]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
[Ada] Renamed equality leads to spurious errors
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
612930c1 9-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
29448168 27with Casing; use Casing;
ee6ba406 28with Debug; use Debug;
29with Einfo; use Einfo;
7b8fa048 30with Elists; use Elists;
31with Eval_Fat; use Eval_Fat;
32with Exp_Ch11; use Exp_Ch11;
ee6ba406 33with Exp_Ch2; use Exp_Ch2;
df40eeb0 34with Exp_Ch4; use Exp_Ch4;
05fcfafb 35with Exp_Pakd; use Exp_Pakd;
ee6ba406 36with Exp_Util; use Exp_Util;
4fb5f0a0 37with Expander; use Expander;
ee6ba406 38with Freeze; use Freeze;
9dfe12ae 39with Lib; use Lib;
ee6ba406 40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
9dfe12ae 43with Output; use Output;
c2b56224 44with Restrict; use Restrict;
1e16c51c 45with Rident; use Rident;
ee6ba406 46with Rtsfind; use Rtsfind;
47with Sem; use Sem;
d60c9ff7 48with Sem_Aux; use Sem_Aux;
00f91aef 49with Sem_Ch3; use Sem_Ch3;
9dfe12ae 50with Sem_Ch8; use Sem_Ch8;
7e933b61 51with Sem_Disp; use Sem_Disp;
7b8fa048 52with Sem_Eval; use Sem_Eval;
ee6ba406 53with Sem_Res; use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sem_Warn; use Sem_Warn;
56with Sinfo; use Sinfo;
9dfe12ae 57with Sinput; use Sinput;
ee6ba406 58with Snames; use Snames;
9dfe12ae 59with Sprint; use Sprint;
ee6ba406 60with Stand; use Stand;
bb569db0 61with Stringt; use Stringt;
f15731c4 62with Targparm; use Targparm;
ee6ba406 63with Tbuild; use Tbuild;
64with Ttypes; use Ttypes;
ee6ba406 65with Validsw; use Validsw;
66
67package body Checks is
68
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
74
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
79
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
86
20cf157b 87 -- The above is modified in gnatprove mode to ensure that proper check
88 -- flags are always placed, even if expansion is off.
89
9dfe12ae 90 -------------------------------------
91 -- Suppression of Redundant Checks --
92 -------------------------------------
93
94 -- This unit implements a limited circuit for removal of redundant
95 -- checks. The processing is based on a tracing of simple sequential
96 -- flow. For any sequence of statements, we save expressions that are
97 -- marked to be checked, and then if the same expression appears later
98 -- with the same check, then under certain circumstances, the second
99 -- check can be suppressed.
100
101 -- Basically, we can suppress the check if we know for certain that
102 -- the previous expression has been elaborated (together with its
103 -- check), and we know that the exception frame is the same, and that
104 -- nothing has happened to change the result of the exception.
105
106 -- Let us examine each of these three conditions in turn to describe
107 -- how we ensure that this condition is met.
108
109 -- First, we need to know for certain that the previous expression has
6fb3c314 110 -- been executed. This is done principally by the mechanism of calling
9dfe12ae 111 -- Conditional_Statements_Begin at the start of any statement sequence
112 -- and Conditional_Statements_End at the end. The End call causes all
113 -- checks remembered since the Begin call to be discarded. This does
114 -- miss a few cases, notably the case of a nested BEGIN-END block with
115 -- no exception handlers. But the important thing is to be conservative.
116 -- The other protection is that all checks are discarded if a label
117 -- is encountered, since then the assumption of sequential execution
118 -- is violated, and we don't know enough about the flow.
119
120 -- Second, we need to know that the exception frame is the same. We
121 -- do this by killing all remembered checks when we enter a new frame.
122 -- Again, that's over-conservative, but generally the cases we can help
123 -- with are pretty local anyway (like the body of a loop for example).
124
125 -- Third, we must be sure to forget any checks which are no longer valid.
126 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
127 -- used to note any changes to local variables. We only attempt to deal
128 -- with checks involving local variables, so we do not need to worry
129 -- about global variables. Second, a call to any non-global procedure
130 -- causes us to abandon all stored checks, since such a all may affect
131 -- the values of any local variables.
132
133 -- The following define the data structures used to deal with remembering
134 -- checks so that redundant checks can be eliminated as described above.
135
136 -- Right now, the only expressions that we deal with are of the form of
137 -- simple local objects (either declared locally, or IN parameters) or
138 -- such objects plus/minus a compile time known constant. We can do
139 -- more later on if it seems worthwhile, but this catches many simple
140 -- cases in practice.
141
142 -- The following record type reflects a single saved check. An entry
143 -- is made in the stack of saved checks if and only if the expression
144 -- has been elaborated with the indicated checks.
145
146 type Saved_Check is record
147 Killed : Boolean;
148 -- Set True if entry is killed by Kill_Checks
149
150 Entity : Entity_Id;
151 -- The entity involved in the expression that is checked
152
153 Offset : Uint;
154 -- A compile time value indicating the result of adding or
155 -- subtracting a compile time value. This value is to be
156 -- added to the value of the Entity. A value of zero is
157 -- used for the case of a simple entity reference.
158
159 Check_Type : Character;
160 -- This is set to 'R' for a range check (in which case Target_Type
161 -- is set to the target type for the range check) or to 'O' for an
162 -- overflow check (in which case Target_Type is set to Empty).
163
164 Target_Type : Entity_Id;
165 -- Used only if Do_Range_Check is set. Records the target type for
166 -- the check. We need this, because a check is a duplicate only if
6fb3c314 167 -- it has the same target type (or more accurately one with a
9dfe12ae 168 -- range that is smaller or equal to the stored target type of a
169 -- saved check).
170 end record;
171
172 -- The following table keeps track of saved checks. Rather than use an
bbbfe30c 173 -- extensible table, we just use a table of fixed size, and we discard
9dfe12ae 174 -- any saved checks that do not fit. That's very unlikely to happen and
175 -- this is only an optimization in any case.
176
177 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178 -- Array of saved checks
179
180 Num_Saved_Checks : Nat := 0;
181 -- Number of saved checks
182
183 -- The following stack keeps track of statement ranges. It is treated
184 -- as a stack. When Conditional_Statements_Begin is called, an entry
185 -- is pushed onto this stack containing the value of Num_Saved_Checks
186 -- at the time of the call. Then when Conditional_Statements_End is
187 -- called, this value is popped off and used to reset Num_Saved_Checks.
188
189 -- Note: again, this is a fixed length stack with a size that should
190 -- always be fine. If the value of the stack pointer goes above the
191 -- limit, then we just forget all saved checks.
192
193 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194 Saved_Checks_TOS : Nat := 0;
195
196 -----------------------
197 -- Local Subprograms --
198 -----------------------
ee6ba406 199
0df9d43f 200 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
3cce7f32 201 -- Used to apply arithmetic overflow checks for all cases except operators
691fe9e0 202 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
0df9d43f 203 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204 -- signed integer arithmetic operator (but not an if or case expression).
205 -- It is also called for types other than signed integers.
3cce7f32 206
207 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208 -- Used to apply arithmetic overflow checks for the case where the overflow
0df9d43f 209 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210 -- arithmetic op (which includes the case of if and case expressions). Note
211 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
212 -- we have work to do even if overflow checking is suppressed.
3cce7f32 213
2fe22c69 214 procedure Apply_Division_Check
215 (N : Node_Id;
216 Rlo : Uint;
217 Rhi : Uint;
218 ROK : Boolean);
219 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220 -- division checks as required if the Do_Division_Check flag is set.
221 -- Rlo and Rhi give the possible range of the right operand, these values
222 -- can be referenced and trusted only if ROK is set True.
223
224 procedure Apply_Float_Conversion_Check
225 (Ck_Node : Node_Id;
226 Target_Typ : Entity_Id);
227 -- The checks on a conversion from a floating-point type to an integer
228 -- type are delicate. They have to be performed before conversion, they
229 -- have to raise an exception when the operand is a NaN, and rounding must
230 -- be taken into account to determine the safe bounds of the operand.
231
ee6ba406 232 procedure Apply_Selected_Length_Checks
233 (Ck_Node : Node_Id;
234 Target_Typ : Entity_Id;
235 Source_Typ : Entity_Id;
236 Do_Static : Boolean);
237 -- This is the subprogram that does all the work for Apply_Length_Check
238 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239 -- described for the above routines. The Do_Static flag indicates that
240 -- only a static check is to be done.
241
242 procedure Apply_Selected_Range_Checks
243 (Ck_Node : Node_Id;
244 Target_Typ : Entity_Id;
245 Source_Typ : Entity_Id;
246 Do_Static : Boolean);
247 -- This is the subprogram that does all the work for Apply_Range_Check.
248 -- Expr, Target_Typ and Source_Typ are as described for the above
249 -- routine. The Do_Static flag indicates that only a static check is
250 -- to be done.
251
2af58f67 252 type Check_Type is new Check_Id range Access_Check .. Division_Check;
13dbf220 253 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254 -- This function is used to see if an access or division by zero check is
255 -- needed. The check is to be applied to a single variable appearing in the
256 -- source, and N is the node for the reference. If N is not of this form,
257 -- True is returned with no further processing. If N is of the right form,
258 -- then further processing determines if the given Check is needed.
259 --
260 -- The particular circuit is to see if we have the case of a check that is
261 -- not needed because it appears in the right operand of a short circuited
262 -- conditional where the left operand guards the check. For example:
263 --
264 -- if Var = 0 or else Q / Var > 12 then
265 -- ...
266 -- end if;
267 --
268 -- In this example, the division check is not required. At the same time
269 -- we can issue warnings for suspicious use of non-short-circuited forms,
270 -- such as:
271 --
272 -- if Var = 0 or Q / Var > 12 then
273 -- ...
274 -- end if;
275
9dfe12ae 276 procedure Find_Check
277 (Expr : Node_Id;
278 Check_Type : Character;
279 Target_Type : Entity_Id;
280 Entry_OK : out Boolean;
281 Check_Num : out Nat;
282 Ent : out Entity_Id;
283 Ofs : out Uint);
284 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
285 -- to see if a check is of the form for optimization, and if so, to see
286 -- if it has already been performed. Expr is the expression to check,
287 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
288 -- Target_Type is the target type for a range check, and Empty for an
289 -- overflow check. If the entry is not of the form for optimization,
290 -- then Entry_OK is set to False, and the remaining out parameters
291 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
292 -- entity and offset from the expression. Check_Num is the number of
293 -- a matching saved entry in Saved_Checks, or zero if no such entry
294 -- is located.
295
ee6ba406 296 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297 -- If a discriminal is used in constraining a prival, Return reference
298 -- to the discriminal of the protected body (which renames the parameter
299 -- of the enclosing protected operation). This clumsy transformation is
300 -- needed because privals are created too late and their actual subtypes
301 -- are not available when analysing the bodies of the protected operations.
0577b0b1 302 -- This function is called whenever the bound is an entity and the scope
303 -- indicates a protected operation. If the bound is an in-parameter of
304 -- a protected operation that is not a prival, the function returns the
305 -- bound itself.
ee6ba406 306 -- To be cleaned up???
307
308 function Guard_Access
309 (Cond : Node_Id;
310 Loc : Source_Ptr;
314a23b6 311 Ck_Node : Node_Id) return Node_Id;
ee6ba406 312 -- In the access type case, guard the test with a test to ensure
313 -- that the access value is non-null, since the checks do not
314 -- not apply to null access values.
315
316 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318 -- Constraint_Error node.
319
3cce7f32 320 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321 -- Returns True if node N is for an arithmetic operation with signed
0326b4d4 322 -- integer operands. This includes unary and binary operators, and also
323 -- if and case expression nodes where the dependent expressions are of
324 -- a signed integer type. These are the kinds of nodes for which special
691fe9e0 325 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
3cce7f32 326
0577b0b1 327 function Range_Or_Validity_Checks_Suppressed
328 (Expr : Node_Id) return Boolean;
329 -- Returns True if either range or validity checks or both are suppressed
330 -- for the type of the given expression, or, if the expression is the name
331 -- of an entity, if these checks are suppressed for the entity.
332
ee6ba406 333 function Selected_Length_Checks
334 (Ck_Node : Node_Id;
335 Target_Typ : Entity_Id;
336 Source_Typ : Entity_Id;
314a23b6 337 Warn_Node : Node_Id) return Check_Result;
ee6ba406 338 -- Like Apply_Selected_Length_Checks, except it doesn't modify
339 -- anything, just returns a list of nodes as described in the spec of
340 -- this package for the Range_Check function.
18cb6d78 341 -- ??? In fact it does construct the test and insert it into the tree,
342 -- and insert actions in various ways (calling Insert_Action directly
343 -- in particular) so we do not call it in GNATprove mode, contrary to
344 -- Selected_Range_Checks.
ee6ba406 345
346 function Selected_Range_Checks
347 (Ck_Node : Node_Id;
348 Target_Typ : Entity_Id;
349 Source_Typ : Entity_Id;
314a23b6 350 Warn_Node : Node_Id) return Check_Result;
ee6ba406 351 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352 -- just returns a list of nodes as described in the spec of this package
353 -- for the Range_Check function.
354
355 ------------------------------
356 -- Access_Checks_Suppressed --
357 ------------------------------
358
359 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360 begin
9dfe12ae 361 if Present (E) and then Checks_May_Be_Suppressed (E) then
362 return Is_Check_Suppressed (E, Access_Check);
363 else
fafc6b97 364 return Scope_Suppress.Suppress (Access_Check);
9dfe12ae 365 end if;
ee6ba406 366 end Access_Checks_Suppressed;
367
368 -------------------------------------
369 -- Accessibility_Checks_Suppressed --
370 -------------------------------------
371
372 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373 begin
9dfe12ae 374 if Present (E) and then Checks_May_Be_Suppressed (E) then
375 return Is_Check_Suppressed (E, Accessibility_Check);
376 else
fafc6b97 377 return Scope_Suppress.Suppress (Accessibility_Check);
9dfe12ae 378 end if;
ee6ba406 379 end Accessibility_Checks_Suppressed;
380
00c403ee 381 -----------------------------
382 -- Activate_Division_Check --
383 -----------------------------
384
385 procedure Activate_Division_Check (N : Node_Id) is
386 begin
387 Set_Do_Division_Check (N, True);
388 Possible_Local_Raise (N, Standard_Constraint_Error);
389 end Activate_Division_Check;
390
391 -----------------------------
392 -- Activate_Overflow_Check --
393 -----------------------------
394
395 procedure Activate_Overflow_Check (N : Node_Id) is
c8e92b5f 396 Typ : constant Entity_Id := Etype (N);
397
00c403ee 398 begin
c8e92b5f 399 -- Floating-point case. If Etype is not set (this can happen when we
400 -- activate a check on a node that has not yet been analyzed), then
401 -- we assume we do not have a floating-point type (as per our spec).
402
403 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
404
405 -- Ignore call if we have no automatic overflow checks on the target
406 -- and Check_Float_Overflow mode is not set. These are the cases in
407 -- which we expect to generate infinities and NaN's with no check.
408
409 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410 return;
411
412 -- Ignore for unary operations ("+", "-", abs) since these can never
413 -- result in overflow for floating-point cases.
b8446e0d 414
c8e92b5f 415 elsif Nkind (N) in N_Unary_Op then
416 return;
417
418 -- Otherwise we will set the flag
419
420 else
421 null;
422 end if;
423
424 -- Discrete case
425
426 else
427 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428 -- for zero-divide is a divide check, not an overflow check).
b8446e0d 429
c8e92b5f 430 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431 return;
432 end if;
b8446e0d 433 end if;
434
c8e92b5f 435 -- Fall through for cases where we do set the flag
b8446e0d 436
437 Set_Do_Overflow_Check (N, True);
438 Possible_Local_Raise (N, Standard_Constraint_Error);
00c403ee 439 end Activate_Overflow_Check;
440
441 --------------------------
442 -- Activate_Range_Check --
443 --------------------------
444
445 procedure Activate_Range_Check (N : Node_Id) is
446 begin
447 Set_Do_Range_Check (N, True);
448 Possible_Local_Raise (N, Standard_Constraint_Error);
449 end Activate_Range_Check;
450
0577b0b1 451 ---------------------------------
452 -- Alignment_Checks_Suppressed --
453 ---------------------------------
454
455 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456 begin
457 if Present (E) and then Checks_May_Be_Suppressed (E) then
458 return Is_Check_Suppressed (E, Alignment_Check);
459 else
fafc6b97 460 return Scope_Suppress.Suppress (Alignment_Check);
0577b0b1 461 end if;
462 end Alignment_Checks_Suppressed;
463
2d70530c 464 ----------------------------------
465 -- Allocation_Checks_Suppressed --
466 ----------------------------------
467
fa771c05 468 -- Note: at the current time there are no calls to this function, because
469 -- the relevant check is in the run-time, so it is not a check that the
470 -- compiler can suppress anyway, but we still have to recognize the check
471 -- name Allocation_Check since it is part of the standard.
472
2d70530c 473 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474 begin
475 if Present (E) and then Checks_May_Be_Suppressed (E) then
476 return Is_Check_Suppressed (E, Allocation_Check);
477 else
478 return Scope_Suppress.Suppress (Allocation_Check);
479 end if;
480 end Allocation_Checks_Suppressed;
481
ee6ba406 482 -------------------------
483 -- Append_Range_Checks --
484 -------------------------
485
486 procedure Append_Range_Checks
487 (Checks : Check_Result;
488 Stmts : List_Id;
489 Suppress_Typ : Entity_Id;
490 Static_Sloc : Source_Ptr;
491 Flag_Node : Node_Id)
492 is
2b4f2458 493 Checks_On : constant Boolean :=
494 not Index_Checks_Suppressed (Suppress_Typ)
495 or else
496 not Range_Checks_Suppressed (Suppress_Typ);
497
9dfe12ae 498 Internal_Flag_Node : constant Node_Id := Flag_Node;
499 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
500
ee6ba406 501 begin
2b4f2458 502 -- For now we just return if Checks_On is false, however this should be
503 -- enhanced to check for an always True value in the condition and to
504 -- generate a compilation warning???
ee6ba406 505
506 if not Checks_On then
507 return;
508 end if;
509
510 for J in 1 .. 2 loop
511 exit when No (Checks (J));
512
513 if Nkind (Checks (J)) = N_Raise_Constraint_Error
514 and then Present (Condition (Checks (J)))
515 then
516 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517 Append_To (Stmts, Checks (J));
518 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519 end if;
520
521 else
522 Append_To
f15731c4 523 (Stmts,
524 Make_Raise_Constraint_Error (Internal_Static_Sloc,
525 Reason => CE_Range_Check_Failed));
ee6ba406 526 end if;
527 end loop;
528 end Append_Range_Checks;
529
530 ------------------------
531 -- Apply_Access_Check --
532 ------------------------
533
534 procedure Apply_Access_Check (N : Node_Id) is
535 P : constant Node_Id := Prefix (N);
536
537 begin
13dbf220 538 -- We do not need checks if we are not generating code (i.e. the
539 -- expander is not active). This is not just an optimization, there
540 -- are cases (e.g. with pragma Debug) where generating the checks
541 -- can cause real trouble).
284faf8b 542
a33565dd 543 if not Expander_Active then
13dbf220 544 return;
9dfe12ae 545 end if;
ee6ba406 546
84d0d4a5 547 -- No check if short circuiting makes check unnecessary
9dfe12ae 548
84d0d4a5 549 if not Check_Needed (P, Access_Check) then
550 return;
ee6ba406 551 end if;
9dfe12ae 552
cc60bd16 553 -- No check if accessing the Offset_To_Top component of a dispatch
554 -- table. They are safe by construction.
555
040277b1 556 if Tagged_Type_Expansion
557 and then Present (Etype (P))
cc60bd16 558 and then RTU_Loaded (Ada_Tags)
559 and then RTE_Available (RE_Offset_To_Top_Ptr)
560 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561 then
562 return;
563 end if;
564
84d0d4a5 565 -- Otherwise go ahead and install the check
9dfe12ae 566
fa7497e8 567 Install_Null_Excluding_Check (P);
ee6ba406 568 end Apply_Access_Check;
569
570 -------------------------------
571 -- Apply_Accessibility_Check --
572 -------------------------------
573
55dc6dc2 574 procedure Apply_Accessibility_Check
575 (N : Node_Id;
576 Typ : Entity_Id;
577 Insert_Node : Node_Id)
578 is
ee6ba406 579 Loc : constant Source_Ptr := Sloc (N);
1a9cc6cd 580 Param_Ent : Entity_Id := Param_Entity (N);
ee6ba406 581 Param_Level : Node_Id;
582 Type_Level : Node_Id;
583
584 begin
47d210a3 585 if Ada_Version >= Ada_2012
586 and then not Present (Param_Ent)
587 and then Is_Entity_Name (N)
588 and then Ekind_In (Entity (N), E_Constant, E_Variable)
589 and then Present (Effective_Extra_Accessibility (Entity (N)))
590 then
591 Param_Ent := Entity (N);
592 while Present (Renamed_Object (Param_Ent)) loop
1a9cc6cd 593
47d210a3 594 -- Renamed_Object must return an Entity_Name here
595 -- because of preceding "Present (E_E_A (...))" test.
596
597 Param_Ent := Entity (Renamed_Object (Param_Ent));
598 end loop;
599 end if;
600
ee6ba406 601 if Inside_A_Generic then
602 return;
603
6ffc64fc 604 -- Only apply the run-time check if the access parameter has an
605 -- associated extra access level parameter and when the level of the
606 -- type is less deep than the level of the access parameter, and
607 -- accessibility checks are not suppressed.
ee6ba406 608
609 elsif Present (Param_Ent)
610 and then Present (Extra_Accessibility (Param_Ent))
47d210a3 611 and then UI_Gt (Object_Access_Level (N),
1a9cc6cd 612 Deepest_Type_Access_Level (Typ))
ee6ba406 613 and then not Accessibility_Checks_Suppressed (Param_Ent)
614 and then not Accessibility_Checks_Suppressed (Typ)
615 then
616 Param_Level :=
617 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
618
1a9cc6cd 619 Type_Level :=
620 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
ee6ba406 621
bf3e1520 622 -- Raise Program_Error if the accessibility level of the access
84d0d4a5 623 -- parameter is deeper than the level of the target access type.
ee6ba406 624
55dc6dc2 625 Insert_Action (Insert_Node,
ee6ba406 626 Make_Raise_Program_Error (Loc,
627 Condition =>
628 Make_Op_Gt (Loc,
629 Left_Opnd => Param_Level,
f15731c4 630 Right_Opnd => Type_Level),
631 Reason => PE_Accessibility_Check_Failed));
ee6ba406 632
633 Analyze_And_Resolve (N);
634 end if;
635 end Apply_Accessibility_Check;
636
0577b0b1 637 --------------------------------
638 -- Apply_Address_Clause_Check --
639 --------------------------------
640
641 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
d950dc79 642 pragma Assert (Nkind (N) = N_Freeze_Entity);
643
8650387e 644 AC : constant Node_Id := Address_Clause (E);
645 Loc : constant Source_Ptr := Sloc (AC);
646 Typ : constant Entity_Id := Etype (E);
c2b56224 647
c2b56224 648 Expr : Node_Id;
0577b0b1 649 -- Address expression (not necessarily the same as Aexp, for example
650 -- when Aexp is a reference to a constant, in which case Expr gets
7b8fa048 651 -- reset to reference the value expression of the constant).
0577b0b1 652
c2b56224 653 begin
d6da7448 654 -- See if alignment check needed. Note that we never need a check if the
655 -- maximum alignment is one, since the check will always succeed.
656
657 -- Note: we do not check for checks suppressed here, since that check
658 -- was done in Sem_Ch13 when the address clause was processed. We are
659 -- only called if checks were not suppressed. The reason for this is
660 -- that we have to delay the call to Apply_Alignment_Check till freeze
661 -- time (so that all types etc are elaborated), but we have to check
662 -- the status of check suppressing at the point of the address clause.
663
664 if No (AC)
665 or else not Check_Address_Alignment (AC)
666 or else Maximum_Alignment = 1
667 then
668 return;
669 end if;
670
671 -- Obtain expression from address clause
9dfe12ae 672
514a5555 673 Expr := Address_Value (Expression (AC));
0577b0b1 674
514a5555 675 -- See if we know that Expr has an acceptable value at compile time. If
676 -- it hasn't or we don't know, we defer issuing the warning until the
677 -- end of the compilation to take into account back end annotations.
c2b56224 678
679 if Compile_Time_Known_Value (Expr)
f2a06be9 680 and then (Known_Alignment (E) or else Known_Alignment (Typ))
c2b56224 681 then
f2a06be9 682 declare
683 AL : Uint := Alignment (Typ);
684
685 begin
8650387e 686 -- The object alignment might be more restrictive than the type
687 -- alignment.
f2a06be9 688
689 if Known_Alignment (E) then
690 AL := Alignment (E);
691 end if;
692
514a5555 693 if Expr_Value (Expr) mod AL = 0 then
0577b0b1 694 return;
f2a06be9 695 end if;
696 end;
c2b56224 697
7161e166 698 -- If the expression has the form X'Address, then we can find out if the
699 -- object X has an alignment that is compatible with the object E. If it
700 -- hasn't or we don't know, we defer issuing the warning until the end
701 -- of the compilation to take into account back end annotations.
c2b56224 702
0577b0b1 703 elsif Nkind (Expr) = N_Attribute_Reference
704 and then Attribute_Name (Expr) = Name_Address
7161e166 705 and then
706 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
0577b0b1 707 then
d6da7448 708 return;
0577b0b1 709 end if;
c2b56224 710
6fb3c314 711 -- Here we do not know if the value is acceptable. Strictly we don't
712 -- have to do anything, since if the alignment is bad, we have an
713 -- erroneous program. However we are allowed to check for erroneous
714 -- conditions and we decide to do this by default if the check is not
715 -- suppressed.
0577b0b1 716
717 -- However, don't do the check if elaboration code is unwanted
718
719 if Restriction_Active (No_Elaboration_Code) then
720 return;
721
722 -- Generate a check to raise PE if alignment may be inappropriate
723
724 else
8650387e 725 -- If the original expression is a non-static constant, use the name
726 -- of the constant itself rather than duplicating its initialization
727 -- expression, which was extracted above.
0577b0b1 728
00c403ee 729 -- Note: Expr is empty if the address-clause is applied to in-mode
730 -- actuals (allowed by 13.1(22)).
731
732 if not Present (Expr)
733 or else
734 (Is_Entity_Name (Expression (AC))
735 and then Ekind (Entity (Expression (AC))) = E_Constant
8650387e 736 and then Nkind (Parent (Entity (Expression (AC)))) =
737 N_Object_Declaration)
0577b0b1 738 then
739 Expr := New_Copy_Tree (Expression (AC));
740 else
741 Remove_Side_Effects (Expr);
c2b56224 742 end if;
c2b56224 743
d950dc79 744 if No (Actions (N)) then
745 Set_Actions (N, New_List);
746 end if;
747
748 Prepend_To (Actions (N),
0577b0b1 749 Make_Raise_Program_Error (Loc,
750 Condition =>
751 Make_Op_Ne (Loc,
8650387e 752 Left_Opnd =>
0577b0b1 753 Make_Op_Mod (Loc,
8650387e 754 Left_Opnd =>
0577b0b1 755 Unchecked_Convert_To
756 (RTE (RE_Integer_Address), Expr),
757 Right_Opnd =>
758 Make_Attribute_Reference (Loc,
d950dc79 759 Prefix => New_Occurrence_Of (E, Loc),
0577b0b1 760 Attribute_Name => Name_Alignment)),
761 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
8650387e 762 Reason => PE_Misaligned_Address_Value));
7b8fa048 763
764 Warning_Msg := No_Error_Msg;
d950dc79 765 Analyze (First (Actions (N)), Suppress => All_Checks);
cd309f05 766
514a5555 767 -- If the above raise action generated a warning message (for example
7b8fa048 768 -- from Warn_On_Non_Local_Exception mode with the active restriction
769 -- No_Exception_Propagation).
770
771 if Warning_Msg /= No_Error_Msg then
8650387e 772
7b8fa048 773 -- If the expression has a known at compile time value, then
774 -- once we know the alignment of the type, we can check if the
775 -- exception will be raised or not, and if not, we don't need
776 -- the warning so we will kill the warning later on.
777
778 if Compile_Time_Known_Value (Expr) then
779 Alignment_Warnings.Append
780 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
cd309f05 781
8650387e 782 -- Add explanation of the warning generated by the check
783
784 else
514a5555 785 Error_Msg_N
8650387e 786 ("\address value may be incompatible with alignment of "
787 & "object?X?", AC);
514a5555 788 end if;
cd309f05 789 end if;
78be29d1 790
0577b0b1 791 return;
792 end if;
9dfe12ae 793
794 exception
8650387e 795
0577b0b1 796 -- If we have some missing run time component in configurable run time
797 -- mode then just skip the check (it is not required in any case).
798
9dfe12ae 799 when RE_Not_Available =>
800 return;
0577b0b1 801 end Apply_Address_Clause_Check;
c2b56224 802
ee6ba406 803 -------------------------------------
804 -- Apply_Arithmetic_Overflow_Check --
805 -------------------------------------
806
3cce7f32 807 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808 begin
809 -- Use old routine in almost all cases (the only case we are treating
21a55437 810 -- specially is the case of a signed integer arithmetic op with the
0df9d43f 811 -- overflow checking mode set to MINIMIZED or ELIMINATED).
3cce7f32 812
0df9d43f 813 if Overflow_Check_Mode = Strict
3cce7f32 814 or else not Is_Signed_Integer_Arithmetic_Op (N)
815 then
0df9d43f 816 Apply_Arithmetic_Overflow_Strict (N);
3cce7f32 817
21a55437 818 -- Otherwise use the new routine for the case of a signed integer
819 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
820 -- mode is MINIMIZED or ELIMINATED.
3cce7f32 821
822 else
823 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824 end if;
825 end Apply_Arithmetic_Overflow_Check;
826
0df9d43f 827 --------------------------------------
828 -- Apply_Arithmetic_Overflow_Strict --
829 --------------------------------------
3cce7f32 830
fc1dbe36 831 -- This routine is called only if the type is an integer type and an
832 -- arithmetic overflow check may be needed for op (add, subtract, or
833 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
834 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
f40f9731 835 -- operation into a more complex sequence of tests that ensures that
836 -- overflow is properly caught.
ee6ba406 837
0df9d43f 838 -- This is used in CHECKED modes. It is identical to the code for this
839 -- cases before the big overflow earthquake, thus ensuring that in this
840 -- modes we have compatible behavior (and reliability) to what was there
841 -- before. It is also called for types other than signed integers, and if
842 -- the Do_Overflow_Check flag is off.
3cce7f32 843
844 -- Note: we also call this routine if we decide in the MINIMIZED case
845 -- to give up and just generate an overflow check without any fuss.
846
0df9d43f 847 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
21a55437 848 Loc : constant Source_Ptr := Sloc (N);
849 Typ : constant Entity_Id := Etype (N);
850 Rtyp : constant Entity_Id := Root_Type (Typ);
ee6ba406 851
852 begin
0df9d43f 853 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 -- suppressed.
855
856 if not Do_Overflow_Check (N) then
857 return;
858 end if;
859
f40f9731 860 -- An interesting special case. If the arithmetic operation appears as
861 -- the operand of a type conversion:
862
863 -- type1 (x op y)
864
865 -- and all the following conditions apply:
866
867 -- arithmetic operation is for a signed integer type
868 -- target type type1 is a static integer subtype
869 -- range of x and y are both included in the range of type1
870 -- range of x op y is included in the range of type1
871 -- size of type1 is at least twice the result size of op
872
a36d34e4 873 -- then we don't do an overflow check in any case. Instead, we transform
f40f9731 874 -- the operation so that we end up with:
875
876 -- type1 (type1 (x) op type1 (y))
877
878 -- This avoids intermediate overflow before the conversion. It is
879 -- explicitly permitted by RM 3.5.4(24):
880
881 -- For the execution of a predefined operation of a signed integer
882 -- type, the implementation need not raise Constraint_Error if the
883 -- result is outside the base range of the type, so long as the
884 -- correct result is produced.
885
886 -- It's hard to imagine that any programmer counts on the exception
887 -- being raised in this case, and in any case it's wrong coding to
888 -- have this expectation, given the RM permission. Furthermore, other
889 -- Ada compilers do allow such out of range results.
890
891 -- Note that we do this transformation even if overflow checking is
892 -- off, since this is precisely about giving the "right" result and
893 -- avoiding the need for an overflow check.
894
8eb4a5eb 895 -- Note: this circuit is partially redundant with respect to the similar
896 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897 -- with cases that do not come through here. We still need the following
898 -- processing even with the Exp_Ch4 code in place, since we want to be
899 -- sure not to generate the arithmetic overflow check in these cases
900 -- (Exp_Ch4 would have a hard time removing them once generated).
901
f40f9731 902 if Is_Signed_Integer_Type (Typ)
903 and then Nkind (Parent (N)) = N_Type_Conversion
ee6ba406 904 then
f32c377d 905 Conversion_Optimization : declare
f40f9731 906 Target_Type : constant Entity_Id :=
b6341c67 907 Base_Type (Entity (Subtype_Mark (Parent (N))));
f40f9731 908
909 Llo, Lhi : Uint;
910 Rlo, Rhi : Uint;
911 LOK, ROK : Boolean;
912
913 Vlo : Uint;
914 Vhi : Uint;
915 VOK : Boolean;
916
917 Tlo : Uint;
918 Thi : Uint;
919
920 begin
921 if Is_Integer_Type (Target_Type)
922 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923 then
924 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
925 Thi := Expr_Value (Type_High_Bound (Target_Type));
926
9c486805 927 Determine_Range
928 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
929 Determine_Range
930 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
f40f9731 931
932 if (LOK and ROK)
933 and then Tlo <= Llo and then Lhi <= Thi
934 and then Tlo <= Rlo and then Rhi <= Thi
935 then
9c486805 936 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
f40f9731 937
938 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939 Rewrite (Left_Opnd (N),
940 Make_Type_Conversion (Loc,
941 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942 Expression => Relocate_Node (Left_Opnd (N))));
943
944 Rewrite (Right_Opnd (N),
945 Make_Type_Conversion (Loc,
946 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947 Expression => Relocate_Node (Right_Opnd (N))));
948
780bfb21 949 -- Rewrite the conversion operand so that the original
950 -- node is retained, in order to avoid the warning for
951 -- redundant conversions in Resolve_Type_Conversion.
952
953 Rewrite (N, Relocate_Node (N));
954
f40f9731 955 Set_Etype (N, Target_Type);
780bfb21 956
f40f9731 957 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
958 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
959
960 -- Given that the target type is twice the size of the
961 -- source type, overflow is now impossible, so we can
962 -- safely kill the overflow check and return.
963
964 Set_Do_Overflow_Check (N, False);
965 return;
966 end if;
967 end if;
968 end if;
f32c377d 969 end Conversion_Optimization;
ee6ba406 970 end if;
971
f40f9731 972 -- Now see if an overflow check is required
973
974 declare
975 Siz : constant Int := UI_To_Int (Esize (Rtyp));
976 Dsiz : constant Int := Siz * 2;
977 Opnod : Node_Id;
978 Ctyp : Entity_Id;
979 Opnd : Node_Id;
980 Cent : RE_Id;
ee6ba406 981
f40f9731 982 begin
983 -- Skip check if back end does overflow checks, or the overflow flag
df40eeb0 984 -- is not set anyway, or we are not doing code expansion, or the
985 -- parent node is a type conversion whose operand is an arithmetic
986 -- operation on signed integers on which the expander can promote
bbbed24b 987 -- later the operands to type Integer (see Expand_N_Type_Conversion).
ee6ba406 988
f40f9731 989 if Backend_Overflow_Checks_On_Target
990 or else not Do_Overflow_Check (N)
a33565dd 991 or else not Expander_Active
df40eeb0 992 or else (Present (Parent (N))
993 and then Nkind (Parent (N)) = N_Type_Conversion
994 and then Integer_Promotion_Possible (Parent (N)))
f40f9731 995 then
996 return;
997 end if;
ee6ba406 998
f40f9731 999 -- Otherwise, generate the full general code for front end overflow
1000 -- detection, which works by doing arithmetic in a larger type:
ee6ba406 1001
f40f9731 1002 -- x op y
ee6ba406 1003
f40f9731 1004 -- is expanded into
ee6ba406 1005
f40f9731 1006 -- Typ (Checktyp (x) op Checktyp (y));
ee6ba406 1007
f40f9731 1008 -- where Typ is the type of the original expression, and Checktyp is
1009 -- an integer type of sufficient length to hold the largest possible
1010 -- result.
ee6ba406 1011
f40f9731 1012 -- If the size of check type exceeds the size of Long_Long_Integer,
1013 -- we use a different approach, expanding to:
ee6ba406 1014
f40f9731 1015 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
ee6ba406 1016
f40f9731 1017 -- where xxx is Add, Multiply or Subtract as appropriate
ee6ba406 1018
f40f9731 1019 -- Find check type if one exists
1020
1021 if Dsiz <= Standard_Integer_Size then
1022 Ctyp := Standard_Integer;
ee6ba406 1023
f40f9731 1024 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025 Ctyp := Standard_Long_Long_Integer;
1026
c9f84db7 1027 -- No check type exists, use runtime call
ee6ba406 1028
1029 else
f40f9731 1030 if Nkind (N) = N_Op_Add then
1031 Cent := RE_Add_With_Ovflo_Check;
ee6ba406 1032
f40f9731 1033 elsif Nkind (N) = N_Op_Multiply then
1034 Cent := RE_Multiply_With_Ovflo_Check;
ee6ba406 1035
f40f9731 1036 else
1037 pragma Assert (Nkind (N) = N_Op_Subtract);
1038 Cent := RE_Subtract_With_Ovflo_Check;
1039 end if;
1040
1041 Rewrite (N,
1042 OK_Convert_To (Typ,
1043 Make_Function_Call (Loc,
83c6c069 1044 Name => New_Occurrence_Of (RTE (Cent), Loc),
f40f9731 1045 Parameter_Associations => New_List (
1046 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1047 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
ee6ba406 1048
f40f9731 1049 Analyze_And_Resolve (N, Typ);
1050 return;
1051 end if;
ee6ba406 1052
f40f9731 1053 -- If we fall through, we have the case where we do the arithmetic
1054 -- in the next higher type and get the check by conversion. In these
1055 -- cases Ctyp is set to the type to be used as the check type.
ee6ba406 1056
f40f9731 1057 Opnod := Relocate_Node (N);
ee6ba406 1058
f40f9731 1059 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
ee6ba406 1060
f40f9731 1061 Analyze (Opnd);
1062 Set_Etype (Opnd, Ctyp);
1063 Set_Analyzed (Opnd, True);
1064 Set_Left_Opnd (Opnod, Opnd);
ee6ba406 1065
f40f9731 1066 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
ee6ba406 1067
f40f9731 1068 Analyze (Opnd);
1069 Set_Etype (Opnd, Ctyp);
1070 Set_Analyzed (Opnd, True);
1071 Set_Right_Opnd (Opnod, Opnd);
ee6ba406 1072
f40f9731 1073 -- The type of the operation changes to the base type of the check
1074 -- type, and we reset the overflow check indication, since clearly no
1075 -- overflow is possible now that we are using a double length type.
1076 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 -- expand the node.
ee6ba406 1078
f40f9731 1079 Set_Etype (Opnod, Base_Type (Ctyp));
1080 Set_Do_Overflow_Check (Opnod, False);
1081 Set_Analyzed (Opnod, True);
ee6ba406 1082
f40f9731 1083 -- Now build the outer conversion
ee6ba406 1084
f40f9731 1085 Opnd := OK_Convert_To (Typ, Opnod);
1086 Analyze (Opnd);
1087 Set_Etype (Opnd, Typ);
9dfe12ae 1088
f40f9731 1089 -- In the discrete type case, we directly generate the range check
1090 -- for the outer operand. This range check will implement the
1091 -- required overflow check.
9dfe12ae 1092
f40f9731 1093 if Is_Discrete_Type (Typ) then
1094 Rewrite (N, Opnd);
1095 Generate_Range_Check
1096 (Expression (N), Typ, CE_Overflow_Check_Failed);
9dfe12ae 1097
f40f9731 1098 -- For other types, we enable overflow checking on the conversion,
1099 -- after setting the node as analyzed to prevent recursive attempts
1100 -- to expand the conversion node.
9dfe12ae 1101
f40f9731 1102 else
1103 Set_Analyzed (Opnd, True);
1104 Enable_Overflow_Check (Opnd);
1105 Rewrite (N, Opnd);
1106 end if;
1107
1108 exception
1109 when RE_Not_Available =>
1110 return;
1111 end;
0df9d43f 1112 end Apply_Arithmetic_Overflow_Strict;
3cce7f32 1113
1114 ----------------------------------------------------
1115 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116 ----------------------------------------------------
1117
1118 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
3cce7f32 1120
1121 Loc : constant Source_Ptr := Sloc (Op);
1122 P : constant Node_Id := Parent (Op);
1123
49b3a812 1124 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125 -- Operands and results are of this type when we convert
1126
3cce7f32 1127 Result_Type : constant Entity_Id := Etype (Op);
1128 -- Original result type
1129
db415383 1130 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 1131 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1132
1133 Lo, Hi : Uint;
1134 -- Ranges of values for result
1135
1136 begin
1137 -- Nothing to do if our parent is one of the following:
1138
0326b4d4 1139 -- Another signed integer arithmetic op
3cce7f32 1140 -- A membership operation
1141 -- A comparison operation
1142
1143 -- In all these cases, we will process at the higher level (and then
1144 -- this node will be processed during the downwards recursion that
0df9d43f 1145 -- is part of the processing in Minimize_Eliminate_Overflows).
3cce7f32 1146
1147 if Is_Signed_Integer_Arithmetic_Op (P)
b8a17a21 1148 or else Nkind (P) in N_Membership_Test
1149 or else Nkind (P) in N_Op_Compare
aa4b16cb 1150
70a2dff4 1151 -- This is also true for an alternative in a case expression
1152
1153 or else Nkind (P) = N_Case_Expression_Alternative
1154
1155 -- This is also true for a range operand in a membership test
aa4b16cb 1156
b8a17a21 1157 or else (Nkind (P) = N_Range
1158 and then Nkind (Parent (P)) in N_Membership_Test)
3cce7f32 1159 then
af90720d 1160 -- If_Expressions and Case_Expressions are treated as arithmetic
1161 -- ops, but if they appear in an assignment or similar contexts
1162 -- there is no overflow check that starts from that parent node,
1163 -- so apply check now.
1164
1165 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167 then
1168 null;
1169 else
1170 return;
1171 end if;
3cce7f32 1172 end if;
1173
0326b4d4 1174 -- Otherwise, we have a top level arithmetic operation node, and this
21a55437 1175 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1176 -- modes. This is the case where we tell the machinery not to move into
1177 -- Bignum mode at this top level (of course the top level operation
1178 -- will still be in Bignum mode if either of its operands are of type
1179 -- Bignum).
3cce7f32 1180
0df9d43f 1181 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
3cce7f32 1182
1183 -- That call may but does not necessarily change the result type of Op.
1184 -- It is the job of this routine to undo such changes, so that at the
1185 -- top level, we have the proper type. This "undoing" is a point at
1186 -- which a final overflow check may be applied.
1187
f32c377d 1188 -- If the result type was not fiddled we are all set. We go to base
1189 -- types here because things may have been rewritten to generate the
1190 -- base type of the operand types.
3cce7f32 1191
f32c377d 1192 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
3cce7f32 1193 return;
1194
1195 -- Bignum case
1196
49b3a812 1197 elsif Is_RTE (Etype (Op), RE_Bignum) then
3cce7f32 1198
d94b5da2 1199 -- We need a sequence that looks like:
3cce7f32 1200
1201 -- Rnn : Result_Type;
1202
1203 -- declare
d94b5da2 1204 -- M : Mark_Id := SS_Mark;
3cce7f32 1205 -- begin
49b3a812 1206 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
3cce7f32 1207 -- SS_Release (M);
1208 -- end;
1209
1210 -- This block is inserted (using Insert_Actions), and then the node
1211 -- is replaced with a reference to Rnn.
1212
75b45a21 1213 -- If our parent is a conversion node then there is no point in
a36d34e4 1214 -- generating a conversion to Result_Type. Instead, we let the parent
75b45a21 1215 -- handle this. Note that this special case is not just about
1216 -- optimization. Consider
3cce7f32 1217
1218 -- A,B,C : Integer;
1219 -- ...
49b3a812 1220 -- X := Long_Long_Integer'Base (A * (B ** C));
3cce7f32 1221
1222 -- Now the product may fit in Long_Long_Integer but not in Integer.
21a55437 1223 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224 -- overflow exception for this intermediate value.
3cce7f32 1225
1226 declare
49b3a812 1227 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3cce7f32 1228 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229 RHS : Node_Id;
1230
1231 Rtype : Entity_Id;
1232
1233 begin
1234 RHS := Convert_From_Bignum (Op);
1235
1236 if Nkind (P) /= N_Type_Conversion then
49b3a812 1237 Convert_To_And_Rewrite (Result_Type, RHS);
3cce7f32 1238 Rtype := Result_Type;
1239
1240 -- Interesting question, do we need a check on that conversion
1241 -- operation. Answer, not if we know the result is in range.
1242 -- At the moment we are not taking advantage of this. To be
1243 -- looked at later ???
1244
1245 else
49b3a812 1246 Rtype := LLIB;
3cce7f32 1247 end if;
1248
1249 Insert_Before
1250 (First (Statements (Handled_Statement_Sequence (Blk))),
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Rnn, Loc),
1253 Expression => RHS));
1254
1255 Insert_Actions (Op, New_List (
1256 Make_Object_Declaration (Loc,
1257 Defining_Identifier => Rnn,
1258 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1259 Blk));
1260
1261 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262 Analyze_And_Resolve (Op);
1263 end;
1264
af90720d 1265 -- Here we know the result is Long_Long_Integer'Base, or that it has
412f75eb 1266 -- been rewritten because the parent operation is a conversion. See
0df9d43f 1267 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
3cce7f32 1268
1269 else
f32c377d 1270 pragma Assert
1271 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
3cce7f32 1272
1273 -- All we need to do here is to convert the result to the proper
1274 -- result type. As explained above for the Bignum case, we can
1275 -- omit this if our parent is a type conversion.
1276
1277 if Nkind (P) /= N_Type_Conversion then
1278 Convert_To_And_Rewrite (Result_Type, Op);
1279 end if;
1280
1281 Analyze_And_Resolve (Op);
1282 end if;
1283 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
ee6ba406 1284
ee6ba406 1285 ----------------------------
1286 -- Apply_Constraint_Check --
1287 ----------------------------
1288
1289 procedure Apply_Constraint_Check
1290 (N : Node_Id;
1291 Typ : Entity_Id;
1292 No_Sliding : Boolean := False)
1293 is
1294 Desig_Typ : Entity_Id;
1295
1296 begin
7aafae1c 1297 -- No checks inside a generic (check the instantiations)
1298
ee6ba406 1299 if Inside_A_Generic then
1300 return;
7aafae1c 1301 end if;
ee6ba406 1302
6fb3c314 1303 -- Apply required constraint checks
7aafae1c 1304
1305 if Is_Scalar_Type (Typ) then
ee6ba406 1306 Apply_Scalar_Range_Check (N, Typ);
1307
1308 elsif Is_Array_Type (Typ) then
1309
05fcfafb 1310 -- A useful optimization: an aggregate with only an others clause
5f260d20 1311 -- always has the right bounds.
1312
1313 if Nkind (N) = N_Aggregate
1314 and then No (Expressions (N))
1315 and then Nkind
1316 (First (Choices (First (Component_Associations (N)))))
1317 = N_Others_Choice
1318 then
1319 return;
1320 end if;
1321
ee6ba406 1322 if Is_Constrained (Typ) then
1323 Apply_Length_Check (N, Typ);
1324
1325 if No_Sliding then
1326 Apply_Range_Check (N, Typ);
1327 end if;
1328 else
1329 Apply_Range_Check (N, Typ);
1330 end if;
1331
4fb5f0a0 1332 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
ee6ba406 1333 and then Has_Discriminants (Base_Type (Typ))
1334 and then Is_Constrained (Typ)
1335 then
1336 Apply_Discriminant_Check (N, Typ);
1337
1338 elsif Is_Access_Type (Typ) then
1339
1340 Desig_Typ := Designated_Type (Typ);
1341
1342 -- No checks necessary if expression statically null
1343
2af58f67 1344 if Known_Null (N) then
00c403ee 1345 if Can_Never_Be_Null (Typ) then
1346 Install_Null_Excluding_Check (N);
1347 end if;
ee6ba406 1348
1349 -- No sliding possible on access to arrays
1350
1351 elsif Is_Array_Type (Desig_Typ) then
1352 if Is_Constrained (Desig_Typ) then
1353 Apply_Length_Check (N, Typ);
1354 end if;
1355
1356 Apply_Range_Check (N, Typ);
1357
a63a0aad 1358 -- Do not install a discriminant check for a constrained subtype
1359 -- created for an unconstrained nominal type because the subtype
1360 -- has the correct constraints by construction.
1361
ee6ba406 1362 elsif Has_Discriminants (Base_Type (Desig_Typ))
a63a0aad 1363 and then Is_Constrained (Desig_Typ)
1364 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
ee6ba406 1365 then
1366 Apply_Discriminant_Check (N, Typ);
1367 end if;
fa7497e8 1368
bf3e1520 1369 -- Apply the 2005 Null_Excluding check. Note that we do not apply
00c403ee 1370 -- this check if the constraint node is illegal, as shown by having
1371 -- an error posted. This additional guard prevents cascaded errors
1372 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1373
fa7497e8 1374 if Can_Never_Be_Null (Typ)
1375 and then not Can_Never_Be_Null (Etype (N))
00c403ee 1376 and then not Error_Posted (N)
fa7497e8 1377 then
1378 Install_Null_Excluding_Check (N);
1379 end if;
ee6ba406 1380 end if;
1381 end Apply_Constraint_Check;
1382
1383 ------------------------------
1384 -- Apply_Discriminant_Check --
1385 ------------------------------
1386
1387 procedure Apply_Discriminant_Check
1388 (N : Node_Id;
1389 Typ : Entity_Id;
1390 Lhs : Node_Id := Empty)
1391 is
1392 Loc : constant Source_Ptr := Sloc (N);
1393 Do_Access : constant Boolean := Is_Access_Type (Typ);
1394 S_Typ : Entity_Id := Etype (N);
1395 Cond : Node_Id;
1396 T_Typ : Entity_Id;
1397
7be5088a 1398 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399 -- A heap object with an indefinite subtype is constrained by its
1400 -- initial value, and assigning to it requires a constraint_check.
1401 -- The target may be an explicit dereference, or a renaming of one.
1402
ee6ba406 1403 function Is_Aliased_Unconstrained_Component return Boolean;
1404 -- It is possible for an aliased component to have a nominal
1405 -- unconstrained subtype (through instantiation). If this is a
1406 -- discriminated component assigned in the expansion of an aggregate
1407 -- in an initialization, the check must be suppressed. This unusual
2af58f67 1408 -- situation requires a predicate of its own.
ee6ba406 1409
7be5088a 1410 ----------------------------------
1411 -- Denotes_Explicit_Dereference --
1412 ----------------------------------
1413
1414 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415 begin
1416 return
1417 Nkind (Obj) = N_Explicit_Dereference
1418 or else
1419 (Is_Entity_Name (Obj)
1420 and then Present (Renamed_Object (Entity (Obj)))
9474aa9c 1421 and then Nkind (Renamed_Object (Entity (Obj))) =
1422 N_Explicit_Dereference);
7be5088a 1423 end Denotes_Explicit_Dereference;
1424
ee6ba406 1425 ----------------------------------------
1426 -- Is_Aliased_Unconstrained_Component --
1427 ----------------------------------------
1428
1429 function Is_Aliased_Unconstrained_Component return Boolean is
1430 Comp : Entity_Id;
1431 Pref : Node_Id;
1432
1433 begin
1434 if Nkind (Lhs) /= N_Selected_Component then
1435 return False;
1436 else
1437 Comp := Entity (Selector_Name (Lhs));
1438 Pref := Prefix (Lhs);
1439 end if;
1440
1441 if Ekind (Comp) /= E_Component
1442 or else not Is_Aliased (Comp)
1443 then
1444 return False;
1445 end if;
1446
1447 return not Comes_From_Source (Pref)
1448 and then In_Instance
1449 and then not Is_Constrained (Etype (Comp));
1450 end Is_Aliased_Unconstrained_Component;
1451
1452 -- Start of processing for Apply_Discriminant_Check
1453
1454 begin
1455 if Do_Access then
1456 T_Typ := Designated_Type (Typ);
1457 else
1458 T_Typ := Typ;
1459 end if;
1460
105fa703 1461 -- If the expression is a function call that returns a limited object
1462 -- it cannot be copied. It is not clear how to perform the proper
1463 -- discriminant check in this case because the discriminant value must
1464 -- be retrieved from the constructed object itself.
1465
1466 if Nkind (N) = N_Function_Call
1467 and then Is_Limited_Type (Typ)
1468 and then Is_Entity_Name (Name (N))
1469 and then Returns_By_Ref (Entity (Name (N)))
1470 then
1471 return;
1472 end if;
1473
f0d65dae 1474 -- Only apply checks when generating code and discriminant checks are
1475 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1476 -- still analyze the expression to possibly issue errors on SPARK code
1477 -- when a run-time error can be detected at compile time.
1478
1479 if not GNATprove_Mode then
1480 if not Expander_Active
1481 or else Discriminant_Checks_Suppressed (T_Typ)
1482 then
1483 return;
1484 end if;
ee6ba406 1485 end if;
1486
feff2f05 1487 -- No discriminant checks necessary for an access when expression is
1488 -- statically Null. This is not only an optimization, it is fundamental
1489 -- because otherwise discriminant checks may be generated in init procs
1490 -- for types containing an access to a not-yet-frozen record, causing a
1491 -- deadly forward reference.
ee6ba406 1492
feff2f05 1493 -- Also, if the expression is of an access type whose designated type is
1494 -- incomplete, then the access value must be null and we suppress the
1495 -- check.
ee6ba406 1496
2af58f67 1497 if Known_Null (N) then
ee6ba406 1498 return;
1499
1500 elsif Is_Access_Type (S_Typ) then
1501 S_Typ := Designated_Type (S_Typ);
1502
1503 if Ekind (S_Typ) = E_Incomplete_Type then
1504 return;
1505 end if;
1506 end if;
1507
0577b0b1 1508 -- If an assignment target is present, then we need to generate the
1509 -- actual subtype if the target is a parameter or aliased object with
1510 -- an unconstrained nominal subtype.
1511
1512 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1513 -- subtype to the parameter and dereference cases, since other aliased
1514 -- objects are unconstrained (unless the nominal subtype is explicitly
7be5088a 1515 -- constrained).
ee6ba406 1516
1517 if Present (Lhs)
1518 and then (Present (Param_Entity (Lhs))
de54c5ab 1519 or else (Ada_Version < Ada_2005
0577b0b1 1520 and then not Is_Constrained (T_Typ)
ee6ba406 1521 and then Is_Aliased_View (Lhs)
0577b0b1 1522 and then not Is_Aliased_Unconstrained_Component)
de54c5ab 1523 or else (Ada_Version >= Ada_2005
0577b0b1 1524 and then not Is_Constrained (T_Typ)
7be5088a 1525 and then Denotes_Explicit_Dereference (Lhs)
0577b0b1 1526 and then Nkind (Original_Node (Lhs)) /=
1527 N_Function_Call))
ee6ba406 1528 then
1529 T_Typ := Get_Actual_Subtype (Lhs);
1530 end if;
1531
feff2f05 1532 -- Nothing to do if the type is unconstrained (this is the case where
1533 -- the actual subtype in the RM sense of N is unconstrained and no check
1534 -- is required).
ee6ba406 1535
1536 if not Is_Constrained (T_Typ) then
1537 return;
05fcfafb 1538
1539 -- Ada 2005: nothing to do if the type is one for which there is a
1540 -- partial view that is constrained.
1541
de54c5ab 1542 elsif Ada_Version >= Ada_2005
0d78d2d4 1543 and then Object_Type_Has_Constrained_Partial_View
d41a3f41 1544 (Typ => Base_Type (T_Typ),
1545 Scop => Current_Scope)
05fcfafb 1546 then
1547 return;
ee6ba406 1548 end if;
1549
00f91aef 1550 -- Nothing to do if the type is an Unchecked_Union
1551
1552 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1553 return;
1554 end if;
1555
8d11916f 1556 -- Suppress checks if the subtypes are the same. The check must be
feff2f05 1557 -- preserved in an assignment to a formal, because the constraint is
1558 -- given by the actual.
ee6ba406 1559
1560 if Nkind (Original_Node (N)) /= N_Allocator
1561 and then (No (Lhs)
8143bf7c 1562 or else not Is_Entity_Name (Lhs)
1563 or else No (Param_Entity (Lhs)))
ee6ba406 1564 then
1565 if (Etype (N) = Typ
1566 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1567 and then not Is_Aliased_View (Lhs)
1568 then
1569 return;
1570 end if;
1571
feff2f05 1572 -- We can also eliminate checks on allocators with a subtype mark that
1573 -- coincides with the context type. The context type may be a subtype
1574 -- without a constraint (common case, a generic actual).
ee6ba406 1575
1576 elsif Nkind (Original_Node (N)) = N_Allocator
1577 and then Is_Entity_Name (Expression (Original_Node (N)))
1578 then
1579 declare
9dfe12ae 1580 Alloc_Typ : constant Entity_Id :=
b6341c67 1581 Entity (Expression (Original_Node (N)));
ee6ba406 1582
1583 begin
1584 if Alloc_Typ = T_Typ
1585 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1586 and then Is_Entity_Name (
1587 Subtype_Indication (Parent (T_Typ)))
1588 and then Alloc_Typ = Base_Type (T_Typ))
1589
1590 then
1591 return;
1592 end if;
1593 end;
1594 end if;
1595
feff2f05 1596 -- See if we have a case where the types are both constrained, and all
1597 -- the constraints are constants. In this case, we can do the check
1598 -- successfully at compile time.
ee6ba406 1599
8d11916f 1600 -- We skip this check for the case where the node is rewritten as
d7ec9a29 1601 -- an allocator, because it already carries the context subtype,
1602 -- and extracting the discriminants from the aggregate is messy.
ee6ba406 1603
1604 if Is_Constrained (S_Typ)
1605 and then Nkind (Original_Node (N)) /= N_Allocator
1606 then
1607 declare
1608 DconT : Elmt_Id;
1609 Discr : Entity_Id;
1610 DconS : Elmt_Id;
1611 ItemS : Node_Id;
1612 ItemT : Node_Id;
1613
1614 begin
1615 -- S_Typ may not have discriminants in the case where it is a
feff2f05 1616 -- private type completed by a default discriminated type. In that
8d11916f 1617 -- case, we need to get the constraints from the underlying type.
feff2f05 1618 -- If the underlying type is unconstrained (i.e. has no default
1619 -- discriminants) no check is needed.
ee6ba406 1620
1621 if Has_Discriminants (S_Typ) then
1622 Discr := First_Discriminant (S_Typ);
1623 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1624
1625 else
1626 Discr := First_Discriminant (Underlying_Type (S_Typ));
1627 DconS :=
1628 First_Elmt
1629 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1630
1631 if No (DconS) then
1632 return;
1633 end if;
fccb5da7 1634
1635 -- A further optimization: if T_Typ is derived from S_Typ
1636 -- without imposing a constraint, no check is needed.
1637
1638 if Nkind (Original_Node (Parent (T_Typ))) =
1639 N_Full_Type_Declaration
1640 then
1641 declare
5c61a0ff 1642 Type_Def : constant Node_Id :=
b6341c67 1643 Type_Definition (Original_Node (Parent (T_Typ)));
fccb5da7 1644 begin
1645 if Nkind (Type_Def) = N_Derived_Type_Definition
1646 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1647 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1648 then
1649 return;
1650 end if;
1651 end;
1652 end if;
ee6ba406 1653 end if;
1654
86594966 1655 -- Constraint may appear in full view of type
1656
1657 if Ekind (T_Typ) = E_Private_Subtype
1658 and then Present (Full_View (T_Typ))
1659 then
d7ec9a29 1660 DconT :=
86594966 1661 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
86594966 1662 else
d7ec9a29 1663 DconT :=
1664 First_Elmt (Discriminant_Constraint (T_Typ));
86594966 1665 end if;
ee6ba406 1666
1667 while Present (Discr) loop
1668 ItemS := Node (DconS);
1669 ItemT := Node (DconT);
1670
00c403ee 1671 -- For a discriminated component type constrained by the
1672 -- current instance of an enclosing type, there is no
1673 -- applicable discriminant check.
1674
1675 if Nkind (ItemT) = N_Attribute_Reference
1676 and then Is_Access_Type (Etype (ItemT))
1677 and then Is_Entity_Name (Prefix (ItemT))
1678 and then Is_Type (Entity (Prefix (ItemT)))
1679 then
1680 return;
1681 end if;
1682
cc60bd16 1683 -- If the expressions for the discriminants are identical
1684 -- and it is side-effect free (for now just an entity),
1685 -- this may be a shared constraint, e.g. from a subtype
1686 -- without a constraint introduced as a generic actual.
1687 -- Examine other discriminants if any.
1688
1689 if ItemS = ItemT
1690 and then Is_Entity_Name (ItemS)
1691 then
1692 null;
1693
1694 elsif not Is_OK_Static_Expression (ItemS)
1695 or else not Is_OK_Static_Expression (ItemT)
1696 then
1697 exit;
ee6ba406 1698
cc60bd16 1699 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
ee6ba406 1700 if Do_Access then -- needs run-time check.
1701 exit;
1702 else
1703 Apply_Compile_Time_Constraint_Error
cb97ae5c 1704 (N, "incorrect value for discriminant&??",
f15731c4 1705 CE_Discriminant_Check_Failed, Ent => Discr);
ee6ba406 1706 return;
1707 end if;
1708 end if;
1709
1710 Next_Elmt (DconS);
1711 Next_Elmt (DconT);
1712 Next_Discriminant (Discr);
1713 end loop;
1714
1715 if No (Discr) then
1716 return;
1717 end if;
1718 end;
1719 end if;
1720
f0d65dae 1721 -- In GNATprove mode, we do not apply the checks
1722
1723 if GNATprove_Mode then
1724 return;
1725 end if;
1726
ee6ba406 1727 -- Here we need a discriminant check. First build the expression
1728 -- for the comparisons of the discriminants:
1729
1730 -- (n.disc1 /= typ.disc1) or else
1731 -- (n.disc2 /= typ.disc2) or else
1732 -- ...
1733 -- (n.discn /= typ.discn)
1734
1735 Cond := Build_Discriminant_Checks (N, T_Typ);
1736
3cce7f32 1737 -- If Lhs is set and is a parameter, then the condition is guarded by:
1738 -- lhs'constrained and then (condition built above)
ee6ba406 1739
1740 if Present (Param_Entity (Lhs)) then
1741 Cond :=
1742 Make_And_Then (Loc,
1743 Left_Opnd =>
1744 Make_Attribute_Reference (Loc,
1745 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1746 Attribute_Name => Name_Constrained),
1747 Right_Opnd => Cond);
1748 end if;
1749
1750 if Do_Access then
1751 Cond := Guard_Access (Cond, Loc, N);
1752 end if;
1753
1754 Insert_Action (N,
f15731c4 1755 Make_Raise_Constraint_Error (Loc,
1756 Condition => Cond,
1757 Reason => CE_Discriminant_Check_Failed));
ee6ba406 1758 end Apply_Discriminant_Check;
1759
2fe22c69 1760 -------------------------
1761 -- Apply_Divide_Checks --
1762 -------------------------
ee6ba406 1763
2fe22c69 1764 procedure Apply_Divide_Checks (N : Node_Id) is
ee6ba406 1765 Loc : constant Source_Ptr := Sloc (N);
1766 Typ : constant Entity_Id := Etype (N);
1767 Left : constant Node_Id := Left_Opnd (N);
1768 Right : constant Node_Id := Right_Opnd (N);
1769
db415383 1770 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
2fe22c69 1771 -- Current overflow checking mode
1772
ee6ba406 1773 LLB : Uint;
1774 Llo : Uint;
1775 Lhi : Uint;
1776 LOK : Boolean;
1777 Rlo : Uint;
1778 Rhi : Uint;
2fe22c69 1779 ROK : Boolean;
96da3284 1780
1781 pragma Warnings (Off, Lhi);
1782 -- Don't actually use this value
ee6ba406 1783
1784 begin
0df9d43f 1785 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1786 -- operating on signed integer types, then the only thing this routine
1787 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1788 -- procedure will (possibly later on during recursive downward calls),
1789 -- ensure that any needed overflow/division checks are properly applied.
2fe22c69 1790
1791 if Mode in Minimized_Or_Eliminated
2fe22c69 1792 and then Is_Signed_Integer_Type (Typ)
1793 then
1794 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1795 return;
1796 end if;
1797
1798 -- Proceed here in SUPPRESSED or CHECKED modes
1799
a33565dd 1800 if Expander_Active
13dbf220 1801 and then not Backend_Divide_Checks_On_Target
1802 and then Check_Needed (Right, Division_Check)
ee6ba406 1803 then
9c486805 1804 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
ee6ba406 1805
2fe22c69 1806 -- Deal with division check
ee6ba406 1807
2fe22c69 1808 if Do_Division_Check (N)
1809 and then not Division_Checks_Suppressed (Typ)
1810 then
1811 Apply_Division_Check (N, Rlo, Rhi, ROK);
ee6ba406 1812 end if;
1813
2fe22c69 1814 -- Deal with overflow check
1815
0df9d43f 1816 if Do_Overflow_Check (N)
1817 and then not Overflow_Checks_Suppressed (Etype (N))
1818 then
f3ccbbb3 1819 Set_Do_Overflow_Check (N, False);
1820
2fe22c69 1821 -- Test for extremely annoying case of xxx'First divided by -1
1822 -- for division of signed integer types (only overflow case).
ee6ba406 1823
ee6ba406 1824 if Nkind (N) = N_Op_Divide
1825 and then Is_Signed_Integer_Type (Typ)
1826 then
9c486805 1827 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
ee6ba406 1828 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1829
1830 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
2fe22c69 1831 and then
1832 ((not LOK) or else (Llo = LLB))
ee6ba406 1833 then
f72e7b2a 1834 -- Ensure that expressions are not evaluated twice (once
1835 -- for their runtime checks and once for their regular
1836 -- computation).
1837
1838 Force_Evaluation (Left, Mode => Strict);
1839 Force_Evaluation (Right, Mode => Strict);
1840
ee6ba406 1841 Insert_Action (N,
1842 Make_Raise_Constraint_Error (Loc,
1843 Condition =>
1844 Make_And_Then (Loc,
2fe22c69 1845 Left_Opnd =>
1846 Make_Op_Eq (Loc,
1847 Left_Opnd =>
1848 Duplicate_Subexpr_Move_Checks (Left),
1849 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
ee6ba406 1850
2fe22c69 1851 Right_Opnd =>
1852 Make_Op_Eq (Loc,
1853 Left_Opnd => Duplicate_Subexpr (Right),
1854 Right_Opnd => Make_Integer_Literal (Loc, -1))),
ee6ba406 1855
f15731c4 1856 Reason => CE_Overflow_Check_Failed));
ee6ba406 1857 end if;
1858 end if;
1859 end if;
1860 end if;
2fe22c69 1861 end Apply_Divide_Checks;
1862
1863 --------------------------
1864 -- Apply_Division_Check --
1865 --------------------------
1866
1867 procedure Apply_Division_Check
1868 (N : Node_Id;
1869 Rlo : Uint;
1870 Rhi : Uint;
1871 ROK : Boolean)
1872 is
1873 pragma Assert (Do_Division_Check (N));
1874
1875 Loc : constant Source_Ptr := Sloc (N);
f81a201b 1876 Right : constant Node_Id := Right_Opnd (N);
1877 Opnd : Node_Id;
2fe22c69 1878
1879 begin
a33565dd 1880 if Expander_Active
2fe22c69 1881 and then not Backend_Divide_Checks_On_Target
1882 and then Check_Needed (Right, Division_Check)
2fe22c69 1883
f81a201b 1884 -- See if division by zero possible, and if so generate test. This
1885 -- part of the test is not controlled by the -gnato switch, since it
1886 -- is a Division_Check and not an Overflow_Check.
f3ccbbb3 1887
f81a201b 1888 and then Do_Division_Check (N)
1889 then
1890 Set_Do_Division_Check (N, False);
75f4b34c 1891
f81a201b 1892 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1893 if Is_Floating_Point_Type (Etype (N)) then
1894 Opnd := Make_Real_Literal (Loc, Ureal_0);
1895 else
1896 Opnd := Make_Integer_Literal (Loc, 0);
2fe22c69 1897 end if;
f81a201b 1898
1899 Insert_Action (N,
1900 Make_Raise_Constraint_Error (Loc,
1901 Condition =>
1902 Make_Op_Eq (Loc,
1903 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1904 Right_Opnd => Opnd),
1905 Reason => CE_Divide_By_Zero));
2fe22c69 1906 end if;
1907 end if;
1908 end Apply_Division_Check;
ee6ba406 1909
5329ca64 1910 ----------------------------------
1911 -- Apply_Float_Conversion_Check --
1912 ----------------------------------
1913
feff2f05 1914 -- Let F and I be the source and target types of the conversion. The RM
1915 -- specifies that a floating-point value X is rounded to the nearest
1916 -- integer, with halfway cases being rounded away from zero. The rounded
1917 -- value of X is checked against I'Range.
1918
1919 -- The catch in the above paragraph is that there is no good way to know
1920 -- whether the round-to-integer operation resulted in overflow. A remedy is
1921 -- to perform a range check in the floating-point domain instead, however:
5329ca64 1922
5329ca64 1923 -- (1) The bounds may not be known at compile time
2af58f67 1924 -- (2) The check must take into account rounding or truncation.
5329ca64 1925 -- (3) The range of type I may not be exactly representable in F.
2af58f67 1926 -- (4) For the rounding case, The end-points I'First - 0.5 and
1927 -- I'Last + 0.5 may or may not be in range, depending on the
1928 -- sign of I'First and I'Last.
5329ca64 1929 -- (5) X may be a NaN, which will fail any comparison
1930
2af58f67 1931 -- The following steps correctly convert X with rounding:
feff2f05 1932
5329ca64 1933 -- (1) If either I'First or I'Last is not known at compile time, use
1934 -- I'Base instead of I in the next three steps and perform a
1935 -- regular range check against I'Range after conversion.
1936 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1937 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2af58f67 1938 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1939 -- In other words, take one of the closest floating-point numbers
1940 -- (which is an integer value) to I'First, and see if it is in
1941 -- range or not.
5329ca64 1942 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1943 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2af58f67 1944 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
5329ca64 1945 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1946 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1947
2af58f67 1948 -- For the truncating case, replace steps (2) and (3) as follows:
1949 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1950 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1951 -- Lo_OK be True.
1952 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1953 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
141d591a 1954 -- Hi_OK be True.
2af58f67 1955
5329ca64 1956 procedure Apply_Float_Conversion_Check
1957 (Ck_Node : Node_Id;
1958 Target_Typ : Entity_Id)
1959 is
feff2f05 1960 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1961 HB : constant Node_Id := Type_High_Bound (Target_Typ);
5329ca64 1962 Loc : constant Source_Ptr := Sloc (Ck_Node);
1963 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
feff2f05 1964 Target_Base : constant Entity_Id :=
b6341c67 1965 Implementation_Base_Type (Target_Typ);
feff2f05 1966
2af58f67 1967 Par : constant Node_Id := Parent (Ck_Node);
1968 pragma Assert (Nkind (Par) = N_Type_Conversion);
1969 -- Parent of check node, must be a type conversion
1970
1971 Truncate : constant Boolean := Float_Truncate (Par);
1972 Max_Bound : constant Uint :=
b6341c67 1973 UI_Expon
1974 (Machine_Radix_Value (Expr_Type),
1975 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
2af58f67 1976
5329ca64 1977 -- Largest bound, so bound plus or minus half is a machine number of F
1978
feff2f05 1979 Ifirst, Ilast : Uint;
1980 -- Bounds of integer type
1981
1982 Lo, Hi : Ureal;
1983 -- Bounds to check in floating-point domain
5329ca64 1984
feff2f05 1985 Lo_OK, Hi_OK : Boolean;
1986 -- True iff Lo resp. Hi belongs to I'Range
5329ca64 1987
feff2f05 1988 Lo_Chk, Hi_Chk : Node_Id;
1989 -- Expressions that are False iff check fails
1990
1991 Reason : RT_Exception_Code;
5329ca64 1992
1993 begin
41f06abf 1994 -- We do not need checks if we are not generating code (i.e. the full
1995 -- expander is not active). In SPARK mode, we specifically don't want
1996 -- the frontend to expand these checks, which are dealt with directly
1997 -- in the formal verification backend.
1998
a33565dd 1999 if not Expander_Active then
41f06abf 2000 return;
2001 end if;
2002
5329ca64 2003 if not Compile_Time_Known_Value (LB)
2004 or not Compile_Time_Known_Value (HB)
2005 then
2006 declare
feff2f05 2007 -- First check that the value falls in the range of the base type,
2008 -- to prevent overflow during conversion and then perform a
2009 -- regular range check against the (dynamic) bounds.
5329ca64 2010
5329ca64 2011 pragma Assert (Target_Base /= Target_Typ);
5329ca64 2012
46eb6933 2013 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
5329ca64 2014
2015 begin
2016 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2017 Set_Etype (Temp, Target_Base);
2018
2019 Insert_Action (Parent (Par),
2020 Make_Object_Declaration (Loc,
2021 Defining_Identifier => Temp,
2022 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2023 Expression => New_Copy_Tree (Par)),
2024 Suppress => All_Checks);
2025
2026 Insert_Action (Par,
2027 Make_Raise_Constraint_Error (Loc,
2028 Condition =>
2029 Make_Not_In (Loc,
2030 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2031 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2032 Reason => CE_Range_Check_Failed));
2033 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2034
2035 return;
2036 end;
2037 end if;
2038
7d86aa98 2039 -- Get the (static) bounds of the target type
5329ca64 2040
2041 Ifirst := Expr_Value (LB);
2042 Ilast := Expr_Value (HB);
2043
7d86aa98 2044 -- A simple optimization: if the expression is a universal literal,
2045 -- we can do the comparison with the bounds and the conversion to
2046 -- an integer type statically. The range checks are unchanged.
2047
2048 if Nkind (Ck_Node) = N_Real_Literal
2049 and then Etype (Ck_Node) = Universal_Real
2050 and then Is_Integer_Type (Target_Typ)
2051 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2052 then
2053 declare
2054 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2055
2056 begin
2057 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2058
4309515d 2059 -- Conversion is safe
7d86aa98 2060
2061 Rewrite (Parent (Ck_Node),
2062 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2063 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2064 return;
2065 end if;
2066 end;
2067 end if;
2068
5329ca64 2069 -- Check against lower bound
2070
2af58f67 2071 if Truncate and then Ifirst > 0 then
2072 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2073 Lo_OK := False;
2074
2075 elsif Truncate then
2076 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2077 Lo_OK := True;
2078
2079 elsif abs (Ifirst) < Max_Bound then
5329ca64 2080 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2081 Lo_OK := (Ifirst > 0);
2af58f67 2082
5329ca64 2083 else
2084 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2085 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2086 end if;
2087
2088 if Lo_OK then
2089
2090 -- Lo_Chk := (X >= Lo)
2091
2092 Lo_Chk := Make_Op_Ge (Loc,
2093 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2094 Right_Opnd => Make_Real_Literal (Loc, Lo));
2095
2096 else
2097 -- Lo_Chk := (X > Lo)
2098
2099 Lo_Chk := Make_Op_Gt (Loc,
2100 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2101 Right_Opnd => Make_Real_Literal (Loc, Lo));
2102 end if;
2103
2104 -- Check against higher bound
2105
2af58f67 2106 if Truncate and then Ilast < 0 then
2107 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
b2c42753 2108 Hi_OK := False;
2af58f67 2109
2110 elsif Truncate then
2111 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2112 Hi_OK := True;
2113
2114 elsif abs (Ilast) < Max_Bound then
5329ca64 2115 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2116 Hi_OK := (Ilast < 0);
2117 else
2118 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2119 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2120 end if;
2121
2122 if Hi_OK then
2123
2124 -- Hi_Chk := (X <= Hi)
2125
2126 Hi_Chk := Make_Op_Le (Loc,
2127 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2128 Right_Opnd => Make_Real_Literal (Loc, Hi));
2129
2130 else
2131 -- Hi_Chk := (X < Hi)
2132
2133 Hi_Chk := Make_Op_Lt (Loc,
2134 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2135 Right_Opnd => Make_Real_Literal (Loc, Hi));
2136 end if;
2137
feff2f05 2138 -- If the bounds of the target type are the same as those of the base
2139 -- type, the check is an overflow check as a range check is not
2140 -- performed in these cases.
5329ca64 2141
2142 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2143 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2144 then
2145 Reason := CE_Overflow_Check_Failed;
2146 else
2147 Reason := CE_Range_Check_Failed;
2148 end if;
2149
2150 -- Raise CE if either conditions does not hold
2151
2152 Insert_Action (Ck_Node,
2153 Make_Raise_Constraint_Error (Loc,
05fcfafb 2154 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
5329ca64 2155 Reason => Reason));
2156 end Apply_Float_Conversion_Check;
2157
ee6ba406 2158 ------------------------
2159 -- Apply_Length_Check --
2160 ------------------------
2161
2162 procedure Apply_Length_Check
2163 (Ck_Node : Node_Id;
2164 Target_Typ : Entity_Id;
2165 Source_Typ : Entity_Id := Empty)
2166 is
2167 begin
2168 Apply_Selected_Length_Checks
2169 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2170 end Apply_Length_Check;
2171
3b045963 2172 -------------------------------------
2173 -- Apply_Parameter_Aliasing_Checks --
2174 -------------------------------------
b73adb97 2175
3b045963 2176 procedure Apply_Parameter_Aliasing_Checks
2177 (Call : Node_Id;
2178 Subp : Entity_Id)
2179 is
bb569db0 2180 Loc : constant Source_Ptr := Sloc (Call);
2181
3b045963 2182 function May_Cause_Aliasing
2183 (Formal_1 : Entity_Id;
2184 Formal_2 : Entity_Id) return Boolean;
2185 -- Determine whether two formal parameters can alias each other
2186 -- depending on their modes.
2187
2188 function Original_Actual (N : Node_Id) return Node_Id;
2189 -- The expander may replace an actual with a temporary for the sake of
2190 -- side effect removal. The temporary may hide a potential aliasing as
2191 -- it does not share the address of the actual. This routine attempts
2192 -- to retrieve the original actual.
2193
bb569db0 2194 procedure Overlap_Check
2195 (Actual_1 : Node_Id;
2196 Actual_2 : Node_Id;
2197 Formal_1 : Entity_Id;
2198 Formal_2 : Entity_Id;
2199 Check : in out Node_Id);
2200 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2201 -- If detailed exception messages are enabled, the check is augmented to
2202 -- provide information about the names of the corresponding formals. See
2203 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2204 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2205 -- Check contains all and-ed simple tests generated so far or remains
2206 -- unchanged in the case of detailed exception messaged.
2207
3b045963 2208 ------------------------
2209 -- May_Cause_Aliasing --
2210 ------------------------
b73adb97 2211
3b045963 2212 function May_Cause_Aliasing
4a9e7f0c 2213 (Formal_1 : Entity_Id;
3b045963 2214 Formal_2 : Entity_Id) return Boolean
2215 is
2216 begin
2217 -- The following combination cannot lead to aliasing
2218
2219 -- Formal 1 Formal 2
2220 -- IN IN
2221
2222 if Ekind (Formal_1) = E_In_Parameter
a45d946f 2223 and then
2224 Ekind (Formal_2) = E_In_Parameter
3b045963 2225 then
2226 return False;
2227
2228 -- The following combinations may lead to aliasing
2229
2230 -- Formal 1 Formal 2
2231 -- IN OUT
2232 -- IN IN OUT
2233 -- OUT IN
2234 -- OUT IN OUT
2235 -- OUT OUT
2236
2237 else
2238 return True;
2239 end if;
2240 end May_Cause_Aliasing;
2241
2242 ---------------------
2243 -- Original_Actual --
2244 ---------------------
2245
2246 function Original_Actual (N : Node_Id) return Node_Id is
2247 begin
2248 if Nkind (N) = N_Type_Conversion then
2249 return Expression (N);
2250
2251 -- The expander created a temporary to capture the result of a type
2252 -- conversion where the expression is the real actual.
2253
2254 elsif Nkind (N) = N_Identifier
2255 and then Present (Original_Node (N))
2256 and then Nkind (Original_Node (N)) = N_Type_Conversion
2257 then
2258 return Expression (Original_Node (N));
2259 end if;
2260
2261 return N;
2262 end Original_Actual;
2263
bb569db0 2264 -------------------
2265 -- Overlap_Check --
2266 -------------------
2267
2268 procedure Overlap_Check
2269 (Actual_1 : Node_Id;
2270 Actual_2 : Node_Id;
2271 Formal_1 : Entity_Id;
2272 Formal_2 : Entity_Id;
2273 Check : in out Node_Id)
2274 is
29448168 2275 Cond : Node_Id;
2276 ID_Casing : constant Casing_Type :=
2277 Identifier_Casing (Source_Index (Current_Sem_Unit));
bb569db0 2278
2279 begin
2280 -- Generate:
2281 -- Actual_1'Overlaps_Storage (Actual_2)
2282
2283 Cond :=
2284 Make_Attribute_Reference (Loc,
2285 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2286 Attribute_Name => Name_Overlaps_Storage,
2287 Expressions =>
2288 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2289
2290 -- Generate the following check when detailed exception messages are
2291 -- enabled:
2292
2293 -- if Actual_1'Overlaps_Storage (Actual_2) then
2294 -- raise Program_Error with <detailed message>;
2295 -- end if;
2296
2297 if Exception_Extra_Info then
2298 Start_String;
2299
2300 -- Do not generate location information for internal calls
2301
2302 if Comes_From_Source (Call) then
2303 Store_String_Chars (Build_Location_String (Loc));
2304 Store_String_Char (' ');
2305 end if;
2306
2307 Store_String_Chars ("aliased parameters, actuals for """);
29448168 2308
2309 Get_Name_String (Chars (Formal_1));
2310 Set_Casing (ID_Casing);
2311 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2312
bb569db0 2313 Store_String_Chars (""" and """);
29448168 2314
2315 Get_Name_String (Chars (Formal_2));
2316 Set_Casing (ID_Casing);
2317 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2318
bb569db0 2319 Store_String_Chars (""" overlap");
2320
2321 Insert_Action (Call,
2322 Make_If_Statement (Loc,
2323 Condition => Cond,
2324 Then_Statements => New_List (
2325 Make_Raise_Statement (Loc,
2326 Name =>
83c6c069 2327 New_Occurrence_Of (Standard_Program_Error, Loc),
bb569db0 2328 Expression => Make_String_Literal (Loc, End_String)))));
2329
2330 -- Create a sequence of overlapping checks by and-ing them all
2331 -- together.
2332
2333 else
2334 if No (Check) then
2335 Check := Cond;
2336 else
2337 Check :=
2338 Make_And_Then (Loc,
2339 Left_Opnd => Check,
2340 Right_Opnd => Cond);
2341 end if;
2342 end if;
2343 end Overlap_Check;
2344
3b045963 2345 -- Local variables
2346
15fca308 2347 Actual_1 : Node_Id;
2348 Actual_2 : Node_Id;
2349 Check : Node_Id;
2350 Formal_1 : Entity_Id;
2351 Formal_2 : Entity_Id;
2352 Orig_Act_1 : Node_Id;
2353 Orig_Act_2 : Node_Id;
3b045963 2354
2355 -- Start of processing for Apply_Parameter_Aliasing_Checks
2356
2357 begin
bb569db0 2358 Check := Empty;
3b045963 2359
2360 Actual_1 := First_Actual (Call);
2361 Formal_1 := First_Formal (Subp);
2362 while Present (Actual_1) and then Present (Formal_1) loop
15fca308 2363 Orig_Act_1 := Original_Actual (Actual_1);
3b045963 2364
2365 -- Ensure that the actual is an object that is not passed by value.
2366 -- Elementary types are always passed by value, therefore actuals of
747426db 2367 -- such types cannot lead to aliasing. An aggregate is an object in
2368 -- Ada 2012, but an actual that is an aggregate cannot overlap with
4dc3174c 2369 -- another actual. A type that is By_Reference (such as an array of
2370 -- controlled types) is not subject to the check because any update
2371 -- will be done in place and a subsequent read will always see the
2372 -- correct value, see RM 6.2 (12/3).
3b045963 2373
15fca308 2374 if Nkind (Orig_Act_1) = N_Aggregate
2375 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2376 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
747426db 2377 then
2378 null;
2379
15fca308 2380 elsif Is_Object_Reference (Orig_Act_1)
2381 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2382 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
3b045963 2383 then
2384 Actual_2 := Next_Actual (Actual_1);
2385 Formal_2 := Next_Formal (Formal_1);
2386 while Present (Actual_2) and then Present (Formal_2) loop
15fca308 2387 Orig_Act_2 := Original_Actual (Actual_2);
3b045963 2388
2389 -- The other actual we are testing against must also denote
2390 -- a non pass-by-value object. Generate the check only when
2391 -- the mode of the two formals may lead to aliasing.
2392
15fca308 2393 if Is_Object_Reference (Orig_Act_2)
2394 and then not Is_Elementary_Type (Etype (Orig_Act_2))
3b045963 2395 and then May_Cause_Aliasing (Formal_1, Formal_2)
2396 then
72f889fa 2397 Remove_Side_Effects (Actual_1);
2398 Remove_Side_Effects (Actual_2);
2399
bb569db0 2400 Overlap_Check
2401 (Actual_1 => Actual_1,
2402 Actual_2 => Actual_2,
2403 Formal_1 => Formal_1,
2404 Formal_2 => Formal_2,
2405 Check => Check);
3b045963 2406 end if;
2407
2408 Next_Actual (Actual_2);
2409 Next_Formal (Formal_2);
2410 end loop;
2411 end if;
2412
2413 Next_Actual (Actual_1);
2414 Next_Formal (Formal_1);
2415 end loop;
2416
bb569db0 2417 -- Place a simple check right before the call
3b045963 2418
bb569db0 2419 if Present (Check) and then not Exception_Extra_Info then
3b045963 2420 Insert_Action (Call,
2421 Make_Raise_Program_Error (Loc,
bb569db0 2422 Condition => Check,
2423 Reason => PE_Aliased_Parameters));
3b045963 2424 end if;
2425 end Apply_Parameter_Aliasing_Checks;
2426
2427 -------------------------------------
2428 -- Apply_Parameter_Validity_Checks --
2429 -------------------------------------
2430
2431 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2432 Subp_Decl : Node_Id;
b73adb97 2433
4a9e7f0c 2434 procedure Add_Validity_Check
ed695684 2435 (Formal : Entity_Id;
2436 Prag_Nam : Name_Id;
4a9e7f0c 2437 For_Result : Boolean := False);
2438 -- Add a single 'Valid[_Scalar] check which verifies the initialization
ed695684 2439 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
4a9e7f0c 2440 -- Set flag For_Result when to verify the result of a function.
b73adb97 2441
b73adb97 2442 ------------------------
2443 -- Add_Validity_Check --
2444 ------------------------
2445
2446 procedure Add_Validity_Check
ed695684 2447 (Formal : Entity_Id;
2448 Prag_Nam : Name_Id;
b73adb97 2449 For_Result : Boolean := False)
2450 is
ed695684 2451 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2452 -- Create a pre/postcondition pragma that tests expression Expr
2453
2454 ------------------------------
2455 -- Build_Pre_Post_Condition --
2456 ------------------------------
2457
2458 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2459 Loc : constant Source_Ptr := Sloc (Subp);
2460 Decls : List_Id;
2461 Prag : Node_Id;
2462
2463 begin
2464 Prag :=
2465 Make_Pragma (Loc,
c33cb5ff 2466 Chars => Prag_Nam,
ed695684 2467 Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Loc,
2469 Chars => Name_Check,
2470 Expression => Expr)));
2471
2472 -- Add a message unless exception messages are suppressed
2473
2474 if not Exception_Locations_Suppressed then
2475 Append_To (Pragma_Argument_Associations (Prag),
2476 Make_Pragma_Argument_Association (Loc,
2477 Chars => Name_Message,
2478 Expression =>
2479 Make_String_Literal (Loc,
2480 Strval => "failed "
2481 & Get_Name_String (Prag_Nam)
2482 & " from "
2483 & Build_Location_String (Loc))));
2484 end if;
2485
2486 -- Insert the pragma in the tree
2487
2488 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2489 Add_Global_Declaration (Prag);
2490 Analyze (Prag);
2491
2492 -- PPC pragmas associated with subprogram bodies must be inserted
2493 -- in the declarative part of the body.
2494
2495 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2496 Decls := Declarations (Subp_Decl);
2497
2498 if No (Decls) then
2499 Decls := New_List;
2500 Set_Declarations (Subp_Decl, Decls);
2501 end if;
2502
2503 Prepend_To (Decls, Prag);
2504 Analyze (Prag);
2505
2506 -- For subprogram declarations insert the PPC pragma right after
2507 -- the declarative node.
2508
2509 else
2510 Insert_After_And_Analyze (Subp_Decl, Prag);
2511 end if;
2512 end Build_Pre_Post_Condition;
2513
2514 -- Local variables
2515
4a9e7f0c 2516 Loc : constant Source_Ptr := Sloc (Subp);
ed695684 2517 Typ : constant Entity_Id := Etype (Formal);
b73adb97 2518 Check : Node_Id;
2519 Nam : Name_Id;
2520
ed695684 2521 -- Start of processing for Add_Validity_Check
2522
b73adb97 2523 begin
9916a361 2524 -- For scalars, generate 'Valid test
b73adb97 2525
2526 if Is_Scalar_Type (Typ) then
2527 Nam := Name_Valid;
9916a361 2528
2529 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2530
2531 elsif Scalar_Part_Present (Typ) then
b73adb97 2532 Nam := Name_Valid_Scalars;
9916a361 2533
2534 -- No test needed for other cases (no scalars to test)
2535
b73adb97 2536 else
2537 return;
2538 end if;
2539
2540 -- Step 1: Create the expression to verify the validity of the
2541 -- context.
2542
ed695684 2543 Check := New_Occurrence_Of (Formal, Loc);
b73adb97 2544
2545 -- When processing a function result, use 'Result. Generate
2546 -- Context'Result
2547
2548 if For_Result then
2549 Check :=
2550 Make_Attribute_Reference (Loc,
2551 Prefix => Check,
2552 Attribute_Name => Name_Result);
2553 end if;
2554
2555 -- Generate:
2556 -- Context['Result]'Valid[_Scalars]
2557
2558 Check :=
2559 Make_Attribute_Reference (Loc,
2560 Prefix => Check,
2561 Attribute_Name => Nam);
2562
4a9e7f0c 2563 -- Step 2: Create a pre or post condition pragma
2564
ed695684 2565 Build_Pre_Post_Condition (Check);
4a9e7f0c 2566 end Add_Validity_Check;
2567
4a9e7f0c 2568 -- Local variables
2569
2570 Formal : Entity_Id;
4a9e7f0c 2571 Subp_Spec : Node_Id;
2572
3b045963 2573 -- Start of processing for Apply_Parameter_Validity_Checks
b73adb97 2574
2575 begin
4a9e7f0c 2576 -- Extract the subprogram specification and declaration nodes
b73adb97 2577
4a9e7f0c 2578 Subp_Spec := Parent (Subp);
a45d946f 2579
4a9e7f0c 2580 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2581 Subp_Spec := Parent (Subp_Spec);
2582 end if;
a45d946f 2583
4a9e7f0c 2584 Subp_Decl := Parent (Subp_Spec);
9e58d7ed 2585
b73adb97 2586 if not Comes_From_Source (Subp)
4a9e7f0c 2587
2588 -- Do not process formal subprograms because the corresponding actual
2589 -- will receive the proper checks when the instance is analyzed.
2590
2591 or else Is_Formal_Subprogram (Subp)
2592
95ac2d90 2593 -- Do not process imported subprograms since pre and postconditions
a45d946f 2594 -- are never verified on routines coming from a different language.
4a9e7f0c 2595
b73adb97 2596 or else Is_Imported (Subp)
2597 or else Is_Intrinsic_Subprogram (Subp)
4a9e7f0c 2598
a45d946f 2599 -- The PPC pragmas generated by this routine do not correspond to
2600 -- source aspects, therefore they cannot be applied to abstract
2601 -- subprograms.
4a9e7f0c 2602
7c443ae8 2603 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
4a9e7f0c 2604
a45d946f 2605 -- Do not consider subprogram renaminds because the renamed entity
2606 -- already has the proper PPC pragmas.
1bd93de5 2607
2608 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2609
a45d946f 2610 -- Do not process null procedures because there is no benefit of
2611 -- adding the checks to a no action routine.
4a9e7f0c 2612
2613 or else (Nkind (Subp_Spec) = N_Procedure_Specification
a45d946f 2614 and then Null_Present (Subp_Spec))
b73adb97 2615 then
2616 return;
2617 end if;
2618
4a9e7f0c 2619 -- Inspect all the formals applying aliasing and scalar initialization
2620 -- checks where applicable.
b73adb97 2621
2622 Formal := First_Formal (Subp);
2623 while Present (Formal) loop
4a9e7f0c 2624
2625 -- Generate the following scalar initialization checks for each
2626 -- formal parameter:
2627
2628 -- mode IN - Pre => Formal'Valid[_Scalars]
2629 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2630 -- mode OUT - Post => Formal'Valid[_Scalars]
2631
2632 if Check_Validity_Of_Parameters then
2633 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2634 Add_Validity_Check (Formal, Name_Precondition, False);
2635 end if;
2636
2637 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2638 Add_Validity_Check (Formal, Name_Postcondition, False);
2639 end if;
b73adb97 2640 end if;
2641
b73adb97 2642 Next_Formal (Formal);
2643 end loop;
2644
a45d946f 2645 -- Generate following scalar initialization check for function result:
4a9e7f0c 2646
2647 -- Post => Subp'Result'Valid[_Scalars]
b73adb97 2648
a45d946f 2649 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
4a9e7f0c 2650 Add_Validity_Check (Subp, Name_Postcondition, True);
b73adb97 2651 end if;
3b045963 2652 end Apply_Parameter_Validity_Checks;
b73adb97 2653
7aafae1c 2654 ---------------------------
2655 -- Apply_Predicate_Check --
2656 ---------------------------
2657
e60047e5 2658 procedure Apply_Predicate_Check
2659 (N : Node_Id;
2660 Typ : Entity_Id;
2661 Fun : Entity_Id := Empty)
2662 is
301d5ec3 2663 S : Entity_Id;
9e58d7ed 2664
7aafae1c 2665 begin
da2270e7 2666 if Predicate_Checks_Suppressed (Empty) then
2667 return;
301d5ec3 2668
2c011bc5 2669 elsif Predicates_Ignored (Typ) then
2670 return;
2671
da2270e7 2672 elsif Present (Predicate_Function (Typ)) then
301d5ec3 2673 S := Current_Scope;
9e58d7ed 2674 while Present (S) and then not Is_Subprogram (S) loop
301d5ec3 2675 S := Scope (S);
2676 end loop;
2677
ea822fd4 2678 -- A predicate check does not apply within internally generated
2679 -- subprograms, such as TSS functions.
2680
2681 if Within_Internal_Subprogram then
301d5ec3 2682 return;
22631b41 2683
96a2d100 2684 -- If the check appears within the predicate function itself, it
2685 -- means that the user specified a check whose formal is the
2686 -- predicated subtype itself, rather than some covering type. This
2687 -- is likely to be a common error, and thus deserves a warning.
22631b41 2688
0e9014a7 2689 elsif Present (S) and then S = Predicate_Function (Typ) then
e60047e5 2690 Error_Msg_NE
0c4abd51 2691 ("predicate check includes a call to& that requires a "
2692 & "predicate check??", Parent (N), Fun);
96a2d100 2693 Error_Msg_N
cb97ae5c 2694 ("\this will result in infinite recursion??", Parent (N));
e60047e5 2695
2696 if Is_First_Subtype (Typ) then
2697 Error_Msg_NE
0c4abd51 2698 ("\use an explicit subtype of& to carry the predicate",
e60047e5 2699 Parent (N), Typ);
2700 end if;
2701
96a2d100 2702 Insert_Action (N,
61016a7a 2703 Make_Raise_Storage_Error (Sloc (N),
2704 Reason => SE_Infinite_Recursion));
22631b41 2705
64cc9e5d 2706 -- Here for normal case of predicate active
e6281d47 2707
61016a7a 2708 else
b04165c4 2709 -- If the type has a static predicate and the expression is known
2710 -- at compile time, see if the expression satisfies the predicate.
3a75f20b 2711
2712 Check_Expression_Against_Static_Predicate (N, Typ);
e6281d47 2713
e34cd69d 2714 if not Expander_Active then
2715 return;
2716 end if;
2717
2718 -- For an entity of the type, generate a call to the predicate
2719 -- function, unless its type is an actual subtype, which is not
2720 -- visible outside of the enclosing subprogram.
2721
2722 if Is_Entity_Name (N)
2723 and then not Is_Actual_Subtype (Typ)
2724 then
da2270e7 2725 Insert_Action (N,
2726 Make_Predicate_Check
2727 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2728
f9906591 2729 -- If the expression is not an entity it may have side effects,
bc885df9 2730 -- and the following call will create an object declaration for
2731 -- it. We disable checks during its analysis, to prevent an
2732 -- infinite recursion.
da2270e7 2733
e3b910d8 2734 -- If the prefix is an aggregate in an assignment, apply the
2735 -- check to the LHS after assignment, rather than create a
2736 -- redundant temporary. This is only necessary in rare cases
2737 -- of array types (including strings) initialized with an
2738 -- aggregate with an "others" clause, either coming from source
2739 -- or generated by an Initialize_Scalars pragma.
2740
2741 elsif Nkind (N) = N_Aggregate
2742 and then Nkind (Parent (N)) = N_Assignment_Statement
2743 then
2744 Insert_Action_After (Parent (N),
2745 Make_Predicate_Check
2746 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2747
da2270e7 2748 else
2749 Insert_Action (N,
bc885df9 2750 Make_Predicate_Check
2751 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
da2270e7 2752 end if;
301d5ec3 2753 end if;
7aafae1c 2754 end if;
2755 end Apply_Predicate_Check;
2756
ee6ba406 2757 -----------------------
2758 -- Apply_Range_Check --
2759 -----------------------
2760
2761 procedure Apply_Range_Check
2762 (Ck_Node : Node_Id;
2763 Target_Typ : Entity_Id;
2764 Source_Typ : Entity_Id := Empty)
2765 is
2766 begin
2767 Apply_Selected_Range_Checks
2768 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2769 end Apply_Range_Check;
2770
2771 ------------------------------
2772 -- Apply_Scalar_Range_Check --
2773 ------------------------------
2774
feff2f05 2775 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2776 -- off if it is already set on.
ee6ba406 2777
2778 procedure Apply_Scalar_Range_Check
2779 (Expr : Node_Id;
2780 Target_Typ : Entity_Id;
2781 Source_Typ : Entity_Id := Empty;
2782 Fixed_Int : Boolean := False)
2783 is
2784 Parnt : constant Node_Id := Parent (Expr);
2785 S_Typ : Entity_Id;
2786 Arr : Node_Id := Empty; -- initialize to prevent warning
2787 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
ee6ba406 2788
2789 Is_Subscr_Ref : Boolean;
2790 -- Set true if Expr is a subscript
2791
2792 Is_Unconstrained_Subscr_Ref : Boolean;
2793 -- Set true if Expr is a subscript of an unconstrained array. In this
2794 -- case we do not attempt to do an analysis of the value against the
2795 -- range of the subscript, since we don't know the actual subtype.
2796
2797 Int_Real : Boolean;
feff2f05 2798 -- Set to True if Expr should be regarded as a real value even though
2799 -- the type of Expr might be discrete.
ee6ba406 2800
a0a15971 2801 procedure Bad_Value (Warn : Boolean := False);
2802 -- Procedure called if value is determined to be out of range. Warn is
2803 -- True to force a warning instead of an error, even when SPARK_Mode is
2804 -- On.
ee6ba406 2805
9dfe12ae 2806 ---------------
2807 -- Bad_Value --
2808 ---------------
2809
a0a15971 2810 procedure Bad_Value (Warn : Boolean := False) is
ee6ba406 2811 begin
2812 Apply_Compile_Time_Constraint_Error
cb97ae5c 2813 (Expr, "value not in range of}??", CE_Range_Check_Failed,
a0a15971 2814 Ent => Target_Typ,
2815 Typ => Target_Typ,
2816 Warn => Warn);
ee6ba406 2817 end Bad_Value;
2818
9dfe12ae 2819 -- Start of processing for Apply_Scalar_Range_Check
2820
ee6ba406 2821 begin
2af58f67 2822 -- Return if check obviously not needed
ee6ba406 2823
2af58f67 2824 if
2825 -- Not needed inside generic
ee6ba406 2826
2af58f67 2827 Inside_A_Generic
2828
2829 -- Not needed if previous error
2830
2831 or else Target_Typ = Any_Type
2832 or else Nkind (Expr) = N_Error
2833
2834 -- Not needed for non-scalar type
2835
2836 or else not Is_Scalar_Type (Target_Typ)
2837
2838 -- Not needed if we know node raises CE already
2839
2840 or else Raises_Constraint_Error (Expr)
ee6ba406 2841 then
2842 return;
2843 end if;
2844
2845 -- Now, see if checks are suppressed
2846
2847 Is_Subscr_Ref :=
2848 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2849
2850 if Is_Subscr_Ref then
2851 Arr := Prefix (Parnt);
2852 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
cce84b09 2853
a3a76ccc 2854 if Is_Access_Type (Arr_Typ) then
245e87df 2855 Arr_Typ := Designated_Type (Arr_Typ);
a3a76ccc 2856 end if;
ee6ba406 2857 end if;
2858
2859 if not Do_Range_Check (Expr) then
2860
2861 -- Subscript reference. Check for Index_Checks suppressed
2862
2863 if Is_Subscr_Ref then
2864
2865 -- Check array type and its base type
2866
2867 if Index_Checks_Suppressed (Arr_Typ)
9dfe12ae 2868 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
ee6ba406 2869 then
2870 return;
2871
2872 -- Check array itself if it is an entity name
2873
2874 elsif Is_Entity_Name (Arr)
9dfe12ae 2875 and then Index_Checks_Suppressed (Entity (Arr))
ee6ba406 2876 then
2877 return;
2878
2879 -- Check expression itself if it is an entity name
2880
2881 elsif Is_Entity_Name (Expr)
9dfe12ae 2882 and then Index_Checks_Suppressed (Entity (Expr))
ee6ba406 2883 then
2884 return;
2885 end if;
2886
2887 -- All other cases, check for Range_Checks suppressed
2888
2889 else
2890 -- Check target type and its base type
2891
2892 if Range_Checks_Suppressed (Target_Typ)
9dfe12ae 2893 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
ee6ba406 2894 then
2895 return;
2896
2897 -- Check expression itself if it is an entity name
2898
2899 elsif Is_Entity_Name (Expr)
9dfe12ae 2900 and then Range_Checks_Suppressed (Entity (Expr))
ee6ba406 2901 then
2902 return;
2903
feff2f05 2904 -- If Expr is part of an assignment statement, then check left
2905 -- side of assignment if it is an entity name.
ee6ba406 2906
2907 elsif Nkind (Parnt) = N_Assignment_Statement
2908 and then Is_Entity_Name (Name (Parnt))
9dfe12ae 2909 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
ee6ba406 2910 then
2911 return;
2912 end if;
2913 end if;
2914 end if;
2915
9dfe12ae 2916 -- Do not set range checks if they are killed
2917
2918 if Nkind (Expr) = N_Unchecked_Type_Conversion
2919 and then Kill_Range_Check (Expr)
2920 then
2921 return;
2922 end if;
2923
2924 -- Do not set range checks for any values from System.Scalar_Values
39a0c1d3 2925 -- since the whole idea of such values is to avoid checking them.
9dfe12ae 2926
2927 if Is_Entity_Name (Expr)
2928 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2929 then
2930 return;
2931 end if;
2932
ee6ba406 2933 -- Now see if we need a check
2934
2935 if No (Source_Typ) then
2936 S_Typ := Etype (Expr);
2937 else
2938 S_Typ := Source_Typ;
2939 end if;
2940
2941 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2942 return;
2943 end if;
2944
2945 Is_Unconstrained_Subscr_Ref :=
2946 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2947
b40670e1 2948 -- Special checks for floating-point type
ee6ba406 2949
b40670e1 2950 if Is_Floating_Point_Type (S_Typ) then
2951
2952 -- Always do a range check if the source type includes infinities and
2953 -- the target type does not include infinities. We do not do this if
2954 -- range checks are killed.
cb388b10 2955 -- If the expression is a literal and the bounds of the type are
2956 -- static constants it may be possible to optimize the check.
b40670e1 2957
2958 if Has_Infinities (S_Typ)
2959 and then not Has_Infinities (Target_Typ)
2960 then
cb388b10 2961 -- If the expression is a literal and the bounds of the type are
2962 -- static constants it may be possible to optimize the check.
2963
2964 if Nkind (Expr) = N_Real_Literal then
2965 declare
2966 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2967 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2968
2969 begin
2970 if Compile_Time_Known_Value (Tlo)
2971 and then Compile_Time_Known_Value (Thi)
2972 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2973 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2974 then
2975 return;
2976 else
2977 Enable_Range_Check (Expr);
2978 end if;
2979 end;
2980
2981 else
2982 Enable_Range_Check (Expr);
2983 end if;
b40670e1 2984 end if;
ee6ba406 2985 end if;
2986
feff2f05 2987 -- Return if we know expression is definitely in the range of the target
2988 -- type as determined by Determine_Range. Right now we only do this for
2989 -- discrete types, and not fixed-point or floating-point types.
ee6ba406 2990
f2a06be9 2991 -- The additional less-precise tests below catch these cases
ee6ba406 2992
54022749 2993 -- In GNATprove_Mode, also deal with the case of a conversion from
2994 -- floating-point to integer. It is only possible because analysis
2995 -- in GNATprove rules out the possibility of a NaN or infinite value.
2996
feff2f05 2997 -- Note: skip this if we are given a source_typ, since the point of
2998 -- supplying a Source_Typ is to stop us looking at the expression.
2999 -- We could sharpen this test to be out parameters only ???
ee6ba406 3000
3001 if Is_Discrete_Type (Target_Typ)
54022749 3002 and then (Is_Discrete_Type (Etype (Expr))
3003 or else (GNATprove_Mode
3004 and then Is_Floating_Point_Type (Etype (Expr))))
ee6ba406 3005 and then not Is_Unconstrained_Subscr_Ref
3006 and then No (Source_Typ)
3007 then
3008 declare
ee6ba406 3009 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
552d7cbc 3010 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
ee6ba406 3011
3012 begin
3013 if Compile_Time_Known_Value (Tlo)
3014 and then Compile_Time_Known_Value (Thi)
3015 then
9dfe12ae 3016 declare
5bb74b99 3017 OK : Boolean := False; -- initialize to prevent warning
9dfe12ae 3018 Hiv : constant Uint := Expr_Value (Thi);
552d7cbc 3019 Lov : constant Uint := Expr_Value (Tlo);
5bb74b99 3020 Hi : Uint := No_Uint;
3021 Lo : Uint := No_Uint;
ee6ba406 3022
9dfe12ae 3023 begin
552d7cbc 3024 -- If range is null, we for sure have a constraint error (we
3025 -- don't even need to look at the value involved, since all
3026 -- possible values will raise CE).
9dfe12ae 3027
3028 if Lov > Hiv then
f4f2bf51 3029
a0a15971 3030 -- When SPARK_Mode is On, force a warning instead of
3031 -- an error in that case, as this likely corresponds
3032 -- to deactivated code.
3033
3034 Bad_Value (Warn => SPARK_Mode = On);
3035
3036 -- In GNATprove mode, we enable the range check so that
3037 -- GNATprove will issue a message if it cannot be proved.
f4f2bf51 3038
3039 if GNATprove_Mode then
3040 Enable_Range_Check (Expr);
f4f2bf51 3041 end if;
3042
9dfe12ae 3043 return;
3044 end if;
3045
3046 -- Otherwise determine range of value
3047
54022749 3048 if Is_Discrete_Type (Etype (Expr)) then
552d7cbc 3049 Determine_Range
3050 (Expr, OK, Lo, Hi, Assume_Valid => True);
54022749 3051
3052 -- When converting a float to an integer type, determine the
3053 -- range in real first, and then convert the bounds using
3054 -- UR_To_Uint which correctly rounds away from zero when
3055 -- half way between two integers, as required by normal
3056 -- Ada 95 rounding semantics. It is only possible because
3057 -- analysis in GNATprove rules out the possibility of a NaN
3058 -- or infinite value.
3059
3060 elsif GNATprove_Mode
3061 and then Is_Floating_Point_Type (Etype (Expr))
3062 then
3063 declare
54022749 3064 Hir : Ureal;
552d7cbc 3065 Lor : Ureal;
3066
54022749 3067 begin
552d7cbc 3068 Determine_Range_R
3069 (Expr, OK, Lor, Hir, Assume_Valid => True);
54022749 3070
3071 if OK then
3072 Lo := UR_To_Uint (Lor);
3073 Hi := UR_To_Uint (Hir);
3074 end if;
3075 end;
3076 end if;
9dfe12ae 3077
3078 if OK then
3079
3080 -- If definitely in range, all OK
ee6ba406 3081
ee6ba406 3082 if Lo >= Lov and then Hi <= Hiv then
3083 return;
3084
9dfe12ae 3085 -- If definitely not in range, warn
3086
ee6ba406 3087 elsif Lov > Hi or else Hiv < Lo then
e9dae6c3 3088
c59854a0 3089 -- Ignore out of range values for System.Priority in
3090 -- CodePeer mode since the actual target compiler may
3091 -- provide a wider range.
3092
3093 if not CodePeer_Mode
3094 or else Target_Typ /= RTE (RE_Priority)
3095 then
3096 Bad_Value;
3097 end if;
3098
ee6ba406 3099 return;
9dfe12ae 3100
3101 -- Otherwise we don't know
3102
3103 else
3104 null;
ee6ba406 3105 end if;
9dfe12ae 3106 end if;
3107 end;
ee6ba406 3108 end if;
3109 end;
3110 end if;
3111
3112 Int_Real :=
3113 Is_Floating_Point_Type (S_Typ)
3114 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3115
3116 -- Check if we can determine at compile time whether Expr is in the
9dfe12ae 3117 -- range of the target type. Note that if S_Typ is within the bounds
3118 -- of Target_Typ then this must be the case. This check is meaningful
3119 -- only if this is not a conversion between integer and real types.
ee6ba406 3120
3121 if not Is_Unconstrained_Subscr_Ref
b40670e1 3122 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
ee6ba406 3123 and then
7a1dabb3 3124 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
ac5f5168 3125
3126 -- Also check if the expression itself is in the range of the
3127 -- target type if it is a known at compile time value. We skip
3128 -- this test if S_Typ is set since for OUT and IN OUT parameters
3129 -- the Expr itself is not relevant to the checking.
3130
ee6ba406 3131 or else
ac5f5168 3132 (No (Source_Typ)
3133 and then Is_In_Range (Expr, Target_Typ,
3134 Assume_Valid => True,
3135 Fixed_Int => Fixed_Int,
3136 Int_Real => Int_Real)))
ee6ba406 3137 then
3138 return;
3139
9c486805 3140 elsif Is_Out_Of_Range (Expr, Target_Typ,
3141 Assume_Valid => True,
3142 Fixed_Int => Fixed_Int,
3143 Int_Real => Int_Real)
3144 then
ee6ba406 3145 Bad_Value;
3146 return;
3147
b40670e1 3148 -- Floating-point case
feff2f05 3149 -- In the floating-point case, we only do range checks if the type is
3150 -- constrained. We definitely do NOT want range checks for unconstrained
29d958a7 3151 -- types, since we want to have infinities, except when
3152 -- Check_Float_Overflow is set.
ee6ba406 3153
9dfe12ae 3154 elsif Is_Floating_Point_Type (S_Typ) then
29d958a7 3155 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
9dfe12ae 3156 Enable_Range_Check (Expr);
3157 end if;
ee6ba406 3158
9dfe12ae 3159 -- For all other cases we enable a range check unconditionally
ee6ba406 3160
3161 else
3162 Enable_Range_Check (Expr);
3163 return;
3164 end if;
ee6ba406 3165 end Apply_Scalar_Range_Check;
3166
3167 ----------------------------------
3168 -- Apply_Selected_Length_Checks --
3169 ----------------------------------
3170
3171 procedure Apply_Selected_Length_Checks
3172 (Ck_Node : Node_Id;
3173 Target_Typ : Entity_Id;
3174 Source_Typ : Entity_Id;
3175 Do_Static : Boolean)
3176 is
2b4f2458 3177 Checks_On : constant Boolean :=
3178 not Index_Checks_Suppressed (Target_Typ)
3179 or else
3180 not Length_Checks_Suppressed (Target_Typ);
3181
3182 Loc : constant Source_Ptr := Sloc (Ck_Node);
3183
ee6ba406 3184 Cond : Node_Id;
ee6ba406 3185 R_Cno : Node_Id;
2b4f2458 3186 R_Result : Check_Result;
ee6ba406 3187
3188 begin
18cb6d78 3189 -- Only apply checks when generating code
f0d65dae 3190
4098232e 3191 -- Note: this means that we lose some useful warnings if the expander
f0d65dae 3192 -- is not active.
4098232e 3193
18cb6d78 3194 if not Expander_Active then
ee6ba406 3195 return;
3196 end if;
3197
3198 R_Result :=
3199 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3200
3201 for J in 1 .. 2 loop
ee6ba406 3202 R_Cno := R_Result (J);
3203 exit when No (R_Cno);
3204
3205 -- A length check may mention an Itype which is attached to a
3206 -- subsequent node. At the top level in a package this can cause
3207 -- an order-of-elaboration problem, so we make sure that the itype
3208 -- is referenced now.
3209
3210 if Ekind (Current_Scope) = E_Package
3211 and then Is_Compilation_Unit (Current_Scope)
3212 then
3213 Ensure_Defined (Target_Typ, Ck_Node);
3214
3215 if Present (Source_Typ) then
3216 Ensure_Defined (Source_Typ, Ck_Node);
3217
3218 elsif Is_Itype (Etype (Ck_Node)) then
3219 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3220 end if;
3221 end if;
3222
feff2f05 3223 -- If the item is a conditional raise of constraint error, then have
3224 -- a look at what check is being performed and ???
ee6ba406 3225
3226 if Nkind (R_Cno) = N_Raise_Constraint_Error
3227 and then Present (Condition (R_Cno))
3228 then
3229 Cond := Condition (R_Cno);
3230
0577b0b1 3231 -- Case where node does not now have a dynamic check
ee6ba406 3232
0577b0b1 3233 if not Has_Dynamic_Length_Check (Ck_Node) then
3234
3235 -- If checks are on, just insert the check
3236
3237 if Checks_On then
3238 Insert_Action (Ck_Node, R_Cno);
3239
3240 if not Do_Static then
3241 Set_Has_Dynamic_Length_Check (Ck_Node);
3242 end if;
3243
3244 -- If checks are off, then analyze the length check after
3245 -- temporarily attaching it to the tree in case the relevant
6fb3c314 3246 -- condition can be evaluated at compile time. We still want a
0577b0b1 3247 -- compile time warning in this case.
3248
3249 else
3250 Set_Parent (R_Cno, Ck_Node);
3251 Analyze (R_Cno);
ee6ba406 3252 end if;
ee6ba406 3253 end if;
3254
3255 -- Output a warning if the condition is known to be True
3256
3257 if Is_Entity_Name (Cond)
3258 and then Entity (Cond) = Standard_True
3259 then
3260 Apply_Compile_Time_Constraint_Error
cb97ae5c 3261 (Ck_Node, "wrong length for array of}??",
f15731c4 3262 CE_Length_Check_Failed,
ee6ba406 3263 Ent => Target_Typ,
3264 Typ => Target_Typ);
3265
3266 -- If we were only doing a static check, or if checks are not
3267 -- on, then we want to delete the check, since it is not needed.
3268 -- We do this by replacing the if statement by a null statement
3269
3270 elsif Do_Static or else not Checks_On then
00c403ee 3271 Remove_Warning_Messages (R_Cno);
ee6ba406 3272 Rewrite (R_Cno, Make_Null_Statement (Loc));
3273 end if;
3274
3275 else
3276 Install_Static_Check (R_Cno, Loc);
3277 end if;
ee6ba406 3278 end loop;
ee6ba406 3279 end Apply_Selected_Length_Checks;
3280
3281 ---------------------------------
3282 -- Apply_Selected_Range_Checks --
3283 ---------------------------------
3284
3285 procedure Apply_Selected_Range_Checks
3286 (Ck_Node : Node_Id;
3287 Target_Typ : Entity_Id;
3288 Source_Typ : Entity_Id;
3289 Do_Static : Boolean)
3290 is
ee6ba406 3291 Checks_On : constant Boolean :=
f9bcba0d 3292 not Index_Checks_Suppressed (Target_Typ)
5372d110 3293 or else
3294 not Range_Checks_Suppressed (Target_Typ);
f9bcba0d 3295
2b4f2458 3296 Loc : constant Source_Ptr := Sloc (Ck_Node);
3297
f9bcba0d 3298 Cond : Node_Id;
3299 R_Cno : Node_Id;
3300 R_Result : Check_Result;
ee6ba406 3301
3302 begin
f0d65dae 3303 -- Only apply checks when generating code. In GNATprove mode, we do not
3304 -- apply the checks, but we still call Selected_Range_Checks to possibly
3305 -- issue errors on SPARK code when a run-time error can be detected at
3306 -- compile time.
3307
3308 if not GNATprove_Mode then
3309 if not Expander_Active or not Checks_On then
3310 return;
3311 end if;
ee6ba406 3312 end if;
3313
3314 R_Result :=
3315 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3316
f0d65dae 3317 if GNATprove_Mode then
3318 return;
3319 end if;
3320
ee6ba406 3321 for J in 1 .. 2 loop
ee6ba406 3322 R_Cno := R_Result (J);
3323 exit when No (R_Cno);
3324
f9bcba0d 3325 -- The range check requires runtime evaluation. Depending on what its
3326 -- triggering condition is, the check may be converted into a compile
3327 -- time constraint check.
ee6ba406 3328
3329 if Nkind (R_Cno) = N_Raise_Constraint_Error
3330 and then Present (Condition (R_Cno))
3331 then
3332 Cond := Condition (R_Cno);
3333
f9bcba0d 3334 -- Insert the range check before the related context. Note that
3335 -- this action analyses the triggering condition.
ee6ba406 3336
f9bcba0d 3337 Insert_Action (Ck_Node, R_Cno);
3338
3339 -- This old code doesn't make sense, why is the context flagged as
3340 -- requiring dynamic range checks now in the middle of generating
3341 -- them ???
3342
3343 if not Do_Static then
3344 Set_Has_Dynamic_Range_Check (Ck_Node);
ee6ba406 3345 end if;
3346
f9bcba0d 3347 -- The triggering condition evaluates to True, the range check
3348 -- can be converted into a compile time constraint check.
ee6ba406 3349
3350 if Is_Entity_Name (Cond)
3351 and then Entity (Cond) = Standard_True
3352 then
feff2f05 3353 -- Since an N_Range is technically not an expression, we have
3354 -- to set one of the bounds to C_E and then just flag the
3355 -- N_Range. The warning message will point to the lower bound
3356 -- and complain about a range, which seems OK.
ee6ba406 3357
3358 if Nkind (Ck_Node) = N_Range then
3359 Apply_Compile_Time_Constraint_Error
5372d110 3360 (Low_Bound (Ck_Node),
3361 "static range out of bounds of}??",
f15731c4 3362 CE_Range_Check_Failed,
ee6ba406 3363 Ent => Target_Typ,
3364 Typ => Target_Typ);
3365
3366 Set_Raises_Constraint_Error (Ck_Node);
3367
3368 else
3369 Apply_Compile_Time_Constraint_Error
5372d110 3370 (Ck_Node,
1581f2d7 3371 "static value out of range of}??",
f15731c4 3372 CE_Range_Check_Failed,
ee6ba406 3373 Ent => Target_Typ,
3374 Typ => Target_Typ);
3375 end if;
3376
3377 -- If we were only doing a static check, or if checks are not
3378 -- on, then we want to delete the check, since it is not needed.
3379 -- We do this by replacing the if statement by a null statement
3380
3fabf0ca 3381 elsif Do_Static then
00c403ee 3382 Remove_Warning_Messages (R_Cno);
ee6ba406 3383 Rewrite (R_Cno, Make_Null_Statement (Loc));
3384 end if;
3385
4ee78e36 3386 -- The range check raises Constraint_Error explicitly
f9bcba0d 3387
ee6ba406 3388 else
3389 Install_Static_Check (R_Cno, Loc);
3390 end if;
ee6ba406 3391 end loop;
ee6ba406 3392 end Apply_Selected_Range_Checks;
3393
3394 -------------------------------
3395 -- Apply_Static_Length_Check --
3396 -------------------------------
3397
3398 procedure Apply_Static_Length_Check
3399 (Expr : Node_Id;
3400 Target_Typ : Entity_Id;
3401 Source_Typ : Entity_Id := Empty)
3402 is
3403 begin
3404 Apply_Selected_Length_Checks
3405 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3406 end Apply_Static_Length_Check;
3407
3408 -------------------------------------
3409 -- Apply_Subscript_Validity_Checks --
3410 -------------------------------------
3411
3412 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3413 Sub : Node_Id;
3414
3415 begin
3416 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3417
3418 -- Loop through subscripts
3419
3420 Sub := First (Expressions (Expr));
3421 while Present (Sub) loop
3422
feff2f05 3423 -- Check one subscript. Note that we do not worry about enumeration
3424 -- type with holes, since we will convert the value to a Pos value
3425 -- for the subscript, and that convert will do the necessary validity
3426 -- check.
ee6ba406 3427
3428 Ensure_Valid (Sub, Holes_OK => True);
3429
3430 -- Move to next subscript
3431
3432 Sub := Next (Sub);
3433 end loop;
3434 end Apply_Subscript_Validity_Checks;
3435
3436 ----------------------------------
3437 -- Apply_Type_Conversion_Checks --
3438 ----------------------------------
3439
3440 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3441 Target_Type : constant Entity_Id := Etype (N);
3442 Target_Base : constant Entity_Id := Base_Type (Target_Type);
9dfe12ae 3443 Expr : constant Node_Id := Expression (N);
f4532fe1 3444
3445 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
141d591a 3446 -- Note: if Etype (Expr) is a private type without discriminants, its
3447 -- full view might have discriminants with defaults, so we need the
3448 -- full view here to retrieve the constraints.
ee6ba406 3449
3450 begin
3451 if Inside_A_Generic then
3452 return;
3453
f15731c4 3454 -- Skip these checks if serious errors detected, there are some nasty
ee6ba406 3455 -- situations of incomplete trees that blow things up.
3456
f15731c4 3457 elsif Serious_Errors_Detected > 0 then
ee6ba406 3458 return;
3459
ea822fd4 3460 -- Never generate discriminant checks for Unchecked_Union types
3461
3462 elsif Present (Expr_Type)
3463 and then Is_Unchecked_Union (Expr_Type)
3464 then
3465 return;
3466
feff2f05 3467 -- Scalar type conversions of the form Target_Type (Expr) require a
3468 -- range check if we cannot be sure that Expr is in the base type of
3469 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3470 -- are not quite the same condition from an implementation point of
3471 -- view, but clearly the second includes the first.
ee6ba406 3472
3473 elsif Is_Scalar_Type (Target_Type) then
3474 declare
3475 Conv_OK : constant Boolean := Conversion_OK (N);
feff2f05 3476 -- If the Conversion_OK flag on the type conversion is set and no
ea822fd4 3477 -- floating-point type is involved in the type conversion then
3478 -- fixed-point values must be read as integral values.
ee6ba406 3479
5329ca64 3480 Float_To_Int : constant Boolean :=
b6341c67 3481 Is_Floating_Point_Type (Expr_Type)
3482 and then Is_Integer_Type (Target_Type);
5329ca64 3483
ee6ba406 3484 begin
ee6ba406 3485 if not Overflow_Checks_Suppressed (Target_Base)
0df9d43f 3486 and then not Overflow_Checks_Suppressed (Target_Type)
e254d721 3487 and then not
7a1dabb3 3488 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
5329ca64 3489 and then not Float_To_Int
ee6ba406 3490 then
4642b679 3491 -- A small optimization: the attribute 'Pos applied to an
c59f2b2d 3492 -- enumeration type has a known range, even though its type is
3493 -- Universal_Integer. So in numeric conversions it is usually
3494 -- within range of the target integer type. Use the static
3495 -- bounds of the base types to check. Disable this optimization
3496 -- in case of a generic formal discrete type, because we don't
3497 -- necessarily know the upper bound yet.
259716a0 3498
3499 if Nkind (Expr) = N_Attribute_Reference
3500 and then Attribute_Name (Expr) = Name_Pos
3501 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
c59f2b2d 3502 and then not Is_Generic_Type (Etype (Prefix (Expr)))
259716a0 3503 and then Is_Integer_Type (Target_Type)
3504 then
3505 declare
4642b679 3506 Enum_T : constant Entity_Id :=
3507 Root_Type (Etype (Prefix (Expr)));
3508 Int_T : constant Entity_Id := Base_Type (Target_Type);
3509 Last_I : constant Uint :=
3510 Intval (High_Bound (Scalar_Range (Int_T)));
3511 Last_E : Uint;
259716a0 3512
3513 begin
4642b679 3514 -- Character types have no explicit literals, so we use
259716a0 3515 -- the known number of characters in the type.
3516
3517 if Root_Type (Enum_T) = Standard_Character then
3518 Last_E := UI_From_Int (255);
3519
3520 elsif Enum_T = Standard_Wide_Character
3521 or else Enum_T = Standard_Wide_Wide_Character
3522 then
3523 Last_E := UI_From_Int (65535);
3524
3525 else
4642b679 3526 Last_E :=
3527 Enumeration_Pos
259716a0 3528 (Entity (High_Bound (Scalar_Range (Enum_T))));
3529 end if;
3530
3531 if Last_E <= Last_I then
3532 null;
3533
3534 else
3535 Activate_Overflow_Check (N);
3536 end if;
3537 end;
3538
3539 else
3540 Activate_Overflow_Check (N);
3541 end if;
ee6ba406 3542 end if;
3543
3544 if not Range_Checks_Suppressed (Target_Type)
3545 and then not Range_Checks_Suppressed (Expr_Type)
3546 then
54022749 3547 if Float_To_Int
3548 and then not GNATprove_Mode
3549 then
5329ca64 3550 Apply_Float_Conversion_Check (Expr, Target_Type);
f81a201b 3551
5329ca64 3552 else
7d97dbc9 3553 -- Conversions involving fixed-point types are expanded
3554 -- separately, and do not need a Range_Check flag, except
3555 -- in SPARK_Mode, where the explicit constraint check will
3556 -- not be generated.
3557
95c16286 3558 if GNATprove_Mode
3559 or else not Is_Fixed_Point_Type (Expr_Type)
7d97dbc9 3560 then
3561 Apply_Scalar_Range_Check
3562 (Expr, Target_Type, Fixed_Int => Conv_OK);
3563
3564 else
3565 Set_Do_Range_Check (Expression (N), False);
3566 end if;
798afddc 3567
3568 -- If the target type has predicates, we need to indicate
ea822fd4 3569 -- the need for a check, even if Determine_Range finds that
3570 -- the value is within bounds. This may be the case e.g for
3571 -- a division with a constant denominator.
798afddc 3572
3573 if Has_Predicates (Target_Type) then
3574 Enable_Range_Check (Expr);
3575 end if;
5329ca64 3576 end if;
ee6ba406 3577 end if;
3578 end;
3579
3580 elsif Comes_From_Source (N)
f40f9731 3581 and then not Discriminant_Checks_Suppressed (Target_Type)
ee6ba406 3582 and then Is_Record_Type (Target_Type)
3583 and then Is_Derived_Type (Target_Type)
3584 and then not Is_Tagged_Type (Target_Type)
3585 and then not Is_Constrained (Target_Type)
9dfe12ae 3586 and then Present (Stored_Constraint (Target_Type))
ee6ba406 3587 then
141d591a 3588 -- An unconstrained derived type may have inherited discriminant.
9dfe12ae 3589 -- Build an actual discriminant constraint list using the stored
ee6ba406 3590 -- constraint, to verify that the expression of the parent type
ea822fd4 3591 -- satisfies the constraints imposed by the (unconstrained) derived
3592 -- type. This applies to value conversions, not to view conversions
3593 -- of tagged types.
ee6ba406 3594
3595 declare
9dfe12ae 3596 Loc : constant Source_Ptr := Sloc (N);
3597 Cond : Node_Id;
3598 Constraint : Elmt_Id;
3599 Discr_Value : Node_Id;
3600 Discr : Entity_Id;
3601
3602 New_Constraints : constant Elist_Id := New_Elmt_List;
3603 Old_Constraints : constant Elist_Id :=
b6341c67 3604 Discriminant_Constraint (Expr_Type);
ee6ba406 3605
3606 begin
9dfe12ae 3607 Constraint := First_Elmt (Stored_Constraint (Target_Type));
ee6ba406 3608 while Present (Constraint) loop
3609 Discr_Value := Node (Constraint);
3610
3611 if Is_Entity_Name (Discr_Value)
3612 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3613 then
3614 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3615
3616 if Present (Discr)
3617 and then Scope (Discr) = Base_Type (Expr_Type)
3618 then
3619 -- Parent is constrained by new discriminant. Obtain
feff2f05 3620 -- Value of original discriminant in expression. If the
3621 -- new discriminant has been used to constrain more than
3622 -- one of the stored discriminants, this will provide the
3623 -- required consistency check.
ee6ba406 3624
55868293 3625 Append_Elmt
3626 (Make_Selected_Component (Loc,
3627 Prefix =>
9dfe12ae 3628 Duplicate_Subexpr_No_Checks
3629 (Expr, Name_Req => True),
ee6ba406 3630 Selector_Name =>
3631 Make_Identifier (Loc, Chars (Discr))),
55868293 3632 New_Constraints);
ee6ba406 3633
3634 else
3635 -- Discriminant of more remote ancestor ???
3636
3637 return;
3638 end if;
3639
feff2f05 3640 -- Derived type definition has an explicit value for this
3641 -- stored discriminant.
ee6ba406 3642
3643 else
3644 Append_Elmt
9dfe12ae 3645 (Duplicate_Subexpr_No_Checks (Discr_Value),
3646 New_Constraints);
ee6ba406 3647 end if;
3648
3649 Next_Elmt (Constraint);
3650 end loop;
3651
3652 -- Use the unconstrained expression type to retrieve the
3653 -- discriminants of the parent, and apply momentarily the
3654 -- discriminant constraint synthesized above.
3655
3656 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3657 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3658 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3659
3660 Insert_Action (N,
f15731c4 3661 Make_Raise_Constraint_Error (Loc,
3662 Condition => Cond,
3663 Reason => CE_Discriminant_Check_Failed));
ee6ba406 3664 end;
3665
175a6969 3666 -- For arrays, checks are set now, but conversions are applied during
3667 -- expansion, to take into accounts changes of representation. The
3668 -- checks become range checks on the base type or length checks on the
3669 -- subtype, depending on whether the target type is unconstrained or
8e802312 3670 -- constrained. Note that the range check is put on the expression of a
3671 -- type conversion, while the length check is put on the type conversion
3672 -- itself.
175a6969 3673
3674 elsif Is_Array_Type (Target_Type) then
3675 if Is_Constrained (Target_Type) then
3676 Set_Do_Length_Check (N);
3677 else
3678 Set_Do_Range_Check (Expr);
3679 end if;
ee6ba406 3680 end if;
ee6ba406 3681 end Apply_Type_Conversion_Checks;
3682
3683 ----------------------------------------------
3684 -- Apply_Universal_Integer_Attribute_Checks --
3685 ----------------------------------------------
3686
3687 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3688 Loc : constant Source_Ptr := Sloc (N);
3689 Typ : constant Entity_Id := Etype (N);
3690
3691 begin
3692 if Inside_A_Generic then
3693 return;
3694
3695 -- Nothing to do if checks are suppressed
3696
3697 elsif Range_Checks_Suppressed (Typ)
3698 and then Overflow_Checks_Suppressed (Typ)
3699 then
3700 return;
3701
3702 -- Nothing to do if the attribute does not come from source. The
3703 -- internal attributes we generate of this type do not need checks,
3704 -- and furthermore the attempt to check them causes some circular
3705 -- elaboration orders when dealing with packed types.
3706
3707 elsif not Comes_From_Source (N) then
3708 return;
3709
9dfe12ae 3710 -- If the prefix is a selected component that depends on a discriminant
3711 -- the check may improperly expose a discriminant instead of using
3712 -- the bounds of the object itself. Set the type of the attribute to
3713 -- the base type of the context, so that a check will be imposed when
3714 -- needed (e.g. if the node appears as an index).
3715
3716 elsif Nkind (Prefix (N)) = N_Selected_Component
3717 and then Ekind (Typ) = E_Signed_Integer_Subtype
3718 and then Depends_On_Discriminant (Scalar_Range (Typ))
3719 then
3720 Set_Etype (N, Base_Type (Typ));
3721
feff2f05 3722 -- Otherwise, replace the attribute node with a type conversion node
3723 -- whose expression is the attribute, retyped to universal integer, and
3724 -- whose subtype mark is the target type. The call to analyze this
3725 -- conversion will set range and overflow checks as required for proper
3726 -- detection of an out of range value.
ee6ba406 3727
3728 else
3729 Set_Etype (N, Universal_Integer);
3730 Set_Analyzed (N, True);
3731
3732 Rewrite (N,
3733 Make_Type_Conversion (Loc,
3734 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3735 Expression => Relocate_Node (N)));
3736
3737 Analyze_And_Resolve (N, Typ);
3738 return;
3739 end if;
ee6ba406 3740 end Apply_Universal_Integer_Attribute_Checks;
3741
07c191b0 3742 -------------------------------------
3743 -- Atomic_Synchronization_Disabled --
3744 -------------------------------------
3745
3746 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3747 -- using a bogus check called Atomic_Synchronization. This is to make it
3748 -- more convenient to get exactly the same semantics as [Un]Suppress.
3749
3750 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3751 begin
b444f81d 3752 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3753 -- looks enabled, since it is never disabled.
3754
3755 if Debug_Flag_Dot_E then
3756 return False;
3757
3758 -- If debug flag d.d is set then always return True, i.e. all atomic
3759 -- sync looks disabled, since it always tests True.
3760
3761 elsif Debug_Flag_Dot_D then
3762 return True;
3763
3764 -- If entity present, then check result for that entity
3765
3766 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
07c191b0 3767 return Is_Check_Suppressed (E, Atomic_Synchronization);
b444f81d 3768
3769 -- Otherwise result depends on current scope setting
3770
07c191b0 3771 else
fafc6b97 3772 return Scope_Suppress.Suppress (Atomic_Synchronization);
07c191b0 3773 end if;
3774 end Atomic_Synchronization_Disabled;
3775
ee6ba406 3776 -------------------------------
3777 -- Build_Discriminant_Checks --
3778 -------------------------------
3779
3780 function Build_Discriminant_Checks
3781 (N : Node_Id;
314a23b6 3782 T_Typ : Entity_Id) return Node_Id
ee6ba406 3783 is
3784 Loc : constant Source_Ptr := Sloc (N);
3785 Cond : Node_Id;
3786 Disc : Elmt_Id;
3787 Disc_Ent : Entity_Id;
9dfe12ae 3788 Dref : Node_Id;
ee6ba406 3789 Dval : Node_Id;
3790
84d0d4a5 3791 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3792
bacd5059 3793 --------------------------------
3794 -- Aggregate_Discriminant_Val --
3795 --------------------------------
84d0d4a5 3796
3797 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3798 Assoc : Node_Id;
3799
3800 begin
feff2f05 3801 -- The aggregate has been normalized with named associations. We use
3802 -- the Chars field to locate the discriminant to take into account
3803 -- discriminants in derived types, which carry the same name as those
3804 -- in the parent.
84d0d4a5 3805
3806 Assoc := First (Component_Associations (N));
3807 while Present (Assoc) loop
3808 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3809 return Expression (Assoc);
3810 else
3811 Next (Assoc);
3812 end if;
3813 end loop;
3814
3815 -- Discriminant must have been found in the loop above
3816
3817 raise Program_Error;
3818 end Aggregate_Discriminant_Val;
3819
3820 -- Start of processing for Build_Discriminant_Checks
3821
ee6ba406 3822 begin
84d0d4a5 3823 -- Loop through discriminants evolving the condition
3824
ee6ba406 3825 Cond := Empty;
3826 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3827
9dfe12ae 3828 -- For a fully private type, use the discriminants of the parent type
ee6ba406 3829
3830 if Is_Private_Type (T_Typ)
3831 and then No (Full_View (T_Typ))
3832 then
3833 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3834 else
3835 Disc_Ent := First_Discriminant (T_Typ);
3836 end if;
3837
3838 while Present (Disc) loop
ee6ba406 3839 Dval := Node (Disc);
3840
3841 if Nkind (Dval) = N_Identifier
3842 and then Ekind (Entity (Dval)) = E_Discriminant
3843 then
3844 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3845 else
9dfe12ae 3846 Dval := Duplicate_Subexpr_No_Checks (Dval);
ee6ba406 3847 end if;
3848
00f91aef 3849 -- If we have an Unchecked_Union node, we can infer the discriminants
3850 -- of the node.
9dfe12ae 3851
00f91aef 3852 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3853 Dref := New_Copy (
3854 Get_Discriminant_Value (
3855 First_Discriminant (T_Typ),
3856 T_Typ,
3857 Stored_Constraint (T_Typ)));
3858
84d0d4a5 3859 elsif Nkind (N) = N_Aggregate then
3860 Dref :=
3861 Duplicate_Subexpr_No_Checks
3862 (Aggregate_Discriminant_Val (Disc_Ent));
3863
00f91aef 3864 else
3865 Dref :=
3866 Make_Selected_Component (Loc,
20cf157b 3867 Prefix =>
00f91aef 3868 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
20cf157b 3869 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
00f91aef 3870
3871 Set_Is_In_Discriminant_Check (Dref);
3872 end if;
9dfe12ae 3873
ee6ba406 3874 Evolve_Or_Else (Cond,
3875 Make_Op_Ne (Loc,
20cf157b 3876 Left_Opnd => Dref,
ee6ba406 3877 Right_Opnd => Dval));
3878
3879 Next_Elmt (Disc);
3880 Next_Discriminant (Disc_Ent);
3881 end loop;
3882
3883 return Cond;
3884 end Build_Discriminant_Checks;
3885
13dbf220 3886 ------------------
3887 -- Check_Needed --
3888 ------------------
3889
3890 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3891 N : Node_Id;
3892 P : Node_Id;
3893 K : Node_Kind;
3894 L : Node_Id;
3895 R : Node_Id;
3896
9b2068d4 3897 function Left_Expression (Op : Node_Id) return Node_Id;
3898 -- Return the relevant expression from the left operand of the given
3899 -- short circuit form: this is LO itself, except if LO is a qualified
3900 -- expression, a type conversion, or an expression with actions, in
3901 -- which case this is Left_Expression (Expression (LO)).
3902
3903 ---------------------
3904 -- Left_Expression --
3905 ---------------------
3906
3907 function Left_Expression (Op : Node_Id) return Node_Id is
3908 LE : Node_Id := Left_Opnd (Op);
3909 begin
20cf157b 3910 while Nkind_In (LE, N_Qualified_Expression,
3911 N_Type_Conversion,
3912 N_Expression_With_Actions)
9b2068d4 3913 loop
3914 LE := Expression (LE);
3915 end loop;
3916
3917 return LE;
3918 end Left_Expression;
3919
3920 -- Start of processing for Check_Needed
3921
13dbf220 3922 begin
3923 -- Always check if not simple entity
3924
3925 if Nkind (Nod) not in N_Has_Entity
3926 or else not Comes_From_Source (Nod)
3927 then
3928 return True;
3929 end if;
3930
3931 -- Look up tree for short circuit
3932
3933 N := Nod;
3934 loop
3935 P := Parent (N);
3936 K := Nkind (P);
3937
7b17e51b 3938 -- Done if out of subexpression (note that we allow generated stuff
3939 -- such as itype declarations in this context, to keep the loop going
3940 -- since we may well have generated such stuff in complex situations.
3941 -- Also done if no parent (probably an error condition, but no point
39a0c1d3 3942 -- in behaving nasty if we find it).
7b17e51b 3943
3944 if No (P)
3945 or else (K not in N_Subexpr and then Comes_From_Source (P))
3946 then
13dbf220 3947 return True;
3948
7b17e51b 3949 -- Or/Or Else case, where test is part of the right operand, or is
3950 -- part of one of the actions associated with the right operand, and
3951 -- the left operand is an equality test.
13dbf220 3952
7b17e51b 3953 elsif K = N_Op_Or then
13dbf220 3954 exit when N = Right_Opnd (P)
9b2068d4 3955 and then Nkind (Left_Expression (P)) = N_Op_Eq;
13dbf220 3956
7b17e51b 3957 elsif K = N_Or_Else then
3958 exit when (N = Right_Opnd (P)
3959 or else
3960 (Is_List_Member (N)
3961 and then List_Containing (N) = Actions (P)))
9b2068d4 3962 and then Nkind (Left_Expression (P)) = N_Op_Eq;
13dbf220 3963
7b17e51b 3964 -- Similar test for the And/And then case, where the left operand
3965 -- is an inequality test.
3966
3967 elsif K = N_Op_And then
13dbf220 3968 exit when N = Right_Opnd (P)
9b2068d4 3969 and then Nkind (Left_Expression (P)) = N_Op_Ne;
7b17e51b 3970
3971 elsif K = N_And_Then then
3972 exit when (N = Right_Opnd (P)
3973 or else
3974 (Is_List_Member (N)
20cf157b 3975 and then List_Containing (N) = Actions (P)))
9b2068d4 3976 and then Nkind (Left_Expression (P)) = N_Op_Ne;
13dbf220 3977 end if;
3978
3979 N := P;
3980 end loop;
3981
3982 -- If we fall through the loop, then we have a conditional with an
9b2068d4 3983 -- appropriate test as its left operand, so look further.
3984
3985 L := Left_Expression (P);
3986
3987 -- L is an "=" or "/=" operator: extract its operands
13dbf220 3988
13dbf220 3989 R := Right_Opnd (L);
3990 L := Left_Opnd (L);
3991
3992 -- Left operand of test must match original variable
3993
20cf157b 3994 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
13dbf220 3995 return True;
3996 end if;
3997
2af58f67 3998 -- Right operand of test must be key value (zero or null)
13dbf220 3999
4000 case Check is
4001 when Access_Check =>
2af58f67 4002 if not Known_Null (R) then
13dbf220 4003 return True;
4004 end if;
4005
4006 when Division_Check =>
4007 if not Compile_Time_Known_Value (R)
4008 or else Expr_Value (R) /= Uint_0
4009 then
4010 return True;
4011 end if;
2af58f67 4012
4013 when others =>
4014 raise Program_Error;
13dbf220 4015 end case;
4016
4017 -- Here we have the optimizable case, warn if not short-circuited
4018
4019 if K = N_Op_And or else K = N_Op_Or then
c4968aa2 4020 Error_Msg_Warn := SPARK_Mode /= On;
4098232e 4021
13dbf220 4022 case Check is
4023 when Access_Check =>
4098232e 4024 if GNATprove_Mode then
4025 Error_Msg_N
4026 ("Constraint_Error might have been raised (access check)",
4027 Parent (Nod));
4028 else
4029 Error_Msg_N
4030 ("Constraint_Error may be raised (access check)??",
4031 Parent (Nod));
4032 end if;
4033
13dbf220 4034 when Division_Check =>
4098232e 4035 if GNATprove_Mode then
4036 Error_Msg_N
4037 ("Constraint_Error might have been raised (zero divide)",
4038 Parent (Nod));
4039 else
4040 Error_Msg_N
4041 ("Constraint_Error may be raised (zero divide)??",
4042 Parent (Nod));
4043 end if;
2af58f67 4044
4045 when others =>
4046 raise Program_Error;
13dbf220 4047 end case;
4048
4049 if K = N_Op_And then
e977c0cf 4050 Error_Msg_N -- CODEFIX
cb97ae5c 4051 ("use `AND THEN` instead of AND??", P);
13dbf220 4052 else
e977c0cf 4053 Error_Msg_N -- CODEFIX
cb97ae5c 4054 ("use `OR ELSE` instead of OR??", P);
13dbf220 4055 end if;
4056
6fb3c314 4057 -- If not short-circuited, we need the check
13dbf220 4058
4059 return True;
4060
4061 -- If short-circuited, we can omit the check
4062
4063 else
4064 return False;
4065 end if;
4066 end Check_Needed;
4067
ee6ba406 4068 -----------------------------------
4069 -- Check_Valid_Lvalue_Subscripts --
4070 -----------------------------------
4071
4072 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4073 begin
4074 -- Skip this if range checks are suppressed
4075
4076 if Range_Checks_Suppressed (Etype (Expr)) then
4077 return;
4078
feff2f05 4079 -- Only do this check for expressions that come from source. We assume
4080 -- that expander generated assignments explicitly include any necessary
4081 -- checks. Note that this is not just an optimization, it avoids
39a0c1d3 4082 -- infinite recursions.
ee6ba406 4083
4084 elsif not Comes_From_Source (Expr) then
4085 return;
4086
4087 -- For a selected component, check the prefix
4088
4089 elsif Nkind (Expr) = N_Selected_Component then
4090 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4091 return;
4092
4093 -- Case of indexed component
4094
4095 elsif Nkind (Expr) = N_Indexed_Component then
4096 Apply_Subscript_Validity_Checks (Expr);
4097
feff2f05 4098 -- Prefix may itself be or contain an indexed component, and these
4099 -- subscripts need checking as well.
ee6ba406 4100
4101 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4102 end if;
4103 end Check_Valid_Lvalue_Subscripts;
4104
fa7497e8 4105 ----------------------------------
4106 -- Null_Exclusion_Static_Checks --
4107 ----------------------------------
4108
e9998840 4109 procedure Null_Exclusion_Static_Checks
69733a9a 4110 (N : Node_Id;
4111 Comp : Node_Id := Empty;
4112 Array_Comp : Boolean := False)
e9998840 4113 is
b1e656fb 4114 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4115 Kind : constant Node_Kind := Nkind (N);
4116 Error_Nod : Node_Id;
4117 Expr : Node_Id;
4118 Typ : Entity_Id;
fa7497e8 4119
13dbf220 4120 begin
0577b0b1 4121 pragma Assert
b1e656fb 4122 (Nkind_In (Kind, N_Component_Declaration,
4123 N_Discriminant_Specification,
4124 N_Function_Specification,
4125 N_Object_Declaration,
4126 N_Parameter_Specification));
0577b0b1 4127
b1e656fb 4128 if Kind = N_Function_Specification then
0577b0b1 4129 Typ := Etype (Defining_Entity (N));
4130 else
4131 Typ := Etype (Defining_Identifier (N));
4132 end if;
fa7497e8 4133
b1e656fb 4134 case Kind is
13dbf220 4135 when N_Component_Declaration =>
4136 if Present (Access_Definition (Component_Definition (N))) then
b1e656fb 4137 Error_Nod := Component_Definition (N);
13dbf220 4138 else
b1e656fb 4139 Error_Nod := Subtype_Indication (Component_Definition (N));
13dbf220 4140 end if;
5329ca64 4141
0577b0b1 4142 when N_Discriminant_Specification =>
b1e656fb 4143 Error_Nod := Discriminant_Type (N);
0577b0b1 4144
4145 when N_Function_Specification =>
b1e656fb 4146 Error_Nod := Result_Definition (N);
0577b0b1 4147
4148 when N_Object_Declaration =>
b1e656fb 4149 Error_Nod := Object_Definition (N);
0577b0b1 4150
4151 when N_Parameter_Specification =>
b1e656fb 4152 Error_Nod := Parameter_Type (N);
0577b0b1 4153
13dbf220 4154 when others =>
4155 raise Program_Error;
4156 end case;
5329ca64 4157
0577b0b1 4158 if Has_Null then
5329ca64 4159
0577b0b1 4160 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4161 -- applied to an access [sub]type.
5329ca64 4162
0577b0b1 4163 if not Is_Access_Type (Typ) then
503f7fd3 4164 Error_Msg_N
b1e656fb 4165 ("`NOT NULL` allowed only for an access type", Error_Nod);
5329ca64 4166
feff2f05 4167 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
0577b0b1 4168 -- be applied to a [sub]type that does not exclude null already.
4169
b1e656fb 4170 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
503f7fd3 4171 Error_Msg_NE
00c403ee 4172 ("`NOT NULL` not allowed (& already excludes null)",
b1e656fb 4173 Error_Nod, Typ);
0577b0b1 4174 end if;
13dbf220 4175 end if;
5329ca64 4176
cc60bd16 4177 -- Check that null-excluding objects are always initialized, except for
4178 -- deferred constants, for which the expression will appear in the full
4179 -- declaration.
13dbf220 4180
b1e656fb 4181 if Kind = N_Object_Declaration
84d0d4a5 4182 and then No (Expression (N))
cc60bd16 4183 and then not Constant_Present (N)
feff2f05 4184 and then not No_Initialization (N)
13dbf220 4185 then
e9998840 4186 if Present (Comp) then
4187
b1ff36e7 4188 -- Specialize the warning message to indicate that we are dealing
e9998840 4189 -- with an uninitialized composite object that has a defaulted
4190 -- null-excluding component.
4191
4192 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4193 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4194
69733a9a 4195 Discard_Node
4196 (Compile_Time_Constraint_Error
4197 (N => N,
4198 Msg =>
4199 "(Ada 2005) null-excluding component % of object % must "
4200 & "be initialized??",
4201 Ent => Defining_Identifier (Comp)));
4202
4203 -- This is a case of an array with null-excluding components, so
4204 -- indicate that in the warning.
4205
4206 elsif Array_Comp then
4207 Discard_Node
4208 (Compile_Time_Constraint_Error
4209 (N => N,
4210 Msg =>
4211 "(Ada 2005) null-excluding array components must "
4212 & "be initialized??",
4213 Ent => Defining_Identifier (N)));
4214
4215 -- Normal case of object of a null-excluding access type
b1ff36e7 4216
e9998840 4217 else
69733a9a 4218 -- Add an expression that assigns null. This node is needed by
4219 -- Apply_Compile_Time_Constraint_Error, which will replace this
4220 -- with a Constraint_Error node.
4221
4222 Set_Expression (N, Make_Null (Sloc (N)));
4223 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4224
e9998840 4225 Apply_Compile_Time_Constraint_Error
4226 (N => Expression (N),
4227 Msg =>
4228 "(Ada 2005) null-excluding objects must be initialized??",
4229 Reason => CE_Null_Not_Allowed);
4230 end if;
13dbf220 4231 end if;
5329ca64 4232
cc60bd16 4233 -- Check that a null-excluding component, formal or object is not being
4234 -- assigned a null value. Otherwise generate a warning message and
2c145f84 4235 -- replace Expression (N) by an N_Constraint_Error node.
13dbf220 4236
b1e656fb 4237 if Kind /= N_Function_Specification then
0577b0b1 4238 Expr := Expression (N);
5329ca64 4239
2af58f67 4240 if Present (Expr) and then Known_Null (Expr) then
b1e656fb 4241 case Kind is
99378362 4242 when N_Component_Declaration
4243 | N_Discriminant_Specification
4244 =>
7189d17f 4245 Apply_Compile_Time_Constraint_Error
0577b0b1 4246 (N => Expr,
99378362 4247 Msg =>
4248 "(Ada 2005) null not allowed in null-excluding "
4249 & "components??",
0577b0b1 4250 Reason => CE_Null_Not_Allowed);
5329ca64 4251
0577b0b1 4252 when N_Object_Declaration =>
7189d17f 4253 Apply_Compile_Time_Constraint_Error
0577b0b1 4254 (N => Expr,
99378362 4255 Msg =>
4256 "(Ada 2005) null not allowed in null-excluding "
4257 & "objects??",
0577b0b1 4258 Reason => CE_Null_Not_Allowed);
5329ca64 4259
0577b0b1 4260 when N_Parameter_Specification =>
7189d17f 4261 Apply_Compile_Time_Constraint_Error
0577b0b1 4262 (N => Expr,
99378362 4263 Msg =>
4264 "(Ada 2005) null not allowed in null-excluding "
4265 & "formals??",
0577b0b1 4266 Reason => CE_Null_Not_Allowed);
13dbf220 4267
4268 when others =>
4269 null;
5329ca64 4270 end case;
4271 end if;
0577b0b1 4272 end if;
fa7497e8 4273 end Null_Exclusion_Static_Checks;
4274
9dfe12ae 4275 ----------------------------------
4276 -- Conditional_Statements_Begin --
4277 ----------------------------------
4278
4279 procedure Conditional_Statements_Begin is
4280 begin
4281 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4282
feff2f05 4283 -- If stack overflows, kill all checks, that way we know to simply reset
4284 -- the number of saved checks to zero on return. This should never occur
4285 -- in practice.
9dfe12ae 4286
4287 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4288 Kill_All_Checks;
4289
feff2f05 4290 -- In the normal case, we just make a new stack entry saving the current
4291 -- number of saved checks for a later restore.
9dfe12ae 4292
4293 else
4294 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4295
4296 if Debug_Flag_CC then
4297 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4298 Num_Saved_Checks);
4299 end if;
4300 end if;
4301 end Conditional_Statements_Begin;
4302
4303 --------------------------------
4304 -- Conditional_Statements_End --
4305 --------------------------------
4306
4307 procedure Conditional_Statements_End is
4308 begin
4309 pragma Assert (Saved_Checks_TOS > 0);
4310
feff2f05 4311 -- If the saved checks stack overflowed, then we killed all checks, so
4312 -- setting the number of saved checks back to zero is correct. This
4313 -- should never occur in practice.
9dfe12ae 4314
4315 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4316 Num_Saved_Checks := 0;
4317
feff2f05 4318 -- In the normal case, restore the number of saved checks from the top
4319 -- stack entry.
9dfe12ae 4320
4321 else
4322 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
20cf157b 4323
9dfe12ae 4324 if Debug_Flag_CC then
4325 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4326 Num_Saved_Checks);
4327 end if;
4328 end if;
4329
4330 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4331 end Conditional_Statements_End;
4332
3cce7f32 4333 -------------------------
4334 -- Convert_From_Bignum --
4335 -------------------------
4336
4337 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4338 Loc : constant Source_Ptr := Sloc (N);
4339
4340 begin
4341 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4342
4343 -- Construct call From Bignum
4344
4345 return
4346 Make_Function_Call (Loc,
4347 Name =>
4348 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4349 Parameter_Associations => New_List (Relocate_Node (N)));
4350 end Convert_From_Bignum;
4351
4352 -----------------------
4353 -- Convert_To_Bignum --
4354 -----------------------
4355
4356 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4357 Loc : constant Source_Ptr := Sloc (N);
4358
4359 begin
0326b4d4 4360 -- Nothing to do if Bignum already except call Relocate_Node
3cce7f32 4361
4362 if Is_RTE (Etype (N), RE_Bignum) then
4363 return Relocate_Node (N);
4364
21a55437 4365 -- Otherwise construct call to To_Bignum, converting the operand to the
4366 -- required Long_Long_Integer form.
3cce7f32 4367
4368 else
4369 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4370 return
4371 Make_Function_Call (Loc,
4372 Name =>
4373 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4374 Parameter_Associations => New_List (
4375 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4376 end if;
4377 end Convert_To_Bignum;
4378
ee6ba406 4379 ---------------------
4380 -- Determine_Range --
4381 ---------------------
4382
6af1bdbc 4383 Cache_Size : constant := 2 ** 10;
ee6ba406 4384 type Cache_Index is range 0 .. Cache_Size - 1;
39a0c1d3 4385 -- Determine size of below cache (power of 2 is more efficient)
ee6ba406 4386
7ac8c2b1 4387 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4388 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4389 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4390 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4391 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4392 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
feff2f05 4393 -- The above arrays are used to implement a small direct cache for
7ac8c2b1 4394 -- Determine_Range and Determine_Range_R calls. Because of the way these
4395 -- subprograms recursively traces subexpressions, and because overflow
4396 -- checking calls the routine on the way up the tree, a quadratic behavior
4397 -- can otherwise be encountered in large expressions. The cache entry for
4398 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4399 -- by checking the actual node value stored there. The Range_Cache_V array
4400 -- records the setting of Assume_Valid for the cache entry.
ee6ba406 4401
4402 procedure Determine_Range
9c486805 4403 (N : Node_Id;
4404 OK : out Boolean;
4405 Lo : out Uint;
4406 Hi : out Uint;
4407 Assume_Valid : Boolean := False)
ee6ba406 4408 is
e254d721 4409 Typ : Entity_Id := Etype (N);
4410 -- Type to use, may get reset to base type for possibly invalid entity
8880be85 4411
4412 Lo_Left : Uint;
4413 Hi_Left : Uint;
4414 -- Lo and Hi bounds of left operand
ee6ba406 4415
5bb74b99 4416 Lo_Right : Uint := No_Uint;
4417 Hi_Right : Uint := No_Uint;
8880be85 4418 -- Lo and Hi bounds of right (or only) operand
4419
4420 Bound : Node_Id;
4421 -- Temp variable used to hold a bound node
4422
4423 Hbound : Uint;
4424 -- High bound of base type of expression
4425
4426 Lor : Uint;
4427 Hir : Uint;
4428 -- Refined values for low and high bounds, after tightening
4429
4430 OK1 : Boolean;
4431 -- Used in lower level calls to indicate if call succeeded
4432
4433 Cindex : Cache_Index;
4434 -- Used to search cache
ee6ba406 4435
094ed68e 4436 Btyp : Entity_Id;
4437 -- Base type
4438
ee6ba406 4439 function OK_Operands return Boolean;
4440 -- Used for binary operators. Determines the ranges of the left and
4441 -- right operands, and if they are both OK, returns True, and puts
341bd953 4442 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
ee6ba406 4443
4444 -----------------
4445 -- OK_Operands --
4446 -----------------
4447
4448 function OK_Operands return Boolean is
4449 begin
9c486805 4450 Determine_Range
4451 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
ee6ba406 4452
4453 if not OK1 then
4454 return False;
4455 end if;
4456
9c486805 4457 Determine_Range
4458 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4459 return OK1;
4460 end OK_Operands;
4461
4462 -- Start of processing for Determine_Range
4463
4464 begin
e12b2502 4465 -- Prevent junk warnings by initializing range variables
4466
4467 Lo := No_Uint;
4468 Hi := No_Uint;
4469 Lor := No_Uint;
4470 Hir := No_Uint;
4471
87bdc21d 4472 -- For temporary constants internally generated to remove side effects
4473 -- we must use the corresponding expression to determine the range of
e12b2502 4474 -- the expression. But note that the expander can also generate
4475 -- constants in other cases, including deferred constants.
87bdc21d 4476
4477 if Is_Entity_Name (N)
4478 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4479 and then Ekind (Entity (N)) = E_Constant
4480 and then Is_Internal_Name (Chars (Entity (N)))
4481 then
e12b2502 4482 if Present (Expression (Parent (Entity (N)))) then
4483 Determine_Range
4484 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
87bdc21d 4485
e12b2502 4486 elsif Present (Full_View (Entity (N))) then
4487 Determine_Range
4488 (Expression (Parent (Full_View (Entity (N)))),
4489 OK, Lo, Hi, Assume_Valid);
ee6ba406 4490
e12b2502 4491 else
4492 OK := False;
4493 end if;
4494 return;
4495 end if;
ee6ba406 4496
a781c0fc 4497 -- If type is not defined, we can't determine its range
ee6ba406 4498
a781c0fc 4499 if No (Typ)
4500
4501 -- We don't deal with anything except discrete types
4502
4503 or else not Is_Discrete_Type (Typ)
4504
cdfda0e3 4505 -- Don't deal with enumerated types with non-standard representation
4506
4507 or else (Is_Enumeration_Type (Typ)
4508 and then Present (Enum_Pos_To_Rep (Base_Type (Typ))))
4509
a781c0fc 4510 -- Ignore type for which an error has been posted, since range in
4511 -- this case may well be a bogosity deriving from the error. Also
4512 -- ignore if error posted on the reference node.
4513
4514 or else Error_Posted (N) or else Error_Posted (Typ)
ee6ba406 4515 then
4516 OK := False;
4517 return;
4518 end if;
4519
4520 -- For all other cases, we can determine the range
4521
4522 OK := True;
4523
feff2f05 4524 -- If value is compile time known, then the possible range is the one
39a0c1d3 4525 -- value that we know this expression definitely has.
ee6ba406 4526
4527 if Compile_Time_Known_Value (N) then
4528 Lo := Expr_Value (N);
4529 Hi := Lo;
4530 return;
4531 end if;
4532
4533 -- Return if already in the cache
4534
4535 Cindex := Cache_Index (N mod Cache_Size);
4536
9c486805 4537 if Determine_Range_Cache_N (Cindex) = N
4538 and then
4539 Determine_Range_Cache_V (Cindex) = Assume_Valid
4540 then
ee6ba406 4541 Lo := Determine_Range_Cache_Lo (Cindex);
4542 Hi := Determine_Range_Cache_Hi (Cindex);
4543 return;
4544 end if;
4545
feff2f05 4546 -- Otherwise, start by finding the bounds of the type of the expression,
4547 -- the value cannot be outside this range (if it is, then we have an
4548 -- overflow situation, which is a separate check, we are talking here
4549 -- only about the expression value).
ee6ba406 4550
341bd953 4551 -- First a check, never try to find the bounds of a generic type, since
4552 -- these bounds are always junk values, and it is only valid to look at
4553 -- the bounds in an instance.
4554
4555 if Is_Generic_Type (Typ) then
4556 OK := False;
4557 return;
4558 end if;
4559
9c486805 4560 -- First step, change to use base type unless we know the value is valid
e254d721 4561
9c486805 4562 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4563 or else Assume_No_Invalid_Values
4564 or else Assume_Valid
e254d721 4565 then
9c486805 4566 null;
4567 else
4568 Typ := Underlying_Type (Base_Type (Typ));
e254d721 4569 end if;
4570
094ed68e 4571 -- Retrieve the base type. Handle the case where the base type is a
4572 -- private enumeration type.
4573
4574 Btyp := Base_Type (Typ);
4575
4576 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4577 Btyp := Full_View (Btyp);
4578 end if;
4579
feff2f05 4580 -- We use the actual bound unless it is dynamic, in which case use the
4581 -- corresponding base type bound if possible. If we can't get a bound
4582 -- then we figure we can't determine the range (a peculiar case, that
4583 -- perhaps cannot happen, but there is no point in bombing in this
4584 -- optimization circuit.
8880be85 4585
4586 -- First the low bound
ee6ba406 4587
4588 Bound := Type_Low_Bound (Typ);
4589
4590 if Compile_Time_Known_Value (Bound) then
4591 Lo := Expr_Value (Bound);
4592
094ed68e 4593 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4594 Lo := Expr_Value (Type_Low_Bound (Btyp));
ee6ba406 4595
4596 else
4597 OK := False;
4598 return;
4599 end if;
4600
8880be85 4601 -- Now the high bound
4602
ee6ba406 4603 Bound := Type_High_Bound (Typ);
4604
8880be85 4605 -- We need the high bound of the base type later on, and this should
4606 -- always be compile time known. Again, it is not clear that this
4607 -- can ever be false, but no point in bombing.
ee6ba406 4608
094ed68e 4609 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4610 Hbound := Expr_Value (Type_High_Bound (Btyp));
ee6ba406 4611 Hi := Hbound;
4612
4613 else
4614 OK := False;
4615 return;
4616 end if;
4617
feff2f05 4618 -- If we have a static subtype, then that may have a tighter bound so
4619 -- use the upper bound of the subtype instead in this case.
8880be85 4620
4621 if Compile_Time_Known_Value (Bound) then
4622 Hi := Expr_Value (Bound);
4623 end if;
4624
feff2f05 4625 -- We may be able to refine this value in certain situations. If any
4626 -- refinement is possible, then Lor and Hir are set to possibly tighter
4627 -- bounds, and OK1 is set to True.
ee6ba406 4628
4629 case Nkind (N) is
4630
4631 -- For unary plus, result is limited by range of operand
4632
4633 when N_Op_Plus =>
9c486805 4634 Determine_Range
4635 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4636
4637 -- For unary minus, determine range of operand, and negate it
4638
4639 when N_Op_Minus =>
9c486805 4640 Determine_Range
4641 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4642
4643 if OK1 then
4644 Lor := -Hi_Right;
4645 Hir := -Lo_Right;
4646 end if;
4647
4648 -- For binary addition, get range of each operand and do the
4649 -- addition to get the result range.
4650
4651 when N_Op_Add =>
4652 if OK_Operands then
4653 Lor := Lo_Left + Lo_Right;
4654 Hir := Hi_Left + Hi_Right;
4655 end if;
4656
feff2f05 4657 -- Division is tricky. The only case we consider is where the right
4658 -- operand is a positive constant, and in this case we simply divide
4659 -- the bounds of the left operand
ee6ba406 4660
4661 when N_Op_Divide =>
4662 if OK_Operands then
4663 if Lo_Right = Hi_Right
4664 and then Lo_Right > 0
4665 then
4666 Lor := Lo_Left / Lo_Right;
4667 Hir := Hi_Left / Lo_Right;
ee6ba406 4668 else
4669 OK1 := False;
4670 end if;
4671 end if;
4672
feff2f05 4673 -- For binary subtraction, get range of each operand and do the worst
4674 -- case subtraction to get the result range.
ee6ba406 4675
4676 when N_Op_Subtract =>
4677 if OK_Operands then
4678 Lor := Lo_Left - Hi_Right;
4679 Hir := Hi_Left - Lo_Right;
4680 end if;
4681
feff2f05 4682 -- For MOD, if right operand is a positive constant, then result must
4683 -- be in the allowable range of mod results.
ee6ba406 4684
4685 when N_Op_Mod =>
4686 if OK_Operands then
9dfe12ae 4687 if Lo_Right = Hi_Right
4688 and then Lo_Right /= 0
4689 then
ee6ba406 4690 if Lo_Right > 0 then
4691 Lor := Uint_0;
4692 Hir := Lo_Right - 1;
4693
9dfe12ae 4694 else -- Lo_Right < 0
ee6ba406 4695 Lor := Lo_Right + 1;
4696 Hir := Uint_0;
4697 end if;
4698
4699 else
4700 OK1 := False;
4701 end if;
4702 end if;
4703
feff2f05 4704 -- For REM, if right operand is a positive constant, then result must
4705 -- be in the allowable range of mod results.
ee6ba406 4706
4707 when N_Op_Rem =>
4708 if OK_Operands then
99378362 4709 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
ee6ba406 4710 declare
4711 Dval : constant Uint := (abs Lo_Right) - 1;
4712
4713 begin
4714 -- The sign of the result depends on the sign of the
4715 -- dividend (but not on the sign of the divisor, hence
4716 -- the abs operation above).
4717
4718 if Lo_Left < 0 then
4719 Lor := -Dval;
4720 else
4721 Lor := Uint_0;
4722 end if;
4723
4724 if Hi_Left < 0 then
4725 Hir := Uint_0;
4726 else
4727 Hir := Dval;
4728 end if;
4729 end;
4730
4731 else
4732 OK1 := False;
4733 end if;
4734 end if;
4735
4736 -- Attribute reference cases
4737
4738 when N_Attribute_Reference =>
4739 case Attribute_Name (N) is
4740
4741 -- For Pos/Val attributes, we can refine the range using the
ddbf7f2e 4742 -- possible range of values of the attribute expression.
ee6ba406 4743
99378362 4744 when Name_Pos
4745 | Name_Val
4746 =>
9c486805 4747 Determine_Range
4748 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4749
4750 -- For Length attribute, use the bounds of the corresponding
4751 -- index type to refine the range.
4752
4753 when Name_Length =>
4754 declare
4755 Atyp : Entity_Id := Etype (Prefix (N));
4756 Inum : Nat;
4757 Indx : Node_Id;
4758
4759 LL, LU : Uint;
4760 UL, UU : Uint;
4761
4762 begin
4763 if Is_Access_Type (Atyp) then
4764 Atyp := Designated_Type (Atyp);
4765 end if;
4766
4767 -- For string literal, we know exact value
4768
4769 if Ekind (Atyp) = E_String_Literal_Subtype then
4770 OK := True;
4771 Lo := String_Literal_Length (Atyp);
4772 Hi := String_Literal_Length (Atyp);
4773 return;
4774 end if;
4775
4776 -- Otherwise check for expression given
4777
4778 if No (Expressions (N)) then
4779 Inum := 1;
4780 else
4781 Inum :=
4782 UI_To_Int (Expr_Value (First (Expressions (N))));
4783 end if;
4784
4785 Indx := First_Index (Atyp);
4786 for J in 2 .. Inum loop
4787 Indx := Next_Index (Indx);
4788 end loop;
4789
9116df93 4790 -- If the index type is a formal type or derived from
c8da6114 4791 -- one, the bounds are not static.
4792
4793 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4794 OK := False;
4795 return;
4796 end if;
4797
ee6ba406 4798 Determine_Range
9c486805 4799 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4800 Assume_Valid);
ee6ba406 4801
4802 if OK1 then
4803 Determine_Range
9c486805 4804 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4805 Assume_Valid);
ee6ba406 4806
4807 if OK1 then
4808
4809 -- The maximum value for Length is the biggest
4810 -- possible gap between the values of the bounds.
4811 -- But of course, this value cannot be negative.
4812
9c486805 4813 Hir := UI_Max (Uint_0, UU - LL + 1);
ee6ba406 4814
4815 -- For constrained arrays, the minimum value for
4816 -- Length is taken from the actual value of the
9116df93 4817 -- bounds, since the index will be exactly of this
4818 -- subtype.
ee6ba406 4819
4820 if Is_Constrained (Atyp) then
9c486805 4821 Lor := UI_Max (Uint_0, UL - LU + 1);
ee6ba406 4822
4823 -- For an unconstrained array, the minimum value
4824 -- for length is always zero.
4825
4826 else
4827 Lor := Uint_0;
4828 end if;
4829 end if;
4830 end if;
4831 end;
4832
4833 -- No special handling for other attributes
9116df93 4834 -- Probably more opportunities exist here???
ee6ba406 4835
4836 when others =>
4837 OK1 := False;
4838
4839 end case;
4840
ee6ba406 4841 when N_Type_Conversion =>
54022749 4842
4843 -- For type conversion from one discrete type to another, we can
4844 -- refine the range using the converted value.
4845
4846 if Is_Discrete_Type (Etype (Expression (N))) then
4847 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4848
4849 -- When converting a float to an integer type, determine the range
4850 -- in real first, and then convert the bounds using UR_To_Uint
4851 -- which correctly rounds away from zero when half way between two
4852 -- integers, as required by normal Ada 95 rounding semantics. It
4853 -- is only possible because analysis in GNATprove rules out the
4854 -- possibility of a NaN or infinite value.
4855
4856 elsif GNATprove_Mode
4857 and then Is_Floating_Point_Type (Etype (Expression (N)))
4858 then
4859 declare
4860 Lor_Real, Hir_Real : Ureal;
4861 begin
4862 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4863 Assume_Valid);
4864
4865 if OK1 then
4866 Lor := UR_To_Uint (Lor_Real);
4867 Hir := UR_To_Uint (Hir_Real);
4868 end if;
4869 end;
4870
4871 else
4872 OK1 := False;
4873 end if;
ee6ba406 4874
4875 -- Nothing special to do for all other expression kinds
4876
4877 when others =>
4878 OK1 := False;
4879 Lor := No_Uint;
4880 Hir := No_Uint;
4881 end case;
4882
9116df93 4883 -- At this stage, if OK1 is true, then we know that the actual result of
4884 -- the computed expression is in the range Lor .. Hir. We can use this
4885 -- to restrict the possible range of results.
ee6ba406 4886
4887 if OK1 then
4888
9116df93 4889 -- If the refined value of the low bound is greater than the type
7ac8c2b1 4890 -- low bound, then reset it to the more restrictive value. However,
9116df93 4891 -- we do NOT do this for the case of a modular type where the
4892 -- possible upper bound on the value is above the base type high
4893 -- bound, because that means the result could wrap.
ee6ba406 4894
4895 if Lor > Lo
9116df93 4896 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
ee6ba406 4897 then
4898 Lo := Lor;
4899 end if;
4900
9116df93 4901 -- Similarly, if the refined value of the high bound is less than the
4902 -- value so far, then reset it to the more restrictive value. Again,
4903 -- we do not do this if the refined low bound is negative for a
4904 -- modular type, since this would wrap.
ee6ba406 4905
4906 if Hir < Hi
9116df93 4907 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
ee6ba406 4908 then
4909 Hi := Hir;
4910 end if;
4911 end if;
4912
4913 -- Set cache entry for future call and we are all done
4914
4915 Determine_Range_Cache_N (Cindex) := N;
9c486805 4916 Determine_Range_Cache_V (Cindex) := Assume_Valid;
ee6ba406 4917 Determine_Range_Cache_Lo (Cindex) := Lo;
4918 Determine_Range_Cache_Hi (Cindex) := Hi;
4919 return;
4920
9116df93 4921 -- If any exception occurs, it means that we have some bug in the compiler,
4922 -- possibly triggered by a previous error, or by some unforeseen peculiar
ee6ba406 4923 -- occurrence. However, this is only an optimization attempt, so there is
4924 -- really no point in crashing the compiler. Instead we just decide, too
4925 -- bad, we can't figure out a range in this case after all.
4926
4927 exception
4928 when others =>
4929
4930 -- Debug flag K disables this behavior (useful for debugging)
4931
4932 if Debug_Flag_K then
4933 raise;
4934 else
4935 OK := False;
4936 Lo := No_Uint;
4937 Hi := No_Uint;
4938 return;
4939 end if;
ee6ba406 4940 end Determine_Range;
4941
7ac8c2b1 4942 -----------------------
4943 -- Determine_Range_R --
4944 -----------------------
4945
4946 procedure Determine_Range_R
4947 (N : Node_Id;
4948 OK : out Boolean;
4949 Lo : out Ureal;
4950 Hi : out Ureal;
4951 Assume_Valid : Boolean := False)
4952 is
4953 Typ : Entity_Id := Etype (N);
4954 -- Type to use, may get reset to base type for possibly invalid entity
4955
4956 Lo_Left : Ureal;
4957 Hi_Left : Ureal;
4958 -- Lo and Hi bounds of left operand
4959
5bb74b99 4960 Lo_Right : Ureal := No_Ureal;
4961 Hi_Right : Ureal := No_Ureal;
7ac8c2b1 4962 -- Lo and Hi bounds of right (or only) operand
4963
4964 Bound : Node_Id;
4965 -- Temp variable used to hold a bound node
4966
4967 Hbound : Ureal;
4968 -- High bound of base type of expression
4969
4970 Lor : Ureal;
4971 Hir : Ureal;
4972 -- Refined values for low and high bounds, after tightening
4973
4974 OK1 : Boolean;
4975 -- Used in lower level calls to indicate if call succeeded
4976
4977 Cindex : Cache_Index;
4978 -- Used to search cache
4979
4980 Btyp : Entity_Id;
4981 -- Base type
4982
4983 function OK_Operands return Boolean;
4984 -- Used for binary operators. Determines the ranges of the left and
4985 -- right operands, and if they are both OK, returns True, and puts
4986 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4987
4988 function Round_Machine (B : Ureal) return Ureal;
4989 -- B is a real bound. Round it using mode Round_Even.
4990
4991 -----------------
4992 -- OK_Operands --
4993 -----------------
4994
4995 function OK_Operands return Boolean is
4996 begin
4997 Determine_Range_R
4998 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4999
5000 if not OK1 then
5001 return False;
5002 end if;
5003
5004 Determine_Range_R
5005 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5006 return OK1;
5007 end OK_Operands;
5008
5009 -------------------
5010 -- Round_Machine --
5011 -------------------
5012
5013 function Round_Machine (B : Ureal) return Ureal is
5014 begin
5015 return Machine (Typ, B, Round_Even, N);
5016 end Round_Machine;
5017
5018 -- Start of processing for Determine_Range_R
5019
5020 begin
5021 -- Prevent junk warnings by initializing range variables
5022
5023 Lo := No_Ureal;
5024 Hi := No_Ureal;
5025 Lor := No_Ureal;
5026 Hir := No_Ureal;
5027
5028 -- For temporary constants internally generated to remove side effects
5029 -- we must use the corresponding expression to determine the range of
5030 -- the expression. But note that the expander can also generate
5031 -- constants in other cases, including deferred constants.
5032
5033 if Is_Entity_Name (N)
5034 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5035 and then Ekind (Entity (N)) = E_Constant
5036 and then Is_Internal_Name (Chars (Entity (N)))
5037 then
5038 if Present (Expression (Parent (Entity (N)))) then
5039 Determine_Range_R
5040 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5041
5042 elsif Present (Full_View (Entity (N))) then
5043 Determine_Range_R
5044 (Expression (Parent (Full_View (Entity (N)))),
5045 OK, Lo, Hi, Assume_Valid);
5046
5047 else
5048 OK := False;
5049 end if;
4c1c7f3f 5050
7ac8c2b1 5051 return;
5052 end if;
5053
5054 -- If type is not defined, we can't determine its range
5055
5056 if No (Typ)
5057
5058 -- We don't deal with anything except IEEE floating-point types
5059
5060 or else not Is_Floating_Point_Type (Typ)
5061 or else Float_Rep (Typ) /= IEEE_Binary
5062
5063 -- Ignore type for which an error has been posted, since range in
5064 -- this case may well be a bogosity deriving from the error. Also
5065 -- ignore if error posted on the reference node.
5066
5067 or else Error_Posted (N) or else Error_Posted (Typ)
5068 then
5069 OK := False;
5070 return;
5071 end if;
5072
5073 -- For all other cases, we can determine the range
5074
5075 OK := True;
5076
5077 -- If value is compile time known, then the possible range is the one
5078 -- value that we know this expression definitely has.
5079
5080 if Compile_Time_Known_Value (N) then
5081 Lo := Expr_Value_R (N);
5082 Hi := Lo;
5083 return;
5084 end if;
5085
5086 -- Return if already in the cache
5087
5088 Cindex := Cache_Index (N mod Cache_Size);
5089
5090 if Determine_Range_Cache_N (Cindex) = N
5091 and then
5092 Determine_Range_Cache_V (Cindex) = Assume_Valid
5093 then
5094 Lo := Determine_Range_Cache_Lo_R (Cindex);
5095 Hi := Determine_Range_Cache_Hi_R (Cindex);
5096 return;
5097 end if;
5098
5099 -- Otherwise, start by finding the bounds of the type of the expression,
5100 -- the value cannot be outside this range (if it is, then we have an
5101 -- overflow situation, which is a separate check, we are talking here
5102 -- only about the expression value).
5103
5104 -- First a check, never try to find the bounds of a generic type, since
5105 -- these bounds are always junk values, and it is only valid to look at
5106 -- the bounds in an instance.
5107
5108 if Is_Generic_Type (Typ) then
5109 OK := False;
5110 return;
5111 end if;
5112
5113 -- First step, change to use base type unless we know the value is valid
5114
5115 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5116 or else Assume_No_Invalid_Values
5117 or else Assume_Valid
5118 then
5119 null;
5120 else
5121 Typ := Underlying_Type (Base_Type (Typ));
5122 end if;
5123
5124 -- Retrieve the base type. Handle the case where the base type is a
5125 -- private type.
5126
5127 Btyp := Base_Type (Typ);
5128
5129 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5130 Btyp := Full_View (Btyp);
5131 end if;
5132
5133 -- We use the actual bound unless it is dynamic, in which case use the
5134 -- corresponding base type bound if possible. If we can't get a bound
5135 -- then we figure we can't determine the range (a peculiar case, that
5136 -- perhaps cannot happen, but there is no point in bombing in this
5137 -- optimization circuit).
5138
5139 -- First the low bound
5140
5141 Bound := Type_Low_Bound (Typ);
5142
5143 if Compile_Time_Known_Value (Bound) then
5144 Lo := Expr_Value_R (Bound);
5145
5146 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5147 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5148
5149 else
5150 OK := False;
5151 return;
5152 end if;
5153
5154 -- Now the high bound
5155
5156 Bound := Type_High_Bound (Typ);
5157
5158 -- We need the high bound of the base type later on, and this should
5159 -- always be compile time known. Again, it is not clear that this
5160 -- can ever be false, but no point in bombing.
5161
5162 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5163 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5164 Hi := Hbound;
5165
5166 else
5167 OK := False;
5168 return;
5169 end if;
5170
5171 -- If we have a static subtype, then that may have a tighter bound so
5172 -- use the upper bound of the subtype instead in this case.
5173
5174 if Compile_Time_Known_Value (Bound) then
5175 Hi := Expr_Value_R (Bound);
5176 end if;
5177
5178 -- We may be able to refine this value in certain situations. If any
5179 -- refinement is possible, then Lor and Hir are set to possibly tighter
5180 -- bounds, and OK1 is set to True.
5181
5182 case Nkind (N) is
5183
5184 -- For unary plus, result is limited by range of operand
5185
5186 when N_Op_Plus =>
5187 Determine_Range_R
5188 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5189
5190 -- For unary minus, determine range of operand, and negate it
5191
5192 when N_Op_Minus =>
5193 Determine_Range_R
5194 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5195
5196 if OK1 then
5197 Lor := -Hi_Right;
5198 Hir := -Lo_Right;
5199 end if;
5200
5201 -- For binary addition, get range of each operand and do the
5202 -- addition to get the result range.
5203
5204 when N_Op_Add =>
5205 if OK_Operands then
5206 Lor := Round_Machine (Lo_Left + Lo_Right);
5207 Hir := Round_Machine (Hi_Left + Hi_Right);
5208 end if;
5209
5210 -- For binary subtraction, get range of each operand and do the worst
5211 -- case subtraction to get the result range.
5212
5213 when N_Op_Subtract =>
5214 if OK_Operands then
5215 Lor := Round_Machine (Lo_Left - Hi_Right);
5216 Hir := Round_Machine (Hi_Left - Lo_Right);
5217 end if;
5218
5219 -- For multiplication, get range of each operand and do the
5220 -- four multiplications to get the result range.
5221
5222 when N_Op_Multiply =>
5223 if OK_Operands then
5224 declare
5225 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5226 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5227 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5228 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
552d7cbc 5229
7ac8c2b1 5230 begin
5231 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5232 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5233 end;
5234 end if;
5235
5236 -- For division, consider separately the cases where the right
5237 -- operand is positive or negative. Otherwise, the right operand
5238 -- can be arbitrarily close to zero, so the result is likely to
5239 -- be unbounded in one direction, do not attempt to compute it.
5240
5241 when N_Op_Divide =>
5242 if OK_Operands then
5243
5244 -- Right operand is positive
5245
5246 if Lo_Right > Ureal_0 then
5247
5248 -- If the low bound of the left operand is negative, obtain
5249 -- the overall low bound by dividing it by the smallest
5250 -- value of the right operand, and otherwise by the largest
5251 -- value of the right operand.
5252
5253 if Lo_Left < Ureal_0 then
5254 Lor := Round_Machine (Lo_Left / Lo_Right);
5255 else
5256 Lor := Round_Machine (Lo_Left / Hi_Right);
5257 end if;
5258
5259 -- If the high bound of the left operand is negative, obtain
5260 -- the overall high bound by dividing it by the largest
5261 -- value of the right operand, and otherwise by the
5262 -- smallest value of the right operand.
5263
5264 if Hi_Left < Ureal_0 then
5265 Hir := Round_Machine (Hi_Left / Hi_Right);
5266 else
5267 Hir := Round_Machine (Hi_Left / Lo_Right);
5268 end if;
5269
5270 -- Right operand is negative
5271
5272 elsif Hi_Right < Ureal_0 then
5273
5274 -- If the low bound of the left operand is negative, obtain
5275 -- the overall low bound by dividing it by the largest
5276 -- value of the right operand, and otherwise by the smallest
5277 -- value of the right operand.
5278
5279 if Lo_Left < Ureal_0 then
5280 Lor := Round_Machine (Lo_Left / Hi_Right);
5281 else
5282 Lor := Round_Machine (Lo_Left / Lo_Right);
5283 end if;
5284
5285 -- If the high bound of the left operand is negative, obtain
5286 -- the overall high bound by dividing it by the smallest
5287 -- value of the right operand, and otherwise by the
5288 -- largest value of the right operand.
5289
5290 if Hi_Left < Ureal_0 then
5291 Hir := Round_Machine (Hi_Left / Lo_Right);
5292 else
5293 Hir := Round_Machine (Hi_Left / Hi_Right);
5294 end if;
5295
5296 else
5297 OK1 := False;
5298 end if;
5299 end if;
5300
7ac8c2b1 5301 when N_Type_Conversion =>
3c5c732f 5302
5303 -- For type conversion from one floating-point type to another, we
5304 -- can refine the range using the converted value.
5305
5306 if Is_Floating_Point_Type (Etype (Expression (N))) then
5307 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5308
5309 -- When converting an integer to a floating-point type, determine
5310 -- the range in integer first, and then convert the bounds.
5311
5312 elsif Is_Discrete_Type (Etype (Expression (N))) then
5313 declare
552d7cbc 5314 Hir_Int : Uint;
5315 Lor_Int : Uint;
5316
3c5c732f 5317 begin
552d7cbc 5318 Determine_Range
5319 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
3c5c732f 5320
5321 if OK1 then
5322 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5323 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5324 end if;
5325 end;
5326
5327 else
5328 OK1 := False;
5329 end if;
7ac8c2b1 5330
5331 -- Nothing special to do for all other expression kinds
5332
5333 when others =>
5334 OK1 := False;
5335 Lor := No_Ureal;
5336 Hir := No_Ureal;
5337 end case;
5338
5339 -- At this stage, if OK1 is true, then we know that the actual result of
5340 -- the computed expression is in the range Lor .. Hir. We can use this
5341 -- to restrict the possible range of results.
5342
5343 if OK1 then
5344
5345 -- If the refined value of the low bound is greater than the type
5346 -- low bound, then reset it to the more restrictive value.
5347
5348 if Lor > Lo then
5349 Lo := Lor;
5350 end if;
5351
5352 -- Similarly, if the refined value of the high bound is less than the
5353 -- value so far, then reset it to the more restrictive value.
5354
5355 if Hir < Hi then
5356 Hi := Hir;
5357 end if;
5358 end if;
5359
5360 -- Set cache entry for future call and we are all done
5361
5362 Determine_Range_Cache_N (Cindex) := N;
5363 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5364 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5365 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5366 return;
5367
5368 -- If any exception occurs, it means that we have some bug in the compiler,
5369 -- possibly triggered by a previous error, or by some unforeseen peculiar
5370 -- occurrence. However, this is only an optimization attempt, so there is
5371 -- really no point in crashing the compiler. Instead we just decide, too
5372 -- bad, we can't figure out a range in this case after all.
5373
5374 exception
5375 when others =>
5376
5377 -- Debug flag K disables this behavior (useful for debugging)
5378
5379 if Debug_Flag_K then
5380 raise;
5381 else
5382 OK := False;
5383 Lo := No_Ureal;
5384 Hi := No_Ureal;
5385 return;
5386 end if;
5387 end Determine_Range_R;
5388
ee6ba406 5389 ------------------------------------
5390 -- Discriminant_Checks_Suppressed --
5391 ------------------------------------
5392
5393 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5394 begin
9dfe12ae 5395 if Present (E) then
5396 if Is_Unchecked_Union (E) then
5397 return True;
5398 elsif Checks_May_Be_Suppressed (E) then
5399 return Is_Check_Suppressed (E, Discriminant_Check);
5400 end if;
5401 end if;
5402
fafc6b97 5403 return Scope_Suppress.Suppress (Discriminant_Check);
ee6ba406 5404 end Discriminant_Checks_Suppressed;
5405
5406 --------------------------------
5407 -- Division_Checks_Suppressed --
5408 --------------------------------
5409
5410 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5411 begin
9dfe12ae 5412 if Present (E) and then Checks_May_Be_Suppressed (E) then
5413 return Is_Check_Suppressed (E, Division_Check);
5414 else
fafc6b97 5415 return Scope_Suppress.Suppress (Division_Check);
9dfe12ae 5416 end if;
ee6ba406 5417 end Division_Checks_Suppressed;
5418
fa771c05 5419 --------------------------------------
5420 -- Duplicated_Tag_Checks_Suppressed --
5421 --------------------------------------
5422
5423 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5424 begin
5425 if Present (E) and then Checks_May_Be_Suppressed (E) then
5426 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5427 else
5428 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5429 end if;
5430 end Duplicated_Tag_Checks_Suppressed;
5431
ee6ba406 5432 -----------------------------------
5433 -- Elaboration_Checks_Suppressed --
5434 -----------------------------------
5435
5436 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5437 begin
38f5559f 5438 -- The complication in this routine is that if we are in the dynamic
5439 -- model of elaboration, we also check All_Checks, since All_Checks
5440 -- does not set Elaboration_Check explicitly.
5441
9dfe12ae 5442 if Present (E) then
5443 if Kill_Elaboration_Checks (E) then
5444 return True;
38f5559f 5445
9dfe12ae 5446 elsif Checks_May_Be_Suppressed (E) then
38f5559f 5447 if Is_Check_Suppressed (E, Elaboration_Check) then
5448 return True;
fe48a434 5449
38f5559f 5450 elsif Dynamic_Elaboration_Checks then
5451 return Is_Check_Suppressed (E, All_Checks);
fe48a434 5452
38f5559f 5453 else
5454 return False;
5455 end if;
9dfe12ae 5456 end if;
5457 end if;
5458
fafc6b97 5459 if Scope_Suppress.Suppress (Elaboration_Check) then
38f5559f 5460 return True;
fe48a434 5461
38f5559f 5462 elsif Dynamic_Elaboration_Checks then
fafc6b97 5463 return Scope_Suppress.Suppress (All_Checks);
fe48a434 5464
38f5559f 5465 else
5466 return False;
5467 end if;
ee6ba406 5468 end Elaboration_Checks_Suppressed;
5469
9dfe12ae 5470 ---------------------------
5471 -- Enable_Overflow_Check --
5472 ---------------------------
5473
5474 procedure Enable_Overflow_Check (N : Node_Id) is
4c1c7f3f 5475 Typ : constant Entity_Id := Base_Type (Etype (N));
db415383 5476 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 5477 Chk : Nat;
5478 OK : Boolean;
5479 Ent : Entity_Id;
5480 Ofs : Uint;
5481 Lo : Uint;
5482 Hi : Uint;
ee6ba406 5483
f3ccbbb3 5484 Do_Ovflow_Check : Boolean;
5485
ee6ba406 5486 begin
9dfe12ae 5487 if Debug_Flag_CC then
5488 w ("Enable_Overflow_Check for node ", Int (N));
5489 Write_Str (" Source location = ");
5490 wl (Sloc (N));
00c403ee 5491 pg (Union_Id (N));
ee6ba406 5492 end if;
ee6ba406 5493
75209ec5 5494 -- No check if overflow checks suppressed for type of node
5495
0df9d43f 5496 if Overflow_Checks_Suppressed (Etype (N)) then
75209ec5 5497 return;
5498
49260fa5 5499 -- Nothing to do for unsigned integer types, which do not overflow
5500
5501 elsif Is_Modular_Integer_Type (Typ) then
5502 return;
3cce7f32 5503 end if;
5504
0df9d43f 5505 -- This is the point at which processing for STRICT mode diverges
21a55437 5506 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5507 -- probably more extreme that it needs to be, but what is going on here
5508 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
0df9d43f 5509 -- to leave the processing for STRICT mode untouched. There were
21a55437 5510 -- two reasons for this. First it avoided any incompatible change of
0df9d43f 5511 -- behavior. Second, it guaranteed that STRICT mode continued to be
21a55437 5512 -- legacy reliable.
3cce7f32 5513
0df9d43f 5514 -- The big difference is that in STRICT mode there is a fair amount of
3cce7f32 5515 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5516 -- know that no check is needed. We skip all that in the two new modes,
5517 -- since really overflow checking happens over a whole subtree, and we
5518 -- do the corresponding optimizations later on when applying the checks.
5519
5520 if Mode in Minimized_Or_Eliminated then
0df9d43f 5521 if not (Overflow_Checks_Suppressed (Etype (N)))
5522 and then not (Is_Entity_Name (N)
5523 and then Overflow_Checks_Suppressed (Entity (N)))
5524 then
5525 Activate_Overflow_Check (N);
5526 end if;
3cce7f32 5527
5528 if Debug_Flag_CC then
5529 w ("Minimized/Eliminated mode");
5530 end if;
5531
5532 return;
5533 end if;
5534
0df9d43f 5535 -- Remainder of processing is for STRICT case, and is unchanged from
691fe9e0 5536 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
49260fa5 5537
feff2f05 5538 -- Nothing to do if the range of the result is known OK. We skip this
5539 -- for conversions, since the caller already did the check, and in any
5540 -- case the condition for deleting the check for a type conversion is
cc60bd16 5541 -- different.
ee6ba406 5542
3cce7f32 5543 if Nkind (N) /= N_Type_Conversion then
9c486805 5544 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
ee6ba406 5545
cc60bd16 5546 -- Note in the test below that we assume that the range is not OK
5547 -- if a bound of the range is equal to that of the type. That's not
5548 -- quite accurate but we do this for the following reasons:
ee6ba406 5549
9dfe12ae 5550 -- a) The way that Determine_Range works, it will typically report
5551 -- the bounds of the value as being equal to the bounds of the
5552 -- type, because it either can't tell anything more precise, or
5553 -- does not think it is worth the effort to be more precise.
ee6ba406 5554
9dfe12ae 5555 -- b) It is very unusual to have a situation in which this would
5556 -- generate an unnecessary overflow check (an example would be
5557 -- a subtype with a range 0 .. Integer'Last - 1 to which the
cc60bd16 5558 -- literal value one is added).
ee6ba406 5559
9dfe12ae 5560 -- c) The alternative is a lot of special casing in this routine
5561 -- which would partially duplicate Determine_Range processing.
ee6ba406 5562
f3ccbbb3 5563 if OK then
5564 Do_Ovflow_Check := True;
5565
5566 -- Note that the following checks are quite deliberately > and <
5567 -- rather than >= and <= as explained above.
5568
5569 if Lo > Expr_Value (Type_Low_Bound (Typ))
5570 and then
5571 Hi < Expr_Value (Type_High_Bound (Typ))
5572 then
5573 Do_Ovflow_Check := False;
5574
5575 -- Despite the comments above, it is worth dealing specially with
5576 -- division specially. The only case where integer division can
5577 -- overflow is (largest negative number) / (-1). So we will do
5578 -- an extra range analysis to see if this is possible.
5579
5580 elsif Nkind (N) = N_Op_Divide then
5581 Determine_Range
5582 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5583
5584 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5585 Do_Ovflow_Check := False;
5586
5587 else
5588 Determine_Range
5589 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5590
5591 if OK and then (Lo > Uint_Minus_1
5592 or else
5593 Hi < Uint_Minus_1)
5594 then
5595 Do_Ovflow_Check := False;
5596 end if;
5597 end if;
9dfe12ae 5598 end if;
5599
f3ccbbb3 5600 -- If no overflow check required, we are done
5601
5602 if not Do_Ovflow_Check then
5603 if Debug_Flag_CC then
5604 w ("No overflow check required");
5605 end if;
5606
5607 return;
5608 end if;
9dfe12ae 5609 end if;
5610 end if;
5611
feff2f05 5612 -- If not in optimizing mode, set flag and we are done. We are also done
5613 -- (and just set the flag) if the type is not a discrete type, since it
5614 -- is not worth the effort to eliminate checks for other than discrete
5615 -- types. In addition, we take this same path if we have stored the
5616 -- maximum number of checks possible already (a very unlikely situation,
39a0c1d3 5617 -- but we do not want to blow up).
9dfe12ae 5618
5619 if Optimization_Level = 0
5620 or else not Is_Discrete_Type (Etype (N))
5621 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 5622 then
00c403ee 5623 Activate_Overflow_Check (N);
9dfe12ae 5624
5625 if Debug_Flag_CC then
5626 w ("Optimization off");
5627 end if;
5628
ee6ba406 5629 return;
9dfe12ae 5630 end if;
ee6ba406 5631
9dfe12ae 5632 -- Otherwise evaluate and check the expression
5633
5634 Find_Check
5635 (Expr => N,
5636 Check_Type => 'O',
5637 Target_Type => Empty,
5638 Entry_OK => OK,
5639 Check_Num => Chk,
5640 Ent => Ent,
5641 Ofs => Ofs);
5642
5643 if Debug_Flag_CC then
5644 w ("Called Find_Check");
5645 w (" OK = ", OK);
5646
5647 if OK then
5648 w (" Check_Num = ", Chk);
5649 w (" Ent = ", Int (Ent));
5650 Write_Str (" Ofs = ");
5651 pid (Ofs);
5652 end if;
5653 end if;
ee6ba406 5654
9dfe12ae 5655 -- If check is not of form to optimize, then set flag and we are done
5656
5657 if not OK then
00c403ee 5658 Activate_Overflow_Check (N);
ee6ba406 5659 return;
9dfe12ae 5660 end if;
ee6ba406 5661
9dfe12ae 5662 -- If check is already performed, then return without setting flag
5663
5664 if Chk /= 0 then
5665 if Debug_Flag_CC then
5666 w ("Check suppressed!");
5667 end if;
ee6ba406 5668
ee6ba406 5669 return;
9dfe12ae 5670 end if;
ee6ba406 5671
9dfe12ae 5672 -- Here we will make a new entry for the new check
5673
00c403ee 5674 Activate_Overflow_Check (N);
9dfe12ae 5675 Num_Saved_Checks := Num_Saved_Checks + 1;
5676 Saved_Checks (Num_Saved_Checks) :=
5677 (Killed => False,
5678 Entity => Ent,
5679 Offset => Ofs,
5680 Check_Type => 'O',
5681 Target_Type => Empty);
5682
5683 if Debug_Flag_CC then
5684 w ("Make new entry, check number = ", Num_Saved_Checks);
5685 w (" Entity = ", Int (Ent));
5686 Write_Str (" Offset = ");
5687 pid (Ofs);
5688 w (" Check_Type = O");
5689 w (" Target_Type = Empty");
5690 end if;
ee6ba406 5691
feff2f05 5692 -- If we get an exception, then something went wrong, probably because of
20cf157b 5693 -- an error in the structure of the tree due to an incorrect program. Or
5694 -- it may be a bug in the optimization circuit. In either case the safest
feff2f05 5695 -- thing is simply to set the check flag unconditionally.
9dfe12ae 5696
5697 exception
5698 when others =>
00c403ee 5699 Activate_Overflow_Check (N);
9dfe12ae 5700
5701 if Debug_Flag_CC then
5702 w (" exception occurred, overflow flag set");
5703 end if;
5704
5705 return;
5706 end Enable_Overflow_Check;
5707
5708 ------------------------
5709 -- Enable_Range_Check --
5710 ------------------------
5711
5712 procedure Enable_Range_Check (N : Node_Id) is
5713 Chk : Nat;
5714 OK : Boolean;
5715 Ent : Entity_Id;
5716 Ofs : Uint;
5717 Ttyp : Entity_Id;
5718 P : Node_Id;
5719
5720 begin
feff2f05 5721 -- Return if unchecked type conversion with range check killed. In this
39a0c1d3 5722 -- case we never set the flag (that's what Kill_Range_Check is about).
9dfe12ae 5723
5724 if Nkind (N) = N_Unchecked_Type_Conversion
5725 and then Kill_Range_Check (N)
ee6ba406 5726 then
5727 return;
9dfe12ae 5728 end if;
ee6ba406 5729
55e8372b 5730 -- Do not set range check flag if parent is assignment statement or
5731 -- object declaration with Suppress_Assignment_Checks flag set
5732
5733 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5734 and then Suppress_Assignment_Checks (Parent (N))
5735 then
5736 return;
5737 end if;
5738
0577b0b1 5739 -- Check for various cases where we should suppress the range check
5740
5741 -- No check if range checks suppressed for type of node
5742
20cf157b 5743 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
0577b0b1 5744 return;
5745
5746 -- No check if node is an entity name, and range checks are suppressed
5747 -- for this entity, or for the type of this entity.
5748
5749 elsif Is_Entity_Name (N)
5750 and then (Range_Checks_Suppressed (Entity (N))
20cf157b 5751 or else Range_Checks_Suppressed (Etype (Entity (N))))
0577b0b1 5752 then
5753 return;
5754
5755 -- No checks if index of array, and index checks are suppressed for
5756 -- the array object or the type of the array.
5757
5758 elsif Nkind (Parent (N)) = N_Indexed_Component then
5759 declare
5760 Pref : constant Node_Id := Prefix (Parent (N));
5761 begin
5762 if Is_Entity_Name (Pref)
5763 and then Index_Checks_Suppressed (Entity (Pref))
5764 then
5765 return;
5766 elsif Index_Checks_Suppressed (Etype (Pref)) then
5767 return;
5768 end if;
5769 end;
5770 end if;
5771
9dfe12ae 5772 -- Debug trace output
ee6ba406 5773
9dfe12ae 5774 if Debug_Flag_CC then
5775 w ("Enable_Range_Check for node ", Int (N));
5776 Write_Str (" Source location = ");
5777 wl (Sloc (N));
00c403ee 5778 pg (Union_Id (N));
9dfe12ae 5779 end if;
5780
feff2f05 5781 -- If not in optimizing mode, set flag and we are done. We are also done
5782 -- (and just set the flag) if the type is not a discrete type, since it
5783 -- is not worth the effort to eliminate checks for other than discrete
5784 -- types. In addition, we take this same path if we have stored the
5785 -- maximum number of checks possible already (a very unlikely situation,
39a0c1d3 5786 -- but we do not want to blow up).
9dfe12ae 5787
5788 if Optimization_Level = 0
5789 or else No (Etype (N))
5790 or else not Is_Discrete_Type (Etype (N))
5791 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 5792 then
00c403ee 5793 Activate_Range_Check (N);
9dfe12ae 5794
5795 if Debug_Flag_CC then
5796 w ("Optimization off");
5797 end if;
5798
ee6ba406 5799 return;
9dfe12ae 5800 end if;
ee6ba406 5801
9dfe12ae 5802 -- Otherwise find out the target type
ee6ba406 5803
9dfe12ae 5804 P := Parent (N);
ee6ba406 5805
9dfe12ae 5806 -- For assignment, use left side subtype
5807
5808 if Nkind (P) = N_Assignment_Statement
5809 and then Expression (P) = N
5810 then
5811 Ttyp := Etype (Name (P));
5812
5813 -- For indexed component, use subscript subtype
5814
5815 elsif Nkind (P) = N_Indexed_Component then
5816 declare
5817 Atyp : Entity_Id;
5818 Indx : Node_Id;
5819 Subs : Node_Id;
5820
5821 begin
5822 Atyp := Etype (Prefix (P));
5823
5824 if Is_Access_Type (Atyp) then
5825 Atyp := Designated_Type (Atyp);
f07ea091 5826
5827 -- If the prefix is an access to an unconstrained array,
feff2f05 5828 -- perform check unconditionally: it depends on the bounds of
5829 -- an object and we cannot currently recognize whether the test
5830 -- may be redundant.
f07ea091 5831
5832 if not Is_Constrained (Atyp) then
00c403ee 5833 Activate_Range_Check (N);
f07ea091 5834 return;
5835 end if;
7189d17f 5836
31831d39 5837 -- Ditto if prefix is simply an unconstrained array. We used
5838 -- to think this case was OK, if the prefix was not an explicit
5839 -- dereference, but we have now seen a case where this is not
5840 -- true, so it is safer to just suppress the optimization in this
5841 -- case. The back end is getting better at eliminating redundant
5842 -- checks in any case, so the loss won't be important.
7189d17f 5843
31831d39 5844 elsif Is_Array_Type (Atyp)
7189d17f 5845 and then not Is_Constrained (Atyp)
5846 then
00c403ee 5847 Activate_Range_Check (N);
7189d17f 5848 return;
9dfe12ae 5849 end if;
5850
5851 Indx := First_Index (Atyp);
5852 Subs := First (Expressions (P));
5853 loop
5854 if Subs = N then
5855 Ttyp := Etype (Indx);
5856 exit;
5857 end if;
5858
5859 Next_Index (Indx);
5860 Next (Subs);
5861 end loop;
5862 end;
5863
5864 -- For now, ignore all other cases, they are not so interesting
5865
5866 else
5867 if Debug_Flag_CC then
5868 w (" target type not found, flag set");
5869 end if;
5870
00c403ee 5871 Activate_Range_Check (N);
9dfe12ae 5872 return;
5873 end if;
5874
5875 -- Evaluate and check the expression
5876
5877 Find_Check
5878 (Expr => N,
5879 Check_Type => 'R',
5880 Target_Type => Ttyp,
5881 Entry_OK => OK,
5882 Check_Num => Chk,
5883 Ent => Ent,
5884 Ofs => Ofs);
5885
5886 if Debug_Flag_CC then
5887 w ("Called Find_Check");
5888 w ("Target_Typ = ", Int (Ttyp));
5889 w (" OK = ", OK);
5890
5891 if OK then
5892 w (" Check_Num = ", Chk);
5893 w (" Ent = ", Int (Ent));
5894 Write_Str (" Ofs = ");
5895 pid (Ofs);
5896 end if;
5897 end if;
5898
5899 -- If check is not of form to optimize, then set flag and we are done
5900
5901 if not OK then
5902 if Debug_Flag_CC then
5903 w (" expression not of optimizable type, flag set");
5904 end if;
5905
00c403ee 5906 Activate_Range_Check (N);
9dfe12ae 5907 return;
5908 end if;
5909
5910 -- If check is already performed, then return without setting flag
5911
5912 if Chk /= 0 then
5913 if Debug_Flag_CC then
5914 w ("Check suppressed!");
5915 end if;
5916
5917 return;
5918 end if;
5919
5920 -- Here we will make a new entry for the new check
5921
00c403ee 5922 Activate_Range_Check (N);
9dfe12ae 5923 Num_Saved_Checks := Num_Saved_Checks + 1;
5924 Saved_Checks (Num_Saved_Checks) :=
5925 (Killed => False,
5926 Entity => Ent,
5927 Offset => Ofs,
5928 Check_Type => 'R',
5929 Target_Type => Ttyp);
5930
5931 if Debug_Flag_CC then
5932 w ("Make new entry, check number = ", Num_Saved_Checks);
5933 w (" Entity = ", Int (Ent));
5934 Write_Str (" Offset = ");
5935 pid (Ofs);
5936 w (" Check_Type = R");
5937 w (" Target_Type = ", Int (Ttyp));
00c403ee 5938 pg (Union_Id (Ttyp));
9dfe12ae 5939 end if;
5940
feff2f05 5941 -- If we get an exception, then something went wrong, probably because of
5942 -- an error in the structure of the tree due to an incorrect program. Or
5943 -- it may be a bug in the optimization circuit. In either case the safest
5944 -- thing is simply to set the check flag unconditionally.
9dfe12ae 5945
5946 exception
5947 when others =>
00c403ee 5948 Activate_Range_Check (N);
9dfe12ae 5949
5950 if Debug_Flag_CC then
5951 w (" exception occurred, range flag set");
5952 end if;
5953
5954 return;
5955 end Enable_Range_Check;
5956
5957 ------------------
5958 -- Ensure_Valid --
5959 ------------------
5960
aaec8d13 5961 procedure Ensure_Valid
5962 (Expr : Node_Id;
5963 Holes_OK : Boolean := False;
5964 Related_Id : Entity_Id := Empty;
5965 Is_Low_Bound : Boolean := False;
5966 Is_High_Bound : Boolean := False)
5967 is
9dfe12ae 5968 Typ : constant Entity_Id := Etype (Expr);
5969
5970 begin
5971 -- Ignore call if we are not doing any validity checking
5972
5973 if not Validity_Checks_On then
5974 return;
5975
0577b0b1 5976 -- Ignore call if range or validity checks suppressed on entity or type
9dfe12ae 5977
0577b0b1 5978 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
9dfe12ae 5979 return;
5980
feff2f05 5981 -- No check required if expression is from the expander, we assume the
5982 -- expander will generate whatever checks are needed. Note that this is
39a0c1d3 5983 -- not just an optimization, it avoids infinite recursions.
9dfe12ae 5984
5985 -- Unchecked conversions must be checked, unless they are initialized
5986 -- scalar values, as in a component assignment in an init proc.
5987
5988 -- In addition, we force a check if Force_Validity_Checks is set
5989
5990 elsif not Comes_From_Source (Expr)
404eb7da 5991 and then not
5992 (Nkind (Expr) = N_Identifier
5993 and then Present (Renamed_Object (Entity (Expr)))
5994 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
9dfe12ae 5995 and then not Force_Validity_Checks
5996 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5997 or else Kill_Range_Check (Expr))
5998 then
5999 return;
6000
6001 -- No check required if expression is known to have valid value
6002
6003 elsif Expr_Known_Valid (Expr) then
6004 return;
6005
ea1f4b87 6006 -- No check needed within a generated predicate function. Validity
6007 -- of input value will have been checked earlier.
6008
6009 elsif Ekind (Current_Scope) = E_Function
6010 and then Is_Predicate_Function (Current_Scope)
6011 then
6012 return;
6013
feff2f05 6014 -- Ignore case of enumeration with holes where the flag is set not to
6015 -- worry about holes, since no special validity check is needed
9dfe12ae 6016
6017 elsif Is_Enumeration_Type (Typ)
6018 and then Has_Non_Standard_Rep (Typ)
6019 and then Holes_OK
6020 then
6021 return;
6022
f2a06be9 6023 -- No check required on the left-hand side of an assignment
9dfe12ae 6024
6025 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6026 and then Expr = Name (Parent (Expr))
6027 then
6028 return;
6029
6fb3c314 6030 -- No check on a universal real constant. The context will eventually
38f5559f 6031 -- convert it to a machine number for some target type, or report an
6032 -- illegality.
6033
6034 elsif Nkind (Expr) = N_Real_Literal
6035 and then Etype (Expr) = Universal_Real
6036 then
6037 return;
6038
6fb3c314 6039 -- If the expression denotes a component of a packed boolean array,
0577b0b1 6040 -- no possible check applies. We ignore the old ACATS chestnuts that
6041 -- involve Boolean range True..True.
6042
6043 -- Note: validity checks are generated for expressions that yield a
6044 -- scalar type, when it is possible to create a value that is outside of
6045 -- the type. If this is a one-bit boolean no such value exists. This is
6046 -- an optimization, and it also prevents compiler blowing up during the
6047 -- elaboration of improperly expanded packed array references.
6048
6049 elsif Nkind (Expr) = N_Indexed_Component
6050 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6051 and then Root_Type (Etype (Expr)) = Standard_Boolean
6052 then
6053 return;
6054
737e8460 6055 -- For an expression with actions, we want to insert the validity check
6056 -- on the final Expression.
6057
6058 elsif Nkind (Expr) = N_Expression_With_Actions then
6059 Ensure_Valid (Expression (Expr));
6060 return;
6061
9dfe12ae 6062 -- An annoying special case. If this is an out parameter of a scalar
6063 -- type, then the value is not going to be accessed, therefore it is
6064 -- inappropriate to do any validity check at the call site.
6065
6066 else
6067 -- Only need to worry about scalar types
6068
6069 if Is_Scalar_Type (Typ) then
ee6ba406 6070 declare
6071 P : Node_Id;
6072 N : Node_Id;
6073 E : Entity_Id;
6074 F : Entity_Id;
6075 A : Node_Id;
6076 L : List_Id;
6077
6078 begin
6079 -- Find actual argument (which may be a parameter association)
6080 -- and the parent of the actual argument (the call statement)
6081
6082 N := Expr;
6083 P := Parent (Expr);
6084
6085 if Nkind (P) = N_Parameter_Association then
6086 N := P;
6087 P := Parent (N);
6088 end if;
6089
feff2f05 6090 -- Only need to worry if we are argument of a procedure call
6091 -- since functions don't have out parameters. If this is an
6092 -- indirect or dispatching call, get signature from the
6093 -- subprogram type.
ee6ba406 6094
6095 if Nkind (P) = N_Procedure_Call_Statement then
6096 L := Parameter_Associations (P);
9dfe12ae 6097
6098 if Is_Entity_Name (Name (P)) then
6099 E := Entity (Name (P));
6100 else
6101 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6102 E := Etype (Name (P));
6103 end if;
ee6ba406 6104
feff2f05 6105 -- Only need to worry if there are indeed actuals, and if
6106 -- this could be a procedure call, otherwise we cannot get a
6107 -- match (either we are not an argument, or the mode of the
6108 -- formal is not OUT). This test also filters out the
6109 -- generic case.
ee6ba406 6110
20cf157b 6111 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6112
feff2f05 6113 -- This is the loop through parameters, looking for an
6114 -- OUT parameter for which we are the argument.
ee6ba406 6115
6116 F := First_Formal (E);
6117 A := First (L);
ee6ba406 6118 while Present (F) loop
6119 if Ekind (F) = E_Out_Parameter and then A = N then
6120 return;
6121 end if;
6122
6123 Next_Formal (F);
6124 Next (A);
6125 end loop;
6126 end if;
6127 end if;
6128 end;
6129 end if;
6130 end if;
6131
fa6a6949 6132 -- If this is a boolean expression, only its elementary operands need
90a07d4c 6133 -- checking: if they are valid, a boolean or short-circuit operation
6134 -- with them will be valid as well.
784d4230 6135
6136 if Base_Type (Typ) = Standard_Boolean
7af38999 6137 and then
fa6a6949 6138 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
784d4230 6139 then
6140 return;
6141 end if;
6142
0577b0b1 6143 -- If we fall through, a validity check is required
ee6ba406 6144
aaec8d13 6145 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
ce7498d3 6146
6147 if Is_Entity_Name (Expr)
6148 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6149 then
6150 Set_Is_Known_Valid (Entity (Expr));
6151 end if;
ee6ba406 6152 end Ensure_Valid;
6153
6154 ----------------------
6155 -- Expr_Known_Valid --
6156 ----------------------
6157
6158 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6159 Typ : constant Entity_Id := Etype (Expr);
6160
6161 begin
feff2f05 6162 -- Non-scalar types are always considered valid, since they never give
6163 -- rise to the issues of erroneous or bounded error behavior that are
6164 -- the concern. In formal reference manual terms the notion of validity
6165 -- only applies to scalar types. Note that even when packed arrays are
6166 -- represented using modular types, they are still arrays semantically,
6167 -- so they are also always valid (in particular, the unused bits can be
6168 -- random rubbish without affecting the validity of the array value).
ee6ba406 6169
a88a5773 6170 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
ee6ba406 6171 return True;
6172
6173 -- If no validity checking, then everything is considered valid
6174
6175 elsif not Validity_Checks_On then
6176 return True;
6177
6178 -- Floating-point types are considered valid unless floating-point
6179 -- validity checks have been specifically turned on.
6180
6181 elsif Is_Floating_Point_Type (Typ)
6182 and then not Validity_Check_Floating_Point
6183 then
6184 return True;
6185
feff2f05 6186 -- If the expression is the value of an object that is known to be
6187 -- valid, then clearly the expression value itself is valid.
ee6ba406 6188
6189 elsif Is_Entity_Name (Expr)
6190 and then Is_Known_Valid (Entity (Expr))
985fe5d6 6191
6192 -- Exclude volatile variables
6193
6194 and then not Treat_As_Volatile (Entity (Expr))
ee6ba406 6195 then
6196 return True;
6197
0577b0b1 6198 -- References to discriminants are always considered valid. The value
6199 -- of a discriminant gets checked when the object is built. Within the
6200 -- record, we consider it valid, and it is important to do so, since
6201 -- otherwise we can try to generate bogus validity checks which
feff2f05 6202 -- reference discriminants out of scope. Discriminants of concurrent
6203 -- types are excluded for the same reason.
0577b0b1 6204
6205 elsif Is_Entity_Name (Expr)
feff2f05 6206 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
0577b0b1 6207 then
6208 return True;
6209
feff2f05 6210 -- If the type is one for which all values are known valid, then we are
6211 -- sure that the value is valid except in the slightly odd case where
6212 -- the expression is a reference to a variable whose size has been
6213 -- explicitly set to a value greater than the object size.
ee6ba406 6214
6215 elsif Is_Known_Valid (Typ) then
6216 if Is_Entity_Name (Expr)
6217 and then Ekind (Entity (Expr)) = E_Variable
6218 and then Esize (Entity (Expr)) > Esize (Typ)
6219 then
6220 return False;
6221 else
6222 return True;
6223 end if;
6224
6225 -- Integer and character literals always have valid values, where
6226 -- appropriate these will be range checked in any case.
6227
20cf157b 6228 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
ee6ba406 6229 return True;
91e47010 6230
ee6ba406 6231 -- If we have a type conversion or a qualification of a known valid
6232 -- value, then the result will always be valid.
6233
20cf157b 6234 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
ee6ba406 6235 return Expr_Known_Valid (Expression (Expr));
6236
1eb1395f 6237 -- Case of expression is a non-floating-point operator. In this case we
6238 -- can assume the result is valid the generated code for the operator
6239 -- will include whatever checks are needed (e.g. range checks) to ensure
6240 -- validity. This assumption does not hold for the floating-point case,
6241 -- since floating-point operators can generate Infinite or NaN results
6242 -- which are considered invalid.
6243
6244 -- Historical note: in older versions, the exemption of floating-point
6245 -- types from this assumption was done only in cases where the parent
6246 -- was an assignment, function call or parameter association. Presumably
6247 -- the idea was that in other contexts, the result would be checked
6248 -- elsewhere, but this list of cases was missing tests (at least the
6249 -- N_Object_Declaration case, as shown by a reported missing validity
6250 -- check), and it is not clear why function calls but not procedure
6251 -- calls were tested for. It really seems more accurate and much
6252 -- safer to recognize that expressions which are the result of a
6253 -- floating-point operator can never be assumed to be valid.
6254
6255 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6256 return True;
1d90d657 6257
feff2f05 6258 -- The result of a membership test is always valid, since it is true or
6259 -- false, there are no other possibilities.
0577b0b1 6260
6261 elsif Nkind (Expr) in N_Membership_Test then
6262 return True;
6263
ee6ba406 6264 -- For all other cases, we do not know the expression is valid
6265
6266 else
6267 return False;
6268 end if;
6269 end Expr_Known_Valid;
6270
9dfe12ae 6271 ----------------
6272 -- Find_Check --
6273 ----------------
6274
6275 procedure Find_Check
6276 (Expr : Node_Id;
6277 Check_Type : Character;
6278 Target_Type : Entity_Id;
6279 Entry_OK : out Boolean;
6280 Check_Num : out Nat;
6281 Ent : out Entity_Id;
6282 Ofs : out Uint)
6283 is
6284 function Within_Range_Of
6285 (Target_Type : Entity_Id;
314a23b6 6286 Check_Type : Entity_Id) return Boolean;
9dfe12ae 6287 -- Given a requirement for checking a range against Target_Type, and
6288 -- and a range Check_Type against which a check has already been made,
6289 -- determines if the check against check type is sufficient to ensure
6290 -- that no check against Target_Type is required.
6291
6292 ---------------------
6293 -- Within_Range_Of --
6294 ---------------------
6295
6296 function Within_Range_Of
6297 (Target_Type : Entity_Id;
314a23b6 6298 Check_Type : Entity_Id) return Boolean
9dfe12ae 6299 is
6300 begin
6301 if Target_Type = Check_Type then
6302 return True;
6303
6304 else
6305 declare
6306 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6307 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6308 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6309 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6310
6311 begin
6312 if (Tlo = Clo
6313 or else (Compile_Time_Known_Value (Tlo)
6314 and then
6315 Compile_Time_Known_Value (Clo)
6316 and then
6317 Expr_Value (Clo) >= Expr_Value (Tlo)))
6318 and then
6319 (Thi = Chi
6320 or else (Compile_Time_Known_Value (Thi)
6321 and then
6322 Compile_Time_Known_Value (Chi)
6323 and then
6324 Expr_Value (Chi) <= Expr_Value (Clo)))
6325 then
6326 return True;
6327 else
6328 return False;
6329 end if;
6330 end;
6331 end if;
6332 end Within_Range_Of;
6333
6334 -- Start of processing for Find_Check
6335
6336 begin
ed195555 6337 -- Establish default, in case no entry is found
9dfe12ae 6338
6339 Check_Num := 0;
6340
6341 -- Case of expression is simple entity reference
6342
6343 if Is_Entity_Name (Expr) then
6344 Ent := Entity (Expr);
6345 Ofs := Uint_0;
6346
6347 -- Case of expression is entity + known constant
6348
6349 elsif Nkind (Expr) = N_Op_Add
6350 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6351 and then Is_Entity_Name (Left_Opnd (Expr))
6352 then
6353 Ent := Entity (Left_Opnd (Expr));
6354 Ofs := Expr_Value (Right_Opnd (Expr));
6355
6356 -- Case of expression is entity - known constant
6357
6358 elsif Nkind (Expr) = N_Op_Subtract
6359 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6360 and then Is_Entity_Name (Left_Opnd (Expr))
6361 then
6362 Ent := Entity (Left_Opnd (Expr));
6363 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6364
6365 -- Any other expression is not of the right form
6366
6367 else
6368 Ent := Empty;
6369 Ofs := Uint_0;
6370 Entry_OK := False;
6371 return;
6372 end if;
6373
feff2f05 6374 -- Come here with expression of appropriate form, check if entity is an
6375 -- appropriate one for our purposes.
9dfe12ae 6376
6377 if (Ekind (Ent) = E_Variable
cc60bd16 6378 or else Is_Constant_Object (Ent))
9dfe12ae 6379 and then not Is_Library_Level_Entity (Ent)
6380 then
6381 Entry_OK := True;
6382 else
6383 Entry_OK := False;
6384 return;
6385 end if;
6386
6387 -- See if there is matching check already
6388
6389 for J in reverse 1 .. Num_Saved_Checks loop
6390 declare
6391 SC : Saved_Check renames Saved_Checks (J);
9dfe12ae 6392 begin
6393 if SC.Killed = False
6394 and then SC.Entity = Ent
6395 and then SC.Offset = Ofs
6396 and then SC.Check_Type = Check_Type
6397 and then Within_Range_Of (Target_Type, SC.Target_Type)
6398 then
6399 Check_Num := J;
6400 return;
6401 end if;
6402 end;
6403 end loop;
6404
6405 -- If we fall through entry was not found
6406
9dfe12ae 6407 return;
6408 end Find_Check;
6409
6410 ---------------------------------
6411 -- Generate_Discriminant_Check --
6412 ---------------------------------
6413
6414 -- Note: the code for this procedure is derived from the
feff2f05 6415 -- Emit_Discriminant_Check Routine in trans.c.
9dfe12ae 6416
6417 procedure Generate_Discriminant_Check (N : Node_Id) is
6418 Loc : constant Source_Ptr := Sloc (N);
6419 Pref : constant Node_Id := Prefix (N);
6420 Sel : constant Node_Id := Selector_Name (N);
6421
6422 Orig_Comp : constant Entity_Id :=
b6341c67 6423 Original_Record_Component (Entity (Sel));
9dfe12ae 6424 -- The original component to be checked
6425
6426 Discr_Fct : constant Entity_Id :=
b6341c67 6427 Discriminant_Checking_Func (Orig_Comp);
9dfe12ae 6428 -- The discriminant checking function
6429
6430 Discr : Entity_Id;
6431 -- One discriminant to be checked in the type
6432
6433 Real_Discr : Entity_Id;
6434 -- Actual discriminant in the call
6435
6436 Pref_Type : Entity_Id;
6437 -- Type of relevant prefix (ignoring private/access stuff)
6438
6439 Args : List_Id;
6440 -- List of arguments for function call
6441
6442 Formal : Entity_Id;
feff2f05 6443 -- Keep track of the formal corresponding to the actual we build for
6444 -- each discriminant, in order to be able to perform the necessary type
6445 -- conversions.
9dfe12ae 6446
6447 Scomp : Node_Id;
6448 -- Selected component reference for checking function argument
6449
6450 begin
6451 Pref_Type := Etype (Pref);
6452
6453 -- Force evaluation of the prefix, so that it does not get evaluated
6454 -- twice (once for the check, once for the actual reference). Such a
20cf157b 6455 -- double evaluation is always a potential source of inefficiency, and
6456 -- is functionally incorrect in the volatile case, or when the prefix
f9906591 6457 -- may have side effects. A nonvolatile entity or a component of a
6458 -- nonvolatile entity requires no evaluation.
9dfe12ae 6459
6460 if Is_Entity_Name (Pref) then
6461 if Treat_As_Volatile (Entity (Pref)) then
6462 Force_Evaluation (Pref, Name_Req => True);
6463 end if;
6464
6465 elsif Treat_As_Volatile (Etype (Pref)) then
20cf157b 6466 Force_Evaluation (Pref, Name_Req => True);
9dfe12ae 6467
6468 elsif Nkind (Pref) = N_Selected_Component
6469 and then Is_Entity_Name (Prefix (Pref))
6470 then
6471 null;
6472
6473 else
6474 Force_Evaluation (Pref, Name_Req => True);
6475 end if;
6476
6477 -- For a tagged type, use the scope of the original component to
6478 -- obtain the type, because ???
6479
6480 if Is_Tagged_Type (Scope (Orig_Comp)) then
6481 Pref_Type := Scope (Orig_Comp);
6482
feff2f05 6483 -- For an untagged derived type, use the discriminants of the parent
6484 -- which have been renamed in the derivation, possibly by a one-to-many
d1a2e31b 6485 -- discriminant constraint. For untagged type, initially get the Etype
feff2f05 6486 -- of the prefix
9dfe12ae 6487
6488 else
6489 if Is_Derived_Type (Pref_Type)
6490 and then Number_Discriminants (Pref_Type) /=
6491 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6492 then
6493 Pref_Type := Etype (Base_Type (Pref_Type));
6494 end if;
6495 end if;
6496
6497 -- We definitely should have a checking function, This routine should
6498 -- not be called if no discriminant checking function is present.
6499
6500 pragma Assert (Present (Discr_Fct));
6501
6502 -- Create the list of the actual parameters for the call. This list
6503 -- is the list of the discriminant fields of the record expression to
6504 -- be discriminant checked.
6505
6506 Args := New_List;
6507 Formal := First_Formal (Discr_Fct);
6508 Discr := First_Discriminant (Pref_Type);
6509 while Present (Discr) loop
6510
6511 -- If we have a corresponding discriminant field, and a parent
6512 -- subtype is present, then we want to use the corresponding
6513 -- discriminant since this is the one with the useful value.
6514
6515 if Present (Corresponding_Discriminant (Discr))
6516 and then Ekind (Pref_Type) = E_Record_Type
6517 and then Present (Parent_Subtype (Pref_Type))
6518 then
6519 Real_Discr := Corresponding_Discriminant (Discr);
6520 else
6521 Real_Discr := Discr;
6522 end if;
6523
6524 -- Construct the reference to the discriminant
6525
6526 Scomp :=
6527 Make_Selected_Component (Loc,
6528 Prefix =>
6529 Unchecked_Convert_To (Pref_Type,
6530 Duplicate_Subexpr (Pref)),
6531 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6532
6533 -- Manually analyze and resolve this selected component. We really
6534 -- want it just as it appears above, and do not want the expander
feff2f05 6535 -- playing discriminal games etc with this reference. Then we append
6536 -- the argument to the list we are gathering.
9dfe12ae 6537
6538 Set_Etype (Scomp, Etype (Real_Discr));
6539 Set_Analyzed (Scomp, True);
6540 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6541
6542 Next_Formal_With_Extras (Formal);
6543 Next_Discriminant (Discr);
6544 end loop;
6545
6546 -- Now build and insert the call
6547
6548 Insert_Action (N,
6549 Make_Raise_Constraint_Error (Loc,
6550 Condition =>
6551 Make_Function_Call (Loc,
20cf157b 6552 Name => New_Occurrence_Of (Discr_Fct, Loc),
9dfe12ae 6553 Parameter_Associations => Args),
6554 Reason => CE_Discriminant_Check_Failed));
6555 end Generate_Discriminant_Check;
6556
5c99c290 6557 ---------------------------
6558 -- Generate_Index_Checks --
6559 ---------------------------
9dfe12ae 6560
6561 procedure Generate_Index_Checks (N : Node_Id) is
05f3e139 6562
6563 function Entity_Of_Prefix return Entity_Id;
6564 -- Returns the entity of the prefix of N (or Empty if not found)
6565
3f42e2a7 6566 ----------------------
6567 -- Entity_Of_Prefix --
6568 ----------------------
6569
05f3e139 6570 function Entity_Of_Prefix return Entity_Id is
e5d38095 6571 P : Node_Id;
6572
05f3e139 6573 begin
e5d38095 6574 P := Prefix (N);
05f3e139 6575 while not Is_Entity_Name (P) loop
6576 if not Nkind_In (P, N_Selected_Component,
6577 N_Indexed_Component)
6578 then
6579 return Empty;
6580 end if;
6581
6582 P := Prefix (P);
6583 end loop;
6584
6585 return Entity (P);
6586 end Entity_Of_Prefix;
6587
6588 -- Local variables
6589
6590 Loc : constant Source_Ptr := Sloc (N);
6591 A : constant Node_Id := Prefix (N);
6592 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6593 Sub : Node_Id;
9dfe12ae 6594
3f42e2a7 6595 -- Start of processing for Generate_Index_Checks
6596
9dfe12ae 6597 begin
05f3e139 6598 -- Ignore call if the prefix is not an array since we have a serious
6599 -- error in the sources. Ignore it also if index checks are suppressed
6600 -- for array object or type.
0577b0b1 6601
05f3e139 6602 if not Is_Array_Type (Etype (A))
20cf157b 6603 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
0577b0b1 6604 or else Index_Checks_Suppressed (Etype (A))
6605 then
6606 return;
df9fba45 6607
6608 -- The indexed component we are dealing with contains 'Loop_Entry in its
6609 -- prefix. This case arises when analysis has determined that constructs
6610 -- such as
6611
6612 -- Prefix'Loop_Entry (Expr)
6613 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6614
6615 -- require rewriting for error detection purposes. A side effect of this
6616 -- action is the generation of index checks that mention 'Loop_Entry.
6617 -- Delay the generation of the check until 'Loop_Entry has been properly
6618 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6619
6620 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6621 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6622 then
6623 return;
0577b0b1 6624 end if;
6625
05f3e139 6626 -- Generate a raise of constraint error with the appropriate reason and
6627 -- a condition of the form:
6628
3f42e2a7 6629 -- Base_Type (Sub) not in Array'Range (Subscript)
05f3e139 6630
6631 -- Note that the reason we generate the conversion to the base type here
6632 -- is that we definitely want the range check to take place, even if it
6633 -- looks like the subtype is OK. Optimization considerations that allow
6634 -- us to omit the check have already been taken into account in the
6635 -- setting of the Do_Range_Check flag earlier on.
0577b0b1 6636
9dfe12ae 6637 Sub := First (Expressions (N));
05f3e139 6638
6639 -- Handle string literals
6640
6641 if Ekind (Etype (A)) = E_String_Literal_Subtype then
9dfe12ae 6642 if Do_Range_Check (Sub) then
6643 Set_Do_Range_Check (Sub, False);
6644
05f3e139 6645 -- For string literals we obtain the bounds of the string from the
6646 -- associated subtype.
9dfe12ae 6647
05f3e139 6648 Insert_Action (N,
094ed68e 6649 Make_Raise_Constraint_Error (Loc,
6650 Condition =>
6651 Make_Not_In (Loc,
6652 Left_Opnd =>
6653 Convert_To (Base_Type (Etype (Sub)),
6654 Duplicate_Subexpr_Move_Checks (Sub)),
6655 Right_Opnd =>
6656 Make_Attribute_Reference (Loc,
83c6c069 6657 Prefix => New_Occurrence_Of (Etype (A), Loc),
094ed68e 6658 Attribute_Name => Name_Range)),
6659 Reason => CE_Index_Check_Failed));
05f3e139 6660 end if;
9dfe12ae 6661
05f3e139 6662 -- General case
9dfe12ae 6663
05f3e139 6664 else
6665 declare
6666 A_Idx : Node_Id := Empty;
6667 A_Range : Node_Id;
6668 Ind : Nat;
6669 Num : List_Id;
6670 Range_N : Node_Id;
9dfe12ae 6671
05f3e139 6672 begin
6673 A_Idx := First_Index (Etype (A));
6674 Ind := 1;
6675 while Present (Sub) loop
6676 if Do_Range_Check (Sub) then
6677 Set_Do_Range_Check (Sub, False);
9dfe12ae 6678
05f3e139 6679 -- Force evaluation except for the case of a simple name of
f9906591 6680 -- a nonvolatile entity.
9dfe12ae 6681
05f3e139 6682 if not Is_Entity_Name (Sub)
6683 or else Treat_As_Volatile (Entity (Sub))
6684 then
6685 Force_Evaluation (Sub);
6686 end if;
9dfe12ae 6687
05f3e139 6688 if Nkind (A_Idx) = N_Range then
6689 A_Range := A_Idx;
6690
6691 elsif Nkind (A_Idx) = N_Identifier
6692 or else Nkind (A_Idx) = N_Expanded_Name
6693 then
6694 A_Range := Scalar_Range (Entity (A_Idx));
6695
6696 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6697 A_Range := Range_Expression (Constraint (A_Idx));
6698 end if;
6699
6700 -- For array objects with constant bounds we can generate
6701 -- the index check using the bounds of the type of the index
6702
6703 if Present (A_Ent)
6704 and then Ekind (A_Ent) = E_Variable
6705 and then Is_Constant_Bound (Low_Bound (A_Range))
6706 and then Is_Constant_Bound (High_Bound (A_Range))
6707 then
6708 Range_N :=
6709 Make_Attribute_Reference (Loc,
3f42e2a7 6710 Prefix =>
83c6c069 6711 New_Occurrence_Of (Etype (A_Idx), Loc),
05f3e139 6712 Attribute_Name => Name_Range);
6713
6714 -- For arrays with non-constant bounds we cannot generate
6715 -- the index check using the bounds of the type of the index
6716 -- since it may reference discriminants of some enclosing
6717 -- type. We obtain the bounds directly from the prefix
6718 -- object.
6719
6720 else
6721 if Ind = 1 then
6722 Num := No_List;
6723 else
6724 Num := New_List (Make_Integer_Literal (Loc, Ind));
6725 end if;
6726
6727 Range_N :=
6728 Make_Attribute_Reference (Loc,
6729 Prefix =>
6730 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6731 Attribute_Name => Name_Range,
6732 Expressions => Num);
6733 end if;
6734
6735 Insert_Action (N,
094ed68e 6736 Make_Raise_Constraint_Error (Loc,
6737 Condition =>
6738 Make_Not_In (Loc,
6739 Left_Opnd =>
6740 Convert_To (Base_Type (Etype (Sub)),
6741 Duplicate_Subexpr_Move_Checks (Sub)),
6742 Right_Opnd => Range_N),
6743 Reason => CE_Index_Check_Failed));
05f3e139 6744 end if;
6745
6746 A_Idx := Next_Index (A_Idx);
6747 Ind := Ind + 1;
6748 Next (Sub);
6749 end loop;
6750 end;
6751 end if;
9dfe12ae 6752 end Generate_Index_Checks;
6753
6754 --------------------------
6755 -- Generate_Range_Check --
6756 --------------------------
6757
6758 procedure Generate_Range_Check
6759 (N : Node_Id;
6760 Target_Type : Entity_Id;
6761 Reason : RT_Exception_Code)
6762 is
6763 Loc : constant Source_Ptr := Sloc (N);
6764 Source_Type : constant Entity_Id := Etype (N);
6765 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6766 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6767
1f5d83cf 6768 procedure Convert_And_Check_Range;
6769 -- Convert the conversion operand to the target base type and save in
6770 -- a temporary. Then check the converted value against the range of the
6771 -- target subtype.
6772
124f1911 6773 -----------------------------
6774 -- Convert_And_Check_Range --
6775 -----------------------------
1f5d83cf 6776
124f1911 6777 procedure Convert_And_Check_Range is
cdfda0e3 6778 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6779 Conv_Node : Node_Id;
1f5d83cf 6780
124f1911 6781 begin
cdfda0e3 6782 -- For enumeration types with non-standard representation this is a
6783 -- direct conversion from the enumeration type to the target integer
6784 -- type, which is treated by the back end as a normal integer type
6785 -- conversion, treating the enumeration type as an integer, which is
6786 -- exactly what we want. We set Conversion_OK to make sure that the
6787 -- analyzer does not complain about what otherwise might be an
6788 -- illegal conversion.
6789
6790 if Is_Enumeration_Type (Source_Base_Type)
6791 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
6792 and then Is_Integer_Type (Target_Base_Type)
6793 then
6794 Conv_Node :=
96cb18c0 6795 OK_Convert_To
6796 (Typ => Target_Base_Type,
6797 Expr => Duplicate_Subexpr (N));
cdfda0e3 6798
6799 -- Common case
6800
6801 else
6802 Conv_Node :=
6803 Make_Type_Conversion (Loc,
6804 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6805 Expression => Duplicate_Subexpr (N));
6806 end if;
6807
124f1911 6808 -- We make a temporary to hold the value of the converted value
6809 -- (converted to the base type), and then do the test against this
6810 -- temporary. The conversion itself is replaced by an occurrence of
6811 -- Tnn and followed by the explicit range check. Note that checks
6812 -- are suppressed for this code, since we don't want a recursive
1f5d83cf 6813 -- range check popping up.
6814
124f1911 6815 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6816 -- [constraint_error when Tnn not in Target_Type]
6817
1f5d83cf 6818 Insert_Actions (N, New_List (
6819 Make_Object_Declaration (Loc,
6820 Defining_Identifier => Tnn,
6821 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6822 Constant_Present => True,
cdfda0e3 6823 Expression => Conv_Node),
1f5d83cf 6824
6825 Make_Raise_Constraint_Error (Loc,
6826 Condition =>
6827 Make_Not_In (Loc,
6828 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6829 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6830 Reason => Reason)),
6831 Suppress => All_Checks);
6832
6833 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6834
6835 -- Set the type of N, because the declaration for Tnn might not
6836 -- be analyzed yet, as is the case if N appears within a record
6837 -- declaration, as a discriminant constraint or expression.
6838
6839 Set_Etype (N, Target_Base_Type);
6840 end Convert_And_Check_Range;
6841
6842 -- Start of processing for Generate_Range_Check
6843
9dfe12ae 6844 begin
feff2f05 6845 -- First special case, if the source type is already within the range
6846 -- of the target type, then no check is needed (probably we should have
6847 -- stopped Do_Range_Check from being set in the first place, but better
cda40848 6848 -- late than never in preventing junk code and junk flag settings.
9dfe12ae 6849
7a1dabb3 6850 if In_Subrange_Of (Source_Type, Target_Type)
b40670e1 6851
6852 -- We do NOT apply this if the source node is a literal, since in this
6853 -- case the literal has already been labeled as having the subtype of
6854 -- the target.
6855
9dfe12ae 6856 and then not
b40670e1 6857 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
9dfe12ae 6858 or else
b40670e1 6859 (Is_Entity_Name (N)
6860 and then Ekind (Entity (N)) = E_Enumeration_Literal))
9dfe12ae 6861 then
cda40848 6862 Set_Do_Range_Check (N, False);
9dfe12ae 6863 return;
6864 end if;
6865
cda40848 6866 -- Here a check is needed. If the expander is not active, or if we are
6867 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6868 -- are done. In both these cases, we just want to see the range check
6869 -- flag set, we do not want to generate the explicit range check code.
6870
6871 if GNATprove_Mode or else not Expander_Active then
6872 Set_Do_Range_Check (N, True);
6873 return;
6874 end if;
6875
6876 -- Here we will generate an explicit range check, so we don't want to
6877 -- set the Do_Range check flag, since the range check is taken care of
6878 -- by the code we will generate.
6879
6880 Set_Do_Range_Check (N, False);
6881
6882 -- Force evaluation of the node, so that it does not get evaluated twice
6883 -- (once for the check, once for the actual reference). Such a double
6884 -- evaluation is always a potential source of inefficiency, and is
6885 -- functionally incorrect in the volatile case.
9dfe12ae 6886
f47b9548 6887 -- We skip the evaluation of attribute references because, after these
6888 -- runtime checks are generated, the expander may need to rewrite this
6889 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6890 -- Expand_N_Attribute_Reference).
6891
6892 if Nkind (N) /= N_Attribute_Reference
6893 and then (not Is_Entity_Name (N)
ca09bfdb 6894 or else Treat_As_Volatile (Entity (N)))
f47b9548 6895 then
6896 Force_Evaluation (N, Mode => Strict);
9dfe12ae 6897 end if;
6898
feff2f05 6899 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6900 -- the same since in this case we can simply do a direct check of the
6901 -- value of N against the bounds of Target_Type.
9dfe12ae 6902
6903 -- [constraint_error when N not in Target_Type]
6904
6905 -- Note: this is by far the most common case, for example all cases of
6906 -- checks on the RHS of assignments are in this category, but not all
6907 -- cases are like this. Notably conversions can involve two types.
6908
6909 if Source_Base_Type = Target_Base_Type then
99ed4b4c 6910
6911 -- Insert the explicit range check. Note that we suppress checks for
6912 -- this code, since we don't want a recursive range check popping up.
6913
9dfe12ae 6914 Insert_Action (N,
6915 Make_Raise_Constraint_Error (Loc,
6916 Condition =>
6917 Make_Not_In (Loc,
6918 Left_Opnd => Duplicate_Subexpr (N),
6919 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
99ed4b4c 6920 Reason => Reason),
6921 Suppress => All_Checks);
9dfe12ae 6922
6923 -- Next test for the case where the target type is within the bounds
6924 -- of the base type of the source type, since in this case we can
6925 -- simply convert these bounds to the base type of T to do the test.
6926
6927 -- [constraint_error when N not in
6928 -- Source_Base_Type (Target_Type'First)
6929 -- ..
6930 -- Source_Base_Type(Target_Type'Last))]
6931
f2a06be9 6932 -- The conversions will always work and need no check
9dfe12ae 6933
a9b57347 6934 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6935 -- of converting from an enumeration value to an integer type, such as
6936 -- occurs for the case of generating a range check on Enum'Val(Exp)
6937 -- (which used to be handled by gigi). This is OK, since the conversion
6938 -- itself does not require a check.
6939
7a1dabb3 6940 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
99ed4b4c 6941
6942 -- Insert the explicit range check. Note that we suppress checks for
6943 -- this code, since we don't want a recursive range check popping up.
6944
1f5d83cf 6945 if Is_Discrete_Type (Source_Base_Type)
6946 and then
6947 Is_Discrete_Type (Target_Base_Type)
6948 then
6949 Insert_Action (N,
6950 Make_Raise_Constraint_Error (Loc,
6951 Condition =>
6952 Make_Not_In (Loc,
6953 Left_Opnd => Duplicate_Subexpr (N),
6954
6955 Right_Opnd =>
6956 Make_Range (Loc,
6957 Low_Bound =>
6958 Unchecked_Convert_To (Source_Base_Type,
6959 Make_Attribute_Reference (Loc,
6960 Prefix =>
6961 New_Occurrence_Of (Target_Type, Loc),
6962 Attribute_Name => Name_First)),
6963
6964 High_Bound =>
6965 Unchecked_Convert_To (Source_Base_Type,
6966 Make_Attribute_Reference (Loc,
6967 Prefix =>
6968 New_Occurrence_Of (Target_Type, Loc),
6969 Attribute_Name => Name_Last)))),
6970 Reason => Reason),
6971 Suppress => All_Checks);
9dfe12ae 6972
1f5d83cf 6973 -- For conversions involving at least one type that is not discrete,
6974 -- first convert to target type and then generate the range check.
6975 -- This avoids problems with values that are close to a bound of the
6976 -- target type that would fail a range check when done in a larger
6977 -- source type before converting but would pass if converted with
6978 -- rounding and then checked (such as in float-to-float conversions).
6979
6980 else
6981 Convert_And_Check_Range;
6982 end if;
9dfe12ae 6983
feff2f05 6984 -- Note that at this stage we now that the Target_Base_Type is not in
6985 -- the range of the Source_Base_Type (since even the Target_Type itself
6986 -- is not in this range). It could still be the case that Source_Type is
6987 -- in range of the target base type since we have not checked that case.
9dfe12ae 6988
feff2f05 6989 -- If that is the case, we can freely convert the source to the target,
6990 -- and then test the target result against the bounds.
9dfe12ae 6991
7a1dabb3 6992 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
1f5d83cf 6993 Convert_And_Check_Range;
9dfe12ae 6994
6995 -- At this stage, we know that we have two scalar types, which are
6996 -- directly convertible, and where neither scalar type has a base
6997 -- range that is in the range of the other scalar type.
6998
6999 -- The only way this can happen is with a signed and unsigned type.
7000 -- So test for these two cases:
7001
7002 else
7003 -- Case of the source is unsigned and the target is signed
7004
7005 if Is_Unsigned_Type (Source_Base_Type)
7006 and then not Is_Unsigned_Type (Target_Base_Type)
7007 then
7008 -- If the source is unsigned and the target is signed, then we
7009 -- know that the source is not shorter than the target (otherwise
7010 -- the source base type would be in the target base type range).
7011
feff2f05 7012 -- In other words, the unsigned type is either the same size as
7013 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 7014
7015 pragma Assert
7016 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7017
7018 -- We only need to check the low bound if the low bound of the
7019 -- target type is non-negative. If the low bound of the target
7020 -- type is negative, then we know that we will fit fine.
7021
7022 -- If the high bound of the target type is negative, then we
7023 -- know we have a constraint error, since we can't possibly
7024 -- have a negative source.
7025
7026 -- With these two checks out of the way, we can do the check
7027 -- using the source type safely
7028
39a0c1d3 7029 -- This is definitely the most annoying case.
9dfe12ae 7030
7031 -- [constraint_error
7032 -- when (Target_Type'First >= 0
7033 -- and then
7034 -- N < Source_Base_Type (Target_Type'First))
7035 -- or else Target_Type'Last < 0
7036 -- or else N > Source_Base_Type (Target_Type'Last)];
7037
7038 -- We turn off all checks since we know that the conversions
7039 -- will work fine, given the guards for negative values.
7040
7041 Insert_Action (N,
7042 Make_Raise_Constraint_Error (Loc,
7043 Condition =>
7044 Make_Or_Else (Loc,
7045 Make_Or_Else (Loc,
7046 Left_Opnd =>
7047 Make_And_Then (Loc,
7048 Left_Opnd => Make_Op_Ge (Loc,
7049 Left_Opnd =>
7050 Make_Attribute_Reference (Loc,
7051 Prefix =>
7052 New_Occurrence_Of (Target_Type, Loc),
7053 Attribute_Name => Name_First),
7054 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7055
7056 Right_Opnd =>
7057 Make_Op_Lt (Loc,
7058 Left_Opnd => Duplicate_Subexpr (N),
7059 Right_Opnd =>
7060 Convert_To (Source_Base_Type,
7061 Make_Attribute_Reference (Loc,
7062 Prefix =>
7063 New_Occurrence_Of (Target_Type, Loc),
7064 Attribute_Name => Name_First)))),
7065
7066 Right_Opnd =>
7067 Make_Op_Lt (Loc,
7068 Left_Opnd =>
7069 Make_Attribute_Reference (Loc,
7070 Prefix => New_Occurrence_Of (Target_Type, Loc),
7071 Attribute_Name => Name_Last),
7072 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7073
7074 Right_Opnd =>
7075 Make_Op_Gt (Loc,
7076 Left_Opnd => Duplicate_Subexpr (N),
7077 Right_Opnd =>
7078 Convert_To (Source_Base_Type,
7079 Make_Attribute_Reference (Loc,
7080 Prefix => New_Occurrence_Of (Target_Type, Loc),
7081 Attribute_Name => Name_Last)))),
7082
7083 Reason => Reason),
7084 Suppress => All_Checks);
7085
7086 -- Only remaining possibility is that the source is signed and
fc75802a 7087 -- the target is unsigned.
9dfe12ae 7088
7089 else
7090 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
20cf157b 7091 and then Is_Unsigned_Type (Target_Base_Type));
9dfe12ae 7092
feff2f05 7093 -- If the source is signed and the target is unsigned, then we
7094 -- know that the target is not shorter than the source (otherwise
7095 -- the target base type would be in the source base type range).
9dfe12ae 7096
feff2f05 7097 -- In other words, the unsigned type is either the same size as
7098 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 7099
feff2f05 7100 -- Clearly we have an error if the source value is negative since
7101 -- no unsigned type can have negative values. If the source type
7102 -- is non-negative, then the check can be done using the target
7103 -- type.
9dfe12ae 7104
7105 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7106
7107 -- [constraint_error
7108 -- when N < 0 or else Tnn not in Target_Type];
7109
feff2f05 7110 -- We turn off all checks for the conversion of N to the target
7111 -- base type, since we generate the explicit check to ensure that
7112 -- the value is non-negative
9dfe12ae 7113
7114 declare
46eb6933 7115 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 7116
7117 begin
7118 Insert_Actions (N, New_List (
7119 Make_Object_Declaration (Loc,
7120 Defining_Identifier => Tnn,
7121 Object_Definition =>
7122 New_Occurrence_Of (Target_Base_Type, Loc),
7123 Constant_Present => True,
7124 Expression =>
a9b57347 7125 Make_Unchecked_Type_Conversion (Loc,
9dfe12ae 7126 Subtype_Mark =>
7127 New_Occurrence_Of (Target_Base_Type, Loc),
7128 Expression => Duplicate_Subexpr (N))),
7129
7130 Make_Raise_Constraint_Error (Loc,
7131 Condition =>
7132 Make_Or_Else (Loc,
7133 Left_Opnd =>
7134 Make_Op_Lt (Loc,
7135 Left_Opnd => Duplicate_Subexpr (N),
7136 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7137
7138 Right_Opnd =>
7139 Make_Not_In (Loc,
7140 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7141 Right_Opnd =>
7142 New_Occurrence_Of (Target_Type, Loc))),
7143
20cf157b 7144 Reason => Reason)),
9dfe12ae 7145 Suppress => All_Checks);
7146
feff2f05 7147 -- Set the Etype explicitly, because Insert_Actions may have
7148 -- placed the declaration in the freeze list for an enclosing
7149 -- construct, and thus it is not analyzed yet.
9dfe12ae 7150
7151 Set_Etype (Tnn, Target_Base_Type);
7152 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7153 end;
7154 end if;
7155 end if;
7156 end Generate_Range_Check;
7157
2af58f67 7158 ------------------
7159 -- Get_Check_Id --
7160 ------------------
7161
7162 function Get_Check_Id (N : Name_Id) return Check_Id is
7163 begin
7164 -- For standard check name, we can do a direct computation
7165
7166 if N in First_Check_Name .. Last_Check_Name then
7167 return Check_Id (N - (First_Check_Name - 1));
7168
7169 -- For non-standard names added by pragma Check_Name, search table
7170
7171 else
7172 for J in All_Checks + 1 .. Check_Names.Last loop
7173 if Check_Names.Table (J) = N then
7174 return J;
7175 end if;
7176 end loop;
7177 end if;
7178
7179 -- No matching name found
7180
7181 return No_Check_Id;
7182 end Get_Check_Id;
7183
ee6ba406 7184 ---------------------
7185 -- Get_Discriminal --
7186 ---------------------
7187
7188 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7189 Loc : constant Source_Ptr := Sloc (E);
7190 D : Entity_Id;
7191 Sc : Entity_Id;
7192
7193 begin
0577b0b1 7194 -- The bound can be a bona fide parameter of a protected operation,
7195 -- rather than a prival encoded as an in-parameter.
7196
7197 if No (Discriminal_Link (Entity (Bound))) then
7198 return Bound;
7199 end if;
7200
2af58f67 7201 -- Climb the scope stack looking for an enclosing protected type. If
7202 -- we run out of scopes, return the bound itself.
7203
7204 Sc := Scope (E);
7205 while Present (Sc) loop
7206 if Sc = Standard_Standard then
7207 return Bound;
2af58f67 7208 elsif Ekind (Sc) = E_Protected_Type then
7209 exit;
7210 end if;
7211
7212 Sc := Scope (Sc);
7213 end loop;
7214
ee6ba406 7215 D := First_Discriminant (Sc);
2af58f67 7216 while Present (D) loop
7217 if Chars (D) = Chars (Bound) then
7218 return New_Occurrence_Of (Discriminal (D), Loc);
7219 end if;
ee6ba406 7220
ee6ba406 7221 Next_Discriminant (D);
7222 end loop;
7223
2af58f67 7224 return Bound;
ee6ba406 7225 end Get_Discriminal;
7226
2af58f67 7227 ----------------------
7228 -- Get_Range_Checks --
7229 ----------------------
7230
7231 function Get_Range_Checks
7232 (Ck_Node : Node_Id;
7233 Target_Typ : Entity_Id;
7234 Source_Typ : Entity_Id := Empty;
7235 Warn_Node : Node_Id := Empty) return Check_Result
7236 is
7237 begin
20cf157b 7238 return
7239 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
2af58f67 7240 end Get_Range_Checks;
7241
ee6ba406 7242 ------------------
7243 -- Guard_Access --
7244 ------------------
7245
7246 function Guard_Access
7247 (Cond : Node_Id;
7248 Loc : Source_Ptr;
314a23b6 7249 Ck_Node : Node_Id) return Node_Id
ee6ba406 7250 is
7251 begin
7252 if Nkind (Cond) = N_Or_Else then
7253 Set_Paren_Count (Cond, 1);
7254 end if;
7255
7256 if Nkind (Ck_Node) = N_Allocator then
7257 return Cond;
20cf157b 7258
ee6ba406 7259 else
7260 return
7261 Make_And_Then (Loc,
7262 Left_Opnd =>
7263 Make_Op_Ne (Loc,
9dfe12ae 7264 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
ee6ba406 7265 Right_Opnd => Make_Null (Loc)),
7266 Right_Opnd => Cond);
7267 end if;
7268 end Guard_Access;
7269
7270 -----------------------------
7271 -- Index_Checks_Suppressed --
7272 -----------------------------
7273
7274 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7275 begin
9dfe12ae 7276 if Present (E) and then Checks_May_Be_Suppressed (E) then
7277 return Is_Check_Suppressed (E, Index_Check);
7278 else
fafc6b97 7279 return Scope_Suppress.Suppress (Index_Check);
9dfe12ae 7280 end if;
ee6ba406 7281 end Index_Checks_Suppressed;
7282
7283 ----------------
7284 -- Initialize --
7285 ----------------
7286
7287 procedure Initialize is
7288 begin
7289 for J in Determine_Range_Cache_N'Range loop
7290 Determine_Range_Cache_N (J) := Empty;
7291 end loop;
2af58f67 7292
7293 Check_Names.Init;
7294
7295 for J in Int range 1 .. All_Checks loop
7296 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7297 end loop;
ee6ba406 7298 end Initialize;
7299
7300 -------------------------
7301 -- Insert_Range_Checks --
7302 -------------------------
7303
7304 procedure Insert_Range_Checks
7305 (Checks : Check_Result;
7306 Node : Node_Id;
7307 Suppress_Typ : Entity_Id;
7308 Static_Sloc : Source_Ptr := No_Location;
7309 Flag_Node : Node_Id := Empty;
7310 Do_Before : Boolean := False)
7311 is
2b4f2458 7312 Checks_On : constant Boolean :=
7313 not Index_Checks_Suppressed (Suppress_Typ)
7314 or else
7315 not Range_Checks_Suppressed (Suppress_Typ);
7316
7317 Check_Node : Node_Id;
ee6ba406 7318 Internal_Flag_Node : Node_Id := Flag_Node;
7319 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7320
ee6ba406 7321 begin
feff2f05 7322 -- For now we just return if Checks_On is false, however this should be
7323 -- enhanced to check for an always True value in the condition and to
7324 -- generate a compilation warning???
ee6ba406 7325
ac9184ed 7326 if not Expander_Active or not Checks_On then
ee6ba406 7327 return;
7328 end if;
7329
7330 if Static_Sloc = No_Location then
7331 Internal_Static_Sloc := Sloc (Node);
7332 end if;
7333
7334 if No (Flag_Node) then
7335 Internal_Flag_Node := Node;
7336 end if;
7337
7338 for J in 1 .. 2 loop
7339 exit when No (Checks (J));
7340
7341 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7342 and then Present (Condition (Checks (J)))
7343 then
7344 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7345 Check_Node := Checks (J);
7346 Mark_Rewrite_Insertion (Check_Node);
7347
7348 if Do_Before then
7349 Insert_Before_And_Analyze (Node, Check_Node);
7350 else
7351 Insert_After_And_Analyze (Node, Check_Node);
7352 end if;
7353
7354 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7355 end if;
7356
7357 else
7358 Check_Node :=
f15731c4 7359 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7360 Reason => CE_Range_Check_Failed);
ee6ba406 7361 Mark_Rewrite_Insertion (Check_Node);
7362
7363 if Do_Before then
7364 Insert_Before_And_Analyze (Node, Check_Node);
7365 else
7366 Insert_After_And_Analyze (Node, Check_Node);
7367 end if;
7368 end if;
7369 end loop;
7370 end Insert_Range_Checks;
7371
7372 ------------------------
7373 -- Insert_Valid_Check --
7374 ------------------------
7375
aaec8d13 7376 procedure Insert_Valid_Check
7377 (Expr : Node_Id;
7378 Related_Id : Entity_Id := Empty;
7379 Is_Low_Bound : Boolean := False;
7380 Is_High_Bound : Boolean := False)
7381 is
ee6ba406 7382 Loc : constant Source_Ptr := Sloc (Expr);
70580828 7383 Typ : constant Entity_Id := Etype (Expr);
8b718dab 7384 Exp : Node_Id;
ee6ba406 7385
7386 begin
aaec8d13 7387 -- Do not insert if checks off, or if not checking validity or if
7388 -- expression is known to be valid.
ee6ba406 7389
0577b0b1 7390 if not Validity_Checks_On
7391 or else Range_Or_Validity_Checks_Suppressed (Expr)
06ad5813 7392 or else Expr_Known_Valid (Expr)
ee6ba406 7393 then
8b718dab 7394 return;
ee6ba406 7395
42c57d55 7396 -- Do not insert checks within a predicate function. This will arise
7397 -- if the current unit and the predicate function are being compiled
7398 -- with validity checks enabled.
70580828 7399
89e864b9 7400 elsif Present (Predicate_Function (Typ))
70580828 7401 and then Current_Scope = Predicate_Function (Typ)
7402 then
7403 return;
70580828 7404
310c1cde 7405 -- If the expression is a packed component of a modular type of the
7406 -- right size, the data is always valid.
7407
89e864b9 7408 elsif Nkind (Expr) = N_Selected_Component
310c1cde 7409 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7410 and then Is_Modular_Integer_Type (Typ)
7411 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7412 then
7413 return;
89e864b9 7414
7415 -- Do not generate a validity check when inside a generic unit as this
7416 -- is an expansion activity.
7417
7418 elsif Inside_A_Generic then
7419 return;
310c1cde 7420 end if;
7421
8b718dab 7422 -- If we have a checked conversion, then validity check applies to
7423 -- the expression inside the conversion, not the result, since if
7424 -- the expression inside is valid, then so is the conversion result.
ee6ba406 7425
8b718dab 7426 Exp := Expr;
7427 while Nkind (Exp) = N_Type_Conversion loop
7428 Exp := Expression (Exp);
7429 end loop;
7430
fdb8488b 7431 -- Do not generate a check for a variable which already validates the
7432 -- value of an assignable object.
7433
7434 if Is_Validation_Variable_Reference (Exp) then
7435 return;
7436 end if;
7437
0577b0b1 7438 declare
49adf385 7439 CE : Node_Id;
49adf385 7440 PV : Node_Id;
7441 Var_Id : Entity_Id;
05fcfafb 7442
0577b0b1 7443 begin
fdb8488b 7444 -- If the expression denotes an assignable object, capture its value
7445 -- in a variable and replace the original expression by the variable.
7446 -- This approach has several effects:
06ad5813 7447
fdb8488b 7448 -- 1) The evaluation of the object results in only one read in the
7449 -- case where the object is atomic or volatile.
fa771c05 7450
49adf385 7451 -- Var ... := Object; -- read
fa771c05 7452
fdb8488b 7453 -- 2) The captured value is the one verified by attribute 'Valid.
7454 -- As a result the object is not evaluated again, which would
7455 -- result in an unwanted read in the case where the object is
7456 -- atomic or volatile.
7457
49adf385 7458 -- if not Var'Valid then -- OK, no read of Object
fdb8488b 7459
7460 -- if not Object'Valid then -- Wrong, extra read of Object
7461
7462 -- 3) The captured value replaces the original object reference.
7463 -- As a result the object is not evaluated again, in the same
7464 -- vein as 2).
7465
49adf385 7466 -- ... Var ... -- OK, no read of Object
fdb8488b 7467
7468 -- ... Object ... -- Wrong, extra read of Object
06ad5813 7469
fdb8488b 7470 -- 4) The use of a variable to capture the value of the object
7471 -- allows the propagation of any changes back to the original
7472 -- object.
7473
7474 -- procedure Call (Val : in out ...);
7475
49adf385 7476 -- Var : ... := Object; -- read Object
7477 -- if not Var'Valid then -- validity check
7478 -- Call (Var); -- modify Var
7479 -- Object := Var; -- update Object
fdb8488b 7480
7481 if Is_Variable (Exp) then
49adf385 7482 Var_Id := Make_Temporary (Loc, 'T', Exp);
fdb8488b 7483
4cb8adff 7484 -- Because we could be dealing with a transient scope which would
7485 -- cause our object declaration to remain unanalyzed we must do
7486 -- some manual decoration.
7487
7488 Set_Ekind (Var_Id, E_Variable);
7489 Set_Etype (Var_Id, Typ);
7490
fdb8488b 7491 Insert_Action (Exp,
7492 Make_Object_Declaration (Loc,
49adf385 7493 Defining_Identifier => Var_Id,
fdb8488b 7494 Object_Definition => New_Occurrence_Of (Typ, Loc),
bf5f89dc 7495 Expression => New_Copy_Tree (Exp)),
7496 Suppress => Validity_Check);
7497
7498 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
49adf385 7499 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7500 PV := New_Occurrence_Of (Var_Id, Loc);
fdb8488b 7501
02585eb0 7502 -- Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7503 -- get lost. Floating point types are handled elsewhere.
7504
7505 if not Is_Floating_Point_Type (Typ) then
7506 Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7507 end if;
7508
fdb8488b 7509 -- Otherwise the expression does not denote a variable. Force its
7510 -- evaluation by capturing its value in a constant. Generate:
7511
7512 -- Temp : constant ... := Exp;
7513
7514 else
7515 Force_Evaluation
7516 (Exp => Exp,
7517 Related_Id => Related_Id,
7518 Is_Low_Bound => Is_Low_Bound,
7519 Is_High_Bound => Is_High_Bound);
7520
7521 PV := New_Copy_Tree (Exp);
7522 end if;
0577b0b1 7523
443bdccb 7524 -- A rather specialized test. If PV is an analyzed expression which
7525 -- is an indexed component of a packed array that has not been
7526 -- properly expanded, turn off its Analyzed flag to make sure it
5f46de53 7527 -- gets properly reexpanded. If the prefix is an access value,
7528 -- the dereference will be added later.
23abd64d 7529
7530 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7531 -- an analyze with the old parent pointer. This may point e.g. to
7532 -- a subprogram call, which deactivates this expansion.
7533
7534 if Analyzed (PV)
7535 and then Nkind (PV) = N_Indexed_Component
5f46de53 7536 and then Is_Array_Type (Etype (Prefix (PV)))
a88a5773 7537 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
23abd64d 7538 then
7539 Set_Analyzed (PV, False);
7540 end if;
7541
fa771c05 7542 -- Build the raise CE node to check for validity. We build a type
7543 -- qualification for the prefix, since it may not be of the form of
7544 -- a name, and we don't care in this context!
23abd64d 7545
7546 CE :=
aaec8d13 7547 Make_Raise_Constraint_Error (Loc,
7548 Condition =>
7549 Make_Op_Not (Loc,
7550 Right_Opnd =>
7551 Make_Attribute_Reference (Loc,
7552 Prefix => PV,
7553 Attribute_Name => Name_Valid)),
7554 Reason => CE_Invalid_Data);
23abd64d 7555
7556 -- Insert the validity check. Note that we do this with validity
7557 -- checks turned off, to avoid recursion, we do not want validity
39a0c1d3 7558 -- checks on the validity checking code itself.
23abd64d 7559
7560 Insert_Action (Expr, CE, Suppress => Validity_Check);
0577b0b1 7561
6fb3c314 7562 -- If the expression is a reference to an element of a bit-packed
0577b0b1 7563 -- array, then it is rewritten as a renaming declaration. If the
7564 -- expression is an actual in a call, it has not been expanded,
7565 -- waiting for the proper point at which to do it. The same happens
7566 -- with renamings, so that we have to force the expansion now. This
7567 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7568 -- and exp_ch6.adb.
7569
7570 if Is_Entity_Name (Exp)
7571 and then Nkind (Parent (Entity (Exp))) =
20cf157b 7572 N_Object_Renaming_Declaration
0577b0b1 7573 then
7574 declare
7575 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7576 begin
7577 if Nkind (Old_Exp) = N_Indexed_Component
7578 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7579 then
7580 Expand_Packed_Element_Reference (Old_Exp);
7581 end if;
7582 end;
7583 end if;
0577b0b1 7584 end;
ee6ba406 7585 end Insert_Valid_Check;
7586
3cce7f32 7587 -------------------------------------
7588 -- Is_Signed_Integer_Arithmetic_Op --
7589 -------------------------------------
7590
7591 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7592 begin
7593 case Nkind (N) is
99378362 7594 when N_Op_Abs
7595 | N_Op_Add
7596 | N_Op_Divide
7597 | N_Op_Expon
7598 | N_Op_Minus
7599 | N_Op_Mod
7600 | N_Op_Multiply
7601 | N_Op_Plus
7602 | N_Op_Rem
7603 | N_Op_Subtract
7604 =>
3cce7f32 7605 return Is_Signed_Integer_Type (Etype (N));
7606
99378362 7607 when N_Case_Expression
7608 | N_If_Expression
7609 =>
0326b4d4 7610 return Is_Signed_Integer_Type (Etype (N));
7611
3cce7f32 7612 when others =>
7613 return False;
7614 end case;
7615 end Is_Signed_Integer_Arithmetic_Op;
7616
fa7497e8 7617 ----------------------------------
7618 -- Install_Null_Excluding_Check --
7619 ----------------------------------
7620
7621 procedure Install_Null_Excluding_Check (N : Node_Id) is
9f294c82 7622 Loc : constant Source_Ptr := Sloc (Parent (N));
84d0d4a5 7623 Typ : constant Entity_Id := Etype (N);
7624
7b31b357 7625 function Safe_To_Capture_In_Parameter_Value return Boolean;
7626 -- Determines if it is safe to capture Known_Non_Null status for an
7627 -- the entity referenced by node N. The caller ensures that N is indeed
7628 -- an entity name. It is safe to capture the non-null status for an IN
7629 -- parameter when the reference occurs within a declaration that is sure
7630 -- to be executed as part of the declarative region.
7870823d 7631
84d0d4a5 7632 procedure Mark_Non_Null;
7870823d 7633 -- After installation of check, if the node in question is an entity
7634 -- name, then mark this entity as non-null if possible.
7635
7b31b357 7636 function Safe_To_Capture_In_Parameter_Value return Boolean is
7870823d 7637 E : constant Entity_Id := Entity (N);
7638 S : constant Entity_Id := Current_Scope;
7639 S_Par : Node_Id;
7640
7641 begin
7b31b357 7642 if Ekind (E) /= E_In_Parameter then
7643 return False;
7644 end if;
7870823d 7645
7646 -- Two initial context checks. We must be inside a subprogram body
7647 -- with declarations and reference must not appear in nested scopes.
7648
7b31b357 7649 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7870823d 7650 or else Scope (E) /= S
7651 then
7652 return False;
7653 end if;
7654
7655 S_Par := Parent (Parent (S));
7656
7657 if Nkind (S_Par) /= N_Subprogram_Body
7658 or else No (Declarations (S_Par))
7659 then
7660 return False;
7661 end if;
7662
7663 declare
7664 N_Decl : Node_Id;
7665 P : Node_Id;
7666
7667 begin
7668 -- Retrieve the declaration node of N (if any). Note that N
7669 -- may be a part of a complex initialization expression.
7670
7671 P := Parent (N);
7672 N_Decl := Empty;
7673 while Present (P) loop
7674
7b31b357 7675 -- If we have a short circuit form, and we are within the right
7676 -- hand expression, we return false, since the right hand side
7677 -- is not guaranteed to be elaborated.
7678
7679 if Nkind (P) in N_Short_Circuit
7680 and then N = Right_Opnd (P)
7681 then
7682 return False;
7683 end if;
7684
92f1631f 7685 -- Similarly, if we are in an if expression and not part of the
7686 -- condition, then we return False, since neither the THEN or
7687 -- ELSE dependent expressions will always be elaborated.
7b31b357 7688
92f1631f 7689 if Nkind (P) = N_If_Expression
7b31b357 7690 and then N /= First (Expressions (P))
7691 then
7692 return False;
e977c0cf 7693 end if;
7694
20cf157b 7695 -- If within a case expression, and not part of the expression,
7696 -- then return False, since a particular dependent expression
7697 -- may not always be elaborated
e977c0cf 7698
7699 if Nkind (P) = N_Case_Expression
7700 and then N /= Expression (P)
7701 then
7702 return False;
7b31b357 7703 end if;
7704
20cf157b 7705 -- While traversing the parent chain, if node N belongs to a
7706 -- statement, then it may never appear in a declarative region.
7870823d 7707
7708 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7709 or else Nkind (P) = N_Procedure_Call_Statement
7710 then
7711 return False;
7712 end if;
7713
7b31b357 7714 -- If we are at a declaration, record it and exit
7715
7870823d 7716 if Nkind (P) in N_Declaration
7717 and then Nkind (P) not in N_Subprogram_Specification
7718 then
7719 N_Decl := P;
7720 exit;
7721 end if;
7722
7723 P := Parent (P);
7724 end loop;
7725
7726 if No (N_Decl) then
7727 return False;
7728 end if;
7729
7730 return List_Containing (N_Decl) = Declarations (S_Par);
7731 end;
7b31b357 7732 end Safe_To_Capture_In_Parameter_Value;
84d0d4a5 7733
7734 -------------------
7735 -- Mark_Non_Null --
7736 -------------------
7737
7738 procedure Mark_Non_Null is
7739 begin
7870823d 7740 -- Only case of interest is if node N is an entity name
7741
84d0d4a5 7742 if Is_Entity_Name (N) then
7870823d 7743
7744 -- For sure, we want to clear an indication that this is known to
39a0c1d3 7745 -- be null, since if we get past this check, it definitely is not.
7870823d 7746
84d0d4a5 7747 Set_Is_Known_Null (Entity (N), False);
7748
7870823d 7749 -- We can mark the entity as known to be non-null if either it is
7750 -- safe to capture the value, or in the case of an IN parameter,
7751 -- which is a constant, if the check we just installed is in the
7752 -- declarative region of the subprogram body. In this latter case,
7b31b357 7753 -- a check is decisive for the rest of the body if the expression
7754 -- is sure to be elaborated, since we know we have to elaborate
7755 -- all declarations before executing the body.
7756
7757 -- Couldn't this always be part of Safe_To_Capture_Value ???
7870823d 7758
7759 if Safe_To_Capture_Value (N, Entity (N))
7b31b357 7760 or else Safe_To_Capture_In_Parameter_Value
7870823d 7761 then
7762 Set_Is_Known_Non_Null (Entity (N));
84d0d4a5 7763 end if;
7764 end if;
7765 end Mark_Non_Null;
7766
7767 -- Start of processing for Install_Null_Excluding_Check
fa7497e8 7768
7769 begin
c9bbc06b 7770 -- No need to add null-excluding checks when the tree may not be fully
7771 -- decorated.
7772
7773 if Serious_Errors_Detected > 0 then
7774 return;
7775 end if;
7776
84d0d4a5 7777 pragma Assert (Is_Access_Type (Typ));
fa7497e8 7778
46e32b5e 7779 -- No check inside a generic, check will be emitted in instance
fa7497e8 7780
84d0d4a5 7781 if Inside_A_Generic then
fa7497e8 7782 return;
84d0d4a5 7783 end if;
7784
7785 -- No check needed if known to be non-null
7786
7787 if Known_Non_Null (N) then
05fcfafb 7788 return;
84d0d4a5 7789 end if;
fa7497e8 7790
84d0d4a5 7791 -- If known to be null, here is where we generate a compile time check
7792
7793 if Known_Null (N) then
d16989f1 7794
20cf157b 7795 -- Avoid generating warning message inside init procs. In SPARK mode
7796 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
46e32b5e 7797 -- since it will be turned into an error in any case.
d16989f1 7798
46e32b5e 7799 if (not Inside_Init_Proc or else SPARK_Mode = On)
7800
28d5d68f 7801 -- Do not emit the warning within a conditional expression,
7802 -- where the expression might not be evaluated, and the warning
7803 -- appear as extraneous noise.
46e32b5e 7804
7805 and then not Within_Case_Or_If_Expression (N)
7806 then
d16989f1 7807 Apply_Compile_Time_Constraint_Error
4098232e 7808 (N, "null value not allowed here??", CE_Access_Check_Failed);
46e32b5e 7809
7810 -- Remaining cases, where we silently insert the raise
7811
d16989f1 7812 else
7813 Insert_Action (N,
7814 Make_Raise_Constraint_Error (Loc,
7815 Reason => CE_Access_Check_Failed));
7816 end if;
7817
84d0d4a5 7818 Mark_Non_Null;
7819 return;
7820 end if;
7821
7822 -- If entity is never assigned, for sure a warning is appropriate
7823
7824 if Is_Entity_Name (N) then
7825 Check_Unset_Reference (N);
fa7497e8 7826 end if;
84d0d4a5 7827
7828 -- No check needed if checks are suppressed on the range. Note that we
7829 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7830 -- so, since the program is erroneous, but we don't like to casually
7831 -- propagate such conclusions from erroneosity).
7832
7833 if Access_Checks_Suppressed (Typ) then
7834 return;
7835 end if;
7836
2af58f67 7837 -- No check needed for access to concurrent record types generated by
7838 -- the expander. This is not just an optimization (though it does indeed
7839 -- remove junk checks). It also avoids generation of junk warnings.
7840
7841 if Nkind (N) in N_Has_Chars
7842 and then Chars (N) = Name_uObject
7843 and then Is_Concurrent_Record_Type
7844 (Directly_Designated_Type (Etype (N)))
7845 then
7846 return;
7847 end if;
7848
228836e8 7849 -- No check needed in interface thunks since the runtime check is
7850 -- already performed at the caller side.
7851
7852 if Is_Thunk (Current_Scope) then
7853 return;
7854 end if;
7855
472ea160 7856 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7857 -- the expander within exception handlers, since we know that the value
7858 -- can never be null.
7859
7860 -- Is this really the right way to do this? Normally we generate such
7861 -- code in the expander with checks off, and that's how we suppress this
7862 -- kind of junk check ???
7863
7864 if Nkind (N) = N_Function_Call
7865 and then Nkind (Name (N)) = N_Explicit_Dereference
7866 and then Nkind (Prefix (Name (N))) = N_Identifier
7867 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7868 then
7869 return;
7870 end if;
7871
84d0d4a5 7872 -- Otherwise install access check
7873
7874 Insert_Action (N,
7875 Make_Raise_Constraint_Error (Loc,
7876 Condition =>
7877 Make_Op_Eq (Loc,
7878 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7879 Right_Opnd => Make_Null (Loc)),
7880 Reason => CE_Access_Check_Failed));
7881
7882 Mark_Non_Null;
fa7497e8 7883 end Install_Null_Excluding_Check;
7884
7e933b61 7885 -----------------------------------------
7886 -- Install_Primitive_Elaboration_Check --
7887 -----------------------------------------
7888
7889 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7e933b61 7890 function Within_Compilation_Unit_Instance
7891 (Subp_Id : Entity_Id) return Boolean;
7892 -- Determine whether subprogram Subp_Id appears within an instance which
7893 -- acts as a compilation unit.
7894
7895 --------------------------------------
7896 -- Within_Compilation_Unit_Instance --
7897 --------------------------------------
7898
7899 function Within_Compilation_Unit_Instance
7900 (Subp_Id : Entity_Id) return Boolean
7901 is
7902 Pack : Entity_Id;
7903
7904 begin
7905 -- Examine the scope chain looking for a compilation-unit-level
7906 -- instance.
7907
7908 Pack := Scope (Subp_Id);
7909 while Present (Pack) and then Pack /= Standard_Standard loop
7910 if Ekind (Pack) = E_Package
7911 and then Is_Generic_Instance (Pack)
7912 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7913 N_Compilation_Unit
7914 then
7915 return True;
7916 end if;
7917
7918 Pack := Scope (Pack);
7919 end loop;
7920
7921 return False;
7922 end Within_Compilation_Unit_Instance;
7923
7924 -- Local declarations
7925
7926 Context : constant Node_Id := Parent (Subp_Body);
7927 Loc : constant Source_Ptr := Sloc (Subp_Body);
7928 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
7929 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7930
e2293a63 7931 Decls : List_Id;
7932 Flag_Id : Entity_Id;
7933 Set_Ins : Node_Id;
7934 Set_Stmt : Node_Id;
7935 Tag_Typ : Entity_Id;
7e933b61 7936
7937 -- Start of processing for Install_Primitive_Elaboration_Check
7938
7939 begin
7940 -- Do not generate an elaboration check in compilation modes where
7941 -- expansion is not desirable.
7942
7943 if ASIS_Mode or GNATprove_Mode then
7944 return;
7945
f0e731f2 7946 -- Do not generate an elaboration check if all checks have been
7947 -- suppressed.
62c62e4b 7948
f0e731f2 7949 elsif Suppress_Checks then
62c62e4b 7950 return;
7951
7e933b61 7952 -- Do not generate an elaboration check if the related subprogram is
7953 -- not subjected to accessibility checks.
7954
7955 elsif Elaboration_Checks_Suppressed (Subp_Id) then
7956 return;
f0e731f2 7957
7958 -- Do not generate an elaboration check if such code is not desirable
7959
7960 elsif Restriction_Active (No_Elaboration_Code) then
7961 return;
7e933b61 7962
77b577f9 7963 -- Do not generate an elaboration check if exceptions cannot be used,
7964 -- caught, or propagated.
7965
7966 elsif not Exceptions_OK then
7967 return;
7968
7e933b61 7969 -- Do not consider subprograms which act as compilation units, because
7970 -- they cannot be the target of a dispatching call.
7971
7972 elsif Nkind (Context) = N_Compilation_Unit then
7973 return;
7974
e2293a63 7975 -- Do not consider anything other than nonabstract library-level source
7976 -- primitives.
7e933b61 7977
7978 elsif not
7979 (Comes_From_Source (Subp_Id)
7980 and then Is_Library_Level_Entity (Subp_Id)
7981 and then Is_Primitive (Subp_Id)
7982 and then not Is_Abstract_Subprogram (Subp_Id))
7983 then
7984 return;
7985
7986 -- Do not consider inlined primitives, because once the body is inlined
7987 -- the reference to the elaboration flag will be out of place and will
7988 -- result in an undefined symbol.
7989
7990 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
7991 return;
7992
7993 -- Do not generate a duplicate elaboration check. This happens only in
7994 -- the case of primitives completed by an expression function, as the
7995 -- corresponding body is apparently analyzed and expanded twice.
7996
7997 elsif Analyzed (Subp_Body) then
7998 return;
7999
8000 -- Do not consider primitives which occur within an instance that acts
8001 -- as a compilation unit. Such an instance defines its spec and body out
8002 -- of order (body is first) within the tree, which causes the reference
8003 -- to the elaboration flag to appear as an undefined symbol.
8004
8005 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8006 return;
8007 end if;
8008
8009 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8010
8011 -- Only tagged primitives may be the target of a dispatching call
8012
8013 if No (Tag_Typ) then
8014 return;
8015
8016 -- Do not consider finalization-related primitives, because they may
8017 -- need to be called while elaboration is taking place.
8018
8019 elsif Is_Controlled (Tag_Typ)
8020 and then Nam_In (Chars (Subp_Id), Name_Adjust,
8021 Name_Finalize,
8022 Name_Initialize)
8023 then
8024 return;
8025 end if;
8026
8027 -- Create the declaration of the elaboration flag. The name carries a
8028 -- unique counter in case of name overloading.
8029
8030 Flag_Id :=
8031 Make_Defining_Identifier (Loc,
fe48a434 8032 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7e933b61 8033 Set_Is_Frozen (Flag_Id);
8034
8035 -- Insert the declaration of the elaboration flag in front of the
8036 -- primitive spec and analyze it in the proper context.
8037
8038 Push_Scope (Scope (Subp_Id));
8039
8040 -- Generate:
fe48a434 8041 -- E : Boolean := False;
7e933b61 8042
8043 Insert_Action (Subp_Decl,
8044 Make_Object_Declaration (Loc,
8045 Defining_Identifier => Flag_Id,
8046 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8047 Expression => New_Occurrence_Of (Standard_False, Loc)));
8048 Pop_Scope;
8049
8050 -- Prevent the compiler from optimizing the elaboration check by killing
8051 -- the current value of the flag and the associated assignment.
8052
8053 Set_Current_Value (Flag_Id, Empty);
8054 Set_Last_Assignment (Flag_Id, Empty);
8055
8056 -- Add a check at the top of the body declarations to ensure that the
8057 -- elaboration flag has been set.
8058
8059 Decls := Declarations (Subp_Body);
8060
8061 if No (Decls) then
8062 Decls := New_List;
8063 Set_Declarations (Subp_Body, Decls);
8064 end if;
8065
8066 -- Generate:
8067 -- if not F then
8068 -- raise Program_Error with "access before elaboration";
8069 -- end if;
8070
8071 Prepend_To (Decls,
8072 Make_Raise_Program_Error (Loc,
8073 Condition =>
8074 Make_Op_Not (Loc,
8075 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8076 Reason => PE_Access_Before_Elaboration));
8077
8078 Analyze (First (Decls));
8079
8080 -- Set the elaboration flag once the body has been elaborated. Insert
8081 -- the statement after the subprogram stub when the primitive body is
8082 -- a subunit.
8083
8084 if Nkind (Context) = N_Subunit then
8085 Set_Ins := Corresponding_Stub (Context);
8086 else
8087 Set_Ins := Subp_Body;
8088 end if;
8089
8090 -- Generate:
fe48a434 8091 -- E := True;
7e933b61 8092
e2293a63 8093 Set_Stmt :=
7e933b61 8094 Make_Assignment_Statement (Loc,
8095 Name => New_Occurrence_Of (Flag_Id, Loc),
e2293a63 8096 Expression => New_Occurrence_Of (Standard_True, Loc));
8097
8098 -- Mark the assignment statement as elaboration code. This allows the
8099 -- early call region mechanism (see Sem_Elab) to properly ignore such
8100 -- assignments even though they are non-preelaborable code.
8101
8102 Set_Is_Elaboration_Code (Set_Stmt);
8103
8104 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
7e933b61 8105 end Install_Primitive_Elaboration_Check;
8106
ee6ba406 8107 --------------------------
8108 -- Install_Static_Check --
8109 --------------------------
8110
8111 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
cda40848 8112 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
ee6ba406 8113 Typ : constant Entity_Id := Etype (R_Cno);
8114
8115 begin
f15731c4 8116 Rewrite (R_Cno,
8117 Make_Raise_Constraint_Error (Loc,
8118 Reason => CE_Range_Check_Failed));
ee6ba406 8119 Set_Analyzed (R_Cno);
8120 Set_Etype (R_Cno, Typ);
8121 Set_Raises_Constraint_Error (R_Cno);
8122 Set_Is_Static_Expression (R_Cno, Stat);
840ab274 8123
8124 -- Now deal with possible local raise handling
8125
8126 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
ee6ba406 8127 end Install_Static_Check;
8128
3cce7f32 8129 -------------------------
8130 -- Is_Check_Suppressed --
8131 -------------------------
8132
8133 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8134 Ptr : Suppress_Stack_Entry_Ptr;
8135
8136 begin
8137 -- First search the local entity suppress stack. We search this from the
8138 -- top of the stack down so that we get the innermost entry that applies
8139 -- to this case if there are nested entries.
8140
8141 Ptr := Local_Suppress_Stack_Top;
8142 while Ptr /= null loop
8143 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8144 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8145 then
8146 return Ptr.Suppress;
8147 end if;
8148
8149 Ptr := Ptr.Prev;
8150 end loop;
8151
8152 -- Now search the global entity suppress table for a matching entry.
8153 -- We also search this from the top down so that if there are multiple
8154 -- pragmas for the same entity, the last one applies (not clear what
8155 -- or whether the RM specifies this handling, but it seems reasonable).
8156
8157 Ptr := Global_Suppress_Stack_Top;
8158 while Ptr /= null loop
8159 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8160 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8161 then
8162 return Ptr.Suppress;
8163 end if;
8164
8165 Ptr := Ptr.Prev;
8166 end loop;
8167
8168 -- If we did not find a matching entry, then use the normal scope
8169 -- suppress value after all (actually this will be the global setting
8170 -- since it clearly was not overridden at any point). For a predefined
8171 -- check, we test the specific flag. For a user defined check, we check
8172 -- the All_Checks flag. The Overflow flag requires special handling to
fe48a434 8173 -- deal with the General vs Assertion case.
3cce7f32 8174
8175 if C = Overflow_Check then
8176 return Overflow_Checks_Suppressed (Empty);
fe48a434 8177
3cce7f32 8178 elsif C in Predefined_Check_Id then
8179 return Scope_Suppress.Suppress (C);
fe48a434 8180
3cce7f32 8181 else
8182 return Scope_Suppress.Suppress (All_Checks);
8183 end if;
8184 end Is_Check_Suppressed;
8185
9dfe12ae 8186 ---------------------
8187 -- Kill_All_Checks --
8188 ---------------------
8189
8190 procedure Kill_All_Checks is
8191 begin
8192 if Debug_Flag_CC then
8193 w ("Kill_All_Checks");
8194 end if;
8195
feff2f05 8196 -- We reset the number of saved checks to zero, and also modify all
8197 -- stack entries for statement ranges to indicate that the number of
8198 -- checks at each level is now zero.
9dfe12ae 8199
8200 Num_Saved_Checks := 0;
8201
96da3284 8202 -- Note: the Int'Min here avoids any possibility of J being out of
8203 -- range when called from e.g. Conditional_Statements_Begin.
8204
8205 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
9dfe12ae 8206 Saved_Checks_Stack (J) := 0;
8207 end loop;
8208 end Kill_All_Checks;
8209
8210 -----------------
8211 -- Kill_Checks --
8212 -----------------
8213
8214 procedure Kill_Checks (V : Entity_Id) is
8215 begin
8216 if Debug_Flag_CC then
8217 w ("Kill_Checks for entity", Int (V));
8218 end if;
8219
8220 for J in 1 .. Num_Saved_Checks loop
8221 if Saved_Checks (J).Entity = V then
8222 if Debug_Flag_CC then
8223 w (" Checks killed for saved check ", J);
8224 end if;
8225
8226 Saved_Checks (J).Killed := True;
8227 end if;
8228 end loop;
8229 end Kill_Checks;
8230
ee6ba406 8231 ------------------------------
8232 -- Length_Checks_Suppressed --
8233 ------------------------------
8234
8235 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8236 begin
9dfe12ae 8237 if Present (E) and then Checks_May_Be_Suppressed (E) then
8238 return Is_Check_Suppressed (E, Length_Check);
8239 else
fafc6b97 8240 return Scope_Suppress.Suppress (Length_Check);
9dfe12ae 8241 end if;
ee6ba406 8242 end Length_Checks_Suppressed;
8243
3cce7f32 8244 -----------------------
8245 -- Make_Bignum_Block --
8246 -----------------------
8247
8248 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8249 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
3cce7f32 8250 begin
8251 return
8252 Make_Block_Statement (Loc,
97c15ab0 8253 Declarations =>
8254 New_List (Build_SS_Mark_Call (Loc, M)),
3cce7f32 8255 Handled_Statement_Sequence =>
8256 Make_Handled_Sequence_Of_Statements (Loc,
97c15ab0 8257 Statements => New_List (Build_SS_Release_Call (Loc, M))));
3cce7f32 8258 end Make_Bignum_Block;
8259
0df9d43f 8260 ----------------------------------
8261 -- Minimize_Eliminate_Overflows --
8262 ----------------------------------
3cce7f32 8263
f32c377d 8264 -- This is a recursive routine that is called at the top of an expression
8265 -- tree to properly process overflow checking for a whole subtree by making
8266 -- recursive calls to process operands. This processing may involve the use
8267 -- of bignum or long long integer arithmetic, which will change the types
8268 -- of operands and results. That's why we can't do this bottom up (since
21a55437 8269 -- it would interfere with semantic analysis).
f32c377d 8270
21a55437 8271 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
0df9d43f 8272 -- the operator expansion routines, as well as the expansion routines for
8273 -- if/case expression, do nothing (for the moment) except call the routine
8274 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8275 -- routine does nothing for non top-level nodes, so at the point where the
8276 -- call is made for the top level node, the entire expression subtree has
8277 -- not been expanded, or processed for overflow. All that has to happen as
8278 -- a result of the top level call to this routine.
f32c377d 8279
8280 -- As noted above, the overflow processing works by making recursive calls
8281 -- for the operands, and figuring out what to do, based on the processing
8282 -- of these operands (e.g. if a bignum operand appears, the parent op has
8283 -- to be done in bignum mode), and the determined ranges of the operands.
8284
8285 -- After possible rewriting of a constituent subexpression node, a call is
4fb5f0a0 8286 -- made to either reexpand the node (if nothing has changed) or reanalyze
21a55437 8287 -- the node (if it has been modified by the overflow check processing). The
8288 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8289 -- a recursive call into the whole overflow apparatus, an important rule
0df9d43f 8290 -- for this call is that the overflow handling mode must be temporarily set
8291 -- to STRICT.
f32c377d 8292
0df9d43f 8293 procedure Minimize_Eliminate_Overflows
61016a7a 8294 (N : Node_Id;
8295 Lo : out Uint;
8296 Hi : out Uint;
8297 Top_Level : Boolean)
3cce7f32 8298 is
0326b4d4 8299 Rtyp : constant Entity_Id := Etype (N);
8300 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8301 -- Result type, must be a signed integer type
3cce7f32 8302
db415383 8303 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 8304 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8305
8306 Loc : constant Source_Ptr := Sloc (N);
8307
8308 Rlo, Rhi : Uint;
0326b4d4 8309 -- Ranges of values for right operand (operator case)
3cce7f32 8310
16149377 8311 Llo : Uint := No_Uint; -- initialize to prevent warning
8312 Lhi : Uint := No_Uint; -- initialize to prevent warning
0326b4d4 8313 -- Ranges of values for left operand (operator case)
3cce7f32 8314
49b3a812 8315 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8316 -- Operands and results are of this type when we convert
8317
0326b4d4 8318 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8319 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
3cce7f32 8320 -- Bounds of Long_Long_Integer
8321
8322 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8323 -- Indicates binary operator case
8324
8325 OK : Boolean;
8326 -- Used in call to Determine_Range
8327
61016a7a 8328 Bignum_Operands : Boolean;
8329 -- Set True if one or more operands is already of type Bignum, meaning
8330 -- that for sure (regardless of Top_Level setting) we are committed to
0326b4d4 8331 -- doing the operation in Bignum mode (or in the case of a case or if
21a55437 8332 -- expression, converting all the dependent expressions to Bignum).
0326b4d4 8333
8334 Long_Long_Integer_Operands : Boolean;
21a55437 8335 -- Set True if one or more operands is already of type Long_Long_Integer
0326b4d4 8336 -- which means that if the result is known to be in the result type
8337 -- range, then we must convert such operands back to the result type.
0df9d43f 8338
8339 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8340 -- This is called when we have modified the node and we therefore need
8341 -- to reanalyze it. It is important that we reset the mode to STRICT for
8342 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
39a0c1d3 8343 -- we would reenter this routine recursively which would not be good.
0df9d43f 8344 -- The argument Suppress is set True if we also want to suppress
8345 -- overflow checking for the reexpansion (this is set when we know
8346 -- overflow is not possible). Typ is the type for the reanalysis.
8347
8348 procedure Reexpand (Suppress : Boolean := False);
8349 -- This is like Reanalyze, but does not do the Analyze step, it only
8350 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8351 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8352 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8353 -- Note that skipping reanalysis is not just an optimization, testing
8354 -- has showed up several complex cases in which reanalyzing an already
8355 -- analyzed node causes incorrect behavior.
4fb5f0a0 8356
0326b4d4 8357 function In_Result_Range return Boolean;
8358 -- Returns True iff Lo .. Hi are within range of the result type
61016a7a 8359
2fe22c69 8360 procedure Max (A : in out Uint; B : Uint);
21a55437 8361 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
2fe22c69 8362
8363 procedure Min (A : in out Uint; B : Uint);
21a55437 8364 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
2fe22c69 8365
0326b4d4 8366 ---------------------
8367 -- In_Result_Range --
8368 ---------------------
8369
8370 function In_Result_Range return Boolean is
8371 begin
f32c377d 8372 if Lo = No_Uint or else Hi = No_Uint then
8373 return False;
8374
cda40848 8375 elsif Is_OK_Static_Subtype (Etype (N)) then
0326b4d4 8376 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8377 and then
8378 Hi <= Expr_Value (Type_High_Bound (Rtyp));
f32c377d 8379
0326b4d4 8380 else
8381 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8382 and then
8383 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8384 end if;
8385 end In_Result_Range;
8386
2fe22c69 8387 ---------
8388 -- Max --
8389 ---------
8390
8391 procedure Max (A : in out Uint; B : Uint) is
8392 begin
8393 if A = No_Uint or else B > A then
8394 A := B;
8395 end if;
8396 end Max;
8397
8398 ---------
8399 -- Min --
8400 ---------
8401
8402 procedure Min (A : in out Uint; B : Uint) is
8403 begin
8404 if A = No_Uint or else B < A then
8405 A := B;
8406 end if;
8407 end Min;
8408
0df9d43f 8409 ---------------
8410 -- Reanalyze --
8411 ---------------
8412
8413 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
db415383 8414 Svg : constant Overflow_Mode_Type :=
8415 Scope_Suppress.Overflow_Mode_General;
8416 Sva : constant Overflow_Mode_Type :=
8417 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 8418 Svo : constant Boolean :=
8419 Scope_Suppress.Suppress (Overflow_Check);
8420
8421 begin
db415383 8422 Scope_Suppress.Overflow_Mode_General := Strict;
8423 Scope_Suppress.Overflow_Mode_Assertions := Strict;
0df9d43f 8424
8425 if Suppress then
8426 Scope_Suppress.Suppress (Overflow_Check) := True;
8427 end if;
8428
8429 Analyze_And_Resolve (N, Typ);
8430
2b108e18 8431 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8432 Scope_Suppress.Overflow_Mode_General := Svg;
8433 Scope_Suppress.Overflow_Mode_Assertions := Sva;
0df9d43f 8434 end Reanalyze;
8435
4fb5f0a0 8436 --------------
8437 -- Reexpand --
8438 --------------
8439
0df9d43f 8440 procedure Reexpand (Suppress : Boolean := False) is
db415383 8441 Svg : constant Overflow_Mode_Type :=
8442 Scope_Suppress.Overflow_Mode_General;
8443 Sva : constant Overflow_Mode_Type :=
8444 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 8445 Svo : constant Boolean :=
8446 Scope_Suppress.Suppress (Overflow_Check);
8447
4fb5f0a0 8448 begin
db415383 8449 Scope_Suppress.Overflow_Mode_General := Strict;
8450 Scope_Suppress.Overflow_Mode_Assertions := Strict;
4fb5f0a0 8451 Set_Analyzed (N, False);
0df9d43f 8452
8453 if Suppress then
8454 Scope_Suppress.Suppress (Overflow_Check) := True;
8455 end if;
8456
4fb5f0a0 8457 Expand (N);
0df9d43f 8458
2b108e18 8459 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8460 Scope_Suppress.Overflow_Mode_General := Svg;
8461 Scope_Suppress.Overflow_Mode_Assertions := Sva;
4fb5f0a0 8462 end Reexpand;
8463
0df9d43f 8464 -- Start of processing for Minimize_Eliminate_Overflows
2fe22c69 8465
3cce7f32 8466 begin
02038e4e 8467 -- Default initialize Lo and Hi since these are not guaranteed to be
8468 -- set otherwise.
8469
8470 Lo := No_Uint;
8471 Hi := No_Uint;
8472
0326b4d4 8473 -- Case where we do not have a signed integer arithmetic operation
3cce7f32 8474
8475 if not Is_Signed_Integer_Arithmetic_Op (N) then
8476
8477 -- Use the normal Determine_Range routine to get the range. We
8478 -- don't require operands to be valid, invalid values may result in
8479 -- rubbish results where the result has not been properly checked for
39a0c1d3 8480 -- overflow, that's fine.
3cce7f32 8481
8482 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8483
21a55437 8484 -- If Determine_Range did not work (can this in fact happen? Not
3cce7f32 8485 -- clear but might as well protect), use type bounds.
8486
8487 if not OK then
8488 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8489 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8490 end if;
8491
8492 -- If we don't have a binary operator, all we have to do is to set
20cf157b 8493 -- the Hi/Lo range, so we are done.
3cce7f32 8494
8495 return;
8496
0326b4d4 8497 -- Processing for if expression
8498
92f1631f 8499 elsif Nkind (N) = N_If_Expression then
0326b4d4 8500 declare
8501 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8502 Else_DE : constant Node_Id := Next (Then_DE);
8503
8504 begin
8505 Bignum_Operands := False;
8506
0df9d43f 8507 Minimize_Eliminate_Overflows
0326b4d4 8508 (Then_DE, Lo, Hi, Top_Level => False);
8509
8510 if Lo = No_Uint then
8511 Bignum_Operands := True;
8512 end if;
8513
0df9d43f 8514 Minimize_Eliminate_Overflows
0326b4d4 8515 (Else_DE, Rlo, Rhi, Top_Level => False);
8516
8517 if Rlo = No_Uint then
8518 Bignum_Operands := True;
8519 else
8520 Long_Long_Integer_Operands :=
8521 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8522
8523 Min (Lo, Rlo);
8524 Max (Hi, Rhi);
8525 end if;
8526
21a55437 8527 -- If at least one of our operands is now Bignum, we must rebuild
8528 -- the if expression to use Bignum operands. We will analyze the
0326b4d4 8529 -- rebuilt if expression with overflow checks off, since once we
39a0c1d3 8530 -- are in bignum mode, we are all done with overflow checks.
0326b4d4 8531
8532 if Bignum_Operands then
8533 Rewrite (N,
92f1631f 8534 Make_If_Expression (Loc,
0326b4d4 8535 Expressions => New_List (
8536 Remove_Head (Expressions (N)),
8537 Convert_To_Bignum (Then_DE),
8538 Convert_To_Bignum (Else_DE)),
8539 Is_Elsif => Is_Elsif (N)));
8540
0df9d43f 8541 Reanalyze (RTE (RE_Bignum), Suppress => True);
0326b4d4 8542
8543 -- If we have no Long_Long_Integer operands, then we are in result
8544 -- range, since it means that none of our operands felt the need
8545 -- to worry about overflow (otherwise it would have already been
4fb5f0a0 8546 -- converted to long long integer or bignum). We reexpand to
8547 -- complete the expansion of the if expression (but we do not
8548 -- need to reanalyze).
0326b4d4 8549
8550 elsif not Long_Long_Integer_Operands then
8551 Set_Do_Overflow_Check (N, False);
0df9d43f 8552 Reexpand;
0326b4d4 8553
8554 -- Otherwise convert us to long long integer mode. Note that we
8555 -- don't need any further overflow checking at this level.
8556
8557 else
8558 Convert_To_And_Rewrite (LLIB, Then_DE);
8559 Convert_To_And_Rewrite (LLIB, Else_DE);
8560 Set_Etype (N, LLIB);
f32c377d 8561
8562 -- Now reanalyze with overflow checks off
8563
0326b4d4 8564 Set_Do_Overflow_Check (N, False);
0df9d43f 8565 Reanalyze (LLIB, Suppress => True);
0326b4d4 8566 end if;
8567 end;
8568
8569 return;
8570
8571 -- Here for case expression
8572
8573 elsif Nkind (N) = N_Case_Expression then
8574 Bignum_Operands := False;
8575 Long_Long_Integer_Operands := False;
0326b4d4 8576
8577 declare
f32c377d 8578 Alt : Node_Id;
0326b4d4 8579
8580 begin
8581 -- Loop through expressions applying recursive call
8582
8583 Alt := First (Alternatives (N));
8584 while Present (Alt) loop
8585 declare
8586 Aexp : constant Node_Id := Expression (Alt);
8587
8588 begin
0df9d43f 8589 Minimize_Eliminate_Overflows
0326b4d4 8590 (Aexp, Lo, Hi, Top_Level => False);
8591
8592 if Lo = No_Uint then
8593 Bignum_Operands := True;
8594 elsif Etype (Aexp) = LLIB then
8595 Long_Long_Integer_Operands := True;
8596 end if;
8597 end;
8598
8599 Next (Alt);
8600 end loop;
8601
8602 -- If we have no bignum or long long integer operands, it means
8603 -- that none of our dependent expressions could raise overflow.
8604 -- In this case, we simply return with no changes except for
8605 -- resetting the overflow flag, since we are done with overflow
4fb5f0a0 8606 -- checks for this node. We will reexpand to get the needed
8607 -- expansion for the case expression, but we do not need to
21a55437 8608 -- reanalyze, since nothing has changed.
0326b4d4 8609
f32c377d 8610 if not (Bignum_Operands or Long_Long_Integer_Operands) then
0326b4d4 8611 Set_Do_Overflow_Check (N, False);
0df9d43f 8612 Reexpand (Suppress => True);
0326b4d4 8613
8614 -- Otherwise we are going to rebuild the case expression using
8615 -- either bignum or long long integer operands throughout.
8616
8617 else
f32c377d 8618 declare
8619 Rtype : Entity_Id;
16149377 8620 pragma Warnings (Off, Rtype);
f32c377d 8621 New_Alts : List_Id;
8622 New_Exp : Node_Id;
8623
8624 begin
8625 New_Alts := New_List;
8626 Alt := First (Alternatives (N));
8627 while Present (Alt) loop
8628 if Bignum_Operands then
8629 New_Exp := Convert_To_Bignum (Expression (Alt));
8630 Rtype := RTE (RE_Bignum);
8631 else
8632 New_Exp := Convert_To (LLIB, Expression (Alt));
8633 Rtype := LLIB;
8634 end if;
0326b4d4 8635
f32c377d 8636 Append_To (New_Alts,
8637 Make_Case_Expression_Alternative (Sloc (Alt),
8638 Actions => No_List,
8639 Discrete_Choices => Discrete_Choices (Alt),
8640 Expression => New_Exp));
0326b4d4 8641
f32c377d 8642 Next (Alt);
8643 end loop;
0326b4d4 8644
f32c377d 8645 Rewrite (N,
8646 Make_Case_Expression (Loc,
8647 Expression => Expression (N),
8648 Alternatives => New_Alts));
0326b4d4 8649
0df9d43f 8650 Reanalyze (Rtype, Suppress => True);
f32c377d 8651 end;
0326b4d4 8652 end if;
8653 end;
8654
8655 return;
8656 end if;
8657
8658 -- If we have an arithmetic operator we make recursive calls on the
3cce7f32 8659 -- operands to get the ranges (and to properly process the subtree
20cf157b 8660 -- that lies below us).
3cce7f32 8661
0df9d43f 8662 Minimize_Eliminate_Overflows
0326b4d4 8663 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
3cce7f32 8664
0326b4d4 8665 if Binary then
0df9d43f 8666 Minimize_Eliminate_Overflows
0326b4d4 8667 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
3cce7f32 8668 end if;
8669
f32c377d 8670 -- Record if we have Long_Long_Integer operands
8671
8672 Long_Long_Integer_Operands :=
8673 Etype (Right_Opnd (N)) = LLIB
8674 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8675
8676 -- If either operand is a bignum, then result will be a bignum and we
8677 -- don't need to do any range analysis. As previously discussed we could
8678 -- do range analysis in such cases, but it could mean working with giant
8679 -- numbers at compile time for very little gain (the number of cases
21a55437 8680 -- in which we could slip back from bignum mode is small).
3cce7f32 8681
8682 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8683 Lo := No_Uint;
8684 Hi := No_Uint;
61016a7a 8685 Bignum_Operands := True;
3cce7f32 8686
8687 -- Otherwise compute result range
8688
8689 else
61016a7a 8690 Bignum_Operands := False;
8691
3cce7f32 8692 case Nkind (N) is
8693
8694 -- Absolute value
8695
8696 when N_Op_Abs =>
8697 Lo := Uint_0;
de922300 8698 Hi := UI_Max (abs Rlo, abs Rhi);
3cce7f32 8699
8700 -- Addition
8701
8702 when N_Op_Add =>
8703 Lo := Llo + Rlo;
8704 Hi := Lhi + Rhi;
8705
8706 -- Division
8707
8708 when N_Op_Divide =>
2fe22c69 8709
5f4275e1 8710 -- If the right operand can only be zero, set 0..0
2fe22c69 8711
5f4275e1 8712 if Rlo = 0 and then Rhi = 0 then
8713 Lo := Uint_0;
8714 Hi := Uint_0;
2fe22c69 8715
5f4275e1 8716 -- Possible bounds of division must come from dividing end
8717 -- values of the input ranges (four possibilities), provided
8718 -- zero is not included in the possible values of the right
8719 -- operand.
8720
8721 -- Otherwise, we just consider two intervals of values for
8722 -- the right operand: the interval of negative values (up to
8723 -- -1) and the interval of positive values (starting at 1).
8724 -- Since division by 1 is the identity, and division by -1
8725 -- is negation, we get all possible bounds of division in that
8726 -- case by considering:
8727 -- - all values from the division of end values of input
8728 -- ranges;
8729 -- - the end values of the left operand;
8730 -- - the negation of the end values of the left operand.
2fe22c69 8731
5f4275e1 8732 else
8733 declare
8734 Mrk : constant Uintp.Save_Mark := Mark;
8735 -- Mark so we can release the RR and Ev values
2fe22c69 8736
5f4275e1 8737 Ev1 : Uint;
8738 Ev2 : Uint;
8739 Ev3 : Uint;
8740 Ev4 : Uint;
2fe22c69 8741
5f4275e1 8742 begin
8743 -- Discard extreme values of zero for the divisor, since
8744 -- they will simply result in an exception in any case.
2fe22c69 8745
5f4275e1 8746 if Rlo = 0 then
8747 Rlo := Uint_1;
8748 elsif Rhi = 0 then
8749 Rhi := -Uint_1;
2fe22c69 8750 end if;
2fe22c69 8751
5f4275e1 8752 -- Compute possible bounds coming from dividing end
8753 -- values of the input ranges.
2fe22c69 8754
5f4275e1 8755 Ev1 := Llo / Rlo;
8756 Ev2 := Llo / Rhi;
8757 Ev3 := Lhi / Rlo;
8758 Ev4 := Lhi / Rhi;
2fe22c69 8759
5f4275e1 8760 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8761 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
2fe22c69 8762
5f4275e1 8763 -- If the right operand can be both negative or positive,
8764 -- include the end values of the left operand in the
8765 -- extreme values, as well as their negation.
2fe22c69 8766
5f4275e1 8767 if Rlo < 0 and then Rhi > 0 then
8768 Ev1 := Llo;
8769 Ev2 := -Llo;
8770 Ev3 := Lhi;
8771 Ev4 := -Lhi;
2fe22c69 8772
5f4275e1 8773 Min (Lo,
8774 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8775 Max (Hi,
8776 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
2fe22c69 8777 end if;
2fe22c69 8778
5f4275e1 8779 -- Release the RR and Ev values
2fe22c69 8780
5f4275e1 8781 Release_And_Save (Mrk, Lo, Hi);
8782 end;
8783 end if;
3cce7f32 8784
8785 -- Exponentiation
8786
8787 when N_Op_Expon =>
de922300 8788
8789 -- Discard negative values for the exponent, since they will
8790 -- simply result in an exception in any case.
8791
8792 if Rhi < 0 then
8793 Rhi := Uint_0;
8794 elsif Rlo < 0 then
8795 Rlo := Uint_0;
8796 end if;
8797
8798 -- Estimate number of bits in result before we go computing
8799 -- giant useless bounds. Basically the number of bits in the
8800 -- result is the number of bits in the base multiplied by the
8801 -- value of the exponent. If this is big enough that the result
8802 -- definitely won't fit in Long_Long_Integer, switch to bignum
8803 -- mode immediately, and avoid computing giant bounds.
8804
8805 -- The comparison here is approximate, but conservative, it
8806 -- only clicks on cases that are sure to exceed the bounds.
8807
8808 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8809 Lo := No_Uint;
8810 Hi := No_Uint;
8811
8812 -- If right operand is zero then result is 1
8813
8814 elsif Rhi = 0 then
8815 Lo := Uint_1;
8816 Hi := Uint_1;
8817
8818 else
8819 -- High bound comes either from exponentiation of largest
5f4275e1 8820 -- positive value to largest exponent value, or from
8821 -- the exponentiation of most negative value to an
8822 -- even exponent.
de922300 8823
8824 declare
8825 Hi1, Hi2 : Uint;
8826
8827 begin
5f4275e1 8828 if Lhi > 0 then
de922300 8829 Hi1 := Lhi ** Rhi;
8830 else
8831 Hi1 := Uint_0;
8832 end if;
8833
8834 if Llo < 0 then
8835 if Rhi mod 2 = 0 then
de922300 8836 Hi2 := Llo ** Rhi;
5f4275e1 8837 else
8838 Hi2 := Llo ** (Rhi - 1);
de922300 8839 end if;
8840 else
8841 Hi2 := Uint_0;
8842 end if;
8843
8844 Hi := UI_Max (Hi1, Hi2);
8845 end;
8846
8847 -- Result can only be negative if base can be negative
8848
8849 if Llo < 0 then
21a55437 8850 if Rhi mod 2 = 0 then
de922300 8851 Lo := Llo ** (Rhi - 1);
8852 else
8853 Lo := Llo ** Rhi;
8854 end if;
8855
21a55437 8856 -- Otherwise low bound is minimum ** minimum
de922300 8857
8858 else
8859 Lo := Llo ** Rlo;
8860 end if;
8861 end if;
3cce7f32 8862
8863 -- Negation
8864
8865 when N_Op_Minus =>
8866 Lo := -Rhi;
8867 Hi := -Rlo;
8868
8869 -- Mod
8870
8871 when N_Op_Mod =>
2fe22c69 8872 declare
5f4275e1 8873 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 8874 -- This is the maximum absolute value of the result
8875
8876 begin
8877 Lo := Uint_0;
8878 Hi := Uint_0;
8879
8880 -- The result depends only on the sign and magnitude of
8881 -- the right operand, it does not depend on the sign or
8882 -- magnitude of the left operand.
8883
8884 if Rlo < 0 then
8885 Lo := -Maxabs;
8886 end if;
8887
8888 if Rhi > 0 then
8889 Hi := Maxabs;
8890 end if;
8891 end;
3cce7f32 8892
8893 -- Multiplication
8894
8895 when N_Op_Multiply =>
49b3a812 8896
8897 -- Possible bounds of multiplication must come from multiplying
8898 -- end values of the input ranges (four possibilities).
8899
8900 declare
8901 Mrk : constant Uintp.Save_Mark := Mark;
8902 -- Mark so we can release the Ev values
8903
8904 Ev1 : constant Uint := Llo * Rlo;
8905 Ev2 : constant Uint := Llo * Rhi;
8906 Ev3 : constant Uint := Lhi * Rlo;
8907 Ev4 : constant Uint := Lhi * Rhi;
8908
8909 begin
8910 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8911 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8912
8913 -- Release the Ev values
8914
8915 Release_And_Save (Mrk, Lo, Hi);
8916 end;
3cce7f32 8917
8918 -- Plus operator (affirmation)
8919
8920 when N_Op_Plus =>
8921 Lo := Rlo;
8922 Hi := Rhi;
8923
8924 -- Remainder
8925
8926 when N_Op_Rem =>
2fe22c69 8927 declare
5f4275e1 8928 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 8929 -- This is the maximum absolute value of the result. Note
5f4275e1 8930 -- that the result range does not depend on the sign of the
8931 -- right operand.
2fe22c69 8932
8933 begin
8934 Lo := Uint_0;
8935 Hi := Uint_0;
8936
8937 -- Case of left operand negative, which results in a range
8938 -- of -Maxabs .. 0 for those negative values. If there are
8939 -- no negative values then Lo value of result is always 0.
8940
8941 if Llo < 0 then
8942 Lo := -Maxabs;
8943 end if;
8944
8945 -- Case of left operand positive
8946
8947 if Lhi > 0 then
8948 Hi := Maxabs;
8949 end if;
8950 end;
3cce7f32 8951
8952 -- Subtract
8953
8954 when N_Op_Subtract =>
8955 Lo := Llo - Rhi;
8956 Hi := Lhi - Rlo;
8957
8958 -- Nothing else should be possible
8959
8960 when others =>
8961 raise Program_Error;
3cce7f32 8962 end case;
8963 end if;
8964
4fb5f0a0 8965 -- Here for the case where we have not rewritten anything (no bignum
21a55437 8966 -- operands or long long integer operands), and we know the result.
8967 -- If we know we are in the result range, and we do not have Bignum
8968 -- operands or Long_Long_Integer operands, we can just reexpand with
8969 -- overflow checks turned off (since we know we cannot have overflow).
8970 -- As always the reexpansion is required to complete expansion of the
8971 -- operator, but we do not need to reanalyze, and we prevent recursion
8972 -- by suppressing the check.
f32c377d 8973
8974 if not (Bignum_Operands or Long_Long_Integer_Operands)
8975 and then In_Result_Range
8976 then
8977 Set_Do_Overflow_Check (N, False);
0df9d43f 8978 Reexpand (Suppress => True);
f32c377d 8979 return;
8980
8981 -- Here we know that we are not in the result range, and in the general
21a55437 8982 -- case we will move into either the Bignum or Long_Long_Integer domain
8983 -- to compute the result. However, there is one exception. If we are
8984 -- at the top level, and we do not have Bignum or Long_Long_Integer
8985 -- operands, we will have to immediately convert the result back to
8986 -- the result type, so there is no point in Bignum/Long_Long_Integer
8987 -- fiddling.
f32c377d 8988
8989 elsif Top_Level
8990 and then not (Bignum_Operands or Long_Long_Integer_Operands)
b6a8f264 8991
8992 -- One further refinement. If we are at the top level, but our parent
8993 -- is a type conversion, then go into bignum or long long integer node
8994 -- since the result will be converted to that type directly without
8995 -- going through the result type, and we may avoid an overflow. This
8996 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8997 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8998 -- but does not fit in Integer.
8999
9000 and then Nkind (Parent (N)) /= N_Type_Conversion
f32c377d 9001 then
0df9d43f 9002 -- Here keep original types, but we need to complete analysis
f32c377d 9003
9004 -- One subtlety. We can't just go ahead and do an analyze operation
21a55437 9005 -- here because it will cause recursion into the whole MINIMIZED/
9006 -- ELIMINATED overflow processing which is not what we want. Here
f32c377d 9007 -- we are at the top level, and we need a check against the result
39a0c1d3 9008 -- mode (i.e. we want to use STRICT mode). So do exactly that.
4fb5f0a0 9009 -- Also, we have not modified the node, so this is a case where
9010 -- we need to reexpand, but not reanalyze.
f32c377d 9011
0df9d43f 9012 Reexpand;
f32c377d 9013 return;
9014
9015 -- Cases where we do the operation in Bignum mode. This happens either
3cce7f32 9016 -- because one of our operands is in Bignum mode already, or because
de922300 9017 -- the computed bounds are outside the bounds of Long_Long_Integer,
9018 -- which in some cases can be indicated by Hi and Lo being No_Uint.
3cce7f32 9019
9020 -- Note: we could do better here and in some cases switch back from
9021 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9022 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9023 -- Failing to do this switching back is only an efficiency issue.
9024
f32c377d 9025 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
3cce7f32 9026
61016a7a 9027 -- OK, we are definitely outside the range of Long_Long_Integer. The
f32c377d 9028 -- question is whether to move to Bignum mode, or stay in the domain
61016a7a 9029 -- of Long_Long_Integer, signalling that an overflow check is needed.
9030
9031 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9032 -- the Bignum business. In ELIMINATED mode, we will normally move
9033 -- into Bignum mode, but there is an exception if neither of our
9034 -- operands is Bignum now, and we are at the top level (Top_Level
9035 -- set True). In this case, there is no point in moving into Bignum
9036 -- mode to prevent overflow if the caller will immediately convert
9037 -- the Bignum value back to LLI with an overflow check. It's more
0df9d43f 9038 -- efficient to stay in LLI mode with an overflow check (if needed)
61016a7a 9039
9040 if Check_Mode = Minimized
9041 or else (Top_Level and not Bignum_Operands)
9042 then
0df9d43f 9043 if Do_Overflow_Check (N) then
9044 Enable_Overflow_Check (N);
9045 end if;
3cce7f32 9046
0df9d43f 9047 -- The result now has to be in Long_Long_Integer mode, so adjust
9048 -- the possible range to reflect this. Note these calls also
9049 -- change No_Uint values from the top level case to LLI bounds.
61016a7a 9050
9051 Max (Lo, LLLo);
9052 Min (Hi, LLHi);
9053
9054 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
3cce7f32 9055
9056 else
9057 pragma Assert (Check_Mode = Eliminated);
9058
9059 declare
9060 Fent : Entity_Id;
9061 Args : List_Id;
9062
9063 begin
9064 case Nkind (N) is
99378362 9065 when N_Op_Abs =>
3cce7f32 9066 Fent := RTE (RE_Big_Abs);
9067
99378362 9068 when N_Op_Add =>
3cce7f32 9069 Fent := RTE (RE_Big_Add);
9070
99378362 9071 when N_Op_Divide =>
3cce7f32 9072 Fent := RTE (RE_Big_Div);
9073
99378362 9074 when N_Op_Expon =>
3cce7f32 9075 Fent := RTE (RE_Big_Exp);
9076
99378362 9077 when N_Op_Minus =>
3cce7f32 9078 Fent := RTE (RE_Big_Neg);
9079
99378362 9080 when N_Op_Mod =>
3cce7f32 9081 Fent := RTE (RE_Big_Mod);
9082
9083 when N_Op_Multiply =>
9084 Fent := RTE (RE_Big_Mul);
9085
99378362 9086 when N_Op_Rem =>
3cce7f32 9087 Fent := RTE (RE_Big_Rem);
9088
9089 when N_Op_Subtract =>
9090 Fent := RTE (RE_Big_Sub);
9091
9092 -- Anything else is an internal error, this includes the
9093 -- N_Op_Plus case, since how can plus cause the result
9094 -- to be out of range if the operand is in range?
9095
9096 when others =>
9097 raise Program_Error;
9098 end case;
9099
9100 -- Construct argument list for Bignum call, converting our
9101 -- operands to Bignum form if they are not already there.
9102
9103 Args := New_List;
9104
9105 if Binary then
9106 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9107 end if;
9108
9109 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9110
9111 -- Now rewrite the arithmetic operator with a call to the
9112 -- corresponding bignum function.
9113
9114 Rewrite (N,
9115 Make_Function_Call (Loc,
9116 Name => New_Occurrence_Of (Fent, Loc),
9117 Parameter_Associations => Args));
0df9d43f 9118 Reanalyze (RTE (RE_Bignum), Suppress => True);
61016a7a 9119
9120 -- Indicate result is Bignum mode
9121
9122 Lo := No_Uint;
9123 Hi := No_Uint;
de922300 9124 return;
3cce7f32 9125 end;
9126 end if;
9127
9128 -- Otherwise we are in range of Long_Long_Integer, so no overflow
de922300 9129 -- check is required, at least not yet.
3cce7f32 9130
9131 else
de922300 9132 Set_Do_Overflow_Check (N, False);
9133 end if;
3cce7f32 9134
f32c377d 9135 -- Here we are not in Bignum territory, but we may have long long
9136 -- integer operands that need special handling. First a special check:
9137 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9138 -- it means we converted it to prevent overflow, but exponentiation
9139 -- requires a Natural right operand, so convert it back to Natural.
9140 -- This conversion may raise an exception which is fine.
0326b4d4 9141
f32c377d 9142 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9143 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
0326b4d4 9144 end if;
9145
de922300 9146 -- Here we will do the operation in Long_Long_Integer. We do this even
9147 -- if we know an overflow check is required, better to do this in long
39a0c1d3 9148 -- long integer mode, since we are less likely to overflow.
3cce7f32 9149
de922300 9150 -- Convert right or only operand to Long_Long_Integer, except that
9151 -- we do not touch the exponentiation right operand.
3cce7f32 9152
de922300 9153 if Nkind (N) /= N_Op_Expon then
9154 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9155 end if;
3cce7f32 9156
de922300 9157 -- Convert left operand to Long_Long_Integer for binary case
49b3a812 9158
de922300 9159 if Binary then
9160 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9161 end if;
9162
9163 -- Reset node to unanalyzed
9164
9165 Set_Analyzed (N, False);
9166 Set_Etype (N, Empty);
9167 Set_Entity (N, Empty);
9168
2fe22c69 9169 -- Now analyze this new node. This reanalysis will complete processing
9170 -- for the node. In particular we will complete the expansion of an
9171 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9172 -- we will complete any division checks (since we have not changed the
9173 -- setting of the Do_Division_Check flag).
3cce7f32 9174
0df9d43f 9175 -- We do this reanalysis in STRICT mode to avoid recursion into the
39a0c1d3 9176 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
3cce7f32 9177
0df9d43f 9178 declare
db415383 9179 SG : constant Overflow_Mode_Type :=
9180 Scope_Suppress.Overflow_Mode_General;
9181 SA : constant Overflow_Mode_Type :=
9182 Scope_Suppress.Overflow_Mode_Assertions;
de922300 9183
0df9d43f 9184 begin
db415383 9185 Scope_Suppress.Overflow_Mode_General := Strict;
9186 Scope_Suppress.Overflow_Mode_Assertions := Strict;
de922300 9187
0df9d43f 9188 if not Do_Overflow_Check (N) then
9189 Reanalyze (LLIB, Suppress => True);
9190 else
9191 Reanalyze (LLIB);
9192 end if;
9193
db415383 9194 Scope_Suppress.Overflow_Mode_General := SG;
9195 Scope_Suppress.Overflow_Mode_Assertions := SA;
0df9d43f 9196 end;
9197 end Minimize_Eliminate_Overflows;
3cce7f32 9198
9199 -------------------------
9200 -- Overflow_Check_Mode --
9201 -------------------------
9202
db415383 9203 function Overflow_Check_Mode return Overflow_Mode_Type is
ee6ba406 9204 begin
724d2bd8 9205 if In_Assertion_Expr = 0 then
db415383 9206 return Scope_Suppress.Overflow_Mode_General;
9dfe12ae 9207 else
db415383 9208 return Scope_Suppress.Overflow_Mode_Assertions;
9dfe12ae 9209 end if;
3cce7f32 9210 end Overflow_Check_Mode;
9211
9212 --------------------------------
9213 -- Overflow_Checks_Suppressed --
9214 --------------------------------
9215
9216 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9217 begin
0df9d43f 9218 if Present (E) and then Checks_May_Be_Suppressed (E) then
9219 return Is_Check_Suppressed (E, Overflow_Check);
9220 else
9221 return Scope_Suppress.Suppress (Overflow_Check);
9222 end if;
ee6ba406 9223 end Overflow_Checks_Suppressed;
fc75802a 9224
37baba83 9225 ---------------------------------
9226 -- Predicate_Checks_Suppressed --
9227 ---------------------------------
9228
9229 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9230 begin
9231 if Present (E) and then Checks_May_Be_Suppressed (E) then
9232 return Is_Check_Suppressed (E, Predicate_Check);
9233 else
9234 return Scope_Suppress.Suppress (Predicate_Check);
9235 end if;
9236 end Predicate_Checks_Suppressed;
9237
ee6ba406 9238 -----------------------------
9239 -- Range_Checks_Suppressed --
9240 -----------------------------
9241
9242 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9243 begin
9dfe12ae 9244 if Present (E) then
ce4d14c4 9245 if Kill_Range_Checks (E) then
9dfe12ae 9246 return True;
5f46de53 9247
9dfe12ae 9248 elsif Checks_May_Be_Suppressed (E) then
9249 return Is_Check_Suppressed (E, Range_Check);
9250 end if;
9251 end if;
ee6ba406 9252
fafc6b97 9253 return Scope_Suppress.Suppress (Range_Check);
ee6ba406 9254 end Range_Checks_Suppressed;
9255
0577b0b1 9256 -----------------------------------------
9257 -- Range_Or_Validity_Checks_Suppressed --
9258 -----------------------------------------
9259
9260 -- Note: the coding would be simpler here if we simply made appropriate
9261 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9262 -- duplicated checks which we prefer to avoid.
9263
9264 function Range_Or_Validity_Checks_Suppressed
9265 (Expr : Node_Id) return Boolean
9266 is
9267 begin
9268 -- Immediate return if scope checks suppressed for either check
9269
fafc6b97 9270 if Scope_Suppress.Suppress (Range_Check)
9271 or
9272 Scope_Suppress.Suppress (Validity_Check)
9273 then
0577b0b1 9274 return True;
9275 end if;
9276
9277 -- If no expression, that's odd, decide that checks are suppressed,
9278 -- since we don't want anyone trying to do checks in this case, which
9279 -- is most likely the result of some other error.
9280
9281 if No (Expr) then
9282 return True;
9283 end if;
9284
9285 -- Expression is present, so perform suppress checks on type
9286
9287 declare
9288 Typ : constant Entity_Id := Etype (Expr);
9289 begin
ce4d14c4 9290 if Checks_May_Be_Suppressed (Typ)
0577b0b1 9291 and then (Is_Check_Suppressed (Typ, Range_Check)
9292 or else
9293 Is_Check_Suppressed (Typ, Validity_Check))
9294 then
9295 return True;
9296 end if;
9297 end;
9298
9299 -- If expression is an entity name, perform checks on this entity
9300
9301 if Is_Entity_Name (Expr) then
9302 declare
9303 Ent : constant Entity_Id := Entity (Expr);
9304 begin
9305 if Checks_May_Be_Suppressed (Ent) then
9306 return Is_Check_Suppressed (Ent, Range_Check)
9307 or else Is_Check_Suppressed (Ent, Validity_Check);
9308 end if;
9309 end;
9310 end if;
9311
9312 -- If we fall through, no checks suppressed
9313
9314 return False;
9315 end Range_Or_Validity_Checks_Suppressed;
9316
226494a3 9317 -------------------
9318 -- Remove_Checks --
9319 -------------------
9320
9321 procedure Remove_Checks (Expr : Node_Id) is
226494a3 9322 function Process (N : Node_Id) return Traverse_Result;
9323 -- Process a single node during the traversal
9324
8f6e4fd5 9325 procedure Traverse is new Traverse_Proc (Process);
9326 -- The traversal procedure itself
226494a3 9327
9328 -------------
9329 -- Process --
9330 -------------
9331
9332 function Process (N : Node_Id) return Traverse_Result is
9333 begin
9334 if Nkind (N) not in N_Subexpr then
9335 return Skip;
9336 end if;
9337
9338 Set_Do_Range_Check (N, False);
9339
9340 case Nkind (N) is
9341 when N_And_Then =>
8f6e4fd5 9342 Traverse (Left_Opnd (N));
226494a3 9343 return Skip;
9344
9345 when N_Attribute_Reference =>
226494a3 9346 Set_Do_Overflow_Check (N, False);
9347
226494a3 9348 when N_Function_Call =>
9349 Set_Do_Tag_Check (N, False);
9350
226494a3 9351 when N_Op =>
9352 Set_Do_Overflow_Check (N, False);
9353
9354 case Nkind (N) is
9355 when N_Op_Divide =>
9356 Set_Do_Division_Check (N, False);
9357
9358 when N_Op_And =>
9359 Set_Do_Length_Check (N, False);
9360
9361 when N_Op_Mod =>
9362 Set_Do_Division_Check (N, False);
9363
9364 when N_Op_Or =>
9365 Set_Do_Length_Check (N, False);
9366
9367 when N_Op_Rem =>
9368 Set_Do_Division_Check (N, False);
9369
9370 when N_Op_Xor =>
9371 Set_Do_Length_Check (N, False);
9372
9373 when others =>
9374 null;
9375 end case;
9376
9377 when N_Or_Else =>
8f6e4fd5 9378 Traverse (Left_Opnd (N));
226494a3 9379 return Skip;
9380
9381 when N_Selected_Component =>
226494a3 9382 Set_Do_Discriminant_Check (N, False);
9383
226494a3 9384 when N_Type_Conversion =>
9dfe12ae 9385 Set_Do_Length_Check (N, False);
9386 Set_Do_Tag_Check (N, False);
226494a3 9387 Set_Do_Overflow_Check (N, False);
226494a3 9388
9389 when others =>
9390 null;
9391 end case;
9392
9393 return OK;
9394 end Process;
9395
9396 -- Start of processing for Remove_Checks
9397
9398 begin
8f6e4fd5 9399 Traverse (Expr);
226494a3 9400 end Remove_Checks;
9401
ee6ba406 9402 ----------------------------
9403 -- Selected_Length_Checks --
9404 ----------------------------
9405
9406 function Selected_Length_Checks
9407 (Ck_Node : Node_Id;
9408 Target_Typ : Entity_Id;
9409 Source_Typ : Entity_Id;
314a23b6 9410 Warn_Node : Node_Id) return Check_Result
ee6ba406 9411 is
9412 Loc : constant Source_Ptr := Sloc (Ck_Node);
9413 S_Typ : Entity_Id;
9414 T_Typ : Entity_Id;
9415 Expr_Actual : Node_Id;
9416 Exptyp : Entity_Id;
9417 Cond : Node_Id := Empty;
9418 Do_Access : Boolean := False;
9419 Wnode : Node_Id := Warn_Node;
9420 Ret_Result : Check_Result := (Empty, Empty);
9421 Num_Checks : Natural := 0;
9422
9423 procedure Add_Check (N : Node_Id);
9424 -- Adds the action given to Ret_Result if N is non-Empty
9425
9426 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9427 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
314a23b6 9428 -- Comments required ???
ee6ba406 9429
9430 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9431 -- True for equal literals and for nodes that denote the same constant
5f260d20 9432 -- entity, even if its value is not a static constant. This includes the
9dfe12ae 9433 -- case of a discriminal reference within an init proc. Removes some
5f260d20 9434 -- obviously superfluous checks.
ee6ba406 9435
9436 function Length_E_Cond
9437 (Exptyp : Entity_Id;
9438 Typ : Entity_Id;
314a23b6 9439 Indx : Nat) return Node_Id;
ee6ba406 9440 -- Returns expression to compute:
9441 -- Typ'Length /= Exptyp'Length
9442
9443 function Length_N_Cond
9444 (Expr : Node_Id;
9445 Typ : Entity_Id;
314a23b6 9446 Indx : Nat) return Node_Id;
ee6ba406 9447 -- Returns expression to compute:
9448 -- Typ'Length /= Expr'Length
9449
9450 ---------------
9451 -- Add_Check --
9452 ---------------
9453
9454 procedure Add_Check (N : Node_Id) is
9455 begin
9456 if Present (N) then
9457
20cf157b 9458 -- For now, ignore attempt to place more than two checks ???
9459 -- This is really worrisome, are we really discarding checks ???
ee6ba406 9460
9461 if Num_Checks = 2 then
9462 return;
9463 end if;
9464
9465 pragma Assert (Num_Checks <= 1);
9466 Num_Checks := Num_Checks + 1;
9467 Ret_Result (Num_Checks) := N;
9468 end if;
9469 end Add_Check;
9470
9471 ------------------
9472 -- Get_E_Length --
9473 ------------------
9474
9475 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
00c403ee 9476 SE : constant Entity_Id := Scope (E);
ee6ba406 9477 N : Node_Id;
9478 E1 : Entity_Id := E;
ee6ba406 9479
9480 begin
9481 if Ekind (Scope (E)) = E_Record_Type
9482 and then Has_Discriminants (Scope (E))
9483 then
9484 N := Build_Discriminal_Subtype_Of_Component (E);
9485
9486 if Present (N) then
9487 Insert_Action (Ck_Node, N);
9488 E1 := Defining_Identifier (N);
9489 end if;
9490 end if;
9491
9492 if Ekind (E1) = E_String_Literal_Subtype then
9493 return
9494 Make_Integer_Literal (Loc,
9495 Intval => String_Literal_Length (E1));
9496
00c403ee 9497 elsif SE /= Standard_Standard
9498 and then Ekind (Scope (SE)) = E_Protected_Type
9499 and then Has_Discriminants (Scope (SE))
9500 and then Has_Completion (Scope (SE))
ee6ba406 9501 and then not Inside_Init_Proc
9502 then
ee6ba406 9503 -- If the type whose length is needed is a private component
9504 -- constrained by a discriminant, we must expand the 'Length
9505 -- attribute into an explicit computation, using the discriminal
9506 -- of the current protected operation. This is because the actual
9507 -- type of the prival is constructed after the protected opera-
9508 -- tion has been fully expanded.
9509
9510 declare
9511 Indx_Type : Node_Id;
9512 Lo : Node_Id;
9513 Hi : Node_Id;
9514 Do_Expand : Boolean := False;
9515
9516 begin
9517 Indx_Type := First_Index (E);
9518
9519 for J in 1 .. Indx - 1 loop
9520 Next_Index (Indx_Type);
9521 end loop;
9522
2af58f67 9523 Get_Index_Bounds (Indx_Type, Lo, Hi);
ee6ba406 9524
9525 if Nkind (Lo) = N_Identifier
9526 and then Ekind (Entity (Lo)) = E_In_Parameter
9527 then
9528 Lo := Get_Discriminal (E, Lo);
9529 Do_Expand := True;
9530 end if;
9531
9532 if Nkind (Hi) = N_Identifier
9533 and then Ekind (Entity (Hi)) = E_In_Parameter
9534 then
9535 Hi := Get_Discriminal (E, Hi);
9536 Do_Expand := True;
9537 end if;
9538
9539 if Do_Expand then
9540 if not Is_Entity_Name (Lo) then
9dfe12ae 9541 Lo := Duplicate_Subexpr_No_Checks (Lo);
ee6ba406 9542 end if;
9543
9544 if not Is_Entity_Name (Hi) then
9dfe12ae 9545 Lo := Duplicate_Subexpr_No_Checks (Hi);
ee6ba406 9546 end if;
9547
9548 N :=
9549 Make_Op_Add (Loc,
9550 Left_Opnd =>
9551 Make_Op_Subtract (Loc,
9552 Left_Opnd => Hi,
9553 Right_Opnd => Lo),
9554
9555 Right_Opnd => Make_Integer_Literal (Loc, 1));
9556 return N;
9557
9558 else
9559 N :=
9560 Make_Attribute_Reference (Loc,
9561 Attribute_Name => Name_Length,
9562 Prefix =>
9563 New_Occurrence_Of (E1, Loc));
9564
9565 if Indx > 1 then
9566 Set_Expressions (N, New_List (
9567 Make_Integer_Literal (Loc, Indx)));
9568 end if;
9569
9570 return N;
9571 end if;
9572 end;
9573
9574 else
9575 N :=
9576 Make_Attribute_Reference (Loc,
9577 Attribute_Name => Name_Length,
9578 Prefix =>
9579 New_Occurrence_Of (E1, Loc));
9580
9581 if Indx > 1 then
9582 Set_Expressions (N, New_List (
9583 Make_Integer_Literal (Loc, Indx)));
9584 end if;
9585
9586 return N;
ee6ba406 9587 end if;
9588 end Get_E_Length;
9589
9590 ------------------
9591 -- Get_N_Length --
9592 ------------------
9593
9594 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9595 begin
9596 return
9597 Make_Attribute_Reference (Loc,
9598 Attribute_Name => Name_Length,
9599 Prefix =>
9dfe12ae 9600 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 9601 Expressions => New_List (
9602 Make_Integer_Literal (Loc, Indx)));
ee6ba406 9603 end Get_N_Length;
9604
9605 -------------------
9606 -- Length_E_Cond --
9607 -------------------
9608
9609 function Length_E_Cond
9610 (Exptyp : Entity_Id;
9611 Typ : Entity_Id;
314a23b6 9612 Indx : Nat) return Node_Id
ee6ba406 9613 is
9614 begin
9615 return
9616 Make_Op_Ne (Loc,
9617 Left_Opnd => Get_E_Length (Typ, Indx),
9618 Right_Opnd => Get_E_Length (Exptyp, Indx));
ee6ba406 9619 end Length_E_Cond;
9620
9621 -------------------
9622 -- Length_N_Cond --
9623 -------------------
9624
9625 function Length_N_Cond
9626 (Expr : Node_Id;
9627 Typ : Entity_Id;
314a23b6 9628 Indx : Nat) return Node_Id
ee6ba406 9629 is
9630 begin
9631 return
9632 Make_Op_Ne (Loc,
9633 Left_Opnd => Get_E_Length (Typ, Indx),
9634 Right_Opnd => Get_N_Length (Expr, Indx));
ee6ba406 9635 end Length_N_Cond;
9636
feff2f05 9637 -----------------
9638 -- Same_Bounds --
9639 -----------------
9640
ee6ba406 9641 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9642 begin
9643 return
9644 (Nkind (L) = N_Integer_Literal
9645 and then Nkind (R) = N_Integer_Literal
9646 and then Intval (L) = Intval (R))
9647
9648 or else
9649 (Is_Entity_Name (L)
9650 and then Ekind (Entity (L)) = E_Constant
9651 and then ((Is_Entity_Name (R)
9652 and then Entity (L) = Entity (R))
9653 or else
9654 (Nkind (R) = N_Type_Conversion
9655 and then Is_Entity_Name (Expression (R))
9656 and then Entity (L) = Entity (Expression (R)))))
9657
9658 or else
9659 (Is_Entity_Name (R)
9660 and then Ekind (Entity (R)) = E_Constant
9661 and then Nkind (L) = N_Type_Conversion
9662 and then Is_Entity_Name (Expression (L))
5f260d20 9663 and then Entity (R) = Entity (Expression (L)))
9664
9665 or else
9666 (Is_Entity_Name (L)
9667 and then Is_Entity_Name (R)
9668 and then Entity (L) = Entity (R)
9669 and then Ekind (Entity (L)) = E_In_Parameter
9670 and then Inside_Init_Proc);
ee6ba406 9671 end Same_Bounds;
9672
9673 -- Start of processing for Selected_Length_Checks
9674
9675 begin
18cb6d78 9676 -- Checks will be applied only when generating code
f0d65dae 9677
18cb6d78 9678 if not Expander_Active then
ee6ba406 9679 return Ret_Result;
9680 end if;
9681
9682 if Target_Typ = Any_Type
9683 or else Target_Typ = Any_Composite
9684 or else Raises_Constraint_Error (Ck_Node)
9685 then
9686 return Ret_Result;
9687 end if;
9688
9689 if No (Wnode) then
9690 Wnode := Ck_Node;
9691 end if;
9692
9693 T_Typ := Target_Typ;
9694
9695 if No (Source_Typ) then
9696 S_Typ := Etype (Ck_Node);
9697 else
9698 S_Typ := Source_Typ;
9699 end if;
9700
9701 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9702 return Ret_Result;
9703 end if;
9704
9705 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9706 S_Typ := Designated_Type (S_Typ);
9707 T_Typ := Designated_Type (T_Typ);
9708 Do_Access := True;
9709
2af58f67 9710 -- A simple optimization for the null case
ee6ba406 9711
2af58f67 9712 if Known_Null (Ck_Node) then
ee6ba406 9713 return Ret_Result;
9714 end if;
9715 end if;
9716
9717 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9718 if Is_Constrained (T_Typ) then
9719
92f1631f 9720 -- The checking code to be generated will freeze the corresponding
9721 -- array type. However, we must freeze the type now, so that the
9722 -- freeze node does not appear within the generated if expression,
9723 -- but ahead of it.
ee6ba406 9724
9725 Freeze_Before (Ck_Node, T_Typ);
9726
9727 Expr_Actual := Get_Referenced_Object (Ck_Node);
84d0d4a5 9728 Exptyp := Get_Actual_Subtype (Ck_Node);
ee6ba406 9729
9730 if Is_Access_Type (Exptyp) then
9731 Exptyp := Designated_Type (Exptyp);
9732 end if;
9733
9734 -- String_Literal case. This needs to be handled specially be-
9735 -- cause no index types are available for string literals. The
9736 -- condition is simply:
9737
9738 -- T_Typ'Length = string-literal-length
9739
9dfe12ae 9740 if Nkind (Expr_Actual) = N_String_Literal
9741 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9742 then
ee6ba406 9743 Cond :=
9744 Make_Op_Ne (Loc,
9745 Left_Opnd => Get_E_Length (T_Typ, 1),
9746 Right_Opnd =>
9747 Make_Integer_Literal (Loc,
9748 Intval =>
9749 String_Literal_Length (Etype (Expr_Actual))));
9750
9751 -- General array case. Here we have a usable actual subtype for
9752 -- the expression, and the condition is built from the two types
9753 -- (Do_Length):
9754
9755 -- T_Typ'Length /= Exptyp'Length or else
9756 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9757 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9758 -- ...
9759
9760 elsif Is_Constrained (Exptyp) then
9761 declare
9dfe12ae 9762 Ndims : constant Nat := Number_Dimensions (T_Typ);
9763
9764 L_Index : Node_Id;
9765 R_Index : Node_Id;
9766 L_Low : Node_Id;
9767 L_High : Node_Id;
9768 R_Low : Node_Id;
9769 R_High : Node_Id;
ee6ba406 9770 L_Length : Uint;
9771 R_Length : Uint;
9dfe12ae 9772 Ref_Node : Node_Id;
ee6ba406 9773
9774 begin
feff2f05 9775 -- At the library level, we need to ensure that the type of
9776 -- the object is elaborated before the check itself is
9777 -- emitted. This is only done if the object is in the
9778 -- current compilation unit, otherwise the type is frozen
9779 -- and elaborated in its unit.
9dfe12ae 9780
9781 if Is_Itype (Exptyp)
9782 and then
9783 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9784 and then
9785 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
d66aa9f6 9786 and then In_Open_Scopes (Scope (Exptyp))
9dfe12ae 9787 then
9788 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9789 Set_Itype (Ref_Node, Exptyp);
9790 Insert_Action (Ck_Node, Ref_Node);
9791 end if;
9792
ee6ba406 9793 L_Index := First_Index (T_Typ);
9794 R_Index := First_Index (Exptyp);
9795
9796 for Indx in 1 .. Ndims loop
9797 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 9798 or else
9799 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 9800 then
9801 Get_Index_Bounds (L_Index, L_Low, L_High);
9802 Get_Index_Bounds (R_Index, R_Low, R_High);
9803
9804 -- Deal with compile time length check. Note that we
9805 -- skip this in the access case, because the access
9806 -- value may be null, so we cannot know statically.
9807
9808 if not Do_Access
9809 and then Compile_Time_Known_Value (L_Low)
9810 and then Compile_Time_Known_Value (L_High)
9811 and then Compile_Time_Known_Value (R_Low)
9812 and then Compile_Time_Known_Value (R_High)
9813 then
9814 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9815 L_Length := Expr_Value (L_High) -
9816 Expr_Value (L_Low) + 1;
9817 else
9818 L_Length := UI_From_Int (0);
9819 end if;
9820
9821 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9822 R_Length := Expr_Value (R_High) -
9823 Expr_Value (R_Low) + 1;
9824 else
9825 R_Length := UI_From_Int (0);
9826 end if;
9827
9828 if L_Length > R_Length then
9829 Add_Check
9830 (Compile_Time_Constraint_Error
cb97ae5c 9831 (Wnode, "too few elements for}??", T_Typ));
ee6ba406 9832
b8eacb12 9833 elsif L_Length < R_Length then
ee6ba406 9834 Add_Check
9835 (Compile_Time_Constraint_Error
cb97ae5c 9836 (Wnode, "too many elements for}??", T_Typ));
ee6ba406 9837 end if;
9838
9839 -- The comparison for an individual index subtype
9840 -- is omitted if the corresponding index subtypes
9841 -- statically match, since the result is known to
9842 -- be true. Note that this test is worth while even
9843 -- though we do static evaluation, because non-static
9844 -- subtypes can statically match.
9845
9846 elsif not
9847 Subtypes_Statically_Match
9848 (Etype (L_Index), Etype (R_Index))
9849
9850 and then not
9851 (Same_Bounds (L_Low, R_Low)
9852 and then Same_Bounds (L_High, R_High))
9853 then
9854 Evolve_Or_Else
9855 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9856 end if;
9857
9858 Next (L_Index);
9859 Next (R_Index);
9860 end if;
9861 end loop;
9862 end;
9863
9864 -- Handle cases where we do not get a usable actual subtype that
9865 -- is constrained. This happens for example in the function call
9866 -- and explicit dereference cases. In these cases, we have to get
9867 -- the length or range from the expression itself, making sure we
9868 -- do not evaluate it more than once.
9869
9870 -- Here Ck_Node is the original expression, or more properly the
feff2f05 9871 -- result of applying Duplicate_Expr to the original tree, forcing
9872 -- the result to be a name.
ee6ba406 9873
9874 else
9875 declare
9dfe12ae 9876 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 9877
9878 begin
9879 -- Build the condition for the explicit dereference case
9880
9881 for Indx in 1 .. Ndims loop
9882 Evolve_Or_Else
9883 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9884 end loop;
9885 end;
9886 end if;
9887 end if;
9888 end if;
9889
9890 -- Construct the test and insert into the tree
9891
9892 if Present (Cond) then
9893 if Do_Access then
9894 Cond := Guard_Access (Cond, Loc, Ck_Node);
9895 end if;
9896
f15731c4 9897 Add_Check
9898 (Make_Raise_Constraint_Error (Loc,
9899 Condition => Cond,
9900 Reason => CE_Length_Check_Failed));
ee6ba406 9901 end if;
9902
9903 return Ret_Result;
ee6ba406 9904 end Selected_Length_Checks;
9905
9906 ---------------------------
9907 -- Selected_Range_Checks --
9908 ---------------------------
9909
9910 function Selected_Range_Checks
9911 (Ck_Node : Node_Id;
9912 Target_Typ : Entity_Id;
9913 Source_Typ : Entity_Id;
314a23b6 9914 Warn_Node : Node_Id) return Check_Result
ee6ba406 9915 is
9916 Loc : constant Source_Ptr := Sloc (Ck_Node);
9917 S_Typ : Entity_Id;
9918 T_Typ : Entity_Id;
9919 Expr_Actual : Node_Id;
9920 Exptyp : Entity_Id;
9921 Cond : Node_Id := Empty;
9922 Do_Access : Boolean := False;
9923 Wnode : Node_Id := Warn_Node;
9924 Ret_Result : Check_Result := (Empty, Empty);
5bb74b99 9925 Num_Checks : Natural := 0;
ee6ba406 9926
9927 procedure Add_Check (N : Node_Id);
9928 -- Adds the action given to Ret_Result if N is non-Empty
9929
9930 function Discrete_Range_Cond
9931 (Expr : Node_Id;
314a23b6 9932 Typ : Entity_Id) return Node_Id;
ee6ba406 9933 -- Returns expression to compute:
9934 -- Low_Bound (Expr) < Typ'First
9935 -- or else
9936 -- High_Bound (Expr) > Typ'Last
9937
9938 function Discrete_Expr_Cond
9939 (Expr : Node_Id;
314a23b6 9940 Typ : Entity_Id) return Node_Id;
ee6ba406 9941 -- Returns expression to compute:
9942 -- Expr < Typ'First
9943 -- or else
9944 -- Expr > Typ'Last
9945
9946 function Get_E_First_Or_Last
3cb12758 9947 (Loc : Source_Ptr;
9948 E : Entity_Id;
ee6ba406 9949 Indx : Nat;
314a23b6 9950 Nam : Name_Id) return Node_Id;
79212397 9951 -- Returns an attribute reference
ee6ba406 9952 -- E'First or E'Last
79212397 9953 -- with a source location of Loc.
f73ee678 9954 --
79212397 9955 -- Nam is Name_First or Name_Last, according to which attribute is
9956 -- desired. If Indx is non-zero, it is passed as a literal in the
9957 -- Expressions of the attribute reference (identifying the desired
9958 -- array dimension).
ee6ba406 9959
9960 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9961 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9962 -- Returns expression to compute:
9dfe12ae 9963 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
ee6ba406 9964
9965 function Range_E_Cond
9966 (Exptyp : Entity_Id;
9967 Typ : Entity_Id;
9968 Indx : Nat)
9969 return Node_Id;
9970 -- Returns expression to compute:
9971 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9972
9973 function Range_Equal_E_Cond
9974 (Exptyp : Entity_Id;
9975 Typ : Entity_Id;
314a23b6 9976 Indx : Nat) return Node_Id;
ee6ba406 9977 -- Returns expression to compute:
9978 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9979
9980 function Range_N_Cond
9981 (Expr : Node_Id;
9982 Typ : Entity_Id;
314a23b6 9983 Indx : Nat) return Node_Id;
ee6ba406 9984 -- Return expression to compute:
9985 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9986
9987 ---------------
9988 -- Add_Check --
9989 ---------------
9990
9991 procedure Add_Check (N : Node_Id) is
9992 begin
9993 if Present (N) then
9994
9995 -- For now, ignore attempt to place more than 2 checks ???
9996
9997 if Num_Checks = 2 then
9998 return;
9999 end if;
10000
10001 pragma Assert (Num_Checks <= 1);
10002 Num_Checks := Num_Checks + 1;
10003 Ret_Result (Num_Checks) := N;
10004 end if;
10005 end Add_Check;
10006
10007 -------------------------
10008 -- Discrete_Expr_Cond --
10009 -------------------------
10010
10011 function Discrete_Expr_Cond
10012 (Expr : Node_Id;
314a23b6 10013 Typ : Entity_Id) return Node_Id
ee6ba406 10014 is
10015 begin
10016 return
10017 Make_Or_Else (Loc,
10018 Left_Opnd =>
10019 Make_Op_Lt (Loc,
10020 Left_Opnd =>
9dfe12ae 10021 Convert_To (Base_Type (Typ),
10022 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 10023 Right_Opnd =>
10024 Convert_To (Base_Type (Typ),
3cb12758 10025 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
ee6ba406 10026
10027 Right_Opnd =>
10028 Make_Op_Gt (Loc,
10029 Left_Opnd =>
9dfe12ae 10030 Convert_To (Base_Type (Typ),
10031 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 10032 Right_Opnd =>
10033 Convert_To
10034 (Base_Type (Typ),
3cb12758 10035 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
ee6ba406 10036 end Discrete_Expr_Cond;
10037
10038 -------------------------
10039 -- Discrete_Range_Cond --
10040 -------------------------
10041
10042 function Discrete_Range_Cond
10043 (Expr : Node_Id;
314a23b6 10044 Typ : Entity_Id) return Node_Id
ee6ba406 10045 is
10046 LB : Node_Id := Low_Bound (Expr);
10047 HB : Node_Id := High_Bound (Expr);
10048
10049 Left_Opnd : Node_Id;
10050 Right_Opnd : Node_Id;
10051
10052 begin
10053 if Nkind (LB) = N_Identifier
feff2f05 10054 and then Ekind (Entity (LB)) = E_Discriminant
10055 then
ee6ba406 10056 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10057 end if;
10058
ee6ba406 10059 Left_Opnd :=
10060 Make_Op_Lt (Loc,
10061 Left_Opnd =>
10062 Convert_To
9dfe12ae 10063 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 10064
10065 Right_Opnd =>
10066 Convert_To
3cb12758 10067 (Base_Type (Typ),
10068 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
ee6ba406 10069
ba9b1a39 10070 if Nkind (HB) = N_Identifier
10071 and then Ekind (Entity (HB)) = E_Discriminant
ee6ba406 10072 then
ba9b1a39 10073 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
ee6ba406 10074 end if;
10075
10076 Right_Opnd :=
10077 Make_Op_Gt (Loc,
10078 Left_Opnd =>
10079 Convert_To
9dfe12ae 10080 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
ee6ba406 10081
10082 Right_Opnd =>
10083 Convert_To
10084 (Base_Type (Typ),
3cb12758 10085 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
ee6ba406 10086
10087 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10088 end Discrete_Range_Cond;
10089
10090 -------------------------
10091 -- Get_E_First_Or_Last --
10092 -------------------------
10093
10094 function Get_E_First_Or_Last
3cb12758 10095 (Loc : Source_Ptr;
10096 E : Entity_Id;
ee6ba406 10097 Indx : Nat;
314a23b6 10098 Nam : Name_Id) return Node_Id
ee6ba406 10099 is
3cb12758 10100 Exprs : List_Id;
ee6ba406 10101 begin
3cb12758 10102 if Indx > 0 then
10103 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
ee6ba406 10104 else
3cb12758 10105 Exprs := No_List;
ee6ba406 10106 end if;
10107
3cb12758 10108 return Make_Attribute_Reference (Loc,
10109 Prefix => New_Occurrence_Of (E, Loc),
10110 Attribute_Name => Nam,
10111 Expressions => Exprs);
ee6ba406 10112 end Get_E_First_Or_Last;
10113
10114 -----------------
10115 -- Get_N_First --
10116 -----------------
10117
10118 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10119 begin
10120 return
10121 Make_Attribute_Reference (Loc,
10122 Attribute_Name => Name_First,
10123 Prefix =>
9dfe12ae 10124 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 10125 Expressions => New_List (
10126 Make_Integer_Literal (Loc, Indx)));
ee6ba406 10127 end Get_N_First;
10128
10129 ----------------
10130 -- Get_N_Last --
10131 ----------------
10132
10133 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10134 begin
10135 return
10136 Make_Attribute_Reference (Loc,
10137 Attribute_Name => Name_Last,
10138 Prefix =>
9dfe12ae 10139 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 10140 Expressions => New_List (
10141 Make_Integer_Literal (Loc, Indx)));
ee6ba406 10142 end Get_N_Last;
10143
10144 ------------------
10145 -- Range_E_Cond --
10146 ------------------
10147
10148 function Range_E_Cond
10149 (Exptyp : Entity_Id;
10150 Typ : Entity_Id;
314a23b6 10151 Indx : Nat) return Node_Id
ee6ba406 10152 is
10153 begin
10154 return
10155 Make_Or_Else (Loc,
10156 Left_Opnd =>
10157 Make_Op_Lt (Loc,
3cb12758 10158 Left_Opnd =>
10159 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10160 Right_Opnd =>
10161 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 10162
10163 Right_Opnd =>
10164 Make_Op_Gt (Loc,
3cb12758 10165 Left_Opnd =>
10166 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10167 Right_Opnd =>
10168 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 10169 end Range_E_Cond;
10170
10171 ------------------------
10172 -- Range_Equal_E_Cond --
10173 ------------------------
10174
10175 function Range_Equal_E_Cond
10176 (Exptyp : Entity_Id;
10177 Typ : Entity_Id;
314a23b6 10178 Indx : Nat) return Node_Id
ee6ba406 10179 is
10180 begin
10181 return
10182 Make_Or_Else (Loc,
10183 Left_Opnd =>
10184 Make_Op_Ne (Loc,
3cb12758 10185 Left_Opnd =>
10186 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10187 Right_Opnd =>
10188 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10189
ee6ba406 10190 Right_Opnd =>
10191 Make_Op_Ne (Loc,
3cb12758 10192 Left_Opnd =>
10193 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10194 Right_Opnd =>
10195 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 10196 end Range_Equal_E_Cond;
10197
10198 ------------------
10199 -- Range_N_Cond --
10200 ------------------
10201
10202 function Range_N_Cond
10203 (Expr : Node_Id;
10204 Typ : Entity_Id;
314a23b6 10205 Indx : Nat) return Node_Id
ee6ba406 10206 is
10207 begin
10208 return
10209 Make_Or_Else (Loc,
10210 Left_Opnd =>
10211 Make_Op_Lt (Loc,
3cb12758 10212 Left_Opnd =>
10213 Get_N_First (Expr, Indx),
10214 Right_Opnd =>
10215 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 10216
10217 Right_Opnd =>
10218 Make_Op_Gt (Loc,
3cb12758 10219 Left_Opnd =>
10220 Get_N_Last (Expr, Indx),
10221 Right_Opnd =>
10222 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 10223 end Range_N_Cond;
10224
10225 -- Start of processing for Selected_Range_Checks
10226
10227 begin
f0d65dae 10228 -- Checks will be applied only when generating code. In GNATprove mode,
10229 -- we do not apply the checks, but we still call Selected_Range_Checks
10230 -- to possibly issue errors on SPARK code when a run-time error can be
10231 -- detected at compile time.
10232
10233 if not Expander_Active and not GNATprove_Mode then
ee6ba406 10234 return Ret_Result;
10235 end if;
10236
10237 if Target_Typ = Any_Type
10238 or else Target_Typ = Any_Composite
10239 or else Raises_Constraint_Error (Ck_Node)
10240 then
10241 return Ret_Result;
10242 end if;
10243
10244 if No (Wnode) then
10245 Wnode := Ck_Node;
10246 end if;
10247
10248 T_Typ := Target_Typ;
10249
10250 if No (Source_Typ) then
10251 S_Typ := Etype (Ck_Node);
10252 else
10253 S_Typ := Source_Typ;
10254 end if;
10255
10256 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10257 return Ret_Result;
10258 end if;
10259
10260 -- The order of evaluating T_Typ before S_Typ seems to be critical
10261 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10262 -- in, and since Node can be an N_Range node, it might be invalid.
10263 -- Should there be an assert check somewhere for taking the Etype of
10264 -- an N_Range node ???
10265
10266 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10267 S_Typ := Designated_Type (S_Typ);
10268 T_Typ := Designated_Type (T_Typ);
10269 Do_Access := True;
10270
2af58f67 10271 -- A simple optimization for the null case
ee6ba406 10272
2af58f67 10273 if Known_Null (Ck_Node) then
ee6ba406 10274 return Ret_Result;
10275 end if;
10276 end if;
10277
10278 -- For an N_Range Node, check for a null range and then if not
10279 -- null generate a range check action.
10280
10281 if Nkind (Ck_Node) = N_Range then
10282
10283 -- There's no point in checking a range against itself
10284
10285 if Ck_Node = Scalar_Range (T_Typ) then
10286 return Ret_Result;
10287 end if;
10288
10289 declare
10290 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10291 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
eefa141b 10292 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10293 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
ee6ba406 10294
eefa141b 10295 LB : Node_Id := Low_Bound (Ck_Node);
10296 HB : Node_Id := High_Bound (Ck_Node);
3fabf0ca 10297 Known_LB : Boolean := False;
10298 Known_HB : Boolean := False;
eefa141b 10299
10300 Null_Range : Boolean;
ee6ba406 10301 Out_Of_Range_L : Boolean;
10302 Out_Of_Range_H : Boolean;
10303
10304 begin
eefa141b 10305 -- Compute what is known at compile time
10306
10307 if Known_T_LB and Known_T_HB then
10308 if Compile_Time_Known_Value (LB) then
10309 Known_LB := True;
10310
10311 -- There's no point in checking that a bound is within its
10312 -- own range so pretend that it is known in this case. First
10313 -- deal with low bound.
10314
10315 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10316 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10317 then
10318 LB := T_LB;
10319 Known_LB := True;
eefa141b 10320 end if;
10321
10322 -- Likewise for the high bound
10323
10324 if Compile_Time_Known_Value (HB) then
10325 Known_HB := True;
10326
10327 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10328 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10329 then
10330 HB := T_HB;
10331 Known_HB := True;
eefa141b 10332 end if;
10333 end if;
10334
10335 -- Check for case where everything is static and we can do the
10336 -- check at compile time. This is skipped if we have an access
10337 -- type, since the access value may be null.
10338
10339 -- ??? This code can be improved since you only need to know that
10340 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10341 -- compile time to emit pertinent messages.
10342
10343 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10344 and not Do_Access
ee6ba406 10345 then
10346 -- Floating-point case
10347
10348 if Is_Floating_Point_Type (S_Typ) then
10349 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10350 Out_Of_Range_L :=
10351 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
eefa141b 10352 or else
ee6ba406 10353 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10354
10355 Out_Of_Range_H :=
10356 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
eefa141b 10357 or else
ee6ba406 10358 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10359
10360 -- Fixed or discrete type case
10361
10362 else
10363 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10364 Out_Of_Range_L :=
10365 (Expr_Value (LB) < Expr_Value (T_LB))
eefa141b 10366 or else
ee6ba406 10367 (Expr_Value (LB) > Expr_Value (T_HB));
10368
10369 Out_Of_Range_H :=
10370 (Expr_Value (HB) > Expr_Value (T_HB))
eefa141b 10371 or else
ee6ba406 10372 (Expr_Value (HB) < Expr_Value (T_LB));
10373 end if;
10374
10375 if not Null_Range then
10376 if Out_Of_Range_L then
10377 if No (Warn_Node) then
10378 Add_Check
10379 (Compile_Time_Constraint_Error
10380 (Low_Bound (Ck_Node),
cb97ae5c 10381 "static value out of range of}??", T_Typ));
ee6ba406 10382
10383 else
10384 Add_Check
10385 (Compile_Time_Constraint_Error
10386 (Wnode,
cb97ae5c 10387 "static range out of bounds of}??", T_Typ));
ee6ba406 10388 end if;
10389 end if;
10390
10391 if Out_Of_Range_H then
10392 if No (Warn_Node) then
10393 Add_Check
10394 (Compile_Time_Constraint_Error
10395 (High_Bound (Ck_Node),
cb97ae5c 10396 "static value out of range of}??", T_Typ));
ee6ba406 10397
10398 else
10399 Add_Check
10400 (Compile_Time_Constraint_Error
10401 (Wnode,
cb97ae5c 10402 "static range out of bounds of}??", T_Typ));
ee6ba406 10403 end if;
10404 end if;
ee6ba406 10405 end if;
10406
10407 else
10408 declare
10409 LB : Node_Id := Low_Bound (Ck_Node);
10410 HB : Node_Id := High_Bound (Ck_Node);
10411
10412 begin
feff2f05 10413 -- If either bound is a discriminant and we are within the
10414 -- record declaration, it is a use of the discriminant in a
10415 -- constraint of a component, and nothing can be checked
10416 -- here. The check will be emitted within the init proc.
10417 -- Before then, the discriminal has no real meaning.
10418 -- Similarly, if the entity is a discriminal, there is no
10419 -- check to perform yet.
10420
10421 -- The same holds within a discriminated synchronized type,
10422 -- where the discriminant may constrain a component or an
10423 -- entry family.
ee6ba406 10424
10425 if Nkind (LB) = N_Identifier
0577b0b1 10426 and then Denotes_Discriminant (LB, True)
ee6ba406 10427 then
0577b0b1 10428 if Current_Scope = Scope (Entity (LB))
10429 or else Is_Concurrent_Type (Current_Scope)
10430 or else Ekind (Entity (LB)) /= E_Discriminant
10431 then
ee6ba406 10432 return Ret_Result;
10433 else
10434 LB :=
10435 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10436 end if;
10437 end if;
10438
10439 if Nkind (HB) = N_Identifier
0577b0b1 10440 and then Denotes_Discriminant (HB, True)
ee6ba406 10441 then
0577b0b1 10442 if Current_Scope = Scope (Entity (HB))
10443 or else Is_Concurrent_Type (Current_Scope)
10444 or else Ekind (Entity (HB)) /= E_Discriminant
10445 then
ee6ba406 10446 return Ret_Result;
10447 else
10448 HB :=
10449 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10450 end if;
10451 end if;
10452
10453 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10454 Set_Paren_Count (Cond, 1);
10455
10456 Cond :=
10457 Make_And_Then (Loc,
10458 Left_Opnd =>
10459 Make_Op_Ge (Loc,
86d32751 10460 Left_Opnd =>
10461 Convert_To (Base_Type (Etype (HB)),
10462 Duplicate_Subexpr_No_Checks (HB)),
10463 Right_Opnd =>
10464 Convert_To (Base_Type (Etype (LB)),
10465 Duplicate_Subexpr_No_Checks (LB))),
ee6ba406 10466 Right_Opnd => Cond);
10467 end;
ee6ba406 10468 end if;
10469 end;
10470
10471 elsif Is_Scalar_Type (S_Typ) then
10472
10473 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10474 -- except the above simply sets a flag in the node and lets
10475 -- gigi generate the check base on the Etype of the expression.
10476 -- Sometimes, however we want to do a dynamic check against an
10477 -- arbitrary target type, so we do that here.
10478
10479 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10480 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10481
10482 -- For literals, we can tell if the constraint error will be
10483 -- raised at compile time, so we never need a dynamic check, but
10484 -- if the exception will be raised, then post the usual warning,
10485 -- and replace the literal with a raise constraint error
10486 -- expression. As usual, skip this for access types
10487
20cf157b 10488 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
ee6ba406 10489 declare
10490 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10491 UB : constant Node_Id := Type_High_Bound (T_Typ);
10492
10493 Out_Of_Range : Boolean;
10494 Static_Bounds : constant Boolean :=
b6341c67 10495 Compile_Time_Known_Value (LB)
10496 and Compile_Time_Known_Value (UB);
ee6ba406 10497
10498 begin
10499 -- Following range tests should use Sem_Eval routine ???
10500
10501 if Static_Bounds then
10502 if Is_Floating_Point_Type (S_Typ) then
10503 Out_Of_Range :=
10504 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10505 or else
10506 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10507
eefa141b 10508 -- Fixed or discrete type
10509
10510 else
ee6ba406 10511 Out_Of_Range :=
10512 Expr_Value (Ck_Node) < Expr_Value (LB)
10513 or else
10514 Expr_Value (Ck_Node) > Expr_Value (UB);
10515 end if;
10516
eefa141b 10517 -- Bounds of the type are static and the literal is out of
10518 -- range so output a warning message.
ee6ba406 10519
10520 if Out_Of_Range then
10521 if No (Warn_Node) then
10522 Add_Check
10523 (Compile_Time_Constraint_Error
10524 (Ck_Node,
cb97ae5c 10525 "static value out of range of}??", T_Typ));
ee6ba406 10526
10527 else
10528 Add_Check
10529 (Compile_Time_Constraint_Error
10530 (Wnode,
cb97ae5c 10531 "static value out of range of}??", T_Typ));
ee6ba406 10532 end if;
10533 end if;
10534
10535 else
10536 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10537 end if;
10538 end;
10539
10540 -- Here for the case of a non-static expression, we need a runtime
10541 -- check unless the source type range is guaranteed to be in the
10542 -- range of the target type.
10543
10544 else
7a1dabb3 10545 if not In_Subrange_Of (S_Typ, T_Typ) then
ee6ba406 10546 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10547 end if;
10548 end if;
10549 end if;
10550
10551 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10552 if Is_Constrained (T_Typ) then
10553
10554 Expr_Actual := Get_Referenced_Object (Ck_Node);
10555 Exptyp := Get_Actual_Subtype (Expr_Actual);
10556
10557 if Is_Access_Type (Exptyp) then
10558 Exptyp := Designated_Type (Exptyp);
10559 end if;
10560
10561 -- String_Literal case. This needs to be handled specially be-
10562 -- cause no index types are available for string literals. The
10563 -- condition is simply:
10564
10565 -- T_Typ'Length = string-literal-length
10566
10567 if Nkind (Expr_Actual) = N_String_Literal then
10568 null;
10569
10570 -- General array case. Here we have a usable actual subtype for
10571 -- the expression, and the condition is built from the two types
10572
10573 -- T_Typ'First < Exptyp'First or else
10574 -- T_Typ'Last > Exptyp'Last or else
10575 -- T_Typ'First(1) < Exptyp'First(1) or else
10576 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10577 -- ...
10578
10579 elsif Is_Constrained (Exptyp) then
10580 declare
9dfe12ae 10581 Ndims : constant Nat := Number_Dimensions (T_Typ);
10582
ee6ba406 10583 L_Index : Node_Id;
10584 R_Index : Node_Id;
ee6ba406 10585
10586 begin
10587 L_Index := First_Index (T_Typ);
10588 R_Index := First_Index (Exptyp);
10589
10590 for Indx in 1 .. Ndims loop
10591 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 10592 or else
10593 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 10594 then
ee6ba406 10595 -- Deal with compile time length check. Note that we
10596 -- skip this in the access case, because the access
10597 -- value may be null, so we cannot know statically.
10598
10599 if not
10600 Subtypes_Statically_Match
10601 (Etype (L_Index), Etype (R_Index))
10602 then
10603 -- If the target type is constrained then we
10604 -- have to check for exact equality of bounds
10605 -- (required for qualified expressions).
10606
10607 if Is_Constrained (T_Typ) then
10608 Evolve_Or_Else
10609 (Cond,
10610 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
ee6ba406 10611 else
10612 Evolve_Or_Else
10613 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10614 end if;
10615 end if;
10616
10617 Next (L_Index);
10618 Next (R_Index);
ee6ba406 10619 end if;
10620 end loop;
10621 end;
10622
10623 -- Handle cases where we do not get a usable actual subtype that
10624 -- is constrained. This happens for example in the function call
10625 -- and explicit dereference cases. In these cases, we have to get
10626 -- the length or range from the expression itself, making sure we
10627 -- do not evaluate it more than once.
10628
10629 -- Here Ck_Node is the original expression, or more properly the
10630 -- result of applying Duplicate_Expr to the original tree,
10631 -- forcing the result to be a name.
10632
10633 else
10634 declare
9dfe12ae 10635 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 10636
10637 begin
10638 -- Build the condition for the explicit dereference case
10639
10640 for Indx in 1 .. Ndims loop
10641 Evolve_Or_Else
10642 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10643 end loop;
10644 end;
ee6ba406 10645 end if;
10646
10647 else
feff2f05 10648 -- For a conversion to an unconstrained array type, generate an
10649 -- Action to check that the bounds of the source value are within
10650 -- the constraints imposed by the target type (RM 4.6(38)). No
10651 -- check is needed for a conversion to an access to unconstrained
10652 -- array type, as 4.6(24.15/2) requires the designated subtypes
10653 -- of the two access types to statically match.
10654
10655 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10656 and then not Do_Access
10657 then
ee6ba406 10658 declare
10659 Opnd_Index : Node_Id;
10660 Targ_Index : Node_Id;
00c403ee 10661 Opnd_Range : Node_Id;
ee6ba406 10662
10663 begin
feff2f05 10664 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
ee6ba406 10665 Targ_Index := First_Index (T_Typ);
00c403ee 10666 while Present (Opnd_Index) loop
10667
10668 -- If the index is a range, use its bounds. If it is an
10669 -- entity (as will be the case if it is a named subtype
10670 -- or an itype created for a slice) retrieve its range.
10671
10672 if Is_Entity_Name (Opnd_Index)
10673 and then Is_Type (Entity (Opnd_Index))
10674 then
10675 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10676 else
10677 Opnd_Range := Opnd_Index;
10678 end if;
10679
10680 if Nkind (Opnd_Range) = N_Range then
9c486805 10681 if Is_In_Range
10682 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10683 Assume_Valid => True)
ee6ba406 10684 and then
10685 Is_In_Range
9c486805 10686 (High_Bound (Opnd_Range), Etype (Targ_Index),
10687 Assume_Valid => True)
ee6ba406 10688 then
10689 null;
10690
feff2f05 10691 -- If null range, no check needed
f2a06be9 10692
9dfe12ae 10693 elsif
00c403ee 10694 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9dfe12ae 10695 and then
00c403ee 10696 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9dfe12ae 10697 and then
00c403ee 10698 Expr_Value (High_Bound (Opnd_Range)) <
10699 Expr_Value (Low_Bound (Opnd_Range))
9dfe12ae 10700 then
10701 null;
10702
ee6ba406 10703 elsif Is_Out_Of_Range
9c486805 10704 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10705 Assume_Valid => True)
ee6ba406 10706 or else
10707 Is_Out_Of_Range
9c486805 10708 (High_Bound (Opnd_Range), Etype (Targ_Index),
10709 Assume_Valid => True)
ee6ba406 10710 then
10711 Add_Check
10712 (Compile_Time_Constraint_Error
cb97ae5c 10713 (Wnode, "value out of range of}??", T_Typ));
ee6ba406 10714
10715 else
10716 Evolve_Or_Else
10717 (Cond,
10718 Discrete_Range_Cond
00c403ee 10719 (Opnd_Range, Etype (Targ_Index)));
ee6ba406 10720 end if;
10721 end if;
10722
10723 Next_Index (Opnd_Index);
10724 Next_Index (Targ_Index);
10725 end loop;
10726 end;
10727 end if;
10728 end if;
10729 end if;
10730
10731 -- Construct the test and insert into the tree
10732
10733 if Present (Cond) then
10734 if Do_Access then
10735 Cond := Guard_Access (Cond, Loc, Ck_Node);
10736 end if;
10737
f15731c4 10738 Add_Check
10739 (Make_Raise_Constraint_Error (Loc,
eefa141b 10740 Condition => Cond,
22d3a5a3 10741 Reason => CE_Range_Check_Failed));
ee6ba406 10742 end if;
10743
10744 return Ret_Result;
ee6ba406 10745 end Selected_Range_Checks;
10746
10747 -------------------------------
10748 -- Storage_Checks_Suppressed --
10749 -------------------------------
10750
10751 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10752 begin
9dfe12ae 10753 if Present (E) and then Checks_May_Be_Suppressed (E) then
10754 return Is_Check_Suppressed (E, Storage_Check);
10755 else
fafc6b97 10756 return Scope_Suppress.Suppress (Storage_Check);
9dfe12ae 10757 end if;
ee6ba406 10758 end Storage_Checks_Suppressed;
10759
10760 ---------------------------
10761 -- Tag_Checks_Suppressed --
10762 ---------------------------
10763
10764 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10765 begin
89f1e35c 10766 if Present (E)
10767 and then Checks_May_Be_Suppressed (E)
10768 then
10769 return Is_Check_Suppressed (E, Tag_Check);
20cf157b 10770 else
10771 return Scope_Suppress.Suppress (Tag_Check);
9dfe12ae 10772 end if;
ee6ba406 10773 end Tag_Checks_Suppressed;
10774
7b8fa048 10775 ---------------------------------------
10776 -- Validate_Alignment_Check_Warnings --
10777 ---------------------------------------
10778
10779 procedure Validate_Alignment_Check_Warnings is
10780 begin
10781 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10782 declare
10783 AWR : Alignment_Warnings_Record
10784 renames Alignment_Warnings.Table (J);
10785 begin
10786 if Known_Alignment (AWR.E)
10787 and then AWR.A mod Alignment (AWR.E) = 0
10788 then
10789 Delete_Warning_And_Continuations (AWR.W);
10790 end if;
10791 end;
10792 end loop;
10793 end Validate_Alignment_Check_Warnings;
10794
0577b0b1 10795 --------------------------
10796 -- Validity_Check_Range --
10797 --------------------------
10798
aaec8d13 10799 procedure Validity_Check_Range
10800 (N : Node_Id;
10801 Related_Id : Entity_Id := Empty)
10802 is
0577b0b1 10803 begin
10804 if Validity_Checks_On and Validity_Check_Operands then
10805 if Nkind (N) = N_Range then
aaec8d13 10806 Ensure_Valid
10807 (Expr => Low_Bound (N),
10808 Related_Id => Related_Id,
10809 Is_Low_Bound => True);
10810
10811 Ensure_Valid
10812 (Expr => High_Bound (N),
10813 Related_Id => Related_Id,
10814 Is_High_Bound => True);
0577b0b1 10815 end if;
10816 end if;
10817 end Validity_Check_Range;
10818
10819 --------------------------------
10820 -- Validity_Checks_Suppressed --
10821 --------------------------------
10822
10823 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10824 begin
10825 if Present (E) and then Checks_May_Be_Suppressed (E) then
10826 return Is_Check_Suppressed (E, Validity_Check);
10827 else
fafc6b97 10828 return Scope_Suppress.Suppress (Validity_Check);
0577b0b1 10829 end if;
10830 end Validity_Checks_Suppressed;
10831
ee6ba406 10832end Checks;