]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
2010-06-21 Thomas Quinot <quinot@adacore.com>
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
e977c0cf 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Debug; use Debug;
28with Einfo; use Einfo;
29with Errout; use Errout;
30with Exp_Ch2; use Exp_Ch2;
df40eeb0 31with Exp_Ch4; use Exp_Ch4;
00c403ee 32with Exp_Ch11; use Exp_Ch11;
05fcfafb 33with Exp_Pakd; use Exp_Pakd;
ee6ba406 34with Exp_Util; use Exp_Util;
35with Elists; use Elists;
5329ca64 36with Eval_Fat; use Eval_Fat;
ee6ba406 37with Freeze; use Freeze;
9dfe12ae 38with Lib; use Lib;
ee6ba406 39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
9dfe12ae 42with Output; use Output;
c2b56224 43with Restrict; use Restrict;
1e16c51c 44with Rident; use Rident;
ee6ba406 45with Rtsfind; use Rtsfind;
46with Sem; use Sem;
d60c9ff7 47with Sem_Aux; use Sem_Aux;
ee6ba406 48with Sem_Eval; use Sem_Eval;
00f91aef 49with Sem_Ch3; use Sem_Ch3;
9dfe12ae 50with Sem_Ch8; use Sem_Ch8;
ee6ba406 51with Sem_Res; use Sem_Res;
52with Sem_Util; use Sem_Util;
53with Sem_Warn; use Sem_Warn;
54with Sinfo; use Sinfo;
9dfe12ae 55with Sinput; use Sinput;
ee6ba406 56with Snames; use Snames;
9dfe12ae 57with Sprint; use Sprint;
ee6ba406 58with Stand; use Stand;
f15731c4 59with Targparm; use Targparm;
ee6ba406 60with Tbuild; use Tbuild;
61with Ttypes; use Ttypes;
62with Urealp; use Urealp;
63with Validsw; use Validsw;
64
65package body Checks is
66
67 -- General note: many of these routines are concerned with generating
68 -- checking code to make sure that constraint error is raised at runtime.
69 -- Clearly this code is only needed if the expander is active, since
70 -- otherwise we will not be generating code or going into the runtime
71 -- execution anyway.
72
73 -- We therefore disconnect most of these checks if the expander is
74 -- inactive. This has the additional benefit that we do not need to
75 -- worry about the tree being messed up by previous errors (since errors
76 -- turn off expansion anyway).
77
78 -- There are a few exceptions to the above rule. For instance routines
79 -- such as Apply_Scalar_Range_Check that do not insert any code can be
80 -- safely called even when the Expander is inactive (but Errors_Detected
81 -- is 0). The benefit of executing this code when expansion is off, is
82 -- the ability to emit constraint error warning for static expressions
83 -- even when we are not generating code.
84
9dfe12ae 85 -------------------------------------
86 -- Suppression of Redundant Checks --
87 -------------------------------------
88
89 -- This unit implements a limited circuit for removal of redundant
90 -- checks. The processing is based on a tracing of simple sequential
91 -- flow. For any sequence of statements, we save expressions that are
92 -- marked to be checked, and then if the same expression appears later
93 -- with the same check, then under certain circumstances, the second
94 -- check can be suppressed.
95
96 -- Basically, we can suppress the check if we know for certain that
97 -- the previous expression has been elaborated (together with its
98 -- check), and we know that the exception frame is the same, and that
99 -- nothing has happened to change the result of the exception.
100
101 -- Let us examine each of these three conditions in turn to describe
102 -- how we ensure that this condition is met.
103
104 -- First, we need to know for certain that the previous expression has
105 -- been executed. This is done principly by the mechanism of calling
106 -- Conditional_Statements_Begin at the start of any statement sequence
107 -- and Conditional_Statements_End at the end. The End call causes all
108 -- checks remembered since the Begin call to be discarded. This does
109 -- miss a few cases, notably the case of a nested BEGIN-END block with
110 -- no exception handlers. But the important thing is to be conservative.
111 -- The other protection is that all checks are discarded if a label
112 -- is encountered, since then the assumption of sequential execution
113 -- is violated, and we don't know enough about the flow.
114
115 -- Second, we need to know that the exception frame is the same. We
116 -- do this by killing all remembered checks when we enter a new frame.
117 -- Again, that's over-conservative, but generally the cases we can help
118 -- with are pretty local anyway (like the body of a loop for example).
119
120 -- Third, we must be sure to forget any checks which are no longer valid.
121 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
122 -- used to note any changes to local variables. We only attempt to deal
123 -- with checks involving local variables, so we do not need to worry
124 -- about global variables. Second, a call to any non-global procedure
125 -- causes us to abandon all stored checks, since such a all may affect
126 -- the values of any local variables.
127
128 -- The following define the data structures used to deal with remembering
129 -- checks so that redundant checks can be eliminated as described above.
130
131 -- Right now, the only expressions that we deal with are of the form of
132 -- simple local objects (either declared locally, or IN parameters) or
133 -- such objects plus/minus a compile time known constant. We can do
134 -- more later on if it seems worthwhile, but this catches many simple
135 -- cases in practice.
136
137 -- The following record type reflects a single saved check. An entry
138 -- is made in the stack of saved checks if and only if the expression
139 -- has been elaborated with the indicated checks.
140
141 type Saved_Check is record
142 Killed : Boolean;
143 -- Set True if entry is killed by Kill_Checks
144
145 Entity : Entity_Id;
146 -- The entity involved in the expression that is checked
147
148 Offset : Uint;
149 -- A compile time value indicating the result of adding or
150 -- subtracting a compile time value. This value is to be
151 -- added to the value of the Entity. A value of zero is
152 -- used for the case of a simple entity reference.
153
154 Check_Type : Character;
155 -- This is set to 'R' for a range check (in which case Target_Type
156 -- is set to the target type for the range check) or to 'O' for an
157 -- overflow check (in which case Target_Type is set to Empty).
158
159 Target_Type : Entity_Id;
160 -- Used only if Do_Range_Check is set. Records the target type for
161 -- the check. We need this, because a check is a duplicate only if
162 -- it has a the same target type (or more accurately one with a
163 -- range that is smaller or equal to the stored target type of a
164 -- saved check).
165 end record;
166
167 -- The following table keeps track of saved checks. Rather than use an
168 -- extensible table. We just use a table of fixed size, and we discard
169 -- any saved checks that do not fit. That's very unlikely to happen and
170 -- this is only an optimization in any case.
171
172 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
173 -- Array of saved checks
174
175 Num_Saved_Checks : Nat := 0;
176 -- Number of saved checks
177
178 -- The following stack keeps track of statement ranges. It is treated
179 -- as a stack. When Conditional_Statements_Begin is called, an entry
180 -- is pushed onto this stack containing the value of Num_Saved_Checks
181 -- at the time of the call. Then when Conditional_Statements_End is
182 -- called, this value is popped off and used to reset Num_Saved_Checks.
183
184 -- Note: again, this is a fixed length stack with a size that should
185 -- always be fine. If the value of the stack pointer goes above the
186 -- limit, then we just forget all saved checks.
187
188 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
189 Saved_Checks_TOS : Nat := 0;
190
191 -----------------------
192 -- Local Subprograms --
193 -----------------------
ee6ba406 194
5329ca64 195 procedure Apply_Float_Conversion_Check
196 (Ck_Node : Node_Id;
197 Target_Typ : Entity_Id);
198 -- The checks on a conversion from a floating-point type to an integer
199 -- type are delicate. They have to be performed before conversion, they
200 -- have to raise an exception when the operand is a NaN, and rounding must
201 -- be taken into account to determine the safe bounds of the operand.
202
ee6ba406 203 procedure Apply_Selected_Length_Checks
204 (Ck_Node : Node_Id;
205 Target_Typ : Entity_Id;
206 Source_Typ : Entity_Id;
207 Do_Static : Boolean);
208 -- This is the subprogram that does all the work for Apply_Length_Check
209 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
210 -- described for the above routines. The Do_Static flag indicates that
211 -- only a static check is to be done.
212
213 procedure Apply_Selected_Range_Checks
214 (Ck_Node : Node_Id;
215 Target_Typ : Entity_Id;
216 Source_Typ : Entity_Id;
217 Do_Static : Boolean);
218 -- This is the subprogram that does all the work for Apply_Range_Check.
219 -- Expr, Target_Typ and Source_Typ are as described for the above
220 -- routine. The Do_Static flag indicates that only a static check is
221 -- to be done.
222
2af58f67 223 type Check_Type is new Check_Id range Access_Check .. Division_Check;
13dbf220 224 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
225 -- This function is used to see if an access or division by zero check is
226 -- needed. The check is to be applied to a single variable appearing in the
227 -- source, and N is the node for the reference. If N is not of this form,
228 -- True is returned with no further processing. If N is of the right form,
229 -- then further processing determines if the given Check is needed.
230 --
231 -- The particular circuit is to see if we have the case of a check that is
232 -- not needed because it appears in the right operand of a short circuited
233 -- conditional where the left operand guards the check. For example:
234 --
235 -- if Var = 0 or else Q / Var > 12 then
236 -- ...
237 -- end if;
238 --
239 -- In this example, the division check is not required. At the same time
240 -- we can issue warnings for suspicious use of non-short-circuited forms,
241 -- such as:
242 --
243 -- if Var = 0 or Q / Var > 12 then
244 -- ...
245 -- end if;
246
9dfe12ae 247 procedure Find_Check
248 (Expr : Node_Id;
249 Check_Type : Character;
250 Target_Type : Entity_Id;
251 Entry_OK : out Boolean;
252 Check_Num : out Nat;
253 Ent : out Entity_Id;
254 Ofs : out Uint);
255 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
256 -- to see if a check is of the form for optimization, and if so, to see
257 -- if it has already been performed. Expr is the expression to check,
258 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
259 -- Target_Type is the target type for a range check, and Empty for an
260 -- overflow check. If the entry is not of the form for optimization,
261 -- then Entry_OK is set to False, and the remaining out parameters
262 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
263 -- entity and offset from the expression. Check_Num is the number of
264 -- a matching saved entry in Saved_Checks, or zero if no such entry
265 -- is located.
266
ee6ba406 267 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
268 -- If a discriminal is used in constraining a prival, Return reference
269 -- to the discriminal of the protected body (which renames the parameter
270 -- of the enclosing protected operation). This clumsy transformation is
271 -- needed because privals are created too late and their actual subtypes
272 -- are not available when analysing the bodies of the protected operations.
0577b0b1 273 -- This function is called whenever the bound is an entity and the scope
274 -- indicates a protected operation. If the bound is an in-parameter of
275 -- a protected operation that is not a prival, the function returns the
276 -- bound itself.
ee6ba406 277 -- To be cleaned up???
278
279 function Guard_Access
280 (Cond : Node_Id;
281 Loc : Source_Ptr;
314a23b6 282 Ck_Node : Node_Id) return Node_Id;
ee6ba406 283 -- In the access type case, guard the test with a test to ensure
284 -- that the access value is non-null, since the checks do not
285 -- not apply to null access values.
286
287 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
288 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
289 -- Constraint_Error node.
290
0577b0b1 291 function Range_Or_Validity_Checks_Suppressed
292 (Expr : Node_Id) return Boolean;
293 -- Returns True if either range or validity checks or both are suppressed
294 -- for the type of the given expression, or, if the expression is the name
295 -- of an entity, if these checks are suppressed for the entity.
296
ee6ba406 297 function Selected_Length_Checks
298 (Ck_Node : Node_Id;
299 Target_Typ : Entity_Id;
300 Source_Typ : Entity_Id;
314a23b6 301 Warn_Node : Node_Id) return Check_Result;
ee6ba406 302 -- Like Apply_Selected_Length_Checks, except it doesn't modify
303 -- anything, just returns a list of nodes as described in the spec of
304 -- this package for the Range_Check function.
305
306 function Selected_Range_Checks
307 (Ck_Node : Node_Id;
308 Target_Typ : Entity_Id;
309 Source_Typ : Entity_Id;
314a23b6 310 Warn_Node : Node_Id) return Check_Result;
ee6ba406 311 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
312 -- just returns a list of nodes as described in the spec of this package
313 -- for the Range_Check function.
314
315 ------------------------------
316 -- Access_Checks_Suppressed --
317 ------------------------------
318
319 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
320 begin
9dfe12ae 321 if Present (E) and then Checks_May_Be_Suppressed (E) then
322 return Is_Check_Suppressed (E, Access_Check);
323 else
324 return Scope_Suppress (Access_Check);
325 end if;
ee6ba406 326 end Access_Checks_Suppressed;
327
328 -------------------------------------
329 -- Accessibility_Checks_Suppressed --
330 -------------------------------------
331
332 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
333 begin
9dfe12ae 334 if Present (E) and then Checks_May_Be_Suppressed (E) then
335 return Is_Check_Suppressed (E, Accessibility_Check);
336 else
337 return Scope_Suppress (Accessibility_Check);
338 end if;
ee6ba406 339 end Accessibility_Checks_Suppressed;
340
00c403ee 341 -----------------------------
342 -- Activate_Division_Check --
343 -----------------------------
344
345 procedure Activate_Division_Check (N : Node_Id) is
346 begin
347 Set_Do_Division_Check (N, True);
348 Possible_Local_Raise (N, Standard_Constraint_Error);
349 end Activate_Division_Check;
350
351 -----------------------------
352 -- Activate_Overflow_Check --
353 -----------------------------
354
355 procedure Activate_Overflow_Check (N : Node_Id) is
356 begin
357 Set_Do_Overflow_Check (N, True);
358 Possible_Local_Raise (N, Standard_Constraint_Error);
359 end Activate_Overflow_Check;
360
361 --------------------------
362 -- Activate_Range_Check --
363 --------------------------
364
365 procedure Activate_Range_Check (N : Node_Id) is
366 begin
367 Set_Do_Range_Check (N, True);
368 Possible_Local_Raise (N, Standard_Constraint_Error);
369 end Activate_Range_Check;
370
0577b0b1 371 ---------------------------------
372 -- Alignment_Checks_Suppressed --
373 ---------------------------------
374
375 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
376 begin
377 if Present (E) and then Checks_May_Be_Suppressed (E) then
378 return Is_Check_Suppressed (E, Alignment_Check);
379 else
380 return Scope_Suppress (Alignment_Check);
381 end if;
382 end Alignment_Checks_Suppressed;
383
ee6ba406 384 -------------------------
385 -- Append_Range_Checks --
386 -------------------------
387
388 procedure Append_Range_Checks
389 (Checks : Check_Result;
390 Stmts : List_Id;
391 Suppress_Typ : Entity_Id;
392 Static_Sloc : Source_Ptr;
393 Flag_Node : Node_Id)
394 is
9dfe12ae 395 Internal_Flag_Node : constant Node_Id := Flag_Node;
396 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
397
ee6ba406 398 Checks_On : constant Boolean :=
399 (not Index_Checks_Suppressed (Suppress_Typ))
400 or else
401 (not Range_Checks_Suppressed (Suppress_Typ));
402
403 begin
404 -- For now we just return if Checks_On is false, however this should
405 -- be enhanced to check for an always True value in the condition
406 -- and to generate a compilation warning???
407
408 if not Checks_On then
409 return;
410 end if;
411
412 for J in 1 .. 2 loop
413 exit when No (Checks (J));
414
415 if Nkind (Checks (J)) = N_Raise_Constraint_Error
416 and then Present (Condition (Checks (J)))
417 then
418 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
419 Append_To (Stmts, Checks (J));
420 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
421 end if;
422
423 else
424 Append_To
f15731c4 425 (Stmts,
426 Make_Raise_Constraint_Error (Internal_Static_Sloc,
427 Reason => CE_Range_Check_Failed));
ee6ba406 428 end if;
429 end loop;
430 end Append_Range_Checks;
431
432 ------------------------
433 -- Apply_Access_Check --
434 ------------------------
435
436 procedure Apply_Access_Check (N : Node_Id) is
437 P : constant Node_Id := Prefix (N);
438
439 begin
13dbf220 440 -- We do not need checks if we are not generating code (i.e. the
441 -- expander is not active). This is not just an optimization, there
442 -- are cases (e.g. with pragma Debug) where generating the checks
443 -- can cause real trouble).
284faf8b 444
84d0d4a5 445 if not Expander_Active then
13dbf220 446 return;
9dfe12ae 447 end if;
ee6ba406 448
84d0d4a5 449 -- No check if short circuiting makes check unnecessary
9dfe12ae 450
84d0d4a5 451 if not Check_Needed (P, Access_Check) then
452 return;
ee6ba406 453 end if;
9dfe12ae 454
cc60bd16 455 -- No check if accessing the Offset_To_Top component of a dispatch
456 -- table. They are safe by construction.
457
040277b1 458 if Tagged_Type_Expansion
459 and then Present (Etype (P))
cc60bd16 460 and then RTU_Loaded (Ada_Tags)
461 and then RTE_Available (RE_Offset_To_Top_Ptr)
462 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
463 then
464 return;
465 end if;
466
84d0d4a5 467 -- Otherwise go ahead and install the check
9dfe12ae 468
fa7497e8 469 Install_Null_Excluding_Check (P);
ee6ba406 470 end Apply_Access_Check;
471
472 -------------------------------
473 -- Apply_Accessibility_Check --
474 -------------------------------
475
55dc6dc2 476 procedure Apply_Accessibility_Check
477 (N : Node_Id;
478 Typ : Entity_Id;
479 Insert_Node : Node_Id)
480 is
ee6ba406 481 Loc : constant Source_Ptr := Sloc (N);
482 Param_Ent : constant Entity_Id := Param_Entity (N);
483 Param_Level : Node_Id;
484 Type_Level : Node_Id;
485
486 begin
487 if Inside_A_Generic then
488 return;
489
6ffc64fc 490 -- Only apply the run-time check if the access parameter has an
491 -- associated extra access level parameter and when the level of the
492 -- type is less deep than the level of the access parameter, and
493 -- accessibility checks are not suppressed.
ee6ba406 494
495 elsif Present (Param_Ent)
496 and then Present (Extra_Accessibility (Param_Ent))
6ffc64fc 497 and then UI_Gt (Object_Access_Level (N), Type_Access_Level (Typ))
ee6ba406 498 and then not Accessibility_Checks_Suppressed (Param_Ent)
499 and then not Accessibility_Checks_Suppressed (Typ)
500 then
501 Param_Level :=
502 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
503
504 Type_Level :=
505 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
506
bf3e1520 507 -- Raise Program_Error if the accessibility level of the access
84d0d4a5 508 -- parameter is deeper than the level of the target access type.
ee6ba406 509
55dc6dc2 510 Insert_Action (Insert_Node,
ee6ba406 511 Make_Raise_Program_Error (Loc,
512 Condition =>
513 Make_Op_Gt (Loc,
514 Left_Opnd => Param_Level,
f15731c4 515 Right_Opnd => Type_Level),
516 Reason => PE_Accessibility_Check_Failed));
ee6ba406 517
518 Analyze_And_Resolve (N);
519 end if;
520 end Apply_Accessibility_Check;
521
0577b0b1 522 --------------------------------
523 -- Apply_Address_Clause_Check --
524 --------------------------------
525
526 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
527 AC : constant Node_Id := Address_Clause (E);
528 Loc : constant Source_Ptr := Sloc (AC);
529 Typ : constant Entity_Id := Etype (E);
530 Aexp : constant Node_Id := Expression (AC);
c2b56224 531
c2b56224 532 Expr : Node_Id;
0577b0b1 533 -- Address expression (not necessarily the same as Aexp, for example
534 -- when Aexp is a reference to a constant, in which case Expr gets
535 -- reset to reference the value expression of the constant.
536
0577b0b1 537 procedure Compile_Time_Bad_Alignment;
538 -- Post error warnings when alignment is known to be incompatible. Note
539 -- that we do not go as far as inserting a raise of Program_Error since
540 -- this is an erroneous case, and it may happen that we are lucky and an
d6da7448 541 -- underaligned address turns out to be OK after all.
0577b0b1 542
543 --------------------------------
544 -- Compile_Time_Bad_Alignment --
545 --------------------------------
546
547 procedure Compile_Time_Bad_Alignment is
548 begin
d6da7448 549 if Address_Clause_Overlay_Warnings then
0577b0b1 550 Error_Msg_FE
551 ("?specified address for& may be inconsistent with alignment ",
552 Aexp, E);
553 Error_Msg_FE
2af58f67 554 ("\?program execution may be erroneous (RM 13.3(27))",
0577b0b1 555 Aexp, E);
83f8f0a6 556 Set_Address_Warning_Posted (AC);
0577b0b1 557 end if;
558 end Compile_Time_Bad_Alignment;
c2b56224 559
2af58f67 560 -- Start of processing for Apply_Address_Clause_Check
5c61a0ff 561
c2b56224 562 begin
d6da7448 563 -- See if alignment check needed. Note that we never need a check if the
564 -- maximum alignment is one, since the check will always succeed.
565
566 -- Note: we do not check for checks suppressed here, since that check
567 -- was done in Sem_Ch13 when the address clause was processed. We are
568 -- only called if checks were not suppressed. The reason for this is
569 -- that we have to delay the call to Apply_Alignment_Check till freeze
570 -- time (so that all types etc are elaborated), but we have to check
571 -- the status of check suppressing at the point of the address clause.
572
573 if No (AC)
574 or else not Check_Address_Alignment (AC)
575 or else Maximum_Alignment = 1
576 then
577 return;
578 end if;
579
580 -- Obtain expression from address clause
9dfe12ae 581
0577b0b1 582 Expr := Expression (AC);
583
584 -- The following loop digs for the real expression to use in the check
585
586 loop
587 -- For constant, get constant expression
588
589 if Is_Entity_Name (Expr)
590 and then Ekind (Entity (Expr)) = E_Constant
591 then
592 Expr := Constant_Value (Entity (Expr));
593
594 -- For unchecked conversion, get result to convert
595
596 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
597 Expr := Expression (Expr);
598
599 -- For (common case) of To_Address call, get argument
600
601 elsif Nkind (Expr) = N_Function_Call
602 and then Is_Entity_Name (Name (Expr))
603 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
604 then
605 Expr := First (Parameter_Associations (Expr));
606
607 if Nkind (Expr) = N_Parameter_Association then
608 Expr := Explicit_Actual_Parameter (Expr);
609 end if;
610
611 -- We finally have the real expression
612
613 else
614 exit;
615 end if;
616 end loop;
617
d6da7448 618 -- See if we know that Expr has a bad alignment at compile time
c2b56224 619
620 if Compile_Time_Known_Value (Expr)
f2a06be9 621 and then (Known_Alignment (E) or else Known_Alignment (Typ))
c2b56224 622 then
f2a06be9 623 declare
624 AL : Uint := Alignment (Typ);
625
626 begin
627 -- The object alignment might be more restrictive than the
628 -- type alignment.
629
630 if Known_Alignment (E) then
631 AL := Alignment (E);
632 end if;
633
634 if Expr_Value (Expr) mod AL /= 0 then
0577b0b1 635 Compile_Time_Bad_Alignment;
636 else
637 return;
f2a06be9 638 end if;
639 end;
c2b56224 640
0577b0b1 641 -- If the expression has the form X'Address, then we can find out if
642 -- the object X has an alignment that is compatible with the object E.
d6da7448 643 -- If it hasn't or we don't know, we defer issuing the warning until
644 -- the end of the compilation to take into account back end annotations.
c2b56224 645
0577b0b1 646 elsif Nkind (Expr) = N_Attribute_Reference
647 and then Attribute_Name (Expr) = Name_Address
d6da7448 648 and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
0577b0b1 649 then
d6da7448 650 return;
0577b0b1 651 end if;
c2b56224 652
0577b0b1 653 -- Here we do not know if the value is acceptable. Stricly we don't have
654 -- to do anything, since if the alignment is bad, we have an erroneous
655 -- program. However we are allowed to check for erroneous conditions and
656 -- we decide to do this by default if the check is not suppressed.
657
658 -- However, don't do the check if elaboration code is unwanted
659
660 if Restriction_Active (No_Elaboration_Code) then
661 return;
662
663 -- Generate a check to raise PE if alignment may be inappropriate
664
665 else
666 -- If the original expression is a non-static constant, use the
667 -- name of the constant itself rather than duplicating its
00c403ee 668 -- defining expression, which was extracted above.
0577b0b1 669
00c403ee 670 -- Note: Expr is empty if the address-clause is applied to in-mode
671 -- actuals (allowed by 13.1(22)).
672
673 if not Present (Expr)
674 or else
675 (Is_Entity_Name (Expression (AC))
676 and then Ekind (Entity (Expression (AC))) = E_Constant
677 and then Nkind (Parent (Entity (Expression (AC))))
678 = N_Object_Declaration)
0577b0b1 679 then
680 Expr := New_Copy_Tree (Expression (AC));
681 else
682 Remove_Side_Effects (Expr);
c2b56224 683 end if;
c2b56224 684
0577b0b1 685 Insert_After_And_Analyze (N,
686 Make_Raise_Program_Error (Loc,
687 Condition =>
688 Make_Op_Ne (Loc,
689 Left_Opnd =>
690 Make_Op_Mod (Loc,
691 Left_Opnd =>
692 Unchecked_Convert_To
693 (RTE (RE_Integer_Address), Expr),
694 Right_Opnd =>
695 Make_Attribute_Reference (Loc,
696 Prefix => New_Occurrence_Of (E, Loc),
697 Attribute_Name => Name_Alignment)),
698 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
699 Reason => PE_Misaligned_Address_Value),
700 Suppress => All_Checks);
701 return;
702 end if;
9dfe12ae 703
704 exception
0577b0b1 705 -- If we have some missing run time component in configurable run time
706 -- mode then just skip the check (it is not required in any case).
707
9dfe12ae 708 when RE_Not_Available =>
709 return;
0577b0b1 710 end Apply_Address_Clause_Check;
c2b56224 711
ee6ba406 712 -------------------------------------
713 -- Apply_Arithmetic_Overflow_Check --
714 -------------------------------------
715
f40f9731 716 -- This routine is called only if the type is an integer type, and a
717 -- software arithmetic overflow check may be needed for op (add, subtract,
718 -- or multiply). This check is performed only if Software_Overflow_Checking
719 -- is enabled and Do_Overflow_Check is set. In this case we expand the
720 -- operation into a more complex sequence of tests that ensures that
721 -- overflow is properly caught.
ee6ba406 722
723 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
724 Loc : constant Source_Ptr := Sloc (N);
f40f9731 725 Typ : Entity_Id := Etype (N);
726 Rtyp : Entity_Id := Root_Type (Typ);
ee6ba406 727
728 begin
f40f9731 729 -- An interesting special case. If the arithmetic operation appears as
730 -- the operand of a type conversion:
731
732 -- type1 (x op y)
733
734 -- and all the following conditions apply:
735
736 -- arithmetic operation is for a signed integer type
737 -- target type type1 is a static integer subtype
738 -- range of x and y are both included in the range of type1
739 -- range of x op y is included in the range of type1
740 -- size of type1 is at least twice the result size of op
741
742 -- then we don't do an overflow check in any case, instead we transform
743 -- the operation so that we end up with:
744
745 -- type1 (type1 (x) op type1 (y))
746
747 -- This avoids intermediate overflow before the conversion. It is
748 -- explicitly permitted by RM 3.5.4(24):
749
750 -- For the execution of a predefined operation of a signed integer
751 -- type, the implementation need not raise Constraint_Error if the
752 -- result is outside the base range of the type, so long as the
753 -- correct result is produced.
754
755 -- It's hard to imagine that any programmer counts on the exception
756 -- being raised in this case, and in any case it's wrong coding to
757 -- have this expectation, given the RM permission. Furthermore, other
758 -- Ada compilers do allow such out of range results.
759
760 -- Note that we do this transformation even if overflow checking is
761 -- off, since this is precisely about giving the "right" result and
762 -- avoiding the need for an overflow check.
763
8eb4a5eb 764 -- Note: this circuit is partially redundant with respect to the similar
765 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
766 -- with cases that do not come through here. We still need the following
767 -- processing even with the Exp_Ch4 code in place, since we want to be
768 -- sure not to generate the arithmetic overflow check in these cases
769 -- (Exp_Ch4 would have a hard time removing them once generated).
770
f40f9731 771 if Is_Signed_Integer_Type (Typ)
772 and then Nkind (Parent (N)) = N_Type_Conversion
ee6ba406 773 then
f40f9731 774 declare
775 Target_Type : constant Entity_Id :=
776 Base_Type (Entity (Subtype_Mark (Parent (N))));
777
778 Llo, Lhi : Uint;
779 Rlo, Rhi : Uint;
780 LOK, ROK : Boolean;
781
782 Vlo : Uint;
783 Vhi : Uint;
784 VOK : Boolean;
785
786 Tlo : Uint;
787 Thi : Uint;
788
789 begin
790 if Is_Integer_Type (Target_Type)
791 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
792 then
793 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
794 Thi := Expr_Value (Type_High_Bound (Target_Type));
795
9c486805 796 Determine_Range
797 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
798 Determine_Range
799 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
f40f9731 800
801 if (LOK and ROK)
802 and then Tlo <= Llo and then Lhi <= Thi
803 and then Tlo <= Rlo and then Rhi <= Thi
804 then
9c486805 805 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
f40f9731 806
807 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
808 Rewrite (Left_Opnd (N),
809 Make_Type_Conversion (Loc,
810 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
811 Expression => Relocate_Node (Left_Opnd (N))));
812
813 Rewrite (Right_Opnd (N),
814 Make_Type_Conversion (Loc,
815 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
816 Expression => Relocate_Node (Right_Opnd (N))));
817
818 Set_Etype (N, Target_Type);
819 Typ := Target_Type;
820 Rtyp := Root_Type (Typ);
821 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
822 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
823
824 -- Given that the target type is twice the size of the
825 -- source type, overflow is now impossible, so we can
826 -- safely kill the overflow check and return.
827
828 Set_Do_Overflow_Check (N, False);
829 return;
830 end if;
831 end if;
832 end if;
833 end;
ee6ba406 834 end if;
835
f40f9731 836 -- Now see if an overflow check is required
837
838 declare
839 Siz : constant Int := UI_To_Int (Esize (Rtyp));
840 Dsiz : constant Int := Siz * 2;
841 Opnod : Node_Id;
842 Ctyp : Entity_Id;
843 Opnd : Node_Id;
844 Cent : RE_Id;
ee6ba406 845
f40f9731 846 begin
847 -- Skip check if back end does overflow checks, or the overflow flag
df40eeb0 848 -- is not set anyway, or we are not doing code expansion, or the
849 -- parent node is a type conversion whose operand is an arithmetic
850 -- operation on signed integers on which the expander can promote
bbbed24b 851 -- later the operands to type Integer (see Expand_N_Type_Conversion).
ee6ba406 852
f40f9731 853 -- Special case CLI target, where arithmetic overflow checks can be
854 -- performed for integer and long_integer
ee6ba406 855
f40f9731 856 if Backend_Overflow_Checks_On_Target
857 or else not Do_Overflow_Check (N)
858 or else not Expander_Active
df40eeb0 859 or else (Present (Parent (N))
860 and then Nkind (Parent (N)) = N_Type_Conversion
861 and then Integer_Promotion_Possible (Parent (N)))
f40f9731 862 or else
863 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
864 then
865 return;
866 end if;
ee6ba406 867
f40f9731 868 -- Otherwise, generate the full general code for front end overflow
869 -- detection, which works by doing arithmetic in a larger type:
ee6ba406 870
f40f9731 871 -- x op y
ee6ba406 872
f40f9731 873 -- is expanded into
ee6ba406 874
f40f9731 875 -- Typ (Checktyp (x) op Checktyp (y));
ee6ba406 876
f40f9731 877 -- where Typ is the type of the original expression, and Checktyp is
878 -- an integer type of sufficient length to hold the largest possible
879 -- result.
ee6ba406 880
f40f9731 881 -- If the size of check type exceeds the size of Long_Long_Integer,
882 -- we use a different approach, expanding to:
ee6ba406 883
f40f9731 884 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
ee6ba406 885
f40f9731 886 -- where xxx is Add, Multiply or Subtract as appropriate
ee6ba406 887
f40f9731 888 -- Find check type if one exists
889
890 if Dsiz <= Standard_Integer_Size then
891 Ctyp := Standard_Integer;
ee6ba406 892
f40f9731 893 elsif Dsiz <= Standard_Long_Long_Integer_Size then
894 Ctyp := Standard_Long_Long_Integer;
895
896 -- No check type exists, use runtime call
ee6ba406 897
898 else
f40f9731 899 if Nkind (N) = N_Op_Add then
900 Cent := RE_Add_With_Ovflo_Check;
ee6ba406 901
f40f9731 902 elsif Nkind (N) = N_Op_Multiply then
903 Cent := RE_Multiply_With_Ovflo_Check;
ee6ba406 904
f40f9731 905 else
906 pragma Assert (Nkind (N) = N_Op_Subtract);
907 Cent := RE_Subtract_With_Ovflo_Check;
908 end if;
909
910 Rewrite (N,
911 OK_Convert_To (Typ,
912 Make_Function_Call (Loc,
913 Name => New_Reference_To (RTE (Cent), Loc),
914 Parameter_Associations => New_List (
915 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
916 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
ee6ba406 917
f40f9731 918 Analyze_And_Resolve (N, Typ);
919 return;
920 end if;
ee6ba406 921
f40f9731 922 -- If we fall through, we have the case where we do the arithmetic
923 -- in the next higher type and get the check by conversion. In these
924 -- cases Ctyp is set to the type to be used as the check type.
ee6ba406 925
f40f9731 926 Opnod := Relocate_Node (N);
ee6ba406 927
f40f9731 928 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
ee6ba406 929
f40f9731 930 Analyze (Opnd);
931 Set_Etype (Opnd, Ctyp);
932 Set_Analyzed (Opnd, True);
933 Set_Left_Opnd (Opnod, Opnd);
ee6ba406 934
f40f9731 935 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
ee6ba406 936
f40f9731 937 Analyze (Opnd);
938 Set_Etype (Opnd, Ctyp);
939 Set_Analyzed (Opnd, True);
940 Set_Right_Opnd (Opnod, Opnd);
ee6ba406 941
f40f9731 942 -- The type of the operation changes to the base type of the check
943 -- type, and we reset the overflow check indication, since clearly no
944 -- overflow is possible now that we are using a double length type.
945 -- We also set the Analyzed flag to avoid a recursive attempt to
946 -- expand the node.
ee6ba406 947
f40f9731 948 Set_Etype (Opnod, Base_Type (Ctyp));
949 Set_Do_Overflow_Check (Opnod, False);
950 Set_Analyzed (Opnod, True);
ee6ba406 951
f40f9731 952 -- Now build the outer conversion
ee6ba406 953
f40f9731 954 Opnd := OK_Convert_To (Typ, Opnod);
955 Analyze (Opnd);
956 Set_Etype (Opnd, Typ);
9dfe12ae 957
f40f9731 958 -- In the discrete type case, we directly generate the range check
959 -- for the outer operand. This range check will implement the
960 -- required overflow check.
9dfe12ae 961
f40f9731 962 if Is_Discrete_Type (Typ) then
963 Rewrite (N, Opnd);
964 Generate_Range_Check
965 (Expression (N), Typ, CE_Overflow_Check_Failed);
9dfe12ae 966
f40f9731 967 -- For other types, we enable overflow checking on the conversion,
968 -- after setting the node as analyzed to prevent recursive attempts
969 -- to expand the conversion node.
9dfe12ae 970
f40f9731 971 else
972 Set_Analyzed (Opnd, True);
973 Enable_Overflow_Check (Opnd);
974 Rewrite (N, Opnd);
975 end if;
976
977 exception
978 when RE_Not_Available =>
979 return;
980 end;
ee6ba406 981 end Apply_Arithmetic_Overflow_Check;
982
ee6ba406 983 ----------------------------
984 -- Apply_Constraint_Check --
985 ----------------------------
986
987 procedure Apply_Constraint_Check
988 (N : Node_Id;
989 Typ : Entity_Id;
990 No_Sliding : Boolean := False)
991 is
992 Desig_Typ : Entity_Id;
993
994 begin
995 if Inside_A_Generic then
996 return;
997
998 elsif Is_Scalar_Type (Typ) then
999 Apply_Scalar_Range_Check (N, Typ);
1000
1001 elsif Is_Array_Type (Typ) then
1002
05fcfafb 1003 -- A useful optimization: an aggregate with only an others clause
5f260d20 1004 -- always has the right bounds.
1005
1006 if Nkind (N) = N_Aggregate
1007 and then No (Expressions (N))
1008 and then Nkind
1009 (First (Choices (First (Component_Associations (N)))))
1010 = N_Others_Choice
1011 then
1012 return;
1013 end if;
1014
ee6ba406 1015 if Is_Constrained (Typ) then
1016 Apply_Length_Check (N, Typ);
1017
1018 if No_Sliding then
1019 Apply_Range_Check (N, Typ);
1020 end if;
1021 else
1022 Apply_Range_Check (N, Typ);
1023 end if;
1024
1025 elsif (Is_Record_Type (Typ)
1026 or else Is_Private_Type (Typ))
1027 and then Has_Discriminants (Base_Type (Typ))
1028 and then Is_Constrained (Typ)
1029 then
1030 Apply_Discriminant_Check (N, Typ);
1031
1032 elsif Is_Access_Type (Typ) then
1033
1034 Desig_Typ := Designated_Type (Typ);
1035
1036 -- No checks necessary if expression statically null
1037
2af58f67 1038 if Known_Null (N) then
00c403ee 1039 if Can_Never_Be_Null (Typ) then
1040 Install_Null_Excluding_Check (N);
1041 end if;
ee6ba406 1042
1043 -- No sliding possible on access to arrays
1044
1045 elsif Is_Array_Type (Desig_Typ) then
1046 if Is_Constrained (Desig_Typ) then
1047 Apply_Length_Check (N, Typ);
1048 end if;
1049
1050 Apply_Range_Check (N, Typ);
1051
1052 elsif Has_Discriminants (Base_Type (Desig_Typ))
1053 and then Is_Constrained (Desig_Typ)
1054 then
1055 Apply_Discriminant_Check (N, Typ);
1056 end if;
fa7497e8 1057
bf3e1520 1058 -- Apply the 2005 Null_Excluding check. Note that we do not apply
00c403ee 1059 -- this check if the constraint node is illegal, as shown by having
1060 -- an error posted. This additional guard prevents cascaded errors
1061 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1062
fa7497e8 1063 if Can_Never_Be_Null (Typ)
1064 and then not Can_Never_Be_Null (Etype (N))
00c403ee 1065 and then not Error_Posted (N)
fa7497e8 1066 then
1067 Install_Null_Excluding_Check (N);
1068 end if;
ee6ba406 1069 end if;
1070 end Apply_Constraint_Check;
1071
1072 ------------------------------
1073 -- Apply_Discriminant_Check --
1074 ------------------------------
1075
1076 procedure Apply_Discriminant_Check
1077 (N : Node_Id;
1078 Typ : Entity_Id;
1079 Lhs : Node_Id := Empty)
1080 is
1081 Loc : constant Source_Ptr := Sloc (N);
1082 Do_Access : constant Boolean := Is_Access_Type (Typ);
1083 S_Typ : Entity_Id := Etype (N);
1084 Cond : Node_Id;
1085 T_Typ : Entity_Id;
1086
7be5088a 1087 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1088 -- A heap object with an indefinite subtype is constrained by its
1089 -- initial value, and assigning to it requires a constraint_check.
1090 -- The target may be an explicit dereference, or a renaming of one.
1091
ee6ba406 1092 function Is_Aliased_Unconstrained_Component return Boolean;
1093 -- It is possible for an aliased component to have a nominal
1094 -- unconstrained subtype (through instantiation). If this is a
1095 -- discriminated component assigned in the expansion of an aggregate
1096 -- in an initialization, the check must be suppressed. This unusual
2af58f67 1097 -- situation requires a predicate of its own.
ee6ba406 1098
7be5088a 1099 ----------------------------------
1100 -- Denotes_Explicit_Dereference --
1101 ----------------------------------
1102
1103 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1104 begin
1105 return
1106 Nkind (Obj) = N_Explicit_Dereference
1107 or else
1108 (Is_Entity_Name (Obj)
1109 and then Present (Renamed_Object (Entity (Obj)))
9474aa9c 1110 and then Nkind (Renamed_Object (Entity (Obj))) =
1111 N_Explicit_Dereference);
7be5088a 1112 end Denotes_Explicit_Dereference;
1113
ee6ba406 1114 ----------------------------------------
1115 -- Is_Aliased_Unconstrained_Component --
1116 ----------------------------------------
1117
1118 function Is_Aliased_Unconstrained_Component return Boolean is
1119 Comp : Entity_Id;
1120 Pref : Node_Id;
1121
1122 begin
1123 if Nkind (Lhs) /= N_Selected_Component then
1124 return False;
1125 else
1126 Comp := Entity (Selector_Name (Lhs));
1127 Pref := Prefix (Lhs);
1128 end if;
1129
1130 if Ekind (Comp) /= E_Component
1131 or else not Is_Aliased (Comp)
1132 then
1133 return False;
1134 end if;
1135
1136 return not Comes_From_Source (Pref)
1137 and then In_Instance
1138 and then not Is_Constrained (Etype (Comp));
1139 end Is_Aliased_Unconstrained_Component;
1140
1141 -- Start of processing for Apply_Discriminant_Check
1142
1143 begin
1144 if Do_Access then
1145 T_Typ := Designated_Type (Typ);
1146 else
1147 T_Typ := Typ;
1148 end if;
1149
1150 -- Nothing to do if discriminant checks are suppressed or else no code
1151 -- is to be generated
1152
1153 if not Expander_Active
1154 or else Discriminant_Checks_Suppressed (T_Typ)
1155 then
1156 return;
1157 end if;
1158
feff2f05 1159 -- No discriminant checks necessary for an access when expression is
1160 -- statically Null. This is not only an optimization, it is fundamental
1161 -- because otherwise discriminant checks may be generated in init procs
1162 -- for types containing an access to a not-yet-frozen record, causing a
1163 -- deadly forward reference.
ee6ba406 1164
feff2f05 1165 -- Also, if the expression is of an access type whose designated type is
1166 -- incomplete, then the access value must be null and we suppress the
1167 -- check.
ee6ba406 1168
2af58f67 1169 if Known_Null (N) then
ee6ba406 1170 return;
1171
1172 elsif Is_Access_Type (S_Typ) then
1173 S_Typ := Designated_Type (S_Typ);
1174
1175 if Ekind (S_Typ) = E_Incomplete_Type then
1176 return;
1177 end if;
1178 end if;
1179
0577b0b1 1180 -- If an assignment target is present, then we need to generate the
1181 -- actual subtype if the target is a parameter or aliased object with
1182 -- an unconstrained nominal subtype.
1183
1184 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1185 -- subtype to the parameter and dereference cases, since other aliased
1186 -- objects are unconstrained (unless the nominal subtype is explicitly
7be5088a 1187 -- constrained).
ee6ba406 1188
1189 if Present (Lhs)
1190 and then (Present (Param_Entity (Lhs))
0577b0b1 1191 or else (Ada_Version < Ada_05
1192 and then not Is_Constrained (T_Typ)
ee6ba406 1193 and then Is_Aliased_View (Lhs)
0577b0b1 1194 and then not Is_Aliased_Unconstrained_Component)
1195 or else (Ada_Version >= Ada_05
1196 and then not Is_Constrained (T_Typ)
7be5088a 1197 and then Denotes_Explicit_Dereference (Lhs)
0577b0b1 1198 and then Nkind (Original_Node (Lhs)) /=
1199 N_Function_Call))
ee6ba406 1200 then
1201 T_Typ := Get_Actual_Subtype (Lhs);
1202 end if;
1203
feff2f05 1204 -- Nothing to do if the type is unconstrained (this is the case where
1205 -- the actual subtype in the RM sense of N is unconstrained and no check
1206 -- is required).
ee6ba406 1207
1208 if not Is_Constrained (T_Typ) then
1209 return;
05fcfafb 1210
1211 -- Ada 2005: nothing to do if the type is one for which there is a
1212 -- partial view that is constrained.
1213
1214 elsif Ada_Version >= Ada_05
1215 and then Has_Constrained_Partial_View (Base_Type (T_Typ))
1216 then
1217 return;
ee6ba406 1218 end if;
1219
00f91aef 1220 -- Nothing to do if the type is an Unchecked_Union
1221
1222 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1223 return;
1224 end if;
1225
feff2f05 1226 -- Suppress checks if the subtypes are the same. the check must be
1227 -- preserved in an assignment to a formal, because the constraint is
1228 -- given by the actual.
ee6ba406 1229
1230 if Nkind (Original_Node (N)) /= N_Allocator
1231 and then (No (Lhs)
1232 or else not Is_Entity_Name (Lhs)
9dfe12ae 1233 or else No (Param_Entity (Lhs)))
ee6ba406 1234 then
1235 if (Etype (N) = Typ
1236 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1237 and then not Is_Aliased_View (Lhs)
1238 then
1239 return;
1240 end if;
1241
feff2f05 1242 -- We can also eliminate checks on allocators with a subtype mark that
1243 -- coincides with the context type. The context type may be a subtype
1244 -- without a constraint (common case, a generic actual).
ee6ba406 1245
1246 elsif Nkind (Original_Node (N)) = N_Allocator
1247 and then Is_Entity_Name (Expression (Original_Node (N)))
1248 then
1249 declare
9dfe12ae 1250 Alloc_Typ : constant Entity_Id :=
1251 Entity (Expression (Original_Node (N)));
ee6ba406 1252
1253 begin
1254 if Alloc_Typ = T_Typ
1255 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1256 and then Is_Entity_Name (
1257 Subtype_Indication (Parent (T_Typ)))
1258 and then Alloc_Typ = Base_Type (T_Typ))
1259
1260 then
1261 return;
1262 end if;
1263 end;
1264 end if;
1265
feff2f05 1266 -- See if we have a case where the types are both constrained, and all
1267 -- the constraints are constants. In this case, we can do the check
1268 -- successfully at compile time.
ee6ba406 1269
9dfe12ae 1270 -- We skip this check for the case where the node is a rewritten`
ee6ba406 1271 -- allocator, because it already carries the context subtype, and
1272 -- extracting the discriminants from the aggregate is messy.
1273
1274 if Is_Constrained (S_Typ)
1275 and then Nkind (Original_Node (N)) /= N_Allocator
1276 then
1277 declare
1278 DconT : Elmt_Id;
1279 Discr : Entity_Id;
1280 DconS : Elmt_Id;
1281 ItemS : Node_Id;
1282 ItemT : Node_Id;
1283
1284 begin
1285 -- S_Typ may not have discriminants in the case where it is a
feff2f05 1286 -- private type completed by a default discriminated type. In that
1287 -- case, we need to get the constraints from the underlying_type.
1288 -- If the underlying type is unconstrained (i.e. has no default
1289 -- discriminants) no check is needed.
ee6ba406 1290
1291 if Has_Discriminants (S_Typ) then
1292 Discr := First_Discriminant (S_Typ);
1293 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1294
1295 else
1296 Discr := First_Discriminant (Underlying_Type (S_Typ));
1297 DconS :=
1298 First_Elmt
1299 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1300
1301 if No (DconS) then
1302 return;
1303 end if;
fccb5da7 1304
1305 -- A further optimization: if T_Typ is derived from S_Typ
1306 -- without imposing a constraint, no check is needed.
1307
1308 if Nkind (Original_Node (Parent (T_Typ))) =
1309 N_Full_Type_Declaration
1310 then
1311 declare
5c61a0ff 1312 Type_Def : constant Node_Id :=
fccb5da7 1313 Type_Definition
1314 (Original_Node (Parent (T_Typ)));
1315 begin
1316 if Nkind (Type_Def) = N_Derived_Type_Definition
1317 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1318 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1319 then
1320 return;
1321 end if;
1322 end;
1323 end if;
ee6ba406 1324 end if;
1325
1326 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1327
1328 while Present (Discr) loop
1329 ItemS := Node (DconS);
1330 ItemT := Node (DconT);
1331
00c403ee 1332 -- For a discriminated component type constrained by the
1333 -- current instance of an enclosing type, there is no
1334 -- applicable discriminant check.
1335
1336 if Nkind (ItemT) = N_Attribute_Reference
1337 and then Is_Access_Type (Etype (ItemT))
1338 and then Is_Entity_Name (Prefix (ItemT))
1339 and then Is_Type (Entity (Prefix (ItemT)))
1340 then
1341 return;
1342 end if;
1343
cc60bd16 1344 -- If the expressions for the discriminants are identical
1345 -- and it is side-effect free (for now just an entity),
1346 -- this may be a shared constraint, e.g. from a subtype
1347 -- without a constraint introduced as a generic actual.
1348 -- Examine other discriminants if any.
1349
1350 if ItemS = ItemT
1351 and then Is_Entity_Name (ItemS)
1352 then
1353 null;
1354
1355 elsif not Is_OK_Static_Expression (ItemS)
1356 or else not Is_OK_Static_Expression (ItemT)
1357 then
1358 exit;
ee6ba406 1359
cc60bd16 1360 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
ee6ba406 1361 if Do_Access then -- needs run-time check.
1362 exit;
1363 else
1364 Apply_Compile_Time_Constraint_Error
f15731c4 1365 (N, "incorrect value for discriminant&?",
1366 CE_Discriminant_Check_Failed, Ent => Discr);
ee6ba406 1367 return;
1368 end if;
1369 end if;
1370
1371 Next_Elmt (DconS);
1372 Next_Elmt (DconT);
1373 Next_Discriminant (Discr);
1374 end loop;
1375
1376 if No (Discr) then
1377 return;
1378 end if;
1379 end;
1380 end if;
1381
1382 -- Here we need a discriminant check. First build the expression
1383 -- for the comparisons of the discriminants:
1384
1385 -- (n.disc1 /= typ.disc1) or else
1386 -- (n.disc2 /= typ.disc2) or else
1387 -- ...
1388 -- (n.discn /= typ.discn)
1389
1390 Cond := Build_Discriminant_Checks (N, T_Typ);
1391
1392 -- If Lhs is set and is a parameter, then the condition is
1393 -- guarded by: lhs'constrained and then (condition built above)
1394
1395 if Present (Param_Entity (Lhs)) then
1396 Cond :=
1397 Make_And_Then (Loc,
1398 Left_Opnd =>
1399 Make_Attribute_Reference (Loc,
1400 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1401 Attribute_Name => Name_Constrained),
1402 Right_Opnd => Cond);
1403 end if;
1404
1405 if Do_Access then
1406 Cond := Guard_Access (Cond, Loc, N);
1407 end if;
1408
1409 Insert_Action (N,
f15731c4 1410 Make_Raise_Constraint_Error (Loc,
1411 Condition => Cond,
1412 Reason => CE_Discriminant_Check_Failed));
ee6ba406 1413 end Apply_Discriminant_Check;
1414
1415 ------------------------
1416 -- Apply_Divide_Check --
1417 ------------------------
1418
1419 procedure Apply_Divide_Check (N : Node_Id) is
1420 Loc : constant Source_Ptr := Sloc (N);
1421 Typ : constant Entity_Id := Etype (N);
1422 Left : constant Node_Id := Left_Opnd (N);
1423 Right : constant Node_Id := Right_Opnd (N);
1424
1425 LLB : Uint;
1426 Llo : Uint;
1427 Lhi : Uint;
1428 LOK : Boolean;
1429 Rlo : Uint;
1430 Rhi : Uint;
96da3284 1431 ROK : Boolean;
1432
1433 pragma Warnings (Off, Lhi);
1434 -- Don't actually use this value
ee6ba406 1435
1436 begin
1437 if Expander_Active
13dbf220 1438 and then not Backend_Divide_Checks_On_Target
1439 and then Check_Needed (Right, Division_Check)
ee6ba406 1440 then
9c486805 1441 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
ee6ba406 1442
1443 -- See if division by zero possible, and if so generate test. This
1444 -- part of the test is not controlled by the -gnato switch.
1445
1446 if Do_Division_Check (N) then
ee6ba406 1447 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1448 Insert_Action (N,
1449 Make_Raise_Constraint_Error (Loc,
1450 Condition =>
1451 Make_Op_Eq (Loc,
0577b0b1 1452 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
f15731c4 1453 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1454 Reason => CE_Divide_By_Zero));
ee6ba406 1455 end if;
1456 end if;
1457
1458 -- Test for extremely annoying case of xxx'First divided by -1
1459
1460 if Do_Overflow_Check (N) then
ee6ba406 1461 if Nkind (N) = N_Op_Divide
1462 and then Is_Signed_Integer_Type (Typ)
1463 then
9c486805 1464 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
ee6ba406 1465 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1466
1467 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1468 and then
1469 ((not LOK) or else (Llo = LLB))
1470 then
1471 Insert_Action (N,
1472 Make_Raise_Constraint_Error (Loc,
1473 Condition =>
1474 Make_And_Then (Loc,
1475
1476 Make_Op_Eq (Loc,
9dfe12ae 1477 Left_Opnd =>
1478 Duplicate_Subexpr_Move_Checks (Left),
ee6ba406 1479 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1480
1481 Make_Op_Eq (Loc,
9dfe12ae 1482 Left_Opnd =>
1483 Duplicate_Subexpr (Right),
ee6ba406 1484 Right_Opnd =>
f15731c4 1485 Make_Integer_Literal (Loc, -1))),
1486 Reason => CE_Overflow_Check_Failed));
ee6ba406 1487 end if;
1488 end if;
1489 end if;
1490 end if;
1491 end Apply_Divide_Check;
1492
5329ca64 1493 ----------------------------------
1494 -- Apply_Float_Conversion_Check --
1495 ----------------------------------
1496
feff2f05 1497 -- Let F and I be the source and target types of the conversion. The RM
1498 -- specifies that a floating-point value X is rounded to the nearest
1499 -- integer, with halfway cases being rounded away from zero. The rounded
1500 -- value of X is checked against I'Range.
1501
1502 -- The catch in the above paragraph is that there is no good way to know
1503 -- whether the round-to-integer operation resulted in overflow. A remedy is
1504 -- to perform a range check in the floating-point domain instead, however:
5329ca64 1505
5329ca64 1506 -- (1) The bounds may not be known at compile time
2af58f67 1507 -- (2) The check must take into account rounding or truncation.
5329ca64 1508 -- (3) The range of type I may not be exactly representable in F.
2af58f67 1509 -- (4) For the rounding case, The end-points I'First - 0.5 and
1510 -- I'Last + 0.5 may or may not be in range, depending on the
1511 -- sign of I'First and I'Last.
5329ca64 1512 -- (5) X may be a NaN, which will fail any comparison
1513
2af58f67 1514 -- The following steps correctly convert X with rounding:
feff2f05 1515
5329ca64 1516 -- (1) If either I'First or I'Last is not known at compile time, use
1517 -- I'Base instead of I in the next three steps and perform a
1518 -- regular range check against I'Range after conversion.
1519 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1520 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2af58f67 1521 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1522 -- In other words, take one of the closest floating-point numbers
1523 -- (which is an integer value) to I'First, and see if it is in
1524 -- range or not.
5329ca64 1525 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1526 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2af58f67 1527 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
5329ca64 1528 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1529 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1530
2af58f67 1531 -- For the truncating case, replace steps (2) and (3) as follows:
1532 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1533 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1534 -- Lo_OK be True.
1535 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1536 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1537 -- Hi_OK be False
1538
5329ca64 1539 procedure Apply_Float_Conversion_Check
1540 (Ck_Node : Node_Id;
1541 Target_Typ : Entity_Id)
1542 is
feff2f05 1543 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1544 HB : constant Node_Id := Type_High_Bound (Target_Typ);
5329ca64 1545 Loc : constant Source_Ptr := Sloc (Ck_Node);
1546 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
feff2f05 1547 Target_Base : constant Entity_Id :=
1548 Implementation_Base_Type (Target_Typ);
1549
2af58f67 1550 Par : constant Node_Id := Parent (Ck_Node);
1551 pragma Assert (Nkind (Par) = N_Type_Conversion);
1552 -- Parent of check node, must be a type conversion
1553
1554 Truncate : constant Boolean := Float_Truncate (Par);
1555 Max_Bound : constant Uint :=
1556 UI_Expon
1557 (Machine_Radix (Expr_Type),
1558 Machine_Mantissa (Expr_Type) - 1) - 1;
1559
5329ca64 1560 -- Largest bound, so bound plus or minus half is a machine number of F
1561
feff2f05 1562 Ifirst, Ilast : Uint;
1563 -- Bounds of integer type
1564
1565 Lo, Hi : Ureal;
1566 -- Bounds to check in floating-point domain
5329ca64 1567
feff2f05 1568 Lo_OK, Hi_OK : Boolean;
1569 -- True iff Lo resp. Hi belongs to I'Range
5329ca64 1570
feff2f05 1571 Lo_Chk, Hi_Chk : Node_Id;
1572 -- Expressions that are False iff check fails
1573
1574 Reason : RT_Exception_Code;
5329ca64 1575
1576 begin
1577 if not Compile_Time_Known_Value (LB)
1578 or not Compile_Time_Known_Value (HB)
1579 then
1580 declare
feff2f05 1581 -- First check that the value falls in the range of the base type,
1582 -- to prevent overflow during conversion and then perform a
1583 -- regular range check against the (dynamic) bounds.
5329ca64 1584
5329ca64 1585 pragma Assert (Target_Base /= Target_Typ);
5329ca64 1586
46eb6933 1587 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
5329ca64 1588
1589 begin
1590 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1591 Set_Etype (Temp, Target_Base);
1592
1593 Insert_Action (Parent (Par),
1594 Make_Object_Declaration (Loc,
1595 Defining_Identifier => Temp,
1596 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1597 Expression => New_Copy_Tree (Par)),
1598 Suppress => All_Checks);
1599
1600 Insert_Action (Par,
1601 Make_Raise_Constraint_Error (Loc,
1602 Condition =>
1603 Make_Not_In (Loc,
1604 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1605 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1606 Reason => CE_Range_Check_Failed));
1607 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1608
1609 return;
1610 end;
1611 end if;
1612
7d86aa98 1613 -- Get the (static) bounds of the target type
5329ca64 1614
1615 Ifirst := Expr_Value (LB);
1616 Ilast := Expr_Value (HB);
1617
7d86aa98 1618 -- A simple optimization: if the expression is a universal literal,
1619 -- we can do the comparison with the bounds and the conversion to
1620 -- an integer type statically. The range checks are unchanged.
1621
1622 if Nkind (Ck_Node) = N_Real_Literal
1623 and then Etype (Ck_Node) = Universal_Real
1624 and then Is_Integer_Type (Target_Typ)
1625 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1626 then
1627 declare
1628 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1629
1630 begin
1631 if Int_Val <= Ilast and then Int_Val >= Ifirst then
1632
4309515d 1633 -- Conversion is safe
7d86aa98 1634
1635 Rewrite (Parent (Ck_Node),
1636 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1637 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1638 return;
1639 end if;
1640 end;
1641 end if;
1642
5329ca64 1643 -- Check against lower bound
1644
2af58f67 1645 if Truncate and then Ifirst > 0 then
1646 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1647 Lo_OK := False;
1648
1649 elsif Truncate then
1650 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1651 Lo_OK := True;
1652
1653 elsif abs (Ifirst) < Max_Bound then
5329ca64 1654 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1655 Lo_OK := (Ifirst > 0);
2af58f67 1656
5329ca64 1657 else
1658 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1659 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1660 end if;
1661
1662 if Lo_OK then
1663
1664 -- Lo_Chk := (X >= Lo)
1665
1666 Lo_Chk := Make_Op_Ge (Loc,
1667 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1668 Right_Opnd => Make_Real_Literal (Loc, Lo));
1669
1670 else
1671 -- Lo_Chk := (X > Lo)
1672
1673 Lo_Chk := Make_Op_Gt (Loc,
1674 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1675 Right_Opnd => Make_Real_Literal (Loc, Lo));
1676 end if;
1677
1678 -- Check against higher bound
1679
2af58f67 1680 if Truncate and then Ilast < 0 then
1681 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
1682 Lo_OK := False;
1683
1684 elsif Truncate then
1685 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
1686 Hi_OK := True;
1687
1688 elsif abs (Ilast) < Max_Bound then
5329ca64 1689 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1690 Hi_OK := (Ilast < 0);
1691 else
1692 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1693 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1694 end if;
1695
1696 if Hi_OK then
1697
1698 -- Hi_Chk := (X <= Hi)
1699
1700 Hi_Chk := Make_Op_Le (Loc,
1701 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1702 Right_Opnd => Make_Real_Literal (Loc, Hi));
1703
1704 else
1705 -- Hi_Chk := (X < Hi)
1706
1707 Hi_Chk := Make_Op_Lt (Loc,
1708 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1709 Right_Opnd => Make_Real_Literal (Loc, Hi));
1710 end if;
1711
feff2f05 1712 -- If the bounds of the target type are the same as those of the base
1713 -- type, the check is an overflow check as a range check is not
1714 -- performed in these cases.
5329ca64 1715
1716 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1717 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1718 then
1719 Reason := CE_Overflow_Check_Failed;
1720 else
1721 Reason := CE_Range_Check_Failed;
1722 end if;
1723
1724 -- Raise CE if either conditions does not hold
1725
1726 Insert_Action (Ck_Node,
1727 Make_Raise_Constraint_Error (Loc,
05fcfafb 1728 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
5329ca64 1729 Reason => Reason));
1730 end Apply_Float_Conversion_Check;
1731
ee6ba406 1732 ------------------------
1733 -- Apply_Length_Check --
1734 ------------------------
1735
1736 procedure Apply_Length_Check
1737 (Ck_Node : Node_Id;
1738 Target_Typ : Entity_Id;
1739 Source_Typ : Entity_Id := Empty)
1740 is
1741 begin
1742 Apply_Selected_Length_Checks
1743 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1744 end Apply_Length_Check;
1745
1746 -----------------------
1747 -- Apply_Range_Check --
1748 -----------------------
1749
1750 procedure Apply_Range_Check
1751 (Ck_Node : Node_Id;
1752 Target_Typ : Entity_Id;
1753 Source_Typ : Entity_Id := Empty)
1754 is
1755 begin
1756 Apply_Selected_Range_Checks
1757 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1758 end Apply_Range_Check;
1759
1760 ------------------------------
1761 -- Apply_Scalar_Range_Check --
1762 ------------------------------
1763
feff2f05 1764 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
1765 -- off if it is already set on.
ee6ba406 1766
1767 procedure Apply_Scalar_Range_Check
1768 (Expr : Node_Id;
1769 Target_Typ : Entity_Id;
1770 Source_Typ : Entity_Id := Empty;
1771 Fixed_Int : Boolean := False)
1772 is
1773 Parnt : constant Node_Id := Parent (Expr);
1774 S_Typ : Entity_Id;
1775 Arr : Node_Id := Empty; -- initialize to prevent warning
1776 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1777 OK : Boolean;
1778
1779 Is_Subscr_Ref : Boolean;
1780 -- Set true if Expr is a subscript
1781
1782 Is_Unconstrained_Subscr_Ref : Boolean;
1783 -- Set true if Expr is a subscript of an unconstrained array. In this
1784 -- case we do not attempt to do an analysis of the value against the
1785 -- range of the subscript, since we don't know the actual subtype.
1786
1787 Int_Real : Boolean;
feff2f05 1788 -- Set to True if Expr should be regarded as a real value even though
1789 -- the type of Expr might be discrete.
ee6ba406 1790
1791 procedure Bad_Value;
1792 -- Procedure called if value is determined to be out of range
1793
9dfe12ae 1794 ---------------
1795 -- Bad_Value --
1796 ---------------
1797
ee6ba406 1798 procedure Bad_Value is
1799 begin
1800 Apply_Compile_Time_Constraint_Error
f15731c4 1801 (Expr, "value not in range of}?", CE_Range_Check_Failed,
ee6ba406 1802 Ent => Target_Typ,
1803 Typ => Target_Typ);
1804 end Bad_Value;
1805
9dfe12ae 1806 -- Start of processing for Apply_Scalar_Range_Check
1807
ee6ba406 1808 begin
2af58f67 1809 -- Return if check obviously not needed
ee6ba406 1810
2af58f67 1811 if
1812 -- Not needed inside generic
ee6ba406 1813
2af58f67 1814 Inside_A_Generic
1815
1816 -- Not needed if previous error
1817
1818 or else Target_Typ = Any_Type
1819 or else Nkind (Expr) = N_Error
1820
1821 -- Not needed for non-scalar type
1822
1823 or else not Is_Scalar_Type (Target_Typ)
1824
1825 -- Not needed if we know node raises CE already
1826
1827 or else Raises_Constraint_Error (Expr)
ee6ba406 1828 then
1829 return;
1830 end if;
1831
1832 -- Now, see if checks are suppressed
1833
1834 Is_Subscr_Ref :=
1835 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1836
1837 if Is_Subscr_Ref then
1838 Arr := Prefix (Parnt);
1839 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1840 end if;
1841
1842 if not Do_Range_Check (Expr) then
1843
1844 -- Subscript reference. Check for Index_Checks suppressed
1845
1846 if Is_Subscr_Ref then
1847
1848 -- Check array type and its base type
1849
1850 if Index_Checks_Suppressed (Arr_Typ)
9dfe12ae 1851 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
ee6ba406 1852 then
1853 return;
1854
1855 -- Check array itself if it is an entity name
1856
1857 elsif Is_Entity_Name (Arr)
9dfe12ae 1858 and then Index_Checks_Suppressed (Entity (Arr))
ee6ba406 1859 then
1860 return;
1861
1862 -- Check expression itself if it is an entity name
1863
1864 elsif Is_Entity_Name (Expr)
9dfe12ae 1865 and then Index_Checks_Suppressed (Entity (Expr))
ee6ba406 1866 then
1867 return;
1868 end if;
1869
1870 -- All other cases, check for Range_Checks suppressed
1871
1872 else
1873 -- Check target type and its base type
1874
1875 if Range_Checks_Suppressed (Target_Typ)
9dfe12ae 1876 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
ee6ba406 1877 then
1878 return;
1879
1880 -- Check expression itself if it is an entity name
1881
1882 elsif Is_Entity_Name (Expr)
9dfe12ae 1883 and then Range_Checks_Suppressed (Entity (Expr))
ee6ba406 1884 then
1885 return;
1886
feff2f05 1887 -- If Expr is part of an assignment statement, then check left
1888 -- side of assignment if it is an entity name.
ee6ba406 1889
1890 elsif Nkind (Parnt) = N_Assignment_Statement
1891 and then Is_Entity_Name (Name (Parnt))
9dfe12ae 1892 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
ee6ba406 1893 then
1894 return;
1895 end if;
1896 end if;
1897 end if;
1898
9dfe12ae 1899 -- Do not set range checks if they are killed
1900
1901 if Nkind (Expr) = N_Unchecked_Type_Conversion
1902 and then Kill_Range_Check (Expr)
1903 then
1904 return;
1905 end if;
1906
1907 -- Do not set range checks for any values from System.Scalar_Values
1908 -- since the whole idea of such values is to avoid checking them!
1909
1910 if Is_Entity_Name (Expr)
1911 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1912 then
1913 return;
1914 end if;
1915
ee6ba406 1916 -- Now see if we need a check
1917
1918 if No (Source_Typ) then
1919 S_Typ := Etype (Expr);
1920 else
1921 S_Typ := Source_Typ;
1922 end if;
1923
1924 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1925 return;
1926 end if;
1927
1928 Is_Unconstrained_Subscr_Ref :=
1929 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1930
feff2f05 1931 -- Always do a range check if the source type includes infinities and
1932 -- the target type does not include infinities. We do not do this if
1933 -- range checks are killed.
ee6ba406 1934
1935 if Is_Floating_Point_Type (S_Typ)
1936 and then Has_Infinities (S_Typ)
1937 and then not Has_Infinities (Target_Typ)
1938 then
1939 Enable_Range_Check (Expr);
1940 end if;
1941
feff2f05 1942 -- Return if we know expression is definitely in the range of the target
1943 -- type as determined by Determine_Range. Right now we only do this for
1944 -- discrete types, and not fixed-point or floating-point types.
ee6ba406 1945
f2a06be9 1946 -- The additional less-precise tests below catch these cases
ee6ba406 1947
feff2f05 1948 -- Note: skip this if we are given a source_typ, since the point of
1949 -- supplying a Source_Typ is to stop us looking at the expression.
1950 -- We could sharpen this test to be out parameters only ???
ee6ba406 1951
1952 if Is_Discrete_Type (Target_Typ)
1953 and then Is_Discrete_Type (Etype (Expr))
1954 and then not Is_Unconstrained_Subscr_Ref
1955 and then No (Source_Typ)
1956 then
1957 declare
1958 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1959 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1960 Lo : Uint;
1961 Hi : Uint;
1962
1963 begin
1964 if Compile_Time_Known_Value (Tlo)
1965 and then Compile_Time_Known_Value (Thi)
1966 then
9dfe12ae 1967 declare
1968 Lov : constant Uint := Expr_Value (Tlo);
1969 Hiv : constant Uint := Expr_Value (Thi);
ee6ba406 1970
9dfe12ae 1971 begin
1972 -- If range is null, we for sure have a constraint error
1973 -- (we don't even need to look at the value involved,
1974 -- since all possible values will raise CE).
1975
1976 if Lov > Hiv then
1977 Bad_Value;
1978 return;
1979 end if;
1980
1981 -- Otherwise determine range of value
1982
9c486805 1983 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
9dfe12ae 1984
1985 if OK then
1986
1987 -- If definitely in range, all OK
ee6ba406 1988
ee6ba406 1989 if Lo >= Lov and then Hi <= Hiv then
1990 return;
1991
9dfe12ae 1992 -- If definitely not in range, warn
1993
ee6ba406 1994 elsif Lov > Hi or else Hiv < Lo then
1995 Bad_Value;
1996 return;
9dfe12ae 1997
1998 -- Otherwise we don't know
1999
2000 else
2001 null;
ee6ba406 2002 end if;
9dfe12ae 2003 end if;
2004 end;
ee6ba406 2005 end if;
2006 end;
2007 end if;
2008
2009 Int_Real :=
2010 Is_Floating_Point_Type (S_Typ)
2011 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2012
2013 -- Check if we can determine at compile time whether Expr is in the
9dfe12ae 2014 -- range of the target type. Note that if S_Typ is within the bounds
2015 -- of Target_Typ then this must be the case. This check is meaningful
2016 -- only if this is not a conversion between integer and real types.
ee6ba406 2017
2018 if not Is_Unconstrained_Subscr_Ref
2019 and then
2020 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2021 and then
7a1dabb3 2022 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
ee6ba406 2023 or else
9c486805 2024 Is_In_Range (Expr, Target_Typ,
2025 Assume_Valid => True,
2026 Fixed_Int => Fixed_Int,
2027 Int_Real => Int_Real))
ee6ba406 2028 then
2029 return;
2030
9c486805 2031 elsif Is_Out_Of_Range (Expr, Target_Typ,
2032 Assume_Valid => True,
2033 Fixed_Int => Fixed_Int,
2034 Int_Real => Int_Real)
2035 then
ee6ba406 2036 Bad_Value;
2037 return;
2038
feff2f05 2039 -- In the floating-point case, we only do range checks if the type is
2040 -- constrained. We definitely do NOT want range checks for unconstrained
2041 -- types, since we want to have infinities
ee6ba406 2042
9dfe12ae 2043 elsif Is_Floating_Point_Type (S_Typ) then
2044 if Is_Constrained (S_Typ) then
2045 Enable_Range_Check (Expr);
2046 end if;
ee6ba406 2047
9dfe12ae 2048 -- For all other cases we enable a range check unconditionally
ee6ba406 2049
2050 else
2051 Enable_Range_Check (Expr);
2052 return;
2053 end if;
ee6ba406 2054 end Apply_Scalar_Range_Check;
2055
2056 ----------------------------------
2057 -- Apply_Selected_Length_Checks --
2058 ----------------------------------
2059
2060 procedure Apply_Selected_Length_Checks
2061 (Ck_Node : Node_Id;
2062 Target_Typ : Entity_Id;
2063 Source_Typ : Entity_Id;
2064 Do_Static : Boolean)
2065 is
2066 Cond : Node_Id;
2067 R_Result : Check_Result;
2068 R_Cno : Node_Id;
2069
2070 Loc : constant Source_Ptr := Sloc (Ck_Node);
2071 Checks_On : constant Boolean :=
2072 (not Index_Checks_Suppressed (Target_Typ))
2073 or else
2074 (not Length_Checks_Suppressed (Target_Typ));
2075
2076 begin
f15731c4 2077 if not Expander_Active then
ee6ba406 2078 return;
2079 end if;
2080
2081 R_Result :=
2082 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2083
2084 for J in 1 .. 2 loop
ee6ba406 2085 R_Cno := R_Result (J);
2086 exit when No (R_Cno);
2087
2088 -- A length check may mention an Itype which is attached to a
2089 -- subsequent node. At the top level in a package this can cause
2090 -- an order-of-elaboration problem, so we make sure that the itype
2091 -- is referenced now.
2092
2093 if Ekind (Current_Scope) = E_Package
2094 and then Is_Compilation_Unit (Current_Scope)
2095 then
2096 Ensure_Defined (Target_Typ, Ck_Node);
2097
2098 if Present (Source_Typ) then
2099 Ensure_Defined (Source_Typ, Ck_Node);
2100
2101 elsif Is_Itype (Etype (Ck_Node)) then
2102 Ensure_Defined (Etype (Ck_Node), Ck_Node);
2103 end if;
2104 end if;
2105
feff2f05 2106 -- If the item is a conditional raise of constraint error, then have
2107 -- a look at what check is being performed and ???
ee6ba406 2108
2109 if Nkind (R_Cno) = N_Raise_Constraint_Error
2110 and then Present (Condition (R_Cno))
2111 then
2112 Cond := Condition (R_Cno);
2113
0577b0b1 2114 -- Case where node does not now have a dynamic check
ee6ba406 2115
0577b0b1 2116 if not Has_Dynamic_Length_Check (Ck_Node) then
2117
2118 -- If checks are on, just insert the check
2119
2120 if Checks_On then
2121 Insert_Action (Ck_Node, R_Cno);
2122
2123 if not Do_Static then
2124 Set_Has_Dynamic_Length_Check (Ck_Node);
2125 end if;
2126
2127 -- If checks are off, then analyze the length check after
2128 -- temporarily attaching it to the tree in case the relevant
2129 -- condition can be evaluted at compile time. We still want a
2130 -- compile time warning in this case.
2131
2132 else
2133 Set_Parent (R_Cno, Ck_Node);
2134 Analyze (R_Cno);
ee6ba406 2135 end if;
ee6ba406 2136 end if;
2137
2138 -- Output a warning if the condition is known to be True
2139
2140 if Is_Entity_Name (Cond)
2141 and then Entity (Cond) = Standard_True
2142 then
2143 Apply_Compile_Time_Constraint_Error
2144 (Ck_Node, "wrong length for array of}?",
f15731c4 2145 CE_Length_Check_Failed,
ee6ba406 2146 Ent => Target_Typ,
2147 Typ => Target_Typ);
2148
2149 -- If we were only doing a static check, or if checks are not
2150 -- on, then we want to delete the check, since it is not needed.
2151 -- We do this by replacing the if statement by a null statement
2152
2153 elsif Do_Static or else not Checks_On then
00c403ee 2154 Remove_Warning_Messages (R_Cno);
ee6ba406 2155 Rewrite (R_Cno, Make_Null_Statement (Loc));
2156 end if;
2157
2158 else
2159 Install_Static_Check (R_Cno, Loc);
2160 end if;
ee6ba406 2161 end loop;
ee6ba406 2162 end Apply_Selected_Length_Checks;
2163
2164 ---------------------------------
2165 -- Apply_Selected_Range_Checks --
2166 ---------------------------------
2167
2168 procedure Apply_Selected_Range_Checks
2169 (Ck_Node : Node_Id;
2170 Target_Typ : Entity_Id;
2171 Source_Typ : Entity_Id;
2172 Do_Static : Boolean)
2173 is
2174 Cond : Node_Id;
2175 R_Result : Check_Result;
2176 R_Cno : Node_Id;
2177
2178 Loc : constant Source_Ptr := Sloc (Ck_Node);
2179 Checks_On : constant Boolean :=
2180 (not Index_Checks_Suppressed (Target_Typ))
2181 or else
2182 (not Range_Checks_Suppressed (Target_Typ));
2183
2184 begin
2185 if not Expander_Active or else not Checks_On then
2186 return;
2187 end if;
2188
2189 R_Result :=
2190 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2191
2192 for J in 1 .. 2 loop
2193
2194 R_Cno := R_Result (J);
2195 exit when No (R_Cno);
2196
feff2f05 2197 -- If the item is a conditional raise of constraint error, then have
2198 -- a look at what check is being performed and ???
ee6ba406 2199
2200 if Nkind (R_Cno) = N_Raise_Constraint_Error
2201 and then Present (Condition (R_Cno))
2202 then
2203 Cond := Condition (R_Cno);
2204
2205 if not Has_Dynamic_Range_Check (Ck_Node) then
2206 Insert_Action (Ck_Node, R_Cno);
2207
2208 if not Do_Static then
2209 Set_Has_Dynamic_Range_Check (Ck_Node);
2210 end if;
2211 end if;
2212
2213 -- Output a warning if the condition is known to be True
2214
2215 if Is_Entity_Name (Cond)
2216 and then Entity (Cond) = Standard_True
2217 then
feff2f05 2218 -- Since an N_Range is technically not an expression, we have
2219 -- to set one of the bounds to C_E and then just flag the
2220 -- N_Range. The warning message will point to the lower bound
2221 -- and complain about a range, which seems OK.
ee6ba406 2222
2223 if Nkind (Ck_Node) = N_Range then
2224 Apply_Compile_Time_Constraint_Error
2225 (Low_Bound (Ck_Node), "static range out of bounds of}?",
f15731c4 2226 CE_Range_Check_Failed,
ee6ba406 2227 Ent => Target_Typ,
2228 Typ => Target_Typ);
2229
2230 Set_Raises_Constraint_Error (Ck_Node);
2231
2232 else
2233 Apply_Compile_Time_Constraint_Error
2234 (Ck_Node, "static value out of range of}?",
f15731c4 2235 CE_Range_Check_Failed,
ee6ba406 2236 Ent => Target_Typ,
2237 Typ => Target_Typ);
2238 end if;
2239
2240 -- If we were only doing a static check, or if checks are not
2241 -- on, then we want to delete the check, since it is not needed.
2242 -- We do this by replacing the if statement by a null statement
2243
2244 elsif Do_Static or else not Checks_On then
00c403ee 2245 Remove_Warning_Messages (R_Cno);
ee6ba406 2246 Rewrite (R_Cno, Make_Null_Statement (Loc));
2247 end if;
2248
2249 else
2250 Install_Static_Check (R_Cno, Loc);
2251 end if;
ee6ba406 2252 end loop;
ee6ba406 2253 end Apply_Selected_Range_Checks;
2254
2255 -------------------------------
2256 -- Apply_Static_Length_Check --
2257 -------------------------------
2258
2259 procedure Apply_Static_Length_Check
2260 (Expr : Node_Id;
2261 Target_Typ : Entity_Id;
2262 Source_Typ : Entity_Id := Empty)
2263 is
2264 begin
2265 Apply_Selected_Length_Checks
2266 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2267 end Apply_Static_Length_Check;
2268
2269 -------------------------------------
2270 -- Apply_Subscript_Validity_Checks --
2271 -------------------------------------
2272
2273 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2274 Sub : Node_Id;
2275
2276 begin
2277 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2278
2279 -- Loop through subscripts
2280
2281 Sub := First (Expressions (Expr));
2282 while Present (Sub) loop
2283
feff2f05 2284 -- Check one subscript. Note that we do not worry about enumeration
2285 -- type with holes, since we will convert the value to a Pos value
2286 -- for the subscript, and that convert will do the necessary validity
2287 -- check.
ee6ba406 2288
2289 Ensure_Valid (Sub, Holes_OK => True);
2290
2291 -- Move to next subscript
2292
2293 Sub := Next (Sub);
2294 end loop;
2295 end Apply_Subscript_Validity_Checks;
2296
2297 ----------------------------------
2298 -- Apply_Type_Conversion_Checks --
2299 ----------------------------------
2300
2301 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2302 Target_Type : constant Entity_Id := Etype (N);
2303 Target_Base : constant Entity_Id := Base_Type (Target_Type);
9dfe12ae 2304 Expr : constant Node_Id := Expression (N);
2305 Expr_Type : constant Entity_Id := Etype (Expr);
ee6ba406 2306
2307 begin
2308 if Inside_A_Generic then
2309 return;
2310
f15731c4 2311 -- Skip these checks if serious errors detected, there are some nasty
ee6ba406 2312 -- situations of incomplete trees that blow things up.
2313
f15731c4 2314 elsif Serious_Errors_Detected > 0 then
ee6ba406 2315 return;
2316
feff2f05 2317 -- Scalar type conversions of the form Target_Type (Expr) require a
2318 -- range check if we cannot be sure that Expr is in the base type of
2319 -- Target_Typ and also that Expr is in the range of Target_Typ. These
2320 -- are not quite the same condition from an implementation point of
2321 -- view, but clearly the second includes the first.
ee6ba406 2322
2323 elsif Is_Scalar_Type (Target_Type) then
2324 declare
2325 Conv_OK : constant Boolean := Conversion_OK (N);
feff2f05 2326 -- If the Conversion_OK flag on the type conversion is set and no
2327 -- floating point type is involved in the type conversion then
2328 -- fixed point values must be read as integral values.
ee6ba406 2329
5329ca64 2330 Float_To_Int : constant Boolean :=
2331 Is_Floating_Point_Type (Expr_Type)
2332 and then Is_Integer_Type (Target_Type);
2333
ee6ba406 2334 begin
ee6ba406 2335 if not Overflow_Checks_Suppressed (Target_Base)
e254d721 2336 and then not
7a1dabb3 2337 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
5329ca64 2338 and then not Float_To_Int
ee6ba406 2339 then
00c403ee 2340 Activate_Overflow_Check (N);
ee6ba406 2341 end if;
2342
2343 if not Range_Checks_Suppressed (Target_Type)
2344 and then not Range_Checks_Suppressed (Expr_Type)
2345 then
5329ca64 2346 if Float_To_Int then
2347 Apply_Float_Conversion_Check (Expr, Target_Type);
2348 else
2349 Apply_Scalar_Range_Check
2350 (Expr, Target_Type, Fixed_Int => Conv_OK);
2351 end if;
ee6ba406 2352 end if;
2353 end;
2354
2355 elsif Comes_From_Source (N)
f40f9731 2356 and then not Discriminant_Checks_Suppressed (Target_Type)
ee6ba406 2357 and then Is_Record_Type (Target_Type)
2358 and then Is_Derived_Type (Target_Type)
2359 and then not Is_Tagged_Type (Target_Type)
2360 and then not Is_Constrained (Target_Type)
9dfe12ae 2361 and then Present (Stored_Constraint (Target_Type))
ee6ba406 2362 then
9dfe12ae 2363 -- An unconstrained derived type may have inherited discriminant
2364 -- Build an actual discriminant constraint list using the stored
ee6ba406 2365 -- constraint, to verify that the expression of the parent type
2366 -- satisfies the constraints imposed by the (unconstrained!)
2367 -- derived type. This applies to value conversions, not to view
2368 -- conversions of tagged types.
2369
2370 declare
9dfe12ae 2371 Loc : constant Source_Ptr := Sloc (N);
2372 Cond : Node_Id;
2373 Constraint : Elmt_Id;
2374 Discr_Value : Node_Id;
2375 Discr : Entity_Id;
2376
2377 New_Constraints : constant Elist_Id := New_Elmt_List;
2378 Old_Constraints : constant Elist_Id :=
2379 Discriminant_Constraint (Expr_Type);
ee6ba406 2380
2381 begin
9dfe12ae 2382 Constraint := First_Elmt (Stored_Constraint (Target_Type));
ee6ba406 2383 while Present (Constraint) loop
2384 Discr_Value := Node (Constraint);
2385
2386 if Is_Entity_Name (Discr_Value)
2387 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2388 then
2389 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2390
2391 if Present (Discr)
2392 and then Scope (Discr) = Base_Type (Expr_Type)
2393 then
2394 -- Parent is constrained by new discriminant. Obtain
feff2f05 2395 -- Value of original discriminant in expression. If the
2396 -- new discriminant has been used to constrain more than
2397 -- one of the stored discriminants, this will provide the
2398 -- required consistency check.
ee6ba406 2399
2400 Append_Elmt (
2401 Make_Selected_Component (Loc,
2402 Prefix =>
9dfe12ae 2403 Duplicate_Subexpr_No_Checks
2404 (Expr, Name_Req => True),
ee6ba406 2405 Selector_Name =>
2406 Make_Identifier (Loc, Chars (Discr))),
2407 New_Constraints);
2408
2409 else
2410 -- Discriminant of more remote ancestor ???
2411
2412 return;
2413 end if;
2414
feff2f05 2415 -- Derived type definition has an explicit value for this
2416 -- stored discriminant.
ee6ba406 2417
2418 else
2419 Append_Elmt
9dfe12ae 2420 (Duplicate_Subexpr_No_Checks (Discr_Value),
2421 New_Constraints);
ee6ba406 2422 end if;
2423
2424 Next_Elmt (Constraint);
2425 end loop;
2426
2427 -- Use the unconstrained expression type to retrieve the
2428 -- discriminants of the parent, and apply momentarily the
2429 -- discriminant constraint synthesized above.
2430
2431 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2432 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2433 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2434
2435 Insert_Action (N,
f15731c4 2436 Make_Raise_Constraint_Error (Loc,
2437 Condition => Cond,
2438 Reason => CE_Discriminant_Check_Failed));
ee6ba406 2439 end;
2440
feff2f05 2441 -- For arrays, conversions are applied during expansion, to take into
2442 -- accounts changes of representation. The checks become range checks on
2443 -- the base type or length checks on the subtype, depending on whether
2444 -- the target type is unconstrained or constrained.
ee6ba406 2445
2446 else
2447 null;
2448 end if;
ee6ba406 2449 end Apply_Type_Conversion_Checks;
2450
2451 ----------------------------------------------
2452 -- Apply_Universal_Integer_Attribute_Checks --
2453 ----------------------------------------------
2454
2455 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2456 Loc : constant Source_Ptr := Sloc (N);
2457 Typ : constant Entity_Id := Etype (N);
2458
2459 begin
2460 if Inside_A_Generic then
2461 return;
2462
2463 -- Nothing to do if checks are suppressed
2464
2465 elsif Range_Checks_Suppressed (Typ)
2466 and then Overflow_Checks_Suppressed (Typ)
2467 then
2468 return;
2469
2470 -- Nothing to do if the attribute does not come from source. The
2471 -- internal attributes we generate of this type do not need checks,
2472 -- and furthermore the attempt to check them causes some circular
2473 -- elaboration orders when dealing with packed types.
2474
2475 elsif not Comes_From_Source (N) then
2476 return;
2477
9dfe12ae 2478 -- If the prefix is a selected component that depends on a discriminant
2479 -- the check may improperly expose a discriminant instead of using
2480 -- the bounds of the object itself. Set the type of the attribute to
2481 -- the base type of the context, so that a check will be imposed when
2482 -- needed (e.g. if the node appears as an index).
2483
2484 elsif Nkind (Prefix (N)) = N_Selected_Component
2485 and then Ekind (Typ) = E_Signed_Integer_Subtype
2486 and then Depends_On_Discriminant (Scalar_Range (Typ))
2487 then
2488 Set_Etype (N, Base_Type (Typ));
2489
feff2f05 2490 -- Otherwise, replace the attribute node with a type conversion node
2491 -- whose expression is the attribute, retyped to universal integer, and
2492 -- whose subtype mark is the target type. The call to analyze this
2493 -- conversion will set range and overflow checks as required for proper
2494 -- detection of an out of range value.
ee6ba406 2495
2496 else
2497 Set_Etype (N, Universal_Integer);
2498 Set_Analyzed (N, True);
2499
2500 Rewrite (N,
2501 Make_Type_Conversion (Loc,
2502 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2503 Expression => Relocate_Node (N)));
2504
2505 Analyze_And_Resolve (N, Typ);
2506 return;
2507 end if;
ee6ba406 2508 end Apply_Universal_Integer_Attribute_Checks;
2509
2510 -------------------------------
2511 -- Build_Discriminant_Checks --
2512 -------------------------------
2513
2514 function Build_Discriminant_Checks
2515 (N : Node_Id;
314a23b6 2516 T_Typ : Entity_Id) return Node_Id
ee6ba406 2517 is
2518 Loc : constant Source_Ptr := Sloc (N);
2519 Cond : Node_Id;
2520 Disc : Elmt_Id;
2521 Disc_Ent : Entity_Id;
9dfe12ae 2522 Dref : Node_Id;
ee6ba406 2523 Dval : Node_Id;
2524
84d0d4a5 2525 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
2526
2527 ----------------------------------
2528 -- Aggregate_Discriminant_Value --
2529 ----------------------------------
2530
2531 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
2532 Assoc : Node_Id;
2533
2534 begin
feff2f05 2535 -- The aggregate has been normalized with named associations. We use
2536 -- the Chars field to locate the discriminant to take into account
2537 -- discriminants in derived types, which carry the same name as those
2538 -- in the parent.
84d0d4a5 2539
2540 Assoc := First (Component_Associations (N));
2541 while Present (Assoc) loop
2542 if Chars (First (Choices (Assoc))) = Chars (Disc) then
2543 return Expression (Assoc);
2544 else
2545 Next (Assoc);
2546 end if;
2547 end loop;
2548
2549 -- Discriminant must have been found in the loop above
2550
2551 raise Program_Error;
2552 end Aggregate_Discriminant_Val;
2553
2554 -- Start of processing for Build_Discriminant_Checks
2555
ee6ba406 2556 begin
84d0d4a5 2557 -- Loop through discriminants evolving the condition
2558
ee6ba406 2559 Cond := Empty;
2560 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2561
9dfe12ae 2562 -- For a fully private type, use the discriminants of the parent type
ee6ba406 2563
2564 if Is_Private_Type (T_Typ)
2565 and then No (Full_View (T_Typ))
2566 then
2567 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2568 else
2569 Disc_Ent := First_Discriminant (T_Typ);
2570 end if;
2571
2572 while Present (Disc) loop
ee6ba406 2573 Dval := Node (Disc);
2574
2575 if Nkind (Dval) = N_Identifier
2576 and then Ekind (Entity (Dval)) = E_Discriminant
2577 then
2578 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2579 else
9dfe12ae 2580 Dval := Duplicate_Subexpr_No_Checks (Dval);
ee6ba406 2581 end if;
2582
00f91aef 2583 -- If we have an Unchecked_Union node, we can infer the discriminants
2584 -- of the node.
9dfe12ae 2585
00f91aef 2586 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2587 Dref := New_Copy (
2588 Get_Discriminant_Value (
2589 First_Discriminant (T_Typ),
2590 T_Typ,
2591 Stored_Constraint (T_Typ)));
2592
84d0d4a5 2593 elsif Nkind (N) = N_Aggregate then
2594 Dref :=
2595 Duplicate_Subexpr_No_Checks
2596 (Aggregate_Discriminant_Val (Disc_Ent));
2597
00f91aef 2598 else
2599 Dref :=
2600 Make_Selected_Component (Loc,
2601 Prefix =>
2602 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2603 Selector_Name =>
2604 Make_Identifier (Loc, Chars (Disc_Ent)));
2605
2606 Set_Is_In_Discriminant_Check (Dref);
2607 end if;
9dfe12ae 2608
ee6ba406 2609 Evolve_Or_Else (Cond,
2610 Make_Op_Ne (Loc,
9dfe12ae 2611 Left_Opnd => Dref,
ee6ba406 2612 Right_Opnd => Dval));
2613
2614 Next_Elmt (Disc);
2615 Next_Discriminant (Disc_Ent);
2616 end loop;
2617
2618 return Cond;
2619 end Build_Discriminant_Checks;
2620
13dbf220 2621 ------------------
2622 -- Check_Needed --
2623 ------------------
2624
2625 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
2626 N : Node_Id;
2627 P : Node_Id;
2628 K : Node_Kind;
2629 L : Node_Id;
2630 R : Node_Id;
2631
2632 begin
2633 -- Always check if not simple entity
2634
2635 if Nkind (Nod) not in N_Has_Entity
2636 or else not Comes_From_Source (Nod)
2637 then
2638 return True;
2639 end if;
2640
2641 -- Look up tree for short circuit
2642
2643 N := Nod;
2644 loop
2645 P := Parent (N);
2646 K := Nkind (P);
2647
7b17e51b 2648 -- Done if out of subexpression (note that we allow generated stuff
2649 -- such as itype declarations in this context, to keep the loop going
2650 -- since we may well have generated such stuff in complex situations.
2651 -- Also done if no parent (probably an error condition, but no point
2652 -- in behaving nasty if we find it!)
2653
2654 if No (P)
2655 or else (K not in N_Subexpr and then Comes_From_Source (P))
2656 then
13dbf220 2657 return True;
2658
7b17e51b 2659 -- Or/Or Else case, where test is part of the right operand, or is
2660 -- part of one of the actions associated with the right operand, and
2661 -- the left operand is an equality test.
13dbf220 2662
7b17e51b 2663 elsif K = N_Op_Or then
13dbf220 2664 exit when N = Right_Opnd (P)
2665 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2666
7b17e51b 2667 elsif K = N_Or_Else then
2668 exit when (N = Right_Opnd (P)
2669 or else
2670 (Is_List_Member (N)
2671 and then List_Containing (N) = Actions (P)))
2672 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
13dbf220 2673
7b17e51b 2674 -- Similar test for the And/And then case, where the left operand
2675 -- is an inequality test.
2676
2677 elsif K = N_Op_And then
13dbf220 2678 exit when N = Right_Opnd (P)
38f5559f 2679 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
7b17e51b 2680
2681 elsif K = N_And_Then then
2682 exit when (N = Right_Opnd (P)
2683 or else
2684 (Is_List_Member (N)
2685 and then List_Containing (N) = Actions (P)))
2686 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
13dbf220 2687 end if;
2688
2689 N := P;
2690 end loop;
2691
2692 -- If we fall through the loop, then we have a conditional with an
2693 -- appropriate test as its left operand. So test further.
2694
2695 L := Left_Opnd (P);
13dbf220 2696 R := Right_Opnd (L);
2697 L := Left_Opnd (L);
2698
2699 -- Left operand of test must match original variable
2700
2701 if Nkind (L) not in N_Has_Entity
2702 or else Entity (L) /= Entity (Nod)
2703 then
2704 return True;
2705 end if;
2706
2af58f67 2707 -- Right operand of test must be key value (zero or null)
13dbf220 2708
2709 case Check is
2710 when Access_Check =>
2af58f67 2711 if not Known_Null (R) then
13dbf220 2712 return True;
2713 end if;
2714
2715 when Division_Check =>
2716 if not Compile_Time_Known_Value (R)
2717 or else Expr_Value (R) /= Uint_0
2718 then
2719 return True;
2720 end if;
2af58f67 2721
2722 when others =>
2723 raise Program_Error;
13dbf220 2724 end case;
2725
2726 -- Here we have the optimizable case, warn if not short-circuited
2727
2728 if K = N_Op_And or else K = N_Op_Or then
2729 case Check is
2730 when Access_Check =>
2731 Error_Msg_N
2732 ("Constraint_Error may be raised (access check)?",
2733 Parent (Nod));
2734 when Division_Check =>
2735 Error_Msg_N
2736 ("Constraint_Error may be raised (zero divide)?",
2737 Parent (Nod));
2af58f67 2738
2739 when others =>
2740 raise Program_Error;
13dbf220 2741 end case;
2742
2743 if K = N_Op_And then
e977c0cf 2744 Error_Msg_N -- CODEFIX
2745 ("use `AND THEN` instead of AND?", P);
13dbf220 2746 else
e977c0cf 2747 Error_Msg_N -- CODEFIX
2748 ("use `OR ELSE` instead of OR?", P);
13dbf220 2749 end if;
2750
2751 -- If not short-circuited, we need the ckeck
2752
2753 return True;
2754
2755 -- If short-circuited, we can omit the check
2756
2757 else
2758 return False;
2759 end if;
2760 end Check_Needed;
2761
ee6ba406 2762 -----------------------------------
2763 -- Check_Valid_Lvalue_Subscripts --
2764 -----------------------------------
2765
2766 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2767 begin
2768 -- Skip this if range checks are suppressed
2769
2770 if Range_Checks_Suppressed (Etype (Expr)) then
2771 return;
2772
feff2f05 2773 -- Only do this check for expressions that come from source. We assume
2774 -- that expander generated assignments explicitly include any necessary
2775 -- checks. Note that this is not just an optimization, it avoids
2776 -- infinite recursions!
ee6ba406 2777
2778 elsif not Comes_From_Source (Expr) then
2779 return;
2780
2781 -- For a selected component, check the prefix
2782
2783 elsif Nkind (Expr) = N_Selected_Component then
2784 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2785 return;
2786
2787 -- Case of indexed component
2788
2789 elsif Nkind (Expr) = N_Indexed_Component then
2790 Apply_Subscript_Validity_Checks (Expr);
2791
feff2f05 2792 -- Prefix may itself be or contain an indexed component, and these
2793 -- subscripts need checking as well.
ee6ba406 2794
2795 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2796 end if;
2797 end Check_Valid_Lvalue_Subscripts;
2798
fa7497e8 2799 ----------------------------------
2800 -- Null_Exclusion_Static_Checks --
2801 ----------------------------------
2802
2803 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
0577b0b1 2804 Error_Node : Node_Id;
2805 Expr : Node_Id;
2806 Has_Null : constant Boolean := Has_Null_Exclusion (N);
2807 K : constant Node_Kind := Nkind (N);
2808 Typ : Entity_Id;
fa7497e8 2809
13dbf220 2810 begin
0577b0b1 2811 pragma Assert
2812 (K = N_Component_Declaration
2813 or else K = N_Discriminant_Specification
2814 or else K = N_Function_Specification
2815 or else K = N_Object_Declaration
2816 or else K = N_Parameter_Specification);
2817
2818 if K = N_Function_Specification then
2819 Typ := Etype (Defining_Entity (N));
2820 else
2821 Typ := Etype (Defining_Identifier (N));
2822 end if;
fa7497e8 2823
13dbf220 2824 case K is
13dbf220 2825 when N_Component_Declaration =>
2826 if Present (Access_Definition (Component_Definition (N))) then
0577b0b1 2827 Error_Node := Component_Definition (N);
13dbf220 2828 else
0577b0b1 2829 Error_Node := Subtype_Indication (Component_Definition (N));
13dbf220 2830 end if;
5329ca64 2831
0577b0b1 2832 when N_Discriminant_Specification =>
2833 Error_Node := Discriminant_Type (N);
2834
2835 when N_Function_Specification =>
2836 Error_Node := Result_Definition (N);
2837
2838 when N_Object_Declaration =>
2839 Error_Node := Object_Definition (N);
2840
2841 when N_Parameter_Specification =>
2842 Error_Node := Parameter_Type (N);
2843
13dbf220 2844 when others =>
2845 raise Program_Error;
2846 end case;
5329ca64 2847
0577b0b1 2848 if Has_Null then
5329ca64 2849
0577b0b1 2850 -- Enforce legality rule 3.10 (13): A null exclusion can only be
2851 -- applied to an access [sub]type.
5329ca64 2852
0577b0b1 2853 if not Is_Access_Type (Typ) then
503f7fd3 2854 Error_Msg_N
00c403ee 2855 ("`NOT NULL` allowed only for an access type", Error_Node);
5329ca64 2856
feff2f05 2857 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
0577b0b1 2858 -- be applied to a [sub]type that does not exclude null already.
2859
2860 elsif Can_Never_Be_Null (Typ)
d16989f1 2861 and then Comes_From_Source (Typ)
0577b0b1 2862 then
503f7fd3 2863 Error_Msg_NE
00c403ee 2864 ("`NOT NULL` not allowed (& already excludes null)",
2865 Error_Node, Typ);
0577b0b1 2866 end if;
13dbf220 2867 end if;
5329ca64 2868
cc60bd16 2869 -- Check that null-excluding objects are always initialized, except for
2870 -- deferred constants, for which the expression will appear in the full
2871 -- declaration.
13dbf220 2872
2873 if K = N_Object_Declaration
84d0d4a5 2874 and then No (Expression (N))
cc60bd16 2875 and then not Constant_Present (N)
feff2f05 2876 and then not No_Initialization (N)
13dbf220 2877 then
feff2f05 2878 -- Add an expression that assigns null. This node is needed by
2879 -- Apply_Compile_Time_Constraint_Error, which will replace this with
2880 -- a Constraint_Error node.
13dbf220 2881
2882 Set_Expression (N, Make_Null (Sloc (N)));
2883 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
5329ca64 2884
13dbf220 2885 Apply_Compile_Time_Constraint_Error
2886 (N => Expression (N),
2887 Msg => "(Ada 2005) null-excluding objects must be initialized?",
2888 Reason => CE_Null_Not_Allowed);
2889 end if;
5329ca64 2890
cc60bd16 2891 -- Check that a null-excluding component, formal or object is not being
2892 -- assigned a null value. Otherwise generate a warning message and
2c145f84 2893 -- replace Expression (N) by an N_Constraint_Error node.
13dbf220 2894
0577b0b1 2895 if K /= N_Function_Specification then
2896 Expr := Expression (N);
5329ca64 2897
2af58f67 2898 if Present (Expr) and then Known_Null (Expr) then
13dbf220 2899 case K is
0577b0b1 2900 when N_Component_Declaration |
2901 N_Discriminant_Specification =>
7189d17f 2902 Apply_Compile_Time_Constraint_Error
0577b0b1 2903 (N => Expr,
2af58f67 2904 Msg => "(Ada 2005) null not allowed " &
0577b0b1 2905 "in null-excluding components?",
2906 Reason => CE_Null_Not_Allowed);
5329ca64 2907
0577b0b1 2908 when N_Object_Declaration =>
7189d17f 2909 Apply_Compile_Time_Constraint_Error
0577b0b1 2910 (N => Expr,
2af58f67 2911 Msg => "(Ada 2005) null not allowed " &
0577b0b1 2912 "in null-excluding objects?",
2913 Reason => CE_Null_Not_Allowed);
5329ca64 2914
0577b0b1 2915 when N_Parameter_Specification =>
7189d17f 2916 Apply_Compile_Time_Constraint_Error
0577b0b1 2917 (N => Expr,
2af58f67 2918 Msg => "(Ada 2005) null not allowed " &
0577b0b1 2919 "in null-excluding formals?",
2920 Reason => CE_Null_Not_Allowed);
13dbf220 2921
2922 when others =>
2923 null;
5329ca64 2924 end case;
2925 end if;
0577b0b1 2926 end if;
fa7497e8 2927 end Null_Exclusion_Static_Checks;
2928
9dfe12ae 2929 ----------------------------------
2930 -- Conditional_Statements_Begin --
2931 ----------------------------------
2932
2933 procedure Conditional_Statements_Begin is
2934 begin
2935 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2936
feff2f05 2937 -- If stack overflows, kill all checks, that way we know to simply reset
2938 -- the number of saved checks to zero on return. This should never occur
2939 -- in practice.
9dfe12ae 2940
2941 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2942 Kill_All_Checks;
2943
feff2f05 2944 -- In the normal case, we just make a new stack entry saving the current
2945 -- number of saved checks for a later restore.
9dfe12ae 2946
2947 else
2948 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2949
2950 if Debug_Flag_CC then
2951 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2952 Num_Saved_Checks);
2953 end if;
2954 end if;
2955 end Conditional_Statements_Begin;
2956
2957 --------------------------------
2958 -- Conditional_Statements_End --
2959 --------------------------------
2960
2961 procedure Conditional_Statements_End is
2962 begin
2963 pragma Assert (Saved_Checks_TOS > 0);
2964
feff2f05 2965 -- If the saved checks stack overflowed, then we killed all checks, so
2966 -- setting the number of saved checks back to zero is correct. This
2967 -- should never occur in practice.
9dfe12ae 2968
2969 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2970 Num_Saved_Checks := 0;
2971
feff2f05 2972 -- In the normal case, restore the number of saved checks from the top
2973 -- stack entry.
9dfe12ae 2974
2975 else
2976 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2977 if Debug_Flag_CC then
2978 w ("Conditional_Statements_End: Num_Saved_Checks = ",
2979 Num_Saved_Checks);
2980 end if;
2981 end if;
2982
2983 Saved_Checks_TOS := Saved_Checks_TOS - 1;
2984 end Conditional_Statements_End;
2985
ee6ba406 2986 ---------------------
2987 -- Determine_Range --
2988 ---------------------
2989
6af1bdbc 2990 Cache_Size : constant := 2 ** 10;
ee6ba406 2991 type Cache_Index is range 0 .. Cache_Size - 1;
2992 -- Determine size of below cache (power of 2 is more efficient!)
2993
2994 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
9c486805 2995 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
ee6ba406 2996 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2997 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
feff2f05 2998 -- The above arrays are used to implement a small direct cache for
2999 -- Determine_Range calls. Because of the way Determine_Range recursively
3000 -- traces subexpressions, and because overflow checking calls the routine
3001 -- on the way up the tree, a quadratic behavior can otherwise be
3002 -- encountered in large expressions. The cache entry for node N is stored
3003 -- in the (N mod Cache_Size) entry, and can be validated by checking the
9c486805 3004 -- actual node value stored there. The Range_Cache_V array records the
3005 -- setting of Assume_Valid for the cache entry.
ee6ba406 3006
3007 procedure Determine_Range
9c486805 3008 (N : Node_Id;
3009 OK : out Boolean;
3010 Lo : out Uint;
3011 Hi : out Uint;
3012 Assume_Valid : Boolean := False)
ee6ba406 3013 is
e254d721 3014 Typ : Entity_Id := Etype (N);
3015 -- Type to use, may get reset to base type for possibly invalid entity
8880be85 3016
3017 Lo_Left : Uint;
3018 Hi_Left : Uint;
3019 -- Lo and Hi bounds of left operand
ee6ba406 3020
ee6ba406 3021 Lo_Right : Uint;
ee6ba406 3022 Hi_Right : Uint;
8880be85 3023 -- Lo and Hi bounds of right (or only) operand
3024
3025 Bound : Node_Id;
3026 -- Temp variable used to hold a bound node
3027
3028 Hbound : Uint;
3029 -- High bound of base type of expression
3030
3031 Lor : Uint;
3032 Hir : Uint;
3033 -- Refined values for low and high bounds, after tightening
3034
3035 OK1 : Boolean;
3036 -- Used in lower level calls to indicate if call succeeded
3037
3038 Cindex : Cache_Index;
3039 -- Used to search cache
ee6ba406 3040
3041 function OK_Operands return Boolean;
3042 -- Used for binary operators. Determines the ranges of the left and
3043 -- right operands, and if they are both OK, returns True, and puts
341bd953 3044 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
ee6ba406 3045
3046 -----------------
3047 -- OK_Operands --
3048 -----------------
3049
3050 function OK_Operands return Boolean is
3051 begin
9c486805 3052 Determine_Range
3053 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
ee6ba406 3054
3055 if not OK1 then
3056 return False;
3057 end if;
3058
9c486805 3059 Determine_Range
3060 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 3061 return OK1;
3062 end OK_Operands;
3063
3064 -- Start of processing for Determine_Range
3065
3066 begin
3067 -- Prevent junk warnings by initializing range variables
3068
3069 Lo := No_Uint;
3070 Hi := No_Uint;
3071 Lor := No_Uint;
3072 Hir := No_Uint;
3073
a781c0fc 3074 -- If type is not defined, we can't determine its range
ee6ba406 3075
a781c0fc 3076 if No (Typ)
3077
3078 -- We don't deal with anything except discrete types
3079
3080 or else not Is_Discrete_Type (Typ)
3081
3082 -- Ignore type for which an error has been posted, since range in
3083 -- this case may well be a bogosity deriving from the error. Also
3084 -- ignore if error posted on the reference node.
3085
3086 or else Error_Posted (N) or else Error_Posted (Typ)
ee6ba406 3087 then
3088 OK := False;
3089 return;
3090 end if;
3091
3092 -- For all other cases, we can determine the range
3093
3094 OK := True;
3095
feff2f05 3096 -- If value is compile time known, then the possible range is the one
3097 -- value that we know this expression definitely has!
ee6ba406 3098
3099 if Compile_Time_Known_Value (N) then
3100 Lo := Expr_Value (N);
3101 Hi := Lo;
3102 return;
3103 end if;
3104
3105 -- Return if already in the cache
3106
3107 Cindex := Cache_Index (N mod Cache_Size);
3108
9c486805 3109 if Determine_Range_Cache_N (Cindex) = N
3110 and then
3111 Determine_Range_Cache_V (Cindex) = Assume_Valid
3112 then
ee6ba406 3113 Lo := Determine_Range_Cache_Lo (Cindex);
3114 Hi := Determine_Range_Cache_Hi (Cindex);
3115 return;
3116 end if;
3117
feff2f05 3118 -- Otherwise, start by finding the bounds of the type of the expression,
3119 -- the value cannot be outside this range (if it is, then we have an
3120 -- overflow situation, which is a separate check, we are talking here
3121 -- only about the expression value).
ee6ba406 3122
341bd953 3123 -- First a check, never try to find the bounds of a generic type, since
3124 -- these bounds are always junk values, and it is only valid to look at
3125 -- the bounds in an instance.
3126
3127 if Is_Generic_Type (Typ) then
3128 OK := False;
3129 return;
3130 end if;
3131
9c486805 3132 -- First step, change to use base type unless we know the value is valid
e254d721 3133
9c486805 3134 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
3135 or else Assume_No_Invalid_Values
3136 or else Assume_Valid
e254d721 3137 then
9c486805 3138 null;
3139 else
3140 Typ := Underlying_Type (Base_Type (Typ));
e254d721 3141 end if;
3142
feff2f05 3143 -- We use the actual bound unless it is dynamic, in which case use the
3144 -- corresponding base type bound if possible. If we can't get a bound
3145 -- then we figure we can't determine the range (a peculiar case, that
3146 -- perhaps cannot happen, but there is no point in bombing in this
3147 -- optimization circuit.
8880be85 3148
3149 -- First the low bound
ee6ba406 3150
3151 Bound := Type_Low_Bound (Typ);
3152
3153 if Compile_Time_Known_Value (Bound) then
3154 Lo := Expr_Value (Bound);
3155
3156 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
3157 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
3158
3159 else
3160 OK := False;
3161 return;
3162 end if;
3163
8880be85 3164 -- Now the high bound
3165
ee6ba406 3166 Bound := Type_High_Bound (Typ);
3167
8880be85 3168 -- We need the high bound of the base type later on, and this should
3169 -- always be compile time known. Again, it is not clear that this
3170 -- can ever be false, but no point in bombing.
ee6ba406 3171
8880be85 3172 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
ee6ba406 3173 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
3174 Hi := Hbound;
3175
3176 else
3177 OK := False;
3178 return;
3179 end if;
3180
feff2f05 3181 -- If we have a static subtype, then that may have a tighter bound so
3182 -- use the upper bound of the subtype instead in this case.
8880be85 3183
3184 if Compile_Time_Known_Value (Bound) then
3185 Hi := Expr_Value (Bound);
3186 end if;
3187
feff2f05 3188 -- We may be able to refine this value in certain situations. If any
3189 -- refinement is possible, then Lor and Hir are set to possibly tighter
3190 -- bounds, and OK1 is set to True.
ee6ba406 3191
3192 case Nkind (N) is
3193
3194 -- For unary plus, result is limited by range of operand
3195
3196 when N_Op_Plus =>
9c486805 3197 Determine_Range
3198 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 3199
3200 -- For unary minus, determine range of operand, and negate it
3201
3202 when N_Op_Minus =>
9c486805 3203 Determine_Range
3204 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 3205
3206 if OK1 then
3207 Lor := -Hi_Right;
3208 Hir := -Lo_Right;
3209 end if;
3210
3211 -- For binary addition, get range of each operand and do the
3212 -- addition to get the result range.
3213
3214 when N_Op_Add =>
3215 if OK_Operands then
3216 Lor := Lo_Left + Lo_Right;
3217 Hir := Hi_Left + Hi_Right;
3218 end if;
3219
feff2f05 3220 -- Division is tricky. The only case we consider is where the right
3221 -- operand is a positive constant, and in this case we simply divide
3222 -- the bounds of the left operand
ee6ba406 3223
3224 when N_Op_Divide =>
3225 if OK_Operands then
3226 if Lo_Right = Hi_Right
3227 and then Lo_Right > 0
3228 then
3229 Lor := Lo_Left / Lo_Right;
3230 Hir := Hi_Left / Lo_Right;
3231
3232 else
3233 OK1 := False;
3234 end if;
3235 end if;
3236
feff2f05 3237 -- For binary subtraction, get range of each operand and do the worst
3238 -- case subtraction to get the result range.
ee6ba406 3239
3240 when N_Op_Subtract =>
3241 if OK_Operands then
3242 Lor := Lo_Left - Hi_Right;
3243 Hir := Hi_Left - Lo_Right;
3244 end if;
3245
feff2f05 3246 -- For MOD, if right operand is a positive constant, then result must
3247 -- be in the allowable range of mod results.
ee6ba406 3248
3249 when N_Op_Mod =>
3250 if OK_Operands then
9dfe12ae 3251 if Lo_Right = Hi_Right
3252 and then Lo_Right /= 0
3253 then
ee6ba406 3254 if Lo_Right > 0 then
3255 Lor := Uint_0;
3256 Hir := Lo_Right - 1;
3257
9dfe12ae 3258 else -- Lo_Right < 0
ee6ba406 3259 Lor := Lo_Right + 1;
3260 Hir := Uint_0;
3261 end if;
3262
3263 else
3264 OK1 := False;
3265 end if;
3266 end if;
3267
feff2f05 3268 -- For REM, if right operand is a positive constant, then result must
3269 -- be in the allowable range of mod results.
ee6ba406 3270
3271 when N_Op_Rem =>
3272 if OK_Operands then
9dfe12ae 3273 if Lo_Right = Hi_Right
3274 and then Lo_Right /= 0
3275 then
ee6ba406 3276 declare
3277 Dval : constant Uint := (abs Lo_Right) - 1;
3278
3279 begin
3280 -- The sign of the result depends on the sign of the
3281 -- dividend (but not on the sign of the divisor, hence
3282 -- the abs operation above).
3283
3284 if Lo_Left < 0 then
3285 Lor := -Dval;
3286 else
3287 Lor := Uint_0;
3288 end if;
3289
3290 if Hi_Left < 0 then
3291 Hir := Uint_0;
3292 else
3293 Hir := Dval;
3294 end if;
3295 end;
3296
3297 else
3298 OK1 := False;
3299 end if;
3300 end if;
3301
3302 -- Attribute reference cases
3303
3304 when N_Attribute_Reference =>
3305 case Attribute_Name (N) is
3306
3307 -- For Pos/Val attributes, we can refine the range using the
ddbf7f2e 3308 -- possible range of values of the attribute expression.
ee6ba406 3309
3310 when Name_Pos | Name_Val =>
9c486805 3311 Determine_Range
3312 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
ee6ba406 3313
3314 -- For Length attribute, use the bounds of the corresponding
3315 -- index type to refine the range.
3316
3317 when Name_Length =>
3318 declare
3319 Atyp : Entity_Id := Etype (Prefix (N));
3320 Inum : Nat;
3321 Indx : Node_Id;
3322
3323 LL, LU : Uint;
3324 UL, UU : Uint;
3325
3326 begin
3327 if Is_Access_Type (Atyp) then
3328 Atyp := Designated_Type (Atyp);
3329 end if;
3330
3331 -- For string literal, we know exact value
3332
3333 if Ekind (Atyp) = E_String_Literal_Subtype then
3334 OK := True;
3335 Lo := String_Literal_Length (Atyp);
3336 Hi := String_Literal_Length (Atyp);
3337 return;
3338 end if;
3339
3340 -- Otherwise check for expression given
3341
3342 if No (Expressions (N)) then
3343 Inum := 1;
3344 else
3345 Inum :=
3346 UI_To_Int (Expr_Value (First (Expressions (N))));
3347 end if;
3348
3349 Indx := First_Index (Atyp);
3350 for J in 2 .. Inum loop
3351 Indx := Next_Index (Indx);
3352 end loop;
3353
3354 Determine_Range
9c486805 3355 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
3356 Assume_Valid);
ee6ba406 3357
3358 if OK1 then
3359 Determine_Range
9c486805 3360 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
3361 Assume_Valid);
ee6ba406 3362
3363 if OK1 then
3364
3365 -- The maximum value for Length is the biggest
3366 -- possible gap between the values of the bounds.
3367 -- But of course, this value cannot be negative.
3368
9c486805 3369 Hir := UI_Max (Uint_0, UU - LL + 1);
ee6ba406 3370
3371 -- For constrained arrays, the minimum value for
3372 -- Length is taken from the actual value of the
3373 -- bounds, since the index will be exactly of
3374 -- this subtype.
3375
3376 if Is_Constrained (Atyp) then
9c486805 3377 Lor := UI_Max (Uint_0, UL - LU + 1);
ee6ba406 3378
3379 -- For an unconstrained array, the minimum value
3380 -- for length is always zero.
3381
3382 else
3383 Lor := Uint_0;
3384 end if;
3385 end if;
3386 end if;
3387 end;
3388
3389 -- No special handling for other attributes
3390 -- Probably more opportunities exist here ???
3391
3392 when others =>
3393 OK1 := False;
3394
3395 end case;
3396
feff2f05 3397 -- For type conversion from one discrete type to another, we can
3398 -- refine the range using the converted value.
ee6ba406 3399
3400 when N_Type_Conversion =>
9c486805 3401 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 3402
3403 -- Nothing special to do for all other expression kinds
3404
3405 when others =>
3406 OK1 := False;
3407 Lor := No_Uint;
3408 Hir := No_Uint;
3409 end case;
3410
3411 -- At this stage, if OK1 is true, then we know that the actual
3412 -- result of the computed expression is in the range Lor .. Hir.
3413 -- We can use this to restrict the possible range of results.
3414
3415 if OK1 then
3416
3417 -- If the refined value of the low bound is greater than the
3418 -- type high bound, then reset it to the more restrictive
3419 -- value. However, we do NOT do this for the case of a modular
3420 -- type where the possible upper bound on the value is above the
3421 -- base type high bound, because that means the result could wrap.
3422
3423 if Lor > Lo
3424 and then not (Is_Modular_Integer_Type (Typ)
3425 and then Hir > Hbound)
3426 then
3427 Lo := Lor;
3428 end if;
3429
3430 -- Similarly, if the refined value of the high bound is less
3431 -- than the value so far, then reset it to the more restrictive
3432 -- value. Again, we do not do this if the refined low bound is
3433 -- negative for a modular type, since this would wrap.
3434
3435 if Hir < Hi
3436 and then not (Is_Modular_Integer_Type (Typ)
3437 and then Lor < Uint_0)
3438 then
3439 Hi := Hir;
3440 end if;
3441 end if;
3442
3443 -- Set cache entry for future call and we are all done
3444
3445 Determine_Range_Cache_N (Cindex) := N;
9c486805 3446 Determine_Range_Cache_V (Cindex) := Assume_Valid;
ee6ba406 3447 Determine_Range_Cache_Lo (Cindex) := Lo;
3448 Determine_Range_Cache_Hi (Cindex) := Hi;
3449 return;
3450
3451 -- If any exception occurs, it means that we have some bug in the compiler
3452 -- possibly triggered by a previous error, or by some unforseen peculiar
3453 -- occurrence. However, this is only an optimization attempt, so there is
3454 -- really no point in crashing the compiler. Instead we just decide, too
3455 -- bad, we can't figure out a range in this case after all.
3456
3457 exception
3458 when others =>
3459
3460 -- Debug flag K disables this behavior (useful for debugging)
3461
3462 if Debug_Flag_K then
3463 raise;
3464 else
3465 OK := False;
3466 Lo := No_Uint;
3467 Hi := No_Uint;
3468 return;
3469 end if;
ee6ba406 3470 end Determine_Range;
3471
3472 ------------------------------------
3473 -- Discriminant_Checks_Suppressed --
3474 ------------------------------------
3475
3476 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3477 begin
9dfe12ae 3478 if Present (E) then
3479 if Is_Unchecked_Union (E) then
3480 return True;
3481 elsif Checks_May_Be_Suppressed (E) then
3482 return Is_Check_Suppressed (E, Discriminant_Check);
3483 end if;
3484 end if;
3485
3486 return Scope_Suppress (Discriminant_Check);
ee6ba406 3487 end Discriminant_Checks_Suppressed;
3488
3489 --------------------------------
3490 -- Division_Checks_Suppressed --
3491 --------------------------------
3492
3493 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3494 begin
9dfe12ae 3495 if Present (E) and then Checks_May_Be_Suppressed (E) then
3496 return Is_Check_Suppressed (E, Division_Check);
3497 else
3498 return Scope_Suppress (Division_Check);
3499 end if;
ee6ba406 3500 end Division_Checks_Suppressed;
3501
3502 -----------------------------------
3503 -- Elaboration_Checks_Suppressed --
3504 -----------------------------------
3505
3506 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3507 begin
38f5559f 3508 -- The complication in this routine is that if we are in the dynamic
3509 -- model of elaboration, we also check All_Checks, since All_Checks
3510 -- does not set Elaboration_Check explicitly.
3511
9dfe12ae 3512 if Present (E) then
3513 if Kill_Elaboration_Checks (E) then
3514 return True;
38f5559f 3515
9dfe12ae 3516 elsif Checks_May_Be_Suppressed (E) then
38f5559f 3517 if Is_Check_Suppressed (E, Elaboration_Check) then
3518 return True;
3519 elsif Dynamic_Elaboration_Checks then
3520 return Is_Check_Suppressed (E, All_Checks);
3521 else
3522 return False;
3523 end if;
9dfe12ae 3524 end if;
3525 end if;
3526
38f5559f 3527 if Scope_Suppress (Elaboration_Check) then
3528 return True;
3529 elsif Dynamic_Elaboration_Checks then
3530 return Scope_Suppress (All_Checks);
3531 else
3532 return False;
3533 end if;
ee6ba406 3534 end Elaboration_Checks_Suppressed;
3535
9dfe12ae 3536 ---------------------------
3537 -- Enable_Overflow_Check --
3538 ---------------------------
3539
3540 procedure Enable_Overflow_Check (N : Node_Id) is
3541 Typ : constant Entity_Id := Base_Type (Etype (N));
3542 Chk : Nat;
3543 OK : Boolean;
3544 Ent : Entity_Id;
3545 Ofs : Uint;
3546 Lo : Uint;
3547 Hi : Uint;
ee6ba406 3548
ee6ba406 3549 begin
9dfe12ae 3550 if Debug_Flag_CC then
3551 w ("Enable_Overflow_Check for node ", Int (N));
3552 Write_Str (" Source location = ");
3553 wl (Sloc (N));
00c403ee 3554 pg (Union_Id (N));
ee6ba406 3555 end if;
ee6ba406 3556
75209ec5 3557 -- No check if overflow checks suppressed for type of node
3558
3559 if Present (Etype (N))
3560 and then Overflow_Checks_Suppressed (Etype (N))
3561 then
3562 return;
3563
49260fa5 3564 -- Nothing to do for unsigned integer types, which do not overflow
3565
3566 elsif Is_Modular_Integer_Type (Typ) then
3567 return;
3568
feff2f05 3569 -- Nothing to do if the range of the result is known OK. We skip this
3570 -- for conversions, since the caller already did the check, and in any
3571 -- case the condition for deleting the check for a type conversion is
cc60bd16 3572 -- different.
ee6ba406 3573
75209ec5 3574 elsif Nkind (N) /= N_Type_Conversion then
9c486805 3575 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
ee6ba406 3576
cc60bd16 3577 -- Note in the test below that we assume that the range is not OK
3578 -- if a bound of the range is equal to that of the type. That's not
3579 -- quite accurate but we do this for the following reasons:
ee6ba406 3580
9dfe12ae 3581 -- a) The way that Determine_Range works, it will typically report
3582 -- the bounds of the value as being equal to the bounds of the
3583 -- type, because it either can't tell anything more precise, or
3584 -- does not think it is worth the effort to be more precise.
ee6ba406 3585
9dfe12ae 3586 -- b) It is very unusual to have a situation in which this would
3587 -- generate an unnecessary overflow check (an example would be
3588 -- a subtype with a range 0 .. Integer'Last - 1 to which the
cc60bd16 3589 -- literal value one is added).
ee6ba406 3590
9dfe12ae 3591 -- c) The alternative is a lot of special casing in this routine
3592 -- which would partially duplicate Determine_Range processing.
ee6ba406 3593
9dfe12ae 3594 if OK
3595 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3596 and then Hi < Expr_Value (Type_High_Bound (Typ))
3597 then
3598 if Debug_Flag_CC then
3599 w ("No overflow check required");
3600 end if;
3601
3602 return;
3603 end if;
3604 end if;
3605
feff2f05 3606 -- If not in optimizing mode, set flag and we are done. We are also done
3607 -- (and just set the flag) if the type is not a discrete type, since it
3608 -- is not worth the effort to eliminate checks for other than discrete
3609 -- types. In addition, we take this same path if we have stored the
3610 -- maximum number of checks possible already (a very unlikely situation,
3611 -- but we do not want to blow up!)
9dfe12ae 3612
3613 if Optimization_Level = 0
3614 or else not Is_Discrete_Type (Etype (N))
3615 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 3616 then
00c403ee 3617 Activate_Overflow_Check (N);
9dfe12ae 3618
3619 if Debug_Flag_CC then
3620 w ("Optimization off");
3621 end if;
3622
ee6ba406 3623 return;
9dfe12ae 3624 end if;
ee6ba406 3625
9dfe12ae 3626 -- Otherwise evaluate and check the expression
3627
3628 Find_Check
3629 (Expr => N,
3630 Check_Type => 'O',
3631 Target_Type => Empty,
3632 Entry_OK => OK,
3633 Check_Num => Chk,
3634 Ent => Ent,
3635 Ofs => Ofs);
3636
3637 if Debug_Flag_CC then
3638 w ("Called Find_Check");
3639 w (" OK = ", OK);
3640
3641 if OK then
3642 w (" Check_Num = ", Chk);
3643 w (" Ent = ", Int (Ent));
3644 Write_Str (" Ofs = ");
3645 pid (Ofs);
3646 end if;
3647 end if;
ee6ba406 3648
9dfe12ae 3649 -- If check is not of form to optimize, then set flag and we are done
3650
3651 if not OK then
00c403ee 3652 Activate_Overflow_Check (N);
ee6ba406 3653 return;
9dfe12ae 3654 end if;
ee6ba406 3655
9dfe12ae 3656 -- If check is already performed, then return without setting flag
3657
3658 if Chk /= 0 then
3659 if Debug_Flag_CC then
3660 w ("Check suppressed!");
3661 end if;
ee6ba406 3662
ee6ba406 3663 return;
9dfe12ae 3664 end if;
ee6ba406 3665
9dfe12ae 3666 -- Here we will make a new entry for the new check
3667
00c403ee 3668 Activate_Overflow_Check (N);
9dfe12ae 3669 Num_Saved_Checks := Num_Saved_Checks + 1;
3670 Saved_Checks (Num_Saved_Checks) :=
3671 (Killed => False,
3672 Entity => Ent,
3673 Offset => Ofs,
3674 Check_Type => 'O',
3675 Target_Type => Empty);
3676
3677 if Debug_Flag_CC then
3678 w ("Make new entry, check number = ", Num_Saved_Checks);
3679 w (" Entity = ", Int (Ent));
3680 Write_Str (" Offset = ");
3681 pid (Ofs);
3682 w (" Check_Type = O");
3683 w (" Target_Type = Empty");
3684 end if;
ee6ba406 3685
feff2f05 3686 -- If we get an exception, then something went wrong, probably because of
3687 -- an error in the structure of the tree due to an incorrect program. Or it
3688 -- may be a bug in the optimization circuit. In either case the safest
3689 -- thing is simply to set the check flag unconditionally.
9dfe12ae 3690
3691 exception
3692 when others =>
00c403ee 3693 Activate_Overflow_Check (N);
9dfe12ae 3694
3695 if Debug_Flag_CC then
3696 w (" exception occurred, overflow flag set");
3697 end if;
3698
3699 return;
3700 end Enable_Overflow_Check;
3701
3702 ------------------------
3703 -- Enable_Range_Check --
3704 ------------------------
3705
3706 procedure Enable_Range_Check (N : Node_Id) is
3707 Chk : Nat;
3708 OK : Boolean;
3709 Ent : Entity_Id;
3710 Ofs : Uint;
3711 Ttyp : Entity_Id;
3712 P : Node_Id;
3713
3714 begin
feff2f05 3715 -- Return if unchecked type conversion with range check killed. In this
3716 -- case we never set the flag (that's what Kill_Range_Check is about!)
9dfe12ae 3717
3718 if Nkind (N) = N_Unchecked_Type_Conversion
3719 and then Kill_Range_Check (N)
ee6ba406 3720 then
3721 return;
9dfe12ae 3722 end if;
ee6ba406 3723
0577b0b1 3724 -- Check for various cases where we should suppress the range check
3725
3726 -- No check if range checks suppressed for type of node
3727
3728 if Present (Etype (N))
3729 and then Range_Checks_Suppressed (Etype (N))
3730 then
3731 return;
3732
3733 -- No check if node is an entity name, and range checks are suppressed
3734 -- for this entity, or for the type of this entity.
3735
3736 elsif Is_Entity_Name (N)
3737 and then (Range_Checks_Suppressed (Entity (N))
3738 or else Range_Checks_Suppressed (Etype (Entity (N))))
3739 then
3740 return;
3741
3742 -- No checks if index of array, and index checks are suppressed for
3743 -- the array object or the type of the array.
3744
3745 elsif Nkind (Parent (N)) = N_Indexed_Component then
3746 declare
3747 Pref : constant Node_Id := Prefix (Parent (N));
3748 begin
3749 if Is_Entity_Name (Pref)
3750 and then Index_Checks_Suppressed (Entity (Pref))
3751 then
3752 return;
3753 elsif Index_Checks_Suppressed (Etype (Pref)) then
3754 return;
3755 end if;
3756 end;
3757 end if;
3758
9dfe12ae 3759 -- Debug trace output
ee6ba406 3760
9dfe12ae 3761 if Debug_Flag_CC then
3762 w ("Enable_Range_Check for node ", Int (N));
3763 Write_Str (" Source location = ");
3764 wl (Sloc (N));
00c403ee 3765 pg (Union_Id (N));
9dfe12ae 3766 end if;
3767
feff2f05 3768 -- If not in optimizing mode, set flag and we are done. We are also done
3769 -- (and just set the flag) if the type is not a discrete type, since it
3770 -- is not worth the effort to eliminate checks for other than discrete
3771 -- types. In addition, we take this same path if we have stored the
3772 -- maximum number of checks possible already (a very unlikely situation,
3773 -- but we do not want to blow up!)
9dfe12ae 3774
3775 if Optimization_Level = 0
3776 or else No (Etype (N))
3777 or else not Is_Discrete_Type (Etype (N))
3778 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 3779 then
00c403ee 3780 Activate_Range_Check (N);
9dfe12ae 3781
3782 if Debug_Flag_CC then
3783 w ("Optimization off");
3784 end if;
3785
ee6ba406 3786 return;
9dfe12ae 3787 end if;
ee6ba406 3788
9dfe12ae 3789 -- Otherwise find out the target type
ee6ba406 3790
9dfe12ae 3791 P := Parent (N);
ee6ba406 3792
9dfe12ae 3793 -- For assignment, use left side subtype
3794
3795 if Nkind (P) = N_Assignment_Statement
3796 and then Expression (P) = N
3797 then
3798 Ttyp := Etype (Name (P));
3799
3800 -- For indexed component, use subscript subtype
3801
3802 elsif Nkind (P) = N_Indexed_Component then
3803 declare
3804 Atyp : Entity_Id;
3805 Indx : Node_Id;
3806 Subs : Node_Id;
3807
3808 begin
3809 Atyp := Etype (Prefix (P));
3810
3811 if Is_Access_Type (Atyp) then
3812 Atyp := Designated_Type (Atyp);
f07ea091 3813
3814 -- If the prefix is an access to an unconstrained array,
feff2f05 3815 -- perform check unconditionally: it depends on the bounds of
3816 -- an object and we cannot currently recognize whether the test
3817 -- may be redundant.
f07ea091 3818
3819 if not Is_Constrained (Atyp) then
00c403ee 3820 Activate_Range_Check (N);
f07ea091 3821 return;
3822 end if;
7189d17f 3823
feff2f05 3824 -- Ditto if the prefix is an explicit dereference whose designated
3825 -- type is unconstrained.
7189d17f 3826
3827 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3828 and then not Is_Constrained (Atyp)
3829 then
00c403ee 3830 Activate_Range_Check (N);
7189d17f 3831 return;
9dfe12ae 3832 end if;
3833
3834 Indx := First_Index (Atyp);
3835 Subs := First (Expressions (P));
3836 loop
3837 if Subs = N then
3838 Ttyp := Etype (Indx);
3839 exit;
3840 end if;
3841
3842 Next_Index (Indx);
3843 Next (Subs);
3844 end loop;
3845 end;
3846
3847 -- For now, ignore all other cases, they are not so interesting
3848
3849 else
3850 if Debug_Flag_CC then
3851 w (" target type not found, flag set");
3852 end if;
3853
00c403ee 3854 Activate_Range_Check (N);
9dfe12ae 3855 return;
3856 end if;
3857
3858 -- Evaluate and check the expression
3859
3860 Find_Check
3861 (Expr => N,
3862 Check_Type => 'R',
3863 Target_Type => Ttyp,
3864 Entry_OK => OK,
3865 Check_Num => Chk,
3866 Ent => Ent,
3867 Ofs => Ofs);
3868
3869 if Debug_Flag_CC then
3870 w ("Called Find_Check");
3871 w ("Target_Typ = ", Int (Ttyp));
3872 w (" OK = ", OK);
3873
3874 if OK then
3875 w (" Check_Num = ", Chk);
3876 w (" Ent = ", Int (Ent));
3877 Write_Str (" Ofs = ");
3878 pid (Ofs);
3879 end if;
3880 end if;
3881
3882 -- If check is not of form to optimize, then set flag and we are done
3883
3884 if not OK then
3885 if Debug_Flag_CC then
3886 w (" expression not of optimizable type, flag set");
3887 end if;
3888
00c403ee 3889 Activate_Range_Check (N);
9dfe12ae 3890 return;
3891 end if;
3892
3893 -- If check is already performed, then return without setting flag
3894
3895 if Chk /= 0 then
3896 if Debug_Flag_CC then
3897 w ("Check suppressed!");
3898 end if;
3899
3900 return;
3901 end if;
3902
3903 -- Here we will make a new entry for the new check
3904
00c403ee 3905 Activate_Range_Check (N);
9dfe12ae 3906 Num_Saved_Checks := Num_Saved_Checks + 1;
3907 Saved_Checks (Num_Saved_Checks) :=
3908 (Killed => False,
3909 Entity => Ent,
3910 Offset => Ofs,
3911 Check_Type => 'R',
3912 Target_Type => Ttyp);
3913
3914 if Debug_Flag_CC then
3915 w ("Make new entry, check number = ", Num_Saved_Checks);
3916 w (" Entity = ", Int (Ent));
3917 Write_Str (" Offset = ");
3918 pid (Ofs);
3919 w (" Check_Type = R");
3920 w (" Target_Type = ", Int (Ttyp));
00c403ee 3921 pg (Union_Id (Ttyp));
9dfe12ae 3922 end if;
3923
feff2f05 3924 -- If we get an exception, then something went wrong, probably because of
3925 -- an error in the structure of the tree due to an incorrect program. Or
3926 -- it may be a bug in the optimization circuit. In either case the safest
3927 -- thing is simply to set the check flag unconditionally.
9dfe12ae 3928
3929 exception
3930 when others =>
00c403ee 3931 Activate_Range_Check (N);
9dfe12ae 3932
3933 if Debug_Flag_CC then
3934 w (" exception occurred, range flag set");
3935 end if;
3936
3937 return;
3938 end Enable_Range_Check;
3939
3940 ------------------
3941 -- Ensure_Valid --
3942 ------------------
3943
3944 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3945 Typ : constant Entity_Id := Etype (Expr);
3946
3947 begin
3948 -- Ignore call if we are not doing any validity checking
3949
3950 if not Validity_Checks_On then
3951 return;
3952
0577b0b1 3953 -- Ignore call if range or validity checks suppressed on entity or type
9dfe12ae 3954
0577b0b1 3955 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
9dfe12ae 3956 return;
3957
feff2f05 3958 -- No check required if expression is from the expander, we assume the
3959 -- expander will generate whatever checks are needed. Note that this is
3960 -- not just an optimization, it avoids infinite recursions!
9dfe12ae 3961
3962 -- Unchecked conversions must be checked, unless they are initialized
3963 -- scalar values, as in a component assignment in an init proc.
3964
3965 -- In addition, we force a check if Force_Validity_Checks is set
3966
3967 elsif not Comes_From_Source (Expr)
3968 and then not Force_Validity_Checks
3969 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3970 or else Kill_Range_Check (Expr))
3971 then
3972 return;
3973
3974 -- No check required if expression is known to have valid value
3975
3976 elsif Expr_Known_Valid (Expr) then
3977 return;
3978
feff2f05 3979 -- Ignore case of enumeration with holes where the flag is set not to
3980 -- worry about holes, since no special validity check is needed
9dfe12ae 3981
3982 elsif Is_Enumeration_Type (Typ)
3983 and then Has_Non_Standard_Rep (Typ)
3984 and then Holes_OK
3985 then
3986 return;
3987
f2a06be9 3988 -- No check required on the left-hand side of an assignment
9dfe12ae 3989
3990 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3991 and then Expr = Name (Parent (Expr))
3992 then
3993 return;
3994
38f5559f 3995 -- No check on a univeral real constant. The context will eventually
3996 -- convert it to a machine number for some target type, or report an
3997 -- illegality.
3998
3999 elsif Nkind (Expr) = N_Real_Literal
4000 and then Etype (Expr) = Universal_Real
4001 then
4002 return;
4003
0577b0b1 4004 -- If the expression denotes a component of a packed boolean arrray,
4005 -- no possible check applies. We ignore the old ACATS chestnuts that
4006 -- involve Boolean range True..True.
4007
4008 -- Note: validity checks are generated for expressions that yield a
4009 -- scalar type, when it is possible to create a value that is outside of
4010 -- the type. If this is a one-bit boolean no such value exists. This is
4011 -- an optimization, and it also prevents compiler blowing up during the
4012 -- elaboration of improperly expanded packed array references.
4013
4014 elsif Nkind (Expr) = N_Indexed_Component
4015 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
4016 and then Root_Type (Etype (Expr)) = Standard_Boolean
4017 then
4018 return;
4019
9dfe12ae 4020 -- An annoying special case. If this is an out parameter of a scalar
4021 -- type, then the value is not going to be accessed, therefore it is
4022 -- inappropriate to do any validity check at the call site.
4023
4024 else
4025 -- Only need to worry about scalar types
4026
4027 if Is_Scalar_Type (Typ) then
ee6ba406 4028 declare
4029 P : Node_Id;
4030 N : Node_Id;
4031 E : Entity_Id;
4032 F : Entity_Id;
4033 A : Node_Id;
4034 L : List_Id;
4035
4036 begin
4037 -- Find actual argument (which may be a parameter association)
4038 -- and the parent of the actual argument (the call statement)
4039
4040 N := Expr;
4041 P := Parent (Expr);
4042
4043 if Nkind (P) = N_Parameter_Association then
4044 N := P;
4045 P := Parent (N);
4046 end if;
4047
feff2f05 4048 -- Only need to worry if we are argument of a procedure call
4049 -- since functions don't have out parameters. If this is an
4050 -- indirect or dispatching call, get signature from the
4051 -- subprogram type.
ee6ba406 4052
4053 if Nkind (P) = N_Procedure_Call_Statement then
4054 L := Parameter_Associations (P);
9dfe12ae 4055
4056 if Is_Entity_Name (Name (P)) then
4057 E := Entity (Name (P));
4058 else
4059 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
4060 E := Etype (Name (P));
4061 end if;
ee6ba406 4062
feff2f05 4063 -- Only need to worry if there are indeed actuals, and if
4064 -- this could be a procedure call, otherwise we cannot get a
4065 -- match (either we are not an argument, or the mode of the
4066 -- formal is not OUT). This test also filters out the
4067 -- generic case.
ee6ba406 4068
4069 if Is_Non_Empty_List (L)
4070 and then Is_Subprogram (E)
4071 then
feff2f05 4072 -- This is the loop through parameters, looking for an
4073 -- OUT parameter for which we are the argument.
ee6ba406 4074
4075 F := First_Formal (E);
4076 A := First (L);
ee6ba406 4077 while Present (F) loop
4078 if Ekind (F) = E_Out_Parameter and then A = N then
4079 return;
4080 end if;
4081
4082 Next_Formal (F);
4083 Next (A);
4084 end loop;
4085 end if;
4086 end if;
4087 end;
4088 end if;
4089 end if;
4090
0577b0b1 4091 -- If we fall through, a validity check is required
ee6ba406 4092
4093 Insert_Valid_Check (Expr);
ce7498d3 4094
4095 if Is_Entity_Name (Expr)
4096 and then Safe_To_Capture_Value (Expr, Entity (Expr))
4097 then
4098 Set_Is_Known_Valid (Entity (Expr));
4099 end if;
ee6ba406 4100 end Ensure_Valid;
4101
4102 ----------------------
4103 -- Expr_Known_Valid --
4104 ----------------------
4105
4106 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
4107 Typ : constant Entity_Id := Etype (Expr);
4108
4109 begin
feff2f05 4110 -- Non-scalar types are always considered valid, since they never give
4111 -- rise to the issues of erroneous or bounded error behavior that are
4112 -- the concern. In formal reference manual terms the notion of validity
4113 -- only applies to scalar types. Note that even when packed arrays are
4114 -- represented using modular types, they are still arrays semantically,
4115 -- so they are also always valid (in particular, the unused bits can be
4116 -- random rubbish without affecting the validity of the array value).
ee6ba406 4117
fa814356 4118 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
ee6ba406 4119 return True;
4120
4121 -- If no validity checking, then everything is considered valid
4122
4123 elsif not Validity_Checks_On then
4124 return True;
4125
4126 -- Floating-point types are considered valid unless floating-point
4127 -- validity checks have been specifically turned on.
4128
4129 elsif Is_Floating_Point_Type (Typ)
4130 and then not Validity_Check_Floating_Point
4131 then
4132 return True;
4133
feff2f05 4134 -- If the expression is the value of an object that is known to be
4135 -- valid, then clearly the expression value itself is valid.
ee6ba406 4136
4137 elsif Is_Entity_Name (Expr)
4138 and then Is_Known_Valid (Entity (Expr))
4139 then
4140 return True;
4141
0577b0b1 4142 -- References to discriminants are always considered valid. The value
4143 -- of a discriminant gets checked when the object is built. Within the
4144 -- record, we consider it valid, and it is important to do so, since
4145 -- otherwise we can try to generate bogus validity checks which
feff2f05 4146 -- reference discriminants out of scope. Discriminants of concurrent
4147 -- types are excluded for the same reason.
0577b0b1 4148
4149 elsif Is_Entity_Name (Expr)
feff2f05 4150 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
0577b0b1 4151 then
4152 return True;
4153
feff2f05 4154 -- If the type is one for which all values are known valid, then we are
4155 -- sure that the value is valid except in the slightly odd case where
4156 -- the expression is a reference to a variable whose size has been
4157 -- explicitly set to a value greater than the object size.
ee6ba406 4158
4159 elsif Is_Known_Valid (Typ) then
4160 if Is_Entity_Name (Expr)
4161 and then Ekind (Entity (Expr)) = E_Variable
4162 and then Esize (Entity (Expr)) > Esize (Typ)
4163 then
4164 return False;
4165 else
4166 return True;
4167 end if;
4168
4169 -- Integer and character literals always have valid values, where
4170 -- appropriate these will be range checked in any case.
4171
4172 elsif Nkind (Expr) = N_Integer_Literal
4173 or else
4174 Nkind (Expr) = N_Character_Literal
4175 then
4176 return True;
4177
4178 -- If we have a type conversion or a qualification of a known valid
4179 -- value, then the result will always be valid.
4180
4181 elsif Nkind (Expr) = N_Type_Conversion
4182 or else
4183 Nkind (Expr) = N_Qualified_Expression
4184 then
4185 return Expr_Known_Valid (Expression (Expr));
4186
38f5559f 4187 -- The result of any operator is always considered valid, since we
4188 -- assume the necessary checks are done by the operator. For operators
4189 -- on floating-point operations, we must also check when the operation
4190 -- is the right-hand side of an assignment, or is an actual in a call.
ee6ba406 4191
0577b0b1 4192 elsif Nkind (Expr) in N_Op then
1d90d657 4193 if Is_Floating_Point_Type (Typ)
4194 and then Validity_Check_Floating_Point
4195 and then
4196 (Nkind (Parent (Expr)) = N_Assignment_Statement
4197 or else Nkind (Parent (Expr)) = N_Function_Call
4198 or else Nkind (Parent (Expr)) = N_Parameter_Association)
4199 then
4200 return False;
4201 else
4202 return True;
4203 end if;
4204
feff2f05 4205 -- The result of a membership test is always valid, since it is true or
4206 -- false, there are no other possibilities.
0577b0b1 4207
4208 elsif Nkind (Expr) in N_Membership_Test then
4209 return True;
4210
ee6ba406 4211 -- For all other cases, we do not know the expression is valid
4212
4213 else
4214 return False;
4215 end if;
4216 end Expr_Known_Valid;
4217
9dfe12ae 4218 ----------------
4219 -- Find_Check --
4220 ----------------
4221
4222 procedure Find_Check
4223 (Expr : Node_Id;
4224 Check_Type : Character;
4225 Target_Type : Entity_Id;
4226 Entry_OK : out Boolean;
4227 Check_Num : out Nat;
4228 Ent : out Entity_Id;
4229 Ofs : out Uint)
4230 is
4231 function Within_Range_Of
4232 (Target_Type : Entity_Id;
314a23b6 4233 Check_Type : Entity_Id) return Boolean;
9dfe12ae 4234 -- Given a requirement for checking a range against Target_Type, and
4235 -- and a range Check_Type against which a check has already been made,
4236 -- determines if the check against check type is sufficient to ensure
4237 -- that no check against Target_Type is required.
4238
4239 ---------------------
4240 -- Within_Range_Of --
4241 ---------------------
4242
4243 function Within_Range_Of
4244 (Target_Type : Entity_Id;
314a23b6 4245 Check_Type : Entity_Id) return Boolean
9dfe12ae 4246 is
4247 begin
4248 if Target_Type = Check_Type then
4249 return True;
4250
4251 else
4252 declare
4253 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
4254 Thi : constant Node_Id := Type_High_Bound (Target_Type);
4255 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
4256 Chi : constant Node_Id := Type_High_Bound (Check_Type);
4257
4258 begin
4259 if (Tlo = Clo
4260 or else (Compile_Time_Known_Value (Tlo)
4261 and then
4262 Compile_Time_Known_Value (Clo)
4263 and then
4264 Expr_Value (Clo) >= Expr_Value (Tlo)))
4265 and then
4266 (Thi = Chi
4267 or else (Compile_Time_Known_Value (Thi)
4268 and then
4269 Compile_Time_Known_Value (Chi)
4270 and then
4271 Expr_Value (Chi) <= Expr_Value (Clo)))
4272 then
4273 return True;
4274 else
4275 return False;
4276 end if;
4277 end;
4278 end if;
4279 end Within_Range_Of;
4280
4281 -- Start of processing for Find_Check
4282
4283 begin
ed195555 4284 -- Establish default, in case no entry is found
9dfe12ae 4285
4286 Check_Num := 0;
4287
4288 -- Case of expression is simple entity reference
4289
4290 if Is_Entity_Name (Expr) then
4291 Ent := Entity (Expr);
4292 Ofs := Uint_0;
4293
4294 -- Case of expression is entity + known constant
4295
4296 elsif Nkind (Expr) = N_Op_Add
4297 and then Compile_Time_Known_Value (Right_Opnd (Expr))
4298 and then Is_Entity_Name (Left_Opnd (Expr))
4299 then
4300 Ent := Entity (Left_Opnd (Expr));
4301 Ofs := Expr_Value (Right_Opnd (Expr));
4302
4303 -- Case of expression is entity - known constant
4304
4305 elsif Nkind (Expr) = N_Op_Subtract
4306 and then Compile_Time_Known_Value (Right_Opnd (Expr))
4307 and then Is_Entity_Name (Left_Opnd (Expr))
4308 then
4309 Ent := Entity (Left_Opnd (Expr));
4310 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
4311
4312 -- Any other expression is not of the right form
4313
4314 else
4315 Ent := Empty;
4316 Ofs := Uint_0;
4317 Entry_OK := False;
4318 return;
4319 end if;
4320
feff2f05 4321 -- Come here with expression of appropriate form, check if entity is an
4322 -- appropriate one for our purposes.
9dfe12ae 4323
4324 if (Ekind (Ent) = E_Variable
cc60bd16 4325 or else Is_Constant_Object (Ent))
9dfe12ae 4326 and then not Is_Library_Level_Entity (Ent)
4327 then
4328 Entry_OK := True;
4329 else
4330 Entry_OK := False;
4331 return;
4332 end if;
4333
4334 -- See if there is matching check already
4335
4336 for J in reverse 1 .. Num_Saved_Checks loop
4337 declare
4338 SC : Saved_Check renames Saved_Checks (J);
4339
4340 begin
4341 if SC.Killed = False
4342 and then SC.Entity = Ent
4343 and then SC.Offset = Ofs
4344 and then SC.Check_Type = Check_Type
4345 and then Within_Range_Of (Target_Type, SC.Target_Type)
4346 then
4347 Check_Num := J;
4348 return;
4349 end if;
4350 end;
4351 end loop;
4352
4353 -- If we fall through entry was not found
4354
9dfe12ae 4355 return;
4356 end Find_Check;
4357
4358 ---------------------------------
4359 -- Generate_Discriminant_Check --
4360 ---------------------------------
4361
4362 -- Note: the code for this procedure is derived from the
feff2f05 4363 -- Emit_Discriminant_Check Routine in trans.c.
9dfe12ae 4364
4365 procedure Generate_Discriminant_Check (N : Node_Id) is
4366 Loc : constant Source_Ptr := Sloc (N);
4367 Pref : constant Node_Id := Prefix (N);
4368 Sel : constant Node_Id := Selector_Name (N);
4369
4370 Orig_Comp : constant Entity_Id :=
4371 Original_Record_Component (Entity (Sel));
4372 -- The original component to be checked
4373
4374 Discr_Fct : constant Entity_Id :=
4375 Discriminant_Checking_Func (Orig_Comp);
4376 -- The discriminant checking function
4377
4378 Discr : Entity_Id;
4379 -- One discriminant to be checked in the type
4380
4381 Real_Discr : Entity_Id;
4382 -- Actual discriminant in the call
4383
4384 Pref_Type : Entity_Id;
4385 -- Type of relevant prefix (ignoring private/access stuff)
4386
4387 Args : List_Id;
4388 -- List of arguments for function call
4389
4390 Formal : Entity_Id;
feff2f05 4391 -- Keep track of the formal corresponding to the actual we build for
4392 -- each discriminant, in order to be able to perform the necessary type
4393 -- conversions.
9dfe12ae 4394
4395 Scomp : Node_Id;
4396 -- Selected component reference for checking function argument
4397
4398 begin
4399 Pref_Type := Etype (Pref);
4400
4401 -- Force evaluation of the prefix, so that it does not get evaluated
4402 -- twice (once for the check, once for the actual reference). Such a
4403 -- double evaluation is always a potential source of inefficiency,
4404 -- and is functionally incorrect in the volatile case, or when the
4405 -- prefix may have side-effects. An entity or a component of an
4406 -- entity requires no evaluation.
4407
4408 if Is_Entity_Name (Pref) then
4409 if Treat_As_Volatile (Entity (Pref)) then
4410 Force_Evaluation (Pref, Name_Req => True);
4411 end if;
4412
4413 elsif Treat_As_Volatile (Etype (Pref)) then
4414 Force_Evaluation (Pref, Name_Req => True);
4415
4416 elsif Nkind (Pref) = N_Selected_Component
4417 and then Is_Entity_Name (Prefix (Pref))
4418 then
4419 null;
4420
4421 else
4422 Force_Evaluation (Pref, Name_Req => True);
4423 end if;
4424
4425 -- For a tagged type, use the scope of the original component to
4426 -- obtain the type, because ???
4427
4428 if Is_Tagged_Type (Scope (Orig_Comp)) then
4429 Pref_Type := Scope (Orig_Comp);
4430
feff2f05 4431 -- For an untagged derived type, use the discriminants of the parent
4432 -- which have been renamed in the derivation, possibly by a one-to-many
4433 -- discriminant constraint. For non-tagged type, initially get the Etype
4434 -- of the prefix
9dfe12ae 4435
4436 else
4437 if Is_Derived_Type (Pref_Type)
4438 and then Number_Discriminants (Pref_Type) /=
4439 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4440 then
4441 Pref_Type := Etype (Base_Type (Pref_Type));
4442 end if;
4443 end if;
4444
4445 -- We definitely should have a checking function, This routine should
4446 -- not be called if no discriminant checking function is present.
4447
4448 pragma Assert (Present (Discr_Fct));
4449
4450 -- Create the list of the actual parameters for the call. This list
4451 -- is the list of the discriminant fields of the record expression to
4452 -- be discriminant checked.
4453
4454 Args := New_List;
4455 Formal := First_Formal (Discr_Fct);
4456 Discr := First_Discriminant (Pref_Type);
4457 while Present (Discr) loop
4458
4459 -- If we have a corresponding discriminant field, and a parent
4460 -- subtype is present, then we want to use the corresponding
4461 -- discriminant since this is the one with the useful value.
4462
4463 if Present (Corresponding_Discriminant (Discr))
4464 and then Ekind (Pref_Type) = E_Record_Type
4465 and then Present (Parent_Subtype (Pref_Type))
4466 then
4467 Real_Discr := Corresponding_Discriminant (Discr);
4468 else
4469 Real_Discr := Discr;
4470 end if;
4471
4472 -- Construct the reference to the discriminant
4473
4474 Scomp :=
4475 Make_Selected_Component (Loc,
4476 Prefix =>
4477 Unchecked_Convert_To (Pref_Type,
4478 Duplicate_Subexpr (Pref)),
4479 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4480
4481 -- Manually analyze and resolve this selected component. We really
4482 -- want it just as it appears above, and do not want the expander
feff2f05 4483 -- playing discriminal games etc with this reference. Then we append
4484 -- the argument to the list we are gathering.
9dfe12ae 4485
4486 Set_Etype (Scomp, Etype (Real_Discr));
4487 Set_Analyzed (Scomp, True);
4488 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4489
4490 Next_Formal_With_Extras (Formal);
4491 Next_Discriminant (Discr);
4492 end loop;
4493
4494 -- Now build and insert the call
4495
4496 Insert_Action (N,
4497 Make_Raise_Constraint_Error (Loc,
4498 Condition =>
4499 Make_Function_Call (Loc,
4500 Name => New_Occurrence_Of (Discr_Fct, Loc),
4501 Parameter_Associations => Args),
4502 Reason => CE_Discriminant_Check_Failed));
4503 end Generate_Discriminant_Check;
4504
5c99c290 4505 ---------------------------
4506 -- Generate_Index_Checks --
4507 ---------------------------
9dfe12ae 4508
4509 procedure Generate_Index_Checks (N : Node_Id) is
4510 Loc : constant Source_Ptr := Sloc (N);
4511 A : constant Node_Id := Prefix (N);
4512 Sub : Node_Id;
4513 Ind : Nat;
4514 Num : List_Id;
4515
4516 begin
0577b0b1 4517 -- Ignore call if index checks suppressed for array object or type
4518
4519 if (Is_Entity_Name (A) and then Index_Checks_Suppressed (Entity (A)))
4520 or else Index_Checks_Suppressed (Etype (A))
4521 then
4522 return;
4523 end if;
4524
4525 -- Generate the checks
4526
9dfe12ae 4527 Sub := First (Expressions (N));
4528 Ind := 1;
4529 while Present (Sub) loop
4530 if Do_Range_Check (Sub) then
4531 Set_Do_Range_Check (Sub, False);
4532
feff2f05 4533 -- Force evaluation except for the case of a simple name of a
4534 -- non-volatile entity.
9dfe12ae 4535
4536 if not Is_Entity_Name (Sub)
4537 or else Treat_As_Volatile (Entity (Sub))
4538 then
4539 Force_Evaluation (Sub);
4540 end if;
4541
4542 -- Generate a raise of constraint error with the appropriate
4543 -- reason and a condition of the form:
4544
4545 -- Base_Type(Sub) not in array'range (subscript)
4546
feff2f05 4547 -- Note that the reason we generate the conversion to the base
4548 -- type here is that we definitely want the range check to take
4549 -- place, even if it looks like the subtype is OK. Optimization
4550 -- considerations that allow us to omit the check have already
4551 -- been taken into account in the setting of the Do_Range_Check
4552 -- flag earlier on.
9dfe12ae 4553
4554 if Ind = 1 then
4555 Num := No_List;
4556 else
4557 Num := New_List (Make_Integer_Literal (Loc, Ind));
4558 end if;
4559
4560 Insert_Action (N,
4561 Make_Raise_Constraint_Error (Loc,
4562 Condition =>
4563 Make_Not_In (Loc,
4564 Left_Opnd =>
4565 Convert_To (Base_Type (Etype (Sub)),
4566 Duplicate_Subexpr_Move_Checks (Sub)),
4567 Right_Opnd =>
4568 Make_Attribute_Reference (Loc,
cc60bd16 4569 Prefix =>
4570 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
9dfe12ae 4571 Attribute_Name => Name_Range,
4572 Expressions => Num)),
4573 Reason => CE_Index_Check_Failed));
4574 end if;
4575
4576 Ind := Ind + 1;
4577 Next (Sub);
4578 end loop;
4579 end Generate_Index_Checks;
4580
4581 --------------------------
4582 -- Generate_Range_Check --
4583 --------------------------
4584
4585 procedure Generate_Range_Check
4586 (N : Node_Id;
4587 Target_Type : Entity_Id;
4588 Reason : RT_Exception_Code)
4589 is
4590 Loc : constant Source_Ptr := Sloc (N);
4591 Source_Type : constant Entity_Id := Etype (N);
4592 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4593 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4594
4595 begin
feff2f05 4596 -- First special case, if the source type is already within the range
4597 -- of the target type, then no check is needed (probably we should have
4598 -- stopped Do_Range_Check from being set in the first place, but better
4599 -- late than later in preventing junk code!
9dfe12ae 4600
feff2f05 4601 -- We do NOT apply this if the source node is a literal, since in this
4602 -- case the literal has already been labeled as having the subtype of
4603 -- the target.
9dfe12ae 4604
7a1dabb3 4605 if In_Subrange_Of (Source_Type, Target_Type)
9dfe12ae 4606 and then not
4607 (Nkind (N) = N_Integer_Literal
4608 or else
4609 Nkind (N) = N_Real_Literal
4610 or else
4611 Nkind (N) = N_Character_Literal
4612 or else
4613 (Is_Entity_Name (N)
4614 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4615 then
4616 return;
4617 end if;
4618
4619 -- We need a check, so force evaluation of the node, so that it does
4620 -- not get evaluated twice (once for the check, once for the actual
4621 -- reference). Such a double evaluation is always a potential source
4622 -- of inefficiency, and is functionally incorrect in the volatile case.
4623
4624 if not Is_Entity_Name (N)
4625 or else Treat_As_Volatile (Entity (N))
4626 then
4627 Force_Evaluation (N);
4628 end if;
4629
feff2f05 4630 -- The easiest case is when Source_Base_Type and Target_Base_Type are
4631 -- the same since in this case we can simply do a direct check of the
4632 -- value of N against the bounds of Target_Type.
9dfe12ae 4633
4634 -- [constraint_error when N not in Target_Type]
4635
4636 -- Note: this is by far the most common case, for example all cases of
4637 -- checks on the RHS of assignments are in this category, but not all
4638 -- cases are like this. Notably conversions can involve two types.
4639
4640 if Source_Base_Type = Target_Base_Type then
4641 Insert_Action (N,
4642 Make_Raise_Constraint_Error (Loc,
4643 Condition =>
4644 Make_Not_In (Loc,
4645 Left_Opnd => Duplicate_Subexpr (N),
4646 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4647 Reason => Reason));
4648
4649 -- Next test for the case where the target type is within the bounds
4650 -- of the base type of the source type, since in this case we can
4651 -- simply convert these bounds to the base type of T to do the test.
4652
4653 -- [constraint_error when N not in
4654 -- Source_Base_Type (Target_Type'First)
4655 -- ..
4656 -- Source_Base_Type(Target_Type'Last))]
4657
f2a06be9 4658 -- The conversions will always work and need no check
9dfe12ae 4659
a9b57347 4660 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
4661 -- of converting from an enumeration value to an integer type, such as
4662 -- occurs for the case of generating a range check on Enum'Val(Exp)
4663 -- (which used to be handled by gigi). This is OK, since the conversion
4664 -- itself does not require a check.
4665
7a1dabb3 4666 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
9dfe12ae 4667 Insert_Action (N,
4668 Make_Raise_Constraint_Error (Loc,
4669 Condition =>
4670 Make_Not_In (Loc,
4671 Left_Opnd => Duplicate_Subexpr (N),
4672
4673 Right_Opnd =>
4674 Make_Range (Loc,
4675 Low_Bound =>
a9b57347 4676 Unchecked_Convert_To (Source_Base_Type,
9dfe12ae 4677 Make_Attribute_Reference (Loc,
4678 Prefix =>
4679 New_Occurrence_Of (Target_Type, Loc),
4680 Attribute_Name => Name_First)),
4681
4682 High_Bound =>
a9b57347 4683 Unchecked_Convert_To (Source_Base_Type,
9dfe12ae 4684 Make_Attribute_Reference (Loc,
4685 Prefix =>
4686 New_Occurrence_Of (Target_Type, Loc),
4687 Attribute_Name => Name_Last)))),
4688 Reason => Reason));
4689
feff2f05 4690 -- Note that at this stage we now that the Target_Base_Type is not in
4691 -- the range of the Source_Base_Type (since even the Target_Type itself
4692 -- is not in this range). It could still be the case that Source_Type is
4693 -- in range of the target base type since we have not checked that case.
9dfe12ae 4694
feff2f05 4695 -- If that is the case, we can freely convert the source to the target,
4696 -- and then test the target result against the bounds.
9dfe12ae 4697
7a1dabb3 4698 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
9dfe12ae 4699
feff2f05 4700 -- We make a temporary to hold the value of the converted value
4701 -- (converted to the base type), and then we will do the test against
4702 -- this temporary.
9dfe12ae 4703
4704 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4705 -- [constraint_error when Tnn not in Target_Type]
4706
4707 -- Then the conversion itself is replaced by an occurrence of Tnn
4708
4709 declare
46eb6933 4710 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 4711
4712 begin
4713 Insert_Actions (N, New_List (
4714 Make_Object_Declaration (Loc,
4715 Defining_Identifier => Tnn,
4716 Object_Definition =>
4717 New_Occurrence_Of (Target_Base_Type, Loc),
4718 Constant_Present => True,
4719 Expression =>
4720 Make_Type_Conversion (Loc,
4721 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4722 Expression => Duplicate_Subexpr (N))),
4723
4724 Make_Raise_Constraint_Error (Loc,
4725 Condition =>
4726 Make_Not_In (Loc,
4727 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4728 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4729
4730 Reason => Reason)));
4731
4732 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
2af58f67 4733
4734 -- Set the type of N, because the declaration for Tnn might not
4735 -- be analyzed yet, as is the case if N appears within a record
4736 -- declaration, as a discriminant constraint or expression.
4737
4738 Set_Etype (N, Target_Base_Type);
9dfe12ae 4739 end;
4740
4741 -- At this stage, we know that we have two scalar types, which are
4742 -- directly convertible, and where neither scalar type has a base
4743 -- range that is in the range of the other scalar type.
4744
4745 -- The only way this can happen is with a signed and unsigned type.
4746 -- So test for these two cases:
4747
4748 else
4749 -- Case of the source is unsigned and the target is signed
4750
4751 if Is_Unsigned_Type (Source_Base_Type)
4752 and then not Is_Unsigned_Type (Target_Base_Type)
4753 then
4754 -- If the source is unsigned and the target is signed, then we
4755 -- know that the source is not shorter than the target (otherwise
4756 -- the source base type would be in the target base type range).
4757
feff2f05 4758 -- In other words, the unsigned type is either the same size as
4759 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 4760
4761 pragma Assert
4762 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4763
4764 -- We only need to check the low bound if the low bound of the
4765 -- target type is non-negative. If the low bound of the target
4766 -- type is negative, then we know that we will fit fine.
4767
4768 -- If the high bound of the target type is negative, then we
4769 -- know we have a constraint error, since we can't possibly
4770 -- have a negative source.
4771
4772 -- With these two checks out of the way, we can do the check
4773 -- using the source type safely
4774
4775 -- This is definitely the most annoying case!
4776
4777 -- [constraint_error
4778 -- when (Target_Type'First >= 0
4779 -- and then
4780 -- N < Source_Base_Type (Target_Type'First))
4781 -- or else Target_Type'Last < 0
4782 -- or else N > Source_Base_Type (Target_Type'Last)];
4783
4784 -- We turn off all checks since we know that the conversions
4785 -- will work fine, given the guards for negative values.
4786
4787 Insert_Action (N,
4788 Make_Raise_Constraint_Error (Loc,
4789 Condition =>
4790 Make_Or_Else (Loc,
4791 Make_Or_Else (Loc,
4792 Left_Opnd =>
4793 Make_And_Then (Loc,
4794 Left_Opnd => Make_Op_Ge (Loc,
4795 Left_Opnd =>
4796 Make_Attribute_Reference (Loc,
4797 Prefix =>
4798 New_Occurrence_Of (Target_Type, Loc),
4799 Attribute_Name => Name_First),
4800 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4801
4802 Right_Opnd =>
4803 Make_Op_Lt (Loc,
4804 Left_Opnd => Duplicate_Subexpr (N),
4805 Right_Opnd =>
4806 Convert_To (Source_Base_Type,
4807 Make_Attribute_Reference (Loc,
4808 Prefix =>
4809 New_Occurrence_Of (Target_Type, Loc),
4810 Attribute_Name => Name_First)))),
4811
4812 Right_Opnd =>
4813 Make_Op_Lt (Loc,
4814 Left_Opnd =>
4815 Make_Attribute_Reference (Loc,
4816 Prefix => New_Occurrence_Of (Target_Type, Loc),
4817 Attribute_Name => Name_Last),
4818 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4819
4820 Right_Opnd =>
4821 Make_Op_Gt (Loc,
4822 Left_Opnd => Duplicate_Subexpr (N),
4823 Right_Opnd =>
4824 Convert_To (Source_Base_Type,
4825 Make_Attribute_Reference (Loc,
4826 Prefix => New_Occurrence_Of (Target_Type, Loc),
4827 Attribute_Name => Name_Last)))),
4828
4829 Reason => Reason),
4830 Suppress => All_Checks);
4831
4832 -- Only remaining possibility is that the source is signed and
fc75802a 4833 -- the target is unsigned.
9dfe12ae 4834
4835 else
4836 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4837 and then Is_Unsigned_Type (Target_Base_Type));
4838
feff2f05 4839 -- If the source is signed and the target is unsigned, then we
4840 -- know that the target is not shorter than the source (otherwise
4841 -- the target base type would be in the source base type range).
9dfe12ae 4842
feff2f05 4843 -- In other words, the unsigned type is either the same size as
4844 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 4845
feff2f05 4846 -- Clearly we have an error if the source value is negative since
4847 -- no unsigned type can have negative values. If the source type
4848 -- is non-negative, then the check can be done using the target
4849 -- type.
9dfe12ae 4850
4851 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4852
4853 -- [constraint_error
4854 -- when N < 0 or else Tnn not in Target_Type];
4855
feff2f05 4856 -- We turn off all checks for the conversion of N to the target
4857 -- base type, since we generate the explicit check to ensure that
4858 -- the value is non-negative
9dfe12ae 4859
4860 declare
46eb6933 4861 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 4862
4863 begin
4864 Insert_Actions (N, New_List (
4865 Make_Object_Declaration (Loc,
4866 Defining_Identifier => Tnn,
4867 Object_Definition =>
4868 New_Occurrence_Of (Target_Base_Type, Loc),
4869 Constant_Present => True,
4870 Expression =>
a9b57347 4871 Make_Unchecked_Type_Conversion (Loc,
9dfe12ae 4872 Subtype_Mark =>
4873 New_Occurrence_Of (Target_Base_Type, Loc),
4874 Expression => Duplicate_Subexpr (N))),
4875
4876 Make_Raise_Constraint_Error (Loc,
4877 Condition =>
4878 Make_Or_Else (Loc,
4879 Left_Opnd =>
4880 Make_Op_Lt (Loc,
4881 Left_Opnd => Duplicate_Subexpr (N),
4882 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4883
4884 Right_Opnd =>
4885 Make_Not_In (Loc,
4886 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4887 Right_Opnd =>
4888 New_Occurrence_Of (Target_Type, Loc))),
4889
4890 Reason => Reason)),
4891 Suppress => All_Checks);
4892
feff2f05 4893 -- Set the Etype explicitly, because Insert_Actions may have
4894 -- placed the declaration in the freeze list for an enclosing
4895 -- construct, and thus it is not analyzed yet.
9dfe12ae 4896
4897 Set_Etype (Tnn, Target_Base_Type);
4898 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4899 end;
4900 end if;
4901 end if;
4902 end Generate_Range_Check;
4903
2af58f67 4904 ------------------
4905 -- Get_Check_Id --
4906 ------------------
4907
4908 function Get_Check_Id (N : Name_Id) return Check_Id is
4909 begin
4910 -- For standard check name, we can do a direct computation
4911
4912 if N in First_Check_Name .. Last_Check_Name then
4913 return Check_Id (N - (First_Check_Name - 1));
4914
4915 -- For non-standard names added by pragma Check_Name, search table
4916
4917 else
4918 for J in All_Checks + 1 .. Check_Names.Last loop
4919 if Check_Names.Table (J) = N then
4920 return J;
4921 end if;
4922 end loop;
4923 end if;
4924
4925 -- No matching name found
4926
4927 return No_Check_Id;
4928 end Get_Check_Id;
4929
ee6ba406 4930 ---------------------
4931 -- Get_Discriminal --
4932 ---------------------
4933
4934 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4935 Loc : constant Source_Ptr := Sloc (E);
4936 D : Entity_Id;
4937 Sc : Entity_Id;
4938
4939 begin
0577b0b1 4940 -- The bound can be a bona fide parameter of a protected operation,
4941 -- rather than a prival encoded as an in-parameter.
4942
4943 if No (Discriminal_Link (Entity (Bound))) then
4944 return Bound;
4945 end if;
4946
2af58f67 4947 -- Climb the scope stack looking for an enclosing protected type. If
4948 -- we run out of scopes, return the bound itself.
4949
4950 Sc := Scope (E);
4951 while Present (Sc) loop
4952 if Sc = Standard_Standard then
4953 return Bound;
4954
4955 elsif Ekind (Sc) = E_Protected_Type then
4956 exit;
4957 end if;
4958
4959 Sc := Scope (Sc);
4960 end loop;
4961
ee6ba406 4962 D := First_Discriminant (Sc);
2af58f67 4963 while Present (D) loop
4964 if Chars (D) = Chars (Bound) then
4965 return New_Occurrence_Of (Discriminal (D), Loc);
4966 end if;
ee6ba406 4967
ee6ba406 4968 Next_Discriminant (D);
4969 end loop;
4970
2af58f67 4971 return Bound;
ee6ba406 4972 end Get_Discriminal;
4973
2af58f67 4974 ----------------------
4975 -- Get_Range_Checks --
4976 ----------------------
4977
4978 function Get_Range_Checks
4979 (Ck_Node : Node_Id;
4980 Target_Typ : Entity_Id;
4981 Source_Typ : Entity_Id := Empty;
4982 Warn_Node : Node_Id := Empty) return Check_Result
4983 is
4984 begin
4985 return Selected_Range_Checks
4986 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4987 end Get_Range_Checks;
4988
ee6ba406 4989 ------------------
4990 -- Guard_Access --
4991 ------------------
4992
4993 function Guard_Access
4994 (Cond : Node_Id;
4995 Loc : Source_Ptr;
314a23b6 4996 Ck_Node : Node_Id) return Node_Id
ee6ba406 4997 is
4998 begin
4999 if Nkind (Cond) = N_Or_Else then
5000 Set_Paren_Count (Cond, 1);
5001 end if;
5002
5003 if Nkind (Ck_Node) = N_Allocator then
5004 return Cond;
5005 else
5006 return
5007 Make_And_Then (Loc,
5008 Left_Opnd =>
5009 Make_Op_Ne (Loc,
9dfe12ae 5010 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
ee6ba406 5011 Right_Opnd => Make_Null (Loc)),
5012 Right_Opnd => Cond);
5013 end if;
5014 end Guard_Access;
5015
5016 -----------------------------
5017 -- Index_Checks_Suppressed --
5018 -----------------------------
5019
5020 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
5021 begin
9dfe12ae 5022 if Present (E) and then Checks_May_Be_Suppressed (E) then
5023 return Is_Check_Suppressed (E, Index_Check);
5024 else
5025 return Scope_Suppress (Index_Check);
5026 end if;
ee6ba406 5027 end Index_Checks_Suppressed;
5028
5029 ----------------
5030 -- Initialize --
5031 ----------------
5032
5033 procedure Initialize is
5034 begin
5035 for J in Determine_Range_Cache_N'Range loop
5036 Determine_Range_Cache_N (J) := Empty;
5037 end loop;
2af58f67 5038
5039 Check_Names.Init;
5040
5041 for J in Int range 1 .. All_Checks loop
5042 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
5043 end loop;
ee6ba406 5044 end Initialize;
5045
5046 -------------------------
5047 -- Insert_Range_Checks --
5048 -------------------------
5049
5050 procedure Insert_Range_Checks
5051 (Checks : Check_Result;
5052 Node : Node_Id;
5053 Suppress_Typ : Entity_Id;
5054 Static_Sloc : Source_Ptr := No_Location;
5055 Flag_Node : Node_Id := Empty;
5056 Do_Before : Boolean := False)
5057 is
5058 Internal_Flag_Node : Node_Id := Flag_Node;
5059 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
5060
5061 Check_Node : Node_Id;
5062 Checks_On : constant Boolean :=
5063 (not Index_Checks_Suppressed (Suppress_Typ))
5064 or else
5065 (not Range_Checks_Suppressed (Suppress_Typ));
5066
5067 begin
feff2f05 5068 -- For now we just return if Checks_On is false, however this should be
5069 -- enhanced to check for an always True value in the condition and to
5070 -- generate a compilation warning???
ee6ba406 5071
5072 if not Expander_Active or else not Checks_On then
5073 return;
5074 end if;
5075
5076 if Static_Sloc = No_Location then
5077 Internal_Static_Sloc := Sloc (Node);
5078 end if;
5079
5080 if No (Flag_Node) then
5081 Internal_Flag_Node := Node;
5082 end if;
5083
5084 for J in 1 .. 2 loop
5085 exit when No (Checks (J));
5086
5087 if Nkind (Checks (J)) = N_Raise_Constraint_Error
5088 and then Present (Condition (Checks (J)))
5089 then
5090 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
5091 Check_Node := Checks (J);
5092 Mark_Rewrite_Insertion (Check_Node);
5093
5094 if Do_Before then
5095 Insert_Before_And_Analyze (Node, Check_Node);
5096 else
5097 Insert_After_And_Analyze (Node, Check_Node);
5098 end if;
5099
5100 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
5101 end if;
5102
5103 else
5104 Check_Node :=
f15731c4 5105 Make_Raise_Constraint_Error (Internal_Static_Sloc,
5106 Reason => CE_Range_Check_Failed);
ee6ba406 5107 Mark_Rewrite_Insertion (Check_Node);
5108
5109 if Do_Before then
5110 Insert_Before_And_Analyze (Node, Check_Node);
5111 else
5112 Insert_After_And_Analyze (Node, Check_Node);
5113 end if;
5114 end if;
5115 end loop;
5116 end Insert_Range_Checks;
5117
5118 ------------------------
5119 -- Insert_Valid_Check --
5120 ------------------------
5121
5122 procedure Insert_Valid_Check (Expr : Node_Id) is
5123 Loc : constant Source_Ptr := Sloc (Expr);
8b718dab 5124 Exp : Node_Id;
ee6ba406 5125
5126 begin
06ad5813 5127 -- Do not insert if checks off, or if not checking validity or
5128 -- if expression is known to be valid
ee6ba406 5129
0577b0b1 5130 if not Validity_Checks_On
5131 or else Range_Or_Validity_Checks_Suppressed (Expr)
06ad5813 5132 or else Expr_Known_Valid (Expr)
ee6ba406 5133 then
8b718dab 5134 return;
5135 end if;
ee6ba406 5136
8b718dab 5137 -- If we have a checked conversion, then validity check applies to
5138 -- the expression inside the conversion, not the result, since if
5139 -- the expression inside is valid, then so is the conversion result.
ee6ba406 5140
8b718dab 5141 Exp := Expr;
5142 while Nkind (Exp) = N_Type_Conversion loop
5143 Exp := Expression (Exp);
5144 end loop;
5145
0577b0b1 5146 -- We are about to insert the validity check for Exp. We save and
5147 -- reset the Do_Range_Check flag over this validity check, and then
5148 -- put it back for the final original reference (Exp may be rewritten).
5149
5150 declare
5151 DRC : constant Boolean := Do_Range_Check (Exp);
05fcfafb 5152
0577b0b1 5153 begin
5154 Set_Do_Range_Check (Exp, False);
5155
06ad5813 5156 -- Force evaluation to avoid multiple reads for atomic/volatile
5157
5158 if Is_Entity_Name (Exp)
5159 and then Is_Volatile (Entity (Exp))
5160 then
5161 Force_Evaluation (Exp, Name_Req => True);
5162 end if;
5163
0577b0b1 5164 -- Insert the validity check. Note that we do this with validity
5165 -- checks turned off, to avoid recursion, we do not want validity
5166 -- checks on the validity checking code itself!
5167
5168 Insert_Action
5169 (Expr,
5170 Make_Raise_Constraint_Error (Loc,
5171 Condition =>
5172 Make_Op_Not (Loc,
5173 Right_Opnd =>
5174 Make_Attribute_Reference (Loc,
5175 Prefix =>
5176 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
5177 Attribute_Name => Name_Valid)),
5178 Reason => CE_Invalid_Data),
5179 Suppress => Validity_Check);
5180
5181 -- If the expression is a a reference to an element of a bit-packed
5182 -- array, then it is rewritten as a renaming declaration. If the
5183 -- expression is an actual in a call, it has not been expanded,
5184 -- waiting for the proper point at which to do it. The same happens
5185 -- with renamings, so that we have to force the expansion now. This
5186 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
5187 -- and exp_ch6.adb.
5188
5189 if Is_Entity_Name (Exp)
5190 and then Nkind (Parent (Entity (Exp))) =
5191 N_Object_Renaming_Declaration
5192 then
5193 declare
5194 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
5195 begin
5196 if Nkind (Old_Exp) = N_Indexed_Component
5197 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
5198 then
5199 Expand_Packed_Element_Reference (Old_Exp);
5200 end if;
5201 end;
5202 end if;
5203
5204 -- Put back the Do_Range_Check flag on the resulting (possibly
5205 -- rewritten) expression.
5206
5207 -- Note: it might be thought that a validity check is not required
5208 -- when a range check is present, but that's not the case, because
5209 -- the back end is allowed to assume for the range check that the
5210 -- operand is within its declared range (an assumption that validity
5211 -- checking is all about NOT assuming!)
5212
00c403ee 5213 -- Note: no need to worry about Possible_Local_Raise here, it will
5214 -- already have been called if original node has Do_Range_Check set.
5215
0577b0b1 5216 Set_Do_Range_Check (Exp, DRC);
5217 end;
ee6ba406 5218 end Insert_Valid_Check;
5219
fa7497e8 5220 ----------------------------------
5221 -- Install_Null_Excluding_Check --
5222 ----------------------------------
5223
5224 procedure Install_Null_Excluding_Check (N : Node_Id) is
84d0d4a5 5225 Loc : constant Source_Ptr := Sloc (N);
5226 Typ : constant Entity_Id := Etype (N);
5227
7b31b357 5228 function Safe_To_Capture_In_Parameter_Value return Boolean;
5229 -- Determines if it is safe to capture Known_Non_Null status for an
5230 -- the entity referenced by node N. The caller ensures that N is indeed
5231 -- an entity name. It is safe to capture the non-null status for an IN
5232 -- parameter when the reference occurs within a declaration that is sure
5233 -- to be executed as part of the declarative region.
7870823d 5234
84d0d4a5 5235 procedure Mark_Non_Null;
7870823d 5236 -- After installation of check, if the node in question is an entity
5237 -- name, then mark this entity as non-null if possible.
5238
7b31b357 5239 function Safe_To_Capture_In_Parameter_Value return Boolean is
7870823d 5240 E : constant Entity_Id := Entity (N);
5241 S : constant Entity_Id := Current_Scope;
5242 S_Par : Node_Id;
5243
5244 begin
7b31b357 5245 if Ekind (E) /= E_In_Parameter then
5246 return False;
5247 end if;
7870823d 5248
5249 -- Two initial context checks. We must be inside a subprogram body
5250 -- with declarations and reference must not appear in nested scopes.
5251
7b31b357 5252 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7870823d 5253 or else Scope (E) /= S
5254 then
5255 return False;
5256 end if;
5257
5258 S_Par := Parent (Parent (S));
5259
5260 if Nkind (S_Par) /= N_Subprogram_Body
5261 or else No (Declarations (S_Par))
5262 then
5263 return False;
5264 end if;
5265
5266 declare
5267 N_Decl : Node_Id;
5268 P : Node_Id;
5269
5270 begin
5271 -- Retrieve the declaration node of N (if any). Note that N
5272 -- may be a part of a complex initialization expression.
5273
5274 P := Parent (N);
5275 N_Decl := Empty;
5276 while Present (P) loop
5277
7b31b357 5278 -- If we have a short circuit form, and we are within the right
5279 -- hand expression, we return false, since the right hand side
5280 -- is not guaranteed to be elaborated.
5281
5282 if Nkind (P) in N_Short_Circuit
5283 and then N = Right_Opnd (P)
5284 then
5285 return False;
5286 end if;
5287
5288 -- Similarly, if we are in a conditional expression and not
5289 -- part of the condition, then we return False, since neither
5290 -- the THEN or ELSE expressions will always be elaborated.
5291
5292 if Nkind (P) = N_Conditional_Expression
5293 and then N /= First (Expressions (P))
5294 then
5295 return False;
e977c0cf 5296 end if;
5297
5298 -- If we are in a case eexpression, and not part of the
5299 -- expression, then we return False, since a particular
5300 -- branch may not always be elaborated
5301
5302 if Nkind (P) = N_Case_Expression
5303 and then N /= Expression (P)
5304 then
5305 return False;
7b31b357 5306 end if;
5307
7870823d 5308 -- While traversing the parent chain, we find that N
5309 -- belongs to a statement, thus it may never appear in
5310 -- a declarative region.
5311
5312 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
5313 or else Nkind (P) = N_Procedure_Call_Statement
5314 then
5315 return False;
5316 end if;
5317
7b31b357 5318 -- If we are at a declaration, record it and exit
5319
7870823d 5320 if Nkind (P) in N_Declaration
5321 and then Nkind (P) not in N_Subprogram_Specification
5322 then
5323 N_Decl := P;
5324 exit;
5325 end if;
5326
5327 P := Parent (P);
5328 end loop;
5329
5330 if No (N_Decl) then
5331 return False;
5332 end if;
5333
5334 return List_Containing (N_Decl) = Declarations (S_Par);
5335 end;
7b31b357 5336 end Safe_To_Capture_In_Parameter_Value;
84d0d4a5 5337
5338 -------------------
5339 -- Mark_Non_Null --
5340 -------------------
5341
5342 procedure Mark_Non_Null is
5343 begin
7870823d 5344 -- Only case of interest is if node N is an entity name
5345
84d0d4a5 5346 if Is_Entity_Name (N) then
7870823d 5347
5348 -- For sure, we want to clear an indication that this is known to
5349 -- be null, since if we get past this check, it definitely is not!
5350
84d0d4a5 5351 Set_Is_Known_Null (Entity (N), False);
5352
7870823d 5353 -- We can mark the entity as known to be non-null if either it is
5354 -- safe to capture the value, or in the case of an IN parameter,
5355 -- which is a constant, if the check we just installed is in the
5356 -- declarative region of the subprogram body. In this latter case,
7b31b357 5357 -- a check is decisive for the rest of the body if the expression
5358 -- is sure to be elaborated, since we know we have to elaborate
5359 -- all declarations before executing the body.
5360
5361 -- Couldn't this always be part of Safe_To_Capture_Value ???
7870823d 5362
5363 if Safe_To_Capture_Value (N, Entity (N))
7b31b357 5364 or else Safe_To_Capture_In_Parameter_Value
7870823d 5365 then
5366 Set_Is_Known_Non_Null (Entity (N));
84d0d4a5 5367 end if;
5368 end if;
5369 end Mark_Non_Null;
5370
5371 -- Start of processing for Install_Null_Excluding_Check
fa7497e8 5372
5373 begin
84d0d4a5 5374 pragma Assert (Is_Access_Type (Typ));
fa7497e8 5375
84d0d4a5 5376 -- No check inside a generic (why not???)
fa7497e8 5377
84d0d4a5 5378 if Inside_A_Generic then
fa7497e8 5379 return;
84d0d4a5 5380 end if;
5381
5382 -- No check needed if known to be non-null
5383
5384 if Known_Non_Null (N) then
05fcfafb 5385 return;
84d0d4a5 5386 end if;
fa7497e8 5387
84d0d4a5 5388 -- If known to be null, here is where we generate a compile time check
5389
5390 if Known_Null (N) then
d16989f1 5391
5392 -- Avoid generating warning message inside init procs
5393
5394 if not Inside_Init_Proc then
5395 Apply_Compile_Time_Constraint_Error
5396 (N,
5397 "null value not allowed here?",
5398 CE_Access_Check_Failed);
5399 else
5400 Insert_Action (N,
5401 Make_Raise_Constraint_Error (Loc,
5402 Reason => CE_Access_Check_Failed));
5403 end if;
5404
84d0d4a5 5405 Mark_Non_Null;
5406 return;
5407 end if;
5408
5409 -- If entity is never assigned, for sure a warning is appropriate
5410
5411 if Is_Entity_Name (N) then
5412 Check_Unset_Reference (N);
fa7497e8 5413 end if;
84d0d4a5 5414
5415 -- No check needed if checks are suppressed on the range. Note that we
5416 -- don't set Is_Known_Non_Null in this case (we could legitimately do
5417 -- so, since the program is erroneous, but we don't like to casually
5418 -- propagate such conclusions from erroneosity).
5419
5420 if Access_Checks_Suppressed (Typ) then
5421 return;
5422 end if;
5423
2af58f67 5424 -- No check needed for access to concurrent record types generated by
5425 -- the expander. This is not just an optimization (though it does indeed
5426 -- remove junk checks). It also avoids generation of junk warnings.
5427
5428 if Nkind (N) in N_Has_Chars
5429 and then Chars (N) = Name_uObject
5430 and then Is_Concurrent_Record_Type
5431 (Directly_Designated_Type (Etype (N)))
5432 then
5433 return;
5434 end if;
5435
84d0d4a5 5436 -- Otherwise install access check
5437
5438 Insert_Action (N,
5439 Make_Raise_Constraint_Error (Loc,
5440 Condition =>
5441 Make_Op_Eq (Loc,
5442 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
5443 Right_Opnd => Make_Null (Loc)),
5444 Reason => CE_Access_Check_Failed));
5445
5446 Mark_Non_Null;
fa7497e8 5447 end Install_Null_Excluding_Check;
5448
ee6ba406 5449 --------------------------
5450 -- Install_Static_Check --
5451 --------------------------
5452
5453 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
5454 Stat : constant Boolean := Is_Static_Expression (R_Cno);
5455 Typ : constant Entity_Id := Etype (R_Cno);
5456
5457 begin
f15731c4 5458 Rewrite (R_Cno,
5459 Make_Raise_Constraint_Error (Loc,
5460 Reason => CE_Range_Check_Failed));
ee6ba406 5461 Set_Analyzed (R_Cno);
5462 Set_Etype (R_Cno, Typ);
5463 Set_Raises_Constraint_Error (R_Cno);
5464 Set_Is_Static_Expression (R_Cno, Stat);
840ab274 5465
5466 -- Now deal with possible local raise handling
5467
5468 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
ee6ba406 5469 end Install_Static_Check;
5470
9dfe12ae 5471 ---------------------
5472 -- Kill_All_Checks --
5473 ---------------------
5474
5475 procedure Kill_All_Checks is
5476 begin
5477 if Debug_Flag_CC then
5478 w ("Kill_All_Checks");
5479 end if;
5480
feff2f05 5481 -- We reset the number of saved checks to zero, and also modify all
5482 -- stack entries for statement ranges to indicate that the number of
5483 -- checks at each level is now zero.
9dfe12ae 5484
5485 Num_Saved_Checks := 0;
5486
96da3284 5487 -- Note: the Int'Min here avoids any possibility of J being out of
5488 -- range when called from e.g. Conditional_Statements_Begin.
5489
5490 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
9dfe12ae 5491 Saved_Checks_Stack (J) := 0;
5492 end loop;
5493 end Kill_All_Checks;
5494
5495 -----------------
5496 -- Kill_Checks --
5497 -----------------
5498
5499 procedure Kill_Checks (V : Entity_Id) is
5500 begin
5501 if Debug_Flag_CC then
5502 w ("Kill_Checks for entity", Int (V));
5503 end if;
5504
5505 for J in 1 .. Num_Saved_Checks loop
5506 if Saved_Checks (J).Entity = V then
5507 if Debug_Flag_CC then
5508 w (" Checks killed for saved check ", J);
5509 end if;
5510
5511 Saved_Checks (J).Killed := True;
5512 end if;
5513 end loop;
5514 end Kill_Checks;
5515
ee6ba406 5516 ------------------------------
5517 -- Length_Checks_Suppressed --
5518 ------------------------------
5519
5520 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
5521 begin
9dfe12ae 5522 if Present (E) and then Checks_May_Be_Suppressed (E) then
5523 return Is_Check_Suppressed (E, Length_Check);
5524 else
5525 return Scope_Suppress (Length_Check);
5526 end if;
ee6ba406 5527 end Length_Checks_Suppressed;
5528
5529 --------------------------------
5530 -- Overflow_Checks_Suppressed --
5531 --------------------------------
5532
5533 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
5534 begin
9dfe12ae 5535 if Present (E) and then Checks_May_Be_Suppressed (E) then
5536 return Is_Check_Suppressed (E, Overflow_Check);
5537 else
5538 return Scope_Suppress (Overflow_Check);
5539 end if;
ee6ba406 5540 end Overflow_Checks_Suppressed;
fc75802a 5541
ee6ba406 5542 -----------------------------
5543 -- Range_Checks_Suppressed --
5544 -----------------------------
5545
5546 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
5547 begin
9dfe12ae 5548 if Present (E) then
5549
5550 -- Note: for now we always suppress range checks on Vax float types,
5551 -- since Gigi does not know how to generate these checks.
5552
5553 if Vax_Float (E) then
5554 return True;
5555 elsif Kill_Range_Checks (E) then
5556 return True;
5557 elsif Checks_May_Be_Suppressed (E) then
5558 return Is_Check_Suppressed (E, Range_Check);
5559 end if;
5560 end if;
ee6ba406 5561
9dfe12ae 5562 return Scope_Suppress (Range_Check);
ee6ba406 5563 end Range_Checks_Suppressed;
5564
0577b0b1 5565 -----------------------------------------
5566 -- Range_Or_Validity_Checks_Suppressed --
5567 -----------------------------------------
5568
5569 -- Note: the coding would be simpler here if we simply made appropriate
5570 -- calls to Range/Validity_Checks_Suppressed, but that would result in
5571 -- duplicated checks which we prefer to avoid.
5572
5573 function Range_Or_Validity_Checks_Suppressed
5574 (Expr : Node_Id) return Boolean
5575 is
5576 begin
5577 -- Immediate return if scope checks suppressed for either check
5578
5579 if Scope_Suppress (Range_Check) or Scope_Suppress (Validity_Check) then
5580 return True;
5581 end if;
5582
5583 -- If no expression, that's odd, decide that checks are suppressed,
5584 -- since we don't want anyone trying to do checks in this case, which
5585 -- is most likely the result of some other error.
5586
5587 if No (Expr) then
5588 return True;
5589 end if;
5590
5591 -- Expression is present, so perform suppress checks on type
5592
5593 declare
5594 Typ : constant Entity_Id := Etype (Expr);
5595 begin
5596 if Vax_Float (Typ) then
5597 return True;
5598 elsif Checks_May_Be_Suppressed (Typ)
5599 and then (Is_Check_Suppressed (Typ, Range_Check)
5600 or else
5601 Is_Check_Suppressed (Typ, Validity_Check))
5602 then
5603 return True;
5604 end if;
5605 end;
5606
5607 -- If expression is an entity name, perform checks on this entity
5608
5609 if Is_Entity_Name (Expr) then
5610 declare
5611 Ent : constant Entity_Id := Entity (Expr);
5612 begin
5613 if Checks_May_Be_Suppressed (Ent) then
5614 return Is_Check_Suppressed (Ent, Range_Check)
5615 or else Is_Check_Suppressed (Ent, Validity_Check);
5616 end if;
5617 end;
5618 end if;
5619
5620 -- If we fall through, no checks suppressed
5621
5622 return False;
5623 end Range_Or_Validity_Checks_Suppressed;
5624
226494a3 5625 -------------------
5626 -- Remove_Checks --
5627 -------------------
5628
5629 procedure Remove_Checks (Expr : Node_Id) is
226494a3 5630 function Process (N : Node_Id) return Traverse_Result;
5631 -- Process a single node during the traversal
5632
8f6e4fd5 5633 procedure Traverse is new Traverse_Proc (Process);
5634 -- The traversal procedure itself
226494a3 5635
5636 -------------
5637 -- Process --
5638 -------------
5639
5640 function Process (N : Node_Id) return Traverse_Result is
5641 begin
5642 if Nkind (N) not in N_Subexpr then
5643 return Skip;
5644 end if;
5645
5646 Set_Do_Range_Check (N, False);
5647
5648 case Nkind (N) is
5649 when N_And_Then =>
8f6e4fd5 5650 Traverse (Left_Opnd (N));
226494a3 5651 return Skip;
5652
5653 when N_Attribute_Reference =>
226494a3 5654 Set_Do_Overflow_Check (N, False);
5655
226494a3 5656 when N_Function_Call =>
5657 Set_Do_Tag_Check (N, False);
5658
226494a3 5659 when N_Op =>
5660 Set_Do_Overflow_Check (N, False);
5661
5662 case Nkind (N) is
5663 when N_Op_Divide =>
5664 Set_Do_Division_Check (N, False);
5665
5666 when N_Op_And =>
5667 Set_Do_Length_Check (N, False);
5668
5669 when N_Op_Mod =>
5670 Set_Do_Division_Check (N, False);
5671
5672 when N_Op_Or =>
5673 Set_Do_Length_Check (N, False);
5674
5675 when N_Op_Rem =>
5676 Set_Do_Division_Check (N, False);
5677
5678 when N_Op_Xor =>
5679 Set_Do_Length_Check (N, False);
5680
5681 when others =>
5682 null;
5683 end case;
5684
5685 when N_Or_Else =>
8f6e4fd5 5686 Traverse (Left_Opnd (N));
226494a3 5687 return Skip;
5688
5689 when N_Selected_Component =>
226494a3 5690 Set_Do_Discriminant_Check (N, False);
5691
226494a3 5692 when N_Type_Conversion =>
9dfe12ae 5693 Set_Do_Length_Check (N, False);
5694 Set_Do_Tag_Check (N, False);
226494a3 5695 Set_Do_Overflow_Check (N, False);
226494a3 5696
5697 when others =>
5698 null;
5699 end case;
5700
5701 return OK;
5702 end Process;
5703
5704 -- Start of processing for Remove_Checks
5705
5706 begin
8f6e4fd5 5707 Traverse (Expr);
226494a3 5708 end Remove_Checks;
5709
ee6ba406 5710 ----------------------------
5711 -- Selected_Length_Checks --
5712 ----------------------------
5713
5714 function Selected_Length_Checks
5715 (Ck_Node : Node_Id;
5716 Target_Typ : Entity_Id;
5717 Source_Typ : Entity_Id;
314a23b6 5718 Warn_Node : Node_Id) return Check_Result
ee6ba406 5719 is
5720 Loc : constant Source_Ptr := Sloc (Ck_Node);
5721 S_Typ : Entity_Id;
5722 T_Typ : Entity_Id;
5723 Expr_Actual : Node_Id;
5724 Exptyp : Entity_Id;
5725 Cond : Node_Id := Empty;
5726 Do_Access : Boolean := False;
5727 Wnode : Node_Id := Warn_Node;
5728 Ret_Result : Check_Result := (Empty, Empty);
5729 Num_Checks : Natural := 0;
5730
5731 procedure Add_Check (N : Node_Id);
5732 -- Adds the action given to Ret_Result if N is non-Empty
5733
5734 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
5735 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
314a23b6 5736 -- Comments required ???
ee6ba406 5737
5738 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
5739 -- True for equal literals and for nodes that denote the same constant
5f260d20 5740 -- entity, even if its value is not a static constant. This includes the
9dfe12ae 5741 -- case of a discriminal reference within an init proc. Removes some
5f260d20 5742 -- obviously superfluous checks.
ee6ba406 5743
5744 function Length_E_Cond
5745 (Exptyp : Entity_Id;
5746 Typ : Entity_Id;
314a23b6 5747 Indx : Nat) return Node_Id;
ee6ba406 5748 -- Returns expression to compute:
5749 -- Typ'Length /= Exptyp'Length
5750
5751 function Length_N_Cond
5752 (Expr : Node_Id;
5753 Typ : Entity_Id;
314a23b6 5754 Indx : Nat) return Node_Id;
ee6ba406 5755 -- Returns expression to compute:
5756 -- Typ'Length /= Expr'Length
5757
5758 ---------------
5759 -- Add_Check --
5760 ---------------
5761
5762 procedure Add_Check (N : Node_Id) is
5763 begin
5764 if Present (N) then
5765
5766 -- For now, ignore attempt to place more than 2 checks ???
5767
5768 if Num_Checks = 2 then
5769 return;
5770 end if;
5771
5772 pragma Assert (Num_Checks <= 1);
5773 Num_Checks := Num_Checks + 1;
5774 Ret_Result (Num_Checks) := N;
5775 end if;
5776 end Add_Check;
5777
5778 ------------------
5779 -- Get_E_Length --
5780 ------------------
5781
5782 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
00c403ee 5783 SE : constant Entity_Id := Scope (E);
ee6ba406 5784 N : Node_Id;
5785 E1 : Entity_Id := E;
ee6ba406 5786
5787 begin
5788 if Ekind (Scope (E)) = E_Record_Type
5789 and then Has_Discriminants (Scope (E))
5790 then
5791 N := Build_Discriminal_Subtype_Of_Component (E);
5792
5793 if Present (N) then
5794 Insert_Action (Ck_Node, N);
5795 E1 := Defining_Identifier (N);
5796 end if;
5797 end if;
5798
5799 if Ekind (E1) = E_String_Literal_Subtype then
5800 return
5801 Make_Integer_Literal (Loc,
5802 Intval => String_Literal_Length (E1));
5803
00c403ee 5804 elsif SE /= Standard_Standard
5805 and then Ekind (Scope (SE)) = E_Protected_Type
5806 and then Has_Discriminants (Scope (SE))
5807 and then Has_Completion (Scope (SE))
ee6ba406 5808 and then not Inside_Init_Proc
5809 then
ee6ba406 5810 -- If the type whose length is needed is a private component
5811 -- constrained by a discriminant, we must expand the 'Length
5812 -- attribute into an explicit computation, using the discriminal
5813 -- of the current protected operation. This is because the actual
5814 -- type of the prival is constructed after the protected opera-
5815 -- tion has been fully expanded.
5816
5817 declare
5818 Indx_Type : Node_Id;
5819 Lo : Node_Id;
5820 Hi : Node_Id;
5821 Do_Expand : Boolean := False;
5822
5823 begin
5824 Indx_Type := First_Index (E);
5825
5826 for J in 1 .. Indx - 1 loop
5827 Next_Index (Indx_Type);
5828 end loop;
5829
2af58f67 5830 Get_Index_Bounds (Indx_Type, Lo, Hi);
ee6ba406 5831
5832 if Nkind (Lo) = N_Identifier
5833 and then Ekind (Entity (Lo)) = E_In_Parameter
5834 then
5835 Lo := Get_Discriminal (E, Lo);
5836 Do_Expand := True;
5837 end if;
5838
5839 if Nkind (Hi) = N_Identifier
5840 and then Ekind (Entity (Hi)) = E_In_Parameter
5841 then
5842 Hi := Get_Discriminal (E, Hi);
5843 Do_Expand := True;
5844 end if;
5845
5846 if Do_Expand then
5847 if not Is_Entity_Name (Lo) then
9dfe12ae 5848 Lo := Duplicate_Subexpr_No_Checks (Lo);
ee6ba406 5849 end if;
5850
5851 if not Is_Entity_Name (Hi) then
9dfe12ae 5852 Lo := Duplicate_Subexpr_No_Checks (Hi);
ee6ba406 5853 end if;
5854
5855 N :=
5856 Make_Op_Add (Loc,
5857 Left_Opnd =>
5858 Make_Op_Subtract (Loc,
5859 Left_Opnd => Hi,
5860 Right_Opnd => Lo),
5861
5862 Right_Opnd => Make_Integer_Literal (Loc, 1));
5863 return N;
5864
5865 else
5866 N :=
5867 Make_Attribute_Reference (Loc,
5868 Attribute_Name => Name_Length,
5869 Prefix =>
5870 New_Occurrence_Of (E1, Loc));
5871
5872 if Indx > 1 then
5873 Set_Expressions (N, New_List (
5874 Make_Integer_Literal (Loc, Indx)));
5875 end if;
5876
5877 return N;
5878 end if;
5879 end;
5880
5881 else
5882 N :=
5883 Make_Attribute_Reference (Loc,
5884 Attribute_Name => Name_Length,
5885 Prefix =>
5886 New_Occurrence_Of (E1, Loc));
5887
5888 if Indx > 1 then
5889 Set_Expressions (N, New_List (
5890 Make_Integer_Literal (Loc, Indx)));
5891 end if;
5892
5893 return N;
ee6ba406 5894 end if;
5895 end Get_E_Length;
5896
5897 ------------------
5898 -- Get_N_Length --
5899 ------------------
5900
5901 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5902 begin
5903 return
5904 Make_Attribute_Reference (Loc,
5905 Attribute_Name => Name_Length,
5906 Prefix =>
9dfe12ae 5907 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 5908 Expressions => New_List (
5909 Make_Integer_Literal (Loc, Indx)));
ee6ba406 5910 end Get_N_Length;
5911
5912 -------------------
5913 -- Length_E_Cond --
5914 -------------------
5915
5916 function Length_E_Cond
5917 (Exptyp : Entity_Id;
5918 Typ : Entity_Id;
314a23b6 5919 Indx : Nat) return Node_Id
ee6ba406 5920 is
5921 begin
5922 return
5923 Make_Op_Ne (Loc,
5924 Left_Opnd => Get_E_Length (Typ, Indx),
5925 Right_Opnd => Get_E_Length (Exptyp, Indx));
ee6ba406 5926 end Length_E_Cond;
5927
5928 -------------------
5929 -- Length_N_Cond --
5930 -------------------
5931
5932 function Length_N_Cond
5933 (Expr : Node_Id;
5934 Typ : Entity_Id;
314a23b6 5935 Indx : Nat) return Node_Id
ee6ba406 5936 is
5937 begin
5938 return
5939 Make_Op_Ne (Loc,
5940 Left_Opnd => Get_E_Length (Typ, Indx),
5941 Right_Opnd => Get_N_Length (Expr, Indx));
ee6ba406 5942 end Length_N_Cond;
5943
feff2f05 5944 -----------------
5945 -- Same_Bounds --
5946 -----------------
5947
ee6ba406 5948 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5949 begin
5950 return
5951 (Nkind (L) = N_Integer_Literal
5952 and then Nkind (R) = N_Integer_Literal
5953 and then Intval (L) = Intval (R))
5954
5955 or else
5956 (Is_Entity_Name (L)
5957 and then Ekind (Entity (L)) = E_Constant
5958 and then ((Is_Entity_Name (R)
5959 and then Entity (L) = Entity (R))
5960 or else
5961 (Nkind (R) = N_Type_Conversion
5962 and then Is_Entity_Name (Expression (R))
5963 and then Entity (L) = Entity (Expression (R)))))
5964
5965 or else
5966 (Is_Entity_Name (R)
5967 and then Ekind (Entity (R)) = E_Constant
5968 and then Nkind (L) = N_Type_Conversion
5969 and then Is_Entity_Name (Expression (L))
5f260d20 5970 and then Entity (R) = Entity (Expression (L)))
5971
5972 or else
5973 (Is_Entity_Name (L)
5974 and then Is_Entity_Name (R)
5975 and then Entity (L) = Entity (R)
5976 and then Ekind (Entity (L)) = E_In_Parameter
5977 and then Inside_Init_Proc);
ee6ba406 5978 end Same_Bounds;
5979
5980 -- Start of processing for Selected_Length_Checks
5981
5982 begin
5983 if not Expander_Active then
5984 return Ret_Result;
5985 end if;
5986
5987 if Target_Typ = Any_Type
5988 or else Target_Typ = Any_Composite
5989 or else Raises_Constraint_Error (Ck_Node)
5990 then
5991 return Ret_Result;
5992 end if;
5993
5994 if No (Wnode) then
5995 Wnode := Ck_Node;
5996 end if;
5997
5998 T_Typ := Target_Typ;
5999
6000 if No (Source_Typ) then
6001 S_Typ := Etype (Ck_Node);
6002 else
6003 S_Typ := Source_Typ;
6004 end if;
6005
6006 if S_Typ = Any_Type or else S_Typ = Any_Composite then
6007 return Ret_Result;
6008 end if;
6009
6010 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6011 S_Typ := Designated_Type (S_Typ);
6012 T_Typ := Designated_Type (T_Typ);
6013 Do_Access := True;
6014
2af58f67 6015 -- A simple optimization for the null case
ee6ba406 6016
2af58f67 6017 if Known_Null (Ck_Node) then
ee6ba406 6018 return Ret_Result;
6019 end if;
6020 end if;
6021
6022 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6023 if Is_Constrained (T_Typ) then
6024
6025 -- The checking code to be generated will freeze the
6026 -- corresponding array type. However, we must freeze the
6027 -- type now, so that the freeze node does not appear within
6028 -- the generated condional expression, but ahead of it.
6029
6030 Freeze_Before (Ck_Node, T_Typ);
6031
6032 Expr_Actual := Get_Referenced_Object (Ck_Node);
84d0d4a5 6033 Exptyp := Get_Actual_Subtype (Ck_Node);
ee6ba406 6034
6035 if Is_Access_Type (Exptyp) then
6036 Exptyp := Designated_Type (Exptyp);
6037 end if;
6038
6039 -- String_Literal case. This needs to be handled specially be-
6040 -- cause no index types are available for string literals. The
6041 -- condition is simply:
6042
6043 -- T_Typ'Length = string-literal-length
6044
9dfe12ae 6045 if Nkind (Expr_Actual) = N_String_Literal
6046 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
6047 then
ee6ba406 6048 Cond :=
6049 Make_Op_Ne (Loc,
6050 Left_Opnd => Get_E_Length (T_Typ, 1),
6051 Right_Opnd =>
6052 Make_Integer_Literal (Loc,
6053 Intval =>
6054 String_Literal_Length (Etype (Expr_Actual))));
6055
6056 -- General array case. Here we have a usable actual subtype for
6057 -- the expression, and the condition is built from the two types
6058 -- (Do_Length):
6059
6060 -- T_Typ'Length /= Exptyp'Length or else
6061 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
6062 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
6063 -- ...
6064
6065 elsif Is_Constrained (Exptyp) then
6066 declare
9dfe12ae 6067 Ndims : constant Nat := Number_Dimensions (T_Typ);
6068
6069 L_Index : Node_Id;
6070 R_Index : Node_Id;
6071 L_Low : Node_Id;
6072 L_High : Node_Id;
6073 R_Low : Node_Id;
6074 R_High : Node_Id;
ee6ba406 6075 L_Length : Uint;
6076 R_Length : Uint;
9dfe12ae 6077 Ref_Node : Node_Id;
ee6ba406 6078
6079 begin
feff2f05 6080 -- At the library level, we need to ensure that the type of
6081 -- the object is elaborated before the check itself is
6082 -- emitted. This is only done if the object is in the
6083 -- current compilation unit, otherwise the type is frozen
6084 -- and elaborated in its unit.
9dfe12ae 6085
6086 if Is_Itype (Exptyp)
6087 and then
6088 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
6089 and then
6090 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
d66aa9f6 6091 and then In_Open_Scopes (Scope (Exptyp))
9dfe12ae 6092 then
6093 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
6094 Set_Itype (Ref_Node, Exptyp);
6095 Insert_Action (Ck_Node, Ref_Node);
6096 end if;
6097
ee6ba406 6098 L_Index := First_Index (T_Typ);
6099 R_Index := First_Index (Exptyp);
6100
6101 for Indx in 1 .. Ndims loop
6102 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 6103 or else
6104 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 6105 then
6106 Get_Index_Bounds (L_Index, L_Low, L_High);
6107 Get_Index_Bounds (R_Index, R_Low, R_High);
6108
6109 -- Deal with compile time length check. Note that we
6110 -- skip this in the access case, because the access
6111 -- value may be null, so we cannot know statically.
6112
6113 if not Do_Access
6114 and then Compile_Time_Known_Value (L_Low)
6115 and then Compile_Time_Known_Value (L_High)
6116 and then Compile_Time_Known_Value (R_Low)
6117 and then Compile_Time_Known_Value (R_High)
6118 then
6119 if Expr_Value (L_High) >= Expr_Value (L_Low) then
6120 L_Length := Expr_Value (L_High) -
6121 Expr_Value (L_Low) + 1;
6122 else
6123 L_Length := UI_From_Int (0);
6124 end if;
6125
6126 if Expr_Value (R_High) >= Expr_Value (R_Low) then
6127 R_Length := Expr_Value (R_High) -
6128 Expr_Value (R_Low) + 1;
6129 else
6130 R_Length := UI_From_Int (0);
6131 end if;
6132
6133 if L_Length > R_Length then
6134 Add_Check
6135 (Compile_Time_Constraint_Error
6136 (Wnode, "too few elements for}?", T_Typ));
6137
6138 elsif L_Length < R_Length then
6139 Add_Check
6140 (Compile_Time_Constraint_Error
6141 (Wnode, "too many elements for}?", T_Typ));
6142 end if;
6143
6144 -- The comparison for an individual index subtype
6145 -- is omitted if the corresponding index subtypes
6146 -- statically match, since the result is known to
6147 -- be true. Note that this test is worth while even
6148 -- though we do static evaluation, because non-static
6149 -- subtypes can statically match.
6150
6151 elsif not
6152 Subtypes_Statically_Match
6153 (Etype (L_Index), Etype (R_Index))
6154
6155 and then not
6156 (Same_Bounds (L_Low, R_Low)
6157 and then Same_Bounds (L_High, R_High))
6158 then
6159 Evolve_Or_Else
6160 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
6161 end if;
6162
6163 Next (L_Index);
6164 Next (R_Index);
6165 end if;
6166 end loop;
6167 end;
6168
6169 -- Handle cases where we do not get a usable actual subtype that
6170 -- is constrained. This happens for example in the function call
6171 -- and explicit dereference cases. In these cases, we have to get
6172 -- the length or range from the expression itself, making sure we
6173 -- do not evaluate it more than once.
6174
6175 -- Here Ck_Node is the original expression, or more properly the
feff2f05 6176 -- result of applying Duplicate_Expr to the original tree, forcing
6177 -- the result to be a name.
ee6ba406 6178
6179 else
6180 declare
9dfe12ae 6181 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 6182
6183 begin
6184 -- Build the condition for the explicit dereference case
6185
6186 for Indx in 1 .. Ndims loop
6187 Evolve_Or_Else
6188 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
6189 end loop;
6190 end;
6191 end if;
6192 end if;
6193 end if;
6194
6195 -- Construct the test and insert into the tree
6196
6197 if Present (Cond) then
6198 if Do_Access then
6199 Cond := Guard_Access (Cond, Loc, Ck_Node);
6200 end if;
6201
f15731c4 6202 Add_Check
6203 (Make_Raise_Constraint_Error (Loc,
6204 Condition => Cond,
6205 Reason => CE_Length_Check_Failed));
ee6ba406 6206 end if;
6207
6208 return Ret_Result;
ee6ba406 6209 end Selected_Length_Checks;
6210
6211 ---------------------------
6212 -- Selected_Range_Checks --
6213 ---------------------------
6214
6215 function Selected_Range_Checks
6216 (Ck_Node : Node_Id;
6217 Target_Typ : Entity_Id;
6218 Source_Typ : Entity_Id;
314a23b6 6219 Warn_Node : Node_Id) return Check_Result
ee6ba406 6220 is
6221 Loc : constant Source_Ptr := Sloc (Ck_Node);
6222 S_Typ : Entity_Id;
6223 T_Typ : Entity_Id;
6224 Expr_Actual : Node_Id;
6225 Exptyp : Entity_Id;
6226 Cond : Node_Id := Empty;
6227 Do_Access : Boolean := False;
6228 Wnode : Node_Id := Warn_Node;
6229 Ret_Result : Check_Result := (Empty, Empty);
6230 Num_Checks : Integer := 0;
6231
6232 procedure Add_Check (N : Node_Id);
6233 -- Adds the action given to Ret_Result if N is non-Empty
6234
6235 function Discrete_Range_Cond
6236 (Expr : Node_Id;
314a23b6 6237 Typ : Entity_Id) return Node_Id;
ee6ba406 6238 -- Returns expression to compute:
6239 -- Low_Bound (Expr) < Typ'First
6240 -- or else
6241 -- High_Bound (Expr) > Typ'Last
6242
6243 function Discrete_Expr_Cond
6244 (Expr : Node_Id;
314a23b6 6245 Typ : Entity_Id) return Node_Id;
ee6ba406 6246 -- Returns expression to compute:
6247 -- Expr < Typ'First
6248 -- or else
6249 -- Expr > Typ'Last
6250
6251 function Get_E_First_Or_Last
3cb12758 6252 (Loc : Source_Ptr;
6253 E : Entity_Id;
ee6ba406 6254 Indx : Nat;
314a23b6 6255 Nam : Name_Id) return Node_Id;
ee6ba406 6256 -- Returns expression to compute:
6257 -- E'First or E'Last
6258
6259 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
6260 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
6261 -- Returns expression to compute:
9dfe12ae 6262 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
ee6ba406 6263
6264 function Range_E_Cond
6265 (Exptyp : Entity_Id;
6266 Typ : Entity_Id;
6267 Indx : Nat)
6268 return Node_Id;
6269 -- Returns expression to compute:
6270 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
6271
6272 function Range_Equal_E_Cond
6273 (Exptyp : Entity_Id;
6274 Typ : Entity_Id;
314a23b6 6275 Indx : Nat) return Node_Id;
ee6ba406 6276 -- Returns expression to compute:
6277 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
6278
6279 function Range_N_Cond
6280 (Expr : Node_Id;
6281 Typ : Entity_Id;
314a23b6 6282 Indx : Nat) return Node_Id;
ee6ba406 6283 -- Return expression to compute:
6284 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
6285
6286 ---------------
6287 -- Add_Check --
6288 ---------------
6289
6290 procedure Add_Check (N : Node_Id) is
6291 begin
6292 if Present (N) then
6293
6294 -- For now, ignore attempt to place more than 2 checks ???
6295
6296 if Num_Checks = 2 then
6297 return;
6298 end if;
6299
6300 pragma Assert (Num_Checks <= 1);
6301 Num_Checks := Num_Checks + 1;
6302 Ret_Result (Num_Checks) := N;
6303 end if;
6304 end Add_Check;
6305
6306 -------------------------
6307 -- Discrete_Expr_Cond --
6308 -------------------------
6309
6310 function Discrete_Expr_Cond
6311 (Expr : Node_Id;
314a23b6 6312 Typ : Entity_Id) return Node_Id
ee6ba406 6313 is
6314 begin
6315 return
6316 Make_Or_Else (Loc,
6317 Left_Opnd =>
6318 Make_Op_Lt (Loc,
6319 Left_Opnd =>
9dfe12ae 6320 Convert_To (Base_Type (Typ),
6321 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 6322 Right_Opnd =>
6323 Convert_To (Base_Type (Typ),
3cb12758 6324 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
ee6ba406 6325
6326 Right_Opnd =>
6327 Make_Op_Gt (Loc,
6328 Left_Opnd =>
9dfe12ae 6329 Convert_To (Base_Type (Typ),
6330 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 6331 Right_Opnd =>
6332 Convert_To
6333 (Base_Type (Typ),
3cb12758 6334 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
ee6ba406 6335 end Discrete_Expr_Cond;
6336
6337 -------------------------
6338 -- Discrete_Range_Cond --
6339 -------------------------
6340
6341 function Discrete_Range_Cond
6342 (Expr : Node_Id;
314a23b6 6343 Typ : Entity_Id) return Node_Id
ee6ba406 6344 is
6345 LB : Node_Id := Low_Bound (Expr);
6346 HB : Node_Id := High_Bound (Expr);
6347
6348 Left_Opnd : Node_Id;
6349 Right_Opnd : Node_Id;
6350
6351 begin
6352 if Nkind (LB) = N_Identifier
feff2f05 6353 and then Ekind (Entity (LB)) = E_Discriminant
6354 then
ee6ba406 6355 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6356 end if;
6357
6358 if Nkind (HB) = N_Identifier
feff2f05 6359 and then Ekind (Entity (HB)) = E_Discriminant
6360 then
ee6ba406 6361 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6362 end if;
6363
6364 Left_Opnd :=
6365 Make_Op_Lt (Loc,
6366 Left_Opnd =>
6367 Convert_To
9dfe12ae 6368 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 6369
6370 Right_Opnd =>
6371 Convert_To
3cb12758 6372 (Base_Type (Typ),
6373 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
ee6ba406 6374
6375 if Base_Type (Typ) = Typ then
6376 return Left_Opnd;
6377
6378 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
6379 and then
6380 Compile_Time_Known_Value (High_Bound (Scalar_Range
6381 (Base_Type (Typ))))
6382 then
6383 if Is_Floating_Point_Type (Typ) then
6384 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
6385 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
6386 then
6387 return Left_Opnd;
6388 end if;
6389
6390 else
6391 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
6392 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
6393 then
6394 return Left_Opnd;
6395 end if;
6396 end if;
6397 end if;
6398
6399 Right_Opnd :=
6400 Make_Op_Gt (Loc,
6401 Left_Opnd =>
6402 Convert_To
9dfe12ae 6403 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
ee6ba406 6404
6405 Right_Opnd =>
6406 Convert_To
6407 (Base_Type (Typ),
3cb12758 6408 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
ee6ba406 6409
6410 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
6411 end Discrete_Range_Cond;
6412
6413 -------------------------
6414 -- Get_E_First_Or_Last --
6415 -------------------------
6416
6417 function Get_E_First_Or_Last
3cb12758 6418 (Loc : Source_Ptr;
6419 E : Entity_Id;
ee6ba406 6420 Indx : Nat;
314a23b6 6421 Nam : Name_Id) return Node_Id
ee6ba406 6422 is
3cb12758 6423 Exprs : List_Id;
ee6ba406 6424 begin
3cb12758 6425 if Indx > 0 then
6426 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
ee6ba406 6427 else
3cb12758 6428 Exprs := No_List;
ee6ba406 6429 end if;
6430
3cb12758 6431 return Make_Attribute_Reference (Loc,
6432 Prefix => New_Occurrence_Of (E, Loc),
6433 Attribute_Name => Nam,
6434 Expressions => Exprs);
ee6ba406 6435 end Get_E_First_Or_Last;
6436
6437 -----------------
6438 -- Get_N_First --
6439 -----------------
6440
6441 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
6442 begin
6443 return
6444 Make_Attribute_Reference (Loc,
6445 Attribute_Name => Name_First,
6446 Prefix =>
9dfe12ae 6447 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 6448 Expressions => New_List (
6449 Make_Integer_Literal (Loc, Indx)));
ee6ba406 6450 end Get_N_First;
6451
6452 ----------------
6453 -- Get_N_Last --
6454 ----------------
6455
6456 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
6457 begin
6458 return
6459 Make_Attribute_Reference (Loc,
6460 Attribute_Name => Name_Last,
6461 Prefix =>
9dfe12ae 6462 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 6463 Expressions => New_List (
6464 Make_Integer_Literal (Loc, Indx)));
ee6ba406 6465 end Get_N_Last;
6466
6467 ------------------
6468 -- Range_E_Cond --
6469 ------------------
6470
6471 function Range_E_Cond
6472 (Exptyp : Entity_Id;
6473 Typ : Entity_Id;
314a23b6 6474 Indx : Nat) return Node_Id
ee6ba406 6475 is
6476 begin
6477 return
6478 Make_Or_Else (Loc,
6479 Left_Opnd =>
6480 Make_Op_Lt (Loc,
3cb12758 6481 Left_Opnd =>
6482 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
6483 Right_Opnd =>
6484 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 6485
6486 Right_Opnd =>
6487 Make_Op_Gt (Loc,
3cb12758 6488 Left_Opnd =>
6489 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
6490 Right_Opnd =>
6491 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 6492 end Range_E_Cond;
6493
6494 ------------------------
6495 -- Range_Equal_E_Cond --
6496 ------------------------
6497
6498 function Range_Equal_E_Cond
6499 (Exptyp : Entity_Id;
6500 Typ : Entity_Id;
314a23b6 6501 Indx : Nat) return Node_Id
ee6ba406 6502 is
6503 begin
6504 return
6505 Make_Or_Else (Loc,
6506 Left_Opnd =>
6507 Make_Op_Ne (Loc,
3cb12758 6508 Left_Opnd =>
6509 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
6510 Right_Opnd =>
6511 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
6512
ee6ba406 6513 Right_Opnd =>
6514 Make_Op_Ne (Loc,
3cb12758 6515 Left_Opnd =>
6516 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
6517 Right_Opnd =>
6518 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 6519 end Range_Equal_E_Cond;
6520
6521 ------------------
6522 -- Range_N_Cond --
6523 ------------------
6524
6525 function Range_N_Cond
6526 (Expr : Node_Id;
6527 Typ : Entity_Id;
314a23b6 6528 Indx : Nat) return Node_Id
ee6ba406 6529 is
6530 begin
6531 return
6532 Make_Or_Else (Loc,
6533 Left_Opnd =>
6534 Make_Op_Lt (Loc,
3cb12758 6535 Left_Opnd =>
6536 Get_N_First (Expr, Indx),
6537 Right_Opnd =>
6538 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 6539
6540 Right_Opnd =>
6541 Make_Op_Gt (Loc,
3cb12758 6542 Left_Opnd =>
6543 Get_N_Last (Expr, Indx),
6544 Right_Opnd =>
6545 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 6546 end Range_N_Cond;
6547
6548 -- Start of processing for Selected_Range_Checks
6549
6550 begin
6551 if not Expander_Active then
6552 return Ret_Result;
6553 end if;
6554
6555 if Target_Typ = Any_Type
6556 or else Target_Typ = Any_Composite
6557 or else Raises_Constraint_Error (Ck_Node)
6558 then
6559 return Ret_Result;
6560 end if;
6561
6562 if No (Wnode) then
6563 Wnode := Ck_Node;
6564 end if;
6565
6566 T_Typ := Target_Typ;
6567
6568 if No (Source_Typ) then
6569 S_Typ := Etype (Ck_Node);
6570 else
6571 S_Typ := Source_Typ;
6572 end if;
6573
6574 if S_Typ = Any_Type or else S_Typ = Any_Composite then
6575 return Ret_Result;
6576 end if;
6577
6578 -- The order of evaluating T_Typ before S_Typ seems to be critical
6579 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
6580 -- in, and since Node can be an N_Range node, it might be invalid.
6581 -- Should there be an assert check somewhere for taking the Etype of
6582 -- an N_Range node ???
6583
6584 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6585 S_Typ := Designated_Type (S_Typ);
6586 T_Typ := Designated_Type (T_Typ);
6587 Do_Access := True;
6588
2af58f67 6589 -- A simple optimization for the null case
ee6ba406 6590
2af58f67 6591 if Known_Null (Ck_Node) then
ee6ba406 6592 return Ret_Result;
6593 end if;
6594 end if;
6595
6596 -- For an N_Range Node, check for a null range and then if not
6597 -- null generate a range check action.
6598
6599 if Nkind (Ck_Node) = N_Range then
6600
6601 -- There's no point in checking a range against itself
6602
6603 if Ck_Node = Scalar_Range (T_Typ) then
6604 return Ret_Result;
6605 end if;
6606
6607 declare
6608 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
6609 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
eefa141b 6610 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
6611 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
ee6ba406 6612
eefa141b 6613 LB : Node_Id := Low_Bound (Ck_Node);
6614 HB : Node_Id := High_Bound (Ck_Node);
6615 Known_LB : Boolean;
6616 Known_HB : Boolean;
6617
6618 Null_Range : Boolean;
ee6ba406 6619 Out_Of_Range_L : Boolean;
6620 Out_Of_Range_H : Boolean;
6621
6622 begin
eefa141b 6623 -- Compute what is known at compile time
6624
6625 if Known_T_LB and Known_T_HB then
6626 if Compile_Time_Known_Value (LB) then
6627 Known_LB := True;
6628
6629 -- There's no point in checking that a bound is within its
6630 -- own range so pretend that it is known in this case. First
6631 -- deal with low bound.
6632
6633 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
6634 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
6635 then
6636 LB := T_LB;
6637 Known_LB := True;
6638
6639 else
6640 Known_LB := False;
6641 end if;
6642
6643 -- Likewise for the high bound
6644
6645 if Compile_Time_Known_Value (HB) then
6646 Known_HB := True;
6647
6648 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
6649 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
6650 then
6651 HB := T_HB;
6652 Known_HB := True;
6653
6654 else
6655 Known_HB := False;
6656 end if;
6657 end if;
6658
6659 -- Check for case where everything is static and we can do the
6660 -- check at compile time. This is skipped if we have an access
6661 -- type, since the access value may be null.
6662
6663 -- ??? This code can be improved since you only need to know that
6664 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
6665 -- compile time to emit pertinent messages.
6666
6667 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
6668 and not Do_Access
ee6ba406 6669 then
6670 -- Floating-point case
6671
6672 if Is_Floating_Point_Type (S_Typ) then
6673 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
6674 Out_Of_Range_L :=
6675 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
eefa141b 6676 or else
ee6ba406 6677 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
6678
6679 Out_Of_Range_H :=
6680 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
eefa141b 6681 or else
ee6ba406 6682 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
6683
6684 -- Fixed or discrete type case
6685
6686 else
6687 Null_Range := Expr_Value (HB) < Expr_Value (LB);
6688 Out_Of_Range_L :=
6689 (Expr_Value (LB) < Expr_Value (T_LB))
eefa141b 6690 or else
ee6ba406 6691 (Expr_Value (LB) > Expr_Value (T_HB));
6692
6693 Out_Of_Range_H :=
6694 (Expr_Value (HB) > Expr_Value (T_HB))
eefa141b 6695 or else
ee6ba406 6696 (Expr_Value (HB) < Expr_Value (T_LB));
6697 end if;
6698
6699 if not Null_Range then
6700 if Out_Of_Range_L then
6701 if No (Warn_Node) then
6702 Add_Check
6703 (Compile_Time_Constraint_Error
6704 (Low_Bound (Ck_Node),
6705 "static value out of range of}?", T_Typ));
6706
6707 else
6708 Add_Check
6709 (Compile_Time_Constraint_Error
6710 (Wnode,
6711 "static range out of bounds of}?", T_Typ));
6712 end if;
6713 end if;
6714
6715 if Out_Of_Range_H then
6716 if No (Warn_Node) then
6717 Add_Check
6718 (Compile_Time_Constraint_Error
6719 (High_Bound (Ck_Node),
6720 "static value out of range of}?", T_Typ));
6721
6722 else
6723 Add_Check
6724 (Compile_Time_Constraint_Error
6725 (Wnode,
6726 "static range out of bounds of}?", T_Typ));
6727 end if;
6728 end if;
ee6ba406 6729 end if;
6730
6731 else
6732 declare
6733 LB : Node_Id := Low_Bound (Ck_Node);
6734 HB : Node_Id := High_Bound (Ck_Node);
6735
6736 begin
feff2f05 6737 -- If either bound is a discriminant and we are within the
6738 -- record declaration, it is a use of the discriminant in a
6739 -- constraint of a component, and nothing can be checked
6740 -- here. The check will be emitted within the init proc.
6741 -- Before then, the discriminal has no real meaning.
6742 -- Similarly, if the entity is a discriminal, there is no
6743 -- check to perform yet.
6744
6745 -- The same holds within a discriminated synchronized type,
6746 -- where the discriminant may constrain a component or an
6747 -- entry family.
ee6ba406 6748
6749 if Nkind (LB) = N_Identifier
0577b0b1 6750 and then Denotes_Discriminant (LB, True)
ee6ba406 6751 then
0577b0b1 6752 if Current_Scope = Scope (Entity (LB))
6753 or else Is_Concurrent_Type (Current_Scope)
6754 or else Ekind (Entity (LB)) /= E_Discriminant
6755 then
ee6ba406 6756 return Ret_Result;
6757 else
6758 LB :=
6759 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6760 end if;
6761 end if;
6762
6763 if Nkind (HB) = N_Identifier
0577b0b1 6764 and then Denotes_Discriminant (HB, True)
ee6ba406 6765 then
0577b0b1 6766 if Current_Scope = Scope (Entity (HB))
6767 or else Is_Concurrent_Type (Current_Scope)
6768 or else Ekind (Entity (HB)) /= E_Discriminant
6769 then
ee6ba406 6770 return Ret_Result;
6771 else
6772 HB :=
6773 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6774 end if;
6775 end if;
6776
6777 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6778 Set_Paren_Count (Cond, 1);
6779
6780 Cond :=
6781 Make_And_Then (Loc,
6782 Left_Opnd =>
6783 Make_Op_Ge (Loc,
9dfe12ae 6784 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6785 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 6786 Right_Opnd => Cond);
6787 end;
ee6ba406 6788 end if;
6789 end;
6790
6791 elsif Is_Scalar_Type (S_Typ) then
6792
6793 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6794 -- except the above simply sets a flag in the node and lets
6795 -- gigi generate the check base on the Etype of the expression.
6796 -- Sometimes, however we want to do a dynamic check against an
6797 -- arbitrary target type, so we do that here.
6798
6799 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6800 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6801
6802 -- For literals, we can tell if the constraint error will be
6803 -- raised at compile time, so we never need a dynamic check, but
6804 -- if the exception will be raised, then post the usual warning,
6805 -- and replace the literal with a raise constraint error
6806 -- expression. As usual, skip this for access types
6807
6808 elsif Compile_Time_Known_Value (Ck_Node)
6809 and then not Do_Access
6810 then
6811 declare
6812 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6813 UB : constant Node_Id := Type_High_Bound (T_Typ);
6814
6815 Out_Of_Range : Boolean;
6816 Static_Bounds : constant Boolean :=
6817 Compile_Time_Known_Value (LB)
6818 and Compile_Time_Known_Value (UB);
6819
6820 begin
6821 -- Following range tests should use Sem_Eval routine ???
6822
6823 if Static_Bounds then
6824 if Is_Floating_Point_Type (S_Typ) then
6825 Out_Of_Range :=
6826 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6827 or else
6828 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6829
eefa141b 6830 -- Fixed or discrete type
6831
6832 else
ee6ba406 6833 Out_Of_Range :=
6834 Expr_Value (Ck_Node) < Expr_Value (LB)
6835 or else
6836 Expr_Value (Ck_Node) > Expr_Value (UB);
6837 end if;
6838
eefa141b 6839 -- Bounds of the type are static and the literal is out of
6840 -- range so output a warning message.
ee6ba406 6841
6842 if Out_Of_Range then
6843 if No (Warn_Node) then
6844 Add_Check
6845 (Compile_Time_Constraint_Error
6846 (Ck_Node,
6847 "static value out of range of}?", T_Typ));
6848
6849 else
6850 Add_Check
6851 (Compile_Time_Constraint_Error
6852 (Wnode,
6853 "static value out of range of}?", T_Typ));
6854 end if;
6855 end if;
6856
6857 else
6858 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6859 end if;
6860 end;
6861
6862 -- Here for the case of a non-static expression, we need a runtime
6863 -- check unless the source type range is guaranteed to be in the
6864 -- range of the target type.
6865
6866 else
7a1dabb3 6867 if not In_Subrange_Of (S_Typ, T_Typ) then
ee6ba406 6868 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6869 end if;
6870 end if;
6871 end if;
6872
6873 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6874 if Is_Constrained (T_Typ) then
6875
6876 Expr_Actual := Get_Referenced_Object (Ck_Node);
6877 Exptyp := Get_Actual_Subtype (Expr_Actual);
6878
6879 if Is_Access_Type (Exptyp) then
6880 Exptyp := Designated_Type (Exptyp);
6881 end if;
6882
6883 -- String_Literal case. This needs to be handled specially be-
6884 -- cause no index types are available for string literals. The
6885 -- condition is simply:
6886
6887 -- T_Typ'Length = string-literal-length
6888
6889 if Nkind (Expr_Actual) = N_String_Literal then
6890 null;
6891
6892 -- General array case. Here we have a usable actual subtype for
6893 -- the expression, and the condition is built from the two types
6894
6895 -- T_Typ'First < Exptyp'First or else
6896 -- T_Typ'Last > Exptyp'Last or else
6897 -- T_Typ'First(1) < Exptyp'First(1) or else
6898 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6899 -- ...
6900
6901 elsif Is_Constrained (Exptyp) then
6902 declare
9dfe12ae 6903 Ndims : constant Nat := Number_Dimensions (T_Typ);
6904
ee6ba406 6905 L_Index : Node_Id;
6906 R_Index : Node_Id;
ee6ba406 6907
6908 begin
6909 L_Index := First_Index (T_Typ);
6910 R_Index := First_Index (Exptyp);
6911
6912 for Indx in 1 .. Ndims loop
6913 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 6914 or else
6915 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 6916 then
ee6ba406 6917 -- Deal with compile time length check. Note that we
6918 -- skip this in the access case, because the access
6919 -- value may be null, so we cannot know statically.
6920
6921 if not
6922 Subtypes_Statically_Match
6923 (Etype (L_Index), Etype (R_Index))
6924 then
6925 -- If the target type is constrained then we
6926 -- have to check for exact equality of bounds
6927 -- (required for qualified expressions).
6928
6929 if Is_Constrained (T_Typ) then
6930 Evolve_Or_Else
6931 (Cond,
6932 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
ee6ba406 6933 else
6934 Evolve_Or_Else
6935 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6936 end if;
6937 end if;
6938
6939 Next (L_Index);
6940 Next (R_Index);
ee6ba406 6941 end if;
6942 end loop;
6943 end;
6944
6945 -- Handle cases where we do not get a usable actual subtype that
6946 -- is constrained. This happens for example in the function call
6947 -- and explicit dereference cases. In these cases, we have to get
6948 -- the length or range from the expression itself, making sure we
6949 -- do not evaluate it more than once.
6950
6951 -- Here Ck_Node is the original expression, or more properly the
6952 -- result of applying Duplicate_Expr to the original tree,
6953 -- forcing the result to be a name.
6954
6955 else
6956 declare
9dfe12ae 6957 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 6958
6959 begin
6960 -- Build the condition for the explicit dereference case
6961
6962 for Indx in 1 .. Ndims loop
6963 Evolve_Or_Else
6964 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6965 end loop;
6966 end;
ee6ba406 6967 end if;
6968
6969 else
feff2f05 6970 -- For a conversion to an unconstrained array type, generate an
6971 -- Action to check that the bounds of the source value are within
6972 -- the constraints imposed by the target type (RM 4.6(38)). No
6973 -- check is needed for a conversion to an access to unconstrained
6974 -- array type, as 4.6(24.15/2) requires the designated subtypes
6975 -- of the two access types to statically match.
6976
6977 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
6978 and then not Do_Access
6979 then
ee6ba406 6980 declare
6981 Opnd_Index : Node_Id;
6982 Targ_Index : Node_Id;
00c403ee 6983 Opnd_Range : Node_Id;
ee6ba406 6984
6985 begin
feff2f05 6986 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
ee6ba406 6987 Targ_Index := First_Index (T_Typ);
00c403ee 6988 while Present (Opnd_Index) loop
6989
6990 -- If the index is a range, use its bounds. If it is an
6991 -- entity (as will be the case if it is a named subtype
6992 -- or an itype created for a slice) retrieve its range.
6993
6994 if Is_Entity_Name (Opnd_Index)
6995 and then Is_Type (Entity (Opnd_Index))
6996 then
6997 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
6998 else
6999 Opnd_Range := Opnd_Index;
7000 end if;
7001
7002 if Nkind (Opnd_Range) = N_Range then
9c486805 7003 if Is_In_Range
7004 (Low_Bound (Opnd_Range), Etype (Targ_Index),
7005 Assume_Valid => True)
ee6ba406 7006 and then
7007 Is_In_Range
9c486805 7008 (High_Bound (Opnd_Range), Etype (Targ_Index),
7009 Assume_Valid => True)
ee6ba406 7010 then
7011 null;
7012
feff2f05 7013 -- If null range, no check needed
f2a06be9 7014
9dfe12ae 7015 elsif
00c403ee 7016 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9dfe12ae 7017 and then
00c403ee 7018 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9dfe12ae 7019 and then
00c403ee 7020 Expr_Value (High_Bound (Opnd_Range)) <
7021 Expr_Value (Low_Bound (Opnd_Range))
9dfe12ae 7022 then
7023 null;
7024
ee6ba406 7025 elsif Is_Out_Of_Range
9c486805 7026 (Low_Bound (Opnd_Range), Etype (Targ_Index),
7027 Assume_Valid => True)
ee6ba406 7028 or else
7029 Is_Out_Of_Range
9c486805 7030 (High_Bound (Opnd_Range), Etype (Targ_Index),
7031 Assume_Valid => True)
ee6ba406 7032 then
7033 Add_Check
7034 (Compile_Time_Constraint_Error
7035 (Wnode, "value out of range of}?", T_Typ));
7036
7037 else
7038 Evolve_Or_Else
7039 (Cond,
7040 Discrete_Range_Cond
00c403ee 7041 (Opnd_Range, Etype (Targ_Index)));
ee6ba406 7042 end if;
7043 end if;
7044
7045 Next_Index (Opnd_Index);
7046 Next_Index (Targ_Index);
7047 end loop;
7048 end;
7049 end if;
7050 end if;
7051 end if;
7052
7053 -- Construct the test and insert into the tree
7054
7055 if Present (Cond) then
7056 if Do_Access then
7057 Cond := Guard_Access (Cond, Loc, Ck_Node);
7058 end if;
7059
f15731c4 7060 Add_Check
7061 (Make_Raise_Constraint_Error (Loc,
eefa141b 7062 Condition => Cond,
7063 Reason => CE_Range_Check_Failed));
ee6ba406 7064 end if;
7065
7066 return Ret_Result;
ee6ba406 7067 end Selected_Range_Checks;
7068
7069 -------------------------------
7070 -- Storage_Checks_Suppressed --
7071 -------------------------------
7072
7073 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
7074 begin
9dfe12ae 7075 if Present (E) and then Checks_May_Be_Suppressed (E) then
7076 return Is_Check_Suppressed (E, Storage_Check);
7077 else
7078 return Scope_Suppress (Storage_Check);
7079 end if;
ee6ba406 7080 end Storage_Checks_Suppressed;
7081
7082 ---------------------------
7083 -- Tag_Checks_Suppressed --
7084 ---------------------------
7085
7086 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
7087 begin
9dfe12ae 7088 if Present (E) then
7089 if Kill_Tag_Checks (E) then
7090 return True;
7091 elsif Checks_May_Be_Suppressed (E) then
7092 return Is_Check_Suppressed (E, Tag_Check);
7093 end if;
7094 end if;
7095
7096 return Scope_Suppress (Tag_Check);
ee6ba406 7097 end Tag_Checks_Suppressed;
7098
0577b0b1 7099 --------------------------
7100 -- Validity_Check_Range --
7101 --------------------------
7102
7103 procedure Validity_Check_Range (N : Node_Id) is
7104 begin
7105 if Validity_Checks_On and Validity_Check_Operands then
7106 if Nkind (N) = N_Range then
7107 Ensure_Valid (Low_Bound (N));
7108 Ensure_Valid (High_Bound (N));
7109 end if;
7110 end if;
7111 end Validity_Check_Range;
7112
7113 --------------------------------
7114 -- Validity_Checks_Suppressed --
7115 --------------------------------
7116
7117 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
7118 begin
7119 if Present (E) and then Checks_May_Be_Suppressed (E) then
7120 return Is_Check_Suppressed (E, Validity_Check);
7121 else
7122 return Scope_Suppress (Validity_Check);
7123 end if;
7124 end Validity_Checks_Suppressed;
7125
ee6ba406 7126end Checks;