Occurrence_Of (Target_Base_Type, Loc),
7198 Constant_Present => True,
7199 Expression =>
a9b57347 7200 Make_Unchecked_Type_Conversion (Loc,
9dfe12ae 7201 Subtype_Mark =>
7202 New_Occurrence_Of (Target_Base_Type, Loc),
7203 Expression => Duplicate_Subexpr (N))),
7204
7205 Make_Raise_Constraint_Error (Loc,
7206 Condition =>
7207 Make_Or_Else (Loc,
7208 Left_Opnd =>
7209 Make_Op_Lt (Loc,
7210 Left_Opnd => Duplicate_Subexpr (N),
7211 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7212
7213 Right_Opnd =>
7214 Make_Not_In (Loc,
7215 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7216 Right_Opnd =>
7217 New_Occurrence_Of (Target_Type, Loc))),
7218
20cf157b 7219 Reason => Reason)),
9dfe12ae 7220 Suppress => All_Checks);
7221
feff2f05 7222 -- Set the Etype explicitly, because Insert_Actions may have
7223 -- placed the declaration in the freeze list for an enclosing
7224 -- construct, and thus it is not analyzed yet.
9dfe12ae 7225
7226 Set_Etype (Tnn, Target_Base_Type);
7227 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7228 end;
7229 end if;
7230 end if;
7231 end Generate_Range_Check;
7232
2af58f67 7233 ------------------
7234 -- Get_Check_Id --
7235 ------------------
7236
7237 function Get_Check_Id (N : Name_Id) return Check_Id is
7238 begin
7239 -- For standard check name, we can do a direct computation
7240
7241 if N in First_Check_Name .. Last_Check_Name then
7242 return Check_Id (N - (First_Check_Name - 1));
7243
7244 -- For non-standard names added by pragma Check_Name, search table
7245
7246 else
7247 for J in All_Checks + 1 .. Check_Names.Last loop
7248 if Check_Names.Table (J) = N then
7249 return J;
7250 end if;
7251 end loop;
7252 end if;
7253
7254 -- No matching name found
7255
7256 return No_Check_Id;
7257 end Get_Check_Id;
7258
ee6ba406 7259 ---------------------
7260 -- Get_Discriminal --
7261 ---------------------
7262
7263 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7264 Loc : constant Source_Ptr := Sloc (E);
7265 D : Entity_Id;
7266 Sc : Entity_Id;
7267
7268 begin
0577b0b1 7269 -- The bound can be a bona fide parameter of a protected operation,
7270 -- rather than a prival encoded as an in-parameter.
7271
7272 if No (Discriminal_Link (Entity (Bound))) then
7273 return Bound;
7274 end if;
7275
2af58f67 7276 -- Climb the scope stack looking for an enclosing protected type. If
7277 -- we run out of scopes, return the bound itself.
7278
7279 Sc := Scope (E);
7280 while Present (Sc) loop
7281 if Sc = Standard_Standard then
7282 return Bound;
2af58f67 7283 elsif Ekind (Sc) = E_Protected_Type then
7284 exit;
7285 end if;
7286
7287 Sc := Scope (Sc);
7288 end loop;
7289
ee6ba406 7290 D := First_Discriminant (Sc);
2af58f67 7291 while Present (D) loop
7292 if Chars (D) = Chars (Bound) then
7293 return New_Occurrence_Of (Discriminal (D), Loc);
7294 end if;
ee6ba406 7295
ee6ba406 7296 Next_Discriminant (D);
7297 end loop;
7298
2af58f67 7299 return Bound;
ee6ba406 7300 end Get_Discriminal;
7301
2af58f67 7302 ----------------------
7303 -- Get_Range_Checks --
7304 ----------------------
7305
7306 function Get_Range_Checks
7307 (Ck_Node : Node_Id;
7308 Target_Typ : Entity_Id;
7309 Source_Typ : Entity_Id := Empty;
7310 Warn_Node : Node_Id := Empty) return Check_Result
7311 is
7312 begin
20cf157b 7313 return
7314 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
2af58f67 7315 end Get_Range_Checks;
7316
ee6ba406 7317 ------------------
7318 -- Guard_Access --
7319 ------------------
7320
7321 function Guard_Access
7322 (Cond : Node_Id;
7323 Loc : Source_Ptr;
314a23b6 7324 Ck_Node : Node_Id) return Node_Id
ee6ba406 7325 is
7326 begin
7327 if Nkind (Cond) = N_Or_Else then
7328 Set_Paren_Count (Cond, 1);
7329 end if;
7330
7331 if Nkind (Ck_Node) = N_Allocator then
7332 return Cond;
20cf157b 7333
ee6ba406 7334 else
7335 return
7336 Make_And_Then (Loc,
7337 Left_Opnd =>
7338 Make_Op_Ne (Loc,
9dfe12ae 7339 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
ee6ba406 7340 Right_Opnd => Make_Null (Loc)),
7341 Right_Opnd => Cond);
7342 end if;
7343 end Guard_Access;
7344
7345 -----------------------------
7346 -- Index_Checks_Suppressed --
7347 -----------------------------
7348
7349 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7350 begin
9dfe12ae 7351 if Present (E) and then Checks_May_Be_Suppressed (E) then
7352 return Is_Check_Suppressed (E, Index_Check);
7353 else
fafc6b97 7354 return Scope_Suppress.Suppress (Index_Check);
9dfe12ae 7355 end if;
ee6ba406 7356 end Index_Checks_Suppressed;
7357
7358 ----------------
7359 -- Initialize --
7360 ----------------
7361
7362 procedure Initialize is
7363 begin
7364 for J in Determine_Range_Cache_N'Range loop
7365 Determine_Range_Cache_N (J) := Empty;
7366 end loop;
2af58f67 7367
7368 Check_Names.Init;
7369
7370 for J in Int range 1 .. All_Checks loop
7371 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7372 end loop;
ee6ba406 7373 end Initialize;
7374
7375 -------------------------
7376 -- Insert_Range_Checks --
7377 -------------------------
7378
7379 procedure Insert_Range_Checks
7380 (Checks : Check_Result;
7381 Node : Node_Id;
7382 Suppress_Typ : Entity_Id;
7383 Static_Sloc : Source_Ptr := No_Location;
7384 Flag_Node : Node_Id := Empty;
7385 Do_Before : Boolean := False)
7386 is
2b4f2458 7387 Checks_On : constant Boolean :=
7388 not Index_Checks_Suppressed (Suppress_Typ)
7389 or else
7390 not Range_Checks_Suppressed (Suppress_Typ);
7391
7392 Check_Node : Node_Id;
ee6ba406 7393 Internal_Flag_Node : Node_Id := Flag_Node;
7394 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7395
ee6ba406 7396 begin
feff2f05 7397 -- For now we just return if Checks_On is false, however this should be
7398 -- enhanced to check for an always True value in the condition and to
7399 -- generate a compilation warning???
ee6ba406 7400
ac9184ed 7401 if not Expander_Active or not Checks_On then
ee6ba406 7402 return;
7403 end if;
7404
7405 if Static_Sloc = No_Location then
7406 Internal_Static_Sloc := Sloc (Node);
7407 end if;
7408
7409 if No (Flag_Node) then
7410 Internal_Flag_Node := Node;
7411 end if;
7412
7413 for J in 1 .. 2 loop
7414 exit when No (Checks (J));
7415
7416 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7417 and then Present (Condition (Checks (J)))
7418 then
7419 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7420 Check_Node := Checks (J);
7421 Mark_Rewrite_Insertion (Check_Node);
7422
7423 if Do_Before then
7424 Insert_Before_And_Analyze (Node, Check_Node);
7425 else
7426 Insert_After_And_Analyze (Node, Check_Node);
7427 end if;
7428
7429 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7430 end if;
7431
7432 else
7433 Check_Node :=
f15731c4 7434 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7435 Reason => CE_Range_Check_Failed);
ee6ba406 7436 Mark_Rewrite_Insertion (Check_Node);
7437
7438 if Do_Before then
7439 Insert_Before_And_Analyze (Node, Check_Node);
7440 else
7441 Insert_After_And_Analyze (Node, Check_Node);
7442 end if;
7443 end if;
7444 end loop;
7445 end Insert_Range_Checks;
7446
7447 ------------------------
7448 -- Insert_Valid_Check --
7449 ------------------------
7450
aaec8d13 7451 procedure Insert_Valid_Check
7452 (Expr : Node_Id;
7453 Related_Id : Entity_Id := Empty;
7454 Is_Low_Bound : Boolean := False;
7455 Is_High_Bound : Boolean := False)
7456 is
ee6ba406 7457 Loc : constant Source_Ptr := Sloc (Expr);
70580828 7458 Typ : constant Entity_Id := Etype (Expr);
8b718dab 7459 Exp : Node_Id;
ee6ba406 7460
7461 begin
aaec8d13 7462 -- Do not insert if checks off, or if not checking validity or if
7463 -- expression is known to be valid.
ee6ba406 7464
0577b0b1 7465 if not Validity_Checks_On
7466 or else Range_Or_Validity_Checks_Suppressed (Expr)
06ad5813 7467 or else Expr_Known_Valid (Expr)
ee6ba406 7468 then
8b718dab 7469 return;
ee6ba406 7470
42c57d55 7471 -- Do not insert checks within a predicate function. This will arise
7472 -- if the current unit and the predicate function are being compiled
7473 -- with validity checks enabled.
70580828 7474
89e864b9 7475 elsif Present (Predicate_Function (Typ))
70580828 7476 and then Current_Scope = Predicate_Function (Typ)
7477 then
7478 return;
70580828 7479
310c1cde 7480 -- If the expression is a packed component of a modular type of the
7481 -- right size, the data is always valid.
7482
89e864b9 7483 elsif Nkind (Expr) = N_Selected_Component
310c1cde 7484 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7485 and then Is_Modular_Integer_Type (Typ)
7486 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7487 then
7488 return;
89e864b9 7489
7490 -- Do not generate a validity check when inside a generic unit as this
7491 -- is an expansion activity.
7492
7493 elsif Inside_A_Generic then
7494 return;
310c1cde 7495 end if;
7496
7a42b778 7497 -- Entities declared in Lock_free protected types must be treated as
7498 -- volatile, and we must inhibit validity checks to prevent improper
7499 -- constant folding.
866fa2d0 7500
7501 if Is_Entity_Name (Expr)
7502 and then Is_Subprogram (Scope (Entity (Expr)))
7503 and then Present (Protected_Subprogram (Scope (Entity (Expr))))
7504 and then Uses_Lock_Free
7a42b778 7505 (Scope (Protected_Subprogram (Scope (Entity (Expr)))))
866fa2d0 7506 then
7507 return;
7508 end if;
7509
8b718dab 7510 -- If we have a checked conversion, then validity check applies to
7511 -- the expression inside the conversion, not the result, since if
7512 -- the expression inside is valid, then so is the conversion result.
ee6ba406 7513
8b718dab 7514 Exp := Expr;
7515 while Nkind (Exp) = N_Type_Conversion loop
7516 Exp := Expression (Exp);
7517 end loop;
7518
fdb8488b 7519 -- Do not generate a check for a variable which already validates the
7520 -- value of an assignable object.
7521
7522 if Is_Validation_Variable_Reference (Exp) then
7523 return;
7524 end if;
7525
0577b0b1 7526 declare
49adf385 7527 CE : Node_Id;
49adf385 7528 PV : Node_Id;
7529 Var_Id : Entity_Id;
05fcfafb 7530
0577b0b1 7531 begin
fdb8488b 7532 -- If the expression denotes an assignable object, capture its value
7533 -- in a variable and replace the original expression by the variable.
7534 -- This approach has several effects:
06ad5813 7535
fdb8488b 7536 -- 1) The evaluation of the object results in only one read in the
7537 -- case where the object is atomic or volatile.
fa771c05 7538
49adf385 7539 -- Var ... := Object; -- read
fa771c05 7540
fdb8488b 7541 -- 2) The captured value is the one verified by attribute 'Valid.
7542 -- As a result the object is not evaluated again, which would
7543 -- result in an unwanted read in the case where the object is
7544 -- atomic or volatile.
7545
49adf385 7546 -- if not Var'Valid then -- OK, no read of Object
fdb8488b 7547
7548 -- if not Object'Valid then -- Wrong, extra read of Object
7549
7550 -- 3) The captured value replaces the original object reference.
7551 -- As a result the object is not evaluated again, in the same
7552 -- vein as 2).
7553
49adf385 7554 -- ... Var ... -- OK, no read of Object
fdb8488b 7555
7556 -- ... Object ... -- Wrong, extra read of Object
06ad5813 7557
fdb8488b 7558 -- 4) The use of a variable to capture the value of the object
7559 -- allows the propagation of any changes back to the original
7560 -- object.
7561
7562 -- procedure Call (Val : in out ...);
7563
49adf385 7564 -- Var : ... := Object; -- read Object
7565 -- if not Var'Valid then -- validity check
7566 -- Call (Var); -- modify Var
7567 -- Object := Var; -- update Object
fdb8488b 7568
7569 if Is_Variable (Exp) then
49adf385 7570 Var_Id := Make_Temporary (Loc, 'T', Exp);
fdb8488b 7571
4cb8adff 7572 -- Because we could be dealing with a transient scope which would
7573 -- cause our object declaration to remain unanalyzed we must do
7574 -- some manual decoration.
7575
7576 Set_Ekind (Var_Id, E_Variable);
7577 Set_Etype (Var_Id, Typ);
7578
fdb8488b 7579 Insert_Action (Exp,
7580 Make_Object_Declaration (Loc,
49adf385 7581 Defining_Identifier => Var_Id,
fdb8488b 7582 Object_Definition => New_Occurrence_Of (Typ, Loc),
bf5f89dc 7583 Expression => New_Copy_Tree (Exp)),
7584 Suppress => Validity_Check);
7585
7586 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
49adf385 7587 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7588 PV := New_Occurrence_Of (Var_Id, Loc);
fdb8488b 7589
02585eb0 7590 -- Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7591 -- get lost. Floating point types are handled elsewhere.
7592
7593 if not Is_Floating_Point_Type (Typ) then
7594 Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7595 end if;
7596
fdb8488b 7597 -- Otherwise the expression does not denote a variable. Force its
7598 -- evaluation by capturing its value in a constant. Generate:
7599
7600 -- Temp : constant ... := Exp;
7601
7602 else
7603 Force_Evaluation
7604 (Exp => Exp,
7605 Related_Id => Related_Id,
7606 Is_Low_Bound => Is_Low_Bound,
7607 Is_High_Bound => Is_High_Bound);
7608
7609 PV := New_Copy_Tree (Exp);
7610 end if;
0577b0b1 7611
443bdccb 7612 -- A rather specialized test. If PV is an analyzed expression which
7613 -- is an indexed component of a packed array that has not been
7614 -- properly expanded, turn off its Analyzed flag to make sure it
5f46de53 7615 -- gets properly reexpanded. If the prefix is an access value,
7616 -- the dereference will be added later.
23abd64d 7617
7618 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7619 -- an analyze with the old parent pointer. This may point e.g. to
7620 -- a subprogram call, which deactivates this expansion.
7621
7622 if Analyzed (PV)
7623 and then Nkind (PV) = N_Indexed_Component
5f46de53 7624 and then Is_Array_Type (Etype (Prefix (PV)))
a88a5773 7625 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
23abd64d 7626 then
7627 Set_Analyzed (PV, False);
7628 end if;
7629
fa771c05 7630 -- Build the raise CE node to check for validity. We build a type
7631 -- qualification for the prefix, since it may not be of the form of
7632 -- a name, and we don't care in this context!
23abd64d 7633
7634 CE :=
aaec8d13 7635 Make_Raise_Constraint_Error (Loc,
7636 Condition =>
7637 Make_Op_Not (Loc,
7638 Right_Opnd =>
7639 Make_Attribute_Reference (Loc,
7640 Prefix => PV,
7641 Attribute_Name => Name_Valid)),
7642 Reason => CE_Invalid_Data);
23abd64d 7643
7644 -- Insert the validity check. Note that we do this with validity
7645 -- checks turned off, to avoid recursion, we do not want validity
39a0c1d3 7646 -- checks on the validity checking code itself.
23abd64d 7647
7648 Insert_Action (Expr, CE, Suppress => Validity_Check);
0577b0b1 7649
6fb3c314 7650 -- If the expression is a reference to an element of a bit-packed
0577b0b1 7651 -- array, then it is rewritten as a renaming declaration. If the
7652 -- expression is an actual in a call, it has not been expanded,
7653 -- waiting for the proper point at which to do it. The same happens
7654 -- with renamings, so that we have to force the expansion now. This
7655 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7656 -- and exp_ch6.adb.
7657
7658 if Is_Entity_Name (Exp)
7659 and then Nkind (Parent (Entity (Exp))) =
20cf157b 7660 N_Object_Renaming_Declaration
0577b0b1 7661 then
7662 declare
7663 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7664 begin
7665 if Nkind (Old_Exp) = N_Indexed_Component
7666 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7667 then
7668 Expand_Packed_Element_Reference (Old_Exp);
7669 end if;
7670 end;
7671 end if;
0577b0b1 7672 end;
ee6ba406 7673 end Insert_Valid_Check;
7674
3cce7f32 7675 -------------------------------------
7676 -- Is_Signed_Integer_Arithmetic_Op --
7677 -------------------------------------
7678
7679 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7680 begin
7681 case Nkind (N) is
99378362 7682 when N_Op_Abs
7683 | N_Op_Add
7684 | N_Op_Divide
7685 | N_Op_Expon
7686 | N_Op_Minus
7687 | N_Op_Mod
7688 | N_Op_Multiply
7689 | N_Op_Plus
7690 | N_Op_Rem
7691 | N_Op_Subtract
7692 =>
3cce7f32 7693 return Is_Signed_Integer_Type (Etype (N));
7694
99378362 7695 when N_Case_Expression
7696 | N_If_Expression
7697 =>
0326b4d4 7698 return Is_Signed_Integer_Type (Etype (N));
7699
3cce7f32 7700 when others =>
7701 return False;
7702 end case;
7703 end Is_Signed_Integer_Arithmetic_Op;
7704
fa7497e8 7705 ----------------------------------
7706 -- Install_Null_Excluding_Check --
7707 ----------------------------------
7708
7709 procedure Install_Null_Excluding_Check (N : Node_Id) is
9f294c82 7710 Loc : constant Source_Ptr := Sloc (Parent (N));
84d0d4a5 7711 Typ : constant Entity_Id := Etype (N);
7712
7b31b357 7713 function Safe_To_Capture_In_Parameter_Value return Boolean;
7714 -- Determines if it is safe to capture Known_Non_Null status for an
7715 -- the entity referenced by node N. The caller ensures that N is indeed
7716 -- an entity name. It is safe to capture the non-null status for an IN
7717 -- parameter when the reference occurs within a declaration that is sure
7718 -- to be executed as part of the declarative region.
7870823d 7719
84d0d4a5 7720 procedure Mark_Non_Null;
7870823d 7721 -- After installation of check, if the node in question is an entity
7722 -- name, then mark this entity as non-null if possible.
7723
7b31b357 7724 function Safe_To_Capture_In_Parameter_Value return Boolean is
7870823d 7725 E : constant Entity_Id := Entity (N);
7726 S : constant Entity_Id := Current_Scope;
7727 S_Par : Node_Id;
7728
7729 begin
7b31b357 7730 if Ekind (E) /= E_In_Parameter then
7731 return False;
7732 end if;
7870823d 7733
7734 -- Two initial context checks. We must be inside a subprogram body
7735 -- with declarations and reference must not appear in nested scopes.
7736
7b31b357 7737 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7870823d 7738 or else Scope (E) /= S
7739 then
7740 return False;
7741 end if;
7742
7743 S_Par := Parent (Parent (S));
7744
7745 if Nkind (S_Par) /= N_Subprogram_Body
7746 or else No (Declarations (S_Par))
7747 then
7748 return False;
7749 end if;
7750
7751 declare
7752 N_Decl : Node_Id;
7753 P : Node_Id;
7754
7755 begin
7756 -- Retrieve the declaration node of N (if any). Note that N
7757 -- may be a part of a complex initialization expression.
7758
7759 P := Parent (N);
7760 N_Decl := Empty;
7761 while Present (P) loop
7762
7b31b357 7763 -- If we have a short circuit form, and we are within the right
7764 -- hand expression, we return false, since the right hand side
7765 -- is not guaranteed to be elaborated.
7766
7767 if Nkind (P) in N_Short_Circuit
7768 and then N = Right_Opnd (P)
7769 then
7770 return False;
7771 end if;
7772
92f1631f 7773 -- Similarly, if we are in an if expression and not part of the
7774 -- condition, then we return False, since neither the THEN or
7775 -- ELSE dependent expressions will always be elaborated.
7b31b357 7776
92f1631f 7777 if Nkind (P) = N_If_Expression
7b31b357 7778 and then N /= First (Expressions (P))
7779 then
7780 return False;
e977c0cf 7781 end if;
7782
20cf157b 7783 -- If within a case expression, and not part of the expression,
7784 -- then return False, since a particular dependent expression
7785 -- may not always be elaborated
e977c0cf 7786
7787 if Nkind (P) = N_Case_Expression
7788 and then N /= Expression (P)
7789 then
7790 return False;
7b31b357 7791 end if;
7792
20cf157b 7793 -- While traversing the parent chain, if node N belongs to a
7794 -- statement, then it may never appear in a declarative region.
7870823d 7795
7796 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7797 or else Nkind (P) = N_Procedure_Call_Statement
7798 then
7799 return False;
7800 end if;
7801
7b31b357 7802 -- If we are at a declaration, record it and exit
7803
7870823d 7804 if Nkind (P) in N_Declaration
7805 and then Nkind (P) not in N_Subprogram_Specification
7806 then
7807 N_Decl := P;
7808 exit;
7809 end if;
7810
7811 P := Parent (P);
7812 end loop;
7813
7814 if No (N_Decl) then
7815 return False;
7816 end if;
7817
7818 return List_Containing (N_Decl) = Declarations (S_Par);
7819 end;
7b31b357 7820 end Safe_To_Capture_In_Parameter_Value;
84d0d4a5 7821
7822 -------------------
7823 -- Mark_Non_Null --
7824 -------------------
7825
7826 procedure Mark_Non_Null is
7827 begin
7870823d 7828 -- Only case of interest is if node N is an entity name
7829
84d0d4a5 7830 if Is_Entity_Name (N) then
7870823d 7831
7832 -- For sure, we want to clear an indication that this is known to
39a0c1d3 7833 -- be null, since if we get past this check, it definitely is not.
7870823d 7834
84d0d4a5 7835 Set_Is_Known_Null (Entity (N), False);
7836
7870823d 7837 -- We can mark the entity as known to be non-null if either it is
7838 -- safe to capture the value, or in the case of an IN parameter,
7839 -- which is a constant, if the check we just installed is in the
7840 -- declarative region of the subprogram body. In this latter case,
7b31b357 7841 -- a check is decisive for the rest of the body if the expression
7842 -- is sure to be elaborated, since we know we have to elaborate
7843 -- all declarations before executing the body.
7844
7845 -- Couldn't this always be part of Safe_To_Capture_Value ???
7870823d 7846
7847 if Safe_To_Capture_Value (N, Entity (N))
7b31b357 7848 or else Safe_To_Capture_In_Parameter_Value
7870823d 7849 then
7850 Set_Is_Known_Non_Null (Entity (N));
84d0d4a5 7851 end if;
7852 end if;
7853 end Mark_Non_Null;
7854
7855 -- Start of processing for Install_Null_Excluding_Check
fa7497e8 7856
7857 begin
c9bbc06b 7858 -- No need to add null-excluding checks when the tree may not be fully
7859 -- decorated.
7860
7861 if Serious_Errors_Detected > 0 then
7862 return;
7863 end if;
7864
84d0d4a5 7865 pragma Assert (Is_Access_Type (Typ));
fa7497e8 7866
46e32b5e 7867 -- No check inside a generic, check will be emitted in instance
fa7497e8 7868
84d0d4a5 7869 if Inside_A_Generic then
fa7497e8 7870 return;
84d0d4a5 7871 end if;
7872
7873 -- No check needed if known to be non-null
7874
7875 if Known_Non_Null (N) then
05fcfafb 7876 return;
84d0d4a5 7877 end if;
fa7497e8 7878
84d0d4a5 7879 -- If known to be null, here is where we generate a compile time check
7880
7881 if Known_Null (N) then
d16989f1 7882
20cf157b 7883 -- Avoid generating warning message inside init procs. In SPARK mode
7884 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
46e32b5e 7885 -- since it will be turned into an error in any case.
d16989f1 7886
46e32b5e 7887 if (not Inside_Init_Proc or else SPARK_Mode = On)
7888
28d5d68f 7889 -- Do not emit the warning within a conditional expression,
7890 -- where the expression might not be evaluated, and the warning
7891 -- appear as extraneous noise.
46e32b5e 7892
7893 and then not Within_Case_Or_If_Expression (N)
7894 then
d16989f1 7895 Apply_Compile_Time_Constraint_Error
4098232e 7896 (N, "null value not allowed here??", CE_Access_Check_Failed);
46e32b5e 7897
7898 -- Remaining cases, where we silently insert the raise
7899
d16989f1 7900 else
7901 Insert_Action (N,
7902 Make_Raise_Constraint_Error (Loc,
7903 Reason => CE_Access_Check_Failed));
7904 end if;
7905
84d0d4a5 7906 Mark_Non_Null;
7907 return;
7908 end if;
7909
7910 -- If entity is never assigned, for sure a warning is appropriate
7911
7912 if Is_Entity_Name (N) then
7913 Check_Unset_Reference (N);
fa7497e8 7914 end if;
84d0d4a5 7915
7916 -- No check needed if checks are suppressed on the range. Note that we
7917 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7918 -- so, since the program is erroneous, but we don't like to casually
7919 -- propagate such conclusions from erroneosity).
7920
7921 if Access_Checks_Suppressed (Typ) then
7922 return;
7923 end if;
7924
2af58f67 7925 -- No check needed for access to concurrent record types generated by
7926 -- the expander. This is not just an optimization (though it does indeed
7927 -- remove junk checks). It also avoids generation of junk warnings.
7928
7929 if Nkind (N) in N_Has_Chars
7930 and then Chars (N) = Name_uObject
7931 and then Is_Concurrent_Record_Type
7932 (Directly_Designated_Type (Etype (N)))
7933 then
7934 return;
7935 end if;
7936
228836e8 7937 -- No check needed in interface thunks since the runtime check is
7938 -- already performed at the caller side.
7939
7940 if Is_Thunk (Current_Scope) then
7941 return;
7942 end if;
7943
472ea160 7944 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7945 -- the expander within exception handlers, since we know that the value
7946 -- can never be null.
7947
7948 -- Is this really the right way to do this? Normally we generate such
7949 -- code in the expander with checks off, and that's how we suppress this
7950 -- kind of junk check ???
7951
7952 if Nkind (N) = N_Function_Call
7953 and then Nkind (Name (N)) = N_Explicit_Dereference
7954 and then Nkind (Prefix (Name (N))) = N_Identifier
7955 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7956 then
7957 return;
7958 end if;
7959
84d0d4a5 7960 -- Otherwise install access check
7961
7962 Insert_Action (N,
7963 Make_Raise_Constraint_Error (Loc,
7964 Condition =>
7965 Make_Op_Eq (Loc,
7966 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7967 Right_Opnd => Make_Null (Loc)),
7968 Reason => CE_Access_Check_Failed));
7969
7970 Mark_Non_Null;
fa7497e8 7971 end Install_Null_Excluding_Check;
7972
7e933b61 7973 -----------------------------------------
7974 -- Install_Primitive_Elaboration_Check --
7975 -----------------------------------------
7976
7977 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7e933b61 7978 function Within_Compilation_Unit_Instance
7979 (Subp_Id : Entity_Id) return Boolean;
7980 -- Determine whether subprogram Subp_Id appears within an instance which
7981 -- acts as a compilation unit.
7982
7983 --------------------------------------
7984 -- Within_Compilation_Unit_Instance --
7985 --------------------------------------
7986
7987 function Within_Compilation_Unit_Instance
7988 (Subp_Id : Entity_Id) return Boolean
7989 is
7990 Pack : Entity_Id;
7991
7992 begin
7993 -- Examine the scope chain looking for a compilation-unit-level
7994 -- instance.
7995
7996 Pack := Scope (Subp_Id);
7997 while Present (Pack) and then Pack /= Standard_Standard loop
7998 if Ekind (Pack) = E_Package
7999 and then Is_Generic_Instance (Pack)
8000 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
8001 N_Compilation_Unit
8002 then
8003 return True;
8004 end if;
8005
8006 Pack := Scope (Pack);
8007 end loop;
8008
8009 return False;
8010 end Within_Compilation_Unit_Instance;
8011
8012 -- Local declarations
8013
8014 Context : constant Node_Id := Parent (Subp_Body);
8015 Loc : constant Source_Ptr := Sloc (Subp_Body);
8016 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
8017 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
8018
e2293a63 8019 Decls : List_Id;
8020 Flag_Id : Entity_Id;
8021 Set_Ins : Node_Id;
8022 Set_Stmt : Node_Id;
8023 Tag_Typ : Entity_Id;
7e933b61 8024
8025 -- Start of processing for Install_Primitive_Elaboration_Check
8026
8027 begin
8028 -- Do not generate an elaboration check in compilation modes where
8029 -- expansion is not desirable.
8030
8031 if ASIS_Mode or GNATprove_Mode then
8032 return;
8033
f0e731f2 8034 -- Do not generate an elaboration check if all checks have been
8035 -- suppressed.
62c62e4b 8036
f0e731f2 8037 elsif Suppress_Checks then
62c62e4b 8038 return;
8039
7e933b61 8040 -- Do not generate an elaboration check if the related subprogram is
8041 -- not subjected to accessibility checks.
8042
8043 elsif Elaboration_Checks_Suppressed (Subp_Id) then
8044 return;
f0e731f2 8045
8046 -- Do not generate an elaboration check if such code is not desirable
8047
8048 elsif Restriction_Active (No_Elaboration_Code) then
8049 return;
7e933b61 8050
77b577f9 8051 -- Do not generate an elaboration check if exceptions cannot be used,
8052 -- caught, or propagated.
8053
8054 elsif not Exceptions_OK then
8055 return;
8056
7e933b61 8057 -- Do not consider subprograms which act as compilation units, because
8058 -- they cannot be the target of a dispatching call.
8059
8060 elsif Nkind (Context) = N_Compilation_Unit then
8061 return;
8062
e2293a63 8063 -- Do not consider anything other than nonabstract library-level source
8064 -- primitives.
7e933b61 8065
8066 elsif not
8067 (Comes_From_Source (Subp_Id)
8068 and then Is_Library_Level_Entity (Subp_Id)
8069 and then Is_Primitive (Subp_Id)
8070 and then not Is_Abstract_Subprogram (Subp_Id))
8071 then
8072 return;
8073
8074 -- Do not consider inlined primitives, because once the body is inlined
8075 -- the reference to the elaboration flag will be out of place and will
8076 -- result in an undefined symbol.
8077
8078 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
8079 return;
8080
8081 -- Do not generate a duplicate elaboration check. This happens only in
8082 -- the case of primitives completed by an expression function, as the
8083 -- corresponding body is apparently analyzed and expanded twice.
8084
8085 elsif Analyzed (Subp_Body) then
8086 return;
8087
8088 -- Do not consider primitives which occur within an instance that acts
8089 -- as a compilation unit. Such an instance defines its spec and body out
8090 -- of order (body is first) within the tree, which causes the reference
8091 -- to the elaboration flag to appear as an undefined symbol.
8092
8093 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8094 return;
8095 end if;
8096
8097 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8098
8099 -- Only tagged primitives may be the target of a dispatching call
8100
8101 if No (Tag_Typ) then
8102 return;
8103
8104 -- Do not consider finalization-related primitives, because they may
8105 -- need to be called while elaboration is taking place.
8106
8107 elsif Is_Controlled (Tag_Typ)
8108 and then Nam_In (Chars (Subp_Id), Name_Adjust,
8109 Name_Finalize,
8110 Name_Initialize)
8111 then
8112 return;
8113 end if;
8114
8115 -- Create the declaration of the elaboration flag. The name carries a
8116 -- unique counter in case of name overloading.
8117
8118 Flag_Id :=
8119 Make_Defining_Identifier (Loc,
fe48a434 8120 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7e933b61 8121 Set_Is_Frozen (Flag_Id);
8122
8123 -- Insert the declaration of the elaboration flag in front of the
8124 -- primitive spec and analyze it in the proper context.
8125
8126 Push_Scope (Scope (Subp_Id));
8127
8128 -- Generate:
fe48a434 8129 -- E : Boolean := False;
7e933b61 8130
8131 Insert_Action (Subp_Decl,
8132 Make_Object_Declaration (Loc,
8133 Defining_Identifier => Flag_Id,
8134 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8135 Expression => New_Occurrence_Of (Standard_False, Loc)));
8136 Pop_Scope;
8137
8138 -- Prevent the compiler from optimizing the elaboration check by killing
8139 -- the current value of the flag and the associated assignment.
8140
8141 Set_Current_Value (Flag_Id, Empty);
8142 Set_Last_Assignment (Flag_Id, Empty);
8143
8144 -- Add a check at the top of the body declarations to ensure that the
8145 -- elaboration flag has been set.
8146
8147 Decls := Declarations (Subp_Body);
8148
8149 if No (Decls) then
8150 Decls := New_List;
8151 Set_Declarations (Subp_Body, Decls);
8152 end if;
8153
8154 -- Generate:
8155 -- if not F then
8156 -- raise Program_Error with "access before elaboration";
8157 -- end if;
8158
8159 Prepend_To (Decls,
8160 Make_Raise_Program_Error (Loc,
8161 Condition =>
8162 Make_Op_Not (Loc,
8163 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8164 Reason => PE_Access_Before_Elaboration));
8165
8166 Analyze (First (Decls));
8167
8168 -- Set the elaboration flag once the body has been elaborated. Insert
8169 -- the statement after the subprogram stub when the primitive body is
8170 -- a subunit.
8171
8172 if Nkind (Context) = N_Subunit then
8173 Set_Ins := Corresponding_Stub (Context);
8174 else
8175 Set_Ins := Subp_Body;
8176 end if;
8177
8178 -- Generate:
fe48a434 8179 -- E := True;
7e933b61 8180
e2293a63 8181 Set_Stmt :=
7e933b61 8182 Make_Assignment_Statement (Loc,
8183 Name => New_Occurrence_Of (Flag_Id, Loc),
e2293a63 8184 Expression => New_Occurrence_Of (Standard_True, Loc));
8185
8186 -- Mark the assignment statement as elaboration code. This allows the
8187 -- early call region mechanism (see Sem_Elab) to properly ignore such
8188 -- assignments even though they are non-preelaborable code.
8189
8190 Set_Is_Elaboration_Code (Set_Stmt);
8191
8192 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
7e933b61 8193 end Install_Primitive_Elaboration_Check;
8194
ee6ba406 8195 --------------------------
8196 -- Install_Static_Check --
8197 --------------------------
8198
8199 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
cda40848 8200 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
ee6ba406 8201 Typ : constant Entity_Id := Etype (R_Cno);
8202
8203 begin
f15731c4 8204 Rewrite (R_Cno,
8205 Make_Raise_Constraint_Error (Loc,
8206 Reason => CE_Range_Check_Failed));
ee6ba406 8207 Set_Analyzed (R_Cno);
8208 Set_Etype (R_Cno, Typ);
8209 Set_Raises_Constraint_Error (R_Cno);
8210 Set_Is_Static_Expression (R_Cno, Stat);
840ab274 8211
8212 -- Now deal with possible local raise handling
8213
8214 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
ee6ba406 8215 end Install_Static_Check;
8216
3cce7f32 8217 -------------------------
8218 -- Is_Check_Suppressed --
8219 -------------------------
8220
8221 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8222 Ptr : Suppress_Stack_Entry_Ptr;
8223
8224 begin
8225 -- First search the local entity suppress stack. We search this from the
8226 -- top of the stack down so that we get the innermost entry that applies
8227 -- to this case if there are nested entries.
8228
8229 Ptr := Local_Suppress_Stack_Top;
8230 while Ptr /= null loop
8231 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8232 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8233 then
8234 return Ptr.Suppress;
8235 end if;
8236
8237 Ptr := Ptr.Prev;
8238 end loop;
8239
8240 -- Now search the global entity suppress table for a matching entry.
8241 -- We also search this from the top down so that if there are multiple
8242 -- pragmas for the same entity, the last one applies (not clear what
8243 -- or whether the RM specifies this handling, but it seems reasonable).
8244
8245 Ptr := Global_Suppress_Stack_Top;
8246 while Ptr /= null loop
8247 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8248 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8249 then
8250 return Ptr.Suppress;
8251 end if;
8252
8253 Ptr := Ptr.Prev;
8254 end loop;
8255
8256 -- If we did not find a matching entry, then use the normal scope
8257 -- suppress value after all (actually this will be the global setting
8258 -- since it clearly was not overridden at any point). For a predefined
8259 -- check, we test the specific flag. For a user defined check, we check
8260 -- the All_Checks flag. The Overflow flag requires special handling to
fe48a434 8261 -- deal with the General vs Assertion case.
3cce7f32 8262
8263 if C = Overflow_Check then
8264 return Overflow_Checks_Suppressed (Empty);
fe48a434 8265
3cce7f32 8266 elsif C in Predefined_Check_Id then
8267 return Scope_Suppress.Suppress (C);
fe48a434 8268
3cce7f32 8269 else
8270 return Scope_Suppress.Suppress (All_Checks);
8271 end if;
8272 end Is_Check_Suppressed;
8273
9dfe12ae 8274 ---------------------
8275 -- Kill_All_Checks --
8276 ---------------------
8277
8278 procedure Kill_All_Checks is
8279 begin
8280 if Debug_Flag_CC then
8281 w ("Kill_All_Checks");
8282 end if;
8283
feff2f05 8284 -- We reset the number of saved checks to zero, and also modify all
8285 -- stack entries for statement ranges to indicate that the number of
8286 -- checks at each level is now zero.
9dfe12ae 8287
8288 Num_Saved_Checks := 0;
8289
96da3284 8290 -- Note: the Int'Min here avoids any possibility of J being out of
8291 -- range when called from e.g. Conditional_Statements_Begin.
8292
8293 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
9dfe12ae 8294 Saved_Checks_Stack (J) := 0;
8295 end loop;
8296 end Kill_All_Checks;
8297
8298 -----------------
8299 -- Kill_Checks --
8300 -----------------
8301
8302 procedure Kill_Checks (V : Entity_Id) is
8303 begin
8304 if Debug_Flag_CC then
8305 w ("Kill_Checks for entity", Int (V));
8306 end if;
8307
8308 for J in 1 .. Num_Saved_Checks loop
8309 if Saved_Checks (J).Entity = V then
8310 if Debug_Flag_CC then
8311 w (" Checks killed for saved check ", J);
8312 end if;
8313
8314 Saved_Checks (J).Killed := True;
8315 end if;
8316 end loop;
8317 end Kill_Checks;
8318
ee6ba406 8319 ------------------------------
8320 -- Length_Checks_Suppressed --
8321 ------------------------------
8322
8323 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8324 begin
9dfe12ae 8325 if Present (E) and then Checks_May_Be_Suppressed (E) then
8326 return Is_Check_Suppressed (E, Length_Check);
8327 else
fafc6b97 8328 return Scope_Suppress.Suppress (Length_Check);
9dfe12ae 8329 end if;
ee6ba406 8330 end Length_Checks_Suppressed;
8331
3cce7f32 8332 -----------------------
8333 -- Make_Bignum_Block --
8334 -----------------------
8335
8336 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8337 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
3cce7f32 8338 begin
8339 return
8340 Make_Block_Statement (Loc,
97c15ab0 8341 Declarations =>
8342 New_List (Build_SS_Mark_Call (Loc, M)),
3cce7f32 8343 Handled_Statement_Sequence =>
8344 Make_Handled_Sequence_Of_Statements (Loc,
97c15ab0 8345 Statements => New_List (Build_SS_Release_Call (Loc, M))));
3cce7f32 8346 end Make_Bignum_Block;
8347
0df9d43f 8348 ----------------------------------
8349 -- Minimize_Eliminate_Overflows --
8350 ----------------------------------
3cce7f32 8351
f32c377d 8352 -- This is a recursive routine that is called at the top of an expression
8353 -- tree to properly process overflow checking for a whole subtree by making
8354 -- recursive calls to process operands. This processing may involve the use
8355 -- of bignum or long long integer arithmetic, which will change the types
8356 -- of operands and results. That's why we can't do this bottom up (since
21a55437 8357 -- it would interfere with semantic analysis).
f32c377d 8358
21a55437 8359 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
0df9d43f 8360 -- the operator expansion routines, as well as the expansion routines for
8361 -- if/case expression, do nothing (for the moment) except call the routine
8362 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8363 -- routine does nothing for non top-level nodes, so at the point where the
8364 -- call is made for the top level node, the entire expression subtree has
8365 -- not been expanded, or processed for overflow. All that has to happen as
8366 -- a result of the top level call to this routine.
f32c377d 8367
8368 -- As noted above, the overflow processing works by making recursive calls
8369 -- for the operands, and figuring out what to do, based on the processing
8370 -- of these operands (e.g. if a bignum operand appears, the parent op has
8371 -- to be done in bignum mode), and the determined ranges of the operands.
8372
8373 -- After possible rewriting of a constituent subexpression node, a call is
4fb5f0a0 8374 -- made to either reexpand the node (if nothing has changed) or reanalyze
21a55437 8375 -- the node (if it has been modified by the overflow check processing). The
8376 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8377 -- a recursive call into the whole overflow apparatus, an important rule
0df9d43f 8378 -- for this call is that the overflow handling mode must be temporarily set
8379 -- to STRICT.
f32c377d 8380
0df9d43f 8381 procedure Minimize_Eliminate_Overflows
61016a7a 8382 (N : Node_Id;
8383 Lo : out Uint;
8384 Hi : out Uint;
8385 Top_Level : Boolean)
3cce7f32 8386 is
0326b4d4 8387 Rtyp : constant Entity_Id := Etype (N);
8388 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8389 -- Result type, must be a signed integer type
3cce7f32 8390
db415383 8391 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 8392 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8393
8394 Loc : constant Source_Ptr := Sloc (N);
8395
8396 Rlo, Rhi : Uint;
0326b4d4 8397 -- Ranges of values for right operand (operator case)
3cce7f32 8398
16149377 8399 Llo : Uint := No_Uint; -- initialize to prevent warning
8400 Lhi : Uint := No_Uint; -- initialize to prevent warning
0326b4d4 8401 -- Ranges of values for left operand (operator case)
3cce7f32 8402
49b3a812 8403 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8404 -- Operands and results are of this type when we convert
8405
0326b4d4 8406 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8407 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
3cce7f32 8408 -- Bounds of Long_Long_Integer
8409
8410 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8411 -- Indicates binary operator case
8412
8413 OK : Boolean;
8414 -- Used in call to Determine_Range
8415
61016a7a 8416 Bignum_Operands : Boolean;
8417 -- Set True if one or more operands is already of type Bignum, meaning
8418 -- that for sure (regardless of Top_Level setting) we are committed to
0326b4d4 8419 -- doing the operation in Bignum mode (or in the case of a case or if
21a55437 8420 -- expression, converting all the dependent expressions to Bignum).
0326b4d4 8421
8422 Long_Long_Integer_Operands : Boolean;
21a55437 8423 -- Set True if one or more operands is already of type Long_Long_Integer
0326b4d4 8424 -- which means that if the result is known to be in the result type
8425 -- range, then we must convert such operands back to the result type.
0df9d43f 8426
8427 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8428 -- This is called when we have modified the node and we therefore need
8429 -- to reanalyze it. It is important that we reset the mode to STRICT for
8430 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
39a0c1d3 8431 -- we would reenter this routine recursively which would not be good.
0df9d43f 8432 -- The argument Suppress is set True if we also want to suppress
8433 -- overflow checking for the reexpansion (this is set when we know
8434 -- overflow is not possible). Typ is the type for the reanalysis.
8435
8436 procedure Reexpand (Suppress : Boolean := False);
8437 -- This is like Reanalyze, but does not do the Analyze step, it only
8438 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8439 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8440 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8441 -- Note that skipping reanalysis is not just an optimization, testing
8442 -- has showed up several complex cases in which reanalyzing an already
8443 -- analyzed node causes incorrect behavior.
4fb5f0a0 8444
0326b4d4 8445 function In_Result_Range return Boolean;
8446 -- Returns True iff Lo .. Hi are within range of the result type
61016a7a 8447
2fe22c69 8448 procedure Max (A : in out Uint; B : Uint);
21a55437 8449 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
2fe22c69 8450
8451 procedure Min (A : in out Uint; B : Uint);
21a55437 8452 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
2fe22c69 8453
0326b4d4 8454 ---------------------
8455 -- In_Result_Range --
8456 ---------------------
8457
8458 function In_Result_Range return Boolean is
8459 begin
f32c377d 8460 if Lo = No_Uint or else Hi = No_Uint then
8461 return False;
8462
cda40848 8463 elsif Is_OK_Static_Subtype (Etype (N)) then
0326b4d4 8464 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8465 and then
8466 Hi <= Expr_Value (Type_High_Bound (Rtyp));
f32c377d 8467
0326b4d4 8468 else
8469 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8470 and then
8471 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8472 end if;
8473 end In_Result_Range;
8474
2fe22c69 8475 ---------
8476 -- Max --
8477 ---------
8478
8479 procedure Max (A : in out Uint; B : Uint) is
8480 begin
8481 if A = No_Uint or else B > A then
8482 A := B;
8483 end if;
8484 end Max;
8485
8486 ---------
8487 -- Min --
8488 ---------
8489
8490 procedure Min (A : in out Uint; B : Uint) is
8491 begin
8492 if A = No_Uint or else B < A then
8493 A := B;
8494 end if;
8495 end Min;
8496
0df9d43f 8497 ---------------
8498 -- Reanalyze --
8499 ---------------
8500
8501 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
db415383 8502 Svg : constant Overflow_Mode_Type :=
8503 Scope_Suppress.Overflow_Mode_General;
8504 Sva : constant Overflow_Mode_Type :=
8505 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 8506 Svo : constant Boolean :=
8507 Scope_Suppress.Suppress (Overflow_Check);
8508
8509 begin
db415383 8510 Scope_Suppress.Overflow_Mode_General := Strict;
8511 Scope_Suppress.Overflow_Mode_Assertions := Strict;
0df9d43f 8512
8513 if Suppress then
8514 Scope_Suppress.Suppress (Overflow_Check) := True;
8515 end if;
8516
8517 Analyze_And_Resolve (N, Typ);
8518
2b108e18 8519 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8520 Scope_Suppress.Overflow_Mode_General := Svg;
8521 Scope_Suppress.Overflow_Mode_Assertions := Sva;
0df9d43f 8522 end Reanalyze;
8523
4fb5f0a0 8524 --------------
8525 -- Reexpand --
8526 --------------
8527
0df9d43f 8528 procedure Reexpand (Suppress : Boolean := False) is
db415383 8529 Svg : constant Overflow_Mode_Type :=
8530 Scope_Suppress.Overflow_Mode_General;
8531 Sva : constant Overflow_Mode_Type :=
8532 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 8533 Svo : constant Boolean :=
8534 Scope_Suppress.Suppress (Overflow_Check);
8535
4fb5f0a0 8536 begin
db415383 8537 Scope_Suppress.Overflow_Mode_General := Strict;
8538 Scope_Suppress.Overflow_Mode_Assertions := Strict;
4fb5f0a0 8539 Set_Analyzed (N, False);
0df9d43f 8540
8541 if Suppress then
8542 Scope_Suppress.Suppress (Overflow_Check) := True;
8543 end if;
8544
4fb5f0a0 8545 Expand (N);
0df9d43f 8546
2b108e18 8547 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8548 Scope_Suppress.Overflow_Mode_General := Svg;
8549 Scope_Suppress.Overflow_Mode_Assertions := Sva;
4fb5f0a0 8550 end Reexpand;
8551
0df9d43f 8552 -- Start of processing for Minimize_Eliminate_Overflows
2fe22c69 8553
3cce7f32 8554 begin
02038e4e 8555 -- Default initialize Lo and Hi since these are not guaranteed to be
8556 -- set otherwise.
8557
8558 Lo := No_Uint;
8559 Hi := No_Uint;
8560
0326b4d4 8561 -- Case where we do not have a signed integer arithmetic operation
3cce7f32 8562
8563 if not Is_Signed_Integer_Arithmetic_Op (N) then
8564
8565 -- Use the normal Determine_Range routine to get the range. We
8566 -- don't require operands to be valid, invalid values may result in
8567 -- rubbish results where the result has not been properly checked for
39a0c1d3 8568 -- overflow, that's fine.
3cce7f32 8569
8570 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8571
21a55437 8572 -- If Determine_Range did not work (can this in fact happen? Not
3cce7f32 8573 -- clear but might as well protect), use type bounds.
8574
8575 if not OK then
8576 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8577 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8578 end if;
8579
8580 -- If we don't have a binary operator, all we have to do is to set
20cf157b 8581 -- the Hi/Lo range, so we are done.
3cce7f32 8582
8583 return;
8584
0326b4d4 8585 -- Processing for if expression
8586
92f1631f 8587 elsif Nkind (N) = N_If_Expression then
0326b4d4 8588 declare
8589 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8590 Else_DE : constant Node_Id := Next (Then_DE);
8591
8592 begin
8593 Bignum_Operands := False;
8594
0df9d43f 8595 Minimize_Eliminate_Overflows
0326b4d4 8596 (Then_DE, Lo, Hi, Top_Level => False);
8597
8598 if Lo = No_Uint then
8599 Bignum_Operands := True;
8600 end if;
8601
0df9d43f 8602 Minimize_Eliminate_Overflows
0326b4d4 8603 (Else_DE, Rlo, Rhi, Top_Level => False);
8604
8605 if Rlo = No_Uint then
8606 Bignum_Operands := True;
8607 else
8608 Long_Long_Integer_Operands :=
8609 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8610
8611 Min (Lo, Rlo);
8612 Max (Hi, Rhi);
8613 end if;
8614
21a55437 8615 -- If at least one of our operands is now Bignum, we must rebuild
8616 -- the if expression to use Bignum operands. We will analyze the
0326b4d4 8617 -- rebuilt if expression with overflow checks off, since once we
39a0c1d3 8618 -- are in bignum mode, we are all done with overflow checks.
0326b4d4 8619
8620 if Bignum_Operands then
8621 Rewrite (N,
92f1631f 8622 Make_If_Expression (Loc,
0326b4d4 8623 Expressions => New_List (
8624 Remove_Head (Expressions (N)),
8625 Convert_To_Bignum (Then_DE),
8626 Convert_To_Bignum (Else_DE)),
8627 Is_Elsif => Is_Elsif (N)));
8628
0df9d43f 8629 Reanalyze (RTE (RE_Bignum), Suppress => True);
0326b4d4 8630
8631 -- If we have no Long_Long_Integer operands, then we are in result
8632 -- range, since it means that none of our operands felt the need
8633 -- to worry about overflow (otherwise it would have already been
4fb5f0a0 8634 -- converted to long long integer or bignum). We reexpand to
8635 -- complete the expansion of the if expression (but we do not
8636 -- need to reanalyze).
0326b4d4 8637
8638 elsif not Long_Long_Integer_Operands then
8639 Set_Do_Overflow_Check (N, False);
0df9d43f 8640 Reexpand;
0326b4d4 8641
8642 -- Otherwise convert us to long long integer mode. Note that we
8643 -- don't need any further overflow checking at this level.
8644
8645 else
8646 Convert_To_And_Rewrite (LLIB, Then_DE);
8647 Convert_To_And_Rewrite (LLIB, Else_DE);
8648 Set_Etype (N, LLIB);
f32c377d 8649
8650 -- Now reanalyze with overflow checks off
8651
0326b4d4 8652 Set_Do_Overflow_Check (N, False);
0df9d43f 8653 Reanalyze (LLIB, Suppress => True);
0326b4d4 8654 end if;
8655 end;
8656
8657 return;
8658
8659 -- Here for case expression
8660
8661 elsif Nkind (N) = N_Case_Expression then
8662 Bignum_Operands := False;
8663 Long_Long_Integer_Operands := False;
0326b4d4 8664
8665 declare
f32c377d 8666 Alt : Node_Id;
0326b4d4 8667
8668 begin
8669 -- Loop through expressions applying recursive call
8670
8671 Alt := First (Alternatives (N));
8672 while Present (Alt) loop
8673 declare
8674 Aexp : constant Node_Id := Expression (Alt);
8675
8676 begin
0df9d43f 8677 Minimize_Eliminate_Overflows
0326b4d4 8678 (Aexp, Lo, Hi, Top_Level => False);
8679
8680 if Lo = No_Uint then
8681 Bignum_Operands := True;
8682 elsif Etype (Aexp) = LLIB then
8683 Long_Long_Integer_Operands := True;
8684 end if;
8685 end;
8686
8687 Next (Alt);
8688 end loop;
8689
8690 -- If we have no bignum or long long integer operands, it means
8691 -- that none of our dependent expressions could raise overflow.
8692 -- In this case, we simply return with no changes except for
8693 -- resetting the overflow flag, since we are done with overflow
4fb5f0a0 8694 -- checks for this node. We will reexpand to get the needed
8695 -- expansion for the case expression, but we do not need to
21a55437 8696 -- reanalyze, since nothing has changed.
0326b4d4 8697
f32c377d 8698 if not (Bignum_Operands or Long_Long_Integer_Operands) then
0326b4d4 8699 Set_Do_Overflow_Check (N, False);
0df9d43f 8700 Reexpand (Suppress => True);
0326b4d4 8701
8702 -- Otherwise we are going to rebuild the case expression using
8703 -- either bignum or long long integer operands throughout.
8704
8705 else
f32c377d 8706 declare
8707 Rtype : Entity_Id;
16149377 8708 pragma Warnings (Off, Rtype);
f32c377d 8709 New_Alts : List_Id;
8710 New_Exp : Node_Id;
8711
8712 begin
8713 New_Alts := New_List;
8714 Alt := First (Alternatives (N));
8715 while Present (Alt) loop
8716 if Bignum_Operands then
8717 New_Exp := Convert_To_Bignum (Expression (Alt));
8718 Rtype := RTE (RE_Bignum);
8719 else
8720 New_Exp := Convert_To (LLIB, Expression (Alt));
8721 Rtype := LLIB;
8722 end if;
0326b4d4 8723
f32c377d 8724 Append_To (New_Alts,
8725 Make_Case_Expression_Alternative (Sloc (Alt),
8726 Actions => No_List,
8727 Discrete_Choices => Discrete_Choices (Alt),
8728 Expression => New_Exp));
0326b4d4 8729
f32c377d 8730 Next (Alt);
8731 end loop;
0326b4d4 8732
f32c377d 8733 Rewrite (N,
8734 Make_Case_Expression (Loc,
8735 Expression => Expression (N),
8736 Alternatives => New_Alts));
0326b4d4 8737
0df9d43f 8738 Reanalyze (Rtype, Suppress => True);
f32c377d 8739 end;
0326b4d4 8740 end if;
8741 end;
8742
8743 return;
8744 end if;
8745
8746 -- If we have an arithmetic operator we make recursive calls on the
3cce7f32 8747 -- operands to get the ranges (and to properly process the subtree
20cf157b 8748 -- that lies below us).
3cce7f32 8749
0df9d43f 8750 Minimize_Eliminate_Overflows
0326b4d4 8751 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
3cce7f32 8752
0326b4d4 8753 if Binary then
0df9d43f 8754 Minimize_Eliminate_Overflows
0326b4d4 8755 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
3cce7f32 8756 end if;
8757
f32c377d 8758 -- Record if we have Long_Long_Integer operands
8759
8760 Long_Long_Integer_Operands :=
8761 Etype (Right_Opnd (N)) = LLIB
8762 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8763
8764 -- If either operand is a bignum, then result will be a bignum and we
8765 -- don't need to do any range analysis. As previously discussed we could
8766 -- do range analysis in such cases, but it could mean working with giant
8767 -- numbers at compile time for very little gain (the number of cases
21a55437 8768 -- in which we could slip back from bignum mode is small).
3cce7f32 8769
8770 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8771 Lo := No_Uint;
8772 Hi := No_Uint;
61016a7a 8773 Bignum_Operands := True;
3cce7f32 8774
8775 -- Otherwise compute result range
8776
8777 else
61016a7a 8778 Bignum_Operands := False;
8779
3cce7f32 8780 case Nkind (N) is
8781
8782 -- Absolute value
8783
8784 when N_Op_Abs =>
8785 Lo := Uint_0;
de922300 8786 Hi := UI_Max (abs Rlo, abs Rhi);
3cce7f32 8787
8788 -- Addition
8789
8790 when N_Op_Add =>
8791 Lo := Llo + Rlo;
8792 Hi := Lhi + Rhi;
8793
8794 -- Division
8795
8796 when N_Op_Divide =>
2fe22c69 8797
5f4275e1 8798 -- If the right operand can only be zero, set 0..0
2fe22c69 8799
5f4275e1 8800 if Rlo = 0 and then Rhi = 0 then
8801 Lo := Uint_0;
8802 Hi := Uint_0;
2fe22c69 8803
5f4275e1 8804 -- Possible bounds of division must come from dividing end
8805 -- values of the input ranges (four possibilities), provided
8806 -- zero is not included in the possible values of the right
8807 -- operand.
8808
8809 -- Otherwise, we just consider two intervals of values for
8810 -- the right operand: the interval of negative values (up to
8811 -- -1) and the interval of positive values (starting at 1).
8812 -- Since division by 1 is the identity, and division by -1
8813 -- is negation, we get all possible bounds of division in that
8814 -- case by considering:
8815 -- - all values from the division of end values of input
8816 -- ranges;
8817 -- - the end values of the left operand;
8818 -- - the negation of the end values of the left operand.
2fe22c69 8819
5f4275e1 8820 else
8821 declare
8822 Mrk : constant Uintp.Save_Mark := Mark;
8823 -- Mark so we can release the RR and Ev values
2fe22c69 8824
5f4275e1 8825 Ev1 : Uint;
8826 Ev2 : Uint;
8827 Ev3 : Uint;
8828 Ev4 : Uint;
2fe22c69 8829
5f4275e1 8830 begin
8831 -- Discard extreme values of zero for the divisor, since
8832 -- they will simply result in an exception in any case.
2fe22c69 8833
5f4275e1 8834 if Rlo = 0 then
8835 Rlo := Uint_1;
8836 elsif Rhi = 0 then
8837 Rhi := -Uint_1;
2fe22c69 8838 end if;
2fe22c69 8839
5f4275e1 8840 -- Compute possible bounds coming from dividing end
8841 -- values of the input ranges.
2fe22c69 8842
5f4275e1 8843 Ev1 := Llo / Rlo;
8844 Ev2 := Llo / Rhi;
8845 Ev3 := Lhi / Rlo;
8846 Ev4 := Lhi / Rhi;
2fe22c69 8847
5f4275e1 8848 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8849 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
2fe22c69 8850
5f4275e1 8851 -- If the right operand can be both negative or positive,
8852 -- include the end values of the left operand in the
8853 -- extreme values, as well as their negation.
2fe22c69 8854
5f4275e1 8855 if Rlo < 0 and then Rhi > 0 then
8856 Ev1 := Llo;
8857 Ev2 := -Llo;
8858 Ev3 := Lhi;
8859 Ev4 := -Lhi;
2fe22c69 8860
5f4275e1 8861 Min (Lo,
8862 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8863 Max (Hi,
8864 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
2fe22c69 8865 end if;
2fe22c69 8866
5f4275e1 8867 -- Release the RR and Ev values
2fe22c69 8868
5f4275e1 8869 Release_And_Save (Mrk, Lo, Hi);
8870 end;
8871 end if;
3cce7f32 8872
8873 -- Exponentiation
8874
8875 when N_Op_Expon =>
de922300 8876
8877 -- Discard negative values for the exponent, since they will
8878 -- simply result in an exception in any case.
8879
8880 if Rhi < 0 then
8881 Rhi := Uint_0;
8882 elsif Rlo < 0 then
8883 Rlo := Uint_0;
8884 end if;
8885
8886 -- Estimate number of bits in result before we go computing
8887 -- giant useless bounds. Basically the number of bits in the
8888 -- result is the number of bits in the base multiplied by the
8889 -- value of the exponent. If this is big enough that the result
8890 -- definitely won't fit in Long_Long_Integer, switch to bignum
8891 -- mode immediately, and avoid computing giant bounds.
8892
8893 -- The comparison here is approximate, but conservative, it
8894 -- only clicks on cases that are sure to exceed the bounds.
8895
8896 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8897 Lo := No_Uint;
8898 Hi := No_Uint;
8899
8900 -- If right operand is zero then result is 1
8901
8902 elsif Rhi = 0 then
8903 Lo := Uint_1;
8904 Hi := Uint_1;
8905
8906 else
8907 -- High bound comes either from exponentiation of largest
5f4275e1 8908 -- positive value to largest exponent value, or from
8909 -- the exponentiation of most negative value to an
8910 -- even exponent.
de922300 8911
8912 declare
8913 Hi1, Hi2 : Uint;
8914
8915 begin
5f4275e1 8916 if Lhi > 0 then
de922300 8917 Hi1 := Lhi ** Rhi;
8918 else
8919 Hi1 := Uint_0;
8920 end if;
8921
8922 if Llo < 0 then
8923 if Rhi mod 2 = 0 then
de922300 8924 Hi2 := Llo ** Rhi;
5f4275e1 8925 else
8926 Hi2 := Llo ** (Rhi - 1);
de922300 8927 end if;
8928 else
8929 Hi2 := Uint_0;
8930 end if;
8931
8932 Hi := UI_Max (Hi1, Hi2);
8933 end;
8934
8935 -- Result can only be negative if base can be negative
8936
8937 if Llo < 0 then
21a55437 8938 if Rhi mod 2 = 0 then
de922300 8939 Lo := Llo ** (Rhi - 1);
8940 else
8941 Lo := Llo ** Rhi;
8942 end if;
8943
21a55437 8944 -- Otherwise low bound is minimum ** minimum
de922300 8945
8946 else
8947 Lo := Llo ** Rlo;
8948 end if;
8949 end if;
3cce7f32 8950
8951 -- Negation
8952
8953 when N_Op_Minus =>
8954 Lo := -Rhi;
8955 Hi := -Rlo;
8956
8957 -- Mod
8958
8959 when N_Op_Mod =>
2fe22c69 8960 declare
5f4275e1 8961 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 8962 -- This is the maximum absolute value of the result
8963
8964 begin
8965 Lo := Uint_0;
8966 Hi := Uint_0;
8967
8968 -- The result depends only on the sign and magnitude of
8969 -- the right operand, it does not depend on the sign or
8970 -- magnitude of the left operand.
8971
8972 if Rlo < 0 then
8973 Lo := -Maxabs;
8974 end if;
8975
8976 if Rhi > 0 then
8977 Hi := Maxabs;
8978 end if;
8979 end;
3cce7f32 8980
8981 -- Multiplication
8982
8983 when N_Op_Multiply =>
49b3a812 8984
8985 -- Possible bounds of multiplication must come from multiplying
8986 -- end values of the input ranges (four possibilities).
8987
8988 declare
8989 Mrk : constant Uintp.Save_Mark := Mark;
8990 -- Mark so we can release the Ev values
8991
8992 Ev1 : constant Uint := Llo * Rlo;
8993 Ev2 : constant Uint := Llo * Rhi;
8994 Ev3 : constant Uint := Lhi * Rlo;
8995 Ev4 : constant Uint := Lhi * Rhi;
8996
8997 begin
8998 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8999 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
9000
9001 -- Release the Ev values
9002
9003 Release_And_Save (Mrk, Lo, Hi);
9004 end;
3cce7f32 9005
9006 -- Plus operator (affirmation)
9007
9008 when N_Op_Plus =>
9009 Lo := Rlo;
9010 Hi := Rhi;
9011
9012 -- Remainder
9013
9014 when N_Op_Rem =>
2fe22c69 9015 declare
5f4275e1 9016 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 9017 -- This is the maximum absolute value of the result. Note
5f4275e1 9018 -- that the result range does not depend on the sign of the
9019 -- right operand.
2fe22c69 9020
9021 begin
9022 Lo := Uint_0;
9023 Hi := Uint_0;
9024
9025 -- Case of left operand negative, which results in a range
9026 -- of -Maxabs .. 0 for those negative values. If there are
9027 -- no negative values then Lo value of result is always 0.
9028
9029 if Llo < 0 then
9030 Lo := -Maxabs;
9031 end if;
9032
9033 -- Case of left operand positive
9034
9035 if Lhi > 0 then
9036 Hi := Maxabs;
9037 end if;
9038 end;
3cce7f32 9039
9040 -- Subtract
9041
9042 when N_Op_Subtract =>
9043 Lo := Llo - Rhi;
9044 Hi := Lhi - Rlo;
9045
9046 -- Nothing else should be possible
9047
9048 when others =>
9049 raise Program_Error;
3cce7f32 9050 end case;
9051 end if;
9052
4fb5f0a0 9053 -- Here for the case where we have not rewritten anything (no bignum
21a55437 9054 -- operands or long long integer operands), and we know the result.
9055 -- If we know we are in the result range, and we do not have Bignum
9056 -- operands or Long_Long_Integer operands, we can just reexpand with
9057 -- overflow checks turned off (since we know we cannot have overflow).
9058 -- As always the reexpansion is required to complete expansion of the
9059 -- operator, but we do not need to reanalyze, and we prevent recursion
9060 -- by suppressing the check.
f32c377d 9061
9062 if not (Bignum_Operands or Long_Long_Integer_Operands)
9063 and then In_Result_Range
9064 then
9065 Set_Do_Overflow_Check (N, False);
0df9d43f 9066 Reexpand (Suppress => True);
f32c377d 9067 return;
9068
9069 -- Here we know that we are not in the result range, and in the general
21a55437 9070 -- case we will move into either the Bignum or Long_Long_Integer domain
9071 -- to compute the result. However, there is one exception. If we are
9072 -- at the top level, and we do not have Bignum or Long_Long_Integer
9073 -- operands, we will have to immediately convert the result back to
9074 -- the result type, so there is no point in Bignum/Long_Long_Integer
9075 -- fiddling.
f32c377d 9076
9077 elsif Top_Level
9078 and then not (Bignum_Operands or Long_Long_Integer_Operands)
b6a8f264 9079
9080 -- One further refinement. If we are at the top level, but our parent
9081 -- is a type conversion, then go into bignum or long long integer node
9082 -- since the result will be converted to that type directly without
9083 -- going through the result type, and we may avoid an overflow. This
9084 -- is the case for example of Long_Long_Integer (A ** 4), where A is
9085 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
9086 -- but does not fit in Integer.
9087
9088 and then Nkind (Parent (N)) /= N_Type_Conversion
f32c377d 9089 then
0df9d43f 9090 -- Here keep original types, but we need to complete analysis
f32c377d 9091
9092 -- One subtlety. We can't just go ahead and do an analyze operation
21a55437 9093 -- here because it will cause recursion into the whole MINIMIZED/
9094 -- ELIMINATED overflow processing which is not what we want. Here
f32c377d 9095 -- we are at the top level, and we need a check against the result
39a0c1d3 9096 -- mode (i.e. we want to use STRICT mode). So do exactly that.
4fb5f0a0 9097 -- Also, we have not modified the node, so this is a case where
9098 -- we need to reexpand, but not reanalyze.
f32c377d 9099
0df9d43f 9100 Reexpand;
f32c377d 9101 return;
9102
9103 -- Cases where we do the operation in Bignum mode. This happens either
3cce7f32 9104 -- because one of our operands is in Bignum mode already, or because
de922300 9105 -- the computed bounds are outside the bounds of Long_Long_Integer,
9106 -- which in some cases can be indicated by Hi and Lo being No_Uint.
3cce7f32 9107
9108 -- Note: we could do better here and in some cases switch back from
9109 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9110 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9111 -- Failing to do this switching back is only an efficiency issue.
9112
f32c377d 9113 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
3cce7f32 9114
61016a7a 9115 -- OK, we are definitely outside the range of Long_Long_Integer. The
f32c377d 9116 -- question is whether to move to Bignum mode, or stay in the domain
61016a7a 9117 -- of Long_Long_Integer, signalling that an overflow check is needed.
9118
9119 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9120 -- the Bignum business. In ELIMINATED mode, we will normally move
9121 -- into Bignum mode, but there is an exception if neither of our
9122 -- operands is Bignum now, and we are at the top level (Top_Level
9123 -- set True). In this case, there is no point in moving into Bignum
9124 -- mode to prevent overflow if the caller will immediately convert
9125 -- the Bignum value back to LLI with an overflow check. It's more
0df9d43f 9126 -- efficient to stay in LLI mode with an overflow check (if needed)
61016a7a 9127
9128 if Check_Mode = Minimized
9129 or else (Top_Level and not Bignum_Operands)
9130 then
0df9d43f 9131 if Do_Overflow_Check (N) then
9132 Enable_Overflow_Check (N);
9133 end if;
3cce7f32 9134
0df9d43f 9135 -- The result now has to be in Long_Long_Integer mode, so adjust
9136 -- the possible range to reflect this. Note these calls also
9137 -- change No_Uint values from the top level case to LLI bounds.
61016a7a 9138
9139 Max (Lo, LLLo);
9140 Min (Hi, LLHi);
9141
9142 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
3cce7f32 9143
9144 else
9145 pragma Assert (Check_Mode = Eliminated);
9146
9147 declare
9148 Fent : Entity_Id;
9149 Args : List_Id;
9150
9151 begin
9152 case Nkind (N) is
99378362 9153 when N_Op_Abs =>
3cce7f32 9154 Fent := RTE (RE_Big_Abs);
9155
99378362 9156 when N_Op_Add =>
3cce7f32 9157 Fent := RTE (RE_Big_Add);
9158
99378362 9159 when N_Op_Divide =>
3cce7f32 9160 Fent := RTE (RE_Big_Div);
9161
99378362 9162 when N_Op_Expon =>
3cce7f32 9163 Fent := RTE (RE_Big_Exp);
9164
99378362 9165 when N_Op_Minus =>
3cce7f32 9166 Fent := RTE (RE_Big_Neg);
9167
99378362 9168 when N_Op_Mod =>
3cce7f32 9169 Fent := RTE (RE_Big_Mod);
9170
9171 when N_Op_Multiply =>
9172 Fent := RTE (RE_Big_Mul);
9173
99378362 9174 when N_Op_Rem =>
3cce7f32 9175 Fent := RTE (RE_Big_Rem);
9176
9177 when N_Op_Subtract =>
9178 Fent := RTE (RE_Big_Sub);
9179
9180 -- Anything else is an internal error, this includes the
9181 -- N_Op_Plus case, since how can plus cause the result
9182 -- to be out of range if the operand is in range?
9183
9184 when others =>
9185 raise Program_Error;
9186 end case;
9187
9188 -- Construct argument list for Bignum call, converting our
9189 -- operands to Bignum form if they are not already there.
9190
9191 Args := New_List;
9192
9193 if Binary then
9194 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9195 end if;
9196
9197 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9198
9199 -- Now rewrite the arithmetic operator with a call to the
9200 -- corresponding bignum function.
9201
9202 Rewrite (N,
9203 Make_Function_Call (Loc,
9204 Name => New_Occurrence_Of (Fent, Loc),
9205 Parameter_Associations => Args));
0df9d43f 9206 Reanalyze (RTE (RE_Bignum), Suppress => True);
61016a7a 9207
9208 -- Indicate result is Bignum mode
9209
9210 Lo := No_Uint;
9211 Hi := No_Uint;
de922300 9212 return;
3cce7f32 9213 end;
9214 end if;
9215
9216 -- Otherwise we are in range of Long_Long_Integer, so no overflow
de922300 9217 -- check is required, at least not yet.
3cce7f32 9218
9219 else
de922300 9220 Set_Do_Overflow_Check (N, False);
9221 end if;
3cce7f32 9222
f32c377d 9223 -- Here we are not in Bignum territory, but we may have long long
9224 -- integer operands that need special handling. First a special check:
9225 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9226 -- it means we converted it to prevent overflow, but exponentiation
9227 -- requires a Natural right operand, so convert it back to Natural.
9228 -- This conversion may raise an exception which is fine.
0326b4d4 9229
f32c377d 9230 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9231 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
0326b4d4 9232 end if;
9233
de922300 9234 -- Here we will do the operation in Long_Long_Integer. We do this even
9235 -- if we know an overflow check is required, better to do this in long
39a0c1d3 9236 -- long integer mode, since we are less likely to overflow.
3cce7f32 9237
de922300 9238 -- Convert right or only operand to Long_Long_Integer, except that
9239 -- we do not touch the exponentiation right operand.
3cce7f32 9240
de922300 9241 if Nkind (N) /= N_Op_Expon then
9242 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9243 end if;
3cce7f32 9244
de922300 9245 -- Convert left operand to Long_Long_Integer for binary case
49b3a812 9246
de922300 9247 if Binary then
9248 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9249 end if;
9250
9251 -- Reset node to unanalyzed
9252
9253 Set_Analyzed (N, False);
9254 Set_Etype (N, Empty);
9255 Set_Entity (N, Empty);
9256
2fe22c69 9257 -- Now analyze this new node. This reanalysis will complete processing
9258 -- for the node. In particular we will complete the expansion of an
9259 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9260 -- we will complete any division checks (since we have not changed the
9261 -- setting of the Do_Division_Check flag).
3cce7f32 9262
0df9d43f 9263 -- We do this reanalysis in STRICT mode to avoid recursion into the
39a0c1d3 9264 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
3cce7f32 9265
0df9d43f 9266 declare
db415383 9267 SG : constant Overflow_Mode_Type :=
9268 Scope_Suppress.Overflow_Mode_General;
9269 SA : constant Overflow_Mode_Type :=
9270 Scope_Suppress.Overflow_Mode_Assertions;
de922300 9271
0df9d43f 9272 begin
db415383 9273 Scope_Suppress.Overflow_Mode_General := Strict;
9274 Scope_Suppress.Overflow_Mode_Assertions := Strict;
de922300 9275
0df9d43f 9276 if not Do_Overflow_Check (N) then
9277 Reanalyze (LLIB, Suppress => True);
9278 else
9279 Reanalyze (LLIB);
9280 end if;
9281
db415383 9282 Scope_Suppress.Overflow_Mode_General := SG;
9283 Scope_Suppress.Overflow_Mode_Assertions := SA;
0df9d43f 9284 end;
9285 end Minimize_Eliminate_Overflows;
3cce7f32 9286
9287 -------------------------
9288 -- Overflow_Check_Mode --
9289 -------------------------
9290
db415383 9291 function Overflow_Check_Mode return Overflow_Mode_Type is
ee6ba406 9292 begin
724d2bd8 9293 if In_Assertion_Expr = 0 then
db415383 9294 return Scope_Suppress.Overflow_Mode_General;
9dfe12ae 9295 else
db415383 9296 return Scope_Suppress.Overflow_Mode_Assertions;
9dfe12ae 9297 end if;
3cce7f32 9298 end Overflow_Check_Mode;
9299
9300 --------------------------------
9301 -- Overflow_Checks_Suppressed --
9302 --------------------------------
9303
9304 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9305 begin
0df9d43f 9306 if Present (E) and then Checks_May_Be_Suppressed (E) then
9307 return Is_Check_Suppressed (E, Overflow_Check);
9308 else
9309 return Scope_Suppress.Suppress (Overflow_Check);
9310 end if;
ee6ba406 9311 end Overflow_Checks_Suppressed;
fc75802a 9312
37baba83 9313 ---------------------------------
9314 -- Predicate_Checks_Suppressed --
9315 ---------------------------------
9316
9317 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9318 begin
9319 if Present (E) and then Checks_May_Be_Suppressed (E) then
9320 return Is_Check_Suppressed (E, Predicate_Check);
9321 else
9322 return Scope_Suppress.Suppress (Predicate_Check);
9323 end if;
9324 end Predicate_Checks_Suppressed;
9325
ee6ba406 9326 -----------------------------
9327 -- Range_Checks_Suppressed --
9328 -----------------------------
9329
9330 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9331 begin
9dfe12ae 9332 if Present (E) then
ce4d14c4 9333 if Kill_Range_Checks (E) then
9dfe12ae 9334 return True;
5f46de53 9335
9dfe12ae 9336 elsif Checks_May_Be_Suppressed (E) then
9337 return Is_Check_Suppressed (E, Range_Check);
9338 end if;
9339 end if;
ee6ba406 9340
fafc6b97 9341 return Scope_Suppress.Suppress (Range_Check);
ee6ba406 9342 end Range_Checks_Suppressed;
9343
0577b0b1 9344 -----------------------------------------
9345 -- Range_Or_Validity_Checks_Suppressed --
9346 -----------------------------------------
9347
9348 -- Note: the coding would be simpler here if we simply made appropriate
9349 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9350 -- duplicated checks which we prefer to avoid.
9351
9352 function Range_Or_Validity_Checks_Suppressed
9353 (Expr : Node_Id) return Boolean
9354 is
9355 begin
9356 -- Immediate return if scope checks suppressed for either check
9357
fafc6b97 9358 if Scope_Suppress.Suppress (Range_Check)
9359 or
9360 Scope_Suppress.Suppress (Validity_Check)
9361 then
0577b0b1 9362 return True;
9363 end if;
9364
9365 -- If no expression, that's odd, decide that checks are suppressed,
9366 -- since we don't want anyone trying to do checks in this case, which
9367 -- is most likely the result of some other error.
9368
9369 if No (Expr) then
9370 return True;
9371 end if;
9372
9373 -- Expression is present, so perform suppress checks on type
9374
9375 declare
9376 Typ : constant Entity_Id := Etype (Expr);
9377 begin
ce4d14c4 9378 if Checks_May_Be_Suppressed (Typ)
0577b0b1 9379 and then (Is_Check_Suppressed (Typ, Range_Check)
9380 or else
9381 Is_Check_Suppressed (Typ, Validity_Check))
9382 then
9383 return True;
9384 end if;
9385 end;
9386
9387 -- If expression is an entity name, perform checks on this entity
9388
9389 if Is_Entity_Name (Expr) then
9390 declare
9391 Ent : constant Entity_Id := Entity (Expr);
9392 begin
9393 if Checks_May_Be_Suppressed (Ent) then
9394 return Is_Check_Suppressed (Ent, Range_Check)
9395 or else Is_Check_Suppressed (Ent, Validity_Check);
9396 end if;
9397 end;
9398 end if;
9399
9400 -- If we fall through, no checks suppressed
9401
9402 return False;
9403 end Range_Or_Validity_Checks_Suppressed;
9404
226494a3 9405 -------------------
9406 -- Remove_Checks --
9407 -------------------
9408
9409 procedure Remove_Checks (Expr : Node_Id) is
226494a3 9410 function Process (N : Node_Id) return Traverse_Result;
9411 -- Process a single node during the traversal
9412
8f6e4fd5 9413 procedure Traverse is new Traverse_Proc (Process);
9414 -- The traversal procedure itself
226494a3 9415
9416 -------------
9417 -- Process --
9418 -------------
9419
9420 function Process (N : Node_Id) return Traverse_Result is
9421 begin
9422 if Nkind (N) not in N_Subexpr then
9423 return Skip;
9424 end if;
9425
9426 Set_Do_Range_Check (N, False);
9427
9428 case Nkind (N) is
9429 when N_And_Then =>
8f6e4fd5 9430 Traverse (Left_Opnd (N));
226494a3 9431 return Skip;
9432
9433 when N_Attribute_Reference =>
226494a3 9434 Set_Do_Overflow_Check (N, False);
9435
226494a3 9436 when N_Function_Call =>
9437 Set_Do_Tag_Check (N, False);
9438
226494a3 9439 when N_Op =>
9440 Set_Do_Overflow_Check (N, False);
9441
9442 case Nkind (N) is
9443 when N_Op_Divide =>
9444 Set_Do_Division_Check (N, False);
9445
9446 when N_Op_And =>
9447 Set_Do_Length_Check (N, False);
9448
9449 when N_Op_Mod =>
9450 Set_Do_Division_Check (N, False);
9451
9452 when N_Op_Or =>
9453 Set_Do_Length_Check (N, False);
9454
9455 when N_Op_Rem =>
9456 Set_Do_Division_Check (N, False);
9457
9458 when N_Op_Xor =>
9459 Set_Do_Length_Check (N, False);
9460
9461 when others =>
9462 null;
9463 end case;
9464
9465 when N_Or_Else =>
8f6e4fd5 9466 Traverse (Left_Opnd (N));
226494a3 9467 return Skip;
9468
9469 when N_Selected_Component =>
226494a3 9470 Set_Do_Discriminant_Check (N, False);
9471
226494a3 9472 when N_Type_Conversion =>
9dfe12ae 9473 Set_Do_Length_Check (N, False);
9474 Set_Do_Tag_Check (N, False);
226494a3 9475 Set_Do_Overflow_Check (N, False);
226494a3 9476
9477 when others =>
9478 null;
9479 end case;
9480
9481 return OK;
9482 end Process;
9483
9484 -- Start of processing for Remove_Checks
9485
9486 begin
8f6e4fd5 9487 Traverse (Expr);
226494a3 9488 end Remove_Checks;
9489
ee6ba406 9490 ----------------------------
9491 -- Selected_Length_Checks --
9492 ----------------------------
9493
9494 function Selected_Length_Checks
9495 (Ck_Node : Node_Id;
9496 Target_Typ : Entity_Id;
9497 Source_Typ : Entity_Id;
314a23b6 9498 Warn_Node : Node_Id) return Check_Result
ee6ba406 9499 is
9500 Loc : constant Source_Ptr := Sloc (Ck_Node);
9501 S_Typ : Entity_Id;
9502 T_Typ : Entity_Id;
9503 Expr_Actual : Node_Id;
9504 Exptyp : Entity_Id;
9505 Cond : Node_Id := Empty;
9506 Do_Access : Boolean := False;
9507 Wnode : Node_Id := Warn_Node;
9508 Ret_Result : Check_Result := (Empty, Empty);
9509 Num_Checks : Natural := 0;
9510
9511 procedure Add_Check (N : Node_Id);
9512 -- Adds the action given to Ret_Result if N is non-Empty
9513
9514 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9515 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
314a23b6 9516 -- Comments required ???
ee6ba406 9517
9518 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9519 -- True for equal literals and for nodes that denote the same constant
5f260d20 9520 -- entity, even if its value is not a static constant. This includes the
9dfe12ae 9521 -- case of a discriminal reference within an init proc. Removes some
5f260d20 9522 -- obviously superfluous checks.
ee6ba406 9523
9524 function Length_E_Cond
9525 (Exptyp : Entity_Id;
9526 Typ : Entity_Id;
314a23b6 9527 Indx : Nat) return Node_Id;
ee6ba406 9528 -- Returns expression to compute:
9529 -- Typ'Length /= Exptyp'Length
9530
9531 function Length_N_Cond
9532 (Expr : Node_Id;
9533 Typ : Entity_Id;
314a23b6 9534 Indx : Nat) return Node_Id;
ee6ba406 9535 -- Returns expression to compute:
9536 -- Typ'Length /= Expr'Length
9537
9538 ---------------
9539 -- Add_Check --
9540 ---------------
9541
9542 procedure Add_Check (N : Node_Id) is
9543 begin
9544 if Present (N) then
9545
20cf157b 9546 -- For now, ignore attempt to place more than two checks ???
9547 -- This is really worrisome, are we really discarding checks ???
ee6ba406 9548
9549 if Num_Checks = 2 then
9550 return;
9551 end if;
9552
9553 pragma Assert (Num_Checks <= 1);
9554 Num_Checks := Num_Checks + 1;
9555 Ret_Result (Num_Checks) := N;
9556 end if;
9557 end Add_Check;
9558
9559 ------------------
9560 -- Get_E_Length --
9561 ------------------
9562
9563 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
00c403ee 9564 SE : constant Entity_Id := Scope (E);
ee6ba406 9565 N : Node_Id;
9566 E1 : Entity_Id := E;
ee6ba406 9567
9568 begin
9569 if Ekind (Scope (E)) = E_Record_Type
9570 and then Has_Discriminants (Scope (E))
9571 then
9572 N := Build_Discriminal_Subtype_Of_Component (E);
9573
9574 if Present (N) then
9575 Insert_Action (Ck_Node, N);
9576 E1 := Defining_Identifier (N);
9577 end if;
9578 end if;
9579
9580 if Ekind (E1) = E_String_Literal_Subtype then
9581 return
9582 Make_Integer_Literal (Loc,
9583 Intval => String_Literal_Length (E1));
9584
00c403ee 9585 elsif SE /= Standard_Standard
9586 and then Ekind (Scope (SE)) = E_Protected_Type
9587 and then Has_Discriminants (Scope (SE))
9588 and then Has_Completion (Scope (SE))
ee6ba406 9589 and then not Inside_Init_Proc
9590 then
ee6ba406 9591 -- If the type whose length is needed is a private component
9592 -- constrained by a discriminant, we must expand the 'Length
9593 -- attribute into an explicit computation, using the discriminal
9594 -- of the current protected operation. This is because the actual
9595 -- type of the prival is constructed after the protected opera-
9596 -- tion has been fully expanded.
9597
9598 declare
9599 Indx_Type : Node_Id;
9600 Lo : Node_Id;
9601 Hi : Node_Id;
9602 Do_Expand : Boolean := False;
9603
9604 begin
9605 Indx_Type := First_Index (E);
9606
9607 for J in 1 .. Indx - 1 loop
9608 Next_Index (Indx_Type);
9609 end loop;
9610
2af58f67 9611 Get_Index_Bounds (Indx_Type, Lo, Hi);
ee6ba406 9612
9613 if Nkind (Lo) = N_Identifier
9614 and then Ekind (Entity (Lo)) = E_In_Parameter
9615 then
9616 Lo := Get_Discriminal (E, Lo);
9617 Do_Expand := True;
9618 end if;
9619
9620 if Nkind (Hi) = N_Identifier
9621 and then Ekind (Entity (Hi)) = E_In_Parameter
9622 then
9623 Hi := Get_Discriminal (E, Hi);
9624 Do_Expand := True;
9625 end if;
9626
9627 if Do_Expand then
9628 if not Is_Entity_Name (Lo) then
9dfe12ae 9629 Lo := Duplicate_Subexpr_No_Checks (Lo);
ee6ba406 9630 end if;
9631
9632 if not Is_Entity_Name (Hi) then
9dfe12ae 9633 Lo := Duplicate_Subexpr_No_Checks (Hi);
ee6ba406 9634 end if;
9635
9636 N :=
9637 Make_Op_Add (Loc,
9638 Left_Opnd =>
9639 Make_Op_Subtract (Loc,
9640 Left_Opnd => Hi,
9641 Right_Opnd => Lo),
9642
9643 Right_Opnd => Make_Integer_Literal (Loc, 1));
9644 return N;
9645
9646 else
9647 N :=
9648 Make_Attribute_Reference (Loc,
9649 Attribute_Name => Name_Length,
9650 Prefix =>
9651 New_Occurrence_Of (E1, Loc));
9652
9653 if Indx > 1 then
9654 Set_Expressions (N, New_List (
9655 Make_Integer_Literal (Loc, Indx)));
9656 end if;
9657
9658 return N;
9659 end if;
9660 end;
9661
9662 else
9663 N :=
9664 Make_Attribute_Reference (Loc,
9665 Attribute_Name => Name_Length,
9666 Prefix =>
9667 New_Occurrence_Of (E1, Loc));
9668
9669 if Indx > 1 then
9670 Set_Expressions (N, New_List (
9671 Make_Integer_Literal (Loc, Indx)));
9672 end if;
9673
9674 return N;
ee6ba406 9675 end if;
9676 end Get_E_Length;
9677
9678 ------------------
9679 -- Get_N_Length --
9680 ------------------
9681
9682 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9683 begin
9684 return
9685 Make_Attribute_Reference (Loc,
9686 Attribute_Name => Name_Length,
9687 Prefix =>
9dfe12ae 9688 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 9689 Expressions => New_List (
9690 Make_Integer_Literal (Loc, Indx)));
ee6ba406 9691 end Get_N_Length;
9692
9693 -------------------
9694 -- Length_E_Cond --
9695 -------------------
9696
9697 function Length_E_Cond
9698 (Exptyp : Entity_Id;
9699 Typ : Entity_Id;
314a23b6 9700 Indx : Nat) return Node_Id
ee6ba406 9701 is
9702 begin
9703 return
9704 Make_Op_Ne (Loc,
9705 Left_Opnd => Get_E_Length (Typ, Indx),
9706 Right_Opnd => Get_E_Length (Exptyp, Indx));
ee6ba406 9707 end Length_E_Cond;
9708
9709 -------------------
9710 -- Length_N_Cond --
9711 -------------------
9712
9713 function Length_N_Cond
9714 (Expr : Node_Id;
9715 Typ : Entity_Id;
314a23b6 9716 Indx : Nat) return Node_Id
ee6ba406 9717 is
9718 begin
9719 return
9720 Make_Op_Ne (Loc,
9721 Left_Opnd => Get_E_Length (Typ, Indx),
9722 Right_Opnd => Get_N_Length (Expr, Indx));
ee6ba406 9723 end Length_N_Cond;
9724
feff2f05 9725 -----------------
9726 -- Same_Bounds --
9727 -----------------
9728
ee6ba406 9729 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9730 begin
9731 return
9732 (Nkind (L) = N_Integer_Literal
9733 and then Nkind (R) = N_Integer_Literal
9734 and then Intval (L) = Intval (R))
9735
9736 or else
9737 (Is_Entity_Name (L)
9738 and then Ekind (Entity (L)) = E_Constant
9739 and then ((Is_Entity_Name (R)
9740 and then Entity (L) = Entity (R))
9741 or else
9742 (Nkind (R) = N_Type_Conversion
9743 and then Is_Entity_Name (Expression (R))
9744 and then Entity (L) = Entity (Expression (R)))))
9745
9746 or else
9747 (Is_Entity_Name (R)
9748 and then Ekind (Entity (R)) = E_Constant
9749 and then Nkind (L) = N_Type_Conversion
9750 and then Is_Entity_Name (Expression (L))
5f260d20 9751 and then Entity (R) = Entity (Expression (L)))
9752
9753 or else
9754 (Is_Entity_Name (L)
9755 and then Is_Entity_Name (R)
9756 and then Entity (L) = Entity (R)
9757 and then Ekind (Entity (L)) = E_In_Parameter
9758 and then Inside_Init_Proc);
ee6ba406 9759 end Same_Bounds;
9760
9761 -- Start of processing for Selected_Length_Checks
9762
9763 begin
18cb6d78 9764 -- Checks will be applied only when generating code
f0d65dae 9765
18cb6d78 9766 if not Expander_Active then
ee6ba406 9767 return Ret_Result;
9768 end if;
9769
9770 if Target_Typ = Any_Type
9771 or else Target_Typ = Any_Composite
9772 or else Raises_Constraint_Error (Ck_Node)
9773 then
9774 return Ret_Result;
9775 end if;
9776
9777 if No (Wnode) then
9778 Wnode := Ck_Node;
9779 end if;
9780
9781 T_Typ := Target_Typ;
9782
9783 if No (Source_Typ) then
9784 S_Typ := Etype (Ck_Node);
9785 else
9786 S_Typ := Source_Typ;
9787 end if;
9788
9789 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9790 return Ret_Result;
9791 end if;
9792
9793 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9794 S_Typ := Designated_Type (S_Typ);
9795 T_Typ := Designated_Type (T_Typ);
9796 Do_Access := True;
9797
2af58f67 9798 -- A simple optimization for the null case
ee6ba406 9799
2af58f67 9800 if Known_Null (Ck_Node) then
ee6ba406 9801 return Ret_Result;
9802 end if;
9803 end if;
9804
9805 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9806 if Is_Constrained (T_Typ) then
9807
92f1631f 9808 -- The checking code to be generated will freeze the corresponding
9809 -- array type. However, we must freeze the type now, so that the
9810 -- freeze node does not appear within the generated if expression,
9811 -- but ahead of it.
ee6ba406 9812
9813 Freeze_Before (Ck_Node, T_Typ);
9814
9815 Expr_Actual := Get_Referenced_Object (Ck_Node);
84d0d4a5 9816 Exptyp := Get_Actual_Subtype (Ck_Node);
ee6ba406 9817
9818 if Is_Access_Type (Exptyp) then
9819 Exptyp := Designated_Type (Exptyp);
9820 end if;
9821
9822 -- String_Literal case. This needs to be handled specially be-
9823 -- cause no index types are available for string literals. The
9824 -- condition is simply:
9825
9826 -- T_Typ'Length = string-literal-length
9827
9dfe12ae 9828 if Nkind (Expr_Actual) = N_String_Literal
9829 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9830 then
ee6ba406 9831 Cond :=
9832 Make_Op_Ne (Loc,
9833 Left_Opnd => Get_E_Length (T_Typ, 1),
9834 Right_Opnd =>
9835 Make_Integer_Literal (Loc,
9836 Intval =>
9837 String_Literal_Length (Etype (Expr_Actual))));
9838
9839 -- General array case. Here we have a usable actual subtype for
9840 -- the expression, and the condition is built from the two types
9841 -- (Do_Length):
9842
9843 -- T_Typ'Length /= Exptyp'Length or else
9844 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9845 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9846 -- ...
9847
9848 elsif Is_Constrained (Exptyp) then
9849 declare
9dfe12ae 9850 Ndims : constant Nat := Number_Dimensions (T_Typ);
9851
9852 L_Index : Node_Id;
9853 R_Index : Node_Id;
9854 L_Low : Node_Id;
9855 L_High : Node_Id;
9856 R_Low : Node_Id;
9857 R_High : Node_Id;
ee6ba406 9858 L_Length : Uint;
9859 R_Length : Uint;
9dfe12ae 9860 Ref_Node : Node_Id;
ee6ba406 9861
9862 begin
feff2f05 9863 -- At the library level, we need to ensure that the type of
9864 -- the object is elaborated before the check itself is
9865 -- emitted. This is only done if the object is in the
9866 -- current compilation unit, otherwise the type is frozen
9867 -- and elaborated in its unit.
9dfe12ae 9868
9869 if Is_Itype (Exptyp)
9870 and then
9871 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9872 and then
9873 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
d66aa9f6 9874 and then In_Open_Scopes (Scope (Exptyp))
9dfe12ae 9875 then
9876 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9877 Set_Itype (Ref_Node, Exptyp);
9878 Insert_Action (Ck_Node, Ref_Node);
9879 end if;
9880
ee6ba406 9881 L_Index := First_Index (T_Typ);
9882 R_Index := First_Index (Exptyp);
9883
9884 for Indx in 1 .. Ndims loop
9885 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 9886 or else
9887 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 9888 then
9889 Get_Index_Bounds (L_Index, L_Low, L_High);
9890 Get_Index_Bounds (R_Index, R_Low, R_High);
9891
9892 -- Deal with compile time length check. Note that we
9893 -- skip this in the access case, because the access
9894 -- value may be null, so we cannot know statically.
9895
9896 if not Do_Access
9897 and then Compile_Time_Known_Value (L_Low)
9898 and then Compile_Time_Known_Value (L_High)
9899 and then Compile_Time_Known_Value (R_Low)
9900 and then Compile_Time_Known_Value (R_High)
9901 then
9902 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9903 L_Length := Expr_Value (L_High) -
9904 Expr_Value (L_Low) + 1;
9905 else
9906 L_Length := UI_From_Int (0);
9907 end if;
9908
9909 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9910 R_Length := Expr_Value (R_High) -
9911 Expr_Value (R_Low) + 1;
9912 else
9913 R_Length := UI_From_Int (0);
9914 end if;
9915
9916 if L_Length > R_Length then
9917 Add_Check
9918 (Compile_Time_Constraint_Error
cb97ae5c 9919 (Wnode, "too few elements for}??", T_Typ));
ee6ba406 9920
b8eacb12 9921 elsif L_Length < R_Length then
ee6ba406 9922 Add_Check
9923 (Compile_Time_Constraint_Error
cb97ae5c 9924 (Wnode, "too many elements for}??", T_Typ));
ee6ba406 9925 end if;
9926
9927 -- The comparison for an individual index subtype
9928 -- is omitted if the corresponding index subtypes
9929 -- statically match, since the result is known to
9930 -- be true. Note that this test is worth while even
9931 -- though we do static evaluation, because non-static
9932 -- subtypes can statically match.
9933
9934 elsif not
9935 Subtypes_Statically_Match
9936 (Etype (L_Index), Etype (R_Index))
9937
9938 and then not
9939 (Same_Bounds (L_Low, R_Low)
9940 and then Same_Bounds (L_High, R_High))
9941 then
9942 Evolve_Or_Else
9943 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9944 end if;
9945
9946 Next (L_Index);
9947 Next (R_Index);
9948 end if;
9949 end loop;
9950 end;
9951
9952 -- Handle cases where we do not get a usable actual subtype that
9953 -- is constrained. This happens for example in the function call
9954 -- and explicit dereference cases. In these cases, we have to get
9955 -- the length or range from the expression itself, making sure we
9956 -- do not evaluate it more than once.
9957
9958 -- Here Ck_Node is the original expression, or more properly the
feff2f05 9959 -- result of applying Duplicate_Expr to the original tree, forcing
9960 -- the result to be a name.
ee6ba406 9961
9962 else
9963 declare
9dfe12ae 9964 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 9965
9966 begin
9967 -- Build the condition for the explicit dereference case
9968
9969 for Indx in 1 .. Ndims loop
9970 Evolve_Or_Else
9971 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9972 end loop;
9973 end;
9974 end if;
9975 end if;
9976 end if;
9977
9978 -- Construct the test and insert into the tree
9979
9980 if Present (Cond) then
9981 if Do_Access then
9982 Cond := Guard_Access (Cond, Loc, Ck_Node);
9983 end if;
9984
f15731c4 9985 Add_Check
9986 (Make_Raise_Constraint_Error (Loc,
9987 Condition => Cond,
9988 Reason => CE_Length_Check_Failed));
ee6ba406 9989 end if;
9990
9991 return Ret_Result;
ee6ba406 9992 end Selected_Length_Checks;
9993
9994 ---------------------------
9995 -- Selected_Range_Checks --
9996 ---------------------------
9997
9998 function Selected_Range_Checks
9999 (Ck_Node : Node_Id;
10000 Target_Typ : Entity_Id;
10001 Source_Typ : Entity_Id;
314a23b6 10002 Warn_Node : Node_Id) return Check_Result
ee6ba406 10003 is
10004 Loc : constant Source_Ptr := Sloc (Ck_Node);
10005 S_Typ : Entity_Id;
10006 T_Typ : Entity_Id;
10007 Expr_Actual : Node_Id;
10008 Exptyp : Entity_Id;
10009 Cond : Node_Id := Empty;
10010 Do_Access : Boolean := False;
10011 Wnode : Node_Id := Warn_Node;
10012 Ret_Result : Check_Result := (Empty, Empty);
5bb74b99 10013 Num_Checks : Natural := 0;
ee6ba406 10014
10015 procedure Add_Check (N : Node_Id);
10016 -- Adds the action given to Ret_Result if N is non-Empty
10017
10018 function Discrete_Range_Cond
10019 (Expr : Node_Id;
314a23b6 10020 Typ : Entity_Id) return Node_Id;
ee6ba406 10021 -- Returns expression to compute:
10022 -- Low_Bound (Expr) < Typ'First
10023 -- or else
10024 -- High_Bound (Expr) > Typ'Last
10025
10026 function Discrete_Expr_Cond
10027 (Expr : Node_Id;
314a23b6 10028 Typ : Entity_Id) return Node_Id;
ee6ba406 10029 -- Returns expression to compute:
10030 -- Expr < Typ'First
10031 -- or else
10032 -- Expr > Typ'Last
10033
10034 function Get_E_First_Or_Last
3cb12758 10035 (Loc : Source_Ptr;
10036 E : Entity_Id;
ee6ba406 10037 Indx : Nat;
314a23b6 10038 Nam : Name_Id) return Node_Id;
79212397 10039 -- Returns an attribute reference
ee6ba406 10040 -- E'First or E'Last
79212397 10041 -- with a source location of Loc.
f73ee678 10042 --
79212397 10043 -- Nam is Name_First or Name_Last, according to which attribute is
10044 -- desired. If Indx is non-zero, it is passed as a literal in the
10045 -- Expressions of the attribute reference (identifying the desired
10046 -- array dimension).
ee6ba406 10047
10048 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
10049 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
10050 -- Returns expression to compute:
9dfe12ae 10051 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
ee6ba406 10052
10053 function Range_E_Cond
10054 (Exptyp : Entity_Id;
10055 Typ : Entity_Id;
10056 Indx : Nat)
10057 return Node_Id;
10058 -- Returns expression to compute:
10059 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
10060
10061 function Range_Equal_E_Cond
10062 (Exptyp : Entity_Id;
10063 Typ : Entity_Id;
314a23b6 10064 Indx : Nat) return Node_Id;
ee6ba406 10065 -- Returns expression to compute:
10066 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
10067
10068 function Range_N_Cond
10069 (Expr : Node_Id;
10070 Typ : Entity_Id;
314a23b6 10071 Indx : Nat) return Node_Id;
ee6ba406 10072 -- Return expression to compute:
10073 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
10074
10075 ---------------
10076 -- Add_Check --
10077 ---------------
10078
10079 procedure Add_Check (N : Node_Id) is
10080 begin
10081 if Present (N) then
10082
10083 -- For now, ignore attempt to place more than 2 checks ???
10084
10085 if Num_Checks = 2 then
10086 return;
10087 end if;
10088
10089 pragma Assert (Num_Checks <= 1);
10090 Num_Checks := Num_Checks + 1;
10091 Ret_Result (Num_Checks) := N;
10092 end if;
10093 end Add_Check;
10094
10095 -------------------------
10096 -- Discrete_Expr_Cond --
10097 -------------------------
10098
10099 function Discrete_Expr_Cond
10100 (Expr : Node_Id;
314a23b6 10101 Typ : Entity_Id) return Node_Id
ee6ba406 10102 is
10103 begin
10104 return
10105 Make_Or_Else (Loc,
10106 Left_Opnd =>
10107 Make_Op_Lt (Loc,
10108 Left_Opnd =>
9dfe12ae 10109 Convert_To (Base_Type (Typ),
10110 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 10111 Right_Opnd =>
10112 Convert_To (Base_Type (Typ),
3cb12758 10113 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
ee6ba406 10114
10115 Right_Opnd =>
10116 Make_Op_Gt (Loc,
10117 Left_Opnd =>
9dfe12ae 10118 Convert_To (Base_Type (Typ),
10119 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 10120 Right_Opnd =>
10121 Convert_To
10122 (Base_Type (Typ),
3cb12758 10123 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
ee6ba406 10124 end Discrete_Expr_Cond;
10125
10126 -------------------------
10127 -- Discrete_Range_Cond --
10128 -------------------------
10129
10130 function Discrete_Range_Cond
10131 (Expr : Node_Id;
314a23b6 10132 Typ : Entity_Id) return Node_Id
ee6ba406 10133 is
10134 LB : Node_Id := Low_Bound (Expr);
10135 HB : Node_Id := High_Bound (Expr);
10136
10137 Left_Opnd : Node_Id;
10138 Right_Opnd : Node_Id;
10139
10140 begin
10141 if Nkind (LB) = N_Identifier
feff2f05 10142 and then Ekind (Entity (LB)) = E_Discriminant
10143 then
ee6ba406 10144 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10145 end if;
10146
ee6ba406 10147 Left_Opnd :=
10148 Make_Op_Lt (Loc,
10149 Left_Opnd =>
10150 Convert_To
9dfe12ae 10151 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 10152
10153 Right_Opnd =>
10154 Convert_To
3cb12758 10155 (Base_Type (Typ),
10156 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
ee6ba406 10157
ba9b1a39 10158 if Nkind (HB) = N_Identifier
10159 and then Ekind (Entity (HB)) = E_Discriminant
ee6ba406 10160 then
ba9b1a39 10161 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
ee6ba406 10162 end if;
10163
10164 Right_Opnd :=
10165 Make_Op_Gt (Loc,
10166 Left_Opnd =>
10167 Convert_To
9dfe12ae 10168 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
ee6ba406 10169
10170 Right_Opnd =>
10171 Convert_To
10172 (Base_Type (Typ),
3cb12758 10173 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
ee6ba406 10174
10175 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10176 end Discrete_Range_Cond;
10177
10178 -------------------------
10179 -- Get_E_First_Or_Last --
10180 -------------------------
10181
10182 function Get_E_First_Or_Last
3cb12758 10183 (Loc : Source_Ptr;
10184 E : Entity_Id;
ee6ba406 10185 Indx : Nat;
314a23b6 10186 Nam : Name_Id) return Node_Id
ee6ba406 10187 is
3cb12758 10188 Exprs : List_Id;
ee6ba406 10189 begin
3cb12758 10190 if Indx > 0 then
10191 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
ee6ba406 10192 else
3cb12758 10193 Exprs := No_List;
ee6ba406 10194 end if;
10195
3cb12758 10196 return Make_Attribute_Reference (Loc,
10197 Prefix => New_Occurrence_Of (E, Loc),
10198 Attribute_Name => Nam,
10199 Expressions => Exprs);
ee6ba406 10200 end Get_E_First_Or_Last;
10201
10202 -----------------
10203 -- Get_N_First --
10204 -----------------
10205
10206 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10207 begin
10208 return
10209 Make_Attribute_Reference (Loc,
10210 Attribute_Name => Name_First,
10211 Prefix =>
9dfe12ae 10212 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 10213 Expressions => New_List (
10214 Make_Integer_Literal (Loc, Indx)));
ee6ba406 10215 end Get_N_First;
10216
10217 ----------------
10218 -- Get_N_Last --
10219 ----------------
10220
10221 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10222 begin
10223 return
10224 Make_Attribute_Reference (Loc,
10225 Attribute_Name => Name_Last,
10226 Prefix =>
9dfe12ae 10227 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 10228 Expressions => New_List (
10229 Make_Integer_Literal (Loc, Indx)));
ee6ba406 10230 end Get_N_Last;
10231
10232 ------------------
10233 -- Range_E_Cond --
10234 ------------------
10235
10236 function Range_E_Cond
10237 (Exptyp : Entity_Id;
10238 Typ : Entity_Id;
314a23b6 10239 Indx : Nat) return Node_Id
ee6ba406 10240 is
10241 begin
10242 return
10243 Make_Or_Else (Loc,
10244 Left_Opnd =>
10245 Make_Op_Lt (Loc,
3cb12758 10246 Left_Opnd =>
10247 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10248 Right_Opnd =>
10249 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 10250
10251 Right_Opnd =>
10252 Make_Op_Gt (Loc,
3cb12758 10253 Left_Opnd =>
10254 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10255 Right_Opnd =>
10256 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 10257 end Range_E_Cond;
10258
10259 ------------------------
10260 -- Range_Equal_E_Cond --
10261 ------------------------
10262
10263 function Range_Equal_E_Cond
10264 (Exptyp : Entity_Id;
10265 Typ : Entity_Id;
314a23b6 10266 Indx : Nat) return Node_Id
ee6ba406 10267 is
10268 begin
10269 return
10270 Make_Or_Else (Loc,
10271 Left_Opnd =>
10272 Make_Op_Ne (Loc,
3cb12758 10273 Left_Opnd =>
10274 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10275 Right_Opnd =>
10276 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10277
ee6ba406 10278 Right_Opnd =>
10279 Make_Op_Ne (Loc,
3cb12758 10280 Left_Opnd =>
10281 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10282 Right_Opnd =>
10283 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 10284 end Range_Equal_E_Cond;
10285
10286 ------------------
10287 -- Range_N_Cond --
10288 ------------------
10289
10290 function Range_N_Cond
10291 (Expr : Node_Id;
10292 Typ : Entity_Id;
314a23b6 10293 Indx : Nat) return Node_Id
ee6ba406 10294 is
10295 begin
10296 return
10297 Make_Or_Else (Loc,
10298 Left_Opnd =>
10299 Make_Op_Lt (Loc,
3cb12758 10300 Left_Opnd =>
10301 Get_N_First (Expr, Indx),
10302 Right_Opnd =>
10303 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 10304
10305 Right_Opnd =>
10306 Make_Op_Gt (Loc,
3cb12758 10307 Left_Opnd =>
10308 Get_N_Last (Expr, Indx),
10309 Right_Opnd =>
10310 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 10311 end Range_N_Cond;
10312
10313 -- Start of processing for Selected_Range_Checks
10314
10315 begin
f0d65dae 10316 -- Checks will be applied only when generating code. In GNATprove mode,
10317 -- we do not apply the checks, but we still call Selected_Range_Checks
10318 -- to possibly issue errors on SPARK code when a run-time error can be
10319 -- detected at compile time.
10320
10321 if not Expander_Active and not GNATprove_Mode then
ee6ba406 10322 return Ret_Result;
10323 end if;
10324
10325 if Target_Typ = Any_Type
10326 or else Target_Typ = Any_Composite
10327 or else Raises_Constraint_Error (Ck_Node)
10328 then
10329 return Ret_Result;
10330 end if;
10331
10332 if No (Wnode) then
10333 Wnode := Ck_Node;
10334 end if;
10335
10336 T_Typ := Target_Typ;
10337
10338 if No (Source_Typ) then
10339 S_Typ := Etype (Ck_Node);
10340 else
10341 S_Typ := Source_Typ;
10342 end if;
10343
10344 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10345 return Ret_Result;
10346 end if;
10347
10348 -- The order of evaluating T_Typ before S_Typ seems to be critical
10349 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10350 -- in, and since Node can be an N_Range node, it might be invalid.
10351 -- Should there be an assert check somewhere for taking the Etype of
10352 -- an N_Range node ???
10353
10354 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10355 S_Typ := Designated_Type (S_Typ);
10356 T_Typ := Designated_Type (T_Typ);
10357 Do_Access := True;
10358
2af58f67 10359 -- A simple optimization for the null case
ee6ba406 10360
2af58f67 10361 if Known_Null (Ck_Node) then
ee6ba406 10362 return Ret_Result;
10363 end if;
10364 end if;
10365
10366 -- For an N_Range Node, check for a null range and then if not
10367 -- null generate a range check action.
10368
10369 if Nkind (Ck_Node) = N_Range then
10370
10371 -- There's no point in checking a range against itself
10372
10373 if Ck_Node = Scalar_Range (T_Typ) then
10374 return Ret_Result;
10375 end if;
10376
10377 declare
10378 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10379 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
eefa141b 10380 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10381 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
ee6ba406 10382
eefa141b 10383 LB : Node_Id := Low_Bound (Ck_Node);
10384 HB : Node_Id := High_Bound (Ck_Node);
3fabf0ca 10385 Known_LB : Boolean := False;
10386 Known_HB : Boolean := False;
eefa141b 10387
10388 Null_Range : Boolean;
ee6ba406 10389 Out_Of_Range_L : Boolean;
10390 Out_Of_Range_H : Boolean;
10391
10392 begin
eefa141b 10393 -- Compute what is known at compile time
10394
10395 if Known_T_LB and Known_T_HB then
10396 if Compile_Time_Known_Value (LB) then
10397 Known_LB := True;
10398
10399 -- There's no point in checking that a bound is within its
10400 -- own range so pretend that it is known in this case. First
10401 -- deal with low bound.
10402
10403 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10404 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10405 then
10406 LB := T_LB;
10407 Known_LB := True;
eefa141b 10408 end if;
10409
10410 -- Likewise for the high bound
10411
10412 if Compile_Time_Known_Value (HB) then
10413 Known_HB := True;
10414
10415 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10416 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10417 then
10418 HB := T_HB;
10419 Known_HB := True;
eefa141b 10420 end if;
10421 end if;
10422
10423 -- Check for case where everything is static and we can do the
10424 -- check at compile time. This is skipped if we have an access
10425 -- type, since the access value may be null.
10426
10427 -- ??? This code can be improved since you only need to know that
10428 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10429 -- compile time to emit pertinent messages.
10430
10431 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10432 and not Do_Access
ee6ba406 10433 then
10434 -- Floating-point case
10435
10436 if Is_Floating_Point_Type (S_Typ) then
10437 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10438 Out_Of_Range_L :=
10439 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
eefa141b 10440 or else
ee6ba406 10441 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10442
10443 Out_Of_Range_H :=
10444 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
eefa141b 10445 or else
ee6ba406 10446 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10447
10448 -- Fixed or discrete type case
10449
10450 else
10451 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10452 Out_Of_Range_L :=
10453 (Expr_Value (LB) < Expr_Value (T_LB))
eefa141b 10454 or else
ee6ba406 10455 (Expr_Value (LB) > Expr_Value (T_HB));
10456
10457 Out_Of_Range_H :=
10458 (Expr_Value (HB) > Expr_Value (T_HB))
eefa141b 10459 or else
ee6ba406 10460 (Expr_Value (HB) < Expr_Value (T_LB));
10461 end if;
10462
10463 if not Null_Range then
10464 if Out_Of_Range_L then
10465 if No (Warn_Node) then
10466 Add_Check
10467 (Compile_Time_Constraint_Error
10468 (Low_Bound (Ck_Node),
cb97ae5c 10469 "static value out of range of}??", T_Typ));
ee6ba406 10470
10471 else
10472 Add_Check
10473 (Compile_Time_Constraint_Error
10474 (Wnode,
cb97ae5c 10475 "static range out of bounds of}??", T_Typ));
ee6ba406 10476 end if;
10477 end if;
10478
10479 if Out_Of_Range_H then
10480 if No (Warn_Node) then
10481 Add_Check
10482 (Compile_Time_Constraint_Error
10483 (High_Bound (Ck_Node),
cb97ae5c 10484 "static value out of range of}??", T_Typ));
ee6ba406 10485
10486 else
10487 Add_Check
10488 (Compile_Time_Constraint_Error
10489 (Wnode,
cb97ae5c 10490 "static range out of bounds of}??", T_Typ));
ee6ba406 10491 end if;
10492 end if;
ee6ba406 10493 end if;
10494
10495 else
10496 declare
10497 LB : Node_Id := Low_Bound (Ck_Node);
10498 HB : Node_Id := High_Bound (Ck_Node);
10499
10500 begin
feff2f05 10501 -- If either bound is a discriminant and we are within the
10502 -- record declaration, it is a use of the discriminant in a
10503 -- constraint of a component, and nothing can be checked
10504 -- here. The check will be emitted within the init proc.
10505 -- Before then, the discriminal has no real meaning.
10506 -- Similarly, if the entity is a discriminal, there is no
10507 -- check to perform yet.
10508
10509 -- The same holds within a discriminated synchronized type,
10510 -- where the discriminant may constrain a component or an
10511 -- entry family.
ee6ba406 10512
10513 if Nkind (LB) = N_Identifier
0577b0b1 10514 and then Denotes_Discriminant (LB, True)
ee6ba406 10515 then
0577b0b1 10516 if Current_Scope = Scope (Entity (LB))
10517 or else Is_Concurrent_Type (Current_Scope)
10518 or else Ekind (Entity (LB)) /= E_Discriminant
10519 then
ee6ba406 10520 return Ret_Result;
10521 else
10522 LB :=
10523 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10524 end if;
10525 end if;
10526
10527 if Nkind (HB) = N_Identifier
0577b0b1 10528 and then Denotes_Discriminant (HB, True)
ee6ba406 10529 then
0577b0b1 10530 if Current_Scope = Scope (Entity (HB))
10531 or else Is_Concurrent_Type (Current_Scope)
10532 or else Ekind (Entity (HB)) /= E_Discriminant
10533 then
ee6ba406 10534 return Ret_Result;
10535 else
10536 HB :=
10537 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10538 end if;
10539 end if;
10540
10541 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10542 Set_Paren_Count (Cond, 1);
10543
10544 Cond :=
10545 Make_And_Then (Loc,
10546 Left_Opnd =>
10547 Make_Op_Ge (Loc,
86d32751 10548 Left_Opnd =>
10549 Convert_To (Base_Type (Etype (HB)),
10550 Duplicate_Subexpr_No_Checks (HB)),
10551 Right_Opnd =>
10552 Convert_To (Base_Type (Etype (LB)),
10553 Duplicate_Subexpr_No_Checks (LB))),
ee6ba406 10554 Right_Opnd => Cond);
10555 end;
ee6ba406 10556 end if;
10557 end;
10558
10559 elsif Is_Scalar_Type (S_Typ) then
10560
10561 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10562 -- except the above simply sets a flag in the node and lets
10563 -- gigi generate the check base on the Etype of the expression.
10564 -- Sometimes, however we want to do a dynamic check against an
10565 -- arbitrary target type, so we do that here.
10566
10567 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10568 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10569
10570 -- For literals, we can tell if the constraint error will be
10571 -- raised at compile time, so we never need a dynamic check, but
10572 -- if the exception will be raised, then post the usual warning,
10573 -- and replace the literal with a raise constraint error
10574 -- expression. As usual, skip this for access types
10575
20cf157b 10576 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
ee6ba406 10577 declare
10578 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10579 UB : constant Node_Id := Type_High_Bound (T_Typ);
10580
10581 Out_Of_Range : Boolean;
10582 Static_Bounds : constant Boolean :=
b6341c67 10583 Compile_Time_Known_Value (LB)
10584 and Compile_Time_Known_Value (UB);
ee6ba406 10585
10586 begin
10587 -- Following range tests should use Sem_Eval routine ???
10588
10589 if Static_Bounds then
10590 if Is_Floating_Point_Type (S_Typ) then
10591 Out_Of_Range :=
10592 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10593 or else
10594 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10595
eefa141b 10596 -- Fixed or discrete type
10597
10598 else
ee6ba406 10599 Out_Of_Range :=
10600 Expr_Value (Ck_Node) < Expr_Value (LB)
10601 or else
10602 Expr_Value (Ck_Node) > Expr_Value (UB);
10603 end if;
10604
eefa141b 10605 -- Bounds of the type are static and the literal is out of
10606 -- range so output a warning message.
ee6ba406 10607
10608 if Out_Of_Range then
10609 if No (Warn_Node) then
10610 Add_Check
10611 (Compile_Time_Constraint_Error
10612 (Ck_Node,
cb97ae5c 10613 "static value out of range of}??", T_Typ));
ee6ba406 10614
10615 else
10616 Add_Check
10617 (Compile_Time_Constraint_Error
10618 (Wnode,
cb97ae5c 10619 "static value out of range of}??", T_Typ));
ee6ba406 10620 end if;
10621 end if;
10622
10623 else
10624 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10625 end if;
10626 end;
10627
10628 -- Here for the case of a non-static expression, we need a runtime
10629 -- check unless the source type range is guaranteed to be in the
10630 -- range of the target type.
10631
10632 else
7a1dabb3 10633 if not In_Subrange_Of (S_Typ, T_Typ) then
ee6ba406 10634 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10635 end if;
10636 end if;
10637 end if;
10638
10639 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10640 if Is_Constrained (T_Typ) then
10641
10642 Expr_Actual := Get_Referenced_Object (Ck_Node);
10643 Exptyp := Get_Actual_Subtype (Expr_Actual);
10644
10645 if Is_Access_Type (Exptyp) then
10646 Exptyp := Designated_Type (Exptyp);
10647 end if;
10648
10649 -- String_Literal case. This needs to be handled specially be-
10650 -- cause no index types are available for string literals. The
10651 -- condition is simply:
10652
10653 -- T_Typ'Length = string-literal-length
10654
10655 if Nkind (Expr_Actual) = N_String_Literal then
10656 null;
10657
10658 -- General array case. Here we have a usable actual subtype for
10659 -- the expression, and the condition is built from the two types
10660
10661 -- T_Typ'First < Exptyp'First or else
10662 -- T_Typ'Last > Exptyp'Last or else
10663 -- T_Typ'First(1) < Exptyp'First(1) or else
10664 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10665 -- ...
10666
10667 elsif Is_Constrained (Exptyp) then
10668 declare
9dfe12ae 10669 Ndims : constant Nat := Number_Dimensions (T_Typ);
10670
ee6ba406 10671 L_Index : Node_Id;
10672 R_Index : Node_Id;
ee6ba406 10673
10674 begin
10675 L_Index := First_Index (T_Typ);
10676 R_Index := First_Index (Exptyp);
10677
10678 for Indx in 1 .. Ndims loop
10679 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 10680 or else
10681 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 10682 then
ee6ba406 10683 -- Deal with compile time length check. Note that we
10684 -- skip this in the access case, because the access
10685 -- value may be null, so we cannot know statically.
10686
10687 if not
10688 Subtypes_Statically_Match
10689 (Etype (L_Index), Etype (R_Index))
10690 then
10691 -- If the target type is constrained then we
10692 -- have to check for exact equality of bounds
10693 -- (required for qualified expressions).
10694
10695 if Is_Constrained (T_Typ) then
10696 Evolve_Or_Else
10697 (Cond,
10698 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
ee6ba406 10699 else
10700 Evolve_Or_Else
10701 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10702 end if;
10703 end if;
10704
10705 Next (L_Index);
10706 Next (R_Index);
ee6ba406 10707 end if;
10708 end loop;
10709 end;
10710
10711 -- Handle cases where we do not get a usable actual subtype that
10712 -- is constrained. This happens for example in the function call
10713 -- and explicit dereference cases. In these cases, we have to get
10714 -- the length or range from the expression itself, making sure we
10715 -- do not evaluate it more than once.
10716
10717 -- Here Ck_Node is the original expression, or more properly the
10718 -- result of applying Duplicate_Expr to the original tree,
10719 -- forcing the result to be a name.
10720
10721 else
10722 declare
9dfe12ae 10723 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 10724
10725 begin
10726 -- Build the condition for the explicit dereference case
10727
10728 for Indx in 1 .. Ndims loop
10729 Evolve_Or_Else
10730 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10731 end loop;
10732 end;
ee6ba406 10733 end if;
10734
10735 else
feff2f05 10736 -- For a conversion to an unconstrained array type, generate an
10737 -- Action to check that the bounds of the source value are within
10738 -- the constraints imposed by the target type (RM 4.6(38)). No
10739 -- check is needed for a conversion to an access to unconstrained
10740 -- array type, as 4.6(24.15/2) requires the designated subtypes
10741 -- of the two access types to statically match.
10742
10743 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10744 and then not Do_Access
10745 then
ee6ba406 10746 declare
10747 Opnd_Index : Node_Id;
10748 Targ_Index : Node_Id;
00c403ee 10749 Opnd_Range : Node_Id;
ee6ba406 10750
10751 begin
feff2f05 10752 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
ee6ba406 10753 Targ_Index := First_Index (T_Typ);
00c403ee 10754 while Present (Opnd_Index) loop
10755
10756 -- If the index is a range, use its bounds. If it is an
10757 -- entity (as will be the case if it is a named subtype
10758 -- or an itype created for a slice) retrieve its range.
10759
10760 if Is_Entity_Name (Opnd_Index)
10761 and then Is_Type (Entity (Opnd_Index))
10762 then
10763 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10764 else
10765 Opnd_Range := Opnd_Index;
10766 end if;
10767
10768 if Nkind (Opnd_Range) = N_Range then
9c486805 10769 if Is_In_Range
10770 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10771 Assume_Valid => True)
ee6ba406 10772 and then
10773 Is_In_Range
9c486805 10774 (High_Bound (Opnd_Range), Etype (Targ_Index),
10775 Assume_Valid => True)
ee6ba406 10776 then
10777 null;
10778
feff2f05 10779 -- If null range, no check needed
f2a06be9 10780
9dfe12ae 10781 elsif
00c403ee 10782 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9dfe12ae 10783 and then
00c403ee 10784 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9dfe12ae 10785 and then
00c403ee 10786 Expr_Value (High_Bound (Opnd_Range)) <
10787 Expr_Value (Low_Bound (Opnd_Range))
9dfe12ae 10788 then
10789 null;
10790
ee6ba406 10791 elsif Is_Out_Of_Range
9c486805 10792 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10793 Assume_Valid => True)
ee6ba406 10794 or else
10795 Is_Out_Of_Range
9c486805 10796 (High_Bound (Opnd_Range), Etype (Targ_Index),
10797 Assume_Valid => True)
ee6ba406 10798 then
10799 Add_Check
10800 (Compile_Time_Constraint_Error
cb97ae5c 10801 (Wnode, "value out of range of}??", T_Typ));
ee6ba406 10802
10803 else
10804 Evolve_Or_Else
10805 (Cond,
10806 Discrete_Range_Cond
00c403ee 10807 (Opnd_Range, Etype (Targ_Index)));
ee6ba406 10808 end if;
10809 end if;
10810
10811 Next_Index (Opnd_Index);
10812 Next_Index (Targ_Index);
10813 end loop;
10814 end;
10815 end if;
10816 end if;
10817 end if;
10818
10819 -- Construct the test and insert into the tree
10820
10821 if Present (Cond) then
10822 if Do_Access then
10823 Cond := Guard_Access (Cond, Loc, Ck_Node);
10824 end if;
10825
f15731c4 10826 Add_Check
10827 (Make_Raise_Constraint_Error (Loc,
eefa141b 10828 Condition => Cond,
22d3a5a3 10829 Reason => CE_Range_Check_Failed));
ee6ba406 10830 end if;
10831
10832 return Ret_Result;
ee6ba406 10833 end Selected_Range_Checks;
10834
10835 -------------------------------
10836 -- Storage_Checks_Suppressed --
10837 -------------------------------
10838
10839 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10840 begin
9dfe12ae 10841 if Present (E) and then Checks_May_Be_Suppressed (E) then
10842 return Is_Check_Suppressed (E, Storage_Check);
10843 else
fafc6b97 10844 return Scope_Suppress.Suppress (Storage_Check);
9dfe12ae 10845 end if;
ee6ba406 10846 end Storage_Checks_Suppressed;
10847
10848 ---------------------------
10849 -- Tag_Checks_Suppressed --
10850 ---------------------------
10851
10852 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10853 begin
89f1e35c 10854 if Present (E)
10855 and then Checks_May_Be_Suppressed (E)
10856 then
10857 return Is_Check_Suppressed (E, Tag_Check);
20cf157b 10858 else
10859 return Scope_Suppress.Suppress (Tag_Check);
9dfe12ae 10860 end if;
ee6ba406 10861 end Tag_Checks_Suppressed;
10862
7b8fa048 10863 ---------------------------------------
10864 -- Validate_Alignment_Check_Warnings --
10865 ---------------------------------------
10866
10867 procedure Validate_Alignment_Check_Warnings is
10868 begin
10869 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10870 declare
10871 AWR : Alignment_Warnings_Record
10872 renames Alignment_Warnings.Table (J);
10873 begin
10874 if Known_Alignment (AWR.E)
10875 and then AWR.A mod Alignment (AWR.E) = 0
10876 then
10877 Delete_Warning_And_Continuations (AWR.W);
10878 end if;
10879 end;
10880 end loop;
10881 end Validate_Alignment_Check_Warnings;
10882
0577b0b1 10883 --------------------------
10884 -- Validity_Check_Range --
10885 --------------------------
10886
aaec8d13 10887 procedure Validity_Check_Range
10888 (N : Node_Id;
10889 Related_Id : Entity_Id := Empty)
10890 is
0577b0b1 10891 begin
10892 if Validity_Checks_On and Validity_Check_Operands then
10893 if Nkind (N) = N_Range then
aaec8d13 10894 Ensure_Valid
10895 (Expr => Low_Bound (N),
10896 Related_Id => Related_Id,
10897 Is_Low_Bound => True);
10898
10899 Ensure_Valid
10900 (Expr => High_Bound (N),
10901 Related_Id => Related_Id,
10902 Is_High_Bound => True);
0577b0b1 10903 end if;
10904 end if;
10905 end Validity_Check_Range;
10906
10907 --------------------------------
10908 -- Validity_Checks_Suppressed --
10909 --------------------------------
10910
10911 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10912 begin
10913 if Present (E) and then Checks_May_Be_Suppressed (E) then
10914 return Is_Check_Suppressed (E, Validity_Check);
10915 else
fafc6b97 10916 return Scope_Suppress.Suppress (Validity_Check);
0577b0b1 10917 end if;
10918 end Validity_Checks_Suppressed;
10919
ee6ba406 10920end Checks;